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1

The Material Theory of Induction Stated 
and Illustrated

1.1. The Terms “Induction” and “Inductive Inference”
This is a book about induction and inductive inference. Since these terms 
may mean different things to different people, it is worth fixing what they 
mean at the outset. Traditionally, induction has had a narrow meaning. At 
its narrowest, it refers to “induction by simple enumeration,” the inference 
from “Some As are B” to “All As are B.” This is an example of “ampliative 
inference,” for we have amplified the instances to which our knowledge 
applies. The premise applies just to the few cases of As at hand; the con-
clusion applies to all. I take this idea of ampliation in its most general 
sense to be what induction is about. I shall use “induction” and “inductive 
inference” as the general terms for any sort of ampliative inference. That 
is, they are licit inferences that lead to conclusions stronger deductively 
than the premises or even just conclusions that differ from those that can 
be inferred deductively from the premises. Therefore, the terms embrace 
what is sometimes called “abductive inference,” which is an inference to 
something that explains an otherwise puzzling phenomenon.

A still broader form of induction commonly goes under the name of 
“confirmation theory.” It typically has no inferences with premises and 
conclusions. Rather, it looks at degrees of support between propositions. 
The best-known and dominant form is probabilistic support. The condi-
tional probability P(H | E) represents the total inductive support an hy-
pothesis accrues from all evidence, including our background knowledge, 
written as E. One then tracks how the support between hypothesis and 
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evidence changes as the evidence changes. This form of analysis will be 
included under the terms “induction” and “inductive inference.”

My use of the terms “inference” and “infer” will follow what I take to 
be the traditional usage and the one that is still most common. That is, an 
inference from proposition A to proposition B is a logical relation between 
the two propositions as sanctioned by some logic. When we infer from A 
to B, we merely trace through that logical relation. The usage is analogous 
to that of “add.” When we add seven to five to arrive at twelve, we are 
simply tracing through the relation 5 + 7 = 12 among the three numbers 
as authorized by ordinary arithmetic.

This usage is to be contrasted with a psychologized notion of the term 
“inference” that will not be employed here. According to this latter usage, 
to say that we infer from proposition A to proposition B only records a 
fact of our psychology: that we proceed from a belief in A to a belief in 
B, without a requirement that this transition is authorized by some logic. 
While I understand the distinction is important to those who work in the 
psychology of belief, it seems to me a troublesome redefinition of a term 
whose normal usage is already well established. Could not another word 
have been found? Perhaps the redefinition is supported by the usage of the 
term that presupposes an agent that infers. A similar redefinition might 
insist that saying “we add seven to five to arrive at twelve” merely reports 
our belief in the summation with no supposition that it conforms with 
arithmetic. I would find that redefinition equally troublesome.1

Throughout this volume, unless some context demands an exception, 
I will restrict notions of inference and logic to relations of deductive and 
inductive support between propositions, independently of our beliefs and 
thought processes.

1 Harman (2002, p. 173) gives a clear statement of the psychologized notion of inference 
that is not employed in this book: “Inference and reasoning are psychological processes leading 
to possible changes in belief (theoretical reasoning) or possible changes in plans and intentions 
(practical reasoning). Implication is more directly a relation among propositions.” This usage is 
incompatible with the longstanding and pervasive usage of “rules of inference” as designating licit 
manipulations and argument schemas, such as modus ponens and various syllogisms. See, for 
example, Boole (1854, chap. 15) and Copi (1967, p. 36 and inside back cover).
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1.2. The Formal Approach to Induction
My contention is that the broad literature on induction is built on faulty 
foundations. It has long sought as its most basic goal to develop induct-
ive inference as a formal system akin to deductive logic and even ordin-
ary arithmetic. What is distinctive about these systems is that they are 
non-contextual, universal, and governed by simple rules. If we have six 
cartons of a dozen eggs each, arithmetic tells us that we have seventy-two 
eggs overall. It also tells us that if we have six troupes of a dozen acrobats, 
then we have seventy-two acrobats overall. Arithmetic tells us that when 
it comes to counting problems like this we can ignore almost everything 
except the numbers appearing in the descriptions. We extract those num-
bers and then see if our arithmetic provides a schema that covers them. In 
this case, we find in our multiplication tables that

6 × 12 = 72.

This is really a schema that says (among other things) if you have six 
groupings of twelve individuals, then you have seventy-two individuals 
overall. It is a schema or template since it has empty slots, indicated by 
the words “grouping” and “individuals” in italics; and we generate truths 
about specific systems by inserting appropriate, specific terms into the 
slots. Insert “carton” and “egg,” and we generate a numerical fact about 
eggs. Insert “troupe” and “acrobat,” and we have a numerical fact about 
acrobats.

This example illustrates the key features typically sought in an induct-
ive logic. It is to be non-contextual, universal, and formal. The numerical 
facts of arithmetic are non-contextual—that is, independent of the con-
text. In abstracted form, they hold for eggs, acrobats, and every other sort 
of individual. The rules are universal; they do not come with restrictions 
to particular domains. It is the same arithmetic for eggs as for acrobats. 
And the rules are formal in the sense that they attend only to the form of 
the sentence asserting the data: six … of twelve …. The matter—eggs or 
acrobats—is ignored.

Deductive logic has developed similarly as a universal, non-context-
ual formal theory; and it enjoys extraordinary success. It has been a rea-
sonable and attractive project to try to find a similar account of inductive 
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inference. A universal formal theory of induction would enable us to focus 
attention just on the specifically inductive-logical parts, ignoring all the 
material complications of the much larger inductive enterprise. And we 
would hope eventually to generate great theorems of tremendous power 
and scope, perhaps rivaling those of arithmetic and deductive metalogic.

1.3. Problems of the Formal Approach
However, the formal approach is a failed project. The simple formal rules 
that worked so well for deductive inference have no counterpart in in-
ductive inference. In antiquity, we were quite confident of the deductive 
schema

All As are B.
Therefore, some As are B.

Yet its inductive counterpart, enumerative induction—

Some As are B.
Therefore, all As are B.

—was already the subject of doubt and even ridicule in antiquity. Inductive 
logic never really caught up. While deductive inference has settled into 
the grey maturity of arcane theorem proving, inductive inference has 
remained an erratic child. For philosophers, the words “induction” and 
“problem” are routinely coupled.

There are, as we shall see later, a plethora of modern accounts of 
induction. But none succeed with the simple clarity of deductive logic. 
We should infer inductively, we are told, to the best explanation. But we 
are given no comparably precise account of what makes one explanation 
better than another—or even precisely what it is to explain something. 
Efforts to make these notions precise raise more problems than they solve. 
Elsewhere, we are told that all of inductive logic is subsumed by probability 
theory. Chapters 10 to 16 are devoted to arguing that the resulting theory 
has failed to provide a universal account of inductive inference. The prob-
abilistic enterprise has become so many-headed that no single formula 
captures the difficulty. The account is sometimes too strong and imposes 
properties on inductive inference it should not have. It is sometimes used 
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too permissively so that any inductive manipulation one might conceive 
of is somehow embraced by it. It is almost always too precise, fitting exact 
numbers to relations that are not that exact.

So how are we to think about inductive inference? Formal theories 
of induction distinguish the good inductive inferences from the bad by 
means of universal schemas. In their place, I propose a material theory of 
induction.2 According to this view, what separates the good from the bad 
inductive inferences are background facts—the matter of the inference, as 
opposed to its form. To put it another way, we locate what authorizes an 
inductive inference not in some universal, formal schema but in facts that 
prevail in the domain of the inference.

1.4. Inductions on Crystal Forms3

An example will make the problems of the formal approaches clearer and 
the idea of a material theory of induction more concrete. We shall con-
sider an elementary inductive inference in science that is so routine that 
we may even fail to notice that it is an induction. Consider a chemist who 
prepares a new salt of some metal and notes its particular crystalline form. 
It is routine for the chemist to report the form not only as the form of the 
particular sample but as the form of the salt generally. For crystals have 
quite regular properties, and crystals of different substances have char-
acteristic differences. Nonetheless, it is an inductive inference from the 
one sample to all. Even if the inductive character of the inference is easily 
overlooked, we should expect a good treatment of it from an account of 
inductive inference.

To develop the example, we need to appreciate that adequate reporting 
of the crystalline structure of a new salt is somewhat delicate. For the in-
dividual crystals of one salt may have many different shapes. In the early 
history of work on crystals, it proved to be quite complicated to find a 
simple and robust system of classification. This complication will become 
a central concern of the material analysis of these inductive inferences.

2 For earlier accounts, see Norton (2003, 2005).
3 My thanks to Pat Corvini for correcting errors in an earlier version of this section 

and also Section 1.9 below; and later for providing an extensive list of typographical errors in the 
Prolog and Chapters 1 and 2.
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Crystallographic analysis now categorizes crystal forms according to 
the axes characteristic of the shape. The simplest of the seven crystallog-
raphic systems is the cubic or regular system. The crystals of common table 
salt, sodium chloride, fall into this system. It is characterized by three 
perpendicular axes of equal length. A cube conforms to this system; it 
takes no great geometrical insight to see that a cube has these three per-
pendicular axes of equal length. The same is true of a regular octahedron, 
which also conforms to the system. Sodium chloride normally crystallizes 
in cubes. However, in special environments, such as in the presence of 
urea, it can crystalize as octahedra.

One might imagine that the cube and octahedron are the only shapes 
that crystals in the cubic system can adopt. Matters are more complicated, 
however, for there are many more shapes in this system. The mineral spi-
nel lies within the cubic family and forms octahedral crystals. However, 
spinel can also form many misshapen octahedral crystals, as shown in 
Figure 1.1. 

Figure 1.1. Misshapen octahedra.4

The octahedral character of the crystals arises from their faces being par-
allel to those of a fictional regular octahedron, which we might imagine 
secretly buried within the crystal. 

Crystals have natural cleavage planes. A crystal cube of sodium chlor-
ide will cleave along planes parallel to the cube’s surfaces. The mineral 
fluorspar represents an unusual case. Although it is in the cubic family 

4 Illustration based on Miers (1902, p. 11, Figs. 9 and 10).
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and crystalizes in cubes, it cleaves along planes that eventually expose an 
octahedral shape. Figure 1.2 shows successive cleavages.

Figure 1.2. Cleaving fluorspar.5

In the process of cleavage, we pass through many more complicated cube 
shapes with corners removed to different extents. The shape on the right 
of Figure 1.2 is such an intermediate form. These multi-faceted shapes and 
many more are licit forms for certain crystalline substances within the 
cubic system. 

All of these shapes are different from the crystalline shapes permitted 
to barium chloride, for barium chloride is monoclinic. This means that its 
crystals are characterized by three unequal axes, two of which intersect at 
an oblique angle, and a third that is perpendicular to them. Instead of a 
cube, its primitive form—the simplest crystal shape—is a right prism with 
a parallelogram base. This is shown in Figure 1.3, where the parallelogram 
is the rearmost face. Alternatively, one may generate the shape by starting 
with a right prism with a rectangular base and inclining it to one side 
(hence “mono-cline”). In Figure 1.3, the inclination is towards the right 
of the figure.

5 Illustration based on Miers (1902, p. 14, Figs. 17 and 18).
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Figure 1.3. Primitive form of the monoclinic system.

The range of crystal shapes allowed in the monoclinic system is related 
to this form in the same way that those allowed in the cubic system are 
related to a cube.

When a new metallic salt is prepared, the chemist will simply assert 
that such-and-such is the form of the salt’s crystals. This is an inductive 
inference and one of breathtaking scope. On the strength of just a few 
samples, the chemist is quite prepared to infer the crystal system of all 
samples of the salt:

This sample of salt A belongs to crystallographic system B.
Therefore, all samples of salt A belong to crystallographic system B.

1.5. Curie and Radium
Perhaps the most famous of all episodes in crystal formation was Marie 
Curie’s separation of radium from uranium ore by fractional crystalliza-
tion. The massive labor of extracting radium from the pitchblende ore is 
the stuff of scientific legends, Nobel Prizes, and a 1943 MGM movie. The 
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radioactive elements—polonium, radium, and actinium—exist in such 
trace quantities that several tons of uranium ore residue had to be treated 
to recover just a few decigrams of radium. A decigram, a tenth of a gram, 
is a mere speck. The process of recovering the radium was arduous. From 
each ton of ore, after much processing, about eight kilograms of barium 
chloride was recovered. Radium chloride is present in barium chloride as 
a trace impurity. Radium’s presence is revealed by its great radioactivity.

The final separation of the radium chloride from the barium chloride 
was difficult to achieve since radium and barium behave in similar ways 
chemically. The separation depends on the fact that radium chloride is less 
soluble in water than barium chloride. If the barium chloride in solution 
is concentrated by boiling and cooling until it forms crystals, the crys-
tals will harbor more radium chloride. The solution remaining above the 
crystals had one fifth of the radioactivity of the original, Curie reported. 
While that seems like a large increase, the quantity of radium present in 
the crystals was so tiny that it fell far short of what was required for sub-
stantial separation. Curie needed to repeat the process over and over: re-
dissolving and recrystallizing to form more fractions, recombining them 
according to their radioactivity, and doing it again and again. In all, she 
needed to carry out several thousand crystallizations.

All of this is described in her doctoral dissertation (Curie 1904), pre-
sented to the Faculté des Sciences de Paris in June 1903. There, she re-
ported on the analytic work carried out in the few years before with her 
husband, Pierre Curie. The feature of the radium chloride that attracted 
most attention was its powerful radioactivity. In spite of the thousands 
of crystallizations performed, the crystallographic properties of radium 
chloride barely rated a mention. In the ninety-four pages of the disserta-
tion, there are only a few complete sentences on the crystallographic form, 
and they bleed off into less certain reports on the colors of the crystals 
that, she suspected, would prove of practical use in the separation:

The crystals, which form in very acid solution, are elon-
gated needles, those of barium chloride having exactly the 
same appearance as those of radium chloride. Both show 
double refraction. Crystals of barium chloride containing 
radium are colourless, but when the proportion of radium 
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becomes greater, they have a yellow colouration after some 
hours, verging on orange, and sometimes a beautiful pink. 
This colour disappears in solution. Crystals of pure radium 
chloride are not coloured, so that the colouration appears 
to be due to the mixture of radium and barium. The max-
imum colouration is obtained for a certain degree of radi-
um present, and this fact serves to check the progress of the 
fractionation.

I have sometimes noticed that formation of a deposit 
composed of crystals of which one part remained unco-
loured, whilst the other was coloured, and it seems possi-
ble that the colourless crystals might be sorted out. (Curie 
1904, p. 26)

Curie and soon others separated out only minuscule quantities of radium. 
Yet that radium chloride forms crystals just like those of barium chloride 
entered the literature quite quickly. In his 1913 survey of radioactive sub-
stances, Ernest Rutherford reported:

Radium salts crystallise in exactly the same form as the 
corresponding salts of barium. The crystals of radiferous 
barium chloride several hours after preparation usually as-
sume a yellow or rose tint. The intensity of this colouration 
depends on the relative proportions of barium and radium 
present in the crystal. Nearly pure radium chloride crystals 
do not show this colouration, indicating that the presence 
of barium is necessary. (Rutherford 1913, p. 470)

The facts are reported as having quite general scope, even though the in-
stances of observed radium chloride crystals must have been few, given 
the enormous labor needed to create them in tiny quantities. Nonetheless, 
both Curie and Rutherford seemed quite certain of the generalization. 
Rutherford’s report looks like little more than a paraphrase of Curie’s 
remark.
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1.6. A Formal Analysis
If we approach inductive inference formally, how are we to accommodate 
this induction? We need only investigate a few simple formal attempts to 
see just how poor the formal analysis is. The inference looks like a type of 
enumerative induction with the schema

Some (few) As are B.
Therefore, all As are B.

Yet this alone cannot be what authorizes the induction. For almost every 
substitution of the As and Bs would yield a feeble induction. To get an 
induction of the strength seen by Curie and Rutherford, we have to be 
selective in what is substituted for A and B. The As have to be specific 
chemical types, such as radium chloride or barium chloride, as opposed 
to the hundred and one other types of stuff that Curie found in her vats. 
More importantly, the induction works only for carefully chosen proper-
ties of B. There are many ways of describing crystal forms. Virtually none 
of them support a strong inductive inference.

To revert to the simpler example, one may find that some particular 
crystal of common salt is a perfect cube. However, no chemist would risk 
the induction to all crystals of common salt having exactly that shape. It 
was only after serviceable systems of crystallography were introduced that 
the right property was found. Individual crystals of common salt fall into 
the cubic or regular system, and this property can be inserted into the 
schema of enumerative induction to form the generalization.

The problem of finding the right descriptions challenged genera-
tions of crystallographers. Indeed, for a long time, many held that crystal 
forms admit no simple systematization so that exactly this sort of induc-
tion would be denied. The scientist, historian, and philosopher of science 
William Whewell gave a lively account of these hesitations—and of how 
Romé de l’Isle and René Just Haüy after 1780 sought to resolve the prob-
lems—in his History of the Inductive Sciences (1837, vol. 3, book 15, chaps. 
1–2).

These difficulties make it a matter of some delicacy to specify in for-
mal terms just what property of the radium chloride crystals can be gen-
eralized. Curie and Rutherford used parasitic locutions: the crystals of 
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radium chloride are the same as those of barium chloride. Hence, Marie 
Curie in her 1911 Nobel Prize address chose a technical locution to de-
scribe the crystal form of radium chloride: “In chemical terms radium 
differs little from barium; the salts of these two elements are isomorph-
ic, while those of radium are usually less soluble than the barium salts” 
(Curie [1911] 1999). Isomorphism is a term of art used then and now to 
describe the circumstance in which two different substances have very 
close chemical and crystalline properties (see Miers 1902, p. 213). Curie’s 
use of the term saved her the need of describing in more detail the precise 
structure possessed by the salts of radium. It was familiar knowledge for 
chemists that barium chloride has such-and-such a monoclinic crystalline 
form. The declaration of isomorphism indicated that radium chloride had 
this form too.

If the schema of enumerative induction is to function as a general 
logic, the restrictions on just what may be substituted for A and B have 
to be abstracted, regularized, and formalized, and then included in the 
schema. The problem is that the restrictions that must be added are so 
specific that one despairs of finding a general formulation. Presumably, a 
general logic cannot append clauses of the form: “If A is a substance that 
manifests in crystalline form, then B must be one of the known crystal 
forms as sanctioned by modern crystallography.” This is a little short of 
offering a huge list in which we inventory the specific inferences that are 
allowed. This would not be a logic but a catalog whose guiding rationale 
would be hidden.

A more promising approach is to draw on a popular philosophical 
notion devised for this sort of application: we require that A and B must 
be natural-kind terms. These are terms adapted to the divisions arising in 
nature (“is crystallographically regular”), as opposed to artificial divisions 
introduced by humans (“looks like a cubist sculpture”). The hope is that 
we succeed in delimiting the good inductive inferences by restricting the 
schema explicitly to natural-kind terms.

The approach fails at multiple levels. First, it fails because the good 
inductions on crystal forms are still narrower. It is surely a natural-kind 
term for a crystal to be a perfect cube, one of the five Platonic solids. Yet an 
induction on common salt that uses the property fails to be a good induc-
tion by the standards of the crystallographers. Second, the schema is only 
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viable if one can give a general formula that specifies what a natural-kind 
term is. A common characterization of natural-kind terms is that they 
support induction (Bird and Tobin 2010, sec. 1.1). This means that we are 
allowed to generalize relations found in a few cases to hold between natur-
al-kind terms. If we append this characterization of natural-kind terms to 
the schema of enumerative induction, the schema is rendered circular. For 
to require that the schema can only be used on terms A and B that support 
induction is just a fancy way of saying that the schema only works when 
it works. Another common characterization of natural-kind terms is that 
they appear in natural laws. If we try to include this characterization in 
the specification of the schema, we face similar circularities when we try 
to state just what we mean by “law.” Are they true relations that obtain 
between natural kinds?

1.7. A Bayesian Attempt6

The preceding section sought to develop the simple schema of enumera-
tive induction to convert it into a serviceable schema with universal appli-
cation. The efforts were unsuccessful. Might a different approach that em-
ploys probabilistic analysis fare better? What if we seek help from Bayesian 
analysis? We seek a vindication of the inference from “Some (few) As are 
B” to “All As are B” that relies essentially on the probabilistic character of 
relations of support. It should not merely adopt antecedently some version 
of the idea that the proposition “All As are B” accrues support from the 
proposition that “Some As are B” and then just restate it in probabilistic 
language. We saw that it was precisely this idea that proved unsustainable 
in the last section. Simply translating the idea into probabilistic language 
would only serve to hide the difficulties behind a veil of numbers and for-
mulae. In addition, we should like the probabilistic analysis to show us 
that “Some (few) As are B” can provide strong support for “All As are B.” 

There are many ways that one can give Bayesian analyses of this prob-
lem. Let me sketch just one. We write H for the hypothesis that a newly 
prepared salt belongs to some particular crystallographic system. We 

6 I thank Nick Huggett for helping me to think through revisions to this section and the 
next.
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write E for the evidence that a number of samples are each observed to 
belong to that class. If there are n samples, we can write E = E1 & E2 & … 
& En, where Ei asserts the evidence in the ith case. The probability of in-
terest is P(H | E), the probability of the hypothesis H given the evidence E. 
This represents the inductive support afforded to H by E if we think of the 
probabilities objectively. Or, if we interpret the probabilities subjectively, 
it is the belief that we have in H given that we know E. We are interested 
in seeing how the posterior probability P(H | E) compares with the prior 
probability P(H); that is, we seek to determine how the probability of H 
changes when we incorporate our learning of evidence E. These changes 
will tell us the evidential import of E. An increase in probability is favor-
able evidence; a decrease is unfavorable.

We can compute these changes by means of Bayes’ celebrated theor-
em. In a form suitable for this application, it asserts

We will not compute P(H | E) directly but only how incorporating E alters 
the balance of probability between the hypothesis H and its negation ~H. 
That is, we can see how the ratio of the prior probabilities P(H)/P(~H) 
changes to P(H | E)/P(~H | E) = r. From this last ratio, P(H  | E) can be 
recovered as

Bayes’ theorem tells us that the controlling quantities are the two likeli-
hoods P(E | H) and P(E | ~H). The first is easy to compute. It expresses the 
probability that we have the evidence E if the hypothesis H is true. The 
hypothesis H says that all samples belong to a particular crystallographic 
system. Hence, the n samples at hand must belong to that system. So the 
probability is unity that we have evidence E: P(E | H) = 1. 

The other likelihood, P(E | ~H), is much harder to determine. It re-
quires us to assess the probability of the evidence if the hypothesis is false. 
Determining this quantity requires some creative imagination, for we 
have no precise prescription for how the hypothesis might fail. The like-
lihood will vary depending on how we judge the hypothesis might fail. If 
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the only possibility for failure is that the salt belongs to one of the other 
crystallographic classes, then there is no possibility of the evidence E ob-
taining. Then P(E | ~H) = 0. Inserting this into Bayes’ theorem leads to P(E 
| H) = 1; the hypothesis is maximally probable.

But things are more complicated. E can be reported if there are obser-
vational errors so that the evidence is misreported. Or it may turn out that 
the salt is dimorphous or even polymorphous. This means that the salt can 
crystallize into two or more systems. So there is some chance—perhaps 
small, perhaps large—that the evidence Ei obtains, even if H is false.

We will set these concerns aside. Let us set the probability to q so 
that P(Ei | ~H) = q and suppose that each of the samples is taken under 
independent conditions with the supposition of the falsity of H. Then, 
obtaining each Ei is probabilistically independent of the others, and the 
probability of the conjunction is just a simple product of terms:

Bayes’ theorem now becomes

Here we have a nice limit result. As n becomes large, qn can be brought 
arbitrarily close to 0, as long as q < 1. Hence, the ratio of likelihoods  
1/qn becomes arbitrarily large, so that the ratio r = P(H | E)/P(~H | E) also 
grows arbitrarily large. This corresponds to the posterior P(H | E) = r/(r + 1) 
coming arbitrarily close to unity. And this means that the support for or 
belief in H approaches certainty. This limiting result is comforting, for it 
means that we do not need to worry about the particular values that we 
might assign to the priors. Whatever influence their values may have had 
on the final result is “washed out” by the limit process. This is for the best 
since the prior probabilities P(H) and P(~H) would have to be plucked 
from the air.
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1.8. Where the Bayesian Analysis Fails
If one inclines to numerical and algebraic thinking, the foregoing may 
seem like a very satisfactory analysis. It has brought mathematical pre-
cision to what at first seemed like an intractable problem. There is even a 
little limit theorem in which priors are washed out. All that is an illusion. 
There are few if any gains in the analysis. And the harm done is great since 
we have convinced ourselves that we have solved a great problem when we 
have not. Any positive result achieved has little to do with the probabilistic 
properties supposed for relations of inductive support and everything to 
do with the choices we make externally to the analysis. We shall see that 
the long-term results are determined by our antecedent choice of prior 
probabilities, which prove to be narrowly constrained to two extreme, 
dogmatic possibilities. The short-term results depend critically on arbi-
trarily chosen numbers. Finally, the necessary condition for any success-
ful result lies in choosing a description of the hypotheses and evidence 
that is delicately tuned to the properties of the system. Without such a 
description, inductive success is impossible. With it, success is assured for 
virtually any approach.

1.8.1. External Inductive Content
The first problem is that the analysis is heavily dependent on judgments 
of probability that are supplied externally to the analysis. That is, we must 
set prior probabilities that presume either a dogmatic skepticism or an 
unreasonable credulity concerning the universal hypothesis H. There is 
no other option.

To avoid the danger of these externally specified assumptions pre-
judging the result, we might require a prior probabilistic independence of 
the individual items of evidence, E1, E2, …, En. This avoids an antecedent 
assumption of them being connected by the universal hypothesis H. That 
is, we would have
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where for simplicity I have assumed an equal probability 0 < s < 1 for each 
P(Ei). The result is immediately disastrous. A version of Bayes’ theorem 
now tells us that

As the number of instances of n increases, sn decreases and can be brought 
arbitrarily close to zero, which means that 1/sn can be made arbitrarily 
large. Since P(E | H) can never exceed unity, probabilistic consistency 
requires that we can no longer choose our prior probability P(H) freely. 
We must have P(H) ≤ sn. Since sn can be brought arbitrarily close to zero 
when n is large enough, we must somehow choose a prior probability P(H) 
close enough to zero that anticipates in advance the number of items of 
evidence that may appear. The only secure value is a zero prior probability: 
P(H) = 0. In this worst case, we preclude learning from the evidence, since 
P(H) = 0 forces P(H | E) = 0 no matter what evidence E is presented. We 
must commit to a prior skepticism about the universal hypothesis H.

It is entirely reasonable to respond that this shows that presuming pri-
or probabilistic independence of the individual items of evidence E1, E2, 
…, En is not benign after all. The assumption of independence encodes a 
dogmatic skepticism concerning the universal hypothesis H. But the al-
ternative is equally troublesome. If we now admit the possibility of a prior 
probabilistic dependence among the items of evidence, we commit to un-
reasonable credulity concerning the universal hypothesis H. Here is why: 

To avoid prior skepticism about H, we must free ourselves of the need 
to set P(H) arbitrarily close to zero. We do this by ensuring that P(E) = 
P(E1 & E2 & … & En) does not become arbitrarily small as n grows large. 
We expand P(E) as

We preclude P(E) becoming arbitrarily small by requiring that P(En | E1 
& E2 & … & En−1) approaches unity in the limit as n grows large. This re-
quirement says that conditioning on the evidence E1, E2, …, En−1 requires 
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the limiting probability of En to be arbitrarily close to unity. This is close 
to assuming H itself. For informally it says that being an instance of H is 
projectable in this sense: if we have seen n − 1 instances of H with increas-
ing n, we approach probabilistic certainty that the next, nth item will also 
be an instance with H.

The credulity toward H lies in the permissiveness of this result. It 
turns out that we approach probabilistic certainty not just for the next in-
stance of H, but for the next N instances of H after it—no matter how large 
N is. For a simple variant of the last calculation shows that the conditional 
probability

must also approach unity as n and N grow large. Our confidence in pro-
jectability is not limited just to the universal hypothesis H, but to any hy-
pothesis of which the items of evidence are an instance, no matter how 
curious the hypotheses. The hypothesis may be that all samples of radium 
chloride were prepared by Curie; or that all are in Paris; or that all are in 
the northern hemisphere.

In sum, we cannot simply present the evidence as bare data and have 
the Bayesian analysis tell us its import. We have to add prior probabilities 
and there is no benign way to set them. We must choose antecedently be-
tween those that commit us to a dogmatic skepticism or to an unreason-
able credulity. This difficulty of Bayesian analysis has long been recog-
nized.7 Richard Jeffrey (1983, p. 194) was sufficiently disturbed by it that he 
concluded “willingness to attribute positive [prior] probability to a univer-
sal generalization is tantamount to willingness to learn from experience at 
so great a rate as to tempt one to speak of ‘jumping to conclusions.’” This 
example illustrates a quite general result reviewed in Chapter 12: formal 
analyses within a calculus of inductive inference cannot be freed from 
their dependence on externally supplied inductive content.

7 For a brief review, see Norton (2011, pp. 430–31).
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1.8.2. Curie Did Not Take a Large n Limit
The second issue is that the analysis has solved the wrong problem. Curie 
was sure of the result already from just a few samples. She did not need to 
look at n samples and ponder the result as this n grew arbitrarily large. This 
“small n” result can be addressed in the Bayesian system, but it requires us 
to insert numbers. We need concrete values for q and for the priors P(H) 
and P(~H) in order to determine whether the analysis supports Curie’s an-
alysis. Which are the right values? Can we find them? Or are our selections 
just hunches driven by dim feelings of what is reasonable?

We now must face the awkward problem of all Bayesian analysis: 
namely, that it introduces specific probability numbers while no such 
numbers are in evidence in the inductive practice. Just which value is ap-
propriate for P(Ei | ~H)? Is it 0.1? Or 0.5? What of the prior probabilities? 
If we think of the probabilities as measuring objective degrees of support, 
then we have no good basis for assigning the prior probabilities, and the 
whole small n calculation will rest on a fabrication. If we think of prob-
abilities subjectively so that they merely reflect our freely chosen opinion, 
we are no better off. The hope, in this case, is that the accumulation of evi-
dence will wash out the individual prejudices we introduced by arbitrary 
stipulation of our prior belief. This washing out does not happen precisely 
because we are limited to the small n analysis.

More generally, this “solving the wrong problem” is an infraction 
committed repeatedly in Bayesian analyses. There are a few simple com-
putations that serve as examplars, and the exercise in Bayesian analysis is 
to modify the problem actually posed in successive steps until it resembles 
one of them. In this case, the original problem is transformed into the 
problem of distinguishing a double-headed coin (hypothesis H) from a 
coin that has probability q of showing a heads (hypothesis ~H). We are 
given the evidence E of n independent tosses, all of which show heads.

These first two problems are familiar and generally addressed by mak-
ing the analysis more complicated. If selecting appropriate likelihoods or 
prior probabilities is troublesome, then a skeptical reader may be reassured 
that further Bayesian analysis will surely vindicate exactly the selections 
needed to get the result promised. My prediction, however, is that this 
maneuver will not solve the problem. It will merely enlarge the analysis 
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and exile such problems to remote corners, where they will proliferate. The 
problems will just be harder to see because the analysis will have become 
so much more complicated.

1.8.3. Finding the Right Description
The third problem is, in my view, the most serious. The Bayesian analysis 
began by declaring the hypothesis that the salt has crystals belonging to a 
certain crystallographic system and that the observed instances all con-
formed to this system. Once this description is given, the most important 
part of the inductive analysis is over; for once we know that these are the 
terms in which the problem should be described, then almost any analysis 
will succeed. Enumerative induction will quickly return something like 
Curie’s result. Or, looking ahead to other accounts of induction, we can 
declare the evidence a severe test of the hypothesis; or best explained by 
the hypothesis.

Until we are able to describe things in these terms, no analysis will 
work, not even the Bayesian. The alternative descriptions will either be 
too coarse or too fine. If they are too coarse, the sorts of hypotheses inves-
tigated and affirmed under Bayesian analysis will likely end up as banal. 
We may affirm that radium chloride forms crystals, for example. If the 
descriptions are too fine, we will likely find that no hypothesis is well sup-
ported by the evidence. If, for example, we give too detailed a description 
of the crystal form, then the several cases at hand will differ sufficiently 
such that no single description fits and we will be left without a compatible 
hypothesis to set for H in the analysis.

The damage done by the Bayesian analysis is that it obscures exactly 
the most important part of the inductive analysis with a smokescreen of 
numbers and theorems. The essential part of the analysis is the recogni-
tion that the hypothesis and the evidence need to be described in terms of 
a narrow and hard-won vocabulary of crystallographic theory. The elab-
orate computations of Bayesian analysis mislead us into thinking that in-
ductive problems are solved by manipulating probabilities and by proving 
theorems in the probability calculus. It is a seductive aura of precision that 
is to be resisted if we are to understand inductive inference.

It is widely acknowledged that the real challenge lies in finding the 
appropriate system of classification. In introducing crystallography as a 
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“classificatory science,” William Whewell stressed that finding this appro-
priate description is the object of the science:

Our classification of objects must be made consistent and 
systematic, in order to be scientific; we must discover marks 
and characters, properties and conditions, which are con-
stant in their occurrence and relations; we must form our 
classes, we must impose our names, according to such 
marks. We can thus, and thus alone, arrive at that precise, 
certain, and systematic knowledge, which we seek; that is, at 
science. The object, then, of the classificatory sciences is to 
obtain fixed characters of the kinds of things; the criterion 
of the fitness of names is, that they make general proposi-
tions possible. (1837, pp. 212–13; emphasis in original)

Finding the right system of classification is what makes generalization 
possible.8

1.9. A Material Analysis
Formal analysis presumes that one isolates the transition from knowledge 
of a single case to all cases as a problem in inductive logic, and that we 
establish the cogency of the transition by displaying its conformity with 
formal principles. For example, we might seek to show conformity of the 
transition with an abstract schema of enumerative induction or, in the 
probabilistic case, with Bayes’ theorem. Hence, the inference from a single 
sample to all is immediately beset with the familiar problems that have 
troubled induction for millennia. They sustain the weary sense among 
philosophers that induction, trouble, and woe all go together.

8 Looking ahead, a probabilistic analysis could avail itself of the “Weakened Haüy’s 
Principle” (discussed below), which I argue warrants the inference materially. The analysis would 
derive directly from the principle that there is a high probability that all samples of radium 
chloride crystals are monoclinic, conditioned on the fact that Curie’s few samples are monoclinic. 
This is merely a probabilistic restatement of the final result already achieved. Probabilistic analysis 
has added nothing beyond the illusion of quantitative precision.
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Chemists at the start of the twentieth century, pondering the crys-
talline structure of matter, would likely not have sensed that their pas-
sage from one sample to all was problematic. Indeed, they are unlikely to 
have thought of it in the abstract terms of theories of inductive inference 
at all. The century before had seen vigorous investigation into the ques-
tion of just how properly to characterize the crystalline forms so that the 
passage from properties of one sample to all may be effected. Curie and 
Rutherford, if called on to defend this transition, would not have recited 
passages from logic books. They would have pointed to background know-
ledge then shared by all competent chemists.

The foundations of the successful approach to crystallographic cat-
egorization were laid by René Just Haüy in the late eighteenth and early 
nineteenth century. His approach was based on the idea that each distinct 
substance that forms crystals is built up from many, primitive geometrical 
nuclei, all of the same geometric shape. The mineral galena, in this theory, 
is built from minute cubes. In his treatise published at the time Curie was 
working on radium, Henry Miers (1902, p. 21) illustrated Haüy’s account 
as in Figure 1.4:

Figure 1.4. Haüy’s account of crystalline shapes.9

9 The figure on the left is based on Miers’ Fig. 38 and the figure on the right is a 
reproduction of Miers’ Fig. 37.
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The oblique face ABC of a galena crystal in Figure 1.4 is, at the smallest 
scale, really many staircases of these cubes. But the scale is so small that 
we perceive a perfectly smooth surface.

An account by a contemporary of Haüy’s, Frederick Accum (1813, p. 
110), summarized the theory: “He [Haüy] has also shewn that all crystals, 
however complicated their form may be, contain within them a primitive 
geometrical nucleus, which has an invariable form in each chemical spe-
cies of crystallisable material.”10 From this theory came the essential result 
that every substance was characterized by a unique primitive form:

The diversity of primitive forms ought therefore to be re-
garded as a certain indication of a difference in nature be-
tween two substances and the identity of primitive form 
indicates identity of composition, unless the nucleus is one 
of those solids which have a marked character of regularity; 
such as the cube, the regular octahedron, &c. (p. 117)

The essential qualification is that sometimes two substances may be com-
posed of nuclei of the same form; this was likely to happen for crystals 
built from regular solids, like cubes. This was a quite essential qualifica-
tion since Accum could list numerous cases of substances with the same 
crystalline form. For example, he listed ten substances based on the cube 
(1813, p. liv), among which were native gold, native silver, native copper, 
gray cobalt ore, leucite, common salt, galena, and iron pyrites.

A century later, Haüy’s system had received multiple adjustments and 
his basic supposition was commonly bowdlerized:

The Abbë Reny Just Hauy [sic], whom Dr Tutton designates 
the “father of modern crystallography,” has enunciated the 
great principle that to every specific substance of definite 
chemical composition capable of existing in the solid condi-
tion there appears a crystallizing form peculiar to and char-
acteristics of that substance. (Anon, p. 365)

10 This account is more succinct than Haüy’s own synopsis (cf. Haüy 1807, pp. 86–101).
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The view outlined was not so much a principle as a simple consequence of 
Haüy’s theory, which, according to Accum, did not insist that each crys-
talline substance had its own “peculiar”—that is, unique—form.

For our purposes, the essential point is that if a chemist were to accept 
Haüy’s theory, then one good sample of a crystalline substance would be 
sufficient to identify the crystallographic system to which all crystals of 
that substance belong. We have the following inference:

Each crystalline substance has a single characteristic 
crystallographic form (Haüy’s Principle).

The sample of salt A has crystallographic form B.
Therefore, (deductively) all samples of salt A have crystallograph-

ic form B.

This is the crudest version of how chemists pass from a single sample to 
all. What is notable is that it is not an inductive inference at all. The infer-
ence is deductive and authorized by early crystallographic theory.

Of course, this is an extreme case and a purely deductive inference 
was possible only during a brief window of a few decades during the ear-
ly years of Haüy’s crystallographic theory. The theory soon encountered 
anomalies. The shapes Haüy postulated for his nuclei could not always be 
stacked so as to properly fill space. Whewell (1837, p. 235) reported the col-
lapse of Haüy’s physical theory: “and when Haüy, pressed by this difficulty, 
as in the case of fluor-spar, put his integrant molecules together, touching 
by the edges only, his method became an empty geometrical diagram, with 
no physical meaning.” A still more serious problem was the recognition 
mentioned above that one crystalline substance may form crystals that 
belong to two, three, or more crystallographic systems—called “dimorph-
ism,” “trimorphism,” and “polymorphism,” respectively. It was not clear 
how merely stacking nuclei of the same shape could yield these different 
shapes. Mineralogy texts of the early twentieth century routinely reported 
examples. William Ford’s list is presented as something of a reminder of 
what everyone supposedly knew, rather than as a surprising novelty:

Carbon in the forms of graphite and diamond, calcium car-
bonate as calcite and aragonite, iron sulphide as pyrite and 
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marcasite, are familiar examples of dimorphism. The two 
minerals in each case differ from each other in such phys-
ical properties as crystallization, hardness, specific gravi-
ty, color, reactions with acids, etc. Titanium oxide, TiO2, is 
trimorphous, since it occurs in the three distinct minerals, 
rutile, octahedrite and brookite. (1912, p. 80)

This means that Haüy’s principle of the earlier deduction was not true, for 
there were cases of one substance routinely manifesting in several differ-
ent crystalline forms.

But the idea of a strict regularity in the crystal forms manifested by 
one substance remained. So we might render a corrected version of the 
earlier inference accordingly:

Generally, each crystalline substance has a single characteristic 
crystallographic form (Weakened Haüy’s Principle).

The sample of salt A has crystallographic form B.
Therefore, (inductively) all samples of salt A have crystallograph-

ic form B.

We now have an inductive inference. The warranting principle is what I 
have called the “Weakened Haüy’s Principle.” What makes it inductive is 
the word “generally.” It licenses us to proceed from one sample to all, but 
not with certainty.

One might imagine that this “generally” is, finally, a manifestation of 
some universal inductive logic. Its schema might be represented as

Generally, X.
Therefore, X in this case.

While we may find many instances of propositions of the form “Generally, 
…,” they are not manifestations of a unique inductive logic. In each case, 
the word “generally” will have a meaning peculiar to the context. In this 
case, “generally” means “in so far as polymorphism does not interfere.” So 
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the nature of the risk one takes in accepting the conclusion will differ with 
each context.11

This is one illustration of how background knowledge drives induct-
ive inferences and how such background knowledge is deeply entangled 
with inductive practices. Once one knows to look for it, the extent of the 
entanglement is quite profound. Another notion that was well established 
in Curie’s day was isomorphism, mentioned earlier. This was then defined 
more precisely by Ford (1912, p. 79) as “A series of compounds which 
have analogous chemical compositions and closely similar crystal forms 
are said to make an isomorphous group.” An early case of initially un-
recognized isomorphism became a celebrated triumph of crystallographic 
analysis. Whewell (1837, pp. 226–28) reports confusion over the crystal-
line substance “heavy spar.” Haüy found that its cleavage angles varied by 
three and a half degrees, depending on the origin of sample. One sample 
was from Sicily and one from Derbyshire. The variation was a great per-
plexity and a dire threat to Haüy’s theory since the same nuclei could not 
accommodate even such a small change of angle. It turned out that the 
two samples were of different substances. The Sicilian sample was barium 
sulphate and the one from Derbyshire was strontium sulphate. Barium 
and strontium are both alkaline earth metals in the same column of the 
periodic table and have similar chemistry. They also form crystals that are 
very similar, although—crucially—not perfectly identical. This is a classic 
case of isomorphism.

When Curie remarked that the radium chloride formed crystals with 
“exactly the same appearance” as barium chloride, it would have been 
with full knowledge that the chemistry of radium mimicked closely that 
of barium. Indeed, that mimicry is what made the separation of the two 
so difficult. Hence, the familiar idea of isomorphism would have indicated 
that the crystals of the two chlorides should be similar. All that was really 

11 While the inferences may look formally similar, they will be quite different if applied 
to crystals or to astronomy. Take the following proposition: “Generally, orbiting objects in our 
solar system orbit in the same direction as the earth.” From this, we may infer with a small risk 
that a recently discovered asteroid will orbit in the same direction as the other objects in our solar 
system. The risk we take is different from that taken in crystallography. We risk the possibility that 
this asteroid was not formed by the same processes that formed most other objects in our solar 
system.



451 | The Material Theory of Induction Stated and Illustrated  

left to affirm was how close the similarity would be. It was, Curie found, 
“exactly the same.”

Immediately after Curie’s work was published, the chemical and crys-
tallographic similarity of radium and barium was immediately investi-
gated and affirmed. Runge and Precht (1903) used spectrographic and 
atomic weight measurements to locate radium with the other alkaline 
earth metals, magnesium, calcium, strontium, and barium. The expected 
similarity of crystalline forms was found by direct measurement of the 
bromides of barium and radium. As Frederick Soddy reported,

F. Rinne … has published a careful comparison of the crys-
tallographic relation between the bromides of radium and 
barium and has shown that radium bromide crystallises in 
the monoclinic system and is isomorphous with and crys-
tallographically closely related to barium bromide. (1907, p. 
332)

To report the isomorphism of barium and radium became standard in the 
literature.

We can now appreciate the great subtlety of Curie’s inference. As 
long as the background theories of crystallography are to be trusted, the 
possibility of polymorphism was the principal risk taken in generalizing 
the crystalline form of radium chloride from one sample to many. Hence, 
Curie and Rutherford were quite sanguine to report the radium salts’ 
crystalline form as an isomorphism with barium salts. For if there had 
been any polymorphism of the radium salt, they could reasonably expect 
a similar polymorphism to arise with the barium salt. So, with or without 
polymorphism, their result would stand. With that canny formulation, 
the result could be asserted with the confidence they showed. The only real 
danger was a failure of the isomorphism and, given the multiple points of 
agreement between barium and radium, that was easy to discount.

Let us take stock. Our starting point was a simple inductive inference 
from a few crystal samples to all samples. It is the sort of simple induction 
that should be explicated easily by an inductive logic. In particular, we 
would expect the logical analysis to tell us why this particular inference 
from “some” to “all” is so strong as to be essentially unquestioned. On 
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closer inspection, we found appearances to be deceptive. The strength of 
the passage from “some” to “all” in this particular case had little to do 
with issues identifiable by a formal logic. It had all to do with background 
chemical knowledge. The confidence the chemists had for the inference 
resulted from the care with which Curie and Rutherford located the in-
ference within a complicated network of chemical ideas that had been 
devised over the previous century precisely to admit such generalizations.

1.10. Main Ideas of a Material Theory of Induction
The preceding exemplifies how I believe we should understand inductive 
inference. Let me collect the main ideas here:

Inductive inferences are warranted by facts not by formal schema.

What makes the inductive inference a good and strong one is not con-
formity with some universal formal schema; it is the facts pertaining to 
the subject matter of the induction. Hence, the warrant is “material” and 
not formal. Curie already knew of the closeness of the chemical proper-
ties of barium and radium. She knew of the well-established isomorphism 
that arose in such cases and indicated a closeness of the corresponding 
crystalline structures. Those facts assured her that the few cases she had 
observed of similarity between radium and barium chloride crystals could 
be generalized.

The essential idea here is that facts can serve a dual role, both as state-
ments of fact and as warrants of inference. This idea is actually quite fam-
iliar. In deductive logic, the conditional “If A then B” serves this dual role. 
It can serve as a factual premise in an argument; or we can take the same 
argument and understand its role as warranting a deductive inference 
from A to B.

In chemistry, the facts that play this dual role look, loosely, like 
“Generally, X.” For example, “Generally, salts that are chemically analo-
gous have similar crystalline structures.” This is both a fact in chemistry 
and an authorization to infer that radium salts and barium salts will have 
similar crystalline structures because of their chemical similarity. The 
inference is authorized all the more strongly when Curie found a single 
sample of radium chloride crystals that, as expected, exactly resembled 
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barium chloride crystals. This diminished the possibility of smaller but 
superficially detectable differences. The inference is inductive since the 
chemical facts do not deductively entail Curie’s inference. This is the im-
port of the modifier “generally.” It accommodates the ways the inference 
can still fail that are peculiar to this particular chemical example.

All induction is local. It is contextual. 

The chemical facts that authorize these inductive inferences are truths of a 
particular domain of chemistry. They warrant a local mini-logic, peculiar 
to the context, in which evidence of chemical similarity and of a few sam-
ples warrants the generalizations indicated. This local mini-logic resem-
bles the universal schema of enumerative induction. But the resemblance 
is superficial. There will, no doubt, be other domains in which other facts 
will warrant inferences that also resemble enumerative induction. The 
inferences of each domain will be distinct, carrying their own unique re-
strictions that do not derive from a universal schema, and bearing their 
own unique form of inductive risk.

Inductive inference is generically variegated and imprecise. 

The imprecision here designates a lack of formal properties such as appear 
in mathematical theories of inductive inference. The inductive inferences 
on crystalline structure surveyed above can be characterized as “strong” 
or “reliable” or “very certain.” These terms have a meaning only within the 
crystallographic context. Inferences to a unique crystallographic system 
are prone to failure if the salt displays polymorphism. The inference is 
“strong” just to the extent that polymorphism can be discounted.

Terms like these are variegated in that they have meanings peculiar 
to their contexts. The term “strong” will have one meaning in crystallog-
raphy, another in some branch of physics, and yet another in some sub-
field of astronomy. What is missing generically is any precise means of 
comparing the strengths of inferences deemed “strong” in crystallography 
and in other domains, such as physics or astronomy. We also lack pre-
cise means of calibrating the difference between, say, “strong” and “very 
strong,” within a single domain. This stands in contrast to contexts in 
which probabilities are applicable. The probability of at least one heads 
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in ten coin tosses is 1/1,024 = 0.99902. In another domain, we may find 
that the probability that a parent passes on some specific genetic trait is 
0.99. The two probabilities are comparable. The first exceeds the second by 
1% and this slight difference will manifest eventually in slight frequency 
differences among many repeated trials.

The qualification “generically” allows that there are important excep-
tions. Background facts may sometimes authorize a precise, mathematical 
calculus of inductive inference. The most familiar case arises when we 
perform inductive inferences specifically on systems governed by prob-
abilistic facts. Such systems include those undergoing radioactive decay, 
the forensics of DNA, and games of chance in a casino. Later chapters 
will describe systems in which other, non-probabilistic calculi of inductive 
inference are warranted. These precise calculi are only applicable when 
definite background facts warrant them.

The material theory does not authorize the default application of 
numbers to measure strengths of inductive support. It may be appealing 
to some to presume such numbers as a default. A probabilistic analysis 
can supply a definite number—say 0.99—whose closeness to unity gives 
the sought-for quantitative measure. As satisfying as this may be, without 
specific background facts to authorize the numbers, applying them is an 
exercise in spurious precision. It forces variegated notions of strength of 
support into a single, uniform mold that supposedly enables comparisons 
across domains. It neglects the domain-specific meaning for the strength 
of inductive support in each domain. To demand a single number or a sin-
gle universal term to characterize inductive strengths across all domains 
invents a uniformity that is not found in the variegated character of in-
ductive inference.

Inductive risk is assessed and controlled by factual investigation. 

When one makes an inductive inference, one takes an inductive risk and 
one seeks both to assess and to minimize the risk taken. In a formal theory 
of induction, the assessment of the risk becomes an assessment of the reli-
ability of the inference schema used. If we infer to the best explanation, we 
then need to ask how reliable it is to do that. And we are faced immediately 
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with an intractable problem. There is no simple answer to this question; 
and there is likely no serviceable, complicated answer either.

In a material theory of induction, things are quite different. The war-
rant for an induction is a fact, and we assess and then control the inductive 
risk by exploring and developing that fact. Let us imagine that we notice 
that only a few radium chloride crystals resemble those of barium chlor-
ide. The inference to a broader resemblance might then be warranted by a 
chemical fact that salts manifest only a few crystalline forms. The strength 
of the inductive inference depends essentially on the correctness of that 
fact and just how many forms are admitted by the word “few.” All of that 
can be checked by further investigation and just checking that is the nor-
mal business of research chemists. They developed theories of how crys-
tals are constituted to enable a better understanding of which crystalline 
forms will appear in which circumstances. These investigations assure us 
that two salts will manifest similar crystalline forms if they are chemically 
similar; and this conclusion is in turn grounded both in other observa-
tions and a theoretical argument. Since radium and barium are chem-
ically very similar, the chlorine atoms in a barium chloride crystal will 
permit the barium atoms to be replaced by radium atoms with minimum 
alteration to the crystal structure.

We assess and control inductive risk by learning more facts. The new 
facts provide new premises for inductive inference and new warranting 
facts. What was an intractable problem for a formal theory of induction 
becomes a routine problem in exploring the factual realm of chemistry for 
a material theory.

Inductive inference is material at all levels. 

The crystallographic example explored here looks at particular sorts of in-
ductive inferences at a specific level of refinement. One may wonder what 
happens if we take a more fine-grained view that looks more narrowly at 
specific inferences or—alternatively—if we take a coarser view that looks 
at inductive practice at a more general level. Will we find that a formal 
account of inductive inference succeeds there? Will we find that at levels of 
great refinement the glue that inductively binds the corpuscles of analysis 
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is formal? Or will we find at a general level that a universal, formal theory 
emerges that can unify the diversity of the particular cases?

The claim here is that a material theory prevails at all levels. Of course, 
at all levels there will be inferences that loosely fit with one or other formal 
theory. We have seen in the case of crystallography that the inferences 
resemble enumerative induction. We should expect such loose fits, else the 
formal theories would not have survived in the literature. On closer exam-
ination, however, we will see that material facts are what warrant them.

1.11. Does the Material Theory Say That Inductive 
Inferences Are Really Deductive? No!
No. No. NO. It does not say that. This is perhaps the most frequent mis-
reading of the material theory, and it can be put to rest here. The material 
theory maintains the distinction between the two forms of inference. In 
deductive inference, the truth of the premises assures the truth of the con-
clusion. In inductive inference, understood materially or otherwise, the 
premises only lend support to the conclusion. Inductive inference is not 
deductive inference.

The misreading of the material theory has it affirming that inductive 
inference is really some form of disguised deductive inference. My sense is 
that this misreading comes from a similarity between the material theory 
and another approach to inductive inference. In this other approach, we 
note that good inductive inferences are also deductive fallacies. For ex-
ample, we take the following as a premise:

This sample of salt A has crystallographic form B. 

From this, we infer

All samples of salt A have crystallographic form B.

This is a deductive fallacy. We could imagine that the argument is real-
ly, secretly a valid deductive argument, but we do not see it because one 
or more of the premises are unstated. That would make the argument an 
“enthymeme,” a valid inference with unstated premises. In this case, a 
suitable unstated premise would be the strong form of Haüy’s Principle:
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Each crystalline substance has a single characteristic 
crystallographic form. 

With this added premise, the inference becomes deductively valid. In 
the other approach, all inductive inferences are treated this way. They 
are treated as failed deductions that are repaired by supplying missing or 
unstated premises. This is not how the material theory treats inductive 
inference, however.

If we transform the inductive inference to a deductive inference by 
adding such premises, we have generated what is known as a “deduction 
from the phenomena.” The best-known examples are given in Book 3 of 
Newton’s Principia, where he shows how to infer deductively from the 
phenomena of celestial motions to the basic ideas of his theory of gravita-
tion. His examples are so important that inferences of this type are often 
called “Newtonian deductions from the phenomena.”

In admitting these cases, the material theory does allow that some 
inductive inferences may turn out to have been deductive inferences 
all along, once we make the background facts explicit.12 However—and 
here is the key observation—this deductive outcome is an extreme and 
relatively rare case. Most commonly, it does not arise. When we identify 
the warranting facts, they supply an inductive warrant only. The strong 
form of Haüy’s Principle is false. The correct, weakened form of Haüy’s 
Principle merely asserts that “Generally, each crystalline substance has a 
single characteristic crystallographic form.” The crucial word “generally” 
makes all the difference. It reminds us that the original principle fails if 
there is polymorphism. In accepting the conclusion, we take the risk that 
polymorphism—if present—will undo the conclusion. That is, the warrant 
supplied by the weakened form of the principle is not strong enough to 
assure us of the conclusion with deductive certainty. The distinction be-
tween deductive and inductive inference is maintained.

12 This is not a bad outcome at all. We thought that we must take an inductive risk in 
accepting the conclusion of the original inference. However, we learn that background facts assure 
us that no inductive risk is taken in accepting the conclusion. The inference has become deductive 
and, in effect, we already took the inductive risk needed when we accepted the background 
assumptions.
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Chapters 2–9 will elaborate and illustrate these claims further through 
examination of a sequence of inductive inference forms employed in the 
literature: the replication of experiment, analogical inferences, inferences 
grounded in notions of simplicity, and inference to the best explanation. 
These chapters will be followed by an extensive investigation into the lim-
itations of the Bayesian approach in Chapters 10–16. Where the present 
chapter has developed the material theory of induction by means of an 
example, the next chapter will develop the general arguments for it.

Note added March 15, 2020.
Commentaries on the draft chapters of this book have been collected for 
an issue of Studies in History and Philosophy of Science. It has become 
apparent from those commentaries that the draft chapters had not ad-
equately distinguished two questions that arise within the material theory 
of induction. They are

(inductive-logical)
Question: Which inductive inferences are licit?
Answer: Those that are warranted by a (true) fact.

(epistemic)
Question: How can we know that a specific inductive inference is 

licit?
Answer: We must be assured of the truth of the appropriate 

warranting fact.

The first question is answered by matters of fact that obtain independently 
of any human beliefs, knowledge, or awareness. The answer to the second 
question depends on the answer to the first question. To know that some 
candidate inference is licit, we need to know the warranting fact. Gaining 
that knowledge can sometimes be troublesome. We may have to conjec-
ture what the warranting fact is. In this case, we cannot be assured that 
the associated inference is licit until further investigation assures us that 
we have conjectured a factual truth.
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