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ABSTRACT 

Collagen fibers and their component fibrils make up the protenaceous 

"backbone" of most tissues and provide the majority of their resistance to tensile 

loading. Spatial orientation of collagen fibrils is an important factor in determining 

tissue properties. This is particularly true in ligament tissue, since ligaments must 

be loose enough to allow joints to move but tight enough to prevent joint surfaces 

from separating. A normal (healthy) ligament consists of a nearly parallel 

arrangement of collagen fibrils. In contradistinction fibril distributions in ligament 

scar are highly disordered. As the ligaments heal, fibril segments are re-aligned, 

providing greater axial support. In this thesis a method is presented to 

reproducibly quantify the collagen arrangement in normal ligaments and in 

ligaments at different stages of healing. 

In this method an image made up of a number of line segments oriented at 

different angles (such as scanning electron micrographs of collagen fibers) may be 

decomposed into several component images by using Fourier domain directional 

filtering. Modeling the collagen fibers as being made up of piecewise linear fibril 

segments, sector filters spanning different angle bands are used to extract 

component images with fibrils oriented only in the chosen angle bands. A higher 

angular selectivity is achieved by removing a certain amount of low frequency 

components. Artifacts are reduced by multiplying the sector filters with a raised 
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cosine window to give smooth attenuation characteristics. The filtered images are 

then binarized and quantified in terms of area occupied by fibril segments in the 

specified angle bands to obtain angular distributions of collagen. 

An error analysis is performed to verify the suitability of this procedure by 

applying it on simulated test patterns. Results obtained from test patterns and from 

examples of scanning electron micrographs of collagen fibers in normal and healing 

rabbit ligaments are presented here. Statistical measures, such as entropy, second 

central moment, and cross-correlation are calculated from these distributions to 

quantify the axial alignment of collagen in healing ligaments. It is shown that 

these statistical measures change monotonically with healing time, approaching the 

values for the normal ligament. This is the first quantitative analysis of the 

collagen remodeling process. 

The above procedure may be applied to injured ligaments which have been 

treated in different ways (e.g., immobilization, exercise, etc.), and the rate of 

healing in each case may be determined quantitatively. This information will be 

useful to physicians in treating ligament injuries by helping to identify the factors 

which optimize collagen remodeling in the healing situation. 
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CHAPTER 1 

INTRODUCTION 

1.1 Organization of collagen fibers in ligaments 

Virtually all connective tissues in the human body are made up of variable 

forms of a fiber-filled matrix. A fiber, by definition, is a bundle of fibrils[1]. 

Fibrils consist of various sizes and shapes of chemically distinct proteins known as 

collageñ[2], with augmentation by other fibrous materials such as elastin. There is 

a complex interaction between these materials and the non-fibrous "ground 

substance" (water, proteoglycans, other glycoproteins and glycolipids, etc.) in all 

tissues, giving each tissue relatively unique mechanical properties. As with any 

composite fiber-reinforced material, the quantity and the quality, as well as the 

spatial organization of reinforcing fibers in ligaments have considerable influence 

on their mechanical behavior[3]. 

Ligaments are highly organized connective tissues that stabilize joints. They 

normally consist of nearly parallel arrangements of slightly wavy or "crimped" 

collagen fibers that are attached to bone on both sides of a joint, and serve to guide 

the joint through its normal motions while preventing its surfaces from being 

separated. Injuries to ligaments are very common, resulting in this normal, highly 

ordered structure being replaced by a relatively disordered scar tissue. This scar 

tissue has many quantitative and qualitative differences from the normal 
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ligament[4], but the relative disorganization of its constituent collagen fibers may 

be among the most critical. The loose meshwork of fibrils in the scar tissue may 

not be able to resist tensile loads within the same limits of deformation as a normal 

ligament. The injured or healing joint, therefore, may be "loose" or unstable as a 

result of a ligament injury. 

As an injured ligament heals, it is speculated that, like other. tissues such as 

skin, this "loose" meshwork of fibrils will gradually become re-aligned by a 

process known as remodeling. Thus, at different stages of healing, it may be 

expected that the distribution of collagen fibrils in the ligament would be 

increasingly different from the random distribution in early scar tissue, gradually 

approaching the alignment of a normal ligament. 

Although many qualitative and quantitative differences between normal and 

healing ligaments have been previously described in an animal model[5], the all 

important quantitative comparison of collagen alignment has not been performed. 

In order to describe and quantify these organizational differences, a standardized 

and objective method of assessment has to be developed. 

1.2 The image processing problem 

An image of a given tissue may have varying numbers of fibrils oriented in 

different angle bands, covering certain percentages of the total image area. 

Modeling the fibrils as being made up of piecewise linear segments oriented at 

various angles, we wish to break down the given image into component images, 
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each having line segments extracted from various fibrils, oriented within a specified 

angle band. This could be achieved by frequency domain directional filtering using 

the Fourier transform. 

In this thesis, the image processing requirements for quantification of the 

surface orientation of collagen fibrils in normal and healing ligament tissue samples 

along different directions are discussed. The relative fibril-covered area within 

each angular sector scanned is determined. The collagen distributions so obtained 

are analyzed quantitatively in terms of fibril alignment at different stages of healing 

of ligaments by using suitable measures of dispersion and correlation. 

In this project, only the surface orientation of collagen fibers seen on freeze-

fractured surfaces is considered. The fibers lying in lower layers, which appear 

silhouetted in the image, are considered as background. It is assumed that the 

collagen fiber distribution at deeper layers in the ligament is similar to that at the 

surface. 

Depending on the amount and the nature of "ground substance", the grey 

levels of different fibrils in the image of a tissue sample may be different. Thus, 

the procedure should be able to extract fibrils with varying grey levels in the 

component images. Further, some of the images may contain blobs of matrix 

material which are not directional in the true sense. It is desired that such lumps be 

filtered out in the component images, as they probably do not provide any 

significant resistance to tensile stress. 
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It is found in most images that there is considerable overlap between fibrils 

oriented at different directions. Such overlap should contribute to each of the 

corresponding component images. Finally, some of the fibrils in the image may 

follow smooth curves or twisting bends. The designed procedure should be able to 

break such fibrils into piecewise linear segments, or should be able to follow 

smooth bends within the defined range of angles. 

1.3 Applications 

A procedure as outlined above should find application in studies on ligament 

healing and growth. In newly injured, tissue, for example, the distribution of 

collagen fibrils is highly random while in a normal ligament these fibrils are mostly 

aligned with its longitudinal axis. The distribution of fibrils in ligaments which 

have been allowed to heal for some period of time will be between these two 

extrema, and the extent of deviation from the normal distribution may help 

quantify the current stage of healing. 

It has been postulated that the rate of healing of injured ligaments depends on 

the nature of treatment[6]. Histopathological hypotheses, such as - "exercise 

speeds healing of injured ligaments", or that "immobilization retards the healing 

process"[4] may be tested by quantitative comparison of the alignment of collagen 

fibrils at different healing intervals for different treatment modalities. 
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1.4 Thesis outline 

In this thesis, an attempt is made to put forward the basic ideas of directional 

data analysis, the design of suitable sector or fan filters, and the scope of 

applications. Brevity in discussing the problems and their solutions has been 

maintained throughout. Nevertheless, a number of plots and figures are included to 

substantiate the discussions. 

In the current chapter, a brief overview of collagen structure in connective 

tissues has been presented. The image processing problem has been defined and the 

desired features of the methods to be developed have been mentioned. Chapter 2 

describes the preparation and handling of tissues and the acquisition of images. 

The concept of directionality of objects in an image is introduced in Chapter 3. 

Different methods of directional filtering in both spatial and frequency domains are 

described, and a number of practical applications of directional filters are discussed. 

Chapter 4 discUsses different aspects of the filter design in detail. Emphasis is 

placed primarily on the significance of using a pre-filter. The component fibrils in 

the filtered images are submerged in the background, and for quantification 

purposes these component images need to be binarized. Chapter 5. discusses the 

applicability of currently available automatic thresholding schemes for this purpose. 

The results of the research work are presented in Chapter 6. Error analysis has 

been performed using test patterns to illustrate the accuracy of the filtering method. 

Different statistical measures and their usefulness in quantitative interpretation of 

the images are the topics of Chapter 7. The gradual re-alignment of collagen 
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fibrils in healing ligaments is demonstrated quantitatively. Various problems 

encountered, artifacts arising from the filtering procedures as well as tissue 

preparation, and the computational requirements of the method are discussed in 

Chapter 8. Future research directions with the technique developed are also 

outlined. 



CHAPTER 2 

IMAGE DATA ACQUISITION 

2.1 Tissue handling 

The images of the ligament samples were obtained from the Department of 

Surgery at the University of Calgary. The animal model selected was the ruptured 

and nonrepaired medial collateral ligament(MCL) in the New Zealand white rabbit 

Under general anesthesia and with sterile technique, the right MCL was exposed 

through longitudinal medial incisions in the skin and fascia. The right MCL was 

completely ruptured as described in references[5, 7] by passing a 3-0 braided steel 

wire beneath it, and failing the ligament with a strong upward pull on both ends of 

the suture. No repair of the ligament was performed and the skin was sutured. 

The left MCL was unruptured and served as a normal control. 

The injured MCL was allowed to heal for a scheduled period of healing with 

the animal being allowed normal unrestricted cage activity: The animal was then 

sacrificed by intravenous injection of 375mg of phenobarbitol, and the healing 

(right) and normal control (left) MCLs were harvested. The right and left MCLs 

were exposed through medial incisions in the skin and fascia. The MCLs were 

fixed in situ by dropping a fresh solution of 2.5% gluteraldehyde in 0.1 M 

cacodylate buffer with pH 7.4 onto their surfaces. They were then removed at their 

insertions, placed in 2.5% gluteraldehyde in 0.1 M cacodylate buffer with pH 7.4 

7 
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for three hours and dehydrated in increasing concentrations of ethanol / H20 

(30%, 50%, 75% and 100%). Each fixed and dehydrated ligament was then frozen 

quickly in liquid nitrogen and fractured longitudinally to expose the internal 

collagen fiber arrangement along its length. The fractured tissue was then critically 

point dried, aligned, mounted and sprayed with gold / palladium. In each case, the 

longitudinal axis of the tissue was distinguishable at low magnification, to allow 

orientation of high magnification photographs relative to that axis. 

2.2 Image acquisition and digitization 

Specimens were viewed under a Hitachi S-450 scanning electron microscope. 

This model of microscope allows the specimen to be moved in both x and y axes. 

Initially, the mounted tissue was viewed through the monitor at a very low 

magnification (say, 300x or 400x) and by adjusting the directional alignment 

vernier in the microscope the longitudinal axis of the ligament was aligned with the 

vertical axis ' of the photograph. Once proper alignment was achieved, the 

magnification was increased to the desired level (typically 7K), and by adjusting x 

and y axes verniers in the microscope the co-ordinates of the tissue sample to be 

photographed were suitably chosen. In order to randomly photograph each 

ligament, pairs of x and y co-ordinates were obtained using a random number 

generator. A number of photographs • (typically 10) were taken accordingly from 

the same tissue sample but at different locations. (It should be noted that the total 

area imaged is an extremely small portion of the given ligament sample, far less 
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than 1%. Also, an individual micrograph represents only a small fraction of the 

periodic "crimping" of the collagen fibers). Similarly, several photographs of each 

of the healing and normal control MCLs were taken under the same magnification. 

Some of the ligament samples were also photographed at different magnifications 

to test the sensitivity of the designed procedure to varying magnifications. 

Each of the photographs was digitized into a 256 x 256 matrix by using a 

Fairchild CCD-3000 camera with a Nikkor 55mm macro lens under the same. 

conditions of aperture and illumination, and a Colorado Video Inc. CVI 274 frame 

grabber attached to the VAX 11/750 research computer in the Department of 

Electrical Engineering. The camera uses advanced CCD (charge-coupled device) 

technology, and provides wide dynamic range and zero geometric distortion. 



CHAPTER 3 

DIRECTIONAL CHARACTERIZATION OF IMAGES 

3.1 Introduction 

It is often useful to measure and analyze the directionality of an image. Such 

measurements or analyses are usually interpreted in terms of a dominant direction 

of orientation and the degree of directionality. Different grey level statistics such 

as spatial moments and co-occurrence matrices may be used to represent the 

directional nature of an image. Using suitable image processing techniques, image 

features along certain directions may. also be enhanced or suppressed. Such 

processing may be performed either in the space domain by using convolution 

masks, or in the frequency domain by using sector filters. In general, spatial 

operations are local, while frequency domain operations are global in nature. 

In this chapter, different methods of analyzing the directionality of image 

features are discussed. Some applications of directional analysis are reviewed. 

3.2 Spatial moments 

Spatial moments of an image have been used to determine its principal 

axis[8]. In analyzing fiber images, this method may be helpful in finding out the 

dominant angle of fiber alignment. 

10 
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It can be proved that the moment of inertia of an image f (x ,y) is the 

minimum when the moment is taken about the centroid (ly) of. the image. The 

moment of inertia of the image about the line (y - y) cos8 = (x - .) sinO passing 

through (1,51) and having a slope tanO is given by 

me= [(x  —) sinO — (y _ 5T)cosej f(x,y). 
x  

(3.1) 

In order to make me independent of the choice of co-ordinates, let us select the 

centroid of the image as the origin. Then, 1= 0 and 31= 0, and the equation (3.1) 

becomes 

MO = I I (x sinO — y cos9)2f(x,y) 
x  

m20 sin2e - 2m 11 sine cose + m02 cos20 

where mij is the (ij)h order moment of the image and may be given as 

Mij = xyJf(x,y), 
x  

(3,2) 

(3.3) 

By definition, the moment of inertia about the principal axis is the minimum. 

Differentiating equation (3.2) with respect to 0 and equating to zero. gives 

m20 sin28 - 2m 11 cos28 — m02 sin20 = 0 (3.4) 

or 
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tan28 = 2m 11 
(m 20 - m02) 

(3.5) 

By solving this equation we can find the slope or the direction of the principal 

axis. 

If the input image consists of directional components along an angle i1 only, 

then 0. If there are a number of directional components at different angles, 

then 9 represents their weighted average direction. Evidently, this method cannot 

detect the existence of components in various angle bands, and is thus inapplicable 

for the analysis of healing tissues. Also, this method cannot quantify the fibril-

covered areas in the various angle bands. 

3.3 Grey level co-occurrence matrices 

In studies related to textural analysis of an image, some statistical measures 

derived from the grey level co-occurrence matrix have been used to determine the 

directionality of the textural primitives[8, 9]. If 6 = (& 4y) is the spatial 

displacement, L is the total number of grey levels in the image and P8 is an L x L 

matrix whose (i 'f )t element represents the number of times that a pixel having 

grey level i occurs in position 6 relative to another pixel having grey level j, then 

P6 is called the grey level co-occurrence matrix of the image for the displacement 

6. P5 may be normalized with respect to the total number of point pairs in f (x ,y) 

for the displacement 6. The size of P8 depends on the number of grey levels L 

present in the image, and does not depend on its size. 
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The matrices P3 for various values of 6 provide useful information about the 

spatial distribution of grey levels in the image. For example, if the diagonal 

concentration in P6 is high for 8 = (1,0) then the image possesses directional 

components along the horizontal axis. Similarly, a high concentration of elements 

along the main diagonal for S. = (0,1) or ( 1,1) would indicate the presence of 

parallel streaks at 90° or 45° in the input image. 

An estimate of the directional contrast in an image is given by 

D 
1 

LL 
1 + (i — j)2P3(i,j) 

i=1 j=1 

(3.6) 

The higher the value of D, the greater' is the number of directional components 

present in the image. For example, if an image consists of rectangular line 

segments only, then D 1. It may be mentioned here that D represents the 

directionality along the angle determined by the chosen value of S. Different values 

of 6 have to be used t0 represent the directionality of components along different 

angles. This method suffers from a number of problems. Since 6 can have only a 

few discrete values, analysis of images will be restricted to a few selected 

directions only. Further, the connectivity of line segments is not checked for larger 

values of 6. This method gives only approximate and relative measures of 

directionality. 
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3.4 Directional convolution masks 

Convolution masks may be used in the spatial domain to enhance or suppress-

directional components in the processed image[8, 10, 11]. This procedure has been 

used for enhancement of remotely sensed images[12, 13]. A 3 x 3 convolution 

mask may expressed as 

a b c 

M= d e f 

g h i 

where the parameters a to d and f to i are the weights to be applied to the 

neighboring pixels of the central pixel corresponding to the weight e. After 

convolution, the (i J )t (central) pixel value in the, image is replaced by 

33 
f(i,j) = M(k,l)f(i+k-2,j+l-2). 

k=1 1=1 
(3.7) 

If all the weights are equal, this convolution process is the same as mean filtering. 

Directional convolution masks may be constructed by proper choice of the 

weighting coefficients. If M is defined to be 

MV = 

111 

000 

then it suppresses the components along the vertical direction. Similarly, 
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Mh= 

removes the directional components along the horizontal direction. In order to 

filter out the components along 450 and 135°, the following masks may be used 

Md = 

011 1 10 

—1 01 or 1 0—i 

—1-1 0 0 —1 —1 

It is obvious that this method filtering may be performed along a few selected 

directions only. Use of larger masks allows us to increase the directional 

selectivity to some extent. However, as the size of the mask grows, the amount of 

computation increases and the accuracy of the method decreases because of the 

finite number of data points available in the discrete image space. Also, contrary 

to our need, this kind of convolution mask is a notch (rejection) filter, Hence, this 

method is not suitable for the purpose of quantification of collagen alignment in 

ligaments. 

3.5 Frequency domain directional filtering 

The two-dimensional Fourier transform (FT) of an image containing a straight 

line is a sinc function confined to a direction orthogonal to the direction of the 

line[ 14]. If an image is composed of different lines at different directions, its FT 

will have components at the corresponding orthogonal directions. If we extract the 
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components lying within the angle band (O + 900) to (e2 + 900) in the transform 

domain and then take the inverse FT, we could expect to extract from the original 

image, components lying within the angle band 81 to 82 only. Thus, to decompose 

a fiber image, we could take its FT and apply filters that form sectors in the 

frequency domain spanning the desired angle bands, and apply the inverse FT to 

the results[15]. 

The properties of the Fourier transform[14, 16, 17] that are of relevance here 

are linearity and rotation. Linearity implies that the FT of an image made tip by 

adding component images is simply the sum of the FTs of the individual 

components. Mathematically, it may be represented as 

FT [g1(x,y) + g2(x,y)] =FT [g1(x,y)] +FT [g2(x,y)J. (3.8) 

The rotational property states that when an image is rotated by a certain angle 'i' in 

the spatial domain, the FT gets rotated by an equal amount in the frequency 

domain. Let G (R ,8) be the Fourier transform of the image g (r ,4), where the two 

functions are represented in polar co-ordinates. Then the rotational property may be 

written as 

FT [g(r,+f)] = G(R,8+W). (3.9) 

An ideal directional filter consists of a sector filter in the frequency domain 

spanning an angle band 01 to 82 with the dc point in the folded spectrum as the 

vertex. The ideal filter may be expressed as 
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H(r,O)=1 for 81≤O≤02 

= 0 elsewhere. 

(3.10) 

The angular bandwidth [e1,O2] may be chosen according to the requirements. 

Figure 3.1 shows an example of an ideal sector filter. Such ideal filters, however, 

result in artifacts in the component images[15]. The next chapter describes 

modifications and preprocessing required to obtain acceptable results. 

It may be argued that a quantitative estimate of fibril-covered area along 

different angle bands in the input image could be obtained from the frequency 

spectrum by considering the angular distribution of spectral energy itself; that is, 

that the fraction of the total spectral energy lying within different sectors could 

give a relative distribution of fibril-covered areas along different angle bands. But 

this is not true, because the energy of such components will be dependent upon not 

only the area of the corresponding line segments, but also upon the amplitudes or 

grey levels of the constituent fibrils. Further, while most of the energy in the 

frequency spectrum is usually concentrated in the low frequency zone, the 

definition of angle in the Cartesian co-ordinate system (on which the discrete FT is 

computed) is particularly poor in the low frequency zone. Also, due to the finite 

width of the line segments, the spectral energy is not fully concentrated at the 

corresponding Fourier domain angle. As the line segments grow in width, leakage 

of spectral energy into other angular sectors increases. Hence, an analysis of the 

-angular distribution of energy in the Fourier domain does not necessarily reflect the 
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Fig. 3.1 : Example of an ideal 2-D sector filter for the angle band 30° - 45° (in 
Fourier space). The shaded region represents the passband with unity gain and the 
white region is the stopband with zero gain. 
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true distribution of areas of different directional components having different grey 

levels and varying fiber widths. The next chapter describes methods to overcome 

these difficulties. 

3.6 Applications of directional analysis 

In directional filtering, the objects (or signals) that are aligned at a particular 

direction are allowed to pass through the filter while the objects lying at all other 

orientations are suppressed. The concept of directional filtering is not very new in 

the literature. This principle was used more than two decades ago in extracting 

desired signals from high velocity noise in geophysical data processing[18]. Some 

of the applications of directional data analysis are briefly discussed here. 

Optical Fourier analysis has been applied to evaluate the difference between 

normal and pathologically changed bone tissues[19]. The radial distribution of 

light energy in the diffractogram contains information about the sizes and the 

distances between the collagen fibers within the bone tissue, while the angular 

distribution gives the relative position of these osteological structures. These 

diffraction patterns differ markedly for various pathological changes in the bone 

tissues. Different distance measures evaluated from the spectra have been used to 

distinguish between normal and osteopetrotic bone tissues. 

The principle of directional filtering has been used in the filtering of 

geophysical data[18, 20] and in designing fan fllters[21, 22]. Similar methods have 

been used in wide band velocity filtering, which makes it possible to process a 
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seismic record-section in such a way that all seismic events with dips in a given 

range are preserved with no alteration over a wide frequency band, while the 

events with dips outside the specified range are severely attenuated[18]. However, 

all these methods employ the implementation of the filter transfer function in the 

space domain. If we wish to extract components along different angle bands, the 

input data will have to be processed separately for individual cases. The Fourier 

transform being a global process may be used very efficiently. 

Optical diffractograms have also been used to filter out high velocity noise in 

seismic data[23-25] and for directional filtering of aeromagnetic maps[26]. When 

coherent light is passed through a transmissive recording' of data section, the 

recorded signals act as an optical grating to produce a Fraunhofer diffraction 

pattern which is the two-dimensional FT of the section itself. With suitable lenses 

the diffraction pattern can be converted into an image of the original section. By 

obstructing portions of the pattern corresponding to particular frequencies or dips in 

the section, one can remove such frequencies or dips from the reconstructed 

image[23. The optical processing is instantaneous and can be monitored easily. 

However, it needs sophisticated instrumentation and suffers due to the poor 

dynamic range of the photographic registration of the data section. 

Directional filters find applications in image coding[27J. The low frequency 

components corresponding to the uniform regions in the image may be coded in 

the transform domain. The high frequency components may be decomposed into 

many directional components, each of them presumed to contain edges belonging 
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to a limited interval of directions. Edge information due to a line segment in an 

image resulting from such filtering is located at the zero crossings in the spectrum, 

taken in the direction orthogonal to that in the space domain. Image decoding is 

performed by synthesizing the directional edges from the coded zero crossing 

information and then superposing it on the image obtained from the low frequency 

components. Efficiency of this coding scheme depends on the directional nature of 

the encoded image. 

Directional filtering has also been used for selecting features to describe 

textures[28]. Its application to the representation of textures is justified by the fact 

that directional edge information plays .an important role in texture discrimination. 

Various features evaluated from the directional edgeness of the image can be used 

to classify different textures. 



CHAPTER 4 

FILTER DESIGN 

4.1 Data windowing 

Initial attempts towards directional decomposition of collagen fiber images 

using ideal sector filters[15] indicated the feasibility of the approach as introduced 

in the previous chapter. However, the results suffered from a number of artifacts 

(e.g., ringing artifacts, smearing at both ends of the fibril segments and interference 

from adjacent angle bands) due to the use of ideal filters as shown in Figure 3.1, 

and the absence of data windowing,  among other reasons. Improved filtering and 

data windowing procedures[29] led to better results. 

The size of the images analyzed is typically 256 x 256 pixels. For improved 

frequency resolution, the image is placed at the center of a 512 x 512 array with 

the rest of the points set to the mean grey level of the image, instead of padding 

with zeros. The image pixels are then multiplied with a modified Blackman-Harris 

window[30, 31] to reduce spectral leakage in computing the FT of the image. The 

modification to the Blackman-Harris window, as shown in Figure 4.1, prevents the 

actual image data points from getting multiplied by the window coefficients.' If the 

image data points are directly windowed, the points lying near the periphery of the 

image will be multiplied by very small coefficients and fibril segments near the 

image boundaries will be suppressed in the filtered component images. It may be 
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mentioned here that the fibril segments appear amidst a reasonably uniform 

background, and hence the data points in the filtered images cannot be multiplied 

by the reciprocal of the window coefficients to take account of effects of 

windowing on the input data. Any attempt to do this would enhance the darker 

background at the periphery appreciably and may even suppress the fibril segments 

existing in the filtered image. 

The usage of such a window is justified by experimentally verifying its 

performance. A set of data points representhig a cosine function and shifted by a 

dc value was polluted by adding a zero mean random Gaussian noise. The SNR of 

the data sequence was 17 dB and the length of the sequence was chosen to be 256. 

The data sequence was placed in the center of a 512 point FT array. Figure 4.2 

shows the data sequence. The power spectral density function (PSDF). for this data 

sequence was evaluated by using 512 point FT for three cases. 

(1). In the first case, no modification to the input data was performed (equivalent 

to the use of a rectangular window) and the array was padded with zeros. 

The resulting PSDF is given in Figure 4.3: 

(2) In the second case, the input data were padded with the mean value of the 

data sequence and then the data points were multiplied by the coefficients of 

the Blackman-Harris window[30]. The PSDF of the windowed data sequence 

is given in Figure 4.4. 

(3) Lastly, the input data sequence was padded with the mean value of the 

sequence and only the padded points were multiplied by the modified 
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data sequence 

Fig. 4.1 : Modified Blackman-Harris window for 512 sample points. The flat region of 
256 points at the center prevents the actual image data from being windowed. The data 

points are multiplied both rowwise and columnwise by the square root of this function. 

25-

20-

la- 

5-

01  
0 

I 

12$ 25$ 

IL 

data sequence 
314 512 

Fig. 4.2 Example of a sinusoidal data sequence of 256 sample points with added zero 
mean random Gaussian noise. The SNR is 17 dB. The sequence is given a dc shift. 
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Fig. 4.3 : PSDF of the noisy data sequence using rectangular window. The signal is 
barely visible in the spectrum. 
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Fig. 4.4 PSDF of the data sequence using Blackman-Harris window. Notice the high 
side lobe suppression in the spectrum. 
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Blackman-Harris window shown in Figure 4.1. The resulting PSDF is given 

in Figure 4.5. 

It is apparent from Figures 4.3 to 4.5 that the Blackman-Harris window gives 

the best results as the frequency component present is highly distinguishable from 

the spurious noise peaks. The PSDF obtained by using the rectangular window is 

very noisy and the signal is almost buried in the noise. Use of the modified 

Blackman-Harris window suppresses the spectral noise appreciably and one can 

easily distinguish the signal in the spectrum from the noise peaks. Although the 

result obtained by using the modified window has somewhat inferior side lobe 

suppression characteristic compared to that obtained by using the conventional 

Blackman-Harris window, it retains higher spectral resolution. 

The effects of using such a window on an image were studied using a real 

fiber image consisting of different fibril segments with varying lengths, widths, 

grey levels and orientations. The fiber image is given in Figure 4.6. The FT of this 

image using a rectangular window is given in Figure 4.7. Figure 4.8 shows the FT 

of the image using the modified Blackman-Harris window. As seen in Figures 4.7 

and 4.8, spectral leakage is reduced by using the latter window. Hence, it may be 

inferred that the use of the modified Blackman-Harris window helps in reducing 

spectral leakage to some extent, and at the same time retains some of the 

advantages of not windowing the input data. 
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Fig. 4.5 : PSDF of the data sequence using. modified Blackman-Harris window. The 

presence of the frequency component in the signal is highly perceptible. 

Fig. 4.6 : A representative image showing collagen alignment in a normal ligament. 



Fig. 4.8 : Fourier spectrum of the image in fig. 4.6 using the modified Blackman-
Harris window. 
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4.2 Prefiltering of the spectrum 

Let us assume that an image f (x ,y) consists of a rectangular line segment of 

length Y, width X (given X <Y) and grey level G only. The image may be. 

mathematically expressed as 

f(x,y)=Grect(x IX) rect(y/Y) (4.1) 

where 

rect(k/K) = 1 forlk I ≤K/2 

= 0 elsewhere. 

The power spectral density function (PSDF) of the image is given by 

IF(u,v)I 2 = G2X2Y2 sin (iruX)sin(irvY) 12 I. 
(iruX)('cvY) 

(4.2) 

The PSDF may be expressed in polar coordinates with the change of variables 

U = p cose and v = p sine as 

IF (p,e) 12 = sin (irpX cose)sin (ipY sine) 12 
(itpX cose)(tpY sine) 

(4.3) 

From equation (4.3) we may derive two useful functions, namely, the cumulative 

radial distribution of energy, Nf(R) and the angular distribution of energy 0, (0). 

Using the conjugate symmetry of the FT for real input data, they may be given as 
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and 

R  

111(R) = 25$ IF(p,O)I 2d9dp 
00 

00 

(4.4) 

r(9)=2fIF(P,9)I 2dP for 9 e[0,J (4.5) 

where r is the cutoff frequency up to which the low frequency components have 

been removed from the spectrum. 

From equations (4.3) and (4.5) it is evident that the function 4r (9) has two 

local maxima corresponding to 0 = 0 and 2t/2, one of them being the principal 

maximum and the other one being the secondary. The relative weights of these two 

peaks depend on the ratio Y IX. The higher the value of Y IX, the greater is the 

amplitude difference between the peaks and the greater is the amount of energy 

concentrated in a particular direction. Equation (4.5) was evaluated numerically 

and the function 4r --O(0) is plotted in Figure 4.9 for different values of the ratio 

Y/X. From these plots, it may be inferred that the directionality of an individual 

line segment at a given angle depends only upon its length-to-width ratio. Also, it 

is important to note that even for higher values of Y/X, we have some spectral 

energy at all 0. This is even more true in the case of the discrete FT which suffers 

appreciably from spectral leakage. Hence, any attempt to extract a line segment 

directed at an angle f3 by constructing a sector filter (90° + 3) ± 8P will lead to loss 

of some spectral information and may eventually bring in some artifacts in the 

filtered image. 
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Now, consider the case of an image consisting of two non-overlapping 

rectangular line segments of identical dimensions with width X, length Y and grey-

levels G1 and G2 respectively, one of them being aligned along the vertical axis of 

the image and the other one being rotated by an angle 8k from that axis. Using the 

linearity and rotational properties, the FT of this image may be expressed as a 

superposition of two individual distributions 

F2(p,9) = G1F1(p,O) + G2Fl(p,O —Ok) (4.6) 

where 

F1(p,8) = sin (i'cpXcosO)sin (irpYsinO)  
(irpcosO)(itpsin8) (4.7) 

In other words, F i(p,O) is the FT of a rectangular line segment. of unit grey level 

in polar coordinates. 

From equations (4.5) and (4.6) it is evident that the corresponding angular 

energy distribution function r (8) has two principal maxima for 8 = 0 and 0 = 

A minimum lies between them at 8 = em. For example, if the line segments have 

identical grey levels (i.e., G1 = G2) then 8 = 8k'2• An index of angular 

separability of the two distributions (due to two line segments in the composite 

image) has been defined in reference[32] as 

= 4r (0) + r (8k) - 2 r (8m) 

?Pr (0)r(Ok) 
(4.8) 

If the value of S is high, it is likely that the two line segments could be separated 
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in the filtered images with reduced artifacts. The value of this index depends on the 

relative grey levels and the dimensions of the individual line segments. Evaluation 

of this index involves complex mathematics and may be found in reference[32]. 

However, some trends of the expected behavior of the angular separability are as 

follows: 

(1) for a given value of 0k' the. narrower the line segments (i.e., the higher Y/X), 

the better is the separability, and 

(2) distributions of quasi-square segments are difficult to separate, whatever may 

be the angle between them. 

So far nothing has been mentioned about the implication of the parameter r in 

equation (4.5) and it has been assumed to be equal to zero. What happens when we 

obliterate a circular region at the center of the spectrum? The angular energy 

distribution function or (8) was calculated with different values of r for a simulated • 

test. pattern having line segments with varying lengths, widths, grey levels and 

orientations (given in Figure 4.10), and is plotted in Figure 4.11. From these plots 

it may be observed that the angular separability increases with higher values of r. 

But, a certain amount of spectral energy has to be retained for a meaningful 

reconstruction of the filtered component images, and for the artifacts due to high 

frequency noise to be at a relatively low level. The cumulative radial energy 

distribution function V(R) is given in Figure 4.12 for the fibril image in Figure 4.6. 

It shows that most of the spectral energy is confined within a small radial disc, and 

hence care must be taken while selecting a suitable cutoff. The optimum value of 
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45 90 135 

angle in degrees 

A=1.4 

180 

Fig. 4.9 : Angular energy distribution (theoretical) for rectangular line segments with 
varying length-to-width ratios (A). As this ratio decreases, there is an increased 

spreading of spectral components. 

Fig. 4.10 : Example of a simulated test pattern with rectangular line segments of 
varying grey levels, oriented at different directions. 
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Fig. 4.11 Plot to show the increase in angular selectivity with the removal of low 
frequency components for the image in fig. 4.10. The energy within different angle 
bands of width 15° is given in the form of a bar-graph. Here, r is the radius of the 
low frequency zone removed from the spectrum. 
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Fig. 4.12 Cumulative radial energy distribution W(R) for the image in fig. 4.6. 
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r also depends on the angular distance (Ok) between the two distributions and on 

the length-to-width ratios of the line segments. 

The removal of low frequency components from the spectrum of the image 

results in greater angular selectivity and avoids three problems: (a) overlapping of 

low frequency components at all angle bands (as shown in Figure 4.9), 

(b) interference from the components lying in the adjoining angle bands due to 

very coarse definition of angle in the rectangular coordinate system for the low 

frequency zone, and (c) contributions to the low frequency zone due to the 

presence of undesired quasi-circular lumps of matrix materials in a collagen fiber 

image. However, the choice of this cutoff frequency for a real fiber image is 

complicated due to the following facts: 

(1) The fiber image may contain a number of line segments (fibrils) having 

different dimensions and grey levels. 

(2) Different component images may have varying amounts of fibril-covered 

areas. 

(3) We may have considerable overlap between fibrils oriented at different angle 

bands. 

Low frequency components in the spectrum constitute the background 

information and the high frequency components correspond to the edges in the 

image. Removal of too much of low frequency components may result in the 

suppression of thick fibril bundles and the recovery of only edges in the filtered 
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images. 

In view of the above considerations, a sixth order Butterworth highpass filter 

is used to remove low frequency components from the spectrum. Also, a fourth 

order Butterworth lowpass filter is used to reduce high frequency noise. The lower 

and upper cutoff frequencies fL and fH of the filter depend on the nature of the 

image being analyzed. Thus, the image, before being passed through the sector 

filter, is prefiltered with a bandpass filter, a radial section of which is given in 

Figure 4.13. It has been mentioned earlier that the removal of low frequency 

components tends to suppress the background information in the filtered images. In 

order to circumvent this problem, the lower frequency components passed by the 

filter shown in Figure 4.13 are weighted more than the higher frequency 

components by a linear function. The net filter function is thus given by 

(1 1fr)  

H(fr) - ([1 + (fL 1fr)[1 + (fr/fH)]) 112 (4.9) 

where - 

13 = slope of the weighting function, 

fr = normalized radial frequency, 

m = order of Butterworth 11FF = 6, and 

n = order of Butterworth LPF = 4. 

Optimum values of fL' fH and 13 were obtained experimentally by analyzing 

a number of images. 
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I 

normalized frequency 

Fig. 4.13 : A radial section of the bandpass filter used, which comprises a 4th order 
Butterworth LPF withfH = 0.5 and a 6th order Butterworth HPF withfL = 0.02. The 
frequency scale is normalized with respect to the maximum radial frequency. 
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4.3 Design of the sector filter 

For directional filtering, the components lying outside the desired angle band 

01 < 0 < 02 are to be rejected. Use of an ideal sector filter leads to ringing and 

smearing artifacts[15]. In order to overcome this problem, the sector filter is 

multiplied by a raised cosine window[30]. The width of the cosine window is 

normalized with respect to the specified angle band and the function is independent 

of radial distance of the points. The window function may be mathematically 

expressed as 

W(0) = cosa(° eo 7t); 0 C [8 1 , 82] 

(4.10) 

= 0 otherwise 

where - 

8 = angle subtended by the FT sample considered, 

= (82 + 0)/2 = center of the desired angle band, and 

B = 82 - 81 = chosen angular bandwidth. 

For cx = 1.0, the window coefficients are very low for the components lying 

near the two limits of the specified angle band, and the line segments 

corresponding to these angles may not appear in the filtered image at all. To 

alleviate this problem, a raised cosine window with a = 0.5 is used. 

For the purpOse_of directional decomposition of collagen fiber images, the 

angular bandwidth B is chosen to be 15°. The composite image is decomposed 

into twelve component images spanning the angle range 0° - 180°. Following the 
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sector filtering, the inverse FT of the spectrum is computed and the filtered images 

are suitably thresholded and binarized (as discussed in the next chapter) to 

represent fibril-covered areas only. A count of the number of pixels belonging to 

the fiber class quantitatively represents the fibril-covered area in the chosen angle 

band. Such measures obtained for all angle bands spanning 0 to 180 degrees for a 

given image would describe the distribution of collagen fibrils completely. 



CHAPTER S 

AUTOMATIC THRESHOLDING SCHEMES 

5.1 Introduction 

After filtering a composite image into different directional components, the 

fibril segments appear amidst a darker background in the corresponding filtered 

images. Since it is desired to evaluate the total area occupied by the fibril segments 

at a given direction, the filtered images have to be binarized by using suitable 

thresholds. The number of pixels belonging to the object class gives a measure of 

the desired fibril-covered area. 

In the ideal case of a bright object superimposed on a dark background, the 

grey level histogram presents two peaks. that are easily distinguishable. The choice 

of threshold for object detection is straight forward, being a point in the 'valley of 

the histogram. However, for most real images the thresholding process is not as 

simple, as the histogram provides only first order statistical information, 

disregarding the semantic content of the image. Further, the histograms are almost 

never bimodal. 

• In quantifying the fibril-covered areas in various component images, it is 

desirable to have a standard criterion to determine the suitable threshold values. 

Use of an automatic thresholding scheme for this type of pixel classification will 

make the procedure free from personal biases. This would enable a non-technical 
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person to use the procedure and to interpret the results. 

Four major types of algorithms are available in the current literature for 

automatic threshold selection. In the first type, the input image is initially 

enhanced by manipulating each pixel using a certain neighborhood. The Laplacian 

or some other gradient operation is performed on the image to extract edge 

information{11, 14,33-38]. The pixels are modified in a way that leads to a well-

shaped histogram, when selection of the threshold is no longer a difficult job. 

In the second type, a parametric model is developed for the histogram of the 

given image[8]. The histogram is approximated to be the superposition of a few 

Gaussian distributions in a least-square sense, and then a statistical decision 

theoretic method is used for classification. But these methods are tedious, and like 

all numerical algorithms, tend to be unstable. Hence these methods were not tried. 

The third type of thresholding procedures use relaxation algorithms [8, 39]. 

These are iterative procedures, and make use of pixel neighborhood properties in 

the input image. The pixel value is modified iteratively according to some a priori 

knowledge of the belongingness of a pixel to its associated neighborhood. The rate 

of convergence of such procedures is high. These algorithms sharpen the valley in 

the resulting histogram. However, in some cases, these methods could be 

unsuccessful. 

Algorithms of the fourth type deal with the histogram of the given image 

only, and do not need any a priori knowledge about the image. Such a method 

remains the same for different kinds of images, and thus is probably the most 
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suitable scheme for unsupervised and automatic thresholding. An optimal threshold 

is obtained by optimizing a few parameters under certain constraints[40-44]. 

Segmentation based on thresholding may suffer from three types of errors[45]. 

If the input " image is thresholded at some lower value than the actual one (not 

known precisely), the binarized image may contain fictitious segments which were 

not present in the original image. On the other hand, use of a higher threshold 

may remove some of the segments which were actually present in the original 

image. Finally, the thresholded segments get distorted for a particular threshold, 

when fictitious segments appear and some true segments disappear in the binarized 

image. This is the most difficult problem in thresholding and it may not be always 

possible to prevent this kind of error. 

For the purpose of thresholding the component fibril images, a number of 

currently available thresholding algorithms belonging to different classes were 

tried[8, 35-38,41,43,44]. Unfortunately, none of them yielded completely 

satisfactory results. A few of these algorithms are briefly discussed in the 

following sections. 

5.2 Entropy considerations 

Pun[42] put forward a new method of image segmentation uing the entropy 

of the grey level histogram. Further modifications to this automatic thresholding 

algorithm have been proposed[43]. The modified thresholding scheme tries to 

maximize the information between the object and the background distributions of 
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grey levels in the given image. 

Let k be the proposed grey level, L be the total number of grey levels in the 

input image, pi be the probability of occurrence of the Ph grey level, P k be the 

cumulative probability of occurrence up to the k' grey level, H(j) be the total 

entropy for the grey level distribution in the Jt2 class (j =0 or 1), and FI be the 

entropy of the entire histogram. We may then write the following equations 

k 

PA; =  pi, 
i=1 

L 

H  Pi log pi, 
i=1 

and 

H(0) = - log 
i=1 Pk Pk 

:;- [I Pi k log  'k 109 Pk 

= log Pk + 

where 

Hk 

Pk 

k 
Hk Pi 10gp1. 

i=1 

Similarly, 

(5.1) 

(5.2) 

(5.3) 

(5.4) 



44 

H(l) = - L - log - 

Pi  A 

Pk 1 

log p - (1 - "k) log(l - "k) 
!=k+1 

=log(l - Pk)+ H - Hk 

(5.5) 

If the function xi(k) is defined to be the sum of the entropies of the two classes 

H (0) and H (1), then from equations (5.3) and (5.5) we may write 

= log Pk (l - 1'k) + Hk - + H — Hk (5.6) 

The discrete value of k which maximizes qr(k) is the desired threshold value. The 

binarized image will have the maximum entropy or the maximum amount of 

information for a given image. 

5.3 Moment-preserving thresholding 

A new approach to automatic thresholding using the moment-preserving 

principle has been suggested by Tsai[44]. The threshold values are computed 

deterministically in such a way that the moments of an input image are preserved 

in the output (binarized) image. This approach may be regarded as a moment-

preserving image transformation which recovers an ideal bilevel image from a 

blurred one. 
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Let pi be the probability of occurrence of the Ph grey level, L be the total 

number of grey levels in the image, and m be the Jtlz order moment of the image. 

The different order grey level moments may be defined as 

(5.7) 

The input image can be considered as a blurred version of an ideal bilevel image 

consisting of only two grey levels z0 and z1, where z0 cz z 1. This method selects 

threshold value such that if the image is binarized to the grey levels z0 and z1, 

then the first three ,moments of the image are preserved in the resulting bilevel 

image. Hence, if P0 and P1 correspond to the probabilities of the resulting classes 

in the binarized image, we may write the following four equations 

Po + Pi = 1, 

P0z01 + P1z11 MI, 

P0z + Piz? m2, 

P0z + Piz? = m3. 

(5.8) 

These nonlinear equations may be solved for the four unknowns P0, P1, z0 

and z1 by using the methods described in reference[44]. Once P0 has been 

evaluated, the equation 
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(5.9) 

may be solved for the discrete value of k, which is the desired threshold. 

5.4 Probabilistic Relaxation Method 

This algorithm[8] makes fuzzy or probabilistic classification decisions at every 

point in the image in parallel at each iteration, and then adjusts these decisions 

during successive iterations based on the decisions made in the preceding iteration 

at neighboring points. 

Considering the binarization of an image, there are two output classes CO and 

C1. The thresholding is assumed to be independent of direction. For each point A1 

there are only two probabilities pi  and pi I = 1 -  pi  o of being classified in C0 or 

in C 1. Consequently, there exist four kinds of class compatibilities 

c, c01, C10 and c11, where cU denotes the probability of a pixel belonging to 

class C1 being classified in C. The compatibility functions c11 can have values in 

the range (- 1,1), negative values denoting incompatibility. 

The procedure starts with an initial probability estimate pj(0) as the 

normalized grey level of the pixel within the range [0,1]. For symmetrical cases 

coo = c11 and c10 = c01. For the binarization of the fibril component images 

c11 = 0.8 was found to be optimal. Then c01 = 1 - c11 > 0. After each iteration 

Pij is incremented or decremented according to the user-defined compatibilities. 

The increments at the r th iteration are defined as 
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q1 r) [cçjijpjo +c o1pj1] (5.10) 

and 

q1(() = [c10 Pio + C11 p] (5.11) 

where the summation is carried out over the defined neighborhood and qij is the 

iterative increment for the corresponding pixel i towards the class j. To ensure 

that after modification the value of pij does not become negative or greater than 

unity, it is normalized as 

p(r+l) - p(r)(1 + q1)) 
Ij 

- p(r)(1 + q1 r)) (5.12) 

where the summation is carried out over the neighborhood of the pixel A1, j being 

class zero or one. 

As the iterations progress, the resulting grey level histogram attains the shape 

of two isolated peaks separated by a flat valley. After the rh iteration the image 

may be binarized by classifying the i1 pixel to class CO if Pi < 0.5, or to class 

C1 otherwise. 

5.5 Inter-class Variance Maximization method 

This is a nonparametric and unsupervised method of automatic threshold 

selection for image segmentation. An optimal threshold is selected by the 

discriminant criterion so as to maximize the separability of the resultant classes in 

grey level[41]. This algorithm makes use of only the zeroth and first order grey 
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level statistics. 

Let 

L = total number of grey levels, 

pi = probability of occurrence of grey level i, 

k = intended grey level threshold, 

o (k) = probability of occurrence of class C for the threshold k, 

= mean grey level in class C, and 

L 
= F, 1 p = mean grey level in input histogram. 

i=1 

Then, 

and 

where 

k 
o0(k) = pi Col(k) = p1 = 1 - o0(k) 

1=1 i=k+1 

k 

= (k) j pi = g(k) / O)0(k) 

k 

P• 
1=1 

(5.13) 

(5.14) 

(5.15) 

ji(k) denotes the first order moment of the histogram up to the ktul grey level. 

Similarly, 

- - p(k) 

' l—o0(k) 

From the above relationships it is seen that 

(5.16) 
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o0(k).t0 + 01(k) g, P-T (5.17) 

After thresholding, the resulting image has only two grey levels. The 

probabilities of occurrences of Co and C1 are given by o)0(k) and co1(k). The 

variance of the data points in the binarized image is denoted by (k), which may 

be evaluated from the following expression 

= O)0(k) (go - P-T)2 + o1(k)( - 9T )2. (5.18) 

Substituting the values of gj and 01(k), (k) is given as 

[Ji.Tu0(k) - 

o(k) = 
- O)0(k)J 

(5.19) 

Now, 1(k) is a measure of global contrast achieved by thresholding the 

image at grey level k. Hence, this quantity may be called inter-class variance. The 

total variance for a given histogram is a constant and is given by the sum of intra-

class and inter-class variances. The main objective of this algorithm is to minimize 

the intra-class variances which will automatically ensure the maximization of 

inter-class variance. In other words, the aim is to minimize the probability of a 

point belonging to a class being assigned to the other class. Now, the optimal 

threshold is given by T where 

o(T) = max[o(k)]. (5.20) 
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It should be mentioned here that in equation (5.19) k = 1 and k =L correspond 

to two trivial solutions and should be neglected. Since pi is non-negative and 

bounded, a maximum always exists within the interval (1,L). 

5.6 Performance of different thresholding schemes 

The first two automatic thresholding schemes discussed are suitable for 

images with histograms having distinctive peaks and a valley in between. The 

filtered fibril component images usually do not have any flat valley region in the 

histogram, and hence these two algorithms failed in most cases. 

Unlike the first two algorithms, the probabilistic relaxation method is 

neighborhood-dependent, and edgeness criteria may be included while thresholding. 

Since each point in the input image has to be dealt with individually, the 

computation time is naturally more than that for the inter-class variance 

maximization method. However, the speed may be increased appreciably by using 

parallel processors[8]. The method is reported to be more powerful than non-

iterative methods as it refines itself after each iteration based on local context. This 

algorithm has been found to converge fast enough for all practical cases (typically 

six to seven iterations). 

The initial assumption of pij as the probability of the i1h pixel being classified 

to class j may lead to erroneous results when most of the grey levels in the given 

image lie on one side of the grey scale midpoint; the binarized image becomes 

either over-thresholded or under-thresholded. This method should only be applied 
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to images that have substantial grey level population on both sides of the grey level 

midpoint. A long trail of low counts in the histogram of the input image could 

render this method inapplicable. 

The histograms of the filtered fibril images usually have a long trail because 

of the nature of the background in the component images. Hence the relaxation 

method does not give a good result when the fibril-covered area in the component 

image is low. Let G be the grey level at which the normalized histogram attains a 

value ilL (L is the number of grey levels in the input image) for the first time 

starting from the lower end. To overcome the problem mentioned above, we may 

clip all pixels having grey levels lower than G to G. This gives good results for 

filtered images with component fibrils occupying smaller areas. However, it fails to 

analyze component images for the normal tissues along the dominant directions. 

The inter-class variance maximization method (referred to as Otsu's method 

hereafter), in general, yields better results than any of the other three methods. This 

method gives good results for filtered images with a significant amount of fibril-

covered area. For other cases, the obtained threshold was always found to be lower 

than the most suitable threshold obtained manually by trial and error. This method 

is the most appropriate for binarization of the component fibril images. However, 

to guard against errors due to the above limitations, the threshold value given by 

the method was used only as an initial estimate, and the actual threshold was found 

iteratively. 



CHAPTER 6 

RESULTS 

6.1 Application to test patterns 

The filtering procedure was initially applied to the simulated test pattern 

shown in Figure 6.1. The test pattern has line segments (fibrils) with various 

lengths, widths and grey levels at four different angles, namely at 00, 450, 90° and 

135°. These parameters were chosen to represent characteristics of individual and 

grouped fibrils, and to study the performance of the filtering methods under varying 

conditions. The FT of this test pattern is given in Figure 6.2. The FT shows the 

presence of frequency components along directions orthogonal to the above 

mentioned directions as expected. The cutoff frequencies fL and fH for the initial 

bandpass filter were chosen to be 0.006 and 0.500, where the frequency scale has 

been normalized with respect to the maximum radial frequency in the spectrum. 

The value of f, the slope of the linear weighting function in equation (4.9), was 

chosen to be 0.7. Figure 6.3 shows a component image obtained using the filtering 

procedure described previously with the angle band 125° - 140° in the Fourier 

plane. Clearly, only those lines oriented at 45° (in the image plane) have been 

passed. The corresponding binarized image, using the threshold value given by 

Otsu's ' method of automatic threshold selection, is shown in Figure 6.4. 

Figures 6.5 and 6.6 show similar components (binarized) extracted from the 
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Fig. 6.1 A synthesized composite image with fibrils (lines) oriented at four 
directions 0, 45, 90, and 135 degrees. The line segments have different grey levels. 

Fig. 6.2 Fourier spectrum of the image in fig. 6.1. The presence of directional 

components is evident from the spectrum. 
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Fig. 6.3 : Result of application of the directional filter spanning the angle band 
125° - 1400 (in Fourier space) to the image in fig. 6.1. The filtered images have been 
scaled to the display range of 0-255 (integers). 

Fig. 6.4 Thresholded and binarized component image obtained from the image in 
fig. 6.3. 
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Fig. 6.5 : Thresholded and binarized component image for the angle band 800 - 950 

(in image space) obtained from the image in fig. 6.1. 

Fig. 6.6 : Thresholded and binarized component image for the angle band 125° - 1400 

(in image space) obtained from the image in fig. 6.1. 
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composite image for the angle bands 800 - 950 and 125° — 140° (in the image 

plane) respectively. 

A close look at these component images will reveal that a region of overlap 

of lines oriented at different directions contributes to each direction. The 135° 

component image in Figure 6.6 has the maximum error as the grey level of this 

component is very low compared to those of the others. The quantitative 

distribution of fibril-covered area along different directions in the analyzed test 

pattern is given in Table 1. The true fibril-covered areas, which include 

overlapping, are also given in the table. Table 1 shows that, except for the 135° 

component, the errors are reasonably small. 

It may be argued here that the input image may be thresholded and binarized 

before being analyzed to overcome the grey level dependency of the above 

procedures. However, the binarization process may remove some weak fibrils from 

the input image. Further, the FT of the binarized image may introduce a 

significant amount of aliasing and other artifacts. 

The accuracy of the method was further substantiated by applying it to the 

simulated test pattern given in Figure 4.10. In this pattern the line segments do not 

run from one end to the other end of the image, thus allowing the effect of 

smearing artifacts at both ends of the segments to be visible in the component 

images. The filtered component images were found to have negligible effects due 

to smearing artifacts. The quantitative distribution of fibril-covered area along 

different directions in this analyzed test pattern is given in Table 2. The component 



57 

Table 1: Distribution of fibril-covered area in the synthesized composite image in 
fig. 6.1. 

Angle Band True Area 
(pixels) 

Computed Area 
(pixels) 

Percentage Error 

350 _500 12528 11984 -4.34 

80° - 950 29952 29046 -3.03 

125° - 140° 9486 6774 -28.59 

170° - 180° 10240 10549 3.02 

Table 2 : Distribution of fibril-covered area in another test pattern given in fig. 4.10. 

Angle Band True Area 
(pixels) Computed Area 

(pixels) Percentage Error 

0° - 15° 331 370 11.8 

15° - 30° 2601 2674 2.8 

450 - 60° 2301 2258 -1.9 

75° - 90° 798 880 10.3 

105° - 120° 1872 1646 -12.1 

135° - 150° 812 820 1.0 
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corresponding to the angle band 105° - 1200 has a large error due to the fact that 

the actual line segment is aligned exactly at 1200. The weighting function for the 

sector filter W(120°) in equation (4.10) being equal to zero, the defined sector 

excludes a substantial portion of the energy in the spectrum of the corresponding 

components. This leads to a poor filtered image. 

6.2 Application to ligament tissue samples 

Since the collagen fiber images usually have poor contrast, the images were 

first histogram equalized to improve their global contrast. After• some 

experimentation, optimum values of fL = 0.02 and fH = 0.5 were determined for 

the initial bandpass filter, which were used on all the fiber images analyzed. 

Figure 6.7 shows the output of the directional filter after binarization for one of the 

dominant angle bands (75° - 90°) in the image space for the normal ligament 

image shown earlier in Figure 4.6. For the purpose of illustration, one more 

binarized component image for the angle band 30° - 45° is given in Tigure 6.8. 

Figure 6.8 shows that the procedure has been able to detect small and weak stray 

fibrils also. Pioceeding in the same way, directional components at all angle bands 

were obtained. (The automatic thresholding method had limited success - more 

details are presented in the Chapter 8). The results are given in Figure 6.9 as a 

rose diagram[46]. This diagram, displaying relative fibril-covered areas in the 

various angle bands used, shows that most of the fibrils in the normal tissue lie 

close to the long-axis of the ligament (90°). 
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Fig. 6.7 : Binarized component obtained from the image given in fig. 4.6 for the angle 
band 75° - 900 (in image space). 

Fig. 6.8 Thresholded and binarized component image for the angle band 30° - 45° 
(in image space) for the image in fig. 4.6. 
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Figure 6.10 shows an image of an injured ligament after one week of healing 

and Figure 6.11 shows its FT. It is readily seen that the collagen fibers hôre do not 

have any dominant orientation. Figure 6.12 shows the filtered output (binarized) 

for the angle band 750 - 90°. Again, to qualitatively illustrate the efficacy of the 

algorithm, one more binarized component image for the angle band 30° - 45° is 

given in Figure 6.13. The quantitative results obtained for all the angle bands are 

represented in' Figure 6.14 as a rose diagram. It is seen that the distribution of 

collagen fibrils in the healing tissue, at this interval of healing, is highly random. 

Distributions as above were obtained for all images available in the normal 

(20 images) and one week healing (18 images) ligament groups. The rose diagrams 

of the average angular distribution of collagen fibrils for these two classes of 

ligament samples are given in Figure 6.15. , The average distributions for the two 

classes demonstrate properties similar to those of the respective images presented 

in Figure 6.9 and 6.14. 

Proceeding in the same way, images of ligament samples corresponding to 

different stages of healing (namely, three weeks, six weeks and twelve weeks) were 

analyzed and the average distributions of collagen fibrils for these classes were 

obtained. The rose diagrams for these average distributions are given in 

Figure 6.16. These diagrams indicate quantitatively the process of collagen re-

alignment with healing. Further quantification of these distributions is discussed in 

the next chapter. 
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Fig. 6.9 : Rose diagram representing the relative angular distribution of fibril-covered 
area for the image in fig. 4.6. The axis of the ligament is at 90°. 

Fig. 6.10 : A representative image showing collagen alignment in a one-week healing 
ligament. 
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Fig. 6.11 : Fourier spectrum of the image in fig. 6.10. The energy in the spectrum is 
distributed in all directions, indicating that the fibrils in the tissue sample are scattered 
at random. 

Fig. 6.12 : Binarized component image for the angle band 750 - 90° (in image space) 
for the image in fig. 6.10. 
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Fig. 6.13 Thresholded and binarized component image obtained from the image in 
fig. 6.10 for the angle band 300 - 450 (in image space). 
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Fig. 6.14 : Rose diagram representing the relative angular distribution of fibril-covered 
area for the image in fig. 6.10. The axis of the ligament is at 90°. 
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Fig. 6.15 : Rose diagrams representing the average class distribution of fibril-covered 
area (a) in a normal, and (b) in a one-week scar tissue. 
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Fig. 6.16 : Rose diagrams representing the collagen remodeling process in ligaments at 
different stages of healing: (a) 3 weeks of healing, (b) 6 weeks of healing, and (c) 12 

weeks of healing. 
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6.3 Reproducibility of the results 

The distribution of collagen fibrils varies widely between ligaments at 

different healing stages. However, images taken from the same ligament sample 

should have similar distributions. The distribution lunction for an individual fiber 

image should show high c.rrelatiôn with the average distribution for the class. 

The correlation coefficient (R) between two distributions x1(i) and x2(i) may be 

defined as the normalized dot product of the distribution vectors, and may be 

expressed as 

12 
x1(i)x2(i) 

R= 
12 12 1/2 

x?(i) E4(i) 
i=1 

(6.1) 

where Xk(Z) represents the fibril-covered area for the ktl¼ image along Ph angle 

band. 

To study the effect of the number of images taken from a single ligament 

sample on the average distribution obtained, and to study the variability of 

distributions for images of the same tissue, the following two experiments were 

performed. 

First, nine randomly selected fiber images taken from the same ligament were 

used to form a representative group, and the average fibril distribution was 

obtained. The value of R was obtained for each of the images in the group with 

respect to the average distribution for the group. These are given in the column la 
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Table 3 Correlation of collagen distributions of individual images with the class 
average distribution. Entries in columns la and 2a are correlations with the class 
averages obtained from nine images each, while those in columns lb and 2b are with 
the class averages obtained from eighteen images each. The small differences between 
the values of R in columns a and b suggest that a group of nine images is adequate to 
represent the collagen alignment in ligaments. 

Image Normal ligament Scar tissue 

correlation correlation correlation correlation 
number 

(la) (ib) (2a) (2b) 

1 0.953 0.945 0.922 0.933 

2 0.932 0.915 0.930 0.938 

3 0.861 0.880 0.960 0.957 

4 0.869 0.852 0.934 0.917 

5 0.839 0.859 0.943 0.949-

6 0.956 0.969 0.895 0.880 

7 0.983 0.978 0.935 0.936 

8 0.971 0.962 0.972 0.971 

9 0.981 0.982 0.973 0.972 
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of Table 3 for a normal ligament. Similar results for a scar tissue after one week of 

healing are given in column 2a of Table 3. It is seen that the individual 

distributions are highly correlated with the average distribution of the class. 

Next, the group size was increased to 18 and correlation coefficients as above 

were calculated again. The results are given in column lb and 2b of Table 3 for 

the normal and scar groups (for the same images referred to in columns la and 2a). 

The change in the values of R is negligible between column la and lb, and 2a and 

2b. Thus, a set of nine randomly obtained images may be considered adequate for 

meaningful representation of the collagen alignment in ligaments. 

To study the variations in collagen alignment from one ligament sample 

(animal) to another of the sane category, two more normal ligaments taken from 

two different rabbits were analyzed. The average fibril distributions for the two 

ligament are given in Figure 6.17, Comparing these with Figure 6.9, it is seen that 

the three ligaments possess similar, though not identical, fibril distributions. 

6.4 Effects of magnification 

The tissue samples referred to so far were taken at a magnification of 7K. 

This value was experimentally chosen to give an optimal compromise between the 

resolution of collagen fibrils and the area of the tissue being sampled. The 

sensitivity of the directional filtering method with respect to fibril thickness was 

tested by the following procedure. 
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Fig. 6.17 : Rose diagrams showing the collagen alignment in normal ligaments in two 
other animal samples: (a) a young adult rabbit of age 8 months, and (b) an older 

rabbit of age 15 months. 
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A tissue sample image was first obtained at a magnification of 4K. This 

image was digitized to 506 x 474 pixels, effectively magnifying the image by a 

factor of about two as compared with the standard size of 256 x 256 used 

routinely. The digitized image was divided into four subimages of size 253 x 237 

each. The magnified image was decimated by a factor of two in both horizontal 

and vertical directions (the resulting image covers the same area as the four 

subimages combined). Letting the standard digitization size of 256 x 256 represent 

the same magnification as that of the original micrograph, the decimated image has 

a magnification of 4K while the subimages have a (relative) magnification of 8K. 

The average distribution for the subimages was obtained, and is plotted with the 

distribution for the decimated image in Figure 6.18. It is seen that the two are 

nearly the same. The correlation (R) between these two distributions was found to 

be 0.99, signifying that the filtering method works at different magnifications (in 

the range studied) of the collagen fibrils as well. 

It is evident from these experiments that the filtering method described works 

well for images of different medial collateral ligaments. The results obtained 

should help in meaningful quantification of the alignment of collagen fibrils in 

ligaments. 
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Fig. 6.18 : Plot of fibril distributions in a particular tissue sample for different 
magnifications. A close match between these two distributions indicates the 
applicability of the filtering procedure at varying magnifications. 



CHAPTER 7 

QUANTITATIVE ANALYSIS OF COLLAGEN ALIGNMENT 

7.1 Quantification of collagen alignment distributions 

The directional filtering of collagen fiber images in rabbit ligaments gives a 

quantitative distribution of fibril-covered areas in different angle bands. It has been 

demonstrated that such distributions of fibrils vary significantly with different 

stages of healing of injured ligaments, and that the fibrils gradually re-align 

themselves along the longitudinal axis as the ligaments heal. These distributions 

have been represented by using rose diagrams. Different statistics derived from the 

rose diagrams may be used to efficiently quantify the alignment of collagen fibrils 

at different stages of healing. 

Statistical measures that are commonly used for the analysis of data points in 

rectangular coordinate system may lead to improper results if applied to circular 

distribution of data[47]. Different methods of analyzing directional data could be 

found in references [46-49]. In the present application, the fibrils are not directed 

vectors, and there is no need to differentiate between vectors at angles 0 and 

O ± 1800. Thus, the fibril orientations have been restricted to a semicircular space 

(total angular bandwidth of 180°). According to Batschelet[49], such a distribution 

of angular data need not be considered as a circular one, and the distribution could 

be assumed to be linear. Then, the usual methods of statistical analysis of data 
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points in Cartesian coordinate system are applicable. Such statistical measures, as 

discussed in the following sections provide a meaningful insight of the alignment 

of collagen fibrils at different stages of healing. 

7.2 Entropy of collagen distributions 

The concept of entropy in information theory[50] could be very effectively 

applied to the rose diagrams to determine the randomness of the distributions. If 

xj is the relative fibril-covered area along the i angle band, the entropy(H) of the 

distribution may be defined as 

12 
H — x1 log2x1. 

1=1 
(7.1) 

In normal ligaments, most of the fibrils lie within one or two major angle 

bands, whereas in scar tissues the fibrils are scattered randomly in all possible 

directions. The entropy of a distribution is the maximum when all the events within 

the distribution are equally likely. Hence, the distributions corresponding to scar 

tissues should have higher entropies. As a ligament heals, more and more fibrils 

align themselves with the longitudinal axis, and the corresponding distributions 

should have smaller entropies. 

The entropies for all the fiber images analyzed were calculated, and are 

plotted as isolated points with respect to healing interval in Figure 7.1. For the 

purpose of illustration, the corresponding measures for fiber images belonging to 
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normal ligaments are plotted at t = 0 (before sustaining the injury). The average 

distribution for a set of fiber images belonging to a particular healing interval was 

obtained by adding and. normalizing the absolute values of the fibril-covered areas 

in a particular angle band in all the images. The entropies for the average 

distributions of fibril-covered areas at different healing stages are also plotted in the 

same figure as small circles joined by straight lines to indicate the trend. 

The measure, as expected, decreases monotonically with healing time. 

However, there is no significant improvement during the period of third to sixth 

week of healing. It may be noticed in Figure 7.1 that at earlier stages of healing, 

the entropy of the average distribution of a set of fiber images happens to be 

greater than that for individual images. This may be attributed to the fact that the 

individual distributions within the set of images analyzed may have a stronger 

concentration of fibrils in some of the angle bands, but when averaged over the 

entire set of images, the individual variations get smoothed out, leading to a more 

uniform (or random) distribution. It should be noted that the measure of entropy 

does not reflect directly the degree of non-alignment with the principal axis of the 

collagen fibrils. However, it gives a true picture of the randomness (or uniformity) 

of the distribution. 
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7.3 Angular moments for quantification of dispersion 

Angular moments of the rose diagram data may be used to determine the 

angular dispersion of the fibrils in the image. The angular moment Mk of order k 

is defined as 

12 

Mk = 
i=1 

(7.2) 

where Oi represents the center of the 1/Z angle band in degrees. Since we are 

interested in determining the dispersion of fibrils from their principal axis, the 

moments may be taken with respect to the centroidal angle 0 for the distribution. 

Evidently, = M 1. Since the second order moment is always the minimum when 

taken about the centroid, we choose k =2 for the statistical analysis of the rose 

diagrams. Hence, the second central moment M 2 may be defined as 

12 - 

M 2= (e1—e)2X. 
i=1 

(7.3) 

The second angular moments for all fiber images were calculated and are 

plotted as isolated points with respect to healing interval in Figure 7.2.' The 

moments for the average distribution of fibril-covered areas at different healing 

stages are also plotted in the same figure as small circles and joined. This measure 

also, as expected, decreases monotonically with healing time. 

Unlike entropy, the use of M 2 as a measure of angular dispersion has one 

pitfall. The fibrils may be well aligned in a normal ligament, but a few stray fibrils 
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Fig. 7.1 : Entropy of the collagen distribution in ligaments at different stages of 
healing. 
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Fig. 7.2 : Quantification of collagen remodeling process in healing ligaments using the 

second central moment. 
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at a larger angular distance may result in a very high value for M 2. Theoretically, 

the moment is maximum when the fibrils are lying equally in the first and in the 

twelfth sectors only! This probably means that while the fibrils are highly aligned, 

the image was rotated by 900 during digitization. The entropy measures are free 

from such problems. Nevertheless, M 2 serves to be a very powerful tool in 

quantifying collagen alignment. As seen from Figure 7.2, M 2 < 800 corresponds to 

normal ligament, while M 2> 2000 indicates scar tissue. Intermediate values of M 2 

directly relate to the extent of healing. 

7.4 Cross-correlation between class distributions 

It was mentioned that fibrils in scar tissues tend to re-align themselves with 

healing. Hence, the collagen distribution in ligaments after a longer healing interval 

should have a greater correlation with the average distribution in normal ligaments. 

The values of cross-correlation R as defined in equation (6.1) were calculated 

for fiber images belonging to different healing stages with respect to the average 

distribution in normal ligament, and are plotted as isolated points with respect to 

healing interval in Figure 73. The cross-correlation coefficients for the average 

distributions at different healing stages are also plotted in the same figure as small 

circles and joined. This measure, as expected, increases with the healing time. 

It may be noticed from Figure 7.3 that the individual variations in cross-

correlation coefficients within the one week healing tissue samples are small, 

indicating that the distributions at this stage of healing are scattered uniformly 
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Fig. 7.3 : Cross-correlation between distributions at different stages of healing and the 

average normal distribution. 

6 9 

healing interval in weeks 

Fig. 7.4 : Plot showing an increase in total fibril-covered area in ligaments with 
healing. The small circles represent the mean, and the vertical lines indicate the 

standard deviation of fibril-covered area for all the images in the particular healing 
class. 
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along all possible directions, and that the collagen re-alignment process has not yet 

started. Since the healing process may be attributed to the fibroblastic infiltration 

from neighboring tissues[l, 6], the constituent collagen fibrils, at the initial stages 

of healing, may be oriented along different directions at different places in the 

ligament. A large variation in the values of R (but relatively smaller values of 

angular dispersions) for the healing intervals of three and six weeks as seen in 

Figures 7.2 and 7.3 supports this theory of healing. At the later stages of healing, 

smaller variations in the values of R in the images suggests that the fibrils tend to 

form a parallel arrangement. 

Three different measures (viz., entropy, second central moment, and cross-

correlation) have been used in this research work to quantify the collagen re-

alignment process, and each of them has its own merits and demerits. Studies 

related to the comparison of performances of these measures have not been taken 

up, as we are more interested in studying the collagen remodeling process for 

different treatment modalities as indicated by any one of these measures. 

7.5 Significance of fibril-covered area 

The fibril-covered area in a tissue image may correlate with the mechanical 

strength that may be provided by the ligament being analyzed. For example, 

between two ligaments at the same healing stage, one having more fibrils per unit 

area will have greater total strength. The fibril-covered areas in the different angle 

bands were added and then divided by the area of the image (256 x 256) to obtain 
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the total normalized fibril-covered area for an individual image. The mean and 

standard deviation of the normalized fibril-covered area for each set of images 

representing a certain healing stage were calculated. The mean values are plotted as 

small circles and the standard deviations are plotted as vertical lines about their 

mean values in Figure 7.4. An increase in the average fibril-covered area suggests 

an increased concentration of collagen in healing ligaments, and lower values of 

standard deviation justify this interpretation. 



CHAPTER 8 

DISCUSSION 

8.1 Artifacts due to filtering 

The performance of Fourier domain directional filters was studied in detail, 

regarding selectivity, influence of certain image features and artifacts. Good results 

were obtained for angle bands of 100 or more. Use of smaller angle bands led to 

increasing inaccuracies in the filtered components. Because of the finite width of 

line segments (that make up the fibrils), the components in the frequency domain 

do not lie completely within the corresponding sectors. As the thickness of the 

fibrils increases, there is an increased spreading of the Fourier components into 

adjoining angle bands, leading to reduced angular selectivity. This results in poor 

contrast in the filtered components, as well as interference due to line segments 

lying in the neighboring sectors. Removal of an experimentally determined low 

frequency zone helped in overcoming this problem to some extent. However, if a 

large amount of low frequency components in the spectrum is removed, the 

necessary background information is suppressed, producing only the edges of the 

line segments. Since it is intended to recover fibril-covered area from the 

composite • image, special care has to be taken in selecting the lower cutoff 

frequency for the Butterworth bandpass filter given in equation (4.9). Some 

improvement in the results was obtained by deemphasizing the high frequency 
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components. 

Depending on the width of the fibril bundles, the filtered components may 

suffer from smearing artifacts at both ends of the segments. This is more true for 

the second test pattern (Figure 4.10), which has sharp edges at the ends of the line 

segments, because the filter sector does not include information about the edges 

which are in a direction rthogona1 to the length of the lines: However, this effect 

is not pronounced for line segments having higher length-to-width ratios, as is 

apparent from the error analysis in Table 2.'In 'real fiber images, thick fibril 

bundles usually do not end abruptly, and this effect is not 'a serious problem. A 

related artifact observed is that a small discontinuity between two fibril segments 

lying within the same angle band, in some cases, appeared to be continuous in the 

filtered image. 

The use of different values of fL in equation (4.9) for analyzing fiber images 

corresponding to various healing stages yielded different results. The angular 

separability being lower for the images of scar tissues, a higher value of ft 

produced a better result. This suggests that ft is a parameter which could be 

optimized for each case. However this was not done in the present study to 

maintain consistency and avoid bias. 

8.2 Problems with thresholding 

A number of automatic thresholding' schemes [8, 34,40,41,43,44] were tried 

for binarization of the filtered images, but all met with only limited success. The 
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three major difficulties are: 

(1) The component images do not always have good contrast, particularly when 

the fibrils are thick. 

(2) Histograms of the filtered component images are almost always unimodal. In. 

most cases, the histogram of the filtered image has a long trail corresponding 

to the background. Such a long trail of grey levels of small number of 

occurrences makes probabilistic relaxation methods[8] inapplicable. 

(3) Fibril-covered areas in different directions differ significantly. A very low 

population of pixels corresponding to the fibril-covered areas makes 

histogram-based automatic thresholding schemes [41, 43, 441 fail. 

It was found that Otsu's method for automatic threshold selection[41] was 

most suitable for the present application. The method worked very well for the 

test pattern. It worked well for real fiber images as well, when there was a 

significant population of fibril pixels iii the filtered image. However, it failed when 

the filtered images had very few fibril pixels, giving lower thresholds. An 

interactive manual procedure was used to determine the actual thresholds for the 

image components, starting with the automatically determined value given by 

Otsu's method as an initial estimate of the threshold. In all cases, the actual 

thresholds used were higher than those gien by Otsu's method. 

Use of manual thresholds may introduce a certain amount of subjectivity, and 

thus the results may be affected by personal biases. Although this problem cannot 



85 

be tackled completely, every endeavor was made to keep the personal inclinations 

as minimal as possible. 

8.3 Computational requirements 

The processing of an image involves one forward FT and twelve inverse FTs. 

The computation of the 2-D FT of an image of size 512 x 512 takes considerable 

time, and hence this method is computationally expensive. Also, two complex 

arrays of size 512 x 512 are required to run the program, one for storing the 

forward FT values and the other for storing the inverse FTs. Hence, the algorithm 

requires a substantial central memory to avoid the problem of page-swapping. 

The program was run on a VAX 11/750 computer employing UNIX operating 

system with only 2Mb of core memory to find out its computational requirements. 

The execution of the program was hampered by a large number of page faults. It 

took about 5 hours of CPU time (about 12 hours of real time) for the completion 

of the program. However, when the program was run on a Sun 3/180 computer 

employing the same operating system but having 16Mb of central memory, it took 

about 90 minutes of CPU time (about 2 hours of real time). Significant 

improvement was achieved by running the program on the C.D.C. Cyber - 205 

Supercomputer. This system makes use of vector programming features 

(FORTRAN 200), and tries to vectorize the programs automatically. Further 

reduction in computing time was achieved by manually vectorizing some parts of 

the program.. The program took only 8 minutes of CPU time and about 30 minutes 
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of real time to run on the Cyber - 205. All the results presented here were obtained 

by-running the program on the Supercomputer. 

The computational complexity of a one dimensional N-point fast Fourier 

transform (FF1') is proportional to Nlog2N, and that of a 2-]) FFT for an image of 

size N x N is proportional to N2log2N. In order to have higher spectral 

resolution, the FF1 array size was increased from 256 x 256 to 512 x 512. This 

increases the memory requirements by a factor of four, and the resulting increase 

in computation is gik'en by 

• 5122 1092512 

= 2562 1092256 = 4.. 

Since the spectrum is divided into twelve equal sectors, the filtered spectra are 

almost 90% sparse. Thus, sparse matrix techniques may be used to reduce the 

memory requirements. Suitable pruning algorithms [51, 52] may be also used to 

eliminate computations involving the zeros. However, the sector filters have 

varying orientations, and in order to be able to use the modified FF1 algorithms, 

the addresses for nonzero elements have to be determined each time the FT is 

evaluated for different rows and columns. This will increase the software overhead 

significantly. Alo, to take advantage of the vector processing facilities on the 

Supercomputer, it .is necessary that the data be contiguous in memory. Hence these 

methods may not be useful in the present situation. 
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8.4 Artifacts due to tissue preparation 

While there is a certain degree of three-dimensionality to the micrographs 

analyzed, the contribution of fibril components at varying depths to the results is 

affected by a number of factors. Such factors that have been standardized include 

the intensity of the electron beam in the microscope, depth of focus, photographic 

methods, and image digitization parameters. However, the final thresholding 

scheme applied to the filtered component images, being adaptive in nature, will 

affect the various component images differently depending upon their contents. 

This aspect cannot be controlled without introducing some bias. 

The process of quantification of surface orientations of collagen fibril5 may 

also be adversely affected by artifacts due to improper fixation and handling of 

tissues (i.e., fiber disruption, surface irregularities, etc.). The aims of fixation are 

rapid preservation of structure with minimum alteration from the living state, and 

protection during embedding, sectioning and subsequent treatments [53j. But, 

depending on, the nature of the fixative, there may be some loss of "ground 

substance" and shrinkage of fibrous components during fixation. Also, the depth of 

penetration of different fixatives into the tissue samples may be different. These 

factors may affect the quantification procedure. 

Collagen fibrils vary widely in diameter from 16nm to several hundred 

nanometers in different connective tissues. Proper magnification should be chosen 

while acquiring the images to retain the required resolution. 
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8.5 Scope for future research 

The definition of angle in the rectangular coordinate system for low frequency 

components is inaccurate, leading to artifacts in the filtered images. Two other 

procedures that may lead to better results are: 

(1) The Fourier space samples in the low frequency zone within the filter sector 

may be obtained by extrapolation using the samples available in the higher 

frequency zone where angular selectivity is better. Related procedures are 

commonly used in image reconstruction from projections (computed 

tomography) by the Fourier method[8, 54-62]. Many elaborate algorithms 

have been proposed for this purpose. This procedure, however, would 

increase the computation time appreciably. 

(2) The FT may be evaluated directly on discretized polar coordinate points[59]. 

A sector of interest may be sampled in Fourier domain with any desired 

resolution, both in angle and radial distance (subject to practical computational 

C 

times). However, standard FFT algorithms cannot be used for such 

computations. 

The quantitative analysis procedure reported may be repeated under different 

treatment modalities as well, to study the rate of healing under various conditions. 

The information so gained should help clinicians design an optimum scheme for 

treatment of injured ligaments. 
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As the' tissue imaging procedure is destructive, it cannot be used for 

diagnostic purposes to determine the nature of injury sustained or the progress of 

healing in human ligaments. However, if appropriate in vivo imaging systems (e.g., 

using optical fibers) were ever devised to photograph tissues, the method could be 

extended for clinical diagnosis applications. 
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