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A new approximation for the distribution of the probability ratio in a sequential probability ratio test (SPRT) using noncoherent
integration across a full code period is presented. The new approximation is valid for the carrier-to-noise power ratios (C/N0)
typically encountered in GPS acquisition (20 dB-Hz ≤ C/N0 ≤ 50 dB-Hz), and it allows accurate theoretical performance analysis
of the SPRT to be carried out for signals in this C/N0 range, eliminating the need for lengthy simulations for each scenario under
investigation. Thus, the SPRT performance can be readily compared to that of other acquisition strategies for receiver design.
Previous approximations in the literature are not valid in the range 20 dB-Hz ≤ C/N0 ≤ 50 dB-Hz.

1. Introduction

Acquisition of direct-sequence spread spectrum (DS/SS)
code division multiple access (CDMA) signals, such as the
Global Positioning System (GPS) L1 C/A signals [1], involves
synchronising the received signal with a locally generated
replica signal. Synchronisation is carried out in two dimen-
sions, namely, code phase, ζ , and Doppler uncertainty fre-
quency, ωD. The received signal is correlated with the local
replica signal at each code phase and Doppler estimate, and
the outputs of the correlator are combined to make a decision
that the signal is present and correctly synchronised (an H1

decision) or that the signal is not present or not synchronised

(an H0 decision). Each estimate, ̂θ = {̂ζ , ω̂D}, is referred to as
a “cell” in the search space. The decision making procedure
or “search-control strategy” can be based on a fixed or
variable number of correlator outputs, and its goal is to make
a correct decision in the minimum time. Thus, the main
performance metrics are the time required for a decision to
be made (the dwell time) in an H1 or an H0 cell, τ1 or τ0,
respectively, and the probabilities of correct detection, Pdc,
and false alarm, Pf ac (the subscript “c” denotes the “cell
level” probabilities).

Wald’s sequential probability ratio test (SPRT) [2] is
known to be the optimal strategy in terms of simultaneously
minimising the mean dwell time in both H1 and H0 cells,
τ1 and τ0, respectively, for a particular performance pair,
{Pdc,Pf ac}. The SPRT is widely used throughout the field
of communications, with recent applications in many areas,
for example, radar detection [3], spectrum sensing for
cognitive radio [4], and CDMA acquisition [5–7]. The SPRT
is also commonly used as a benchmark for comparing the
acquisition performance of CDMA systems, for example,
comparing the performances of different code families [8] or
the performance of a system under varying fading conditions
[9].

Despite its optimality condition and widespread use
across the communications field, the SPRT is not widely
reported for the acquisition of GPS signals. This might be
due, in part, to its computational complexity (which shall be
discussed later) or to the fact that its optimality in a H1 cell is
limited to the case when the received carrier-to-noise power
ratio, C/NT

0 , equals that for which the receiver was designed,
C/ND

0 , with a large increase in τ1 and a decrease in Pdc
occurring for C/NT

0 < C/ND
0 . However, a recent study by the

authors [10] has shown promising results regarding the SPRT
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performance for GPS L1 C/A signal acquisition, compared to
that of a commonly used single dwell detector (SDD). These
results are applicable in particular to the case when the SPRT
is used in the verification stage of acquisition, when a quick
initial search throughout the search space has selected a small
number of potential candidate cells. We have shown in [10],
through simulation, that, for certain target performances, the
worst case dwell time for the SPRT becomes as good as that
of the SDD, when the C/N0 becomes weak.

The motivation of this work is to theoretically verify
the accuracy of the simulated results, presented in [10],
and to extend our previous study by analysing the SPRT
performance across a wide range of C/N0 values and target
probabilities of detection and false alarm to investigate the
range of conditions under which the SPRT is, indeed, a
desirable choice of search-control strategy. The results of this
study allow the SPRT performance to be compared with that
of other suboptimal strategies, for example, the coincidence
detector [11] or up-down counter [12, 13], so that important
receiver design decisions regarding the trade-off between
performance and computational complexity can be made.
An example of such a comparison can be found in [13].
For such a study, simulation alone is not practical, especially
for weak signals, which require long dwell times and, hence,
long simulation times. Thus, tractable theoretical expressions
for the dwell time and the probabilities of detection and
false alarm are required. Typically, for very weak signals,
approximations due to Wald [2] are used for the average
number of samples required to make a decision (ASN)
(which is directly proportional to the dwell time) and for
the probabilities of detection and false alarm [7, 14, 15].
However, the carrier-to-noise ratios typically encountered
in GPS acquisition, ranging from “harsh environments”
to “open-sky” conditions, 20 dB-Hz ≤ C/N0 ≤ 50 dB-Hz,
respectively, are larger than the range of validity of Wald’s
approximations and, so, the approximations result in highly
inaccurate performance predictions.

This paper presents a new, simplified approximation for
the distribution of the probability ratio to address the need
for an accurate and tractable analysis for the SPRT perfor-
mance in GPS L1 C/A acquisition, in order that comparisons
with other strategies can readily be made. This eliminates
the need for lengthy simulations, allowing a wide range
of scenarios, in terms of varying C/N0 values, attenuation
effects, and target probabilities of detection and false alarm,
to be evaluated efficiently. The operation of the SPRT is
briefly described in Section 2. In Section 3, we outline the
proposed approximation and provide expressions for its
parameters, as functions of the signal parameters. Validation
of the approximation is illustrated in Section 4, highlighting
the improved accuracy of the new approximation relative to
previous approximations. It is also shown that evaluation of
performance metrics using the new approximation requires
only 1% of the computation time for existing numerical
methods using the same computer. Data collected from live
GPS satellites is presented in Section 5, illustrating the
accuracy of the theoretical results. The performance of the
SPRT is theoretically investigated in Section 6 and compared
with that of common suboptimal strategies. The impact on

performance of unknown power levels is also addressed. Fi-
nally, some concluding remarks are presented in Section 7.

2. SPRT Operation and Performance

Operation of the SPRT is based on comparison with upper
and lower thresholds, A and B, respectively, of the cumulative
ratio, Zn, of the probabilities of obtaining the given set of
samples, xn = {x1, . . . , xn}, under the H1 hypothesis and
the H0 hypothesis at the nth trial, n = 1, 2, . . . [2]. The
cumulative probability ratio at the nth trial is given by

Zn =
n
∑

k=1

zk, (1)

where zk is the single trial probability ratio at the kth trial,
given by

zk = ln

(

fH1 (xk,λ)
fH0 (xk,λ)

)

, (2)

where fHi (xk,λ) is the probability distribution function (pdf)
of the correlator output under the Hi hypothesis, i = 0, 1,
and λ is a parameter representing the C/N0; the natural
logarithm is taken for convenience in the manner of [2]. For
the well-known noncoherent combining detector (NCCD),
which is commonly used for the acquisition of CDMA
signals in the presence of unknown Doppler frequency and
data modulation (e.g., GPS signals) [15], with noncoherent
integration over K = 1 code periods, the probability ratio is
given by

zk = −λ + ln
(

I0

(

2
√

λxk

))

, (3)

where Iν(x) is the νth order modified Bessel function of the
1st kind [16, Equation 9.6.10], and it should be noted that
the raw correlator output has been appropriately normalised
to yield unit variance in xk. During each trial, Zn is compared
to the thresholds, A and B, and a decision made as follows:

B < Zn < A =⇒ Take another sample,

Zn ≤ B =⇒ Terminate the test, accepting H0,

Zn ≥ A =⇒ Terminate the test, accepting H1.

(4)

The choice A = ln(Pdc/P f ac) and B = ln((1 − Pdc)/(1 −
Pf ac)), suggested by Wald [2], is typical in the literature,
even though this usually results in a larger probability of
correct detection and smaller probability of false alarm than
the target probabilities for which the test was designed, with
a slight increase in mean dwell time over that required for the
exact target performance. This is particularly true for strong
signals.

When both the mean and variance of z converge to zero,
approximations for the operating characteristic function
(OCF) (the probability of terminating the test with an H0

decision) and average sample number (ASN), due to Wald
[2, Equations 3:43 and 3:57], respectively, can be used to
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determine the SPRT performance. However, as illustrated in
Figures 1(a) and 1(b), for C/N0 > 25 dB-Hz (approximately),
these convergence conditions are not satisfied and, so,
Wald’s approximations are not valid for GPS acquisition per-
formance.

Methods of evaluating the exact ASN and OCF have long
existed, for example, Wald and Girshick’s method based
on characteristic functions [2, Appendix A.4] and Proakis’
Markov chain method [17], either of which can be employed
for the GPS case. Both of these methods require the
calculation of the probability, hi, that z equals an integer,
i, times a positive constant, d, (i.e., hi = Pr(z = id)),
for i = �zmin/d�, . . . , �zmax/d�, where zmin and zmax are
the minimum and maximum values of z, respectively, the
�·� function returns the largest integer which is less than
or equal to its argument, and the �·� function returns
the smallest integer which is greater than or equal to its
argument. For continuously distributed z, as is the case here,
the distribution can be approximated by a discrete one by
choosing a suitably small value of d, and hi is given by

hi =
∫ (i+0.5)d

(i−0.5)d
fz(z,λd ,λt)dz, (5)

where fz(z,λd,λt) is the pdf of z conditioned on the design
point C/N0 parameter, λd , and the true C/N0 parameter, λt .
TypicalC/N0 estimators require synchronisation to have been
achieved in Doppler and code phase domains, for example,
[18, 19], and so are not feasible before acquisition. Despite
this fact, the SPRT implementation requires an estimate of
C/NT

0 to be determined—this is the design point, C/ND
0 ,

which will be seen to affect the performance of the detector,
in terms of detection probability and mean dwell time. In
practice, if a signal is not acquired at a particular value
of C/ND

0 , a subsequent test with a lower design point can
be carried out, and this process iterated until a suitable
estimate of C/ND

0 is found to yield an acquisition decision.
Of course, constant false alarm rate is often chosen as the
design criterion, for example, [20], in which case the C/ND

0 is
not the important design criterion for any strategy. However,
if a particular cell level detection probability is desired, then
considering the expected C/N0 will improve the detection
probability and, hence, the overall performance. This effect
will be illustrated later in the work by means of results
describing the detection performance in the presence of at-
tenuation between C/ND

0 and C/NT
0 .

Albert’s integral equations [21] can also be used to anal-
yse the performance of a general class of sequential tests,
including the SPRT [22]. For example, the probability,
PH1 (z0), of terminating the test in an H1 cell, given an initial
probability ratio value of z0, is defined by the following
Fredholm integral equation of the second kind [21]:

PH1 (z0) =
∫∞

A
fz(z − z0,λd ,λt)dz

+
∫ A

B
PH1 (z1) fz(z1 − z0,λd ,λt)dz1,

(6)

with similar expressions available for the moments of the
ASN. In the absence of analytical forms for the integrals

(which are usually not available [22]), various numerical
methods exist for the solution of the above equations,
including the polynomial interpolation method of [22].
Other sequential tests, such as the biased sequential square-
law detector, which approximates the SPRT under very weak
signal conditions, can be used to simplify the analysis, but the
performance of such tests is suboptimal [23, 24]. The focus
of this work is on the optimality of the SPRT performance
for GPS signals, so approximate tests are not considered.

Currently, an expression for the pdf of z, in terms of z
itself, is not available, to the best of the authors’ knowledge,
so (5), (6), and similar ones cannot be solved directly.
However, expressions for the pdf of the correlator output,
x, in H1 and H0 cells, and an expression for the probability
ratio, as a function of x, (3), are known. Much effort has
been applied to manipulating these known expressions to
find an expression for fz(z,λd ,λt) in an integrable form, with
a power series expansion yielding the most promising results.
This work is outlined in Appendix A. Unfortunately, for the
C/N0 range of interest for GPS, the resulting power series is
not convergent and, so, it is not practical for GPS acquisition
analysis. Hence, a new approximation for fz(z,λd ,λt) is
sought.

3. Approximation for the Distribution of
the Probability Ratio

In the absence of accurate analytical expressions for the per-
formance metrics, a practical approach is to turn to alterna-
tive methods, such as numerical methods and model fitting.
By examining the shape of the distribution of z for varying
λd and λt , it has been observed that fz(z,λd,λt) can be very
closely approximated by a truncated normal distribution,
with one-sided lower truncation point, tl = −λd , whose pdf
is given by

fTN
(

z,μ, σ , tl
) = φ

((

z − μ
)

/σ
)

1−Φ
((

tl − μ
)

/σ
) , (7)

where φ((z − μ)/σ) and Φ((z − μ)/σ) are, respectively, the
probability distribution function and cumulative distribu-
tion function of the normal distribution with mean, μ, and
standard deviation, σ . The closeness of the fit is illustrated in
Figures 2 and 3, which show Monte Carlo simulation outputs
and truncated normal distributions for suitably estimated
values of μ and σ . A number of cases are illustrated in the
figures to show the effect of varying the design point, C/ND

0 ,
and the mismatch between the true carrier-to-noise ratio,
C/NT

0 , and C/ND
0 , a = C/NT

0 − C/ND
0 = 10 log10(λt/λd).

The Monte Carlo simulations consisted of generating 105

sample probability ratio values per data point (i.e., per value
of C/ND

0 and a), where the probability ratios were generated
from simulated GPS data, including data modulation, code
phase and Doppler frequency components, and randomly
generated noise for each sample yielding the appropriate
value of C/NT

0 . A histogram for each set of 105 samples
was constructed and converted to a probability density
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Figure 1: Mean (a) and variance (b) of single trial probability ratio versus attenuation: theoretical (lines) and simulated (symbols);
C/ND

0 (dB-Hz) = 42 (+), 37 (�), 32(◦), 27 (Δ).

measure for each figure. Equation (7) can be used directly in
(5) yielding

hi ≈
∫ z2=(i+0.5)d

z1=(i−0.5)d
fTN
(

z,μ, σ ,−λd
)

dz

= erf
((

z2 − μ
)

/
√

2σ
)− erf

((

z1 − μ
)

/
√

2σ
)

1− erf
((−λd − μ

)

/
√

2σ
) ,

(8)

where erf(·) is the error function [25, Equation 7.1.1.].
We now seek a model for the parameters of the truncated

normal distribution. There are two unknown parameters, μ
and σ , in the truncated normal distribution, and we have
two variable signal parameters, on which the shape of the
distribution of z has been seen to depend, namely, λd and λt ,
or, equivalently, the design point, C/ND

0 , and the mismatch,
a, between C/NT

0 and C/ND
0 . Thus, we seek expressions for

μ and σ , as functions of the signal parameters, in the range
typically encountered for GPS acquisition, that is, 20 dB-Hz
≤ C/ND

0 ≤ 50 dB-Hz, and attenuation of−10 dB ≤ a ≤ 2 dB.
A least-squares fit was carried out across this range of signal
parameters, and some of the resultant μ and σ values are
illustrated in Figures 4 and 5. Parameters for both H1 and H0

cells are illustrated. It should be noted that, in an H0 cell, the
distribution is independent of the mismatch term, a, (since
the signal is not present or not correlated).

The following observations can be made from Figures 4
and 5: both μ and σ are “well-behaved” functions of C/ND

0

and a, in the sense that the curves are continuous and not
oscillatory. The mean, μ, is strongly dependent on bothC/ND

0
and a, in particular, when C/ND

0 is large (C/ND
0 ≥ 35 dB-Hz).

The standard deviation, σ , is strongly dependent on C/ND
0

and very weakly dependent on a. The inherent smoothness

of the curves in the C/ND
0 and a dimensions suggests that a

suitable approach to obtaining expressions for the functions,
μ = μ(C/ND

0 ,a) and σ = σ(C/ND
0 ,a), is a Taylor series

expansion about the centre point, {Ψc,ac}, of the {C/ND
0 ,a}

space. The H1 and H0 cases are treated separately to improve
the accuracy of the model in each case.

Using the notation Ψ ≡ C/ND
0 , for notational simplicity

only, the Taylor series expansion for the mean of the distri-
bution in an H1 cell, μ1, is written as:

μ1(Ψ,a)

= μ1(Ψc,ac)

+
∞
∑

j=1

1
j!

[

(Ψ−Ψc)
∂

∂Ψ
+ (a− ac)

∂

∂a

] j

μ1(Ψ,a)

∣

∣

∣

∣

∣

(Ψc,ac)

≈ μ1(Ψc,ac) +
∞
∑

j=1

j
∑

i=0

γ
μ1

j,i(Ψ−Ψc)
i(a− ac)

j−i ,

(9)

where the notation for the Taylor series expansions should be
interpreted as follows (e.g., j = 2):

[

(Ψ−Ψc)
∂

∂Ψ
+ (a− ac)

∂

∂a

]2

μ(Ψ,a)

= (Ψ−Ψc)
2 ∂

2μ(Ψ,a)
∂Ψ2

+ 2(Ψ−Ψc)(a− ac)
∂2μ(Ψ,a)
∂Ψ∂a

+ (a− ac)
2 ∂

2μ(Ψ,a)
∂a2

,

(10)
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Figure 2: Pdfs of z for C/ND
0 = 32 dB-Hz: simulated results and truncated normal approximation (λd = 1.58).

and where γ
μ1

j,i are the series coefficients, which will be deter-
mined by a least-squares fit using the previously evaluated
numerical results for μ1(C/ND

0 ,a). Similarly, the Taylor series
expansion for the standard deviation of the distribution in
an H1 cell, σ1, is given by:

σ1(Ψ,a)

= σ1(Ψc,ac)

+
∞
∑

j=1

1
j!

[

(Ψ−Ψc)
∂

∂Ψ
+ (a− ac)

∂

∂a

] j

σ1(Ψ,a)

∣

∣

∣

∣

∣

(Ψc ,ac)

≈ σ1(Ψc,ac) +
∞
∑

j=1

j
∑

i=0

γσ1
j,i(Ψ−Ψc)

i(a− ac)
j−i ,

(11)

with series coefficients, γσ1
j,i. In an H0 cell, we have seen that

the results are independent of a, so the series expansions
reduce to

μ0(Ψ) ≈ μ0(Ψc) +
∞
∑

j=1

γ
μ0

j (Ψ−Ψc)
j ,

σ0(Ψ) ≈ σ0(Ψc) +
∞
∑

j=1

γσ0
j (Ψ−Ψc)

j .

(12)

The infinite sums in (9)–(12) are, of course, not suitable
for practical models of the parameters, so each series
must be truncated to a suitable maximum order; here,
the maximum order for each model was determined by
analysing various goodness-of-fit measures, such as Akaike’s
Information Criterion (AIC) [26] and the Bayes Information
Criterion (BIC) [27]. These measures are attractive for the

Table 1: Mean percentage error between numerical and modeled
parameters.

μ0 σ0 μ1 σ1

Mean error [%] 0.00718 0.00982 0.0218 0.00637

type of modeling problem considered here, as they penalise
the addition of extra terms in the model to avoid the choice
of a trivial model, with an apparently perfect fit, achieved
when there is a unique term for each data point available.
The order of the model, for each parameter, was chosen as
the order beyond which the incremental improvement in fit,
using the AIC, was ≤1% (i.e., further increasing the order of
the model resulted in a decrease of less than 1% in the AIC);
the resultant orders for the models are as follows: Jμ0 = 13,
Jσ0 = 8, Jμ1 = 21, and Jσ1 = 22.

The values of the coefficients, γ
μ1

j,i, γσ1
j,i, γσ0

j , and γ
μ0

j ,
were determined using a nonlinear least-squares fit, for
numerically evaluated data in the range, 20 dB-Hz≤ C/ND

0 ≤
50 dB-Hz,−10 dB≤ a ≤ 2 dB, with step size of 0.5 dB in each
dimension and centre point, Ψc = 35 dB-Hz, ac = −4 dB;
the results are listed in Appendix B. The mean percentage
error between the numerical parameters and the Taylor series
models, for each case, are listed in Table 1 and can be seen to
be negligible.

4. Validation of the New Approximation

With a closed form representation for the hi probabilities
now available, (8), the methods of either Proakis or Wald
and Girshick can be used to accurately evaluate the ASN
and OCF of the SPRT for GPS acquisition. Here, we
present results comparing the theoretical performance of the
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SPRT, based on the truncated normal approximation, with
results from Monte Carlo simulations (carried out under the
same signal generation conditions as outlined in Section 3).
The theoretical results are calculated using Proakis’ afore-
mentioned Markov chain method.

Figure 6 shows the mean dwell time in an H1 cell,
normalised by its simulated value at a = 0 dB for each C/ND

0

value (listed in the legend), with a target performance of

{P(T)
dc = 0.98,P(T)

f ac = 10−4}. The probability of detection,

25 30 35 40 45 50
0

5
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σ

H0

H1

a = 2 dB

a = −10 dB

20

C/ND
0 (dB-HZ)

Figure 5: Least-squares estimates of truncated normal parameter,
σ , versus design point carrier-to-noise ratio, C/ND

0 , with varying
attenuation (in steps of 1 dB from a = 2 dB to a = −10 dB).

Pdc, is shown in Figure 7. It should be noted that Wald’s
small signal approximation for Pdc takes account only of the
relative values of C/ND

0 and C/NT
0 and not their absolute

values; hence, it operates on a “one curve fits all” basis,
which is highly inaccurate for medium weak to strong signals
(C/ND

0 > 24 dB-Hz). It is clear that the new truncated normal
approximation results in significantly more accurate per-
formance analysis than Wald’s small signal approximations,
especially when C/ND

0 is large. Similar accuracy was achieved
for the H0 performance. For C/ND

0 = 24 dB-Hz, there is
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a small discrepancy between the new approximation and the
simulated values. This is due to the approximation of the
continuous distribution of z by a discrete distribution. The
effect is only pronounced for very weak signals as the step
size, d, must become extremely small for accurate results and
the corresponding matrices which must be manipulated to
determine the performance metrics become unmanageably
large with the available computational resources.

The final validation of the usefulness of our new approx-
imation is to compare the computational resources required
for its calculation to that of previously available methods.
We have mentioned that the exact calculation of the ASN
and OCF for the SPRT, using either Wald and Girshick’s or
Proakis’ method, involves the evaluation of the probabilities,
hi = Pr(z = id). The aim of our approximation was to
simplify the accurate evaluation of these hi values. Thus, to
compare the efficiency improvement for SPRT performance
analysis of our new approximation over the existing methods
for evaluating the ASN and OCF, we simply evaluate the
mean CPU time required for the evaluation of the hi values.
The following methods are included in the comparison:

(1) hi values approximated using numerical integration
of (A.15) with the hxi values based on (A.5) and
a numerical solution for x = x(z),

(2) hi values approximated using (8).

The CPU time samples were generated in Mathematica, due
to the availability, in this software package, of specialised
methods for calculating Bessel functions, error functions,
and so forth. The reason for using this commercial software
package was to provide the fairest comparison possible with
the available resources, one which is unbiased by inefficien-
cies in the evaluation of the special mathematical functions,
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Figure 7: SPRT detection probability versus attenuation: simu-
lation (hollow markers), truncated normal approximation (solid
lines), and Wald’s small signal approximation (dashed line).

Table 2: Mean CPU time ratio T2/T1 × 100 (%).

C/ND
0 a (dB)

(dB-Hz) 0 −4 −8

44 0.8789 0.8241 0.8238

40 0.7757 0.7706 0.7636

36 0.8588 0.8611 0.8856

32 0.8447 0.8605 0.8562

28 0.9630 1.0568 1.0304

such as the Bessel functions in Method 1 and the error
functions in Method 2. For each pair of {C/ND

0 ,a}, values
whose performance was computed, 100 sample CPU times
were measured using the total time taken, in seconds, for the
CPU to evaluate hi, i = �zmin/d�, . . . , �zmax/d�. It should be
noted that the system caches were cleared between samples to
ensure a “worst case” time estimate. Table 2 reports the ratio
of T2 to T1, where T1 is the mean CPU time for Method 1
(the numerical method) and T2 is the mean CPU time for
Method 2 (the truncated normal approximation), expressed
as a percentage. It is clear that the truncated normal
approximation provides a very significant improvement over
the old numerical method, requiring approximately 1% or
less of the numerical method’s CPU time in all cases tested.
The comparison was carried out on both a Windows and a
Unix platform, with a similar time saving observed on each
platform.

It is noted, here, that the suitability of the truncated
normal approximation and the resultant new expressions for
the SPRT metrics have been derived through observation
of the shape of the pdf followed by a numerical curve-
fitting technique, and not through a rigorous mathematical
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or probabilistic approach. However, in the absence of an
analytical or semianalytical solution, the numerical curve-
fitting approach is a practical solution to the problem,
which works well in practice. The improved accuracy of
the performance analysis justifies the use of this solution.
Functional forms for μ = μ(λd ,λt) and σ = σ(λd,λt)
might, perhaps, be attainable by equating fz(z,λd,λt) and
fTN(z,μ, σ ,−λd) and carrying out lengthy manipulation of
the equations. However, initial attempts have shown that
such a procedure appears to be very complicated, and
the added benefits of functional forms over the parameter
approximations given above, (9)–(12), are not expected by
the authors to be sufficiently advantageous to justify such an
effort.

5. Real Signal Verification

Here, the accuracy of the derived theoretical analysis for the
SPRT is further verified by comparison with simulated results
and with results from tests on signals collected from live GPS
L1 C/A satellites. The data collection was carried out in a
location at the University of Calgary, Canada, where there
is a clear view of the sky in all directions, and multipath
effects are known to be low. Two datasets were collected with
the C/N0 levels of the received signals varied by means of
a variable attenuator to simulate low C/N0 conditions in a
controlled manner. Dataset 1 consisted of five epochs of ten
minutes each, with fixed nominal attenuation levels of 0,
−10, −15, −20, and −26 dB. Dataset 2 was collected over
a period of six minutes with zero attenuation for the first
two minutes, and the attenuation decreased by 1 dB every
four seconds thereafter. There were multiple satellites visible
during collection of each dataset, and their received C/N0

values varied according to their elevation angles. Thus, there
was a wide range of signal strengths present in the collected
data.

The known signal strength condition was tested using
Dataset 1. The SPRT acquisition process was carried out for
an unused PRN code (PRN 36) in order to measure the H0

cell statistics, and estimated parameters, obtained from the
University of Calgary’s GSNRx software receiver [28], were
used to estimate the H1 cell statistics. The range of signal
strengths available in Dataset 1 allowed a good distribution
ofC/N0 levels to be considered. Figure 8 shows the simulated,
theoretical, and real signal measurements for τ0 and τ1,
showing excellent agreement between the three sets of results
and, hence, validating the simulated, and theoretical results.
The H0 results agree within ±0.2 standard deviations of the
theoretical values, with the H1 results falling within less than
one standard deviation of the equivalent theoretical results.

The effect of attenuation was investigated using signals
from Dataset 2. Repeated acquisitions were carried out on
one of the visible satellites, PRN 31, for a fixed design
point, C/ND

0 = 44 dB-Hz, with C/NT
0 varying according

to the known attenuation level, as described above. The
same process was carried out for another satellite which had
a lower received signal power, PRN 20, with C/ND

0 = 36 dB-
Hz. The results are illustrated in Figure 9, showing excellent
agreement between theoretical, simulated and real signal
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Figure 8: SPRT mean dwell time versus C/N0: simulated, theoreti-
cal, and real signal results.

results for the C/ND
0 = 44 dB-Hz case. The variation in τ1,

in the case of C/ND
0 = 36 dB-Hz, is due to the fact that the

average was taken over approximately 100–150 samples for
each data point, compared to approximately 1500 samples
for the 44 dB-Hz case. The limit on the number of samples
is, of course, due to the length of the collected data and the
dwell time requirements.

6. Comparison with Suboptimal Strategies

Returning to the motivation of the work, the goal was
to provide an accurate performance analysis for the SPRT
to allow comparison between it and suboptimal decision-
making strategies to be carried out at the design stage. The
fundamental trade-off between performance and implemen-
tation is an important compromise for receiver design and
it is considered, by the authors, to be vital that the optimally
achievable performance is accurately known, as a benchmark
against which other strategies should be compared. Now
that an accurate and efficient theoretical analysis has been
derived for the SPRT in the typical GPS C/N0 range, its
performance can be readily compared to that of other
acquisition strategies for receiver design purposes.

A simulation-based comparison between the SPRT and
the SDD was reported by the authors in [10], illustrating
that there exists a C/N0 range for which even the worst
case mean dwell time for the SPRT is less than the fixed
SDD dwell time. Here, a theoretical comparison between
the SPRT and two suboptimal up-down counter (UDC)
strategies, namely, the classical Tong detector (or single-
threshold UDC) [12] and a dual-threshold UDC strategy
[13], is presented, illustrating a use of the derived theoretical
approximation for the SPRT. The effect of mismatch of the



International Journal of Navigation and Observation 9

0−10 −8 −6 −4 −2
1

1.5

2

2.5

3

3.5

4

C/NT
0 − C/ND

0 (dB)

τ(S
P

R
T

)
1

(m
s)

Simulation

Theory

Data

(a) C/ND
0 = 44 dB-Hz (PRN 31)

τ(S
P

R
T

)
1

(m
s)

C/NT
0 − C/ND

0 (dB)

Simulation

Theory

Data

4

6

10

12

14

16

18

−8

8

−7 −6 0−5 −4 −3 −2 −1

(b) C/ND
0 = 36 dB-Hz (PRN 20)

Figure 9: SPRT mean dwell time versus attenuation: simulated, theoretical, and real signal results.

24 28 32 36 40 44 48

C/N0 (dB-Hz)

τ i
(m

s)

100

103

101

102

τ0 (DT UDC sim)

τ0 (DT UDC sim)

τ0 (DT UDC theory)

τ1 (DT UDC sim)

τ1 (DT UDC theory) τ(SPRT)
0 (theory)

τ(SPRT)
1 (theory)

τ0 (ST UDC theory)

τ1 (ST UDC theory)

τ1 (ST UDC sim)

Figure 10: Dwell time versus carrier-to-noise ratio; {P(T)
dc = 0.98,

P(T)
f ac = 10−4}.

received C/N0 relative to the design point is considered for
each strategy in the comparison.

Figure 10 shows the mean H1 and H0 cell dwell times for
a single-threshold UDC (STUDC), a dual-threshold UDC
(DTUDC), and the SPRT, under the condition that C/ND

0 =
C/NT

0 . For the UDC strategies, the value of C/ND
0 and the

desired probabilities of detection and false alarm determine
the optimal dwell parameters. Both theoretical and simulated
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Figure 11: Comparison of mean and variance of dwell time for
DTUDC, STUDC, and SPRT: τ1 (solid lines, filled markers), τ1 +
√

Var[τ1] (dashed lines, hollow markers); C/ND
0 = 28 dBHz, {P(T)

dc =
0.98,P(T)

f ac = 10−4}.

results are shown for the UDC strategies as these have not
been previously verified in this work. It is clear that, in the
case when the received and design point C/N0 values are
equal, the SPRT, as expected, outperforms the suboptimal
strategies.

Considering the case of unknown power levels, Figure 11
shows the mean H1 cell dwell time versus attenuation for
each strategy. Also illustrated in the figure is the mean plus
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one standard deviation dwell time which provides a measure
of how dwell time variance affects the performance. In this
case, it is clear that the SPRT significantly outperforms both
suboptimal strategies across the entire range of attenuation.
Such theoretically derived performance predictions can be
used by receiver designers in analysing the trade-off between
performance and computational load in the strategy choice.

7. Conclusions

In this work, a new approximation for the distribution of the
probability ratio for the SPRT with noncoherent correlation
was presented. The main advantage of this approximation
is that it provides the distribution of the probability ratio
in a simplified form which may be easily manipulated to
provide the performance metrics of the SPRT. Approximate
expressions for the parameters of the new distribution were
provided and shown to yield highly accurate results for
the performance of the SPRT. Furthermore, for the cases
considered here, the computation time required for the new
approximation was shown to be less than 1% of that required
for numerical methods with similar accuracy, validating the
usefulness of the approximation.

Using the new approximation, the theoretical perfor-
mance of the SPRT was compared to that of suboptimal up-
down counter strategies for a wide range of design points
and for varying attenuation levels, and it was shown that the
SPRT provides a superior mean dwell time performance in
the GPS C/N0 range of interest.

Appendices

A. Manipulation of Known Expressions for
Probability Ratio Distribution

Here, we manipulate known expressions involving the cor-
relator output, x, and the probability ratio, z, in an attempt
to find an integrable form for the distribution of z. Relating
the distributions of the correlator output and the probability
ratio by

∫

fz(x)(z(x),λd ,λt)dz(x) =
∫

fx(x,λt)dx, (A.1)

and differentiating, we have

fz(x,λd ,λt)
dz(x)
dx

= fx(x,λt). (A.2)

From (3), we have z(x) = −λd + ln(I0(2
√

xλd)), which can be
differentiated to give

dz(x)
dx

=
√

λd
x

⎛

⎝

I1

(

2
√

xλd
)

I0

(

2
√

xλd
)

⎞

⎠. (A.3)

By combining [29, Equations 2.3-21 and 2.3-29], we can
write the pdf of the normalised NCCD correlator output
(with K = 1) as

fx(x,λt) = exp(−x − λt)I0

(

2
√

xλt

)

, (A.4)

Table 3: Regions of convergence and maximum correlator output
value.

C/ND
0 (dB-Hz) limk→∞|ek|/|ek+1| xmax

39 0.4632 58.0293

37 0.7341 45.1286

35 1.1635 36.0558

33 1.8440 29.8072

31 2.9225 25.8072

29 4.6319 23.1259

27 7.3410 21.3224

25 11.635 19.8665

23 18.440 18.6131

21 29.225 18.473

where λt = 0 in an H0 cell and λt > 0 in an H1 cell. Sub-
stituting (A.3) and (A.4) into (A.2) and rearranging yields
the following expression for the pdf of the probability ratio,
z, in terms of the correlator output, x:

fz(x)(x,λd ,λt)

= exp(−x − λt)I0

(

2
√

xλt

)
√

x

λd

⎛

⎝

I0

(

2
√

xλd
)

I1

(

2
√

xλd
)

⎞

⎠.
(A.5)

Due to the change of variables, the expression in (A.5) is
not in a form which can be used directly in (5). If, however,
an expression for the correlator output, in terms of z, that
is, x = x(z), can be found and substituted into (A.5), an
expression for the pdf of the probability ratio, in terms of
itself and the signal power parameters, that is, fz(z,λd ,λt),
will emerge.

Manipulation of (3) gives

exp(z + λd) = I0

(

2
√

xλd

)

, (A.6)

both sides of which can be represented as power series,
leading to the following equation, whose roots are the
solution to x = x(z):

∞
∑

n=1

(z + λd)n − ((xλd)n/n!
)

n!
= 0. (A.7)

A closed form expression for x = x(z) is not realisable
from (A.7), to the best of the authors’ knowledge. Numerical
evaluation shows that the sum can be truncated at n = Nmax,
without significant loss of accuracy, where the value of Nmax

depends on λd and λt and ranges from Nmax = 10 for very
weak signals, up to Nmax ≈ 80, or greater, for nominal
GPS signal strength (approximately 44 dB-Hz [1]). As such,
solution of (A.7) is nontrivial.

Even if a closed form for x = x(z) could be found, (A.5)
is, currently, not in a form which can be readily integrated,
due to the presence of the Bessel I0(·) and I1(·) functions,
combined with the exponential term. Numerical methods
could be used. Alternatively, in an effort to find an easily
integrable form of (A.5) in terms of z, the power series
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Table 4: Truncated normal distribution model coefficients for μ0.

j 1 2 3 4 5

γ
μH0
j −0.406 −0.0669 −0.00583 −0.000344 −1.565e− 05

j 6 7 8 9 10

γ
μH0
j −6.563e− 07 −3.618e− 08 −7.117e− 10 1.126e− 10 4.138e− 13

j 11 12 13

γ
μH0
j −5.339e− 13 −1.772e− 15 8.061e− 16

Table 5: Truncated normal distribution model coefficients for σ0.

j 1 2 3 4

γ
μH0
j 0.1999 0.0108 0.000486 1.566e− 05

j 5 6 7 8

γ
μH0
j 1.739e− 07 −5.554e− 10 2.719e− 10 8.383e− 12

representations of the Bessel functions can be manipulated
and combined as follows:

I0

(

2
√

xλd

)

I0

(

2
√

xλt

)

=
⎛

⎝

∞
∑

k=0

(xλd)k

k!2

⎞

⎠

⎛
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∞
∑

j=0

(xλt)
j

j!2
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=
∞
∑

k=0

xkck,

(A.8)

where, for k ≥ 0,

ck =
k
∑

j=0

λ
j
dλ

k− j
t

j!2(k − j
)

!2 ,

I1

(

2
√

xλd

)

=
√

xλd
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⎝

∞
∑

k=0

1
k + 1

(xλd)k

k!2

⎞

⎠

=
√

xλd

∞
∑

k=0

xkdk,

(A.9)

where, for k ≥ 0,

dk = (λd)k

k!(k + 1)!
, (A.10)

which can be combined and simplified to yield

fz(x)(x,λd ,λt) = exp(−x − λt)
λd

∞
∑

k=0

xkek , (A.11)

where e0 = c0/d0 = 1 and, for k > 0,

ek = ck −
k−1
∑

j=0

ejdk− j . (A.12)

Using the definition of the upper incomplete Gamma func-
tion [25, Equation 6.1.1] and changing the order of integra-
tion and summation, we have

∫∞

x1

fz(x)(x,λd ,λt)dx = exp(λt)
λd

∞
∑

k=0

ek

∫∞

x1

xk exp(−x)dx

= exp(λt)
λd

∞
∑

k=0

ekΓk+1(x1).

(A.13)

Then, we can define

hxi
Δ=
∫ xu,i

xl,i
fz(x)(x,λd ,λt)dx

= exp(λt)
λd

∞
∑

k=0

ek
(

Γk+1
(

xl,i
)− Γk+1

(

xu,i
))

,

(A.14)

which can be used to approximate the values of hi, i =
�zmin/d�, . . . , �zmax/d�, in (5) by setting xl,i = x((i − 0.5)d)
and xu,i = x((i + 0.5)d) and evaluating

hi ≈ hxi
dz(x)
dx

∣

∣

∣

∣

x=x(id)
. (A.15)

We now appear to have an expression for the hi probabil-
ities, required for the evaluation of the ASN and OCF of the
SPRT, using the methods of Wald and Girshick or Proakis,
which does not involve the integration of Bessel functions.
If the infinite sum in (A.14) can be shown to converge, such
that we can truncate the sum at k = Kmax without loss of
accuracy, we will have a numerically solvable approximation
for (5), albeit a nontrivial one. The region of convergence
of (A.11) depends on the values of λd and λt through the
definitions of the coefficients, ck, dk , and ek). Numerical tests
show that as λd increases, the region of convergence, that is,
the range of values of x for which

|x| < lim
k→∞

|ek|
|ek+1| (A.16)

is satisfied, decreases. Conversely, the range of values of x,
over which the sum must be calculated, increases with
increasing λt . Ideally, the detector will be designed such
that λd = λt ; Table 3 shows the region of convergence
for a range of values of C/ND

0 = C/NT
0 , along with the

corresponding maximum correlator value, xmax, for which
the probability in (A.14) must be calculated. The xmax values
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listed are the values of the correlator output, x, beyond which
the cumulative probability density is less than 1 × 10−6.
It is clear from the table that, for signals stronger than
C/ND

0 ≈ 23 dB-Hz, (the region of convergence does not
contain the range of x-values for which the summation in
(A.11) must be evaluated. Consequently, truncation of the
sum without significant loss of accuracy is not possible and,
hence, (A.14) is rendered useless for practical purposes. For
very weak signals, C/ND

0 < 23 dB-Hz), numerical methods
could be used in (A.14) and (A.15) to a good approximation.
However, in these circumstances, Wald’s approximations can
be used, and these provide a much simpler approximation.

B. Truncated Normal Distribution:
Model Coefficients

Tables 4, 5, 6, and 7 list the coefficients, γ
μ0

j , γσ0
j , γ

μ1

j,i, and γσ1
j,i,

respectively, for the Taylor series models of the parameters,
μ and σ , of the truncated normal approximation for the
distribution of the probability ratio in the SPRT, in H0 and
H1 cells, respectively. The H0 coefficients are to be used in
(12), whilst the H1 coefficients refer to (9) and (11).
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