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Abstract

Many Monte Carlo simulation problemis are essentially finite state. We demonstrate how such
problems may be represented within a probabilistic process algebra. We demonstrate how it is
possible to convert such processes into linear probabilistic equations, and solve such equations
exactly with available computer algebra systems.

1 Introduction

One of the most common uses of simulation is to evaluate the behavior of complex probabilistic
systems. Such problems naturally arise when considering the outcome of games and the performance
of queues. The use of simulation to evaluate such systems is limited in several fashions. Firstly,
particular values and/or distributions have to be chosen for any probabilities in the system to enable
their evaluation. Secondly, the implementor has to choose a particular number of executions over
which to sample. Thirdly, the accuracy of the final results is highly dependent on the randomness
of the generated results. Fourthly, there is little or no way of evaluating whether the simulating
program is an actual implementation of the desired problem.

For a large class of these problems, namely those with a finite number of states we propose a
different approach. The system can be described in an appropriate process algebra, allowing the
formal evaluation of system properties, and then automatically converted to an appropriate set
of linear probabilistic equations. These equations then being solved by any standard computer
algebra system. Such an approach allows us to generate exact solutions for problems whose state
space is finite.

The process algebraic notion is both compact and managable. It allows us to repesent systems
with large (exponential) numbers of states, with a small number of simple linear equations. These
methdologies are therefore suitable both as notations, as a result of their compactness, and for
reasoning, from their formal presentation.

We can approximate infinite state space problems, by restricting them to finite approxima-
tions,(which is what happens implicitly within any computer implementation anyway!) and conse-
quently know how much of the state space we have explored. Importantly we can the exploit our
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methodology to detect just how much of the potential state space we have successfully explored,
and enlarge it if the approximation is too gross.

Evidently, any finite set of experiments on an infinite state space system will only explore some
sub-space of that system, but in a simulation we would be unaware of which. Indeed our simulation
may well only explore the most likely areas of the graph, possibly neglecting extreme cases.

The process algebra we choose to exploit in describing our systems is the Weighted Synchronous
Calculus of Synchronous Systems (WSCCS) [Tof90,Tof93a,Tof93b], a derivative of Milner’s Syn-
chronous Calculus of Communicating Systems, [Mil83,Mil89]. WSCCS is highly expressive allowing
us to describe probabilistic and priority constraints on the choices a process makes about its future
behavior. As it is a synchronous calculus it has a simple notion of time which can be exploited to un-
derstand the timing properties of systems described in WSCCS. This calculus has been exploited to
derive the properties of large scale and complex problems in the field of behavioral ecology [Tof90b,
Tof91, Tof93a], formal results were obtained over systems that were traditionally simulated.

To realise the translation of our processes into probabilistic graphs, and the translation of those
graphs into simultaneous equation problems, we use an SML program. The translation program
currently produces output suitable for solution by the MAPLE(TM) system. Maple is a ‘standard’
computer algebra system. Currently our implementations are limited to work with probabilities of
fixed values, but generalising the current implementation to work with arbitrary probability values
is a straightforward task which will shortly be undertaken.

In this paper we present some simple motivating examples of our approach, as an informal in-
troduction to WSCCS, are given in Section 2. We present some exact solution to traditional Monte
Carlo simulation exercises in Section 3, which demonstrate the scale of the systems addressable.
We examine the results of using our methods to approximate systems with an infinite numbr of
states in Section 4. Some queue theoretic examples are studied in Section 5. For completeness, a
full description of the semantics and equational theory of WSCCS is included in Appendix A.

2 Introductory Examples

A full description of a process algebra (SCCS) with the underlying computational structure of
WSCCS can be found in Milner’s excellent book [Mil89].

As an introduction to the WSCCS process language, consider the following simple game. Two
coins are tossed: if they both come up heads then a gambler will win; if they both come up tails
then the gambler loses; on the other outcome the gambler plays again. We can describe this simple
system by the following WSCCS processes:

Coin ¥ 1'head: Coin + 1.'tail : Coin

. d . .
TwoCoins 2 Coin x Coin

Gambler Lhead?H#win : Nil + 1.tail*#lose : Nil + 1.head#tail.Gambler
def

Game (Gambler x TwoCoins)[{win,lose}

In the above the process Coin can perform either of the actions 'head or ‘tail becoming the
process Coin again. We understand such recursive definitions as unfoldings, copying the body
of the process given on the right of the definition whenever it is needed. We have weights 1 on
each of the transitions suggesting that they have equal weight. Weights are used as this avoids
the need to normalize when we limit the behaviours of our processes. Weights can be interpreted
as probabilities by totaling the weight out of any state; then the probability that any descendant
process will be reached is the weight with which that process is labeled, over the total weight




from the initial process. The plus (4) operator is intended to mean choice between possible future
behaviors. Unlike the choice of CCS and SCCS, this plus is not simply absorbative. When two
choices are indentical and we wish to combine them, we must sum the weights with which those
choices can be made, this conserves our ability to interpret weights as probabilities.

The process TwoCoins is two Coin processes executing in synchronous parallel. For this process
to perform an action both of its components must perform some action, and the parallel process will
perform the composition of the actions. We use the operator # to denote the parallel composition
of actions, and assume that it is both associative and commutative; these assumptions are natural
as # represents a notion of parallelism which is generally assumed to be both associative and
commutative. If we expand our Twocoins process, we find that it has the following equivalent
description:

Twocoins = 1.'head#'head.Twocoins
+1.tail# head. Twocoins
+1.'head#'tail . Twocoins
+1./tail#'tail. Twocoins

In the above we have unfolded the definition of Twocoins once, and allowed ourselves to make the
obvious syntactic identifications. The weight of any state is formed by multiplying the weights of
the two transitions that produced it from the component processes. As # is commutative we have
'head#'tail =' tail# head.

So if we use the above identification we can reduce the Twocoins process to the following:

TwoCoins = 1.'head®.Twocoins
+2./tail# head. Twocoins
+1./tail® Twocoins

Notice that the mixed result has weight 2 and is thus twice as likely to come up as either of the
others. So our combination of two fair coins has the correct probabilities for each of its possible
outcomes.

In order that processes within our calculus can communicate with each other we divide actions
into two kinds, input actions which we write as (say) head, and output actions which we write as
'head. When we multiply two of these together with our parallel action composer #, they combine
together and cancel forming a 4/ or ‘tick’ action (the output of one process has been read and
absorbed by the other). The Gambler process interacts with the TwoCoin process by unbaisedly
accepting its output. Thus the action head®#win can combine with the action 'head” to form the
action win, similarly for the other actions of the Gambler. Throughout most of the remainder
of the paper we shall denote an output a action by ’a rather than ‘a, this results for importing
the syntax of mechanically presentable processes. The formal statement of the properties of the #
operator on actions is given in Appendix A.

The Gambler process wishes to sample the coins, so it performs input actions dual to the outputs
of the coins, plus two witness actions win and lose that allow us to see the result. Remember the
communication on the coin actions means that they vanish. All of the gamblers choices are guarded
by 1 weights as they have no bias (in reality is allowed no bias), towards any particular action.

Finally we need to ensure that actions such as win#'tail#head, do not occur, since they are
malformed. That is we wish to ensure that only communications occur on the head and tail actions
between the Gambler process and the Twocoins process. Since it is this interaction that is supposed
to dictate the gambler’s chances of winning. The operator [{win,lose} states that only actions
which are formed as a product of input or output win or lose actions only are permitted to occur.
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Figure 1: Transition diagram for the simple game process.

Notice that the 4/ action can occur since it is the same as ‘win#win, and this is a product of win
actions. Since neither the head or tail action is permitted our example erroneous action is now
forbidden. To form the permitted part of a process we simply delete all weight paths leading to
subprocesses that are never permitted to perform any action.

Thus we can see that our Geme system is the following process:

Game = l.win: Nil+
l.lose : Nil+
2.4/ : Game

i.e., we are only left with the three choices, in which either a tick is performed or a win or a lose.
Alternatively we can view our processes as graphs, see Figure 1. If we wished to compute the
probability of winning such a game we would have to solve the following set of linear equations:

p(Game) = (L.p(Win: Nil)+ 1.p(lose: Nil)+ 2.p(Game))/4
p(win: Nil) = 1
p(lose: Nil) = 0

To solve the set of equations generated from our processes we used the computer algebra system
MAPLE. Like many similar software systems it can solve large systems of simultaneous equations.
Obviously any computer algebra system would be suitable for our purposes, but there are benefits
if it can handle large numbers of sparse simultaneous equations rapidly.

For such a simple problem it is straightforward to see the solution to the above equations.

1

Indeed we see that the probability of winning is 3 as we expect. Whilst this example is simple




it demonstrates the basis of a general principle. If we convert a process to sum normal form and
assign success (probability 1) or fail (probability 0) to the terminal nodes of its graph, the weights
can be used to generate a set of linear equations. The solution, of this set of linear equations,
tells us the probability of reaching the terminal nodes we labeled as successful. The conversion of
WSCCS processes with a finite number of states into a weighted transition graph and its subsequent
conversion into a set of linear equations has been automated as an SML program.

A related question is the number of times the coins would have to be tossed before the game
was completed, this again can be represented as the solution of the following linear equations:

d(Game) = (Ld(Win: Nil)+ 1.d(lose : Nil) + 2.d(Game))/4+ 1
d(win : Nil) 0
d(lose : Nil) 0

It is straightforward to demonstrate that the solution of the above equations is d(Game) = 2.
Again the activity of converting a process into a set of linear equations which specify its expected
lifetime has been automated as an SML program.

There is a further expressive capability within the language WSCCS. We can define when one
(or more) of our choices has priority over the others. For example, a cheating gambler might only
want to see the occurrence of ‘heads’ actions. Such a system could be described as follows:

Cheat & w.head’#win : Nil + 1.tail?#lose : Nil + 1.head#tail.Cheat

the w weight represents an infinite valued weight and the above process is understood as meaning,
that whenever the action head? is offered by an environment then it should be taken in preference
to any other choice. Much like our permission operator, we need an operator to tell processes to
take account of priority information. We write ©(P) to mean take the highest priority part of the
process P. When this operator is used the weight of the highest prioritised parts of P are reduced
to appropriate natural value weights (see Appendix A for a full account of weight arithmetic). We
allow ourselves to write powers of w to denote relatively higher levels of priority. Thus:

Rcheat w? head*#win : Nil + w.head#tail. Rcheat + 1.tail’$#lose : Nil

is a cheating gambler, who if the environment will not let them win at this turn, will perform a
head#tail in preference to taking a loss. This gambler will only lose if both coins will produce only
tail actions. We compose weights and priorities in the obvious fashion, i.e., by multiplication and
addition of powers where appropriate. Conflicts of priority lead to probabilistic outcomes, as two
objects with equal priority will get equal weights when the priority operator is applied.

Notice, that it is possible to condition events both on input and on output. This can lead to a
conflict when trying to interpret probabilities. The process descriptions require great care if neither
of the input or output actions occur within an unbaised probabilistic sum (that is one where all
the weights are 1). For an example of the resolution of such a problem see Section 3.1.

2.1 Craps

As a more substantial example we present a non-standard version of the dice game craps.Our rules
are that on the first roll of a pair of die the ‘shooter’ wins if they roll a 7 or a 12; they lose if they
roll a 2 or a 11; on any other score they continue rolling until they either roll they same score and
win, or roll a 7 and lose.

This game can be formulated as the following WSCCS processes:




Dice * 1.'two.Dice + 2.three.Dice + 3. four.Dice + 4. five.Dice + 5.'siz. Dice+
6. seven.Dice + 5./ eight.Dice + 4.'nine.Dice + 3.'ten. Dice+
2./eleven.Dice + 1.'twelve.Dice

The above process describes rolling a pair of die. Each of the output actions is the total value
of the roll, and the weights with which they are associted are those for a pair unbaised dice. The
following process describes the initial state of the game, in which the gambler wins immediately if
the dice roll is 7 or 12, loses if it is 2 or 11, and enters a state dependent on the roll value in any
other case.

Gam L.two#lose.Nil + 1.elevenftlose. N1l
+1.seven#win.Nil + 1.twelveH#win.Nil
+1.three.Gam3 4 1. four.Gam4 + 1. five.Gam5 + 1.siz.Gam6 + 1.eight.Gams8
+1.nine.Gam9 + l.ten.Gam10

In the above the states Gam3 to Gam6 and Gam8 to Gam10, are thos of the gambler needing
to ‘make his point’, of the dice roll of the same value. The state below is an example of the gambler
needing to throw a 3 to win:

Gam3 l.seven#tlose.Nil + 1.three#win.Nil
+1.two.Gam3 + 1. four.Gam3 + 1. five.Gam3 + 1.siz.Gam3 + 1.eight.Gam3
+1.nine.Gam3 + 1.ten.Gam3 + 1.eleven.Gam3 + 1.twelve.Gam3

above if the rool is a 3 the gambler wins, if it is a 7 then the gambler loses, otherwise the dice are
rolled again. The following states are identical to the above, except that a different value of the
roll is required for the gambler to make thei point.

Gamd l.sevenftlose.Nil + 1. four#win.Gam4

+1.three.Gam4 + 1.two.Gam4 + 1. five.Gam4 + 1.siz.Gam4 + 1.eight.Gam4
+1.nine.Gam4d + l.ten.Gam4 + 1.eleven.Gam4 + 1.twelve.Gam4

Gamb = l.sevendtlose.Nil + 1.fiveH#win.Nil
+1.two.Gamb + 1. four.Gamb + 1.three.Gamb + 1.stx.Gamb + 1.eight.Gam5
+1.nine.Gamb + 1.ten.Gamb + 1.eleven.Gamb + 1.twelve.Gamb

Gam6 = l.sevenftlose.Nil+ l.siz#win.Nil
+1.two.Gamb + 1. four.Gamb + 1. five.Gam6 + 1.three.Gamé + 1.eight.Gam6
+1.nine.Gamb + 1.ten.Gamb + 1.eleven.Gamb + 1.twelve.Gamb

Gam8 = l.seven#tlose.Nil+ l.eight#win.Nil
+1.two.Gam8 + 1. four.Gam8 + 1. five.Gam8 + 1.siz.Gam8 + 1.three.Gam8
+1.nine.Gam8 + 1.ten.Gam8 + 1.eleven.Gam8 + 1.twelve.Gam8

Gam9 = 1l.sevenftlose.Nil+ 1.nine#win.Nil
+1.two.Gam9 + 1.four.Gam9 + 1. five.Gam9 + 1.siz.Gam9 + 1.etght.Gam9
+1.three.Gam9 + 1.ten.Gam9 + 1.eleven.Gam9 + 1.twelve.Gam9

Gaml0 = 1l.seven#tlose.Nil+ 1.ten#win.Nil
+1.two.Gam10+ 1. four.Gam10 + 1. five.Gam10 4+ 1.siz.Gam10 + 1.eight.Gam10
+1.nine.Gaml0 + 1.three.Gam10 + 1.eleven.Gam10 + 1.twelve.Gam10

Finally we can form the craps game by composing the gambler and the dice processes together
in parallel, and forcing communication on the outputs of the die. It should be noted that in all of
the gambler processes there is no bias towards any of the outcomes.




Game (Gam x Dice)[{win,lose}

A weighted transition graph for the above system is presented in Figure 2. We have labeled
states with the equation numbers from the system below which relate to that particular state. Some
of the states are labeled twice (our state equivalence checker is very simple) but this will not affect
the outcome of the arithmetic.

We can reduce the probability of winning to the following set of equations, these are wrapped
in the appropriate syntax to induce MAPLE to solve them, the value we are interested in is that
obtained for p16.

solve({p0=(2*p1+4*p1+2*p1+4*p1+5xp1+3*p1+1+p1+1*p1+6+p13+3+5%p1+0)/36,
p1=(2%p0+4%p0+4*p0+2*p0+5*p0+3*p0+1%p0+5xp0+3+1%p0+64p12+0) /36,
p2=(2%p3+4%p3+2#p3+4*p3+5+p3+3+p3+1+p3+1+p3+6+p13+5+3+p3+0) /36,
p3=(2#p2+4*p2+4%p2+2+p2+5+p2+34p2+ 1#p2+5+3%p2+1+p2+64p12+0) /36,
p4=(2%p5+4*p5+4*p5+5%p5+1#p5+2+p5+1%p5+6+p13+3+3*p5+5%p5+0) /36,
p5=(2%p4+4*p4+4*pa+5¥pa+1+p4+3+5%pa+3+pa+1¥p4+2+p4+6¥p12+0) /36,
p6=(2%p7+4*pT+5*pT+3*pT+1*pT+2+pT+1*pT+6+p13+4+3+pT+5+p7+0) /36,
p7=(2%p6+4*p6+5%p6+3+p6+1*%p6+5+p6+3%p6+1*p6+2%p6+4+6%p12+0) /36,
p8=(2%p9+4*p9+5+4*p9+2+p9+3*p9+14pI+1*pI+6+p13+3+p9+5+p9+0) /36,
p9=(2%p8+4*p8+4*p8+2+pB8+5+3*p8+1+p8+5¥p8+3*p8+1xp8+6+p12+0) /36,
p10=(2%p11+4+p1142+4+p11+5+p11+3*p11+1%p11+1%p11+6%p13+3+p11+5%p11+0)/36,
p11=(2%p10+4+p10+4*p10+2+5%p10+3*p10+1*p10+5kp10+3+p10+1*p10+6%p12+0) /36,
p12=(0),

p13=(0),
p14=(2%p15+4%p15+5%p15+3*+p15+1%p15+1%p15+6%p13+4+3%p15+5%p15+2+p15+0) /36,
p15=(2+p14+4+p14+5+p14+3*p14+1%p14+54p14+3%p14+1%p14+2+p14+6+p12+4+0) /36,
p16=(4%p15+2%p11+5xp9+T7+4*pT7+3*p5+5+p3+3+p1+3*p13+0) /36,

p=0

} ?

{p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,

p10,p11,p12,p13,p14,p15,p16,p});

Similarly we can produce the following equations to represent the average duration of the game,
and the value we are interested in is d16.

solve({d0=(2+d1+4%d1+2%d1+4*d1+5%d1+3*d1+1*xd1+1*d1+6%d13+3*d1+5%d1+0) /36+1,
d1=(2%d0+4*d0+4*d0+2%d0+5%d0+3*d0+1*xd0+5+%d0+3%d0+1%d0+6%d12+0) /36+1,
d2=(2*%d3+4*d3+2*d3+4*d3+5%d3+3%d3+1%d3+1*%d3+6*%d13+5%d13+3%d3+0) /36+1,
d3=(2*%d2+4*d2+4*d2+2*d2+5%d2+3%d2+1¥d2+5%d12+3%d2+ 1xd2+6%d12+0) /36+1,
d4=(2*d5+4*d5+4*d5+5*d5+1%d5+2%d5+1%d5+6%d13+3+xd13+3*d5+5%d5+0) /36+1,
d5=(24d4+4*d4+4+d4+5*%d4+1*d4+3*d12+5%d4+3*d4+1*d4+2*d4+6*d12+40) /36+1,
d6=(2*d7+4*d7+5%xd7+3*%d7+1%d7+2%d7+1%d7+6%d13+4%d13+3%d7+5%d7+0)/36+1,
d7=(2*d6+4*d6+5+%d6+3*d6+1*d6+54%d6+3*d6+1%d6+2*d6+4%d12+6%xd12+0) /36+1,
d8=(2*d9+4*d9+5%d13+4*d9+2*d9+3*d9+1%d9+1%d9+6*d13+3*d9+5%d9+0) /36+1,
d9=(2+d8+4*d8+4*d8+2+d8+5+d12+3%d8+1%d8+5%d8+3%d8+1%d8+6%d12+0) /36+1,
d10=(2%d11+4*d11+2*d13+4*%d11+5%d11+3%d11+1*d11+1%d11+6%d13+3*d11+5%xd11+0)/36+1,
d11=(2%d10+4%d10+4*d10+2%d12+5%d10+3*d10+1%d10+5%d10+3*d10+1*d10+6*d12+40) /36+1,
d12=(0),

d13=(0),
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Figure 2: Transition system for the game of craps.




d14=(2%d15+4*d15+5%d15+3%d15+ 1*d15+1*d15+6*d13+4*d13+3*d15+5*d15+2*d15+0) /36+1,
di5= (2*d14+4*d14+5*d14+3*d14+1*d14+5*d14+3*d14+1*d14+2*d14+6*d12+4*d12+0) /36+1,
d16=(4*d15+2%d1 1+5*d9+7*d13+4*d7+3*d5+5*d3+3*d1+3*d13+0) /36+1,

d},

{dO,dl,d2,d3,d4,d5,d6,d7,d8,d9,

d10,d11,d12,d13,d14,d15,d16,d});

If we use the above as input to a MAPLE system. Then we discover that the probability of

1897

winning, given by p16 is 3552 (0.4790) and the average duration of the game, given by d16, is L0

rolls of the dice (3.8). Even for this relatively simple system we already have a number of equations
that would make it extremely tedious to solve by hand, and liable to error.

2.2 Play Offs

At the end of the season in both baseball and ICE-hockey, there are seven match play offs. The
difference between the two is, that in baseball a sequence of matches is played hhaaahh (h is home,
a is away), and in hockey the sequence is hhaahah. Given that a teams chances of winning at home
is 55% and symmetrically of winning away 45%. What is the chance of the team that starts playing
at home winning the series, and is it dependent on the game order.

We can represent the baseball playoff by the following collection of WSCCS processes:

HomeG ¢ 45/10seh.HomeG + 55.'winh#win.HomeG + 1.,/.HomeG
AwayG wf 45. ' wina#win. AwayG + 55./losea. AwayG + 1.,/.AwayG

The two processes above describe the porbability of winning when playing either at home or
away. The / action will only be relevant when the game is of the other type, since our permission
will ensure that it would have to combine with something that is not permitted when the game is
of the appropriate type. We need a simple counter process to keep track of the number of wins:

Count = 1'win.Countl + 1./.Coount
Countl = 1.'win.Count2 + 1.,/.Countl
Count2 = 1'win.Count3 + 1.,/.Count2
Count3 = l.champ#'win.Nil + 1.,/.Count3

The counter produces the action champ if the team achieves four wins, and then stops any
further games. Finally, we need a process which goes through seven games in the appropriate -
sequence of aways and homes:

BB6
BB7

l.winh.BB7 4 1.loseh.BB7
l.winh.Nil + 1.loseh.Nil

BB1 Y 1.winh.BB2+ 1.loseh.BB2
BB2 Y 1.winh.BB3+ 1.loseh.BB3
BB3 ¥ 1.wina.BB4+ 1.losea.BB4
BB4 l.wina.BB5 + 1.losea.BB5
BB5 l.wina.BB6 + 1.losea. BB6
def
def




We can now form a process representing a playoff series by combining the two froms of game
together with the home/away generator, and passing the win actions to the counter, to evaluate
whether the total will pass 4 or not.

def

Gm = (HomeG x AwayG)
BBC ¥ (BB1xGm)
BBC1 ¥ BBC[{win}

BBS " (BBC x Count)[{champ}

We discover that the probability of winning is S9se8L or 51.57%.

We can present our ice-hockey play offs as the following process, and substitute it for BB1 in
the system above.

H1 ¥ Lwinh.H2+ 1.loseh.H2
H2 ' 1winh.H3+ 1.loseh.H3

H3 def lowina.H4 + 1.losea.H4
H4 Y 1 wina.H5+ 1.1osea . H5
H5 2 1winh.H6+ 1.loseh.H6

de

He * lowina. H7 + 1.losea.H7

de

H7 Y 1winh.Nil + 1.loseh.Nil

We discover that the probability of winning a hockey series is 35006061 ' that is exactly the same
as for the baseball series. However, if we look at the mean duration of the series. We discover
that the hockey series has mean duration A9 or 6.397198, and the baseball series 4102053 or
6.422196. We investigated other patterns of home and away games and found that the baseball

pattern had the maximum mean number of games.

3 Problems from [Kre86]

Since [Kre86] is a well known and respected text book in the field of simulation, we present solutions
to the problems he sets as Monte Carlo simulation exercises in Chapter 5. Our solutions will
consist of processes which describe the problems, and then solving for appropriate probabilities
that describe the systems behavior.

3.1 Pixie Airways

Albatross airways runs 15 flights a day. On each flight a pixie is required as an attendant. It is
airline policy to keep three pixies on reserve to replace other pixies if they fall sick. In the original
presentation of this problem [Kre86, Pp224], no maximum is given for the number of available
pixies. We have chosen that number to be 18, as this is the number of flights plus the intended
number of reserves. On any given day pixies will fall ill with the following probabilities:
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Number sick | Probability
0 0.20

1 0.25

2 0.20

3 0.15

4 0.10

5 0.10

>6 0

We model the pixies as a single process, which will provide a number of ‘piz actions depending
on how many of the pixies are ill. It will also provide three ‘rpiz actions which describe an attempt
to reserve 3 pixies. Flights attempt to synchronize with a piz action to get a non-reserved pixy. If
that fails, then it will take one of the reserves and record the fact, by performing a reserve action.
If neither of the above is possible then the flight cannot take off and this will be recorded by the
performance of a nogo action. We split the behaviour over two ticks, on the first a probabilistic
decision is made on the number of available pixies; on the second the assignment of pixies to flights
is made.

pPiz 20./.‘piz'®*#‘rpia® : Piz

+25.¢/.‘piz"*#rpic® : Pix

+20.,/.‘piz®#‘rpic® : Piz

+15.4/.“pie"* #*rpiz® : Pix

+10./. piz'  $#rpia® : Pig

+10.¢/.‘piz'#rpic® : Pix
In the above the |/ actions remove problems with conditioning both on input and output. The
weights of the respective states are thos given in the table.

Flight &f V. (w?piz.Flight + w.rpiz#reserve.Flight + 1.nogo.Flight)

As stated the flight uses priorities to establish its preferences for a pixy over a resrve pixy, and a
reserve over none. We need to run 15 flights, so we shall take 15 copies of the flight process in
parallel, which is abbreviated by Flight'®. Composing the flights and the pixy system together,
and only allowing the actions recording whether a reserve was used, or the flight was unable to
take off, we form the following process:

Airway 24 O((Pix X Flight'®)[{reserve, nogo})

To understand the behavior of this system we need to know with what frequency reserve pixies
will be used. In other words, how often we see reserve, reserve? or reserve® actions, and how
often flights are unable to take off as a result of too many pixies being unwell; witnessed by the
performance of nogo actions.

Is is straightforward (using the equational theory) to demonstrate that:

Airway = 20././.Atrway
+25.4/./. Airway
+20./.4/. Airway
+15.4/.4/. Airway
+10./.reserve.Airway
+10./.reserve?. Airway (Simplifying)
= 80.4/./.Airway
+10./.reserve. Airway
+10./.reserve?. Airway
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In other words 80% of the time no reserves are needed, 10% of the time one of the reserves
is need, and 10% of the time 2 reserves are needed. On no occasion with this pattern of illness
amongst the pixies will a flight be unable to take off.

3.2 Silly Beetle

The drunken beetle problem. The beetle performs a random walk on a square grid of size 10 x 10
with death resulting if it falls off the grid. The game is played by making 10 movements and
then the beetle lives if it has not fallen off the grid. To simplify state counting, we decompose the
position of the beetle into horizontal and vertical coordinates and represent each coordinate with
a simple processes. The movement over the grid is given by a separate process, which drives the
beetle along one of the four axes. The time limit is provided by a simple process that gives 9 ticks
and then describes the beetle as living. If the beetle were to die on the tenth move then the system
output would be the action live#die which we shall assume means the beetle has died. We believe
the beetle to have lived only if we see the atomic action live.

B1H
B2H

e Ldie#left.Nil + 1.right. B2H + 1./.B1H
Y 1left.BIH + 1.right. B3H + 1.,/.B2H
B3H € 1lcft.B2H + L.right.BAH + 1./.B3H
BAH Z 1left.B3H + 1.right. B5H + 1../.B4H
B5H Z 1lleft.BAH + 1.right.B6H + 1./.BSH
B6H ¥ 1left.B5SH + 1.right BTH + 1./.B6H
BTH < Lleft.B6H + 1.right.BSH + 1.,/.BTH
BSH 2 Lleft.BTH + 1.right.BOH + 1./.B8H
BOH E 1iecft.BSH + 1.right.B10H + 1../.BOH

BI0H ¥ 1left.BOH + 1.die#tright Nil + 1.,/.B1I0H

The above simple counter process records the horizontal position of the beatle, it’s movements
being directed by left and right actions. If the horizontal position required is 10 or 0, then the
fact the beatle has died is recorded by the performance of the die action. A similar counter process
records the vertical position of the beatle:

BV ¥ Ldiegup.Nil+ l.down.B2V + 1./.B1V
B2V ' 1Lup.B1V + 1.down.B3V + 1.,/.B2V
B3V ¥ 1up.B2V + Ldown.BAV + 1.,/.B3V
B4V ¢ 1up.B3V + 1.down.B5V + 1.,/.B4V
B5V ? 1.up.BAV + 1.down.B6V +1./.B5V
B6V Y 1up.B5V + 1.down.BTV + 1.,/.B6V
BV ¥ 1Lup.B6V + 1.down.BSV + 1.,/.BTV
B8V ' 1up.BTV + 1.down.BOV + 1.,/.B8YV
BYV ¢ 1.up.B8V + 1.down.B10V + 1./.BOV
BlOV Lup.BYV + Ldietdown.Nil +1./.B10V

&
)
~

Il

We now provide a process that moves the beatle at random unbaisedly amongst the four major
axes.
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BC E 1eft.BC +1./right.BC + 1.'up.BC + 1. down.BC

Combining this with the processes recording the beatles position, and permitting the die action
only, we have a beatle that will randomly walk on a 10 x 10 grid.

BSYS1 < (BC x B5H x B5V)
BSYS % BSYS1[{die}

We now need to permit the beatle to take ten steps. Since it takes one step per tick, this can
be arranged by letting the above process execute for ten ticks and then stopping it. Finally at the
point the process stops we should like some action to demonstrate whether the stop was because
the beatle lived or died.

BM Y J S live.Nil

Since our parallel is synchronous the ‘free’ composition of the above with the random walk
system will limit it to ten steps.

BG Y BSYSx BM

This problem was solved after some experience of using the tools, defining the processes took
10 minutes, converting to 394 simultaneous linear equations on a Sparc2 took 3 minutes, using the
Maple system took 2 minutes. Total elapsed time to exact solution 15 minutes. We found that
the beetle will live 38971 (0.933) of the time.

Since this problem generates a large number of states, relatively straightforwardly, we used it
to investigate the robustness of our system. We obtained results for the problem when the beetle

takes a greater number of steps before the ‘game’ terminates.

Steps | P(live) | Number of equations | Time to solve
11 0.91 464 40 seconds
12 0.89 534 54 seconds
13 0.86 604 72 seconds
20 0.67 1094 250 seconds
25 0.55 1444 450 seconds
30 0.45 1794 700 seconds
35 0.37 2144 1192 seconds
40 0.30 2494 1903 seconds
50 0.20 3194 4412 seconds
60 0.13 3894 5542 seconds

3.3 Louis’ Destiny

Before we describe the scenario, we discuss an interesting descriptive problem that arises within
WSCCS. One of the parts of this problem is that of a user which wishes to acquire, one of two
resources that allocate themselves to it probabilistically, e.g., each one is only willing to be taken
90% of the time say. We could approach coding this problem as follows:

Res < 9.give: GotRes + 1.4/ : Res
TRes ¢ Res x Res
Take ¢ 1.give: Succ+1:/: Fail
sys (Tres x Take)[(Act — {give})
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Where the state Succ represents successfully getting at least one of the resources, and the
state Fail represents what is going to happen if neither of them is successfully acquired. A simple
probabilistic analysis demonstrates that the system should reach a state of the form (Swucc x
(GotRes x Res))[(Act — {give}) 99% of the time. However, if we expand the above process we
discover that,

Sys = 18.4/.(Succ x (GotRes X Res))[(Act — {give})
+1.4/.(Fail x (Res x Res))[(Act — {give})

or a success rate of only %. One might at this point claim that there is an error in the process
system! This is not the case. The process Take actually encodes “take one of the resources given
that two are never allowed to become available”. That is, it never can permit the two processes
to become available - that choice is forbidden.

To encode this system correctly we need to be far more subtle. What is actually occurring is
the two resources independently choose to make themselves available with probability 90%. Then
if either of them is available it is taken, if the other made itself available it is ignored. Thus
the acquisition of such a resource is a two stage process, firstly detect whether it is willing to be
acquired, secondly if needed use it. Hence we arrive at the following process definitions:

Res & 9resA: (l.getR : GotRes + 1.,/ : Res) + 1.4/ : Res
Tres “ Res x Res
Taker 2 1resA : getR : Succ+ 1.resA : getR : Succ+ 1./ : Fail
Sys = (Taker x Tres)[(Act — {resA, getR})

If we expand the above system we discover that:

Sys = 81l./:4/:(Suce x GotRes x Res)[(Act — {resA, getR})+
18.4/ 14/ : (Succ x GotRes x Res)[(Act — {resA, getR})+
1.//: (Fail x Res x Res[(Act — {resA, getR})

and in this case, we do indeed succeed 99 % of the time. The above demonstrates that restric-
tions have a non-trivial effect in terms of the system probabilities, rather than just purely enforcing
communications. Hence it is important to check what the processes actually imply in terms of
probabilities.

The problem we wish to solve is given on page 224 of [Kre86] and we restate it is as follows.
A leprechaun called Louis works as an icicle miner, he owns two centipedes XXY and YYY, used
for transport to and from work, both of which are somewhat unwilling to perform this task. In
the evening Louis will eat some number of bags of chips, if he eats 10 or more, his centipedes will
respond to his entreaties to transport him 90% of the time. If, however, he has less than 10 bags
of chips, his centipedes are responsive only 50% of the time. Centipedes are very sensitive to the
eating habits of their owners. Louis has a nymphfriend Gwendolin, who drops by and gives him
a lift to or from work with probability 30%. Naturally Louis prefers to travel with Gwendolin,
so he will not even try to wake his centipedes in this case. If Louis is stranded at home then he
gets turned into a toad by his employer, an irate wizard, and goes off to live in wedded bliss with
Gwendolin. If he gets stranded at work, then he goes off to Morven and spends the rest of his
life drunkenly carousing. We want to calculate the probability that Louis eventually ends up in a
blissful state.

Hence we arrive at the following description of the ‘Louis’ destiny’ problem:
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CentH = 1.mr10.(9.avCH.(1.gCH.CentW +1./.CentH) + 1.,/.CentH)+
1.110.(1.avCH.(1.gCH.CentW + 1./.CentH) + 1.,/.CentH )+
1.y/.CentH

CentW 1.mr10.(9.avCW.(1.gCW .CentH + 1.,/.CentW) + 1../.CentW )+

1.110.(1L.avCW.(1.9CW.CentH + 1../.CentW) + 1.,/.CentW )+
1.y/.CentW

The above two processes represent a centipede at home and at work respectively. In both
cases they are supplied with the number of bag of chips that the user has eaten, and then make
themselves available appropriately. If a caterpillar is used as transport then it changes from being
at home or at work as appropriate. The next process describes how many bags of chips Lewis has
eaten. Since it only matters wether he has had more or less than 10, we simply give probabilities
for those events.

a
~

€

Louis = 4.,/.L10HG+ 6../.L9HG

LIWHG = 3./.L10W +7.,/.L10H
LOHG Z 3.,/ LW +17../.L9H

au
—

a
~—

If Louis is lucky he gets a lift to work with Gwendolin, but we must remember how many bags of
chips he ate in order to present the information for a possible centipede ride home. If Gwendolin
doesn’t give him a lift he must try to obtain a centipede to transport him. So firstly he ‘tells’ them
how many bags of chips he had, and then if one (or more) of them is willing and at the correct
place he uses it as transport to work:

LI0H % 1mr10.L10HD + w.mri02.L10HD
LIOHD ¥ 1.auCH?.gCH.L1OW + 1.avCH.gCH.L10W
L9H ¥ 1710.L9HD + w.TI0.L9HD
L9HD ¥ 1.wCH2.gCH.LOW + 1.a0CH.gCH.LOW + 1.\/.toad.Nil

When Louis is at work, he can get a lift home from Gwendolin and then will eat his nightly
supply of chips:
Liow % 3./.Louis+7.,/.LIOWC

def

LOW = 3./.Louis+ 7../.LOWC

Otherwise he has to get one of his centipedes to transport him from work to home:

LIOWC 4 1mr10.LWD + w.mri02.LWD
LWD 1. vCW2.gCW.Louis + 1.avCW.gCW.Louis
Lowe * 1700.LWD + w.IT0:.LWD

The complete system is Louis at home having (presumably) eaten, with the two difficult cen-
tipedes.

LD ¥ O((Louts x CentH x CentH)[{toad, morv})
An analysis of the above problem, using a combination of process to linear probabilistic equa-
tions and MAPLE, demonstrates that Louis will be turned into a toad and therefore marry his
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beloved with probability exactly J9ZLISTI0 of the time (as a decimal 0.36), and the average number
of ticks he works before he resolves his future is 32821297810 or 15.44 ticks. Unfortunately as we
have constructed the above we cannot interpret the ticks as days since whenever he gets a lift from
Gwendolin he skips three ticks of interaction with his centipedes.

So we retime the relevant processes and define them as follows:

LIOHG ¥ 3./\//n/.-LIOW +7./.L10H
LIHG Y 3./ /LW +7./.LOH
Liow ¥ 3././n/-v.Louis + 7./.LIOWC

LW Y 3.////.Louis + 7.,/ LIWC

Constructing the LD system as before but using these new definitions for the 4 relevant pro-
cesses. We discover (thankfully) that the probability of Louis living in wedded bliss (sic) is exactly
the same as in the unbalanced version of the process. The average duration of the process is as a
decimal 19.255 ticks. The number of ticks required to complete a days activity is 9, so we see that
it takes on average just over 2 days, before Louis fate is established. An interesting observation is
that the unbalanced version has 14 more states, and thus will be (marginally) slower to verify.

4 Approaching Inifinity

We present an example where the system can have an infinite number of states, which we shall
truncate to a finite number. Within our approach we shall be able to observe the precise amount,
by weight, of the system state space that we have actually explored. If we wish to know how much
we can rely on the data produced by such approximations, then a knowledge of the precise degree
of that approximation is evidently of great importance.

4.1 Snorks and Snarks

We restate the problem from page 266 of [Kre86] (adapted from [DLSB82]). An arena has seven
doors, behind each of which is either a ferocious snark or a beautiful snork. A succession of
gladiators have to pick a door. If the gladiator picks a snark then he is immediately killed, and
the snark is replaced behind the door. If he is lucky and picks a snork, then he is rewarded and
freed, one of the snarks is killed and the snork is replaced. The question is to determine how many
gladiators will be killed on average, and how many will live.

Glad ¥ 1.dieftsnark.Glad + 1.freedtsnork.Glad

The above process describes the gladiators repeatedly trying the doors, the probabilities of the
respective outcomes are given by the following process:

Ard = 4.snark.Ard + 3.snork.Ar3
Ar3 ' 35nark.Ar3 + 3.snork.Ar2
Ar2 92 snark.Ar2 + 3.snork.Arl

Arl %/ l.snark.Arl + 3.snork.N1l

In the above arena process the probability of picking a snork or a snark is given in terms of the
number of snarks remaining. Each time one is killed we move to the state with the appropriate
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smaller probability of picking a snark. This state change is caused by the gladiator picking a snork,
that is interacting on the snork action. So the tournament is given by letting the gladiators interact
with the arena, and only recording whether the gladiator was freed or died:

Tor ¥ (Glad x Ard)[{die, free}

In order to see how many gladiators lived or died we add some couter processes.

Torl < (Tor x Fr0 x Die0)[{tmf,tmd}

The following process records the number of gladiators that have been freed:

de

Fro % 1.free.Fr1+ 1.t.Fr0
rrl ¥ 1.free.Fr2 4+ 1.t.Frl
Fr2 Y 1 Free.Fr3+1.t.Fr2

Fr3 l.free#tmf.Nil + 1.t.Fr3

When the maximum (4) gladiators have been freed this process records the fact by performing
a tmf action. This process records the number that have died.

Die0 Y 1dHe.Diel +1.t.Died

Diel Y 1die.Die2 + 1.t.Diel
Die2 ““ 1.die.Die3 + 1.t.Die2

Die3 ¥ 1die.Died + 1.t.Die3
Dieda Y 1.die.Dieb + 1.t.Died
Die5 ¥ 1.die.Die6 + 1.t.Die5
Die6 ' 1.die.Die7 + 1.t.Die6
Die71 Y 1.die.Die8 + 1.t.Die7
Die8 ¢ 1.die.Die9 + 1.t.Die8
Die9 Y 1. die#tmd.Nil +1.4.Die9

When more gladiators have been killed than the system has capacity for, the fact is recorded
by the performance of a tmd action.

Solution for 4 going free, with at most 10 dying is 0.97. This problem is interesting in that
we know (simple analysis) that 4 gladiators must eventually escape. So if we could allow an
infinite number to die, then we would be guaranteed to see 4 gladiators escaping. Thus by taking
a restricted number of possible deaths and noting how likely four gladiators are to escape we can
detect how much of the potential state space, by weight, we have examined. In this case we have
only neglected about 3% of all possible cases. Clearly by increasing the number of possible deaths
we can get as close to the whole state space as we need. At this point it only needed 53 equations
to describe the system, so we are well within any mechanical limitations.

This approach to detecting the onset of an infinite state system, will be possible in all such
systems. We simply add a terminating action that indicates the system needing more states, and
can always (up to mechanical limitations) evaluate the probability of observing that outcome. This
immediately tells us how much of the probabilistic state space has been neglected.

Many of the simulation systems of greatest interest are essentially infinite state. Even a large
number of executions of these systems over an extended period of time will only explore a limited
amount of the available state space. Unfortunately, exploring the system in this fashion will leave
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us unaware of the extent of the state exploration. A more controlled approach to exploring the
states of the system will leave the modeller in a better position to understand the validity of their
results. By using a process algebraic methodology and exploiting actions that mark the end of the
state exploration we can control and observe the limits of our approximation.

The other advantage of this method is that it enforces limits on our need for computational
resources, we do not repeat state explorations unnecessarily. Whilst with an algebraic representa-
tion, an implementation is likely to be slower in evaluating the behaviour at each state, it will not
repeatedly examine the same state. Thus in a system with low probability of reaching extremal
states the algebraic approach is liable to reduce computational resource needs, simply as a result
of removing redundant state exploration.

We shall now evaluate the average number of gladiators killed, firstly we tabulate the probabil-
ities of at least n gladiators getting killed for the first 13 values. From these we can immediately
calculate the probability of n getting killed, and hence the mean number of gladiators killed.

n | P(atleast n) | P(n)

1 | 0.9036 0.1660
2 | 0.7376 0.1815
3 | 0.5561 0.1609
4 10.3952 0.1263
5 |1 0.2689 0.0921
6 | 0.1767 0.0634
7 10.1133 0.0422
8 |0.0711 0.0271
9 | 0.0440 0.0172
10 | 0.0268 0.0106
11 | 0.0162 0.0066
12 1 0.0096 0.004

13 | 0.0057 0.0057

So the average number of gladiators that die is approximately 2.8. Alternatively if we only
permitted a maximum of 13 gladiators to die, then on average we would see only 2.8 gladiators die.
An interesting point about the above is that in [Kre86] it is suggested that the above scenario be
simulated on 100 occasions to obtain an estimate of this value. In that period it is highly unlikely
that 12 or 13 deaths amongst gladiators would be seen. So we could expect our value to be at least
as reliable as one generated by 100 simulations.

5 Examples from Queueing Theory

In order that we may understand the outcomes of queue theoretic problems we need a slightly
different approach. Whilst these problems can often be addressed by finite state processes, they
will not in general terminate, and thus our earlier transformation technique will not work

We shall assume that our processes are producing actions that witness the state of the system
on all transitions, such as the number of people in a queue. We have automated two judgements on
such systems. Firstly, the persistent state probability vector for the system assuming it is aperiodic.
Secondly, the state average of the witness action. That is, the expected value of the action over the
entire execution. As before these solutions are achieved by the production of appropriate input for
the MAPLE system.

As an illustrative example consider the following artificial system:
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Figure 3: A simple permanent process.

§1=5.02.51+ 1.,/.52
52=1.a.52+1,/.51

in state S1 if the process moves to S2 (¢ of the time) then it outputs ,/, otherwise it outputs a®
and returns to S1 (2 of the time). In state S2 it can perform a / (2 of the transitions) and move
to state S1, otherwise it performs the action a and stays in state S2. We wish to know what is the
average number of ¢ actions performed over the execution of the above system. A transition graph
for the above system is presented in Figure 3.

We can regard the process S1 as being described by a Markov chain whose transition matrix is

(1)

A straightforward calculation shows that the persistent probability vector for this system is
(2,})- Since from state S1 we would see a occur with expected amount £ and from S2 1 we would
expect the amount of the action a occuring to be 330 4 11 or . Thus if we observed this process
over a long time we would expect the average number of a actions being perfromed at any instant

to be 4, obviously we would have to interpret this in terms of our intended meaning for a actions.

o=t
B2 ==

5.1 A Simple Bounded Queue

Let us compute the average number of persons queuing in a bounded queue, having at most 5
people in it. We choose an arrival rate of 1 per 5 ticks and a service rate of 2 per 5 ticks. The
problem can be encoded as the following set of processes:
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Q0 = l.g#start.Ql+1.4/.Q0

Q1 &/ L.g#servedtstart.Ql + 1.¢*#start.Q2 + 1.¢.Q1 + 1.serve.Q0

Q2 1.g*#serveftstart.Q2 + 1.¢*#start.Q3 + 1.¢°.Q2 + 1.q#serve.Q1
Q3 = 1.¢°#serveftstart.Q3 + 1.¢*#start.Q4 + 1.¢°.Q3 + 1.¢*#serve.Q2
Q4 1.¢*#serveftstart.Q4 + 1.¢°#start.Q5 + 1.¢*.Q4 + 1.¢°#serve.Q3
Q5 1.¢%#servedtstart.Q5 + 1.¢°.Q5 + 1.¢*#serve.Q4

The above process records how many people are in the queue. New elements enter the queue
by performing a start action, and objects leave the queue when they are served, the performance
of a serve action. This process has no system probabilities it just records the state, in terms of the
length of the queue, and reports it via the ¢ action. The process Eng produces objects to enter the
queue at the desired rate:

Enq o 1.'start.Eng + 4.4/.Eng
A server process will serve an item in the queue if there is one in it in preference to doing

nothing. After it has started to serve someone it then takes a geometric time to complete the
service.

SF % w.'serve.SB + 1.4/.SF

SB “ 9./SF+3+tSB
The order in which these process are composed is important, firstly we from the counter and

the server, using the priority information to ensure that the service takes place as soon as the srever
if free:

Qus 2 0((Q0 x SF)[{q, start})

The we form the complete system by adding the queue member producing process:
QSYs ¢ (Engx Qu)[{g)

This qives a mean number of entities in the queue of 0.902 per tick. Queueing theory on an
unbounded queue suggests this value should be 1. We tried with a limit of 10 customers and
discovered the average queue length to be, 1.006. Although we would expect our average to be
greater than that for a continuos time queue as the server in this system takes at least one unit of
time to do anything.

5.2 Single Server Multiple User

We can study the waiting times of multiple users of a single server. A flow diagram for the system
we examine is presented in Figure 4. The properties of such systems are studied in [Adi72, Kle75].
Each user waits for some input from the server, it then performs some work generating new input
for the user. We can describe this system by the following collection of WSCCS processes:

SYS ' 1.5a.SA+1.56.SB + 1.5¢.5C +1.,/.SYS
SA < 2./SA+1/da.SYS
SB % 2./SB+1.db.SYS
SC % 2./.5C+1/dc.SYS
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Figure 4: Single Server Multiple User System.

The serever takes in work from any of the users, it then processes the work and records com-
pletion by the performance of the appropriate da, db or dc action.

UA Y 1.deUAB+1.,/UA
UAB ¢ 1.,/ UAW +2./UAB
UAW ¥ w/saUA+ Lwait.UAW

User A waits until its task is finished by the server, it then takes a geometrically distributed time
to generate some new work for the system to perform, and tries to get the system to start work on
it as soon as possible. The users B and C are identical to the user A up to renaming of the actions
witnessing the movement of work.

UB “ 1.db.UBB+1./UB
UBB ¥ 1./UBW +2.,/UBB
UBW < w!sb.UB+ l.wait.U BW
UC ¥ 1.deUCB+1.,/UC
UCB ¥ 1.,/ UCW +2.,/UCB
vew = wlseUC + Lwait. UCW
The wait action in user C records when it has work for the server to do, but the server has not
yet taken it. Since the system is symmetric in A, B and C, we only need to record the delay on

one of them. Finally we build the system, by taking the prioritiesed part of the server and user
processes in parallel, allowing the wait action for recording purposes.

S5 Y ©((SYS x UAB x UBB x UCB)[{wait})
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Figure 5: A Queuing Network Example.

The simplest manner in which we can determine system usage is to replace the first line of the
server description with the following:

SYS “ 1.sa.5A4+ 1.56.5B +1.5¢.5C +1.free.SYS

Rename the wait action to 4/, and form the complete system as before, but permitting the free
action to occur. The usage of the system is one minus the amount of time it is free.

With a server having probability of % of dealing with a request from any user per tick, the mean
amount of waiting is 0.22, and the usage is 93%. If we set the average user work time to 12 ticks
and the average service time to 2.01 ticks, then the average amount of time a user spends waiting
is 3%, and the server is active for approximately 80% of the time.

5.3 Queueing Networks

We shall describe the queueing network of Figure 5 as a collection of WSCCS processes and analyse
some of its behaviours.

We encode the above process with limits of 5 items queuing per buffer, similar to the special-
isation in [GN67] of the work of [Jac57], a demonstration of how such systems can be made into
Markov systems is given in [Kin69]. We assume that internal messages take priority over external
queueing requests as define the system as follows:

Enga o 1.’sa.Enga 4+ 4.4/.Fnga

Engc = 1.'se.Engc + 3.,/.Engc
The above two proesses enque work at nodes A and C respectively. The next process records the
number of items queueing at node A.
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QA0 Y 1.q#sa.QAL +1./.QA0

QA1 Y 1.q#sadtserve.QAl + 1.¢?#50.QA2 + 1..QA1 + 1.serve.Q A0
QA2 &t L.g#sa#serve. QA2 + 1.¢°#s5a.QA3 + 1.¢2.QA2 + 1.q#serve.QAl
QA3 = l.g#sa#tserve. QA3 + 1.¢*#sa.QA4 + 1.¢°.Q A3 + 1.¢*#serve. A2
QA4 ¥ l.g#tsaftserve.QA4 + 1.¢°#sa.QA5 + 1.¢*. QA4 + 1.¢°#serve.QA3
QA5 l.gf#tsa#tserve.QA5 + 1.¢°.QA5 + 1.q*#serve.Q A4

This process serves the queue that is formed at node A

SAF € w/serve.SAB +1./.SAF
def

SAB ' 2.da.SAF+3.,/.SAB

we form the queue at A as we formed the single queue:

def

QA = O((QA0 X SAF)Hda7Qa Stl})

We need a process to redirect the output of A to the appropriate nodes, with the appropriate
probabilities:

a

RDA < 1/da.RDAB +1./.RDA

RDAB = w.sb.RDA+1.,/.RDA

au
~

We assume an eager model, where if buffers are full then internal queuing events are thrown
away. Finally we can form the queue at node A leaving only actions that record the size of the

queue, allow items to be queued at A, and record items being removed from A to be queued at
other nodes.

def

QAS = (QAx RDA)[{q,sa, sb}

The following sequence of definitions form a similar system for the node B.

QB Y QA[db/da, sb/sa]

RDB “ 8/db.RDBD +1/db.RDB +1.db.RDBA + 1.,/.RDB
RDBD ¢ w’sd.RDB+1./.RDB

RDBA < w!'sa.RDB+1.,/.RDB

QBS Y (QB x RDB)[{q, sa, sb, sd}

These form the queue at node C.

QC Y QA[sc/sa,dc/da)
RDC = 1!dc.RDCA+1.'dc.RDC +1./dc.RDCB + 1.dc. RDCD + 1./.RDC
RDCA ¢ w!sa.RDC +1../.RDC
RDCB ¢ w!sh.RDC +1./.RDC
RDCD ' w!sd.RDC +1../.RDC
QCS wf (QC x RDC)[{q, sa, sb', sc, sd}

And these form the queue at D.
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QD0 = QAO[sd/sa)

SD = w/!serve.SDB+1.4/.5D
SDB = 4.dd.SD+1../.SDB

QD ¥ 0((QDox SD)[{dd, q,sd})
RDD = 1/dd.RDD+ 1.,/.RDD
@DS = (@D x RDD)[{q,sd}

Finally we form the network but placing the nodes in communication with each other, and the
processes which enqueue work from the outside of the network. We permit the action ¢ which records
the total number of items in queues at all nodes in the networks. It is relatively straightforward to
adjust the processes to record local queues, or usage levels.

QN ¥ 0((QAS x Enga x QBS x QCS x Enge x QDS)[{q})

Unfortunately, whilst we can encode this problem in a relatively small amount of text, it has
approximately 15,000 states which is well beyond the capacity of the current analysis methods.
We include it as an example of a large system which can be encoded in a relatively brief form
yet is (very) difficult to examine. Hopefully, developments of these approaches using more subtle
calculations will permit reasoning over such large systems.

6 Conclusions and Further Work

The approach of describing Monte Carlo simulation problems within a process algebra seems to be
highly promising. The descriptions we arrive at are highly compact, and it is possible to derive
some of their properties automatically. The current limitations are that process algebras do not
have the kind of automatic data gathering facilities that are possible within conventional problem
description languages; although hopefully the provision of suitable tools will overcome some of this
limitation.

In the Introduction we stated that it should be possible to solve these problems in general,
without instantiating any probabilities in the actual systems. Unfortunately, at the moment the
only support tool for WSCCS does not have a facility for the algebraic manipulation of weights.
Since, this manipulation is fundamentally simple we hope to see such a system developed in the
near future. In principle it is no harder to solve these problems in general, using these methods,
than it is to solve them in specific cases.

We believe that our approach stays close to the simulation ideal of allowing the behavior of
‘concrete’ systems to be observed directly. That is the real world problem and its simulation
description are very closely related. The process algebraic approach takes this idea one stage
further, we permit the description of the system ‘as seen’, but then permit the formal derivation of
the properties of the system.
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A The Language WSCCS.

Our language WSCCS is an extension of Milner’s SCCS (Milner, 1983) a language for describing
synchronous concurrent systems. To define our language we presuppose an abelian group Act of
atomic action symbols with identity 4/ and the inverse of @ being @. As in SCCS, the complements
a and @ form the basis of communication. We also take a set of weights W, denoted by w;, which
are of the form! nw* with n from the positive natural numbers P and the w* (with k& > 0) a set of
infinite objects, with the following multiplication and addition rules (assuming k > &), we consider

the objects n used as weights to be abbreviations for nw?:
nwt + mwt’ = nwt = mw*’ + nwk nwk + mw* = (n+ m)w* = nwt + mwt

1 i 1
nwk * mw* = (nm)wttt = mw* * nwk

"Here n is the relative frequency with which this choice should be taken and k is the priority level of this choice.
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and a set of process variables Var.

The collection of WSCCS expressions ranged over by F is defined by the following BNF expres-
sion, where a € Act, X € Var, w; € W , S ranging over renaming functions, those S : Act — Act
such that S(/) = 4/ and S(a) = S(@), action sets A C Act, with \/ € A, and arbitrary finite
indexing sets I:

E:=X|aE|Y{wElicI}|Ex E|E[A|O(E)| B[S] | uzE.

We let Pr denote the set of closed expressions, and add 0 to our syntax, which is defined by
0 déf Z{w,E,h € @}
The informal interpretation of our operators is as follows:

e 0 a process which cannot proceed;
e X the process bound to the variable X;

e a.F a process which can perform the action a whereby becoming the process described by
E;

o > {w;E;|li € I} the weighted choice between the processes F;, the weight of the outcome F;
being determined by w;. We think in terms of repeated experiments on this process and we
expect to see over a large number of experiments the process E; being chosen with a relative

frequency of El‘]?
iglws

e E x F the synchronous parallel composition of the two processes F and F. At each step each
process must perform an action, the composition performing the composition (in Act) of the
individual actions;

e E[A represents a process where we only permit actions in the set A. This operator is used
to enforce communication and bound the scope of actions;

o O(F) represents taking the prioritised parts of the process E only.
o E[S] represents the process F relabelled by the function S;

e 4;iE represents the solution z; taken from solutions to the mutually recursive equations
#=E.

Often we shall omit the dot when applying prefix operators; also we drop trailing 0, and will use
a binary plus instead of the two (or more) element indexed sum, thus writing 3{1;.¢.0, 2,.6.0}: €
{1,2}} as l.a + 2.b. Finally we allow ourselves to specify processes definitionally, by providing

recursive definitions of processes. For example, we write A “! a.A rather than pz.az. The weight
n is an abbreviation for the weight nw?, and the weight w* is an abbreviation for the weight 1w*.

A.1 The Semantics of WSCCS.

In this section we define the operational semantics of WSCCS. The semantics is transition based,
structurally presented in the style of (Plotkin, 1981), defining the actions that a process can perform
and the weight with which a state can be reached. In Figure 6 we present the operational rules of
WSCCS. They are presented in a natural deduction style. The transitional semantics of WSCCS
is given by the least relation —C WSCCS x Act x WSCCS and the least multi-relation —C
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Figure 6: Operational Rules for WSCCS.

bag(WSCCS x W x WSCCS) 2, which are written E - F and E +2 F respectively, satisfying
the rules laid out in Figure 6. These rules respect the informal description of the operators given
earlier. The reason that processes are multi-related by weight is that we may specify more than
one way to choose the same process with the same weight and we have to retain all the copies. For
example, the process

1L.LP+1.P+1.Q

can evolve to the process P with cummulative weight 2, so that we have to retain both evolutions.

The predicate does,(E) is well defined since we have only permitted finitely branching choice
expressions. The action of the permission operator is to prune from the choice tree those processes
that can no longer perform any action.

A.1.1 The Structure of Processes.

From the semantics of WSCCS processes we can see that any process is a digraph, that is a collection
of weight transitions that eventually lead to a single action transition. So there is no explicit choice

2Where —»C bag(WSCCSxWxWSCCS) is the bag whose elements are those of the set WSCCSxWxW SCCS,
with the usual notion of bag.
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Figure 7: Transition graph for PEX

betweens actions, the only form of non-determinism is between weights. Given the process:

PEX “ 1.a.PEX + 2.(3.b.(1.a.PEX + 4.c.PEX) + 5..PEX)

we can think of it as describing the transition graph given in Figure 7.

A.1.2 Direct Bisimulation.

Our bisimulations will be based on the accumulation technique of Larsen and Skou (1989). We
start by defining accumulations of evolutions for both types of transition.

Definition A.1 Let S be a set of processes then:

o P+ S with w® S {w;|P v Q for some Q € S};°

e P25 S iff there exists Q € S and P 5 Q.

We define a form of bisimulation that identifies two processes if the total weight of evolving
into any equivalent states is the same. This is not quite the indentification we wish to make, but
we will make such an identification later.

Definition A.2 An equivalence relation R C Pr X Pr* is a direct bisimulation if (P,Q) € R
implies for all S € Pr/R that:

®Remembering this is a multi-relation so some of the  and w; may be the same process and value. We take all
occurences of processes in S and add together all the weight arrows leading to them.

*We denote the equivalence class of a process P with respect to R by [P]r. When it is clear from the context to
which equivalence we are refering, we will omit the subscript.
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o forallweW, P S iff Q+—S;
o forallac Act, P S iff Q = S.

Two processes are direct bisimulation equivalent, written P & Q, if there exists a direct bisimulation
R between them.

Definition A.3
A= \{R | R is a direct bisimulation }.
That < is an equivalence follows immediately from it being a union of equivalences.

Lemma A.4 Let P and Q) be processes such that P & Q. Then for all action sets A, does,(P) iff
doesA(Q).

Proposition A.5 Direct equivalence is substitutive for finite processes. Thus, given P & Q and
P A Q; foralli € then:

1. a.P & a.Q; 2. Lieqw; P 3 Sierw; Qi;
3. PXEAQxE; 4 P[ALQ[A;
5. P[S] £ Q[S).

We proceed by the usual technique of pointwise extension to define our equivalence for finite
state processes.

Definition A.68 Let E and F be ezpressions containing variables at most X. Then we will say
E & F if for all process sets P, E{P/X} & F{P/X}.

Proposition A.7 If E L F then 1 X.E L wiX.F.

A.1.3 Relative Bisimulation.

Unfortunately, the congruence given by direct bisimulation is too strong; it does not capture our
notion of relative frequency, but captures total frequency. Since we would like to be able to equate
processes such as,

2P + 3Q and 4P + 6Q,

we need to weaken our notion of equality. The basic idea is that in order to show two processes
equivalent, for each pair of equivalent states we can choose a constant factor such that the total
weight of equivalent immediate derivatives is related by multiplication by that factor. If we can do
this for all potentially equivalent states then we will say that the processes are the same in terms
of relative frequency. Since the constant factor may well need to be a rational (and we wish to
keep our numbers as simple as possible) we will actually use two constants in comparing relative
frequency. This allows us to use a symmetrical definition.

Definition A.8 We say an equivalence relation R C Pr x Pr is a relative bisimulation if (P, Q) €
R implies that:
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1. there are ci,c, € P such that for all S € Pr/R and for all w,v € W, P+ S iff Q v §
and cyw = cyv;

2. forall S € Pr/R and for alla € Act, P S iff Q - S.

Two processes are relative bisimulation equivalent, written P < Q if there exists a relative bisimu-
lation R between them.

We have chosen to use multiplication by a constant rather than division as this permits us to
stay within the natural numbers. We could have normalized so that the total weight actions of
any state is 1, and then we would have had an equivalence that is identical to that of stratified
bisimulation (Smolka et al., 1989; van Glabbek et al., 1990).

Definition A.9
L= {R| R is a relative bisimulation}.
Proposition A.10 Let P and ) be processes such that P & Q, then P~ Q.

Definition A.11 Let E and F be expressions containing variables at most X. Then we will say

E & F if for all process sets P, E{P/X}~ F{P/X}.
Proposition A.12 X is a congruence for finite and finite state processes.

We would like a notion of equivalence that permits us to disregard the structure of the choices
and just look at the total chance of reaching any particular state. This is known not to produce a
congruence (Smolka et al., 1989), but is a useful notion of equivalence.

Definition A.13 We define an abstract notion of evolution as follows;
a[_w]' ;- wy Wn a ;
P P iff P— ... +—"— P with w =[] w;.
In order to define an equivalence which uses such transitions we need a notion of accumulation.
Definition A.14 Let S be a set of processes then:
J iﬁ'w:Z{wﬂPMQforsomeQ65};5
We can now define an equivalence that ignores the choice structure but not the choice values.

Definition A.15 We say an equivalence relation R C Pr X Pr is an abstract bisimulation if
(P,Q) € R implies that:

there are ¢y,¢cy € P such that for all S € Pr/R and for all w,v € W, P Pl g iff
Q M S and cyw = cyv.

Two processes are abstract bisimulation equivalent, written P ~ Q if there ezists a abstract bisim-
ulation R between them.
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there is a surjection f: I+~ J with
(31) ZigrwiB; = By v E; {Uj =X{wli € I A f(3) = j},
and for all 7 with f(i) = j then E; = E;.

(Ezp1) a.E x b.F = ab.(E x F) (Ezpy) 0.E x Sies0;F; = Sie50;(a.E x F})
(Exps) (ZicrwiE;) X (Zje5viF;) = i jeaxnviw;(E; x Fj)
(Res) (a.E)[A= {a'(EfA) faca

0 otherwise.

(Resy) (NierwiE;)[A = Ejesw;(E;[A) where J = {i € I|d4(E;)}
(01) O(a.E)=a.0(F)

(03) O(ZieswiE;) = Tc ;N (w;).0(E;) where J = {i € I|w; = nwme{w:h}

(Ren) ZierwiE; = Tienw; E; where n € P

Figure 8: Equational rules for WSCCS.

A.2 Equational Characterisation of WSCCS.

We present some equational laws over WSCCS processes in Figure 8, these form a sound and
complete equational system over the finite processes in WSCCS. We shall write p = ¢ for p ~ ¢.

Definition A.16 Let A be an action set then the predicate, d4(F), ezpressing the fact that E can
perform an action in A, is defined recursively as follows:

o Ifa€ A thendy(a.F);
o If there exists i € I with d4(E;) then da(Z;crw; E;).

Definition A.17 Let W be a set of weights {w;} then maz,(W) is the mazimum power of w
occuring in W.

Definition A.18 We define a projection from on weights as follows,
N(muwk) o,

The major difference when we extend our weight set to have many infinities is that the priority
operator will now distribute over multiplication. The following equation now holds:

O(P x Q) = O(P) x O(Q)

this permits much greater freedom in the use of priority and ensures that it more closely matches
with our intuitions.

®Remembering this is a multi-relation so some of the Q and w; may be the same process and value. We take all
occurences of processes in S and add together all the weight arrows leading to them.
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