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Abstract 

Public key cryptosystems are based on mathematical problems that are "hard" to 

solve, such as the hyperelliptic curve and elliptic curve discrete logarithm problems 

(HCDLP, ECDLP). Using Weil descent one can, in certain cases, reduce an instance 

of the ECDLP to an instance of the HCDLP, justifying investigation of efficient 

algorithms for solving the HCDLP. 

Index calculus has been used to solve the HCDLP for some time ([7], [22]), and 

improvements have been made in the small-genus case [65]. As Weil descent can 

produce high-genus curves, our interest lies there. 

This thesis investigates a variety of practical improvements to the high-genus case, 

including large primes [65] and sieving [24]. We find that in practice these improve-

ments result in a significant performance increase, allowing us to solve an HCDLP 

example produced from an instance of the ECDLP on a curve defined over 1F215 for 

the first time. 
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Chapter 1 

Introduction 

Elliptic curve cryptography has been receiving more attention as of late. First pre-

sented by Koblitz [42], it has evolved to the point where it is used quite frequently 

in a number of implementations. One of the primary reasons for this interest is that 

it appears that the smaller key size used in elliptic curve cryptography can provide 

the same amount of security as conventional public key cryptographic algorithms 

using a larger key size. For example, in order to obtain equivalent levels of security 

for signatures with the Digital Signature Algorithm and the elliptic curve variation, 

ECDSA, one should use a 1024-bit key with DSA, but can use a 160-bit key with 

ECDSA, as outlined by Koblitz [44]. This makes elliptic curve cryptography very 

tempting to use in settings where memory and physical size are important to con-

sider, such as cell phones, smart cards or secure RFID chips. One merely needs 

to look at the Certicom website (http: //www. certicom. com/) to see how large of 

a business elliptic curve cryptography has become. An even larger development 

is the inclusion of two elliptic curve variations of cryptographic algorithms in the 

NSA Suite B set of algorithms, found on the NSA website [55]: the Elliptic Curve 

Diffie-Hellman key agreement protocol, as described in a Certicom Research tech-

nical report [13], and the Elliptic Curve Digital Signature Algorithm, covered by 

Koblitz [44] and Certicom Research [13]. 

1 
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The security of both of these algorithms relies on the difficulty of the discrete loga-

rithm problem in the group of points on an elliptic curve. That is, given two points, 

P and Q, where Q is a multiple of P, on an elliptic curve defined over a finite 

field, find the smallest positive integer x such that Q = xP. There are no known 

subexponential algorithms for solving the elliptic curve discrete logarithm problem 

in general. However, there are certain instances of the elliptic curve discrete loga-

rithm problem that can be reduced to instances of the hyperelliptic curve discrete 

logarithm problem that can be solved in subexponential time. 

The procedure that converts instances of the elliptic curve discrete logarithm prob-

lem to instances of the hyperelliptic curve discrete logarithm problem is called Weil 

descent. It was first presented by Fey [25] and was improved and further studied 

by Gaudry, Hess and Smart [27]. It should be noted that the instances that Gaudry, 

Hess and Smart concentrate on are over a field with characteristic two, and for the 

remainder of the thesis we assume we are dealing with an underlying field with char-

acteristic two. This algorithm was implemented by Jacobson, Menezes and Stein 

[35]. This method was also further studied by Menezes and Qu [51] and by Maurer, 

Menezes and Teske [49]. 

In addition to this reduction, hyperelliptic curves are also of interest for their own 

use in cryptographic algorithms. Koblitz [43] presented the idea of using hyperellip-

tic curves defined over finite fields in a variation of the Diffie-Heilman key agreement 

protocol. This makes use of the discrete logarithm problem for Jacobians of hyper-

elliptic curves. One should note that hyperelliptic curves extend the idea of elliptic 
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curves. In fact, an elliptic curve is just a genus one hyperelliptic curve. Expanding 

on the advantage of elliptic curve cryptosystems, it was once suspected that for 

small genus, such as genus 2 or 3, an even smaller key size could be used to pro-

vide an equivalent security level to conventional or even elliptic curve algorithms, 

mentioned by Jacobson, Menezes and Stein [36]. However, later work, such as the 

analysis done by Thériault [65], showed that this does not hold. 

Because of both the idea of reducing the elliptic curve discrete logarithm problem 

to the hyperelliptic curve discrete logarithm problem and the use of hyperelliptic 

curves in their own cryptosystems, algorithms for solving the hyperelliptic curve 

discrete logarithm problem have become of great interest. The focus of this thesis is 

the study of some of these algorithms and improvements to them, primarily in the 

high genus case. 

1.1 Previous Work 

The discrete logarithm problem, for a general cyclic group G with group operation 

written additively, is as follows. Given a generator a E G and b in the subgroup 

generated by a, find the least positive integer x such that xa = b. There is a very 

obvious way to find such an x: simply compute a, 2a, 3a and so on until x is reached 

such that xa = b. If x is large, this is not an efficient solution. In fact, one could 

end up computing every element in the group C. 

In 1971, Shanks [61] introduced an algorithm to solve discrete logarithm problems 
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using a procedure called Baby-Steps, Giant-Steps that runs in time O(\/{—GI). This 

algorithm was followed in 1978 by a probabilistic algorithm of Las Vegas type of 

Pollard [59] that has an expected run time of O(/IG) in any cyclic group C, and 

will always return a correct answer. Pollard's algorithm has the advantage of using 

less memory than that of Shanks. Baby-Steps, Giant-Steps creates a look-up ta-

ble in the first part of execution and the larger the table, the better the run-time. 

The balance is thus O(4,/IGI) storage. Pollard's algorithm uses 0(1) storage. It 

is known as Pollard's Rho method because the search space can be presented in a 

shape similar to the Greek letter p. In this method, two sequences in the group 

G are computed, and when the sequences have the same value for the same index, 

further computations are performed to compute the discrete logarithm. In 1998, 

an improvement to Pollard's method was published by Teske [64]. The improve-

ment was made to the random walk used by Pollard, resulting in a reduction of 

the expected number of elements that had to be computed, and thus improving the 

overall computation time of the algorithm. A random walk is a random traversal 

from element to element in a group. Teske's random walk idea appears again later. 

McCurley [50] and Hafner with McCurley [29], both published in 1989, present 

Las Vegas type algorithms for performing discrete logarithm computations in, and 

computing class numbers of, imaginary quadratic number fields. The method they 

use is called index calculus. Index calculus algorithms have two major phases. Let 

C be the group in which we are attempting to solve the discrete logarithm problem. 

Then the first major step is to find elements in C that factor completely over a 
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predefined subset of G that we call the factor base. The second phase is a linear 

algebra step. We focus on the first phase as linear algebra has been studied at great 

length. For example, see the work done by Wiedemann [69] and the related work 

by Kaltofen and Saunders [41], LaMacchia and Odlyzko [46], Kaltofen [40], Chen, 

Eberly, Kaltofen, Saunders, Turner and Villard [14] and Mulders [54] as well as the 

work by Lanczos [47] and related work by Eberly and Kaltofen [20] and Montgomery 

[53]. 

Index calculus was used in a subexponential algorithm for computing discrete loga-

rithms in Jacobians of high-genus hyperelliptic curves by Adleman, DeMarrais and 

Huang [7] in 1994. This method was improved upon by Gaudry [26] in 2000 and 

Enge [21] in 2002. Enge and Gaudry [22] then developed a general index calculus 

framework for solving discrete logarithm problems in a group G, given the size of 

that group and making assumptions on the smoothness of elements in the group. 

This framework runs in subexponential time in IGI under the assumption that there 

are a subexponential proportion of elements in the group that are smooth over a 

certain subset of group elements. 

Thériault [65] analyzes the use of large primes and random walks in Gaudry's al-

gorithm for the computation of discrete logarithms in the Jacobian of small genus 

hyperelliptic curves. Large primes had been used in integer factorization, such as 

work done by Kurowski [45], Lenstra and Manasse [48] and Boender and te Riele [10]. 

They have also been used in algorithms for finding the class group of a quadratic 

number field, such as by Jacobson [33]. However, the analysis done by Thériault 
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was new, and promising. This work focused on the small genus case, and showed 

that small genus hyperelliptic curve cryptosystems do not have the level of security 

once thought. 

Independent of this work, Vollmer [66] published a subexponential algorithm for 

solving the discrete logarithm problem in quadratic number fields in 2000. This al-

gorithm, while not requiring the class number, which is often unknown and difficult 

to compute, can be modified to make use of it. However, the interesting part of 

this algorithm for us is that it allows us to consider a different method for finding 

relations. The Enge-Gaudry algorithm is well-suited for the use of random walks, 

but it is not very flexible. Voilmer's algorithm allows us to use an idea called sieving 

to find relations. Note that Voilmer's original presentation does not make use of 

sieving for finding relations. 

Sieving has been used extensively in the context of factoring by Pomerance [60], 

Silverman [63], Boender and te Riele [10] and Kurowski [45], for example. It has 

also been used in the computation of class groups of quadratic number fields by 

Jacobson [32, 33], in conjunction with large primes. Jacobson [34] has also used 

sieving to compute discrete logarithms in the class group of a quadratic order in. 

In 1999, Flassenberg and Paulus [24] published a paper on sieving in the context of 

quadratic function fields of odd characteristic. This is currently the only known use 

of sieving in this context, and thus hyperelliptic curve context. 

In addition to using large primes with sieving, a method for efficiently generat-
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ing sieving polynomials has been developed, called self-initialization. It has been 

used in the factoring context by Alford and Pomerance [8] and Contini [16], and 

by Jacobson [33] in his sieving algorithm for computing class groups in quadratic 

number fields. It is suggested by Flassenberg and Paulus that it may be applicable 

in algorithms for performing computations in quadratic function fields as well. 

The work of Enge, Gaudry, Thériault, Jacobson, Menezes and Stein making use 

of random walks and the work of Jacobson on sieving has directed the work done 

in this thesis. 

1.2 Contribution 

When Thériault [65] analyzed large primes in the Jacobian of hyperelliptic curves 

he did so in the small genus case. In particular, he assumes that q, the size of the 

underlying field, is large when compared to the genus. In these cases, there are a 

large number of degree one prime divisors, that is, prime divisors corresponding to 

irreducible linear polynomials over the finite field. By varying the number of them 

which are included in the factor base, Thériault reduced the size of the factor base 

and thus the size of the matrix used in the resulting linear algebra problem. Addi-

tionally, by considering large primes (the prime divisors not in the factor base) he 

was able to reduce the asymptotic runtime of Gaudry's algorithm [26]. 

In this thesis we take cues from Thériault [65] and attempt to mirror his work in the 

large genus case. The Jacobian of an imaginary hyperelliptic curve is isomorphic to 
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the ideal class group of an imaginary quadratic function field. We focus our work 

in the quadratic function field context, and discuss ideals rather than divisors. Let 

t be the bound on the degree of the norms of the elements in our factor base. That 

is, the prime ideals in the factor base correspond to the irreducible polynomials 

over the underlying finite field that have degree less than t. Then we can consider 

four new variations of the Enge-Gaudry algorithm. First, we consider only reducing 

the number of prime ideals having norms with degree equal to t in the factor base. 

While this does not provide the same improvement that Thériault saw, we are not 

finished. Because our factor base contains ideals with norms of different degrees, 

the idea to vary what sort of prime ideals become our large primes is obvious. One 

could use only the prime ideals with norm of degree equal to t that are not in the 

factor base as large primes, as in Thériault's work. One could use all of the prime 

ideals having norms with degree equal to t in the factor base and then use only the 

prime ideals having norms with degree equal to t + 1 as large primes. Or, one could 

combine the two, reducing the size of the factor base and increasing the number of 

large primes. We consider all three variations of large primes, giving a total of five 

variations of the Enge-Gaudry algorithm. 

Jacobson, Menezes and Stein [35], present formulas for estimating the number of 

random walk steps required to find enough relations to compute the discrete log-

arithm problem using the Enge-Gaudry algorithm. Part of the work in this thesis 

involves generalizing these formulas to compute estimated number of steps required 

in our four new variations of the Enge-Gaudry algorithm. Jacobson, Menezes and 

Stein also provide four instances of the discrete logarithm problem in four different 
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hyperelliptic curves in which to compute. We use these same instances in our tests. 

In the context of these examples, we proceed to evaluate the estimating formulas in 

order to compare the different variations. This allows us to determine the optimal 

strategy and factor base size empirically. According to these computations, we ex-

pect the variation in which the factor base contains all prime ideals having norms 

with degree less than or equal to t in the factor base and using only the prime ideals 

having norms with degree equal to t + 1 as large primes to perform the best for the 

examples we consider. 

We noted above that the Flassenberg and Paulus presentation of sieving [24] is 

described for odd characteristic underlying finite fields. In this thesis we generalize 

sieving to the even characteristic case. We also present self-initialized sieving in 

the even characteristic function field setting. In addition to this improvement, we 

discuss different methods of implementing the sieve array and discuss using only a 

subset of the factor base for sieving in order to increase the speed of the procedure. 

Finally, since this is, as far as we know, the first place where sieving is investigated 

in this setting, we try to provide some guidance for choosing parameters for sieving. 

In addition to studying and presenting the above algorithms and our proposed 

changes, we have also implemented the algorithms discussed as part of a larger 

C++ package called ANTL: Algebraic Number Theory Library. This is built on 

top of Shoup's NTL, a library for doing number theory [62]. The goal ANTL is to 

provide a general library for performing discrete logarithm and class group compu-

tations in both quadratic number fields and quadratic function fields. This library 
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is currently in a very preliminary stage. We focus our discussion on the imple-

mentation for quadratic function fields. In this library we have implemented the 

Enge-Gaudry algorithm, including the studied variations, and Volimer's algorithm 

with self-initialized sieving. With this implementation we attempted to solve the 

discrete logarithm problems investigated by Jacobson, Menezes and Stein (JMS) 

[35], examples over curves they call C62, C93, C124 and C155. Note that the C155 

example has not been computed previously. These results verify the estimates we 

computed earlier, showing that using large primes does improve the performance 

of the Enge-Gaudry algorithm. For example, while there is little difference in the 

search time for C62, our settings also result in using a smaller factor base, which 

improves the linear algebra stage, and so the overall algorithm requires only one 

quarter the time with our settings versus those provided by JMS [35]. In the C93 

case, both our parameters and those suggested by JMS [35] use the same factor base. 

However, using large primes results in a search time that is only two-thirds the time 

required without large primes. For C124, we use a smaller factor base, which dou-

bles the search time, but decreases the linear algebra time from over three days to 

under an hour. This does not decrease the total time of the algorithm, but it does 

reduce the real time when the search is done in parallel over several processors. We 

only compute expected results for the C155 example, but work suggests that using 

our parameters will result in a search time that is three-quarters the time required 

by the parameters suggested by JMS [35]. 

An even more substantial improvement is the performance of Vollmer's algorithm 

with sieving, proving to find relations much faster than our fastest Enge-Gaudry 
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variations. In the C62 example the search time required by sieving was only slightly 

improved over the Enge-Gaudry time, and the linear algebra stage had to be re-

peated after finding a few more relations before a solution to the linear system 

could be found, resulting in a total sequential time that was faster than both the 

Enge-Gaudry implementations if we suppose the work was done on a single pro-

cessor, but slower real time when we consider the result of performing the relation 

search in parallel. The C93 example begins to really support the case for sieving. 

Here, the total search time was one quarter that required by the fastest Enge-Gaudry 

variation. Again, the linear algebra had to be repeated, and while the total sequen-

tial time was better, doing the search in parallel results in a slower real time. In 

the C124 example using sieving in the search again speeds up the stage by a factor 

of four. This time, the linear algebra did not have to be repeated, and so both the 

total sequential time and real time used are approximately four times faster using 

Voilmer's algorithm with sieving than using our fastest Enge-Gaudry parameters. 

Finally, due to these improvements, we were able to compute the C155 example for 

the first time. Using sieving resulted in a search that was once again approximately 

four times faster than the search time expected for our optimal Enge-Gaudry param-

eters. Unfortunately our results show that we grossly underestimated the amount 

of time required for the linear algebra stage for the C155 example, but correcting 

for this demonstrates again the success of sieving in this example. These results 

clearly indicate that sieving can significantly improve performance in practice, and 

that sieving should be studied more. 
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1.3 Outline 

Chapter 2 of this thesis provides the background on hyperelliptic curves and quadratic 

function fields necessary for the remainder of the thesis. This includes describing 

the discrete logarithm problem in the Jacobian of a hyperelliptic curve, and the 

ideal class group of a quadratic function field, as well as discussing the equivalence 

of the two problems. We also mention how this ties in with elliptic curves. While 

results are stated, proofs are left to the included references. 

In Chapter 3 we cover the algorithmic background for this thesis. This includes 

both the Enge-Gaudry algorithm [22] and Vollmer's algorithm [66] for solving the 

discrete logarithm problem in the ideal class group of a quadratic function field. 

This starts with a general overview of index calculus algorithms, and includes thor-

ough descriptions of two methods for finding relations: random walks, as suggested 

by Teske [64] and used by Jacobson, Menezes and Stein [35], and sieving, presented 

by Flassenberg and Paulus [24] for fields of odd characteristic. Thériault [65] studies 

the uses of large primes in solving the hyperelliptic curve discrete logarithm prob-

lem in low genus cases using the Enge-Gaudry algorithm with random walks. We 

also present that in this chapter. There is also an improvement to sieving, called 

self-initialization, that has been used in similar contexts, such as computing the 

class group of a quadratic number field, as done by Jacobson [33]. This work is also 

presented here. Finally, we briefly discuss the linear algebra that is used in these 

index calculus algorithms. 
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Chapter 4 presents our improvements and novel work in this area. We show how to 

apply the idea of large primes to the high genus cases. This applies both to the use 

of random walks and sieving. We also present the work done by Jacobson, Menezes 

and Stein [35] to compute an estimated number of random walk steps necessary to 

compute sufficient relations for the Enge-Gaudry algorithm to run successfully. We 

extend these computations to include the large prime ideas, providing a number of 

variations of this algorithm that can be tested. We also generalize the Flassenberg 

and Paulus method of sieving [24] to even characteristic fields, and incorporate self-

initialization. We also discuss implementation of sieving and attempt to provide 

guidance for selecting appropriate sieve parameters 

Finally, Chapter 5 contains an outline of our implementation, including a description 

of the platform on which we are testing our program, the details of the implemen-

tation that may not have been covered before, and precisely what examples we are 

testing on. These examples are taken from Jacobson, Menezes and Stein [35] and in 

addition to running them with the same algorithm as done in that paper, we use our 

formulas for estimating random walk steps from Chapter 4 to derive settings that 

result in a faster runtime than those from [35]. We also perform computations using 

our implementation of sieving with self-initialization and large primes, demonstrat-

ing its efficiency for finding relations. Finally, we compare our results in all test 

cases with the estimated results and provide interpretation of the data. 



Chapter 2 

Quadratic Function Fields 

One current major area of interest for cryptographers is elliptic curves. The group 

of points on an elliptic curve is a particularly useful setting for cryptographic algo-

rithms. Two algorithms that take advantage of this group are the Elliptic Curve 

Diffie-Hellman key agreement protocol, described by Certicom Research [13], and 

the Elliptic Curve Digital Signature Algorithm, presented by Koblitz [44] and Cer-

ticom Research [13], both of which are part of the NSA Suite B set of cryptographic 

algorithms, described on the NSA website [55]. 

Elliptic curve cryptosystems are of interest because frequently the same level of 

security can be provided by a much smaller key. For example, in order to obtain 

an equivalent of 80 bits of security, the DSA key used must be 1024-bits long where 

ECDSA uses a 160-bit key, as described by Koblitz [44]. That is, the size of the field 

over which the elliptic curve is defined should be approximately 2 160 . For more in-

formation about elliptic curve cryptosystems, see the initial presentation by Koblitz 

[42]. 

The security of many of the elliptic curve cryptosystems relies on the difficulty 

of the discrete logarithm problem in the group of points on an elliptic curve. The 

discrete logarithm problem, written for a multiplicative cyclic group C is: given a 

14 
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generator a E G and b = ax, find the least positive integer x satisfying ax = b. 

For an additive group, an example of which is the group of points on an elliptic 

curve, this is written as b = xa. There are no known subexponential algorithms for 

solving general instances of the elliptic curve discrete logarithm problem (ECDLP). 

However certain instances of the ECDLP can be solved through a process known 

as the GHS attack, introduced by Gaudry, Hess and Smart [27]. This attack uses 

a procedure called Weil descent, that reduces certain instances of the ECDLP to 

instances of the hyperelliptic curve discrete logarithm problem for which there are 

in some cases subexponential algorithms known. 

Hyperelliptic curves are also of interest in their own right because, although the 

points on a curve of genus greater than 1 do not form a group, hyperelliptic curves 

can still be used for cryptography. The Jacobian of a hyperelliptic curve forms a 

group in which the discrete logarithm problem is not trivial. For an example of an 

algorithm that makes use of this, see the variation of the Diffie-Hellman key agree-

ment protocol proposed by Koblitz [43] and presented in the Handbook of Elliptic 

and Hyperelliptic Curve Cryptography [15]. 

It turns out that hyperelliptic curves are related to quadratic function fields. In 

fact, the Jacobian of a hyperelliptic curve is isomorphic to the class group of a 

quadratic function field. In this chapter we briefly discuss hyperelliptic curves, in-

troduce quadratic function fields, and describe the link between them. Note that 

we do not cover Weil descent in much depth, but we do discuss it a little more in 

Chapter 5. We also discuss the discrete logarithm problem and its importance. 
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2.1 Hyperelliptic Curves 

This section provides a brief introduction to hyperelliptic curves. For more informa-

tion, the interested reader can consult the appendix by Menezes, Wu and Zuccherato 

[44] and the Handbook of Elliptic and Hyperelliptic Curve Cryptography [15]. 

Let k = lFq be a finite field with IkI = q and let k be the algebraic closure of 

Ic. Recall that this means every polynomial with coefficients in i has a root in k. 

Let f(u) E k[u] be a monic polynomial with degree 2g +1 or 2g +2 and h(u) E k[u] 

be a polynomial with degree less than or equal to g for some g ≥ 1. Further, sup-

pose there are no points (u, v) E k x k that satisfy both v2 + h(u)v = f(u) and the 

equations 2v + h(u) = 0 and Lh (u)v - (u) = 0. Note that the last two equations au 

are partial derivatives with respect to v and u, respectively. 

Definition 2.1 (Jacobson, Scheidler and Stein [38]) 

We call 

C: v 2 + h(u)v = f (u) 

satisfying the above conditions with deg(f(u)) = 2g + 1 an imaginary hyperelliptic 

curve of genus g over k. 

Just as there are imaginary and real quadratic number fields, there are imaginary 

and real hyperelliptic curves. It is possible to convert curves from the imaginary 

form to the real form, and in certain cases, from real to imaginary, stated by Jacob-

son, Scheidler and Stein [37]. For the remainder of this thesis we will only consider 

the imaginary case. See Jacobson, Scheidler and Stein [37] for more information on 
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real curves. 

Note that when g = 1 we have an elliptic curve. Also note that if the charac-

teristic of the field is odd, we can write the curve as C : v2 = f(u) with a change of 

variables. That is, when the characteristic is not 2, we can assume h(u) = 0. 

Let K be an extension field of k. That is, K is a subfield of k containing k. Then 

we consider the following set. 

Definition 2.2 (Menezes, Wu and Zuccherato [44, page 157]) 

The set of K-rational points on C is defined to be 

0(K) = {(u, v) E K x K I v2 + h(u)v = f(u)} U {oo}. It is usually denoted simply 

as C and called the points on C. We call oo the point at infinity. 

Definition 2.3 (Menezes, Wu and Zuccherato [44, page 157]) 

Let P = (x, y) E C. Then the opposite of P is .P = (x, —y - h(x)). The opposite of 

00 is co. 

If P E C then P E C as well. 

When g 0 1 we do not have a natural group law on the points on C. However, 

we do have a group if we consider the set of reduced divisors in the Jacobian of 

C over k. The remainder of this section leads us to that. First we consider the 

properties of polynomials when viewed as functions on a hyperelliptic curve. 

Consider the ideal in k[u, v] generated by v2 + h(u)v - f(u). 
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Definition 2.4 (Menezes, Wu and Zuccherato [4, page 159]) 

We call the quotient [C] = Y[u, v]/(v2 + h(u)v - f(u)) the coordinate ring of C 

over k. An element G(u, v) E X[C] is called a polynomial function on C. 

Menezes, Wu and Zuccherato [44, page 159] state that the polynomial v2 + h(u)v - 

f(u) is irreducible in k. In order to see this, suppose it is not for the purpose 

of arriving at a contradiction. Then v2 + h(u)v - f(u) = (a(u) - v)(b(u) - v) 

a(u)b(u) - (a(u) + b(u))v + v2 for some a(u), b(u) E [u]. Then the degree of 

a(u)b(u) equals the degree of f('u), 2g + 1, and the degree of a(u) + b(u) equals the 

degree of h(u), which is less than or equal to g. Clearly this is impossible. Since 

v2 + h(u)v - f(u) is irreducible, k[C] is an integral domain. 

For any polynomial G(u, v) in any equivalence class in k[C] we can replace instances 

of v2 with f(u) - h(u)v and write it as G(u, v) = a(u) + b(u)v. This final form is 

unique, and thus this provides representatives for the equivalence classes of i[C], 

stated by Menezes, Wu and Zuccherato [44, page 159]. 

We have the following three functions on polynomials that will be useful later. 

Definition 2.5 (Menezes, Wu and Zuccherato [44, page 159]) 

The conjugate of a polynomial G(u, v) = a(u) + b(u)v in k[C] is 

(u, v) = a(u) - b(u)(v + h(u)). 

Definition 2.6 (Menezes, Wu and Zuccherato [4, page 159]) 

The norm of a polynomial C in k[C] is defined to be N(G) = GO. 



19 

Note that the norm is multiplicative; that is, N(GH) = N(G)N(H). 

Definition 2.7 (Menezes, Wu and Zuccherato [44, page 165]) 

Let G(u, v) = a(u) + b(u)v be a nonzero polynomial function and let P E C. Then 

the order of C at P, written ordp(G) is defined as follows: 

1. If P = (x, y) is not the point at infinity, let  be the highest power of (u+x) that 

divides a(u) and b(u). Then C = (u+x)r(ao(u) +bo(u)v). If ao(x) +bo(x)y 54 

0, set s = 0. Otherwise let s be the highest degree of (u + x) that divides 

N(ao(u) + bo(u)v). If P 0 (P), ordp(G) = 'i' + s, otherwise ordp(G) = 2r + s. 

2. If P = oo, ordp(G) - max{2deg(a), 2g + 1+ 2deg(b)}. 

Since 7[C] is an integral domain, it is natural to consider fractions consisting of 

elements in [C]. This gives rise to the following definition. 

Definition 2.8 (Menezes, Wu and Zuccherato [44, page 160]) 

The function field of Cover k is k(C) = {IG,H E k[C],H(u,v) 0}, also called 

the field of fractions of [C]. An element R E k[C] is called a rational function on C. 

We will now describe the set of divisors, allowing us to define the Jacobian of a 

hyperelliptic curve. 

Definition 2.9 (Menezes, Wu and Zuccherato [44, page 167]) 

A divisor is a formal sum of points on C, D = mpP where mp E Z and only 

a finite number of the coefficients mp are non-zero. The degree of a divisor D is 
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deg (D) = >PEC mp and the order of D at P is ordp(D) = mp. We denote the set 

of degree 0 divisors by D°. 

The set of divisors forms an additive group with addition defined by >PeG mpP + 

>pEC = >iPEc(mp + np)P and the set D° is a subgroup of this group. 

Definition 2.10 (Menezes, Wu and Zuccherato [44, page 167]) 

Let R G k(C) be a nonzero rational function. Then we can write R = 

for polynomial functions C and H. Then the divisor of R is given by div(R) = 

Ec ordp(R)P, where ordp(R) = ordp(G) - ordp(H). 

Thus every element in k(C) givs rise to a divisor of C. We gives these divisors a 

special name. 

Definition 2.11 (Menezes, Wu and Zuccherato [44, page 168]) 

A divisor D E .D° is called a principal divisor if D = div(R) for some nonzero 

R E K(C). We denote the set of all principal divisors by P, and this is a subgroup. 

of D°. 

We now have enough background to present the most important part of this section. 

Definition 2.12 (Menezes, Wu and Zuccherato [44, page 168]) 

The quotient group J = D°/IP' is called the Jacobian of C. 

If D1, D2 E DO are such that D1 -  D2 E  IF then we say D1 and D2 are equivalent 

divisors, written D1 r'..' D2, and they appear in the same equivalence class in the 

Jacobian of C. In addition, the following definition provides us with a way of 

representing each equivalence class in the Jacobian. 
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Definition 2.13 (Menezes, Wu and Zuccherato [44, pages 168,171]) 

A degree 0 divisor D = mpP -  (Ep..  mp) oo is reduced if deg(P) ≤ g, 

mp≥O for all Poo, and for mp≥1, 

PP == mp=O, and 

P = P mp = 0 or mp = 1. 

The following theorem completes the puzzle for hyperelliptic curves. 

Theorem 2.1 (Jacobson, Menezes and Stein [36]) 

Each equivalence class of the Jacobian of an imaginary hyperelliptic curve is repre-

sented by a unique reduced divisor. 

Therefore the set of reduced divisors forms a group, where the group operation 

consists of computing the reduced sum of two divisors. Briefly, this is done as 

follows: 

1. In order to add divisors D1 = div(ai, b1) and D2 = div(a2, b2), use the Eu-

clidean algorithm to find polynomials d1, e1, e2, d, e1, C2 E k{u] such that 

gcd(ai, a2) = d1 = e1a1+e2a2 and gcd(di, bi+b2+h) = d = cidi+c2(bi+b2+h). 

Let si = c1e1, S2 = c1e2 and 83 = c2, and set a = a1a2/d2 and b 

s1a1b2+s2a2b1+s3(b1b2+f)  
d 

is D = div(a, b). 

(mod a). Then the output from the addition algorithm 

2. In order to reduce a divisor D = div(a, b), set a' = (f - bh - b2)/a and 

b' = (—h - b) (mod a'). If deg(a) > g, set a = a', b = b' and repeat. 

Otherwise, make a' monic and output D' = div(a', b'). 
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For more details, the interested reader can consult works by Koblitz [43], Menezes, 

Wu and Zuccherato [44, Section 7 of the Appendix], Jacobson, Scheidler and Stein 

[38] and the Handbook of Elliptic and Hyperelliptic Curve Cryptography [15, pages 552-

553]. 

The important thing is that algorithms exist for efficiently computing in the Ja-

cobian. It is the group of reduced divisors that is used for hyperelliptic curve cryp-

tography. Also, the points on an elliptic curve to which we can apply Weil descent 

are mapped to the group of reduced divisors. This group is isomorphic to the ideal 

class group of a quadratic function field, seen below. 

2.2 Introduction to Quadratic Function Fields 

Again we let k = F. be a finite field with q elements and 7 be its algebraic closure. 

Then lc[u] is a polynomial ring and k(u) is the smallest field containing k[u], the 

field of fractions of k[u]. That is, k(u) = {G, H E k[u], H 0 O}. Consider the 

equation v2+h(u)v = f(u) where f, h  k[u], f is monic with degree 2g+1 or 2g+2 

and deg(h) ≤ g. Note that for ease of notation we frequently write f and h in place 

of f(u) and h(u). Also note that as above the polynomial v2 + hv - f is irreducible 

in k[u, v]. We now define a quadratic function field. 

Definition 2.14 (Paulus and Stein [58], Paulus and Mick [57], Jacobson, Scheidler 

and Stein [38]) 

LetK(C) = k(u)(v) where  is a root ofv2+h(u)v = f(u), deg(f(u)) = 2g+1, and 

in the even characteristic case deg(h(u)) < g. Then we call K(C) an imaginary 
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quadratic function field of C over k. 

Again, there are real quadratic function fields, but we will consider the imaginary 

case. Note that this definition is similar to that of an imaginary hyperelliptic curve. 

If the characteristic of the field k is odd then it is possible, using a change of 

variables, to write the equation v2 + h(u)v = f(u) from the above definition as 

V' = f(u), stated by Jacobson, Menezes and Stein [36]. Then v = \/f (u) and we 

see that K(C) can be viewed as the result of adjoining v to the rational function 

field k(u) in an analogous manner to the construction of a quadratic number field. 

Definition 2.15 (Paulus and R'iick [57]) 

Let (9K = k[u][v] be the integral closure of k[u] in K(C). That is, (.9K contains all 

the integers in K(C), and k[u] is a subring of (9K. We call 0K a(n) (imaginary) 

quadratic order. 

The integral domain (9K is a Dedekind domain, stated by Paulus and Mick [57], so 

we consider its ideals. 

Theorem 2.2 (Paulus and Rick [57]) 

Let a be an integral ideal in (9K. Then we can write a = s(ak[u] + (b+v)k[u]), where 

s, a, b E k[u] and a b2 + bh - f. Furthermore, if deg(b) < deg(a) and the leading 

coefficients of a ands are 1 then (s, a, b) is the unique representation of the ideal a. 

We also have a concept analogous to fractions in number fields. 
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Definition 2.16 (Dummit and Foote [18, page 726]) 

A fractional OK-ideal is a subset b of K(C) for which there exists some d E k[u] 

such that db is an integral ideal. 

The operation on ideals that we are interested in is multiplication. 

Definition 2.17 (Dummit and Foote [18, page 248]) 

Ideal multiplication is defined by ab ab I U C a x b, a finite subset}, 

where by a>< b we mean all possible pairs of generators of a and b. 

In practice this is done in a more efficient manner, using an algorithm such as that 

presented by Cantor [12]. Jacobson, Menezes and Stein [36] state that the multi-

plication algorithm is almost exactly the same as that used to add divisors in the 

hyperelliptic curve case, and thus we do not restate it here. 

It is also natural to define a multiplicative inverse. 

Definition 2.18 (Dummit and Foote [18, page 726]) 

A fractional ideal a is invertible if there exists some ideal b such that ab = O.K. We 

write b = cr', and call b the inverse of a. 

We also have the concepts of conjugates and norms of ideals. 

Definition 2.19 (Jacobson and van der Poorten [39]) 

The conjugate of an OK-ideal a = s(ak[u] + (b + v)k[u]) is 

= s(ak[u] - (b + h - v)k[u]). 

That is, it is the ideal that contains the conjugates of the elements in a. 
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Definition 2.20 (Mollin [52, page .148]) 

The norm of an OK-ideal a is N(a) = OK/al, the cardinality of OK/a. 

In our , case, if our ideal is represented by a = (s, a, b), we compute the norm 

N(a) = as' as Jacobson, Menezes and Stein [36] do. This norm is multiplica-

tive: if a and b are two OK-ideals then N(ab) = N(a)N(b). 

There are several special types of ideals we are interested in. 

Definition 2.21 (Dummit and Foote [18, page 52]) 

Let a be a subset of K(C) and let (a) be the smallest ideal containing a. Then (a) 

is the ideal generated by a. An ideal is principal if it can be generated by a single 

'element of K(C). 

Definition 2.22 (Enge and Stein [8]) 

If we can write the ideal a = s(ak[u] - (b + h - v)k[u]), represented by (s, a, b), such 

that s = 1 then a is called primitive. A primitive ideal is also called semireduced. 

A primitive ideal is called reduced if deg(a) < g. 

Cantor [12] also provides an algorithm for reducing ideals. Again we do not present 

it here due to its similarity to the hyperelliptic curve algorithm and simply assume 

that efficient implementations exist for us to use. 

There are also ideals that are analogous to prime numbers in the integers. 

Definition 2.23 (Dummit and Foote [18, page .256]) 

We call an OK-ideal p 54 OK prime if for any a, b E OK, if ab 'E p then at least one 
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of a and b is in p. Equivalently, p is prime if ab C p implies at least one of a c p 
or b C p holds, where a and b are OK-ideals. 

Enge and Stein [23] state that the prime ideals cj of k [u] are the ideals generated by 

irreducible polynomials q. We have the following cases for a prime ideal p of 0 K 

above q. 

Definition 2.24 (Enge and Gaudry []) 

.1. If x2 + h(u)x - f(u) 0 (mod q) has two solutions then there are two prime 

ideals p and P in °K above q, and we call q, q, p and P splitting. 

. If x2 + h(u)x - f(u) 0 (mod q) has one solution then there is a single prime 

ideal p in' OK above q and we say q, q and p are ramified. 

5. If x2 + h(u)x - f(u) 0 (mod q) has no solutions then there is a single prime 

ideal p in OK above q and we say q, q and p are inert. 

The norm of a prime OK-ideal p generated by p is N(p) = P. 

Since OK is a Dedekind domain, we also have the concept of unique factorization 

for ideals, presented by Enge and Stein [23]. Consider a primitive ideal a. Its norm 

is N(a) = a E k[u], and the norm can be written as a powerLproduct of irreducible 

polynomials. Then since ideal norms are multiplicative, we can write a = fl..1 p7 

for prime ideals pi and exponents ej if and only if N(a) = fJ N(p)leuI. This is an 

important result that is further expanded in Chapter 3, as the algorithms for solv-

ing the discrete logarithm problem presented there rely on being able to factor ideals. 

Now we define the ideal class group. 
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Definition 2.25 (Jacobson, Menezes and Stein [36]) 

Let I denote the set of fractional ideals of OK, and? denote the subgroup of principal 

ideals. Then the ideal class group is defined to be the quotient group Cl(K) = I/P 

and the size of the class group, h = ICl(K)I, is called the class number. 

We write elements of Cl(K) as [a]. We now consider the elements of the classes in 

the class group. 

Definition 2.26 (Jacobson [53]) 

Two ideals a and b are called equivalent if there exists principal ideals (a) and (0) 

for a, /3 E 0 K such that (a)a = (13)b. This is written as a r'J b, and a and Ei are in 

the same class in Cl(K). 

We saw before that ideals can be reduced. More importantly, each OK-ideal is 

equivalent to a unique reduced ideal, a consequence of the following theorem. 

Theorem 2.3 (Jacobson, Menezes and Stein [36]) 

Each ideal class [a] in Cl(K) contains a unique reduced ideal. 

This means each ideal class can be represented by a unique reduced ideal. We now 

describe the group operation for the elements in Cl(K). For any equivalence classes 

[a] and [b] in Cl(K) with reduced ideal representatives a and b, first compute ab = c. 

Then reduce c to get c', the reduced ideal that represents the ideal, class [c'] = [a] [b]. 

In practice, this is done in a single step using a variation of the NUCOMP algorithm, 

such as that presented by Jacobson and van der Poorten [39]. 

Finally, we have the following theorem due to Paulus and Rück [57] that connects 
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the ideal class group of an imaginary quadratic function field to the Jacobian of the 

imaginary hyperelliptic curve defined by the same parameters f(u) and h(u) over k. 

Theorem 2.4 (Paulus and R'ück [57]) 

There is a canonical bijection between the reduced divisors of a hyper'elliptic curve 

seen above and the set of reduced ideals in °K 

Similar theorems are stated by Paulus and Stein [58] and Jacobson, Menezes and 

Stein [36] that imply that this is an isomorphic map between the two groups. This 

tells us that the ideal class group is the same size as the Jacobian of the hyperelliptic 

curve. 

Now that we have seen how we can relate hyperelliptic curves to quadratic function 

fields, we investigate the hyperelliptic discrete logarithm problem, and describe its 

interpretation in the quadratic function field context. 

2.3 The Discrete Logarithm Problem 

As mentioned before, the discrete logarithm problem plays a major role in public 

key cryptography. Several systems, such as the Diffie-Heilman key agreement pro-

tocol, make use of it. In the elliptic curve setting, the discrete logarithm problem 

is: Given points P, Q = xP on an elliptic curve E, find the least positive integer x 

such that Q = xP. 

With this knowledge, we now describe the Elliptic Curve Diffie-Heilman protocol, 

outlined by Certicom Research [13]. Assume the two parties involved have agreed 
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on the parameters, such as the curve C and a base point or generator C with order 

I Cl = n, that are being used in this communication, and each party has a private, 

public key pair (di, Q), where d, a random integer between 1 and n - 1, is the 

private key and Qj = dG is the public key. Then the two parties exchange public 

keys. The first participant computes K = d1Q2 = d1d2G and the second participant 

computes K = d2Q1 = d2d1C, and thus K is used as the key for further communi-

cation. Due to the difficulty of the ECDLP, an eavesdropper can know Qi, Q2 and 

G, but cannot compute d1, d2 or K. 

The hyperelliptic curve discrete logarithm problem (HCDLP) is as follows: given 

reduced divisors D1, D2 xD1 in the Jacobian of the curve C, find the least posi-

tive integer x that satisfies that relation. There exists a method that takes certain 

instances of the ECDLP problem to instances of the HCDLP called Weil descent. 

Basically, if E is an elliptic curve defined over K = IF2m with dr points, for small d 

and large prime r, Weil descent can, in some cases, be used to reduce the ECDLP 

problem in the subgroup of points on the elliptic curve with order r to an instance 

of the HCDLP in the subgroup of reduced divisors that has order r, where the hy-

perelliptic curve is defined over F2m and has genus g m. If m> log 2 then the 

resulting HCDLP instance can be solved in subexponential time. For more details, 

the interested reader can consult works by Frey [25], Gaudry, Hess and Smart [27], 

and Jacobson, Menezes and Stein [35]. 

An equivalent statement of the HCDLP using the language of quadratic function 

fields is: given reduced ideals a, b ax, find the least positive integer x satisfying 
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ax rJ . We will use this formulation for the remainder of the thesis. 

In this chapter we introduced hyperelliptic curves and quadratic function fields. 

More importantly, we have seen how hyperelliptic curves and quadratic function 

fields are related. We have also seen the discrete logarithm problem in both set-

tings, and described how they are related. In the remainder of the thesis we study 

algorithms for solving the discrete logarithm problem in the ideal class group of a 

quadratic function field. In doing this we see algorithms that can solve the HCDLJP. 

We see that there are instances of the ECDLP that we can thus solve in subex-

ponential time. Finally, we present results that demonstrate the success of these 

algorithms in practice. 



Chapter 3 

Index Calculus Algorithms For Solving Discrete 

Logarithm Problems 

There have been several algorithms proposed for solving discrete logarithm problems 

in quadratic number fields and quadratic function fields. In general, the discrete log-

arithm problem can be described as follows. Let G be a cyclic group for which the 

group operation is written multiplicatively. Then given a generator a E C, b = ax, 

find the least (positive) integer x such that a' is indeed b. The most obvious method 

is to simply perform a "brute force" computation by finding a, a2, a3, ..., ac, until 

ak = b. Clearly this is not an efficient process if x is large, and it could result in 

traversing through the entire group C. 

Pollard [59] introduced his "Rho" method (called such because the search space 

can be visualized as a shape similar to the Greek letter p) in 1978. Here, two se-

quences of exponentiations are computed and when the values with the same index 

in the sequences are the same, further computations can be made to compute the 

discrete logarithm. This method has a runtime of O(/IGI) and is applicable in any 

cyclic group C including the group of points on an elliptic curve and the divisor 

class group of a hyperelliptic curve. 

In 1994, Adleman, DeMarrais and Huang [7] introduced a subexponential algorithm 

31 
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for computing discrete logarithms in Jacobians of large genus hyperelliptic curves. 

They do this using a procedure called index calculus. This algorithm is similar to 

the ideas presented by Hafner and McCurley [29], where they use index calculus to 

compute class groups of imaginary quadratic number fields and by McCurley [50], 

where index calculus is used to compute class numbers of imaginary quadratic num-

ber fields and perform discrete logarithm computations in the class group. Using 

index calculus for discrete logarithm computations is also investigated by Gaudry 

[26] and Enge [21]. These ideas are further built upon and improved by Enge and 

Gaudry [22], where, given IGI, a general framework is presented for solving dis-

crete logarithm problems in subexponential time under certain assumptions on the 

smoothness of elements in the group, where the condition varies based on the group 

being considered. Vollmer [66] develops an alternate index calculus algorithm that 

runs in subexponential time in quadratic number fields and can be easily adapted 

to work in quadratic function fields. 

The focus of this thesis is improving index calculus algorithms for solving the dis-

crete logarithm problem in imaginary quadratic function fields. In this chapter we 

will give a high level description of the index calculus method, splitting it into three 

main parts: creating a factor base, finding relations and solving a linear algebra 

problem. We then describe two algorithms that use index calculus in order to solve 

discrete logarithm problems. These algorithms perform the first step the same way 

and algorithms for solving linear algebra problems have been studied at length, so 

we have focused on procedures for generating relations. As such, we conclude this 

chapter by presenting several different algorithms that have been proposed for gen-
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erating relations. Finally, we discuss the linear algebra phase of the index calculus 

algorithms we present. 

3.1 Index Calculus and the Discrete Logarithm Problem 

Index calculus algorithms have three main steps. The first is to compute a finite 

set B = {pi, P2, p3, . . ., Pk}, called the factor base, consisting of prime ideals whose 

norms have degree less than a given bound. In the next chapter we describe how to 

pick this bound. Until then, we call it t. We assume without verification that the 

value t is chosen such that the factor base contains enough elements to generate the 

entire class group. These prime ideals are found by enumerating the monic polyno-

mials with degree less than or equal to t, the degree bound for the factor base, and 

checking for irreducibility. If a polynomial p is irreducible then one attempts to find 

a solution to x2 + hx - f 0 (mod p). If a solution x exists then p = (p, x) is a 

prime ideal of 0K and we add it to the factor base. We assume that the procedure 

used to solve the quadratic equivalence above always returns the same solution x 

when given input p, a condition that can be enforced easily in practice. 

The key to the efficiency of index calculus algorithms is being able to rapidly identify 

"smooth" elements in the group. In our case we say that an OK-ideal y is smooth 

over the factor base, or simply smooth if y is equivalent to a power-product of the 

elements in the factor base. We say that an element is t-smooth if it is smooth 

with respect to the bound t. A relation is a vector = (e1, e2, e3, ..., ek) repre-

senting the factorization of the element y over the factor base. That is, fl pei ' Y. 
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The second step is generating A, a (k x 1) matrix whose columns are relations, 

with 1 > k, called the relation matrix. It should be noted that this second step is, 

in general, easily adaptable to be done in parallel on many machines. Exactly how 

this step is performed is discussed later in this section, and the method for picking 

a value for 1 i described in the next chapter. 

Finally, the third major step in an index calculus algorithm is performing a lin-

ear algebra computation. This is usually solving a linear system. The result of the 

linear algebra computation is used in a final computation to compute the solution to 

the problem at hand, in our case, a discrete logarithm. Again, what linear algebra 

problems are solved and how it is done is be discussed later in this chapter. 

We now discuss the general algorithm for subexponential discrete logarithm com-

putations outlined and analyzed by Enge and Gaudry [22], presented in the setting 

of quadratic function fields, and the method described by Vollmer [66] for quadratic 

number fields, which we generalize to work in quadratic function fields. While both 

algorithms make use of index calculus, and both are probabilistic algorithms of the 

Las Vegas variety, the way in which use index calculus is different. 

For the remainder of the chapter we consider ideals contained in the maximal order 

0 K of the imaginary quadratic function field K. 
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3.1.1 The Enge-Gaudry Algorithm 

The general algorithm presented by Enge and 'Gaudry [22] evolved from the algo-

rithm presented by Adleman, DeMarrais and Huang [7], the work done by Enge [21] 

and more directly the work done by Gaudry [26]. While the original algorithm by 

Adleman, DeMarrais and Huang first requires computation of the group structure 

(also done with an index calculus algorithm), the algorithm we discuss here, pub-

lished by Enge and Gaudry, requires only the order of the group, N, and assumes 

that this value is precomputed and provided as input. 

The Enge-Gaudry algorithm [22], given reduced ideals c, b '-i c in the order OK, 

class number N, and factor base bound t, works as follows: 

1. Construct the factor base B = fP1, P2, P3, ..., Pk}, consisting of prime ideals 

such that deg (N(p)) ≤ t. This is done in the manner described above. 

2. Generate the relation matrix A, consisting of 1 > k relations. The j1h relation 

is found by randomly generating non-zero aj. and /3 in ZN until acli 6,Oj is 

smooth over the factor base. This gives us a relation of the form 

f1pei,i . 

Exactly how we find relations is described later. Store the eij values in the 

relation matrix and aj and /3 in two additional vectors. 

3. Find a non-zero vector ii = (vi, v2, v3, ..., vj) such that AV- = O (mod N). 

That is, V E ker A. This can be done, for example, using a variation of 

Wiedemann's algorithm for solving sparse linear equations [69], or Lanczos' 
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algorithm [47]. The methods we use in practice are discussed in Chapter 5. 

If such a vector cannot be found, find a small number of additional relations 

and repeat this step. 

4. Compute > /3'v (mod N). If this is invertible modulo N then output the 

discrete logarithm 

=1 

Otherwise, return to step 2. 

fVj) (mod N). 

The output x is indeed the discrete logarithm. Since Avi = O, we have 

= 0 

for all i = 1, 2, ..., k. Then we have 

(9K (pjr-' =1 eiivi) 

(n eii) vj rli=1 
J•J (aai3)? 
j=1 

ajvj) 

Thus, a(' jVj) p) so the result holds. 

Enge and Gaudry [22] provide an analysis of their algorithm. They show, assuming 

that the relations produced are random and using the work done by Enge and Stein 
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[23] on the number of t-smooth reduced ideals of a fixed degree, that the expected 

runtime of this algorithm in imaginary quadratic function fields is 

0 (L (V2- ( 
20 V 20 ++) +0(1))) 

where L(c) = c(g1ogq)(1og(g1ogq))1 is the standard subexponential function with 

a = and 9 > 0 such that g ≥ 0 log q. Thus, this algorithm is subexponential when 

g is sufficiently large compared to log q. 

3.1.2 Voilmer's Method 

The above algorithm relies on knowledge of the order of the group in order to work. 

Vollmer [66] developed a subexponential algorithm that does not require this. In 

quadratic fields this is an important development as the order of the ideal class 

group is typically not known, and is not easy to compute. However, we assume that 

we do have the class number, and present a version of the algorithm that makes use 

of it. The other major interest for studying this algorithm is that it allows us to 

use a different method for generating relations, called sieving. As we discuss later, 

sieving does not work well in the Enge-Gaudry algorithm, but it fits quite well in 

Voilmer's algorithm. It should be noted that Vollmer presented this algorithm for 

discrete logarithm computations in quadratic number fields but it translates directly 

over to the quadratic function field setting, as presented here. 

Vollmer's algorithm [66], given reduced ideals a and ti ax in the order OK, the 

class number N, and the factor base bound t, operates as follows: 

1. Generate a factor base B = {p, P2, P3, ..., Pk}, again consisting of prime 
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ideals with deg (N(pk)) ≤ t, as described above. 

2. Randomly generate 1> k relations for the relation matrix A. Again, how we 

pick 1 is discussed in the next chapter. Compute relations of the form 

k "-i 0K 

Store the eij values in the relation matrix. 

3. Find vectors Vci = (Va,i, Va,2, •., Va,k) and Vb =  (Vb,1, Vb,2, ..., vb,k), such that 
fJk 1 p.Vai and Ii '- JJ p Vli . That is, find relations of the form 

k 

for both y = cc' and y = b. Note that we have cc' fl, pC r111 OK 

and b fl pVbi (-9 K, so (1, 0, — va-1) and (0, 1, — Vb) are relations over the 

extended factor base {cc', b, Pi, P2,. . . , Pk}. 

4. Set A = (_Va1 T  ) (;a,) and solve the linear system A'V' =(1, 0, 0, 
0, ..., over the integers modulo N. We can, for example, use a variant 

of Wiedemann's algorithm for sparse, singular matrices, described by Wiede-

mann [69] and Mulders [54], or Lanczos' algorithm [47]. The method used 

in practice is discussed in Chapter 5. If a solution does not exist, generate a 

small number of additional relations and return to step 3. 

5. Set x V. = v1 mod N. Then x is returned as the discrete logarithm. Note 
that this value is not necessarily minimal. 

Again, x is indeed the discrete logarithm. If A'vi (1, 0, 0, 0, ..., o)T (mod N) has 

a solution then we can compute All (z, 1, 0, ..., o)T (mod N), and thus (z, 1, 0, 
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0) is a linear combination of the columns of A. This implies that (cL_l)Z b 

or is principal, since the columns of A are relations over the extended factor base 

{ cc-', b, Pi, P2,. . . , Pk}. Finally, since (a_i)z b -' 0 K, we know that b ctz and 

z . a (mod N), giving us the correct result. 

Since we are computing relations randomly, there are circumstances in which this 

could fail. Consider the homomorphism 0 : Z' -+ C1 (K) that takes vectors '7 in Z' 

to the power-product over the factor base n , K. Since we are using relations that 

are equivalent to 0K, the set {'ii E Zk I r - OK} forms the kernel of 0, and 
we get Z1/ ker 0 C1 (K) from the First Isomorphism Theorem, provided that q is 

surjective, which will be the case if the factor base generates the entire class group. 

If the lattice formed by the columns of A is not equal to ker q then it is possible 

that we cannot find a solution vector even if one does exist. In order to avoid 

this situation we can test to ensure multiples of existing relations are not added, 

but testing for linear combinations is more difficult. One could also, for example, 

generate relations such that each member of the factor base is used in at least one 

relation. This can still be done randomly, as discussed later, but will slow down 

computations considerably. 

Vollmer [66] analyses his algorithm in the quadratic number field setting. His result 

gives a subexponential algorithm with an expected running time of 0 (Ld ()), 
where Ld(c) = c/1ogd1og1ogd and —d is a discriminant of an imaginary quadratic 

number field. In the quadratic function field setting, assuming we have the group 

order, one could use the same algorithms to create the factor base and solve the 
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linear algebra as used in the Enge-Gaudry algorithm. We assume that we have to 

generate the same number of relations whether Enge-Gaudry or Volimer's method 

is used, as discussed in the next chapter. Also, the distribution of smooth reduced 

ideals is the same if the same factor base is used for both algorithms. In order to 

mirror the analysis done by Enge and Gaudry [22] we require the amount of time 

expected to compute an ideal for testing. We expect an asymptotic result similar 

to that of Enge and Gaudry, but the work is left for future consideration. 

There are several different methods of performing the relation generation stage of 

the above two algorithms. In the next section we discuss some of the relation gen-

eration methods that have been proposed along with some improvements that have 

been made. Following that we briefly discuss solving the linear algebra problems we 

have seen. 

3.2 Relation Generation 

The two most computationally intensive steps in an index calculus algorithm are 

the relation generation phase and the linear algebra phase. As such, an improve-

ment to either one significantly improves the performance of the algorithm. Much 

work has gone into trying to improve the relation generation phase of these types 

of algorithms and this section covers some of this work. In addition, since these 

algorithms involve finding ideals that are smooth over the factor base, we discuss a 

method for efficiently checking this condition. 
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Finding relations can be done efficiently in a random manner. Enge and Stein 

[23] compute a lower bound on the number of smooth ideals in characteristic two 

function fields. Theorem 6 of [23] states that if t = I logq L(p)1 for a constant p> 0 

then the number of t-smooth reduced ideals of degree g is greater than or equal to 

L (--L)i q9. What p should be becomes evident when a complete analysis is done, as 
that by Enge and Gaudry [22]. There are fewer than q9 reduced ideals in 0K' Then 

the probability of a given reduced ideal being smooth is at least  = L 

This is what gives us a subexponential run time for the algorithms listed in the pre-

vious section. Since this is the most computationally intensive part of index calculus 

algorithms, this also explains why the majority of the work done to improve the re-

lation generation stage of index calculus algorithms has been in speeding up the 

creation of ideals and the testing of them for smoothness. 

3.2.1 Factoring and Smoothness Testing 

In order to find relations we must be able to efficiently determine whether various 

ideals are smooth with respect to the factor base. We first describe how we can 

factor a smooth ideal over the factor base. Consider an ideal a with N(a) = a in 

the order 0K where K is an imaginary quadratic function field with characteristic 

two. Suppose a = (a, b) is smooth over the factor base and for each pi in the factor 

base we have pi = (p,, bpi). Then, similar to Theorem 2.4 presented by Jacobson 

[33], there is a vector ë such that a = U pj and a - fJ' i=1 p where s 1 if 

b (mod N(p)) and si = —1 if b + h (mod N(p)). Thus, in order to 

factor an ideal over the factor base, we only need to factor its norm over the norms 

of the elements of the factor base, and determine the signs of the exponents using 



42 

the above congruence. 

We now discuss testing the smoothness of polynomials, since N(a) E 1Fq[X]. As 

argued above, with this information we can obtain a factorization of a. One way 

to determine smoothness is to trial divide the polynomial we would like to test. 

However this is not very efficient, especially as the size of the factor base grows. 

Gerhard and von zur Gathen [68, Chapter 14] provide a generalization of Fermat's 

little theorem that states that for d ≥ 1, x'1 - x E JFq[X] is the product of all monic 

irreducible polynomials in )Fq[X] with degree dividing d. Since our factor base con-

tains all monic irreducible ideals with norms up to a given degree t, this theorem 

gives rise to a smoothness test. 

A naive way to implement a smoothness test using the above theorem would be 

as follows. We are testing a E ]Fq[X] for smoothness. First set 'y = 1. Then for 

i = 1, 2, ..., t, compute iteratively 'y - x) (mod a), where t is the above 

mentioned bound on the norms of the factor base elements. If 'y = 0, a divides 

evenly into the product (' - x) (x2 - x)... (xqt - x), and thus a must be smooth 

over the factor base. 

However, one can be slightly more clever, as Jacobson, Menezes and Stein [36] 

were. Remember that the theorem tells us that Xqd - x is the product of all monic 

irreducibles of degree dividing d. Then starting with i = [] + 1 and going up to t 

is sufficient. All values between 2 and [] divide at least one of the values [j + 1, 

LU + 2, ..., t, and so are represented in the product. 
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The remaining complication is computing Xqi - x (mod a) for the various i val-

ues. This is done using the Frobenius map. As Gerhard and von zur Gathen [68, 

Chapter 14] do, let f E Fq[X] be monic and squarefree, and consider R = 1Fq [XI /(f). 

Then the Frobenius map is u : R - R such that o(a) = a'1. Then the following 

properties hold for a, /9 E R. 

cT(a + /9) ='U (a) + c(3), (a/9) = u(a) Or (8), U (a) =a   aEJFq 

These properties imply that g(a ) = g(a)q for all polynomials g E 1F[X] and all 

a E R. We use these properties to compute (mod a) as follows. First compute 

, 2'1, ..., deg (a)q all modulo a. This is done using repeated squaring to find 

Xq and then computing each power of that. Then in order to find (mod a), 

evaluate x"' (mod a) at Xq using the precoiuputed values. Note that XqI (mod a) is 

not necessarily as trivial as it looks, due to the reduction modulo a. However, using 

the properties of the Frobenius map makes this computation simple. 

Smoothness testing and factoring ideals is essential for the relation generation stage 

of index calculus algorithms. We now describe several algorithms for generating 

relations. One of the first methods used was computing random exponent vectors. 

This method can easily be used with both the Enge-Gaudry algorithm and with 

Volimer's method. We also discuss the random walk method, which works well 

when used in the Enge-Gaudry algorithm, and sieving, which is better suited for 

Vollmer's algorithm. 
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3.2.2 Random Exponents 

The random exponents method of finding relations was one of the first proposed. 

It was outlined by Hafner and McCurley [29] in a very basic way. We present it 

here to motivate the improved methods. We tailor this description to the quadratic 

function field setting. One simply generates a random vector 19 =(wi, w2, w3) 

wk), with wi in a given interval. Then one computes fl p ,Wi = 2U where the p 

are once again elements of the factor base. The resulting ideal 211 is reduced to 211' 

and the result is checked for smoothness over the factor base. If the reduced ideal 

is indeed smooth then it is factored over the factor base as discussed above, giving 

the vector w' such that 2X1' = JJ1 pjtlihi. Then there are two sets of exponents that 

produce equivalent ideals. Thus, fl pr' 0 K, and W' -  t' is a relation. 

Dflhlmann [17] suggests some improvements to the algorithm. These are outlined 

in English by Jacobson [33]. The main contribution by Düllmann is an adjustment 

in how the non-zero exponents are chosen, resulting in a relation matrix that has 

a small, dense part, and is mostly sparse. There are linear algebra algorithms that 

can take advantage of these properties. Additionally, sparse matrices can require 

less storage, depending on the implementation. The other contribution of Düllmann 

is suggesting precomputations that result in faster computation of ideals at the cost 

of increased storage. 

It is clear that this algorithm can be applied directly to computing relations for 

Vollmer's method. In order to use it with the Enge-Gaudry algorithm, instead of 
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computing 0 as above, we compute a3. We then reduce this to get 

When 9J3' is smooth we have ab IM p °' "-' (1). Thus, a4 fl 

as required. Now we can use random exponents to generate relations suitable for 

use in the Enge-Gaudry algorithm. 

3.2.3 Random Walks 

Teske [64] suggests a method for improving Pollard's Rho method that makes use 

of a random walk through a group in order to compute discrete logarithms. The 

phrase random walk refers to the random way in which we traverse through the 

group, from one element to the next. Teske compares Pollard's random walk to 

various alternates, and finds walks that perform better in practice. Teske's random 

walk can be applied to finding relations and is used in conjunction with the Enge-

Gaudry algorithm by Gaudry [26] and Jacobson, Menezes and Stein [36]. 

To find relations using this procedure, start by randomly choosing integers a0, a1, 

..., a, b0, b1, ..., bj such that 0 ≤ ai, bi ≤ N — i for i= 0,..., j, where N again is 

the class number. Then compute and store reduced ideals Ti bbi, along with a 

and b. We start the random walk with 9 çOI3O where a0 and 00 are selected 

randomly as before. To find the next ideal compute r' 9iT1, where 1 =  

for some hash function H : 0 —• {0, 1,.. . , j} where 0 represents the set of reduced 

OK-ideals. Then r', a°1 b,6 +1 where a+i a + a1 (mod N) and /3i /3 + b1 

(mod N). If an ideal 91, is smooth then we store c, 6i and the vector 'ii' such that 

b p. This method results in only one ideal multiplication for 

each ideal to be tested. 
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Gaudry [26] performs an asymptotic analysis of the number of operations needed 

in order to run the Enge-Gaudry algorithm using this as the relation generation 

method. Here he assumes that the smoothness bound is fixed at 1, so the factor 

base contains all the prime ideal with norms that have degree equal to one. The 

result is an estimated runtime of O(q2 + g! q). Gaudry also points out that if instead 

you require g > log q and allow t to vary you get the result presented by Enge and 

Gaudry [22] and above in the Enge-Gaudry section. 

3.2.4 Large Primes 

Thériault [65] analyzes the use of large primes, an idea originally proposed for use 

in factoring algorithms, as used by Lenstra and Manasse [48], Kurowski [45] and 

Boender and te Riele [10]. This idea was adapted by Jacobson [33] for generating 

relations to find the class number in the quadratic number field setting. This idea 

results in a decrease in the number of operations needed in the Enge-Gaudry algo-

rithm. Note that Thériault's analysis is for the case when the genus is small relative 

to q. For the first variation of random walks that we present, Thériault [65] requires 

q> (g - 1)!. For the second variation, he requires q> (g - 1)!/g to be satisfied to 

get the asymptotic results he presents. In these cases, there are a large number of 

degree one primes. As such, like Gaudry [26], the degree bound for the factor base 

is t = 1. The ideas Thériault studies lead to a reduction in the size of the factor 

base. This has the added effect of improving the linear algebra stage, as a smaller 

factor base means a smaller relation matrix. 
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Thériault [65] also analyzes the use of only a fraction of the degree one prime ideals 

in the factor base B. He introduces a parameter, r, such that 2/3 < r < 1. Then 

prime ideals are added to the factor base until IBI = qr• In the remainder of this 

section we use the term smooth to mean smooth over B. As in the above reference, 

we use P to denote all prime ideals that have norms with degree equal to one. A 

potentially smooth ideal is one that is smooth over P (but not necessarily over B). 

An ideal is almost smooth if all of its factors are in B with the exception of one, 

which is in P \ B. That is, an ideal lj is almost smooth if tj r p U r, where 
the ideals pi are again the prime ideals in B, and P E P \ B. Such a prime ideal 

p is called a large prime. A partial relation is a vector z3 = (e1, e2, e3, ..., ek) 

representing the factorization of the smooth part of the element y over the factor 

base. That is, p fl Y. When clarity is important, we will call our original 

relations full relations to further differentiate between the two. 

If two almost smooth ideals share the same large prime, or one has the prime p and 

the other has the inverse, then we have what Thériault [65] calls an intersection, and 

these two ideals can be combined to form a relation. Let t)1 p fJ pieii el b'3' 

and 02 p  fJIBI p.e2i aa2 602 Then 

IBI 
tjit)2 fJpe1i_C2,i ri a 12 b 12 

and we have a relation with vector ' =(ei,i—e2,i, e1,2—e2,2, e1,3—e2,3, .. ., el,IBI — e2,IBI) 

and a = a1 - a2 and 3 = - /32. The case when one ideal has the inverse prime of 

the other is similar. Note that we find the sign of the exponent on the large prime 

p with the same equivalence used to find the signs of the exponents for the vectors e. 
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This gives rise to two variations of the random walk strategy as used by Gaudry 

[26]. The first is almost exactly the same as the original. Each ideal is checked 

to see if it is potentially smooth using the method described earlier. If so, it is 

completely factored and if the factors are all in B a relation has been found. Oth-

erwise the ideal is discarded and the next one is tested. Thériault [65] analyzes this 

algorithm and after balancing the amount of time required for the linear algebra 

step with that for the relation generation, he gets a runtime of 0 (95 q 2- 9+1 ). 

This uses the assumption that q> (g - 1)!. Compare this to the runtime of Gaudry 

above, for a fixed, small g> 2, and one can see that there has been an improvement. 

The second variation that Thériault analyzes takes advantage of the almost smooth 

ideals. Again, an ideal is first tested for smoothness over P. If it passes this first 

test then it is completely factored. If the ideal turns out to be smooth over B, a 

relation is recorded. If the ideal is almost smooth then the prime is checked to see 

if there is an intersection with any previously found almost smooth ideals. If so, 

a relation is formed and recorded, with both almost smooth ideals being removed. 

Otherwise, the almost smooth ideal is saved and the next ideal is checked. Again, a 

thorough analysis is performed by Thériault [65], and the resulting runtime, using 

the assumption that q> (g— 1)!/g, is 0 (95 q2- 2.9+1 ) -This is an improvement over 

both Gaudry's runtime and the runtime of Thériault's first variation. The drawback 

of this method is the increased time required for storage and searching of the almost 

smooth ideals. 
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The idea of using large primes can be adapted to work in the large genus case, 

and the effect of them is discussed in the next chapter. 

The random walk method is obviously well suited for use with the Enge-Gaudry 

algorithm. In the next section we see another method for generating relations that 

is better suited for use with Voilmer's method. 

3.2.5 Sieving 

Another method of relation generation is motivated by the use of sieving in fac-

toring, such as by Pomerance [60], Silverman [63], Boender and te Riele [10] and 

Kurowski [45]. Sieving is used to generate relations in order to compute class groups 

in quadratic number fields by Jacobson [32, 33], and by Jacobson [34] to solve dis-

crete logarithms in quadratic number fields. Flassenberg and Paulus [24] provide an 

algorithm for sieving in quadratic function fields, but with characteristic not equal 

to 2. However, it is easy to modify this to work in the characteristic 2 case, as we 

see in the next chapter. Additionally, since sieving has not been studied as much 

in the quadratic function field setting, there are a variety of improvements that can 

be investigated. In the next chapter we look at some of these possible improvements. 

The general idea in odd characteristic function fields is as follows. Generate a 

random ideal .7 by creating a random exponent vector ë =(c1) ..., e1) over the fac-

tor base, where ej E {-1, 0, 1}, and computing .7 = flk 1pili  as before. Suppose 

this ideal is generated by (a, b + v), where v2 + vh = f and a I b2 + bh - f, and 

consider an element a = aS + (b + v)T e 7, where 5, T E 1Fq[X]. Then we can 
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compute 

N(a) =  aa 

= (aS + (b + v)T) (aS + (b + h - v)T) 

= a2S2 + a(2b + h)ST + (b2 + bh - vh - v2)T2. 

Since v2 +vh = f, this becomes a (aS2 + (2b + h)ST + b2+bh_fT2). Since a = N(J) 

and ideal norms are multiplicative, there exists an ideal 1C such that /CJ = (a) with 

N() = aS2 + (2b + h)ST + cT2 = F(S, T), where c = (b2 + bh - f)/a. If F(S, T) 

is smooth for some S and T with gcd(S, T) = 1 = uS + vT then we obtain a vector 

ii by factoring F(S, T) over the norms of the elements in the factor base, as dis-

cussed above. In order to determine the correct signs for these exponents, compute 

bF = 2aSv + (2b + h)(Su - Tv) + 2cTu as done by Flassenberg and Paulus [24]. 

Then set si such that bF (mod 2p) and let iii = (s1v1, s2v2,.. , SkVk). A 

relation is then formed by e+ tti. Sieving allows for checking of several possible (S, 

T) pairs in roughly the same time required to trial divide one. 

We consider one dimensional sieving, as Jacobson [33] does. Fix T = 1 and let 

F(S) = IS2 + I2S + 13 be the sieving polynomial with coefficients in ]Fq[X], for 

example, obtained as in the previous paragraph. Fix a prime ideal p from the factor 

base and consider N(p) = p. Let r be a root of F(S) modulo p. Then F(r) is 

divisible by p, as is F(z) for z = r + ip for i E ]Fq[X]. 

To illustrate the basic functionality of sieving, we describe the case where F(S) e 

Z[x] first. We begin by selecting a sieve interval (—M, M), where M is a positive in-
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teger, and initializing the sieve array D by setting D[i] = 0 for i = —M to M. Next, 

for each prime p, compute the roots of F(S) modulo p (there could be one or two 

roots), and for each root r, add log  to D[r + ip] for i such that —M ≤ r + ip M. 

After all primes have been processed, traverse through the sieve array and mark any 

c such that D[c] is larger than a given tolerance value Y as a candidate. We expect 

that D[c] log(F(c)) if F(c) is in fact smooth, so Y should be chosen accordingly. 

For each candidate c, compute F(c) and test for smoothness over the factor base. 

Any smooth candidates result in relations. 

By using a tolerance value to determine smooth candidates we can allow for prime 

powers that divide F(c). A lower tolerance value results in more candidates that 

have to be tested, but through tuning a value can be chosen that allows for a balance 

between the amount of time spent testing non-smooth values and the time saved by 

using candidates that have powers of primes as factors. 

As Flassenberg and Paulus [24] point out, sieving in the function field context pro-

vides a new challenge: representing and moving through a sieve array where all 

values involved are polynomials. In the integer case we can represent the sieve array 

by an array of integers, as the map from [—M, M] to this array is trivial. However, 

in the function field context it is not as clear how we can map polynomials in T'q[X] 

to an integer array efficiently. Additionally, moving from r + ip to r + (i + l)p in 

the integer case is easy as we just move p places in the array. Again, in the function 

field context we do not have this luxury because the distance between interesting 

array entries is not constant. We now cover Flassenberg and Paulus' presentation 
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of sieving in finite fields of odd characteristic. 

First we address the problem of indexing a sieve array. Every element in the fi-

nite field TF'q can be represented uniquely by a positive integer. As Flassenberg and 

Paulus [24] do, we define a map iJ : IF'q - Z≥o that takes every element ')' E lFq 

to a unique integer between 0 and q - 1. If the elements of ]Fq are represented as 

polynomials, this is done by evaluating the polynomial at the characteristic of the 

field. 

Then define a second map, ii 1Fq[X] - 7Z≥°, that takes elements of the polyno-

mial ring to a unique integer such that for g = g + 91x + . . + gg(g)x(9) E 1Fq[X], 

i(g) = E d,gg iio(g)qi. Using v, we can represent the sieve array as an integer array 

with bounds from 0 to a chosen upper sieving bound M, where each spot represents 

an evaluation of v(x). 

While Flassenberg and Paulus [24] describe two dimensional sieving, we continue to 

only consider one dimensional sieving. The results of Flassenberg and Paulus [24] 

suggest that using a small value for one sieving dimension and a large value for the 

other dimension works best. They also make the suggestion that while not proven 

optimal in the context of function fields, experiences from factoring suggest that 

setting one dimension to 1 works well in practice. Finally, sieving is often presented 

in one dimension, such as by Pomerance [60], Silverman [63], Alford and Pomerance 

[8], Jacobson [33] and many others. For ease of implementation we follow this lead 

and use one dimensional sieving. 
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Suppose we wish to find all smooth values of a given sieve polynomial F(S) with 

coefficients in 1Fq[X] over the set of polynomials with degree less than or equal to 

some positive integer M. Initialize the sieve array D by setting D[ii(i)] = deg(F(i)) 

for 0 ≤ v(i) <v(XM). This is done in a clever manner by Flassenberg and Paulus 

[24]. We do not describe this or anything else related to this idea here as our im-

plementation, described in the next chapter, makes use of a generalization of the 

tolerance value method described above. Then for each prime ideal p in the factor 

base, compute the roots of F(K) modulo N(p) = p. The roots are computed using 

the quadratic formula. Note that this requires the characteristic of the field to be 

not equal to two. 

For each p in the factor base we find all polynomials z with degree less than or 

equal to M such that N(p) divides F(z) as follows. For each root r, add degp, 

where p = N(p) to D [v(r)]. Now we must jump through the sieve array, marking 

D[v(r + ip)] as being divisible by p for i E ]Fq[X], 0 ≤ v(r + ip) ≤ v(XM). Do this 

by setting D [v(r + ip)] = D.[u(r -i ip)] + deg(p) for each i. After this process has 

been completed for all prime ideals in the factor base, if D [v(z)] is greater than a 

given tolerance value then F(z) is a smooth candidate, and should be tested using 

the previously described method of smoothness testing. 

In order to move from v(r + ijp) to v(r + jip), Flassenberg and Paulus [24] 

give the following procedure. Set z to be the current possible input for F(X) 

that is being tested for smoothness. When adding 1 to the constant term of i 
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does not equal q, set z = z + p and i+i = i + 1. Otherwise, suppose ij = 

(i)0 + (i)1X + + (ij) degijX and let 1 = max{m I ('ij)m  + 1 = q}. Then 

compute z = z + X1p, set ij 1 = i, (i+i)1+i = (i+1)1+1 + 1 and (ij+i)m = 0 for 

0 ≤ m < 1. Finally, compute v(z) and mark D [zi(z)] as being divisible by p. 

The above tells us how we can use sieving to compute relations of the form required 

for use in Volimer's algorithm. In fact, sieving can also be used in the Enge-Gaudry 

algorithm. In that case, multiply the ideal LT used above to find a sieving polyno-

mial by a1V and use the reduced result to generate a sieving polynomial. When a 

relation is found, we proceed as in a manner similar to that done in order to use the 

random exponents method with the Enge-Gaudry algorithm. 

Sieving is an efficient way to test F(z) for smoothness for several possible z val-

ues. One already discussed improvement that can be considered is the use of large 

primes, as done by Lenstra and Manasse [48], Boender and te Riele [10] and Jacob-

son [33]. In order to do this, use a smaller tolerance value and use the same large 

prime procedure as used in the random walk method. 

3.2.6 Self Initialized Sieving 

The sieving process relies greatly on the speed at which sieving polynomials can 

be created and the time taken to compute the roots of these polynomials mod-

ulo primes. For factoring, as done by Alford and Pomerance [8] and Contini [16], 

and computing class groups in quadratic number fields, as done by Jacobson [33], 

a process called self-initialization has been introduced which allows the amount of 
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computation done to be reduced significantly. As there are no known implemen-

tations of self-initialization being used in conjunction with sieving in the quadratic 

function field case we are interested in, we describe the idea behind self-initialization 

in this section and in the next chapter we describe the details for our context. 

Suppose we have an ideal a with norm a that is the product of j distinct prime 

ideals, qj with norms qj. Then a = r1ji=1 q where vi E {-1, 1} and a = fl qIViI. 

By varying the signs of v, different ideals with the same norm can be formed. In 

fact, there are 2i ideals generated by changing the v, values. Note that if a relation 

is formed by 'i + i then —i - zi is also a relation. However, these two relations es-

sentially "cancel" each other out since one is simply the negation of the other. Thus, 

if both relations are used we will have a relation and a multiple of that relation in 

the relation matrix, something we are trying to avoid for the reasons discussed in 

Section 3.1.2. In order to avoid these situations we fix vj and only generate 2j1 

unique ideals. The trick is computing these ideals without actually computing the 

various products of prime ideals. In fact, both this and the computation of most of 

the roots can be done in an efficient manner. 

Note that self-initialized sieving does not work when looking for relations of the 

form fl p i- .-' acth, as in the Enge-Gaudry algorithm. In particular, multiplying 

the sieving polynomial by a new element requires one to recompute the roots of the 

sieving polynomial, negating that benefit. 

Jacobson [33] had significant improvement when using self-initialization to create 
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relations in his algorithm for class group computations in quadratic number fields. 

We can adapt the above algorithm to work in characteristic two quadratic function 

fields, and this is covered in the next chapter. 

As mentioned before, all of these relation generation methods are easily parallelized. 

For the random exponents method, each slave process can compute relations individ-

ually, returning relations back to the master process. In the random walks method, 

each slave process can be set upon its own random walk, and again relations found 

can be sent to the master process. In the sieve method, the master process can 

distribute sieving polynomials to the slave processes and relations are sent back to 

the master. 

We have now covered the various relation generation strategies, some improvements 

that have been made to them in various mathematical settings and how we can ef-

ficiently test for smoothness over the factor base. The next section briefly describes 

the linear algebra algorithms that can be used to solve the problems we have seen. 

3.3 Linear Algebra 

Every index calculus algorithm has two major computationally intense phases. The 

first is the relation generation stage, discussed above. The second is the linear alge-

bra stage. Both index calculus algorithms require a solution to a linear system to 

be found. Let A be the relation matrix. Then the Enge-Gaudry algorithm requires 

a solution to Ax = O (mod N), where is non-zero, that is, a random, non-zero 
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element in the kernel of A. Voilmer's algorithm requires a solution to the system 

A'x =(1, 0, •••, o)T, where A' is as in the above description of Voilmer's algorithm. 

If we continue with the assumption that we have the group order N then we can 

complete Vollmer's algorithm by finding a solution to the above system modulo 

N. Both of these problems can then be solved using variations of Wiedemann's 

algorithm [69] or Lanczos' algorithm [47], because the nature of the index calculus 

algorithms we use results in sparse relation matrices. Both algorithms can take 

advantage of this as they rely on computing a number of matrix-vector products, 

which are especially efficient when the matrix is sparse. 

It should be noted that there are versions of both Wiedemann's algorithm and 

Lanczos' algorithm that can be parallelized. For example, see the'work done by 

Kaltofen [40] on Coppersmith's block version of Wiedemann's algorithm and the 

work done by Montgomery [53] on a block version of Lanczos' algorithm. 

Linear algebra was not the focus of this thesis. While the linear algebra algorithm 

used does have an effect on the overall run time, the relation generation strategies 

will perform the same no matter which linear algebra strategy is chosen. A change 

in the linear algebra strategy would most likely require a change in the parameters 

used in the relation generation strategies, such as the size of the factor base, and 

this is addressed in Chapter 5. We used an existing implementation in order to solve 

our linear algebra problems. Since no known, publicly available implementation of 

the block algorithms exists at this time, we used the C++ library called LinBox 

[5], designed for efficient, exact linear algebra over a variety of types of matrices, 
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including sparse matrices. We discuss exactly what functions we used, and why we 

made these decisions, in Chapter 5. 

In this chapter we have covered index calculus algorithms, and a variety of al-

gorithms used in the process of running the index calculus algorithms. Both the 

Enge-Gaudry [22] and Vollmer [66] algorithms work in the quadratic function field 

case without any further discussion. However, we have yet to explain how Thériault's 

improvements [65] to random walks can be adapted to the large genus case. We also 

have to discuss how Flassenberg and Paulus's sieving method [24] can work in a 

characteristic two function field and how self-initialized sieving can be adapted to 

work in the function field case. These issues, along with further improvements and 

a method for estimating results are all covered in the next chapter. 



Chapter 4 

Algorithmic Improvements And Analysis 

In the previous chapter we looked at index calculus algorithms for solving the dis-

crete logarithm problem. These algorithms have two computationally intense stages. 

The first is the relation generation stage, and the second is the linear algebra stage. 

The focus of this research was the improvement of the relation generation stage of 

the index calculus algorithms used to perform discrete logarithm computations in 

quadratic function fields. In this chapter we look at how improvements suggested in 

other settings can be applied to quadratic function fields. In particular, we discuss 

using large primes in the high genus case and computing estimates for the number 

of ideals we expect to check before finding enough relations using the random walk 

method, allowing an optimal configuration of parameters to be derived empirically. 

We also generalize sieving and self-initialized sieving to the characteristic two case, 

discuss different methods of implementing the sieve array, and look at the idea of 

sieving with only part of the factor base. We provide some guidance to picking the 

various parameters needed in these algorithms as well. 

We studied two different methods of finding relations in the previous chapter. The 

first is the random walk method. We saw how using large primes can improve the 

random walk algorithm in small genus hyperelliptic curves, as analyzed by Thériault 

[65]. This can be applied to the large genus case as well and we explain how this 

59 
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can be done in two different ways in this chapter. We also discuss the work done 

by Jacobson, Menezes and Stein [35] to develop a method of computing estimates 

for the number of steps needed in order to find a sufficient number of relations in 

order to form the linear system required to solve the discrete logarithm problem. In 

this chapter we extend these estimates to incorporate the large prime idea, allowing 

us to compare various combinations of parameters in the random walk method of 

generating relations. In particular, this provides us with an optimal value t for the 

factor base bound and allows us to select a large prime strategy that should offer 

the best performance in practice. 

We also looked at sieving in the previous chapter. In this chapter we show how 

self-initialized sieving can be applied in the even characteristic quadratic function 

field setting and how we can implement the sieve array to improve performance. 

We also discuss how the actual amount of time spent sieving can be reduced at the 

possible cost of testing more smooth candidates. We conclude with some discussion 

about the selection of sieving parameters. 

4.1 Random Walk Improvements 

Recall the description of random walks from Chapter 3. We saw that each new 

reduced ideal in the random walk is computed with a single ideal multiplication. 

This results in an efficient computation, but there is room for improvement. As 

we saw in the previous chapter, using large primes in the small genus hyperelliptic 

curve case results in an asymptotic improvement, as does reducing the size of the 
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factor base through the use of the parameter r. We generalize these ideas to the 

high genus case in the following. 

4.1.1 The Parameter r 

Thériault [65] focused on the small genus case, working under the assumption that 

q > (g - 1)!/g. In these cases there are a large number of prime ideals p such that 

deg(N(p)) = 1. In fact, from the work presented by Gerhard and von zur Gathen 

[68], there are 0(q) such prime ideals. As the genus grows, this too grows quickly. 
Taking all of these prime ideals for the factor base can result in a rather large factor 

base. In turn, this means that more relations must be found, resulting in a larger 

linear algebra problem. Ideally it would be helpful to make the factor base smaller. 

Thus, the introduction of a parameter r into the analysis. Thériault lets r be such 

that 2/3 <r < 1 and considers a factor base with qr prime ideals with norms having 

degree equal to 1. 

We now generalize this to the large genus case. When the genus is relatively large 

compared to q we require more than just the prime ideals having norm equal to 1 

in our factor base in order to ensure the factor base is large enough to generate the 

entire class group. We use the bound t to limit the degrees of the norms of the prime 

ideals in our factor base. From the work presented by Gerhard and von zur Gathen 

[68, Chapter 14] we know that there are 0 (qlc) monic irreducible polynomials of 

degree tin lFq [x]. This function increases significantly as t increases. In turn, the 

number of polynomials that generate prime ideals for the factor base also increases. 

Thus, a factor base with bound t contains an overwhelming number of prime ideals 
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with norms having degree t when compared to the number of prime ideals with 

norms having degree less than t. Here is where we apply the idea of reducing the 

size of the factor base. 

Similar to that done by Thériault [65], we introduce a parameter r such that 

0 < r < 1. Then we create a factor base that contains all prime ideals with norms 

having degree up to and including t - 1. In addition, if there are At prime ideals 

with norms having degree equal to t, we add rAt of them to the factor base. Then 

the size of the factor base is A + rAe. Note that the previous definitions of 

smooth and potentially smooth carry over. We will let Pt denote the set of prime 

ideals with norms having degree up to and including t. 

The random walk operates in a similar manner as before. An ideal is tested for 

potential smoothness over ?t using the test described in the previous chapter. If the 

ideal passes this first test, the norm is then explicitly factored to see if it is actually 

smooth over the norms of the prime ideals in the factor base. Recall that this is 

essentially how Thériault's algorithm works. The change in what is included in the 

factor base obviously results in a change in how the large prime variations work. In 

the next section we investigate this. 

4.1.2 Large Primes 

When Thériault [65] studied large primes, he used the prime ideals having norms 

with degree equal to 1 that are not in the factor base as large primes. We consider 

two different ideas for incorporating large primes into the large genus case. 
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First we describe the obvious generalization of Thériault's work. Suppose we let 

r be such that 0 <r < 1 and that we form the factor base as in the previous sec-

tion. Then there are some prime ideals having norms with degree equal to t that are 

not in the factor base. Similar to Thériault [65], these are our large primes. These 

large prime ideals work in the exact same manner as before. An ideal is tested for 

smoothness over Pt using the test from the previous chapter. If the ideal is indeed 

smooth over P, we factor it using the method discussed in Chapter 3. If all the 

factors are in the factor base, we know the ideal is smooth. If there is only one 

factor not in the factor base, the ideal is almost smooth and so we check to see 

if it intersects with any previous almost smooth ideals. If there is an intersection 

we have a relation as discussed previously, and the relation is recorded. Otherwise 

the almost smooth ideal is stored. If the tested ideal is neither smooth nor almost 

smooth, it is discarded. 

The second idea is to fix the degree bound for the norms of the ideals in the factor 

base to be t and perform our smoothness test over the set the prime ideals 

with norms having degree less than or equal to t + 1. We allow the parameter r 

to be in the range (0, 1] and thus the large prime ideals include all of the prime 

ideals with norms having degree equal to t +1 and possibly prime ideals with norms 

having degree t, if r is not equal to 1. We proceed in a similar manner. Test an ideal 

for smoothness over If this ideal is smooth over Pt+i, we completely factor 

the ideal using the method from the previous chapter. As above, if all the factors 

are in the factor base we have a smooth ideal and record the resulting relation. If 



64 

there is only one factor that is not in the factor base, we check for intersections, 

recording either the resulting relation if one exists or the almost smooth ideal for 

future consideration. If there is more than one factor that• is not in the factor base, 

we discard the ideal. 

We expect an improvement in computational speed when using these methods as we 

expect fewer random walk steps to be necessary in order to find a sufficient number 

of relations. However, note that the intersection search takes time, and may have to 

be considered. We reduce the number of times we have to search by holding off until 

the end to perform it, and this appears to reduce the time needed to perform this 

search, making it almost negligible. Specifically, the search is done in two stages. 

First, the list of almost smooth ideals is sorted by the large prime factors. Then the 

almost smooth ideals with the same large prime factors are combined, resulting in 

a smooth ideal, and thus a relation. Performing the sort a single time at the end 

of the relation generation phase as opposed to repeating it for every new almost 

smooth ideal seems to result in a more efficient implementation. In the next section 

we look at how we can compare the number of steps needed to find enough relations 

to compute the solution to the discrete logarithm problem. 

4.1.3 Estimated Results 

Jacobson, Menezes and Stein [35] calculate accurate estimates for the number of 

random walk steps (that is, the number of ideals checked for smoothness) needed 

to find the relations necessary to generate the appropriate linear system for solving 

the discrete logarithm problem. These are based on counting the number of smooth 
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ideals expected and the total number of reduced ideals representing the classes in 

the ideal class group. We first cover the calculations done by Jacobson, Menezes 

and Stein [35] and then present the modifications 'needed to compute similar results 

for the large prime variations. Finally, we present an example of these formulas in 

use. 

Original Enge-Gaudry Algorithm 

We use the notation developed by Jacobson, Menezes and Stein [35]. Let A1 be the 

number of irreducible polynomials of degree 1 that split in the ring ]Fq [X], where 

1 ≤ 1 ≤ t. From the work presented by Gerhard and von zur Gathen [68, Chapter 

14] we know that there are 

I(l,q) = (') qd 

monic irreducible polynomials of degree l in ]Fq[X], where (x) is the Möbius func-

tion, that is, x) evaluates to 1 if n = 1, (-1) 11 if n is the product of k distinct 

primes and 0 if m is not square free. We expect about half of the irreducible poly-

nomials to split, stated by Jacobson, Menezes and Stein [35], which gives us 

(l  A1 Ep )q d 

dll 

Recall that from each irreducible polynomial that splits we obtain two prime ideals, 

one of which becomes an element in the factor base, the other is the inverse of this 

ideal. 

As done by Jacobson, Menezes and Stein [35], and generalized by Maurer, Menezes 
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and Teske [49], let M(g, t) denote the number of t-smooth reduced ideals with norms 

having degree at most g. We have 

( g t (,+X,) A,)) ,M(g,t)=(IXu] fl  
i=1  \1=1  xi 

where we use [x](f(x)) to denote the coefficient of in f(x). When A1 is known 

M(g, t) can be computed by finding the first g + 1 terms of the Taylor expansion of 

(,+X,)A, about x = 0 and summing the coefficients of x, x2, ..., x9. 
We assume, as Jacobson, Menezes and Stein [35] do, that reduced t-smooth ide-

als are distributed evenly in the class group. With this assumption we can compute 

the expected number of random walk iterations needed to find a reduced t-smooth 

ideal. Let E(t, ) = IN/M(g, t)1, where N is the class number and g is the genus, 

represent this value. 

Since each splitting polynomial gives rise to a prime ideal in the factor base, let 

F(t) = A1 be the size of the factor base. Jacobson, Menezes and Stein [35] 

find F(t) + 5 relations before performing the linear algebra step, a decision made 

based on empirical data. We use the same value here. Then we expect to create 

and test T(t, g) = (F(t) + 5)E(t, g) ideals to find a sufficient number of relations. 

Adding the parameter r 

If we introduce the parameter r only and do not use large primes, as in the first 

variant analyzed by Thériault [65], the only change to the above work is the number 

of prime ideals with norms having degree t in the factor base. Thus, we simply repeat 

the above calculations, using F(t) = A1+rA. We also recompute M(g, t) using 
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rAt in place of At to find the first 9+1 terms of Taylor expansion of jj (+) A, 

about x = 0. We then compute E(t, g) = N/M(g, t) and T(t, g) = (F(t) + 5)E(t, g) 

as in the previous case. 

Adding large primes and setting r = 1 

We now explain how we can estimate the number of random walk steps needed when 

using the large prime versions of the algorithm. We start with the simple situation: 

setting r = 1 and using the prime ideals having norms equal to degree t + 1 as large 

primes. Then during the search for relations we encounter both smooth ideals and 

almost smooth ideals. We have to consider how many of each are encountered in 

the search. 

The number of t-smooth ideals remains M(g, t) as defined above. We also need 

to count the number of almost smooth ideals. An almost smooth ideal is one that 

is smooth over the prime ideals having norms with degree less than or equal to 

t, with the exception of a single factor which has a norm with degree equal to 

t + 1. Then the number of almost smooth ideals is M(g - (t + 1), t), the number 

of t-smooth ideals having norms with degree less than or equal to (g - (t + 1)), 

multiplied by the number of prime ideals having norms with degree equal to t + 1 

available to "complete" the t-smooth ideals having norms with degree less than or 

equal to (g - (t + 1)) to almost smooth ideals. An ideal having norm with de-

gree equal to (g - (t + 1)) multiplied by an ideal having norm with degree equal 

to t +1 has a norm with degree equal to g, so the ideals we are counting are reduced. 
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Recall that A1 represents the number of irreducible polynomials of degree 1 and each 

irreducible polynomial actually gives rise to two prime ideals, an ideal and its inverse. 

Then there are 2A +i large prime ideals and a total of A(g, t) = 2A 1M(g— (t+1), t) 

almost smooth ideals. We assume that these are also evenly distributed. Then the 

number of steps required to find an almost smooth ideal is ELp(t, g) = fN/A(g, t)] 

and the number of steps required to find a smooth ideal is E(t, g) = fN/M(g, t)1 as 

described before. 

If in the course of our search we find x almost smooth ideals, then we expect to 

take XELp(t,g) steps, and, in the process, to find X ELP (t) smooth ideals. 

We would like to compute the number of relations we expect to obtain from x al-

most smooth ideals. Thériault [65, Section 5.6] provides us with the information to 

be able to compute this. Let E,3 be the expected number of intersections when s 

samples are drawn with replacement from a set of m elements. Then from Thériault 

[65, Theorem 1] we know that when 3 ≤ s <n/2, E ≤ E. Here we have 

n = 2A +1, the number of possible large prime ideals, and s = x is the number of 

almost smooth ideals found. The number of intersections, E,5 = E2At+l ,V, is thus 

the number of relations we expect to find from the almost smooth ideals. 

Again, we would like the search to yield a total of F(t) + 5 relations. Still using x 

to represent the number of almost smooth ideals found, we need x such that 

M(g,t) 2  x2  
XA(g,t) + 32A =F(t)+5. 
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Solving for x and taking the positive root gives 

- I \/At+l (9M(g,t)2(2At+l) + 48F(t)A(g,t)2 + 120A(g,t)2) - 3M(g,t)A +i 
X 4A(g,t) 

This gives us an expected value of T(t, g) = xELp(t, g) random walk steps needed 

to generate the relations for the linear system. 

Using large primes with r 1 and degree t polynomials 

We now consider the computations in the case where we allow r to vary and use only 

the prime ideals having norms with degrees equal to t not in the factor base as the 

large primes. Let L(t, r) = A - rAt denote the number of irreducible polynomials 

that generate large prime ideals resulting from fixing r. Then as before we have 

2L(t, r) large prime ideals and A(g, t) = 2L(t, r)M(g - t, t) almost smooth ideals, 

where rAt is used in place of At in computing M(g - t, t), M(g, t) and F(t), and 

ELp(t, g) = fN/A(g, t)1 as before. We then find x using the same method as above 

and denote the number of ideals we expect to be tested by T(t, g) = XELP(t, g). 

Using large primes with r 0 1 and degree t + 1 polynomials 

Finally, we consider the case where we allow r to vary and use both the remaining 

prime ideals having norms with degree equal to t along with the prime ideals having 

norms with degree equal to t + 1 as large primes. Then L(t, r) = A - rAt as above 

and A(g,t) = 2L(t,r)M(g - t, t) + 2A +1M(g - (t + 1),t) is the number of large 

prime ideals, where again M(g - t, t), M(g - (t + 1), t) and F(t) are all computed 

using rAt in place of At. Once again, compute .ELp(t, 9) = fN/A(g, t)1, x and 

T(t, g) = XELp(t, g) using the previous method. 
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Example 

In this section we will demonstrate the use of the above formulas, comparing the 

expected results when the different implementations of large primes are used. We 

consider the function field associated with the hyperelliptic curve called C155 by 

Jacobson, Menenzes and Stein [35] which is defined by y2 + h(u)y = f(u) over F32 

where 

f (u) = w4u63 + w6u62 + w15u60 + w26u56 + w25u48 + w7u32 + w13, 

h(u) = w2u3' + w7u3° + w30u28 + w22u24 + w3u'6 + w22, 

and IF32 = ]F2[w]/(w5 + w + 1). It is known that for this function field the class 

number N = 2 - 22835963083295358096932727763065266972881541089. Also note 

that the genus is 31. The number of irreducible polynomials of degree 1 that split 

in this field, Al, is known (or in the case of 1 = 5, approximated using the formula 

stated above) and provided in Table 4.1. Throughout the course of this example we 

use t = 4. 

1 A1 
1 
2 
3 
4 
5 

16 
240 

5456 
130816 

3355440 

Table 4.1: Approximate number of degree 1 splitting irreducible polynomials 

We begin by considering the original Enge-Gaudry algorithm as presented by Ja-
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cobson, Menezes and Stein [35]. Since t = 4, we have 

M( t) = M(31,4) = 31  ([Xi] 
ft(1+x1)AI 

 1=111 I-Xi 

The first 32 terms of the Taylor expansion of 

)16  (1 2 240 +x 5456 (,+Xl)At 71+x +x\ /l\ /i+x'30816 

ix 1—x3) 1_x4) 

about x = 0 are 

1+32x+992x2+31744x3+1015808x4++ 

31012080349038816493665822973554757503968x31. 

Summing the coefficients of x to x31 gives us 

M(g,t) = M(31,4) = 33134635892872381226622150002558641710496. 

Then we have 

E(t,g) = E(4,31) 

= [N/M(31, 4)] 
- [(2 - 22835963083295358096932727763065266972881541089)] 

- 33134635892872381226622150002558641710496 

= 1378374. 

In this case we get F(t) = F(4) = 16+240+5456+ 130816 = 136528. Thus, we have 

T(t, g) = T(4, 31) = (F(4) + 5)E(4, 31) = (136528 + 5)1378374 188,193,537,342, 

and we expect to test that many ideals before finding enough relations using the 

Enge-Gaudry algorithm. 
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We now consider adjusting the parameter r. We consider r = 0.75. Then we 

obtain a factor base of size F(t) = A1 + A2 + A3 + rA4 = 16 + 240 + 5456 + 

98112 = 103824. Recomputing M(g, t) with rA4 in place of A4 means we must 

compute the first 32 terms of the Taylor expansion of n (1 + A x + 16 / 2 240 5456 (1\ (i  (i+ 98112 
1=1 1_xt) = (1_x) 1_ +x x2) 1— +x 3 x3) 1_x4) 

about x = 0. In fact, the result is 

1 + 32x + 992x2 + 31744x3 + 950400x4 + 

+ 9939916937116979685588242847524902243296x31. 

Summing the coefficients of x to x3' gives us 

M(g,t) = M(31,4) = 10654198416835064390690084114562547756448 

and we find that E(4,31) = fN/M(31, 4)1 = 4286754. Then we expect to test 

T(t, g) = T(4, 31) = (F(4) + 5)E(4, 31) = 445,089,381,066 ideals before finding 

F(t) + 5 relations. 

For our third case we will use r = 1 and add large primes. Then we have 

M(g,t) = M(31,4) = 33134635892872381226622150002558641710496 

t-smooth ideals. We must now compute the number of almost smooth ideals. The 

number of t-smooth ideals having norms with degree less than or equal to (g—(t+1)) 

is 

M(g - (t + 1), t) = M(26, 4) = 32359877361356840994077159884192512, 
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so the number of almost smooth ideals is A(g, t) = A(31,4) = 2A5M(26, 4) = 

2.3355440. M(26,4). Then ELp(t,g) = ELp(4,31) = FN/A(31,4)1 = 210311. As 

before, we find that E(t, g) = E(4,31) = 1378374 and F(t) = F(4) = 136528. We 

read A5 = 3355440 from Table 4.1. We now have everything we need to solve 

M (g,t) 2 x2  
X A(gt) + 3 2A+1 = F(t) +5. 

for x, yielding x = 633522. So the number of ideals we expect to test in this case is 

T(t, g) = T(4, 31) = XELP(4, 31) = (633522). (210311) = 133,236,645,342. 

Our fourth case again makes use of the parameter r, which we will set to 0.75, 

and we will consider only the remaining prime ideals having norms with degree t 

as large primes. Then again our factor base has size F(t) = F(4) = A1 + A2 + 

A3 + rA4 = 103824. Since rA4 = 98112, L(4, 0.75) = A4 - (0.75)A4 = 32704. 

We also have M(31,4) = 10654198416835064390690084114562547756448 as in the 

previous case when r = 0.75. We find that we have M(g - t, t) = M(27, 4) = 

202621215041172181694477780628956032 t-smooth ideals having norms with degree 

less than or equal to g—t, and A(g, t) = A(31, 4) = 2-32704-M(27,4) almost smooth 

ideals exist. This gives us ELp(4, 31) = N/A(g, t)1 = 3446145 expected steps to 

find an almost smooth ideal. Now we solve 

M(31,4) 2  x2  

A(31, 4) 3 2L(4, 0.75) 
= F(4) +5 

for x, getting x 68925. Finally, T(4,31) = xELp(4,31) (68925) . (3446145) = 

237,525,544,125 steps are expected to be taken in order to complete our system. 
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Finally, this fifth case will use r = 0.75 and use all prime ideals having norms with 

degred less than or equal to t + 1 that are not in our factor base as large primes. 

Then once again we have F(4) = 103824 and L(t, r) = L(4, 0.75) = 32704 as before. 

We require the value of A(g,t) = 2L(t,r)M(g - t, t) + 2AtiM(g - (t + 1),t), the 

number of large prime ideals. We again compute 

M(31,4) = 10654198416835064390690084114562547756448. 

The value M(27,4) = 202621215041172181694477780628956032 is computed above 

in the previous example and M(26, 4) must be recomputed for r = 0.75, giving 

M(26,4) = 13033029177835826311694870811268992. 

This gives us A(31, 4) = 2 32704W M(27, 4) + 2.3355440 -  M(26, 4) and proceed to 

see that ELp(4, 31) = 453472. Now we must solve 

M(31,4) 2 
A(31, 4) + 32(L(4, 0.75) + A5) = F(t) + 5. 

We get x = 621862 and so T(4, 31) = (621862) . (453472) = 281,997,004,864 is the 

expected number of ideals that are tested in order to find 103829 relations for our 

linear system. 

In order to summarize the results of our example, we present the factor base sizes 

and the number of steps we expect to take for each of the above cases in Table 

4.2. From this table we can see that Case 3, the case with large primes consisting 

of the prime ideals having norm with degree equal to t + 1 and r = 1 requires the 

fewest expected number of steps in order to find the required F(t) + 5 relations. 
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Note,, however, that in this case we expect the linear algebra stage to take longer 

because the larger factor base results in a larger linear system. Thus it is important 

to consider both stages of the algorithm, and what methods are being used for each 

stage, when determining optimal settings. 

Case F(t) T(t, g) 
1 136528 188193537342 
2 103824 445089381066 
3 136528 133236645342 
4 103824 237525544125 
5 103824 281997004864 

Table 4.2: Summary of the results in the example 

Using the formulas presented in this section we can estimate the number of steps 

required to find a sufficient number of relations to complete the linear system. Given 

empirical data about the amount of time required to generate and test an ideal, these 

computations can give estimated runtimes for various combinations of t, r and what 

large prime variant is being used. Furthermore, if estimated running times for the 

linear algebra with different sized matrices are available, we can compute estimated 

times for solving the discrete logarithm problem. This is explored further in the 

next chapter. 

In this section we have seen how the large prime improvement analyzed by Thériault 

[65] for the small genus case can be applied to the large genus case. We have also 

seen how we can calculate the number of ideals we expect to test for smoothness 
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before we find a given number of relations. The next section looks deeper into 

the implementation of sieving, and various improvements that can be made to the 

sieving algorithm as it operates in the quadratic function field setting. 

4.2 Improvements to Sieving 

Sieving in characteristic two fields does introduce some challenges. Considering 

computations modulo 2 means we cannot compute the roots as we normally would. 

Recall that we have v2 + hv = f, where f is monic with deg (f) = 2g + 1, and 

since we are considering the characteristic two case, h 0 0 has degree at most 

g. As in the previous chapter, if we have an ideal J = (a, b + v), then for any 

a = aS + (b +v)T E J with S,T E 1Fq[X] and a I  + bh + f we have 

N(a) = (aS + (b + v)T) (aS + (b + h + v)T) 

=a (a82 + hST+ b2 + bh + f T2) 

Since a N(J) there exists an ideal K with N(IC) = F(S, T) = aS2 + hST + cT2, 

where c b2+bh+f such that /CY = (a). If F(S, T) is smooth over the factor base 

for some 5, T E TFq[X] then we can factor /C over the factor base as described be-

fore and, if J was selected to be smooth, we obtain a relation. We therefore sieve 

F(S) = F(S, 1) with the norms of the prime ideals in the factor base in order to 

find values of S for which F(S) is smooth. 

Recall that the first step in sieving is to find the roots of F(S) modulo the norms 

of the prime ideals in the factor base. Since we are working over a characteris-

tic two field we cannot use the familiar quadratic formula to find the roots of this 
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polynomial. Therefore we proceed as follows. If p I a then 

F(S) hS + c (mod p) 

and r ch' (mod p) is clearly the single root of F(S) modulo p. If p I f and p j' a 

then 

F(S) aS2 + hS + b2(a') + bh(a') (mod p) 

and the roots of F(S) modulo p are given by ,r ba' (mod p) and r (b + h)a' 

(mod p), by inspection. Finally, if p { a and p 4 f then we can solve 

r2 + rha' + ca' 0 (mod p) 

using a generalized version of the RESSOL algorithm by Shanks, presented by Buch-

mann and Paulus [11], just as Flassenberg and Paulus [24] do. Then if r (mod p) 

is a root, so is r + ha-1 (mod p). Thus we can compute the roots of the sieving 

polynomial and proceed with the rest of the algorithm. 

Sieving has not seen as much attention in the quadratic function field setting as 

the random walk strategy has. As such, it is probable that there are a variety of 

improvements to be made. In this section we describe some possible changes to 

sieving and why they could result in an improvement to the method of Flassenberg 

and Paulus [24]. We also look at what is involved in using self-initialized sieving in 

characteristic two fields. Finally, we provide some direction for choosing good sieve 

parameters. 
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4.2.1 Sieve Array Implementation Methods 

One area where sieving could be improved is in the implementation of the sieve 

array. As originally presented by Flassenberg and Paulus [24], moving through the 

sieving array from root index to root index requires the computation of 

v(r + kp) = 

deg (r+kp) 

) zi0((rkp))qi 

i=O 

for k E TFq[X] by first computing r + kp = Ei=O deg (r+kP)( + kp)x, then using the map 

v0, and finally the map ii. We improve on this by working directly with the images 

of the function zio. 

Note that this description holds for the even characteristic case. First, suppose 

r = and compute and store v0(r) for all i. Then for each prime ideal p 

with norm p = compute and store UO(pj) for all the coefficients of p. Re-

call that each evaluation of uo(y) is an evaluation of y at 2. Instead of computing kp 

deg we compute EOC7 vo((kp))x using the same method for finding r + kp described 

in Chapter 3, where in this case the precomputed coefficients Vo(pj) are be combined 

using exclusive-or and r = 0. Clearly vo(a + b) = zio(a) vo(b), where ED denotes 

exclusive-or. Then we have i=O v0((r + kp))x = iio((kp) j)) x 

and we can compute u(r + kp) by evaluating at q. By precomputing Vo(pj) we avoid 

having to compute the coefficients later for each location of the sieve array we have 

to mark as being divisible by p. That is, we remove the function vo from inside the 

sieving loop. 

The goal of this alternate sieve array implementation is to cut down on the amount 
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of time spent actually sieving by reducing the amount of computation done for each 

potentially smooth candidate. The next suggestion tries to reduce the time spent 

sieving by reducing the number of prime ideals we sieve with. 

4.2.2 Low-degree Sieving 

As discussed earlier, the factor base consists of a much larger number of prime ideals 

having norms with large degree than ideals with small degree norms. In addition, 

considering the norms of these prime ideals; we expect fewer of the higher degree 

irreducible polynomials to divide the test polynomials generated as described at the 

beginning of Section 4.2, because it is more likely that small degree irreducible poly-

nomials will divide a polynomial of a given degree than a larger degree irreducible 

polynomial would. However, a significant amount of time is spent checking for di-

visibility by these high-degree irreducible polynomials. 

This observation leads to the idea of sieving with only the norms with lower de-

grees, for example, sieving with the norms of prime ideals that have degree up to 

t - 1. when the factor base degree bound is t. The tolerance value can then be 

adjusted accordingly to account for the possibility of a higher degree factor that has 

not been sieved. How we do this is discussed at the end of the chapter. Clearly the 

amount of time spent sieving is reduced, but there is a tradeoff in that potentially 

smooth candidates have to be tested for smoothness over the factor base. The hope 

is that a tolerance value can be chosen such that the extra amount of time spent 

testing for smoothness is less than the time that would have been spent sieving with 

the higher degree norms. 
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In the next section we look at another improvement to sieving. Here we hope 

to have an improvement by reducing the amount of time needed to change sieve 

polynomials. 

4.2.3 Self-Initialization 

In the previous chapter we introduced the idea of self-initialized sieving. Here we 

generalize the idea to even characteristic function fields. Suppose we have a set 

Q = {q,, q2,.. . , q} of j distinct prime ideals from the factor base. Then the ideals 

a = fl q where vi E {-1, 1} are used to form the sieve polynomials. By varying 

the sign of vi we can compute 2i ideals with norm a = fl qi, where qi = N(q1) 

for all i. As explained in the previous chapter, we only use 2j_1 of these ideals, 

ai = (a, b1), a2 = (a, b2), ..., a2j-' = (a, b2-), giving rise to 2j1 unique sieving 

polynomials of the form F(S) = aS2 + hS + c, where c = b+bh+f Self-initialized 

sieving gives us an efficient way to change sieving polynomials. 

Similar to the work by Jacobson [33, Theorem 4. 11, let a = r1i=1 qi, and for 1 ≤ i ≤ j, 

Bi = (a/qi) ((a/q)'tj (mod qi)) (mod a) 

and 

Bi = (a/qi) ((a/qj)'(tj + h) (mod qi)) (mod a) 

where t, and t + h are solutions to x2 + xh f (mod qi). Then b = ±B1 + .82 ± 

+ B3 (we fix the sign in front of B, just as we fix vj below) is a solution to 

X xh f (mod a), where we define —Bi to be B. To see this, first recall that 
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the Chinese Remainder Theorem tells us that if a = fl qj then b2 + bh + f 0 

(mod a)   b2+bh+f 0 (mod qj) for all 1 < i < j. Note that B t 

(mod qj) and B 0 (mod qi) for 1 ≤ k ≤ j, k i. Similar results hold for B. 

Then b2+bh+f t+th+f 0 (mod qj) or b2+bh+f (t+h)2+(t+h)h+f 0 

(mod qj) for all 1 < i ≤ j. Thus b as defined above is a solution to b2 + bh f 

(mod a). 

Now we can easily change sieving polynomials. Let ' = (v1) v2,. .. , v) with vi = 1 

for i = i,. . . , j. Then we can compute the sieving polynomial by finding a = [J qj 

and b1 = giving 

F1(S) = aS2 + hS + (b12 + b1h + f)/a. 

Note that we keep vj = 1 in order to ensure we do not use both and —ii. Now, 

consider a j - 1 bit Gray code, starting with ii = (1, 1,. .. , 1).. Recall that with a 

Gray code ordering only one bit changes as we move from one element to the next. 

For example, a 3-bit Gray code ordering is 000, 001, 011, 010, 110, 111, 101, 100. 

Then iterating through the possible values for in this manner results in each 

differing from v11 in a single place, say k. We determine k by finding the value 

such that 2's' II 2(1 - 1), like Jacobson [33]. 

Suppose a,-, = (a,bj_i) with b1_1 = v1B1+v2B2+ . .+vkBk+vk+1Bk+1+• . 

Then b1 = v1131 + v2B2 + . . + (—vk)Bk + vk+1Bk+1 + . + B where —Bk is defined 

as above, and we have b1 = b1_1 + 2 k + B. This gives a1 = (a, b1) and the sieving 

polynomial F1(S) = aS2 + hS + (b12 + b1h + f)/a with two additions, assuming the 
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previously computed Bi and B values are stored. 

In addition to easily computing the next sieving polynomial we can easily com-

pute the roots of the new sieving polynomial modulo the norms of the prime ideals 

p in the factor base. Let p be an ideal in the factor base such that p Q, so 

N(p) = p t a. Let r be a root of F1(S) (mod p). Then r + (Bk + B)a' (mod p) is 

a root of F+1 (S) (mod p), where k is the place where and vi4i differ. This is easy 

to confirm with substitution, and easy to compute if (Bk + B)a 1 is precomputed. 

To find the roots for the remaining norms of the prime ideals, that is for p I a, we 

must compute them as before, but this is not expensive, as there are only j of these 

roots that need computing. Thus, we can compute new sieving polynomials and 

their roots efficiently from previously computed polynomials and roots. 

To summarize, we compute a new sieving polynomial and roots using self-initialization 

as follows: 

1. If 1 = 0, we have to start from the beginning: 

(a) Select j unique ideals from the factor base to form Q = {q,... , 

(b) Set ii=(1,1, ... ,1). 

(c) Compute a0 = rlj=l qj = (a) b0). 

(d) Compute c0 = b+boh+f This give the sieving polynomial F(S) = aS2 + 

hS+co. 

(e) For each prime ideal qj in Q with N(q) = qj: 
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i. Find tj such that t + th f (mod qj). 

ii. Compute Bi = (a/qj) ((a/q)'t (mod qj)) (mod a), 

B = (a/qj) ((a/q)'(t + h) (mod qj)) (mod a) and 

Baj (B + B)a' (mod qj). 

(f) For each prime ideal pi in the factor base with N(p) = p: 

i. If p2 I a, r,1 c0h 1 (mod p) is stored as a root. 

ii. Else If pi I f and pi ' a then 'r,1 boa-1 (mod p,) and ri,2 (bo + 

h)a' (mod pi) are stored as roots. 

iii. Else If pi f a and pi ' f solve 2 + rha' + c0a 1 0 (mod p) and 

store the solutions 'ri,l and r,2 as roots. 

(g) Set 1=1+1. 

(h) Return F(S), ' and the set of roots. Store the B, B, Bai and 1 values 

along with a0 and the set of roots for future computations. 

2. Else, we compute a new polynomial using the stored information: 

(a) Find k such that 212 II 2(1 - 1). 

(b) Set Vk = —Vk.(c) Compute b1 = b1_1 + B12 + B using the stored Bi and B values. Set 

a1 = (a,bj). 

(d) Compute c1 = b?+bzh+f This gives the sieving polynomial F(S) = aS2 + 

hS+c1. 

(e) For each prime ideal pi in the factor base with N(p) = pi: 
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L If pi I a, r,1 c1h' (mod p) is stored as a root. 

ii. Else (that is, p, ' a), set r + Bak (mod p,) for n = 1, 2. 

(f) Set 1 = 1 + 1 (mod 2i-1) 

(g) Return F(S),v and the set of roots. Store 1, a1 and the roots for future 

computations. 

Now sieving can use the above algorithm for finding new sieve polynomials. 

There is one remaining piece of the sieving method that we have not discussed. 

There are a number of parameters that are required in order for these computations 

to run. In the next section we discuss these parameters. 

4.2.4 Parameter Selection 

Sieving introduces a number of parameters ,into the algorithms for solving discrete 

logarithm problems. In addition to the factor base bound t, we have to consider 

how large our sieve radius M is. For this discussion, let M be the degree of the 

maximum polynomial in the sieve array. We also need to determine the degree of 

polynomials with which we sieve, the tolerance value Y that decides whether or not 

we should check a candidate for smoothness and j, the number of prime ideals we 

use to create the ideal that gives rise to a sieve polynomial. Note that all these 

parameters are positive integers. Our approach for finding values for these param-

eters was a combination of analysis and empirical work. Analytical work helped 

to determine ranges in which we should be searching for parameters. Then we ran 

test programs in which several hundred relations were found using different combi-
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nations of parameters. The exact number of relations we searched for depended on 

the instance we were considering. The set of parameters that resulted in the fastest 

computation was our final choice. In this section we provide guidance for choosing 

these values, assuming that self-initialized sieving is being used. 

Mimicking the choice of the sieving polynomial done by Jacobson [33], we want 

a, the leading coefficient of F(S), to have degree approximately g - M, the genus 

minus the sieve radius. This keeps the degree of F(S) evaluated at polynomials in 

the sieve range small. In fact, this degree is at most g + M + 1, since 

deg(F(S)) ≤ max(deg(aS2), deg(hS), deg(c)) 

and we have 

deg(aS2) = deg(a) + 2 deg(S) ≤ g + M, 

deg(hS) = deg(h) + deg(S) < g + M, 

and 

deg(c) ≤ deg(b2 + bh + f) - deg(a) 

= max(deg(b2), deg(bh), deg(f)) - deg(a) 

≤max(2(g—M),(g—M)+g,2g+l)—(g—M) 

=max(g—M,g,g+1+M) 

=g+M+1, 

since deg(b) < deg(a) = g - M, as is the case for reduced ideals. In fact, since 

deg(aS2 + hS) < deg(c) for all S such that deg(S) M, we have deg(F(S)) = 
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deg(c) = g + M + 1. 

Since j irreducible polynomials are used to generate a, each should have degree 

(g - M)/j. In order to ensure that this is possible, this value must be smaller than 

the maximum degree of the factor base, t, and we derive that we must take j ≥ 

As a starting point we assume that t is the optimal value determined by the expected 

random walk values computed using the formulas discussed earlier in this chapter. 

Once we have chosen M and j we can use these to choose which prime ideals are 

used to generate the sieving polynomials, namely those ideals having norms with 

degree greater than or equal to (g - M)/j, with ideals with lower-degree norms 

being used first. 

Using the search method described above we derived empirical data that suggests 

setting M = t - 2 and taking j such that (g - M)/j t - 1 are reasonable set-

tings to use. This makes sense, as we wish to ensure there are enough prime ideals 

available to generate enough sieving polynomials to find the relations needed. The 

relationship between j, M and t was used to dictate the parameter search space. 

The last parameter is the tolerance value used for sieving. We will only sieve with 

prime ideals that have norms with degree less than or equal to t - 1. We also do not 

explicitly test for repeated factors. The choice of tolerance value must account for 

this. We must also account for both the degrees of the polynomials we are sieving 

with and the degree of F(S) when evaluated at polynomials in the sieve radius. This 

will help to ensure that most of the candidates produced really are smooth. 
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Now consider some F(S) that is smooth over the factor base. As seen above, 

deg(F(S)) = 9 + M + 1. Then F(S) = fl  1p where pi = N(p) for k unique 

prime ideals from the factor base. Then deg(F(S)) = ai deg (pi). If ai = 1 

for all i then using g + M as a tolerance value will cause F(S) to be marked a 

candidate as deg(F(S)) ≥ g + M for all S in the sieve radius. However, if we want 

to be able to catch factors that are squares we have to make the tolerance value 

smaller. For example, g would allow for a square factor for some pi with deg pi = M. 

When using large primes, the tolerance value must be smaller to allow for the large 

prime factor. For example, if we are in the case where the large prime ideals are 

those with norms of degree t + 1 we should reduce the tolerance value by t + 1. This 

is because an almost smooth candidate has degree that is the sum of the degrees of 

the norms of the ideals in the factor base plus the degree of the norm of the large 

prime ideal, t + 1 (or t, depending on the variation and value of r). Furthermore, 

when sieving with only the smaller degree irreducible polynomials we have to use an 

even smaller tolerance value, such as min (deg (F(S))) - it = g + M + 1 - it, for some 

integer i, to allow for multiple factors of degree t dividing F(S). This accounts for 

any missing degree t factors that are not marked in the sieving process. 

Finally, when choosing a tolerance value one should consider that with a larger 

tolerance value fewer ideals will be tested for smoothness, but more sieving polyno-

mials will have to be created as you are testing fewer candidates per polynomial. 

Similarly, a smaller tolerance value will result in testing more candidates for smooth-



88 

ness per polynomial, but fewer sieving polynomials will have to be created. 

These guidelines should be used as a starting point for finding the tolerance value, 

which can be fine-tuned using the tests mentioned above. We used test values in 

the range Y ± i where i depended on how long the tests were expected to take, and 

the results of previous tests, and Y was initially deg(F(S)) - 2M - 2t for our first 

test case and made smaller for the later test cases. 

This should provide the reader with some guidance for choosing sieving parame-

ters. However, we acknowledge that there is more work that could be done in this 

area to make the choices more concrete, including a more detailed analysis of sieving, 

which may provide a method of selecting appropriate parameters without having to 

perform any tests. 

In this chapter we have seen how the suggestions for improvement to the random 

walk method in low genus cases can be applied to the high genus cases. We have 

also seen how we can compute estimated number of steps required for completing 

the random walk part of the discrete logarithm algorithm. Additionally, we have 

introduced a number of possible improvements to the sieving algorithm, including 

describing self-initialized sieving for this setting. In the next chapter we discuss our 

implementation and present results found using various combinations of the above 

algorithms and settings. 



Chapter 5 

Experimental Results 

In Chapter 3 we presented two algorithms used to solve the discrete logarithm prob-

lem in the ideal class group of quadratic function fields. The first algorithm we 

looked at is due to Enge and Gaudry [22], which makes use of the random walk idea 

of Teske [64]. We also presented large primes, which Thériault [65] analyzes in the 

case where the genus is small in relation to q. In the fourth chapter we demonstrated 

how large primes could be used in the larger genus case. We also presented formulas 

originally presented by Jacobson, Menezes and Stein [35] and Maurer, Menezes and 

Teske [49] for computing the number of ideals we expect to test for smoothness in 

order to find F(t) + 5 relations when using the random walk method. Finally, we 

generalized these formulas to take large primes into account. 

The second algorithm we looked at in the third chapter was one designed by Vollmer 

[66]. With this algorithm we combine sieving, used in a similar context by Jacobson 

[32, 33]. We also introduced the idea of self-initialized sieving that Jacobson [33] 

used. In chapter four we generalized sieving, with self-initialization, to the even 

characteristic case. We also presented the idea of small degree, sieving and a varia-

tion on the implementation of the sieve array. Finally, we provided some guidance 

for choosing sieve parameters. 

89 
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We have implemented these algorithms and suggested improvements as part of a 

larger C++ library we call Algebraic Number Theory Library (ANTL), a library 

built on Shoup's NTL library [62]. In this chapter we discuss our implementation. 

The platform available to us for testing this implementation is also described in this 

chapter. Using the examples provided by Jacobson, Menezes and Stein [35] as mo-

tivation we have selected four quadratic function fields with which to test the code. 

These fields are motivated by the concept of Weil descent, described by Frey [25] 

and further studied by Gaudry, Hess and Smart [27]. Using these fields we apply 

the formulas for calculating the expected number of ideals checked for smoothness 

to determine settings to use with the Enge-Gaudry algorithm. Finally, we apply the 

discussion regarding sieving parameters to select settings for the sieve. Armed with 

all this, we present results of our implementation compared to the results found by 

Jacobson, Menezes and Stein [35], and compare using the Enge-Gaudry algorithm 

[22] with random walks as the relation generation strategy to Voilmer's method [67] 

using sieving as the relation generation strategy. 

5.1 Testing Platform 

Available for us to use at the University of Calgary is the Centre for Information 

Security and Cryptography (CISaC) Advanced Cryptography Lab [2]. This lab con-

sists of 152 nodes, 139 of which have dual Intel P4 Xeon 2.4 Ghz processors with 

512 kb cache. The remaining 13 nodes have dual Intel P4 Xeon 2.8 Ghz processors 

with 512 kb cache. All nodes have 2 GB of RAM and 40 GB hard drives. These 

nodes are interconnected with gigabit Ethernet. 
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The nodes are running Red Hat Enterprise Linux 3 and have the GNU Multi-

Precision C library (GMP) version 4.2.2 [6] installed, along with NTL version 5.4.1 

[62] and the MPICH Message Passing Interface (MPI) version 1.2.5 [4]. Addition-

ally, we have installed the Automatically Tuned Linear Algebra Software (ATLAS) 

version 3.7.31 [1] and LinBox version 1.1.4 [5] to perform linear algebra. The com-

piler used was CCC version 3.4.4 [3]. This hardware and software directed the 

implementation of the algorithms. 

5.1.1 Implementation 

The algorithms implemented for this thesis exist as part of a larger plan to pro-

duce a generalized library for performing computations in quadratic number fields 

and quadratic function fields. This library is the above mentioned ANTL. It is 

implemented in C++ and is largely class based. ANTL will eventually provide the 

ability to perform class group computations and solve discrete logarithm problems in 

quadratic number fields and quadratic function fields. As such, an attempt has been 

made to generalize as much as possible, making extensive use of C++ templates. At 

the time of writing, only the implementation for imaginary quadratic function fields 

defined over even characteristic finite fields has been tested extensively. Source code 

is available upon request but, since the library is still in a very preliminary stage, 

support for some of the functions, especially those not relevant to this thesis, will 

not be guaranteed. 

We now provide details of the implementation of each algorithm. Note that in 
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this discussion we assume that we have ideals c and b ax in the order (9K as in 

the third chapter. We also assume we are provided the class number N and the 

factor base bound t, resulting in a factor base of size F(t). Our implementation also 

takes in the number of irreducible polynomials that we consider for our large prime 

ideals. Finally, we also determine sieve parameters based on the discussion in the 

fourth chapter. 

Implementation of the Enge-Gaudry Algorithm 

We first discuss the important details of our implementation of the Enge-Gaudry 

algorithm. In order to generate the factor base we order the polynomials in JFq[X] 

based on the evaluation of ii' for each polynomial, as described in Chapter 3. For 

each polynomial p (taken in order) we check for irreducibility using the deterministic 

test in NTL. If it is indeed irreducible, we then proceed with solving x2 + hx - f 0 

(mod p), as discussed in the third chapter. If the solution exists, we add the prime 

ideal p = (p, x) to the factor base. We continue until we have reached either the 

given maximum elements in the factor base, or we have looked at all polynomials 

up to the given factor base bound, t. In order to ensure we always use the same 

prime ideal for a given polynomial p, we take whichever of x and x + h results 

in the smaller evaluation of v. After creating the factor base we move on to build-

ing the relation matrix Here we use the random walks method to generate relations. 

We do the relation generation phase in parallel, as discussed in the third chap-

ter. Each process performs its own random walk and results are reported back to a 

designated master node that coordinates the overall algorithm. The random walk 
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for each processor is initialized by forming 20 random ideals, as done by Jacobson, 

Menezes and Stein [35] and discussed in the previous two chapters. Our hash func-

tion takes the last five bits of the representation of the constant term of the norm 

of the input ideal and reduces it modulo 20, also as done by Jacobson, Menezes and 

Stein [35]. We test ideals for smoothness using the test described in the third chap-

ter. If we have an ideal that is almost smooth we store a, 3, the large prime and the 

vector representing the factorization of the ideal. Rather than searching the almost 

smooth ideals for potential intersections each time we find a new one, we wait until 

the expected number of intersections plus the number of relations currently found 

is large enough. We use Thériault's result [65, Theorem 1] to determine when this 

happens. Specifically, we wait until 6A+1 plus the current number of found relations 

is greater than F(t) + 5, the total number of relations we wish to find, where x is 

the number of almost smooth ideals found and A,+1 is the number of degree t + 1 

irreducible polynomials, which give rise to 2A +1 large prime ideals, ideals and their 

inverses, as discussed in the previous chapter. The combining of the almost smooth 

ideals is done by the master process at this point. Our tests show that this is a 

reasonable strategy to use, typically resulting in approximately 10% more relations 

than necessary. 

Once we have enough relations we move on to the linear algebra problem. In the 

Enge-Gaudry algorithm we find a non-zero vector in the kernel of A. That is, we 

solve Ax O (mod N), where N is the provided class number. Note that our im-

plementation assumes N is prime. If not, one can factor N and compute solutions 

to Ax O modulo each factor, combining the results with the Chinese Remainder 
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Theorem, as discussed by Enge and Gaudry [22, Section 4]. We find a solution to 

this linear system by finding a random vector i and using the Lanczos system solver 

provided by the LinBox library to solve Ax All (mod N). Then —ll is, with high 

probability, a non-zero vector in the kernel of A. If a solution to the linear system 

Ax All (mod N) does not exist we compute five more random relations and try 

again. Our experiments show that very few additional iterations are required, if 

any, before a solution is found. 

Specifically, the LinBox function we use is LinBox: : solve (input matrix, solution 

vector, input vector, Field, Method) where the input matrix is A, the input 

vector is All, the field is integers modulo N and the method is Lanczos. Additionally, 

we specify that the matrix is singular (Method. singular (Specifier: : SINGULAR)), 

limit the number of attempts to 1 (Method. maxTries (1)), and ignore the ability to 

certify a system without a solution (Method. certificate (false)). This decision 

was made so that rather than spend time confirming that the system is not solvable 

we generate more relations and try again. The default preconditioner for Lanczos 

in LinBox is FULL-DIAGONAL. 

Lanczos' algorithm is a probabilistic algorithm of the Monte Carlo type and is easily 

made a Las Vegas type of random algorithm by including a check to see that the 

system is actually solved and repeating if not. Because of the random nature of the 

algorithm, there has been some interest in the reliability of Lanczos' method. Work 

done by Eberly and Kaltofen [20] and Eberly [19] suggests that Lanczos' algorithm 

works well when the computation is done over a large field. This is the exact case 
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we are in, performing computations modulo large primes. There has also been work 

done in analyzing the reliability of the algorithm over small finite fields for finding 

the rank of matrices by Eberly [19], and sampling the nulispace of a matrix by Hov-

men and Eberly [30]. It should be noted that this is an evolving area of research 

with new results being found quite frequently. 

As mentioned previously, there are parallel linear algebra algorithms that could 

be used, such as the block Wiedemann strategy described by Kaltofen [40] or the 

block Lánczos variant, described by Montgomery [53]. However, implementing these 

algorithms is well beyond the scope of this thesis, and since no known implemen-

tation of these exists, use of them in conjunction with Enge-Gaudry will have to 

be left for future work. Thus, it should be stressed that this implementation was 

chosen primarily because it worked, and we acknowledge that there is room for im-

provement in this area of our work. 

Once we have an appropriate vector we compute the discrete logarithm as dis-

cussed in Chapter 3. 

Implementation of Volimer's Algorithm 

In the implementation of Vollmer's algorithm we use a significantly different method 

of generating relations. However, before we get there we must first create our factor 

base. We do so in the same manner as described for the Enge-Gaudry algorithm. 

Now we use sieving as the method to generate relations. 
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Again, we perform relation generation in parallel. In the non-self-initialized case, 

each process is provided a sieving polynomial from the master process, and returns 

relations (smooth or almost smooth) to the master node. The slave processes also 

request new sieve polynomials from the master node. In the self-initialized case, 

each slave process receives a set Q of ideals used to generate the sieving polynomial 

from the master process. Then each slave process computes the 2111 sieving poly-

nomials possible from this set of ideals, after which it requests a new set of ideals 

from the master node. In either case, each sieve uses the same parameters, provided 

upon execution of the program. The sieve array is implemented as discussed in 

Section 4.2.1, precomputing the values of 110. Comparing sample runs using both 

possibilities, we find that this method is more efficient. Also, while both regular and 

self-initialized sieving are implemented, we only consider use of the self-initialized 

version. We use the same smoothness test as in the random walks method to factor 

candidates produced by the sieve, and wait until we expect to have enough intersec-

tions to complete our relation matrix before we combine the almost smooth ideals 

on the master node to form relations. In this case, our tests show that we end up 

requiring less than 10% more relations to complete the linear system in two of our 

test cases, and have less than 10% too many relations in the other two cases. 

After creating the relation matrix we have to find the special relations for cr' and 

b as discussed in the third chapter. We do this using a method similar to that men-

tioned in Chapter 3 for the use of sieving in the Enge-Gaudry algorithm. An ideal 

j is formed randomly for the purpose of forming a sieving polynomial as described 

in Chapter 3. We then multiply this ideal by the ideal we wish to factor, and sieve 
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to find the special relation as described in the third chapter. Again, this is done in 

parallel. Once we have these special relations we move on to the linear algebra stage. 

In Vollmer's algorithm we have to find the solution to a linear system of equa-

tions modulo the class number N. Again we use the Lanczos system solver provided 

by the Lin13ox library, with the same settings as before, for the same reasoning as in 

the Enge-Gaudry case above. We use the function LinBox: :solve (input  matrix, 

solution vector, input vector, Field, Method) where the input matrix is A' 

from Section 3.1.2, the input vector is (1, O,••. , o)T, the field is integers modulo N 

and the method is Lanczos. Again, we specify that the matrix is singular 

(Method. singular (Specifier: :SINGULAR)), limit the number of attempts to 1 

(Method . maxTri e s (1)), and ignore the ability to certify a system without a solution 

(Method. certificate (false)). Numerous trials with the test data done during 

the debugging process provided evidence to support not trying multiple times, but 

rather stopping and finding additional relations. If a solution does not exist then 

we generate five more relations and recompute the special relations for cr' and Ii. 

Our experiments suggest again that very few, if any, iterations of this process are 

necessary. Once we have a solution to the linear system the solution to the discrete 

logarithm problem is computed and returned. 

5.1.2 Test Data 

Jacobson, Menezes and Stein [35] study the Weil descent attack on elliptic curve 

discrete logarithm problems of Frey [25]. In particular, they focus on the work done 

by Gaudry, Hess and Smart (GHS) [27]. GHS provide an algorithm that extends 
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Frey's work. Their algorithm reduces an instance of the ECDLP over a characteris-

tic two finite field JFqn, where the number of points on the elliptic curve is a "small" 

number (2 or 4) times a prime, to an instance of the discrete logarithm problem 

in the Jacobian of a hyperelliptic curve over lFq with genus at most 2m-1• As we 

have shown, there are subexponential algorithms for solving this second problem 

when the genus is large relative to q. Exactly how this works is left to the provided 

references as it is not the focus of this thesis. 

Jacobson, Menezes and Stein [35] choose four instances of the ECDLP to apply 

GHS to and from this obtain four instances of the HCDLP. They call the resulting 

hyperelliptic curves C62, C93, C124 and C155 since the original elliptic curves are 

defined over 1F262, F293, 1F2124 and 1F2155, respectively. C155 is of particular interest 

as the Internet Engineering Task Force recommended use of a specific curve over 

1F2155 for a key establishment algorithm [31]. These curves are presented in Table 

5. 1, where each curve is defined by v2 + h(u)v = f(u) and defined over F22, 1F23, F24, 

and 1F25, respectively. This table also contains N, the prime factor portion of the 

number of points in the elliptic curve. In fact, the number of points on the elliptic 

curve is 2N, and is equal to the number of elements in the Jacobian associated with 

each curve. All these curves have genus 31. As we saw in Chapter 2, these curves 

relate directly to quadratic function fields, and thus we can apply our techniques 

here. For our tests we use the same predetermined ideals a and b that Jacobson, 

Menezes and Stein [35] use in order to be able to compare both methods on the 

same inputs. These values are in Tables 5.2 and 5.3. 
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C62: q = 4, IF'J = JF2[w]/(w2 +W+ 1) 

f (u) = u63 + w2u62 + u48 + w2 
h(u) = u31 + u30 + wu28 + u24 + w2u16 + w2 
N = 2305843007560748609 
C93: q=8, 1Fq 1P'2[w]/(w3+w+1) 

f(U) = w4u63 + w5u62 + w5u60w3u56 + w5u48 + wu32 + w5 
h(u) = w2u31 + w5u30 + u28 + w6u24 + w6 
N = 4951760157141611728579495009 
C124: q = 16, TFq = 1F2[w]/(w4 + w + 1) 
f(U) = w6u63 + w14u60 + w6u56 + w6u48 + 1 
h(u) = w3u31 + w9u3° + wu28 + w"u24 + w'2u'6 + w12 
N = 10633823966279326985483775888689817121 

C155: q=32, JFq =1F2[w]/(w5+w2+1) 
f(U) = w4u63 + w6u62 + w'5u6° + w26u56 + w25u48 + w7u32 + w13 
h(u) = w2u3' + w7u3° + w30u28 + w22u24 + w3u'6 + w22 
N = 22835963083295358096932727763065266972881541089 

Table 5.1: Hyperelliptic Curves C62, C93, C124 and C155 
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062: 
ct = (1 + u2, w + wu) 
b = ax = (w + u + w 2u2 + wu4 + wu5 + wu6 + w 2u7 + u8 + wu9 + wu10 

+u'2 + w 2u'3 + w 2u'4 + w 2u15 + wu16 + u17 + u18 + wu'9 + w 2u2° + u21 

+u24 + 1u26 + wu27 + w 2u28 + u29, 

w + u + u2 + wu5 + u6 + w 2u9 + u10 + w 2u'2 + u13 + u'4 + w 2u21 

+u22 + u24 + u25 + w 2u26 + w 2u27 + wu28) 

x = 123456789 
093: 
a = (1 + wu + w 3u2 + w 3u3 + u4 + w 2u6 + w 4u7 + w 2 u  8 + w 2u1° + w 5u"  

+w6u'2 + u'3 + wu'5 + w 5u'6 + w 5u'7 + w 5u'8 + w 4u'9 + u2° + wu2' 

+wu22 + w 3u24 + w 3u25 + w 4u26 + w 4u28 + u29 + w 2u3° + u31 ) 

wu + w 5u + w 6u2 + w 5u3 + W 6u4 + w 3u5 + wu6 + w 4U7 + w 6U8 + w 6U'1 

+w2u'2 + W 2U13 + WU14 + W 4U15 + U16 + W 4U17 + W 2U18 + WU19 + U20 

+w3u21 + U22 + W 4U23 + W 5U24 + U25 + w 4u27 + w 2u30) 

b = ax = (w4 + w 6u + W 2U2 + W 3U3 + W 3U4 + U5 + U6 + W 3U7 + W 2U8 

+w4u° + w 4u'° + w 4u"  + w 3u'2 + w 3u'4 + w 2u'5 + v 2u'7 + w 2U'8 

+WU19 + w 4u2° + w 6u2' + w 4u22 + w 2u23 + W 6u24 + w 3U27 + W 3U28 

+w3u29 + U31 ) 

w + w 2u + w 5u2 + WU4 + WU5 + W 5U6 + W 6U7 + W 6U8 + W 2U9 + W 4U10 

+w5u"  + W 6U12 + W 3U13 + W 4U14 + U15 + W 5U16 + W 5U17 + W 3U18 

+w3u2° + w 2u2' + w 6u22 + w 2u24 + w 2u25 + w 2u26 + w 2u27 + wu29 + w 3u30) 

x = 12345678901234567890 

Table 5.2: Test Discrete Logarithm Problems over 062 and 093 



101 

0124: 
a = (w"  + w 4u + wu3 + w 9u4 + w 8u5 + w 11u6 + w 8u7 + w 9u8 + w 4u9 + w 2u10 

+w" u"  + w 14u12 + w 10u13 + w 5u'4 + w 11u17 + w 7u18 + u19 + wu20 + w 2u2' 

+w7u23 + w 3u24 + w 12u25 + w 3u26 + w 4u27 + w 10u3° + u31, 

w 7 + wu2 + w 7u3 + w 3u4 + w 12u5 + w 12u6 + w'3u7 + w'2u8 + w 3u9 + w 3u1° 

+u"  + w 6u'2 + u13 + w 14u14 + w 4u'5 + w 9u'6 + w'°u'7 + w'4u'9 + w 11u20 

+w4u21 + W 6U22 + W 13U2 + w 4u24 + w 11u26 + w'3u27 + wu28 + w 13u29 + u30) 

b = = (w'2 + u1 + w 7u2 + w " u3 + w 6u4 + w 2u5 + w 5u6 + w 4u7 + wu8 

+w2u9 + w 8u'° + w 6u' 1 + w 12u12 + w'2u'3 + w 5u14 + w 4u 5 + 020 + wu17 

+w°u'8 + wu19 + w 10u20 + w 6u22 + w'0u23 + w 5u24 + w 2u25 + w 2u26 + w 6u27 

+u28 + w 3u29 + w 2u3° + u31, 

w 3 + w 8u + w 8u2 + w 8u3 + w 2u4 + w 10u6 + w'2u7 + w 4u8 + w'3u° + w'°u'° 

+w 10u'1 + w 9u'2 + wu'3 + w'3u'4 + u15 + w 2u16 + u18 + w'2u'9 + w 8u2° 

+wu2' + w 8tt22 + w 8u23 + w " u24 + wu25 + w 8u26 + w'°u27 + w 9u28 + w 2u29 

+w 14u30) 

x = 289697194482016303350776099807354482 

0155: 
a = (w'1 + w'°u + w 21u2 + w 3u3 + w 28u4 + w'2u5 + w 5u6 + w 29u7 + u8 

+w4u9 + w'7u'° + w 9u' 1 + w 5u'2 + w 2u'3 + w 29u'4 + w " u'5 + w 28u'6 

+w30u'7 + wu'8 + w 3u19 + w'3u2° + w'°u21 + w 7u22 + w 20u23 + w 21u24 

+w23u25 + w 3u26 + w 30u27 + w'°u28 + w 17u29 + w'9u3° + u31, 

w 29 + w 21u + w 27u2 + w 21u3 + w 10u4 + w'2u5 + w 27u6 + w 23u7 + w 4u8 

+w26u9 + w'2u'° + w'8u"  + w'°u'2 + w'6u'4 + w'°u'5 + w 24u'6 

+w'2u'7 + w 25u'8 + w 9u'9 + w 28u2° + w 22u21 + w'9u22 + w'6u23 

+w20v24 + w 7u25 + w 6u26 + w 9u27 + w 4u28 + w 4u29 + w 20u30) 

= ax = (w'4 + w 10u + w 29u2 + w 27u4 + w 22u5 + w 29u6 + w 9u7 + u8 + w 2u9 

+w9u'° + w'1u"  + w 28u'2 + w 23u'3 + w 13u14 + w 9u 5 + w " u'6 + w 28u'7 

+w4u'8 + w 8u'9 + w'7u2° + w 15u21 + w'9u22 + w 16u23 + w'2u24 + w 4u25 

+w7u26 + wu27 + w'7u28 + w'°u29 + w 14u30 + u31 , 

w 20 + w 24u + wu3 + w 6u4 + w 3u5 + w 6u6 + w'2u7 + w 21u8 + w'7u9 

+w3u'° + w 5u"  + w 24u12 + w 30u13 + w 4u14 + w 4u'5 + w 29u16 + w 17u 17 

+w30u'8 + w 6u19 + w 23u20 + w 12u21 + w 17u22 + w 19u23 + w 22u24 + w'5u25 

+w7u26 + w 9u27 + w 16u28 + w'3u2° + w'9u30) 

x = 20424021823451918609980302751472565558753509370 

Table 5.3: Test Discrete Logarithm Problems over C124 and 0155 
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5.2 Empirical Estimates 

In Chapter 4 we presented formulas presented by Jacobson, Menezes and Stein [35] 

that provide an expected number of random ideals that need to be tested in order for 

a total of F(t) +5 relations to be found. We also presented formulas that incorporate 

the idea of almost smooth ideals. Now that we have presented the curves in which 

we solve the discrete logarithm problem we can apply these formulas and, using the 

results, we can justify the parameters we used for the Enge-Gaudry algorithm using 

random walks for relation generation. 

After evaluating these formulas we estimate the amount of time required to per-

form the entire algorithm. We do this by measuring the time required to create a 

smaller number of ideals, for example 1000 ideals for the C62, and test them for 

smoothness for selected parameter sets (for example, for each curve, for each t con-

sidered, run with r = 0.25, r = 0.50, r = 0.75 and r = 1). We then use the data to 

compute line of best fit and use this line to estimate the time required to compute 

relations for any r value. Similarly, we have estimated the linear algebra times by 

running the entire discrete logarithm problem solving algorithm for several values 

of r for each value of t considered, extracting the linear algebra time, computing a 

quadratic curve of best fit and using this to estimate the linear algebra time. Note 

that for C155, since the only result we computed is our final one, we used the for-

mula for the C124 linear algebra times as a basis, and scaled up slightly. However, 

as our computations show, this scaling was nowhere near sufficient. It should also 

be noted that if the linear algebra algorithm changes, one would have to recompute 
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these estimates. In particular if the change was made to an parallel linear algebra 

algorithm. Finally, time required for initialization (that is, creating the factor base) 

has been measured in the same manner and used in these estimates. With these 

timings we can compute estimated runtimes for the Enge-Gaudry algorithm with 

the curves above and different choices for the factor base bound t, the parameter r 

and what form of almost smooth ideals are considered. 

When we do not consider the almost smooth ideals we have two parameters we 

can vary: the factor base bound t and the parameter r controlling the number of 

the largest degree polynomials we use to create prime ideals for our factor base. We 

consider t in the range [1, 9] for 062 and [1, 7] for 093, 0124 and 0155, following 

the lead from Jacobson, Menezes and Stein [35]. Also, we perform the computations 

for 0 < r ≤ 1 in steps of 0.01. When we do consider the almost smooth ideals we 

consider the case where we use just the prime ideals having norm with degree equal 

to t as large prime ideals and the case where we also include the prime ideals having 

norms with degree equal to t + 1. 

Tables 5.4 to 5.7 provide some interesting data points for each variation of the 

random walk parameters and each curve we are considering. These points include 

the estimations for the recommended settings from the work by Jacobson, Menezes 

and Stein [35], marked with *. We call these the JMS settings for the remainder of 

the thesis. We have also included our best settings for the case in which we do not 

consider the large prime ideals and the case in which we use the degree t + 1 norms. 
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t r F(t) LP E(t) ELp(t) T(t) T LA total 
Not considering almost smooth ideals 

5 
6 
6 
7 

* 7 

1.00 
0.50 
1.00 
0.50 
1.00 

144 
309 
474 
1059 
1644 

- 

- 

- 

- 

- 

36296 
7776 
2614 
921 
421 

- 

- 

- 

- 

- 

5408075 
2441636 
1251873 
980453 
694997 

51.61 
24.13 
13.20 
10.37 
7.57 

0.07 
0.34 
0.81 
4.04 
9.73 

54.14 
27.24 
16.97 
19.06 
23.48 

Using only degree t norms 

5 0.90 134 10 48446 162924 5050630 48.67 0.07 51.21 

6 0.60 342 132 6092 6443 1391785 13.67 0.48 17.02 

6 0.80 408 66 3900 9256 1249536 12.37 0.68 16.03 
6 0.90 441 33 3177 15884 1223078 12.15 0.79 15.97 

7 0.10 591 1053 2058 996 802851 8.44 1.43 13.28 

Using degree t + 1 norms 

5 1.00 144 330 36296 9436 2604401 25.49 0.08 28.04 

6 0.50 309 1335 7776 1656 1280375 13.36 0.39 16.52 

6 1.00 474 1170 2614 1051 809562 8.78 0.92 12.65 

7 0.50 1059 4665 921 304 664803 7.58 4.58 16.81 

7 1.00 1644 4080 421 258 542944 6.35 11.04 23.57 

Table 5,4: Estimated C62 runtimes in seconds 

Finally, the remaining estimates are shown to provide some context and give an 

idea as to how changing the parameters can result in a change in the expected run-

times. In these tables F(t) is the size of the factor base, LP indicates the number 

of large prime ideals that result from these settings, E(t) is the expected number 

of steps required to find a smooth ideal, ELp(t) is the expected number of tests 

to find an almost smooth ideal, T(t) is the total number of steps expected to find 

F(t) +5 relations, T represents the estimated time required to test T(t) ideals using 

256 processors. We are performing the relation generation stage in parallel and as 

such we present that estimated time. The column LA refers to the estimated time 

required for the linear algebra stage. Again, note that the linear algebra time could 
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t r F(t) LP E(t) ELp(t) T(t) T LA total 
Not considering almost smooth ideals 
4 
5 

* 5 
6 

1.0 
0.5 
1.0 
0.5 

596 
2234 
3872 
14771 

- 

- 

- 

- 

1830509 
145591 
28668 
6281 

- 

- 

- 

- 

1.1x109 
325977380 
111146195 
92810648 

178.3 
56.3 
19.3 

17.12 

0.03 
0.45 
1.35 
19.6 

178.5 
56.9 
20.8 
37.4 

Using only degree t norms 
4 0.9 546 50 2834369 6261994 1.0x109 168.4 0.03 168.6 
5 0.5 2234 1638 145591 75143 171550333 29.5 0.51 30.1 

5 0.8 3217 655 51489 82729 115159023 20.1 1.06 21.3 

5 0.9 3544 328 38100 130084 108360217 18.9 1.28 20.4 

6 0.1 6052 19618 20016 6513 75517246 13.7 3.74 17.7 

Using degree t + 1 norms 
4 1.0 596 3276 1830509 266121 484073278 83.4 0.04 83.5 

5 0.5 2234 23436 145591 19132 167421504 30.6 0.51 31.2 

5 1.0 3872 21798 28668 7577 71792103 13.0 1.53 14.7 

6 0.5 14771 160695 6281 1394 64731785 13.7 22.29 36.7 

Table 5.5: Estimated C93 runtimes in minutes 

be quite different if a parallel algorithm was used, and this could change the choice 

of optimal parameters. The total time is the sum of LA, T and the time required for 

initialization. Initialization time is not shown because it is generally small compared 

to the overall runtime and has little effect on these estimates, particularly for 093, 

0124 and 0155. 

There are a few important things about the estimates in Tables 5.4 to 5.7 that should 

be pointed out. First, one might be puzzled by the entries in which ELp(t) > E(t). 

However, recall that ELp(t) depends on the number of almost smooth ideals that 

result from the settings being used, and this in turn depends on the number of large 

prime ideals that arise from the given settings. When the number of large prime 
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t r F(t) LP E(t) ELp(t) T(t) T LA total 

Not considering almost smooth ideals 
4 
4 
5 
5 

0.50 
1.00 
0.32 
0.50 

4808 
8872 

42426 
61300 

- 

- 

- 

- 

18991245 
1498799 
267103 
127546 

- 

- 

- 

- 

9.1x101° 
1.3x10'° 
1.1x10'° 
7:8x109 

267.3 
38.9 
36.4 
25.4 

0.07 
0.24 
5.59 

11.67 

267.4 
39.1 
42.0 
37.1 

* 5 1.00 113728 - 25876 - 2.9x109 10.3 40.15 50.6 

Using only degree t norms 

4 0.50 4808 4064 18991245 6040905 3.6x101° 104.4 0.08 104.5 

4 0.90 8059 813 2308631 5163911 1.3x10'° 37.4 0.23 37.6 

5 0.32 42426 71302 267103 88111 5.8x109 18.8 6.34 25.2 

5 0.50 61300 52428 127546 67239 4.4x109 14.3 13.24 27.6 

Using degree t + 1 norms 
4 0.50 4808 108920 18991245 1336140 4.0xlO'° 124.1 0.08 124.2 

4 1.00 8872 104856 1498799 225558 7.7x101 24.0 0.28 24.2 

5 0.32 42426 1469042 267103 27402 7.2x109 24.7 6.34 31.0 

5 0.50 61300 1450168 127546 17154 5.2x109 17.8 13.24 31.1 

5 1.00 113728 1397740 25876 6964 2.3x109 9.4 45.57 55.0 

Table 5.6: Estimated C124 runtimes in hours 

ideals is low, there are fewer almost smooth ideals, and so we would expect it to 

take longer to find one. 

Another observation to make is that the values of t suggested by Jacobson, Menezes 

and Stein [35] may not necessarily be the best ones. For example, compare t = 6 

and t = 7 for C62. In [35] it is suggested that t = 7 be used, but our estimates 

suggest using t = 6 requires almost twice as much time to compute the relations, 

and only one tenth the time to perform the linear algebra computation. Overall this 

means that t = 6 should result in a faster computation. Also consider t = 4 and 

t = 5 for C124. Again, in [35] they suggest using t = 5, whereas our estimates show 
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t r F(t) LP E(t) ELp(t) T(t) T LA total 
Not considering almost smooth ideals 
4 0.80 110365 - 3358791 - 3.7x10" 60.8 1.61 62.4 

* 4 1.00 136528 - 1378374 - 1.9x10" 33.2 2.47 35.7 
5 0.20 807616 - 440408 - 3.6x10'1 114.6 86.36 201.1 

Using only degree t norms 
4 0.80 110365 26163 3358791 3510031 2.lxl0" 35.2 1.83 37.0 
4 0.92 126063 10465 1939095 5529341 1.8x10'1 30.7 2.39 33.1 

5 0.20 807616 2684352 440408 109868 1.9x10" 64.9 98.02 163.0 

Using degree t + 1 norms 
4 0.80 110365 3381603 3358791 382768 2.4x10" 41.6 1.83 43.4 

4 1.00 136528 3355440 1378374 210311 1.3x10" 24.8 2.80 27.6 

5 0.20 807616 92160024 440408 37543 2.7x10" 99.4 98.02 197.5 

Table 5.7: Estimated 0155 runtimes in days 

that using t = 4 results in an increase in relation generation time that is countered 

by a significantly larger decrease in the linear algebra time required, resulting again 

in a faster overall computation. Also important is the effect of using large primes. 

For example, compare t = 4, r = 1 in the first and third cases of 0124. Use of large 

primes here results in a reduction in the number of expected steps by almost half. 

Assuming these calculations are accurate, we expect to see improvements by using 

large primes. 

Using Tables 5.4 to 5.7 we can pick optimal parameters for the Enge-Gaudry al-

gorithm with random walks for relation generation. It would appear that in our 

situation, with the relation generation being done in parallel on 256 processors, we 

should use the variation of large primes that considers the set of large prime ideals 

to include those ideals having norms with degree equal to t + 1 in all four curves. 
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It also appears that we should set r = 1 for all four curves. See Table 5.8 for a 

summary of what we use for input for random walks. The large prime bound is the 

degree of the norms of ideals that we use in our set of large prime ideals. We also 

list in Table 5.9 the JMS settings from [35] for reference. Finally, Table 5.10 lists 

sample input for the case when r 1 that we will run in order to help demonstrate 

that our estimates are correct for that case as well. 

Curve C62 C93 0124 0155 

Factor Base Bound t 6 5 4 4 
Parameter r 1 1 1 1 

Large Prime Bound 7 6 5 5 
Estimated Time 12.65 Seconds 14.72 Minutes 24.24 Hours 27.56 Days 

Table 5.8: Random Walk Parameters for the Enge-Gaudry Algorithm 

Curve 062 093 0124 0155 

Factor Base Bound t 
Parameter r 

Estimated Time 

7 
1 
23.48 Seconds 

5 
1. 
20.77 Minutes 

5 
1 
50.59'Hours 

4 
1 
35.65 Days 

Table 5.9: JMS Random Walk Parameters for the Enge-Gaudry Algorithm 

We use the settings in Table 5.8 as a starting point for selecting sieve parameters, as 

we mentioned in Chapter 4. Recall that j is the number of prime ideals used to create 

the ideal that gives rise to the sieving polynomial, M is the sieve radius, and Y is the 

tolerance value, which controls what we test for smoothness. In our implementation 

we take the input Y and subtract it from the degree of F(S), where deg(S) = M. 
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Curve C62 C93 C124 
Factor Base Bound t 

Parameter r 
Large Prime Bound 

Estimated Time 

6 
0.80 
6 
16.03 Seconds 

5 
0.80 
5 
21.31 Minutes 

5 
0.50 
4 
27.56 Hours 

Table 5.10: Sample r 1 Random Walk Parameters for Enge-Gaudry Algorithm 

So the tolerance value used by our sieve is max(deg(F(S))).— Y = g + M + 1 - Y. 

We use B to denote the degree bound on the elements with which we sieve. 

We use t = 6, t = 5, t = 4, and t = 4 for 062, 093, and 0124 and 0155, re-

spectively. We also set r = 1 and use large primes having norms with degree equal 

to t + 1 in order to keep these settings close to the random walk choices. We now 

describe how we obtained the remainder of these parameters for 062. The other 

cases are derived in a similar manner. 

With t = 6 we want j 31M• If M = 1, we need j ≥ 5, and as M grows, j 

can shrink. However, since the number of polynomials tested for smoothness by the 

sieve grows as M grows, we do not want it to grow too large. Therefore we per-

formed the test mentioned in Chapter 4 with j ranging from 3 to 6 and M ranging 

from the lower bound provided by g - tj < M to M = 14 when j = 3, M = 10 when 

j = 4 and M = 6 when j = 5 and j = 6. In addition, for each (j, M)-pair we tested 

using B = 5 and B = 6 for a sieve bound, recalling that we wanted to test both 

sieving with all polynomials arising from elements in the factor base and sieving 

with only those polynomials with degree less than t. We also set Y = 17 through 
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Y = 21 as tolerance values, an interval centered around Y = 19, a value that was 

fortunately chosen during an earlier stage of testing that seemed to be resulting in 

relations being found at a reasonable rate. 

For 093, C124 and C155, we adjusted the tolerance value interval based on test 

results and the work presented in Chapter 4 in order to try and find the minimum 

computation time. Recall that our test had each set of parameters be used to find a 

small number of relations. Specifically, 200 for 062 and 093, 50 for 0124 and 10 for 

0155. These values were chosen to ensure that our trials completed in a reasonable 

amount of time, but still allowed us to estimate how long the entire computation 

should take. The group of parameters that did this the fastest for each of 062, 093, 

0124 and C155 are presented in Table 5.11. 

Curve C62 093 0124 0155 

Factor Base Bound t 6 5 4 4 
Parameter r 1 1 1 1 

Large Prime Bound 7 6 5 5 
Ideals used j 5 7 9 9 

Radius Degree M 4 3 2 2 
Tolerance Value Y 19 14 11 11 

Sieve bound B 5 4 3 3 

Table 5.11: Sieve Parameters for Vollmer's Algorithm 
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5.3 Results 

We have used our implementation to solve discrete logarithm problems in 062, 093 

and 0124 using both the Enge-Gaudry algorithm and Volimer's algorithm, and in 

0155 using Vollmer's algorithm. We now present our results. 

Tables 5.12 to 5.18 outline the results for 062, 093, 0124, and C155, respectively. 

First notice that the linear algebra times were significantly underestimated in all 

cases. Using more accurate estimates might result in different choices for t and r as 

we attempt to choose settings that result in the lowest runtime. However, in most 

cases it is the total time required for the search for smooth relations that dominated 

the computation time. This is what we expect based on our estimates. 

For the 062 case, results in Table 5.12, we notice that significantly fewer ideals 

were tested than we expected in both the JMS and optimal Enge-Gaudry cases. 

One possible cause of this is if a large number of smooth or almost smooth ideals 

are found early in random walks. This, spread over the 256 random walks occurring, 

could explain this difference. Further evidence for this idea was provided when we 

ran the same test using a smaller number of processors. Test runs on both 10 pro-

cessors and 1 processor resulted in the number of ideals tested to be much closer to 

the estimates. This situation also occurs in the r 1 case. We also point out that 

in our optimal case we expected T(t)/ELp(t) = 809562/1051 = 770 almost smooth 

ideals to be found. This is almost exactly what we did find. Comparing our optimal 

results to the results produced from the JMS settings we see that the search times 
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JMS EG 
Estimate 

JMS EG 
Result 

Opt. EG 
Estimate 

Opt. EG 
Result 

Vollmer 
Result 

Initialization Time 6.18s 6.28s 2.96s 2.73s 0.76s 
Total Relations 1649 1649 479 479 489 
Full Relations 1649 1649 310 302 321 

Partial Relations - - 770 780 986 
Intersections - - 169 198 180 

Unique Intersections - - 169 198 180 
Sieve Polynomials - - - - 618361 

Total Ideals Tested 694997 590394 809562 640471 633201664 

Total Search Time 32.31m 27m 25.31s 37.44m 27m 51.86s 21m 40.78s 

Real Search Time 7.57s 6.42s 8.78s 6.53s 8.21s 

Total Iterations - 1 - 1 3 
Special 

Ideals Checked - - - - 1081344 

Special Rels Time - - - - 0.99s 

Linear Algebra Time 9.73s 34.45s 0.92s 2.85s 13.03s 

Total Time 32.57m 28m 6.66s 37.51m 27m 57.91s 21m 56.45s 

Real Total Time 23.48s 47.77s 12.65s 12.58s 22.90s 

Table 5.12: C62 Results 
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Estimate Result 
Initialization Time 2.98s 3.12s 

Total Relations 413 413 
Full Relations 324 335 

Partial Relations 130 144 
Intersections 89 80 

Unique Intersections 89 79 
Total Ideals Tested 1249536 744194 
Total Search Time 52.78m 30m 33.37s 
Real Search Time 12.37s 7.16s 

Linear Algebra Time 0.68s 2.42s 
Total Time 52.99m 30m 39.13s 

Real Total Time 16.03s 12.92s 

Table 5.13: 062 r 0 1 Results 

are very close to the same, but due to the larger factor base size recommended by 

JMS, the linear algebra time is significantly larger. Finally, comparing this to the 

results from Volimer's algorithm, we have a faster search for relations, but due to 

performing the linear algebra three times, this benefit is lost when we perform the 

search in parallel. When increasing the number of relations we are searching for 

to F(t) + 15, we see the number of linear algebra iterations required reduced to 

one, but the real time is still one to two seconds slower than that from our optimal 

Enge-Gaudry settings, due to the increased overhead involved with sieving. One 

final thing to point out is how many ideals were tested for smoothness in the same 

time using sieving. The sieve covered much more ground in the same amount of 

time. 

Moving now to the 093 results in Table 5.14 we see that the number of ideals tested 
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JMS EG 
Estimate 

JMS EG 
Result 

Opt. EG 
Estimate 

Opt. EG 
Result 

Vollmer 
Result 

Initialization 
Time 9.67s 9.76s 9.67s. 8.70s 4.55s 

Total 
Relations 3877 3877 3877 3877 3892 

Full 
Relations 3877 3877 2504 2480 2547 

Partial 
Relations - - 9475 9546 13246 

Intersections - - 1373 1834 5271 

Unique 
Intersections - - 1373 1834 1496 

Sieve 
Polynomials - - - 

- 8889395 

Total Ideals 
Tested 111146195 101080503 71792103 70951503 36410961920 

Total Search 
Time 3.42d 

3d 4h 
2m 9.10s 2.32d 

2d 5h 
41m 16.87s 

llh 36m 
43.94s 

Real Search 
Time 19.26m 17m 49.25s 13.03m 12m 34.98s 3m 13.40s 

Total 
Iterations - 1 - 1 3 

Special Ideals 
Checked - - - 

- 11501568 

Special Rels 
Time - - - 

- 7.92s 

Linear Algebra 
Time 1.35m 6m 5.73s 1.53m 4m 57.28s 22m 7.37s 

Total Time 3.43d 
3d 4h 

8m 26.11s 2.32d 
2d 5h 

46m 28.02s 
11h 58m 
59.23s 

Real Total Time 20.77m 24m 6.26s 14.72m 17m 46.13s 25m 20.80s 

Table 5.14: C93 Results 
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Estimate Result 
Initialization Time 8.78s 9.01s 

Total Relations 3222 3222 
Full Relations 1830 2376 

Partial Relations 1392 1536 
Intersections 986 880 

Unique Intersections 986 879 
Total Ideals Tested 115159023 118168104 
Total Search Time 3.57d 3d 12h 25m 50.27s 
Real Search Time 20.11m 10m 47.30s 

Linear Algebra Time 1.06m 3m 59.95s 
Total Time 3.58d 3d 12h 30m 1.37s 

Real Total Time 21.31m 23m 58.40s 

Table 5.15: C93 r 0 1 Results 

in both the JMS and optimal results are much closer to that which we expected, as 

well as our r 0 1 test. This time both JMS and our settings recommended using 

factor bases of the same size. Here we see that using large primes does reduce the 

amount of time needed in the search. We also note that for our settings the linear 

algebra time is lower than the linear algebra time for the JMS settings. This is most 

likely related to what processor the computation was taking place on, as subsequent 

test runs show that the actual time required for the linear algebra stage can vary. 

We would expect the tests without large primes to have better linear algebra times 

as Lanczos' algorithm performs better on lower density matrices, and using large 

primes results in more non-zero entries in the matrix. Again when comparing the 

results to those from Vollmer's method we see that while the search time for sieving 

is significantly lower, taking around a quarter the time, once again the linear algebra 

took three iterations. This significantly increases the amount of time this test took 
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to run on the cluster, as the linear algebra is not parallelized in our implementa-

tion. We had hoped that adjusting the algorithm to produce the extra relations 

results in a reduction on the number of linear algebra iterations, which would result 

in Volimer's method being significantly better here. However, when we performed 

this test we found that computing F(t) + 15 or F(t) + 20 relations did not change 

the situation, and we were still required to repeat the linear algebra computation 

multiple times. In fact, the computation usually required four or five linear alge-

bra iterations. We did have one trial where linear algebra was not repeated, and 

in this case the real runtime was 11 minutes, which supports our theory that we 

would have a faster running algorithm if not for the issue with the linear algebra 

stage. We also note that while there were a significant number of almost smooth 

ideals and intersections in Voilmer's method, a large number of the relations formed 

by the intersections were discarded as being duplicate relations. This consistently 

happened, and we can offer no explanation for this behavior. 

Looking at the results for C124 in Table 5.16, we can see our results are quite 

close to the expected values. Our settings result in a search that takes significantly 

longer than the search from JMS. However we note that due to the larger matrix 

from the JMS settings we expect the linear algebra to take significantly longer in 

that case. Since the difference in the search time is spread out over a parallel system 

but the linear algebra is not, our settings should still be better, and increasing the 

number of processors would only improve that situation. However the most exciting 

result that we see here is that from Voilmer's algorithm. Here the search time is 

less than the JMS search time, and additionally, while the linear algebra is worse 
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JMS EU 
Estimate 

JMS EU 
Result 

Opt. EG 
Estimate 

Opt. EU 
Result 

Vollmer 
Result 

Initialization 
Time 5.56m Sm 44.75s 17.64s 15.59s 10.44s 

Total Relations 113733 113733 8879 8879 8879 

Full Relations 113733 113733 5154 5176 5084 

Partial Relations - - 34232 34106 34520 

Intersections - - 3725 4953 4510 

Unique 
Intersections - - 3725 4953 4510 

Sieve 
Polynomials - - - 

- 1.58x109 

Total Ideals 
Tested 2942900860 2931742632 7721296965 7557879515 6.48x iO'4 

Total Search 115d 5h 243d 23h 81d 6h 

Time 110.32d 56m 15.77s 255.59d 42m 45.22s 59m 28.12s 

Real Search l0h 22h 7h 

Time 10.34h 48m 15.99s 23.96h 52m 25.95s 37m 14.86s 

Total 
Iterations - 1 - 1 1 

Special Ideals 
Checked - - - 

- 143921152 

Special Rels 
Time - - - . 

- 3m 34.67s 

Linear Algebra 3d llh 
Time 40.15h lOm 14.40s 0.28h 37m 43.56s lh 44.90s 

118d 23h 244d 81d 8h 

Total Time 112d 50m 31.65s 255.60d 21m 2.53s 3m 47.69s 

3d 22h 23h 8h 

Real Total Time 50.59h 5m 22.89s 24.24h 30m 43.26s 42m 3.49s 

Table 5.16: 0124 Results 
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Estimate Result 
Initialization Time 2.49m 2m 32.74s 

Total Relations 61305 61305 
Full Relations 34335 34157 

Partial Relations 65130 65340 
Intersections 26970 28004 

Unique Intersections 26970 28004 
Total Ideals Tested 4379281805 4356289431 

Total Search Time 152.31d 146d 16h 48m 56.69s 
Real Search Time 14.28h 13h 45m 11.47s 

Linear Algebra Time 13.24h id 9h 31m 16.33s 
Total Time 152.87d 148d 2h lOm 13.03s 

Real Total Time 27.56h Id 23h 6m 27.81s 

Table 5.17: 0124 r 0 1 Results 

than that in our optimal Enge-Gaudry case, it is significantly better than the JMS 

settings, giving us a very significant improvement over the Enge-Gaudry algorithm. 

Table 5.17 shows that our estimate is very close to what we experienced, as far as 

the search time required is concerned. However, just as in Table 5.16, our linear 

algebra estimate is off. 

Finally we examine the results for 0155 in Table 5.18. Once again we see that the 

use of sieving results in a much faster search for relations when compared to the ran-

dom walk estimates we have computed. In this case, the search takes approximately 

a quarter of the time that we expect to take with the Enge-Gaudry algorithm. As 

mentioned before, the linear algebra estimates are very wrong and require further 

investigation. Because the linear algebra algorithm used depends both on the size of 

the matrix and the number of non-zero entries in the matrix, we see the large jump 
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JMS EG 
Estimate 

Opt. EG 
Estimate 

Vollmer 
Result 

Initialization 
Time 5.95m 5.95m 6m 4.87s 

Total Relations 136533 136533 136533 
Full Relations 136533 96662 99226 

Partial Relations - 633522 612780 

Intersections - 39871 51660 

Unique 
Intersections - 39871 51660 

Sieve 
Polynomials - - 3036124745 

Total Ideals 
Tested 188193560300 133236952000 99484699519415 

Total Search 1720d 19h 

Time 8492.67d 6338.Old 37m 34.28s 

Real Search 6d 21h 

Time 33.17d 24.76d 15m 44.92s 

Total 
Iterations - - 1 

Special Ideals 
Checked - - 177531606 

Special Rels 
Time - - 6m 35.15s 

Linear Algebra 14d 5h 

Time 2.47d 2.80d 51m 26.46s 
1735d lh 

Total Time 8495.14d 6340.81d 30m 6.81s 
21d 7h 

Real Total Time 35.65d 27.56d 39m 17.12s 

Table 5.18: C155 Results 
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in linear algebra time from the C124 example to the C155 example. This result 

makes computing linear algebra estimates for the C155 case difficult. In any case, 

because our parameter search suggests that we would be using the same size factor 

base for both the Enge-Gaudry algorithm and Voilmer's algorithm, we would expect 

the linear algebra time to be close to the same for both. Correcting our optimal 

Enge-Gaudry estimates with this observation, we see that Voilmer's algorithm takes 

little more than half the time we expect the Enge-Gaudry algorithm to take in its 

best case. 

Our results show that using sieving to compute relations can be much faster than 

using random walks. In particular, we have shown that with sieving, our modifica-

tions to the sieving algorithm, and the use of large primes, we have a more efficient 

algorithm for finding the relations necessary for performing discrete logarithm com-

putations in the ideal class groups of high genus imaginary quadratic function fields 

with even characteristic that result from the use of Weil descent on elliptic curve dis-

crete logarithm problems as presented by Jacobson, Menezes and Stein [35]. Again, 

we stress that the purpose of this thesis was improving the relation generation stage. 

There is no reason to believe that we would not see the same sort of benefit from the 

use of sieving if we replaced the linear algebra algorithm used above with a parallel 

version. However, the optimal settings would most likely be changed in order to 

reflect the shorter linear algebra stage. 



Chapter 6 

Conclusion 

In this thesis we studied a specific context of the discrete logarithm problem: in-

stances in the ideal class group of an imaginary quadratic function field defined 

over an even characteristic finite field. Recall that this is equivalent to solving the 

discrete logarithm problem in the Jacobian of a hyperelliptic curve, also called the 

hyperelliptic curve discrete logarithm problem (HCDLP). 

We have presented an implementation of Vollmer's algorithm [66] that uses self-

initialized sieving as the relation finding mechanism for this sort of discrete logarithm 

problem. This is not the first time sieving has been used to solve discrete logarithm 

problems. For example, see the work done by Jacobson [33]. This is, however, the 

first time it has been used to solve the discrete logarithm problem in the described 

context. The use of sieving was motivated by the work done by Flassenberg and 

Paulus [24] on sieving in quadratic function fields, and using self-initialization was 

motivated by the work done by Jacobson [33] in quadratic number fields. 

Our implementation also makes use of large primes, similar to their use in factoring 

algorithms by Lenstra and Manasse [48], Boender and te Riele [10] and Kurowski 

[45]. The idea was also adapted by Jacobson [33] and used in conjunction with 

sieving to generate relations in his algorithm for computing the class number and 

121 
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class group of quadratic number fields. 

We have also presented a variation of the Enge-Gaudry algorithm [22] that makes 

use of large primes. Here the description of large primes given by Thériault [65] 

in his analysis of a variation of Gaudry's algorithm [26] that uses large primes was 

generalized and used to extend the algorithm presented by Jacobson, Menezes and 

Stein [35] for solving the HCDLP over the hyperelliptic curves arising from Weil 

descent. 

By generalizing the formulas from Jacobson, Menezes and Stein [35] that can be 

used for computing the expected number of random walk steps required to find suf-

ficient relations for the Enge-Gaudry algorithm to successfully complete and solve 

the discrete logarithm problem to take into account large primes, we find that using 

large primes in this algorithm should result in an algorithm that requires less time 

to solve the discrete logarithm problems that are presented by Jacobson, Menezes 

and Stein [35]. Our results support this, particularly for the curve known as 093, 

where our settings and those provided by Jacobson, Menezes and Stein [35] both 

suggest using the same size factor base. However, for 062 and 0124, our suggested 

parameters also result in a lower computation time than the parameters given by 

Jacobson, Menezes and Stein [35]. Based on our results in the other three cases, 

there is no reason to believe our estimates for the 0155 example are not accurate. 

Even more exciting are the results of our implementation of Volimer's algorithm. 

In all four examples, using sieving resulted in a search time that was less than that 
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required for the random walk algorithms. This resulted in a total runtime that was 

lower than the runtime of our implementation of the Enge-Gaudry algorithm in all 

three examples in which we tested new Enge-Gaudry parameters for a variation of 

the algorithm that uses large primes. Also, for C124, the real time required by 

Vollmer's algorithm was one third the time required by Enge-Gaudry's algorithm 

using our parameters, which in turn was almost four times faster than the execution 

of Enge-Gaudry's algorithm using the parameters suggested Jacobson, Menezes and 

Stein [35]. Finally, the use of sieving was used to solve the discrete logarithm over 

the curve known as C155, a genus 31 curve defined over IF32, for the first time. This 

curve is the result of the Weil descent process on an elliptic curve defined over 1F2155. 

In this example, the search time was over three times faster than what we estimate 

would be required for our optimal Enge-Gaudry parameters, and over four times 

faster than what we estimate would be required by the parameters found in [35]. 

These results are all very promising, but there is still a lot of work that can be done. 

6.1 Future Work 

While we see significant improvements using sieving over the use of random walks for 

finding relations, there are algorithmic improvements that could be investigated fur-

ther. For example, the implementation of the sieve array could possibly be improved 

in order to reduce the amount of computation done in order to "jump" through the 

array. There is also the possibility of making use of double large primes in the 

high genus case, as described for the low genus case by Gaudry, Thomé, Thériault 

and Diem [28]. This idea has been seen before, used for factoring by Lenstra and 
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Manasse [48]. Finally, the integer smoothness test developed by Bernstein [9] could 

be adapted to work for polynomials. This may provide further improvement to the 

algorithms discussed in this thesis. 

The work we did focused on even characteristic imaginary quadratic function fields. 

More precisely, we looked at the high genus case that is arrived at through the 

use of Weil descent. It would certainly be interesting to investigate the use of the 

sieving-based implementation of Volimer's algorithm to generate relations in the 

lower genus imaginary quadratic function fields that Thériault [65] focused his anal-

ysis on, resulting in a comparison of sieving to random walks in this setting, which 

would have implications in hyperelliptic curve cryptography. In addition, it would 

be interesting to compare the performance of these algorithms in odd characteristic 

quadratic function fields. Finally, these algorithms for solving the discrete logarithm 

problem in the ideal class group of quadratic function fields can be adapted to work 

in real quadratic function fields. 

The Enge-Gaudry algorithm [22] has been analyzed extensively, specifically for low 

genus cases and the addition of large primes by Thériault [65]. The work done in 

this thesis, both with the Enge-Gaudry algorithm and Vollmer's algorithm, could 

be analyzed further. This includes a more in-depth analysis of the methods used 

to find the parameters used for sieving. This would hopefully lead to a method of 

choosing these parameters without experimentation. 

The index calculus algorithms used in this thesis can be adapted to compute class 
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groups, as done in quadratic number fields by Hafner and McCurley [29], Paulus 

[56] and Jacobson [33]. In particular, the improvements to sieving investigated have 

not been used for this task in quadratic function fields, and the work developed in 

this thesis could be used as a starting point for an implementation of an algorithm 

for computing class groups of imaginary and real quadratic function fields. 

The above suggestions, like the rest of the thesis, mostly focus on the relation 

generation stage of index calculus algorithms. In addition to these ideas, one could 

investigate the linear algebra stage in more detail, and incorporate new linear al-

gebra algorithms into the discrete logarithm algorithms. For example, one could 

incorporate one of the parallel linear algebra algorithms that have been studied, 

such as the block Wiedemann strategy as described by Kaltofen [40] or the block 

Lanczos variant, described by Montgomery [53]. It should be noted that the in-

clusion of a new linear algebra algorithm would require analyzing the parameters 

for both Enge-Gaudry and Vollmer1s algorithm again in order to ensure the proper 

balance between the relation generation and linear algebra stages of the algorithm. 

We would still expect sieving to perform better than random walks in the relation 

generation stage, but the overall run time would be improved due to the projected 

improvement in the linear algebra stage of the computation. 

This is just a small sample of the work that can be developed based on the work done 

in this thesis. As this area is both relatively new and relatively unstudied, there are 

many interesting directions that could be taken from this point. The results of this 

thesis suggest that the use of sieving in index calculus algorithms can result in an 
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improvement in a number of areas and settings. 
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