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Abstract

Alexander Douglas Mackie

Constrained LASSO for Sparse Identification of Nonlinear

Dynamical Systems (SINDy)

Our work explores and expands on (Brunton, Proctor, and Kutz, 2016) with regard

to bluff body vortex shedding. We have adapted the SINDy method by applying

a transformation of the data to reduce the number of dimensions under investiga-

tion. We also applied Galerkin constraints associated with our transformation in

order to further reduce the variables being considered when model building. Fi-

nally, by using LASSO as our method of solving the SINDy problem rather than

sequential threshold least squares, we have created a much more efficient approach

that attempts to discover the generating equations of the non-linear dynamical sys-

tem associated with vortex shedding in the wake of a flat plate. Our approach was

tested by modeling vortex shedding in the wake of a cylindrical bluff body with a

low Reynolds number, and was able to extract expected elements of the governing

equations. With this success, we established several models for vortex shedding in

the wake of a flat plate bluff body (for both open and closed ends) at a high Reynolds

number. Under our transformed data, we obtained 2,3 and 5 mode models that may

shed some light into the dynamics of the system.
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the model (red line) of Ȧ/A (left) and ż (right) for the Closed Ends data. 39



viii

6.3 Mean square error vs log(λ) plot for Closed Ends data (3-modes). The

red dotted line signifies the model that is most parsimonious within

1 standard error of the model with the minimal standard error (blue

line). The selected model has a log(λ) value of -4.4389 and is on the

red dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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Chapter 1

Introduction

1.1 Background

The field of fluid dynamics is complex as it requires a deep understanding of the

Navier-Stokes equations to establish high-order models of the fluid systems under

investigation. While these partial differential equations are able to provide accu-

rate models of a system, it has been discovered that low-order approximations can

be created through the use of POD-Galerkin projection. By extracting the principle

components of the data through proper orthonormal decompostion, we can recreate

an approximation of the system with fewer variables. In (NOACK et al., 2003) they

illustrate this process using the example of fluid flow in the wake of a cylindrical

bluff body. At a low Reynolds number, they were able to establish a low-order ap-

proximation of the system using only three variables: a pair of harmonic oscillators

and a shift mode. These equations are

u̇ = µu − v − uw

v̇ = µv + u − vw

ẇ = −w + u2 + v2

(1.1)

where u and v are our harmonic oscillators, z is the shift mode and µ is an arbitrary

constant. The paraboloid formed by these equations represents the steady state of

the system, where the harmonic oscillating pair captures the majority of the energy,

and the shift mode captures perturbations in the system, keeping the unstable ele-

ments close to the limit cycle formed by the two harmonic oscillators. Even though
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FIGURE 1.1. A depiction of the POD decomposition observed in the
cylinder example described in (Brunton, Proctor, and Kutz, 2016).

We see the effects of the two harmonic oscillators on the vortex
shedding and the mean flow of the model. The shift mode connects

the mean flow with the unstable fixed point. Image is from (Brunton,
Proctor, and Kutz, 2016)

this model is fairly simple with regards to its elements, according to (Brunton, Proc-

tor, and Kutz, 2016), it took 30 years to come to this realization.

In 2016, (Brunton, Proctor, and Kutz, 2016) discuss a new data analysis approach

called sparse identification of nonlinear dynamical systems (SINDy). This approach

utilizes statistical methods driven by sparsity in order to identify governing equa-

tions for a dynamical system using real data. Vortex shedding was an area where

they hypothesized such an approach may be of use. The example given by (Brun-

ton, Proctor, and Kutz, 2016) depicted in figure 1.1 is similar to the one in (NOACK

et al., 2003); they were trying to recreate the governing equations in 1.1. We note here

that their approach proved somewhat successful. In the first of two data sets, they

were able to identify the variables present in the paraboloid structure. However,

they were less successful with the second data set, an issue they justify by the fact

that it was twice as energetic; the method identified higher order terms not associ-

ated with what one would expect to see in a low-order representation of the system.

Nonetheless, their moderate success with this approach sparked interested in the

community and continues to draw others to explore the SINDy method.

In (Loiseau and Brunton, 2018) they developed a method called sparse Galerkin re-

gression, which utilizes the SINDy approach, but applies energy conserving con-

straints associated with Galerkin projection. By doing this, they were able to ensure

that the model they found adhered to dynamic constraints as well as physical ones
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imposed by the transformation of the data. They tested this method on two well

studied examples in fluid dynamics: vortex shedding in the wake of a cylinder and

shear driven cavity flow. For each of these cases, they calculated the optimal uncon-

strained and constrained models and compared them. Their findings were that the

unconstrained models were more accurate to the specific data, but didn’t adhere to

the constraints previously established. This failure overshadows the unconstrained

models accuracy and suggests that the constrained models are the superior choice;

they may not describe the specific data as well, but they do establish a better under-

standing of the system.

Whether utilizing SINDy or sparse Galerkin regression, computational efficiency be-

comes a issue. It may not be of concern in the cases we have just discussed, but what

if we have a scenario where we have to examine more variables? Or even solve for

more equations?

In (Braun, Agrey, and Martinuzzi, 2020), exploration is done on bluff body vortex

shedding at higher Reynolds numbers. They were interested to see what would

happen when they changed the cylinder for a flat plate when paired with a higher

energy system. They were able to discern some of the qualities of the system from

observation, but this would only give them ideas of what variables to examine when

trying to find the governing equations. Unfortunately, this lead to the need to solve

for a fourth governing equation tied to a mode referred to as the flapping mode and

potentially even exploring a second harmonic oscillating pair. The need to look at

four or even six modes exponentially increases the number of variables that need to

be examined. If we were to attempt to solve this using the initial method discussed

in (Brunton, Proctor, and Kutz, 2016), it would prove too cumbersome to solve in a

reasonable amount of time.

Fortunately, the world of statistics is constantly evolving and more efficient methods

of solving this problem now exist. Our research will attempt to consolidate some of

these methods into a single approach. This consolidation will make this computa-

tional unfeasible problem much more palatable. First, we will look at transforming

the data to reduce the number of equations that we must solve. Second, we will uti-

lize the constraints discussed in (Loiseau and Brunton, 2018), but rather than using

them after model construction, we will apply them before we begin model building.
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Lastly, the method used in (Brunton, Proctor, and Kutz, 2016) to find a solution was

sequential threshold least squares. Due to the discovery of cyclical coordinate de-

scent and path seeking algorithms, LASSO has become an efficient tool in problems

such as these and it is for this reason that we will apply it to our research.

Our manuscript will be broken down in the following manner; chapter 2 will define

LASSO. In chapter 3 we will look at SINDy in detail and chapter 4 will contain the

theory that supports our transformation of the data. Chapter 5 will outline the proce-

dure we followed for model selection. Chapter 6 will discuss results. Finally we will

end with chapter 7 which will contain concluding remarks and future directions.
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Chapter 2

LASSO

2.1 Introduction

In the mid 90s, Tibshirani introduced the least absolute shrinkage and selection op-

erator (LASSO) as a new tool in penalized regression. In this chapter we will begin

by defining the LASSO and we will look at some key results discussed in (Tibshi-

rani, 1996). We will then introduce cyclical coordinate descent and path seeking

algorithms so that we may discuss the glmnet package in matlab and explain how it

works.

2.2 Derivation

When we wish to model a system using real data, a good starting point is Ordinary

Least Squares (OLS) Regression. To do this, we let (X, y) be a set such that y is a n-

vector of observations and X a n × p design matrix with p predictor variables. With

the addition of β, a p-vector of regressor coefficients such that β j ∈ R ∀ j = 1, 2, . . . , p,

we can create a model of the system under observation. The optimal OLS model is

the solution to

β̂ = min
β

(
n−1(y − Xβ)T(y − Xβ)

)
(2.1)

It is important to note that the optimal OLS model need not be unique. While OLS

is a reasonable approach under ideal conditions, it becomes less desirable in a situ-

ation where p >> n: this leads to the issue of over-identification. This issue can be
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addressed by adding a penalty parameter, λ > 0, to the optimization problem. Even

with penalization there are still other issues that can arise during the model selec-

tion process. One issue is we obtain a model with many parameters, which may not

be easy to interpret. Another issue is the model obtained may have high variance,

which is not ideal for prediction. We will now look at two penalized regression ap-

proaches, specifically subset selection and ridge regression, both of which address

these issues respectively.

Subset selection deals with the issue of obtaining a model that is easy to interpret.

By penalizing the model for the number of parameters included, this method re-

moves less influential parameters. The optimal subset model with k predictors is the

solution to

β̂(λ) = min
β;β∥0

0=k

(
n−1(y − Xβ)T(y − Xβ) + λ∥β∥0

0

)
(2.2)

where ∥β∥0
0 = #{β : β j ̸= 0, j = 1, 2, . . . , p}. While this reduces the number of pa-

rameters rendering a simpler model, it has the draw back of being a discrete process

where we add predictors one at a time. The lack of continuity in the process can

yield substantially different models with minute variations in the data. This is a

result of the penalty being a constant that does not arise from a true norm space

(∥aβ∥0
0 ̸= |a|∥β∥0

0). By making the model easier to interpret the issue of high vari-

ance is exacerbated.

To deal with high variance, we can use ridge regression. This method utilizes an

l2-regularized penalty parameter yielding the following optimization problem

β̂(λ) = min
β

(
n−1(y − Xβ)T(y − Xβ) + λ∥β∥2

2

)
(2.3)

This penalty allows us to shrink the coefficients attached to our parameters through

a continuous process, meaning minor perturbations in the data will not have a dra-

matic effect on the solution. While this shrinkage may address variability in the

model, it will unlikely reduce any of our coefficients to zero leaving us with a com-

plicated model and many parameters that may be redundant.
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With the two major issues that we are trying to address it appears that by dealing

with one we magnify the other. So what happens if we want a parsimonious model

AND smaller variance? The answer is we utilize LASSO. By using an l1-regularized

penalty we have the ability to shrink the variance of the OLS model as well as re-

move redundant regressors. The optimization problem for LASSO is

β̂(λ) = min
β

(
n−1(y − Xβ)T(y − Xβ) + λ∥β∥1

)
(2.4)

Just like the other two methods, there is no free lunch. We now have a scenario

where we will suffer from the drawbacks of subset selection and ridge regression,

but each to a lesser degree. By balancing both issues, the creation of a model that

is easy to interpret and has reduced variance becomes possible. In the following

section, we will outline how this works in the orthonormal case.

2.3 Orthonormal Case

(Tibshirani, 1996) discusses subset selection, ridge regression and LASSO in the or-

thonormal case and presents results regarding each method. Here we will prove

the validity of these results under the requirement that our design matrix, Xn×p, be

semi-orthogonal. For the proofs that follow we will assume that we are dealing with

a situation were a unique solution exists. Under these conditions we will prove that

the optimization problems for subset selection, ridge regression and LASSO (2.2,

2.3, and 2.4 respectively) give us models that have a reduced number of regressors,

shrink our variance, and balance the previous two properties respectively. For all

of the arguments that follow, our objective function for any given scenario will be

defined as

ψq = n−1(y − Xβ)T(y − Xβ) + (λ∥β∥)q (2.5)

where (λ∥β∥)q is the penalty parameter and norm product associated with model q,

q ∈ {Subset, LASSO, Ridge}. In the case of OLS, (λ∥β∥)OLS = 0.
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2.3.1 Subset Selection

We first turn our attention to subset selection to show the optimal model of size k

is equivalent to selecting the k largest coefficients in magnitude from the full OLS

model and setting the remaining coefficients to zero.

Let us consider a subset of k parameters such that 1 ≤ k ≤ p. An optimal model in

this setting can be obtained by looking at all possible models with k non-zero coef-

ficients and comparing their objective functions. For an arbitrary, but fixed subset

model with k non-zero coefficients we will have design matrix XSubsetk . Due to its

semi-orthogonal nature, XSubsetk can be obtained by mapping the columns associated

with our non-zero parameters in X to themselves and mapping all other columns to

the null space. In order to show that the k parameters that will be included are the

k parameters from the full model that have the largest coefficients in magnitude we

will solve for our optimal β

dψSubsetk

dβ
= n−1(−2XT(y − (Xβ)Subsetk))

= y − (Xβ)Subsetk (2.6)

Here is a visual representation of optimization problem

y

y − XβSubsetk

−XβSubsetk

Since the magnitude of vector y is fixed, we can see that our solution is optimized
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when y − (Xβ)Subsetk is close to the zero vector (i.e. when (Xβ)Subsetk is large). There-

fore the optimal model with k predictors will be the one that maximizes Xβ, i.e.

|(Xβ)Subsetk |
Orthogonal

⇒ |βSubsetk
| ⇒

√
β2

1 + β2
2 + . . . + β2

k

Here it is plain to see that a model containing the k largest coefficients in magnitude

is equivalent to the optimal subset model with k predictors.

2.3.2 Ridge Regression

Next we prove the claim that the ridge regression l2-regularized penalty parameter

shrinks the variance of the optimal OLS model.

dψRidge

dβ
= n−1(−2XT(y − Xβ)) + 2λβ

=⇒ XTy = β + nλβ

=⇒ β = (1 + nλ)−1XTy

Because λ > 0 it follows that (1 + n)λ > 1 meaning that we are shrinking the β

vector. Coincidentally, we also see that if λ = 0 we retrieve our OLS model.

2.3.3 LASSO

To prove the claims regarding LASSO we need to utilize subdifferential calculus.

This will allow us to address LASSO’s objective function which is not smooth when

a regressor is equal to zero, which is crucial as we expect many of our regressors

to be non-active. (Bühlmann, 2011) states this approach is valid since the LASSO

objective function is convex and each regressor is bounded above. Therefore we can

examine the optimal solutions at each simplex created by any number of regressors

being non-active and expand to the original optimization problem. Let us take an

arbitrary, yet fixed, model with parameter subset η. The optimization of the objective

function for the given parameter subset becomes

dψLη

dβLη

= n−1(−2XT
Lη
(y − (Xβ)Lη )) + sign(βLη

)Λ
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which gives an optimal regression vector

βLη
= XT

Lη
y − ΛLη (2.7)

where ΛLη = sign(βLη
) nλ

2 . Due to the orthogonal nature of our example it follows

that any active parameters in our LASSO model will be smaller in magnitude than

the equivalent OLS model of the given parameter subset (i.e. it reduces variance in

the model). We now focus our attention on showing that LASSO reduces the number

of regressors in the model by proving the following statement:

βi ̸= 0 → |βi| > nλ (2.8)

To prove 2.8, let us consider a second parameter subset, ν, where

∥βLν
∥0

0 = ∥βLη
∥0

0 + 1; βLη
⊂ βLν

Let us compare the objective functions of our two arbitrary, yet fixed, models.

ψν − ψη

= βT
Lν

βLν
+ λ|βLν

|1 − 2yT(Xβ)Lν − βT
Lη

βLη
− λ|βLη

|1 + 2yT(Xβ)Lη

= β2
Lν,k + nλ|βLν,k| − 2yTXLν,{:,k}βLν,k

nλ=|βLν ,k |+δ
= 2β2

Lν,k − 2yTXLν,{:,k}βLν,k + δ

= 2βLν,k(βLν,k − yTXLν,{:,k}) + δ

= δ

If δ > 0 (i.e. |βLν,k| < nλ) then parameter subset η will be selected over parameter

subset ν since ψη < ψν. Similarly, if δ = 0 then parameter subset η will be selected

over parameter subset ν since ψη = ψν and ∥βLν
∥0

0 > ∥βLη
∥0

0 (i.e. subset η represents

a more parsimonious model). Lastly, in the event that δ < 0, parameter subset ν

will be selected over parameter subset η since ψη > ψν. From these three cases we
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see that 2.8 is true, which implies that LASSO serves as a subset selection mecha-

nism. Once again the orthogonal nature of our example tells us that our optimal

model will once again contain an active parameter subset of the original parameter

set (note that this need not be a strict subset).

To see why LASSO can reduce coefficients to zero whereas ridge regression is un-

likely to do so, we present a visualization of both of the optimization problems.

FIGURE 2.1. Geometric Representation of Optimization of β̂ with l1
(left) and l2 (right) penalty parameters. On the left we see that
tangency is possible at zero due to the ’sharp corners’ of the l1

penalty parameter. It is highly unlikely to obtain a tangent point at
zero in the l2 case on the right. The image is from (Bühlmann, 2011)

We see the l1-regularized penalty creating ’sharp corners’ compared to the l2-regularized

penalty. This special feature allows our ellipse of optimal solutions to be tangent to

the l1-regularized penalty when β1 is exactly zero. The same is not true for the l2-

regularized penalty.

We return to our initial claim that LASSO balances the aspects of subset selection

and ridge regression. This becomes apparent when we consider the penalty param-

eter. The larger our penalty parameter, the more we shrink the magnitude of our

regression vector, which is done by only including larger regressors. This leads to

a parsimonious model with minor reductions made to its variability. On the other

hand, if we select a smaller penalty parameter we are left with a larger number of
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active regressors, but with a more significant adjustment made to the variability in

the model.

2.4 Cyclical Coordinate Descent and Path Seeking Algorithms

Initial deterrents surrounding the use of LASSO were determining an appropriate

choice for λ as well as the computational cost required to solve the corresponding

optimization problem. In their paper, (Wu and Lange, 2008) were among the first to

address this issue through the use of cyclical coordinate descent. Their vision pre-

sented the first piece of the puzzle to bring LASSO into the statistical spotlight. It

was later discovered that the addition of path seeking algorithms paired with Wu

and Lange’s research made the LASSO problem computationally feasible.

Before we address path seeking algorithms, we will first look at how cyclical coor-

dinate descent works. Cyclical coordinate descent is an optimization method that

addresses model parameters one at a time. Using an assumed initial model as a

starting point, the method begins by finding an optimal solution for a single regres-

sor while keeping the other ones fixed. Once this solution is found the process is

repeated for the next regressor. Continuing in this fashion, the regressors are cycled

through one at a time until the model converges. This may require multiple cycles

to complete and ultimately the amount of time it takes this process to converge de-

pends on how close the initial assumption is to the final model. This is where path

seeking algorithms become important.

With path seeking algorithms, we are going to start by making an assumption whose

use we will justify later. This assumption is that a model with a larger penalty pa-

rameter (i.e. fewer regressors) will prove to be a good initial assumption for a model

with a smaller penalty parameter (i.e. more regressors). With this assumption in

place, we can also assume that there exists a penalty parameter which we will call

λ0, that is large enough to be associated with a model that has no regressors at all.

If we shrink λ0 slightly, generating λ1, we come to a scenario where our model will

have a single regressor. At this point we will run our cyclical coordinate descent
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algorithm and find our one-regressor model. Now that we have this model we can

shrink λ1, obtaining λ2, whose model might have two regressors. With our original

assumption, we can use the previous model as a ’warm start’ for this iteration of the

cyclical coordinate descent algorithm until we find our second model. By continuing

along this path, we can obtain models for any number of λs very quickly, eliminat-

ing the need for selecting an optimal value of λ

In theory this method would work if our initial assumption was true. Unfortunately,

this is not a practical assumption with real data. Furthermore, the assumption that

any model with fewer regressors will be a subset of any larger model does not hold

if we can not assume orthogonality. Regardless of these shortcomings, a culmination

of research shown in (Ghaoui, Viallon, and Rabbani, 2011), (Tibshirani et al., 2012),

and (Efron et al., 2004) provides support for the claim that this approach can gen-

erate a path that greatly improves computational efficiency with high probability of

obtaining the correct optimal model. These papers will be discussed in more detail

in the following section.

2.4.1 glmnet

For our research, the glmnet package in MATLAB, created by (Friedman, Hastie,

and Tibshirani, 2010), was utilized . We turn to (Hastie, Qian, and Tay, 2021) to de-

scribe the underlying principles of this package. The main highlights that concern

our research in this introduction are that we can utilize an elastic net penalty (LASSO

being a specific example of elastic net) to build models for prediction through a k-

fold cross-validation process. As mentioned above, this process relies on cyclical

coordinate descent and path seeking algorithms, where glmnet presets the number

of λs considered along the path to be 100 and the number of folds for cross valida-

tion to be 10. These preset values can be changed with user input.

The underlying mechanisms of this package are derived from (Tibshirani et al.,

2012), which introduced sequential strong laws for discarding predictors in LASSO

optimization problems. This algorithm relies on theoretical results from (Efron et al.,
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2004), which discusses the Least Angle Regression (LARS) algorithm, and (Ghaoui,

Viallon, and Rabbani, 2011), which addresses concepts known as the Safe Feature

Elimination (SAFE) rules. We will look at the key ideas behind these two papers to

provide the foundation for which we can look at the strong sequential rules.

Beginning with the LARS algorithm, it uses a modified forward selection process to

build a model. The first regressor introduced is the one that is most correlated with

the data. Residuals are then obtained from this ’current’ model, becoming the new

response variable, and the remaining predictors are orthogonally projected from the

model. The next regressor to enter the model is chosen under the same criteria as

the first (the most correlated to the current response variable), but rather than sim-

ply entering the model, as would occur in a forward selection process, a bisecting

vector is found between the vector created by the current model and the vector of

the new regressor. This bisector becomes the new model and the process continues

until desired. In their paper, (Efron et al., 2004) show that LASSO can be expressed

as a modified version of the LARS algorithm and that both methods individually

yield very similar models, albeit not identical.

We now shift our focus to (Ghaoui, Viallon, and Rabbani, 2011). In their paper, they

establish the SAFE rules to be capable of optimizing the process of model specifica-

tion in LASSO. Using simple inner product calculations, the approach is to solve a

problem in a dual space that corresponds to the original optimization problem. This

correspondence is limited to identifying features that are irrelevant to the solution of

the original problem allowing them to be safely removed from consideration. Even

with this limitation, significant improvements are made to computational efficiency.

In some cases this improvement is on the order of magnitudes.

While we point out the main features of the LARS algorithm and the SAFE rules,

we note here that we utilize the results their respective papers produce and that a

deeper understanding of how these results were procured is beyond the scope of

our research.
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With the ground work outlined, we can now show how (Tibshirani et al., 2012) con-

structs the sequential strong laws. They begin with the SAFE rules inequality which

states that the jth predictor is discarded if

|xT
j y| < λ − ||x||2||y||2

λmax − λ

λmax
(2.9)

The strong rules adjust this inequality by setting ||x||2||y||2
λmax

= 1. This approach is

justified by the fact that LASSO assumes a standardized model. Then when the

Cauchy-Schwartz inequality is applied, the result falls out. With the adjustment

made, we have

|xT
j y| < 2λ − λmax (2.10)

This will remove more non-active predictors than the initial SAFE rules. The ap-

proach is improved even further by adding a sequential aspect that utilizes the resid-

uals of the model found for one iteration and inserts them into the next iteration in

the following way

|xT
j (y − β̂(λk−1))| < 2λk − λk−1 (2.11)

This final inequality is used in the strong sequential approach. With high proba-

bility this approach significantly reduces computational cost by eliminating many

predictors as potential candidates. While no actual measure has been attached to

how often the algorithm is erroneous, the conditions under which counterexamples

were found was rare. Even in the event that data is collected that leads to a model

which is not optimal, the program is able to catch its mistake with a final check using

the Karush-Kuhn Tucker conditions (KKT). Since the KKT conditions are grounded

in optimization theory, we will forgo describing them here as they are outside of the

scope of our research.

In (Tibshirani et al., 2012) real data was used to compare this method with the

strong rules by themselves, the SAFE rules, and a recursive form of the SAFE rules.

In their tests, the strong sequential approach significantly outperformed all other

methods with no mistakes.
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Chapter 3

Sparse Identification of Non-Linear

Dynamical System (SINDy)

3.1 Introduction

In engineering, an important area of research is identifying the underlying models

of dynamical systems from real data. In their paper, (Brunton, Proctor, and Kutz,

2016) discuss the issues that arise from real data and propose the use of sparse iden-

tificaton of nonlinear dynamical systems (SINDy) as a solution. By applying sparse

identification methods to systems with the form

d
dx

x(t) = f (x(t)) (3.1)

(Brunton, Proctor, and Kutz, 2016) found some success with SINDy’s ability to create

low-order models for many important problems. The example in their paper of par-

ticularly interest attempts to model vortex shedding in the wake of fluid flow past a

cylinder. Before we get into the specifics of the experiment, we will first outline the

SINDy process.

3.1.1 The Process

We will now break this process down doing our best to keep our notation consistent

with the original paper (Brunton, Proctor, and Kutz, 2016).
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Our first step is to obtain time series data for our system. This will establish X to be

a T × p matrix, consisting of T observation rows and p columns of variables

X =



xT
t1

xT
t2

...

xT
tT


=



(x1)t1 (x2)t1 . . . (xp)t1

(x1)t2 (x2)t2 . . . (xp)t2

...
... . . .

...

(x1)tT (x2)tT . . . (xp)tT


T×p

Optimally, the time step should be consistent between observations.

Since we are looking to find solutions to equations of the form 3.1, our next step is to

obtain a second matrix containing the derivatives with respect to time for each of our

p variables. This matrix, Ẋ, can either be collected at the same time as the data itself

through observation, or it can be calculated afterwards using numerical methods.

Ẋ =



ẋT
t∗1

ẋT
t∗2
...

ẋT
t∗m


=



(ẋ1)t∗1 (ẋ2)t∗1 . . . (ẋp)t∗1

(ẋ1)t∗2 (ẋ2)t∗2 . . . (ẋp)t∗2
...

... . . .
...

(ẋ1)t∗m (ẋ2)t∗m . . . (ẋp)t∗m


We note here that our derivative matrix only has m rows. The value of m is depen-

dent on the method used to obtain the derivatives. As an example, our approach cal-

culates the derivatives using a 4th order differential scheme and therefore m = T − 4.

It is important to note that our method of calculating derivatives requires prior ob-

servations which is why we begin indexing at t∗1 (i.e. t1 ̸= t∗1).

With our data and derivatives obtained, we move to our third step: creating a library

of candidate variables. In order to obtain this library, we will create a matrix of

functions Θ and apply them to our data. Some examples of functions that could be

present in Θ are identity, polynomials, sin, cosine, logarithms, etc.

Θ(X) =
[

1 X XP2 . . . sin(X) . . .

]

In the above example XPj represents all possible polynomials of order j that can be

produced by our observed variables. As an example, if j=2 and our variables are x,
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y and z then

XP2(t) =
[

x2(t) xy(t) xz(t) y2(t) yz(t) z2(t)

]
Once our library of functions is constructed we can apply it to our observed data

and then represent the solution as

Ẋ = Θ(X)Ξ

where Ξ represents a vector of coefficients associate with each term in our collection.

If we compare this with the simple regression equation y = Xβ we see that they are

of the same form. Therefore we have established a simple regression problem for

which we assume that our solution is sparse by design and many of our regressors

in Ξ will be 0.

The desire to utilize statistical methods in this situation is highlighted by the fact

that real life measurements are affected by outside noise, making it difficult to dis-

tinguish the system’s essential elements from confounding ones. LASSO’s ability

to perform a pseudo subset selection allows us to eliminate variables with less in-

fluence on the system with relative confidence. This will allow us to weed through

some of the noise that is unavoidable in the system, and allows us to get to the root

of its essential elements.

3.2 Adapting the SINDy Method

In order to use the SINDy method for vortex shedding problems, we are required to

transform our data so that we can use ordinary differential methods. Using Proper

Orthonormal Decomposition (POD), we are able to find the principle components

(i.e. modes), therefore allowing us to find a low-order approximation of the system.

With this transformation comes a series of constraints that the solution must adhere

to in order for the solution to be applicable in the real world. In their paper, (Loiseau

and Brunton, 2018) recognize this and introduce the use of these constraints into the

SINDy algorithm. While their paper found the application of these constraints to
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be useful in finding a valid model, it did not apply the constraints prior to model

building. In the follow-up paper, (Agrey et al., 2022) considered a modification of

the method of Loiseau and Brunton, by applying the constraints in the LASSO fit-

ting stage before variable selection is performed. This way when a variable is re-

moved then some other variables have to be removed as well due to the constraints

imposed, hence the algorithm will choose either keeping all variables affected by

a particular constraint or removing them all depending on which action results in

better model fitting performance. Hence it can potentially eliminate more variables.

This will greatly reduce the number of variables that need to be examined.

On top of applying these constraints prior to model construction, we will also in-

clude a transformation within our data. The specifics surrounding our approach

deal with the sin/cosine relationship established between our first two POD modes.

We can exploit this relationship by transforming these two modes into a new mode

in polar coordinates. This transformation will be described in greater detail in the

next chapter. By transforming these two modes, as well as the known linear con-

straints, we will improve computational efficiency by reducing the number of equa-

tions sought by one. Once again, we will validate this approach in the next chapter.

In order to test our constrained SINDy approach, we will utilize the data sets in

(Brunton, Proctor, and Kutz, 2016) and will attempt to create approximations of the

equations that should be found within that data set. Provided we attain reasonable

success with this, we will then explore the data from (Braun, Agrey, and Martinuzzi,

2020) and attempt to model the governing equations of those systems. By doing this,

we may be able to shed some light on their problem in the hopes that others may be

able to use our results as a starting point for future research.
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Chapter 4

Theory

4.1 Theory

In this chapter, we will outline the transformation we intend to make with regards to

the data and the constraints found in (Loiseau and Brunton, 2018). We will propose a

sparse regression model for the transformed variables and show that this model can

be represented as a sparse regression model in the original variables with a new set

of linear constraints. Hence we will be able to use the software developed by Agrey

and Braun which performs sparse regression with linear constraints for model fitting

in terms of the original variables. While the tool they developed could have been

modified to deal with transformed data, drastic changes would need to be made

potentially compromising the integrity of what they had constructed. We therefore

deemed the more reasonable approach to be to improve what they had done, rather

than change it, therefore necessitating the need for the proposed model in terms of

the original variables.

4.1.1 Notation

Before we begin, we would like to define our variables and also explain notation

aspects that may be new or unconventional to the reader. First, our variables will be

defined in the following way: x and y will represent our most energetic harmonic

oscillator pair. The representation of these two variables in polar coordinates will

be done using A for magnitude and θ for direction. We will be using Θ to represent

our library of candidate variables. A subscript attached to Θ denotes the number
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of candidate variables in the library: the number of columns in the matrix. It is im-

portant to note that we are using the same Greek letter to represent two unrelated

variables, Θ and θ, and attention to whether it is represented in the upper or lower

case is required. The final variable definitions we will provide are for the shift mode,

z, the flapping mode, w, and our second most energetic harmonic oscillators, u and

v. We note here that we will exclude w, u and v in proofs. This will not affect the

validity of our results, but is simply done to make presentation of calculations more

accessible to the reader.

Our analysis intends to solve a number of ODEs, and therefore we will have a set

of coefficients for each variable of interest. When we are referring to the set of co-

efficients tied to a specific variable, a superscript will be used. As an example, βz

refers to the coefficients associated with the solution to ż. A subscript attached to a

coefficient references the specific regressor. An important note here is that the sub-

script is dependent on the size of Θ, which will vary depending on the number of

modes under consideration. As an example, when we are modeling 3 modes, βx
5 is

the coefficient tied to x2 (5th library element) in our model of ẋ. When we are mod-

eling 4 modes, βx
5 is the coefficient tied to w in our model of ẋ. The indexing of our

coefficients throughout the paper will be consistent with the following criteria.

1. Polynomials of lower orders will have smaller index values than those of higher

orders. For example, x will have a lower index then x3.

2. Polynomials of the same order will be organized by mode with the order of

priority being x, y, z, w, u and v. For example, x will have a lower index then

y; xy will have a lower index then xz, which has a lower index than y2.

3. Polynomials of the same order with the same modes will be organized based

on the order of priority with a higher order taking precedence. For example,

x2y will have a lower index then xy2.

When we refer to our regressors using β, this will imply the matrix layout of our

solution. There are times when we wish to express our regressor coefficients as a

single vector. We will use a colon to represent the stacking of rows of a matrix.



22 Chapter 4. Theory

Specifically,

β(:) =


βx

βy

βz


In order to express the dimension of a matrix we will use the standard notation of a

subscript attached to the matrix variable in the form of m × n. There are times when

we will be concerned with specific row and column subsets of a matrix. In these

situations we will use a bracketed subscript in the form of (i : m, j : n) representing

the ith row to the mth row and the the jth column to the nth column of a given matrix.

Lastly, we will note that there may be other situations where new notation or defi-

nitions are introduced. We will provide explanations as these cases arise due to the

specificity to their scenarios. With that we return to the original objective of this

chapter.

4.2 Model Comparisons

Model 1 will represent the model constructed using polar coordinates and Model 2

will be the original model to which we can apply the Galerkin constraints. While

we intend to show the validity of our approach with regard to a three mode system,

the results will hold for higher dimensions. We refrain from showing these proofs

as they are essentially the same with the addition of trivial calculations.

4.2.1 Model 1

Let

A(t) = x2(t) + y2(t) (4.1)

x(t) =
√

A(t)cosθ(t) (4.2)

y(t) =
√

A(t)sinθ(t) (4.3)
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θ(t) = arctan(y(t)/x(t))

z(t) = z(t)

Model 1 is:

Ȧ = A(t)Θ10 β̃A (4.4)

ż = Θ20βz (4.5)

Where β̃A is a 10-dimensional vector and βz is a 20-dimensional vector (i.e. β̃A =

[β̃A
1 , β̃A

2 , . . . , ˜βA
10]

T
1×10 and βz = [βz

1, . . . , βz
20]

T
1×20). The difference in vector length is

a result of our requirement that all solutions be of order 3 in terms of the original

modes.

Our next step is to express β̃A and βz as an array. Therefore we need a 20 × 1 vector

that is equivalent to β̃A. This new vector, ˜βA∗, is easily found through a one-to-one

mapping of the initial vector with the added extension of 10 more dimensions that

map to the null space (i.e. ˜βA∗ = [β̃A
1 , . . . , ˜βA

10, 0, . . . , 0]T1×20). We can now express our

vectors as an array, which we will call β̃.

β̃
T
=

1 x y z x2 xy xz y2 yz z2

β̃A
1 β̃A

2 β̃A
3 β̃A

4 β̃A
5 β̃A

6 β̃A
7 β̃A

8 β̃A
9

˜βA
10 . . .

βz
1 βz

2 βz
3 βz

4 βz
5 βz

6 βz
7 βz

8 βz
9 βz

10 . . .

x3 x2y x2z xy2 xyz xz2 y3 y2z yz2 z3

. . . 0 0 0 0 0 0 0 0 0 0

. . . βz
11 βz

12 βz
13 βz

14 βz
15 βz

16 βz
17 βz

18 βz
19 βz

20

1

1The top row is an indexing aide and is not a part of the matrix
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4.2.2 Model 2

Now we will begin constructing Model 2, β, using equations 4.2, 4.3 and 4.5

ẋ =
1

2
√

A(t)
Ȧcosθ(t)−

√
A(t)sinθ × θ̇

=

√
A(t)cosθ(t)

2
Θ10 β̃A −

√
A(t)sinθ(t)× θ̇

=
x(t)

2
Θ10 β̃A − y(t)× θ̇ (4.6)

ẏ =
1

2
√

A (t)
Ȧsinθ (t) +

√
A (t)cosθ × θ̇

=

√
A(t)sinθ(t)

2
Θ10 β̃A +

√
A(t)cosθ × θ̇

=
y(t)

2
Θ10 β̃A + x(t)× θ̇ (4.7)

Using equations 4.6, and 4.7 we obtain the following

ẋ = x · (
β̃A

1
2

+ x
β̃A

2
2

+ . . . + yz
β̃A

9
2

+ z2 β̃A
10
2

)− y × θ̇ (4.8)

ẏ = y · (
β̃A

1
2

+ x
β̃A

2
2

+ . . . + yz
β̃A

9
2

+ z2 β̃A
10
2

) + x × θ̇ (4.9)

When we express βT as an array using 4.8 and 4.9, we see that there are many zeros:

a desired result.

1 x y z x2 xy xz y2 yz z2

ẋ 0 β̃A
1
2 −θ̇ 0 β̃A

2
2

β̃A
3
2

β̃A
4
2 0 0 0 . . .

ẏ 0 θ̇
β̃A

1
2 0 0 β̃A

2
2 0 β̃A

3
2

β̃A
4
2 0 . . .

ż βz
1 βz

2 βz
3 βz

4 βz
5 βz

6 βz
7 βz

8 βz
9 βz

10 . . .

. . . x3 x2y x2z xy2 xyz xz2 y3 y2z yz2 z3

. . . β̃A
5
2

β̃A
6
2

β̃A
7
2

β̃A
8
2

β̃A
9
2

β̃A
10
2 0 0 0 0

. . . 0 β̃A
5
2 0 β̃A

6
2

β̃A
7
2 0 β̃A

8
2

β̃A
9
2

β̃A
10
2 0

. . . βz
11 βz

12 βz
13 βz

14 βz
15 βz

16 βz
17 βz

18 βz
19 βz

20

(4.10)
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Based on our derivation of 4.10, it follows that Model 1 and Model 2 are equivalent.

4.2.3 Constraints

When examining this system using the first three modes, β can be expressed as

β =

1 x y z x2 xy xz y2 yz z2

βx
1 βx

2 βx
3 βx

4 βx
5 βx

6 βx
7 βx

8 βx
9 βx

10 . . .

β
y
1 β

y
2 β

y
3 β

y
4 β

y
5 β

y
6 β

y
7 β

y
8 β

y
9 β

y
10 . . .

βz
1 βz

2 βz
3 βz

4 βz
5 βz

6 βz
7 βz

8 βz
9 βz

10 . . .

x3 x2y x2z xy2 xyz xz2 y3 y2z yz2 z3

. . . βx
11 βx

12 βx
13 βx

14 βx
15 βx

16 βx
17 βx

18 βx
19 βx

20

. . . β
y
11 β

y
12 β

y
13 β

y
14 β

y
15 β

y
16 β

y
17 β

y
18 β

y
19 β

y
20

. . . βz
11 βz

12 βz
13 βz

14 βz
15 βz

16 βz
17 βz

18 βz
19 βz

20

According to (Loiseau and Brunton, 2018)2, β is subject to the following dynamic

constraint;

βx
9 + β

y
7 + βz

6 = 0

as well as the following kinematic constraints:

βx
5 = β

y
8 = βz

9

βx
6 = −β

y
5

βx
8 = −β

y
6

βx
7 = −βz

5

βx
10 = −βz

7

β
y
9 = −βz

8

β
y
10 = −βz

9

2The index between (Loiseau and Brunton, 2018) and our results differ by 1 due to the inclusion of
the identity in our design matrix.
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Our dynamic constraint is an energy-based constraint whereas the kinematic con-

straints are also realizability constraints. For more information on these constraints,

please refer back to (Loiseau and Brunton, 2018). When applying these constraints

to β(:) we can express them as a matrix, E (this matrix can be seen in appendix A.1).

Expressed in this form, the following equality must hold.

E · β(:) = 0 (4.11)

In order to apply equivalent constraints to Model 2, we require a constraint matrix,

Ẽ, equivalent to E such that

Ẽ · β̃(:) = 0

.

After simple calculations we obtain the following new constraints

β̃A
2 = 0 (4.12)

β̃A
3 = 0 (4.13)

β̃A
4 = −2 · βz

5 = −2 · βz
8 (4.14)

βz
6 = 0 (4.15)

βz
7 = 0 (4.16)

βz
9 = 0 (4.17)

A visualization of these constraints as a matrix, Ẽ(1:10,1:40) can be seen in A.2. We note

here that our new constraint matrix is actually Ẽ20×40 and that the final 10 rows ad-

dress the extension of β̃A to ˜βA∗ (mapping extension components to the null space).

A full visualization of Ẽ would be

Ẽ =

Ẽ(1:10,1:10) Ẽ(1:10,11:20) Ẽ(1:10,21:40)

010×10 I10×10 010×20


20×40
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4.3 Finding β from β̃

With our equivalences established, we wish to show that given β̃, we can obtain β

as expressed in 4.10. For this task we will require two components. The simplest

component is θ⃗60×1 to address the scalar θ̇ in β. This vector will contain an entry of

−θ̇ in the 3rd row and θ̇ in the 22nd row. These rows correspond to the appropriate

rows of β(:) containing a multiple of θ̇3. All remaining rows of θ⃗60×1 will be 0. A

visual representation of θ⃗60×1 is presented in A.3. The more complicated component

we require is our transformation matrix, which we will define as Ã

Ã =


Ãx20×20 020×20

Ãy
20×20 020×20

020×20 I20×20


60×40

The submatrices Ãx and Ãy represent the aspects responsible for mapping the coef-

ficients for Ȧ to ẋ and ẏ respectively.

In 4.10, we see that β̃A
1 corresponds to the first column in βx with a variable con-

taining x as well as the first column in βy with a variable containing y (βx
2 and β

y
3

respectively). Similarly, β̃A
i corresponds to the ith column in βx with a variable con-

taining x as well as the ith column in βy with a variable containing y. By developing

an algorithm to identify the indices of columns in Θ associated with a given mode,

the construction of our submatrices becomes simple.

When dealing with x, the pattern is fairly simple, but y proves to be a little more diffi-

cult. Nonetheless, both patterns can be established through a recursive relationship.

We will utilize the following diagram to illustrate this relationship. Even though our

diagram will only depict the relationship for a 3-mode model, the results that follow

apply to models with any number of modes.

3These positions are in reference to a 3-mode model. When more modes are considered, these
indices will change.
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XP0 1

↓ x · [1], y · [1], z · [1] ↓

XP1 x, y, z

↓ x · [x y z], y · [x y z ], z · [x y z ] ↓

XP2 x2, xy, xz, y2, yz, z2

↓ x · [x2 xy xz y2 yz z2], y · [x2 ... y2 yz z2], z · [x2 ... z2 ] ↓

XP3 x3, x2y, x2z, . . . . . . . . . , z3

(4.18)

In 4.18 we see that the number of elements containing any mode (i.e. x, y, z) in XPi is

always equal to the total number of elements in XPi−1 . Let

Mi = # of elements in XPi−1 = # of elements in XPi containing x

Ni = # of elements in XPi−1 = # of elements in XPi containing y

Returning to our initial objective, the elements of XPi that contain x are simply the

first Mi elements of XPi . When we look at the pattern for the elements containing

y it is more difficult since the elements will not be consecutive for higher orders

and the spacing between non consecutive elements is not consistent. Fortunately we

can define the position of the the elements based on the previous order. For XPi the

position of the first Ni−1 elements containing y will be the same as the positions of

the elements containing y in XPi−1 . The remaining elements containing y will be in

the positions
(
(Ni + 1) : (2Ni − Ni−1)

)
.

With this we have sufficient information to construct our submatrices.

Let us first construct two vectors, xId
20×1 and yId

20×1 where

xId
i =


1 if i is a column index for a variable containing x

0 O.W.
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yId
i =


1 if i is a column index for a variable containing y

0 O.W.

The construction of these vectors can be done by creating smaller vectors using 1s/0s

to represent the indices of elements containing/not containing a given mode for XP0 ,

XP1 , XP2 , and XP3 . Concatenating these smaller vectors together gives us xId
20×1 and

yId
20×1. For visual representations of these constructions, see A.4. Using vector xId

20×1

let us create a collection of coordinates, (j, k) ∈ K where k corresponds to the kth row

of xId
20×1 containing a 1 and

j =
k

∑
1

xId
j

The first three coordinate pairs in K are (2,1), (5,2) and (6,3). Then we let

Ãx
(j,k) =


1
2 (j, k) ∈ K

0 (j, k) /∈ K

We construct Ãy in the same fashion using yId
20×1. For a visual representation of

Ãx20×20 and Ãy
20×20 please see A.5.

Proposition

Ã · β̃(:) + θ⃗60×1 = β(:) 4

Proof: Due to the large size of the matrices, the calculations for our proof can be

verified in B.1.1 and B.1.2, which will only show calculations for the first 10 columns

of Ãx and Ãy since the remaining columns contain zero entries rendering the calcu-

lations trivial.

Ã(1:20,1:40) · β̃(:) + θ⃗(1:20,1) = Ãx · ˜βA∗ + θ⃗(1:20,1) = βx

Ã(21:40,1:40) · β̃(:) + θ⃗(21:40,1) = Ãy · ˜βA∗ + θ⃗(21:40,1) = βy

4This proposition specifically pertains to the 3-mode model, but can easily be expanded to higher
dimensions with minor modifications.
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Ã(41:60,1:40) · β̃(:) + θ⃗(41:60,1) = I20×20 · β̃z = βz

□

We can now express Model 2 as

ẋ =
x(t)

2
Θ10 β̃A − y(t)× θ̇

ẏ =
y(t)

2
Θ10 β̃A + x(t)× θ̇

ż = Θ20βz

subject to the constraints

E · Ã · β̃(:) + E · θ⃗60×1 = 0

We can also express Model 1

Ȧ

ż

 =

A · Θ20 0

0 Θ20

 · β̃(:)

or similarily  Ȧ
A

ż

 =

Θ20 0

0 Θ20

 · β̃(:)

subject to the constraints

Ẽ · β̃(:) = 0

Now that we have established an equivalence between models and adapted the con-

straints, we end this chapter and move to the next where we will discuss our exper-

imental design.
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Chapter 5

Design

5.1 Overview

In this chapter, we will present the method by which we applied our theoretical re-

search. To test our proposed transformation, we attempted to model three different

data sets. In each case we utilized a portion of the data for model construction while

holding a portion back for testing. Selected models were within one standard error

of the model with the minimal mean square error. They were also the most parsimo-

nious model; models with improved mean square error resulted in no substantial

change to the model. These model were associated with an ’elbow’ in the graph of

mean squared error vs. log(λ). This chapter will be organized in the following man-

ner. We will begin by outlining the data sets we will be dealing with and then will

proceed to outlining adaptations we made to inherited code on the project, paying

particular attention to our contributions to the research.

5.2 Data Introduction

5.2.1 Cylinder Data

The first data set comes from the previously discussed cylinder example presented

in (Brunton, Proctor, and Kutz, 2016). In this data set, we have two separate trials

containing 5000 and 3000 evenly spaced observations. The spacing between obser-

vations is 0.2 dimensionless time units. Each trial contains 9 POD modes. The POD

modes are found through eigenvalue decomposition as in principal component anal-

ysis. The data matrix is formed by arranging columns to represent the spatial points



32 Chapter 5. Design

and the rows to represent time points. The columns are then centered by subtracting

the column means. If we denote the resulting matrix by X, the eigenvalue decompo-

sition is applied to the (Xt)X matrix. The principal components are our modes and

the loading coefficients give the spatial modes. Spectral graphs depict the energy

frequencies that are most prevalent in a particular mode.

FIGURE 5.1. Spectral decomposition of the harmonic oscillating pair.
As we can see, there is a spike in the energy (peak in the graph) at

10−1, telling us the modes have similar active frequencies.

In this particular case, the modes we are interested in are our most energetic har-

monic oscillators (1 and 2) as well as our shift mode (9). We will utilize the first trial

for model construction and reserve the second for testing. For a deeper understand-

ing of how the data was collected, we direct the reader to refer to the original paper

(Brunton, Proctor, and Kutz, 2016).

Based on (NOACK et al., 2003) as well as (Brunton, Proctor, and Kutz, 2016), we

have a good theoretical knowledge of the equations as well as the variables that we

should find using our method. We will use this case as a test for the adequacy of our

approach.

5.2.2 Flat Plate Data

The other two data sets we will be working with are presented in (Braun, Agrey,

and Martinuzzi, 2020). In their paper they explore vortex shedding in the wake of a

flat plate with closed ends and a flat plate with open ends. The following excerpt is

taken from their paper and describes the system that we are trying to model:
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The near-wake flows behind high aspect ratio (span-to-chord, s/c>40)

thin flat plates normal to a uniform stream of velocity, U∞, are consid-

ered for two conditions: open ends (OE), without end plates; and closed

ends (CE), with end plates isolating the recirculation region from the am-

bient pressure. Experiments were conducted in an open jet suction-type

wind tunnel.

FIGURE 5.2. A visualization of the system under investigation (PIV
:= Particle Image Velocitmirty FoV:=Field of View). The image is

taken from (Braun, Agrey, and Martinuzzi, 2020)

For more detail of the experinment itself, please refer to (Braun, Agrey, and Martin-

uzzi, 2020). In both of these data sets their are three separate trials each containing

2728 evenly spaced observations. The spacing between observations in the closed

end data set is 0.001 dimensionless time units. The spacing between observations in

the open end data sets is 0.0017 dimensionless time units. Each trial contains 8 POD

modes. The modes we are interested in are our most energetic harmonic oscillators

(1 and 2), the shift mode (4), the flapping mode (3), and the second most energetic

harmonic oscillators (5 and 6). The spectra of these modes, for both the open and

closed ends data, can be seen in E. We will concatenate the first two trials for model

construction and retain the third trial as our test set.

5.3 MATLAB code

The ground work for our MATLAB code comes from Eric Braun and Kaden Agrey.

The code was originally created to analyze the open and closed ends data sets from

(Braun, Agrey, and Martinuzzi, 2020). We adapted the code to analyze the data sets
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with our approach. This may result in some redundancies left in our adaptation of

the code. In this section, we will describe the major features of the code that are

pertinent the application of our constrained LASSO approach.

5.3.1 Master Script

We begin by presenting our master script, SINDy_Analysis.m. We constructed this

script to ease the process of attempting to navigate the plethora of modeling condi-

tions we wish to explore. Rather than have a single script that has the ability to run

every possible scenario, we utilize the master script to allow the user to preset the

desired data as well as the number of modes. The script will then run an adapted

version of the inherited code that meets the preset conditions.

5.3.2 Uploading Data

In the adapted scripts, the first change that was made was to trim the data that

was uploaded for analysis. Minor modifications were made to achieve this result.

Our reasoning behind this modification was to ensure folds generated by the cross

validation process were sequential and also belonged to the same trial. Our modified

version of the script is titled loadAlex.m.

5.3.3 Data Smoothing

In the cases of the open and closed ends data sets, we interpolated 20 points between

each data observation and then applied cubic splines in an attempt to smooth the

data. This was done using two scripts, Dat_spline.m and SplineSync.m. The first

script generated the 20 observations and then applied cubic splines to the data. The

second script retrieved the new observations that corresponded to our original data

so that the size of our data set was not compromised.
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5.3.4 Derivatives

The original script was written to calculate the derivatives of the data using a fourth

order central differencing scheme.

dxi

dt
(tj) =

−xi(tj+2) + 8xi(tj+1)− 8xi(tj−1) + xi(tj−2)

12∆
(5.1)

Our addition to the script was to seperate the test data from the training set. We

also calculated A in this section as well as its derivatives. We note here that our

derivatives for A were calculated using the theoretical approach and not through a

fourth order differencing scheme directly performed on A (i.e. Ȧ = 2xẋ + 2yẏ).

5.3.5 Θ and θ̇

Here we had to make some minor alterations to the code so that the construction of

Θ would be representative of our transformed modes versus the original data. We

also had to calculate θ̇ at this point for our test data.

5.3.6 Scaling

After saving a copy of our data, we then calculate the appropriate scaling to be ap-

plied to each mode. Rather than using a standardized approach, we divided all

values by their absolute maximum to bring them between -1 and 1. This method

was chosen due to the heavy tails that are present in the data.

5.3.7 Transforming the Energy Constraints

The code we inherited was capable of generating the energy constraints for any num-

ber of modes. We added a section to generate the constraints necessary to extend

A as described in the previous chapter. We then wrote Atilde_2ndHarmonic.m to

calculate the transformation matrix, Ã. Our code is capable of handling data sets

containing up to six modes.
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5.3.8 Calculating Regression Coefficients

At this point the code obtains the regression coefficients for our transformed data.

While minor changes were made to labeling our variables and the code was checked

for errors, any contributions we made to this section are not significant.

5.3.9 Obtaining Models

To obtain our final models, we stripped necessary components of an inherited script,

explore_regr.m. Models were obtained both in terms of our transformed modes as

well as our original modes. Our original mode model was used to obtain our esti-

mates of Ȧ and these estimates were used to obtain our residuals.
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Chapter 6

Results

In this chapter, we will present the results of our research. The chosen models are all

associated with the ’elbow’ in the mean square error vs. log(λ) plots (as described

in 5.1 on page 33). All models examined, regardless of size, can be found in D. Fur-

thermore, we assess the models’ performance by looking at its capture of variance.

By dividing the variation of our fitted values and comparing that with the observed

variation in the data for each of the modes, we can determine how much of the vari-

ability the model accounts. A table containing all these values can be found in C.

Before we begin, we note that we do not use an ODE solver to evaluate the modes

as this approach has difficulty obtaining solutions that converge. Instead we obtain

our estimates of the time derivatives at all observations by calculating the product

between our model equations and Θ. One last note is that even though we talk about

transforming our harmonic oscillators into a new mode A, our results with regards

to its time derivative will be presented in terms of Ȧ/A.

6.1 Cylinder Data

Testing the performance of our method with a well known example, the cylinder

data yields results akin to what we expect to see in cylindrical bluff body vortex

shedding. The model generated is sparse in nature and contains the low-order terms

we see in (Brunton, Proctor, and Kutz, 2016). We omit the model from this paper,

but the results can be obtained with the provided code and data.
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6.2 Closed Ends Data

Before we show are models, we would like to note that when (x2 + y2) appears in

any of our equations, this is simply our newly transformed mode, A. We will be

sure to enclose the equality in parenthesis like so, (x2 + y2), to make it easier for the

reader remember this relationship.

6.2.1 2 mode analysis

Model

Ȧ
A

= −5.08 × 104 · z

ż = −0.271 − 91.3 · z + 2.55 × 104 · (x2 + y2)

FIGURE 6.1. Mean square error vs log(λ) plot for Closed Ends data
(2-modes). The red dotted line signifies the model that is most

parsimonious within 1 standard error of the model with the minimal
standard error. The selected model has a log(λ) value of -3.9417 and

is on the red dotted line.

In terms of our transformed modes, this 2-mode model contains our mode represent-

ing the transformation of our most energetic harmonic oscillators (A or (x2 + y2)) and

our shift mode (z) for the closed ends data. We see in 6.1 that all the models captured

within one standard error of the minimal model have similar mean squared errors.

We therefore choose the most parsimonious one which has a log penalty parameter

of -3.9417.

Our method generates a sparse model. With the exclusion of a constant term in Ȧ/A,

we notice that the system has the same elements as cylindrical bluff body example.
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FIGURE 6.2. Observed values (blue line) compared against the fitted
values from the model (red line) of Ȧ/A (left) and ż (right) for the

Closed Ends data.

Looking at the performance of the model with respect to the data, we notice that it

only manages to capture 5.69% of the variation in Ȧ/A. It does markedly better with

ż, capturing 39.34% of the variation. Our model leaves a lot of room for improve-

ment and may benefit from the addition of more modes. We will next examine what

happens when we add in the flapping mode.
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6.2.2 3 mode analysis

Model

Ȧ
A

= −4.79 × 104 · z − 1.22 × 107 · xy − 3.13 × 107 · xw

ż = −0.261 − 84.5 · z + 2.39 × 104 · (x2 + y2)− 1.20 × 104 · xw − 1.60 × 104 · yw

+5.75 × 103 · w2

ẇ = 16.8 · x + 1.20 × 104 · xz + 1.60 × 104 · yz − 5.75 × 103 · zw

FIGURE 6.3. Mean square error vs log(λ) plot for Closed Ends data
(3-modes). The red dotted line signifies the model that is most

parsimonious within 1 standard error of the model with the minimal
standard error (blue line). The selected model has a log(λ) value of

-4.4389 and is on the red dotted line.

In terms of our transformed modes, this 3-mode model contains our mode represent-

ing the transformation of our most energetic harmonic oscillators (A or (x2 + y2)), our

shift mode (z) and our flapping mode (w) for the closed ends data. Once again, look-

ing at 6.3, we see little difference between all the models within one standard error

of our minimal model and therefore we once again choose the most parsimonious.

This model has a log penalty parameter of -4.4389.

When we consider our transformed model of 3 modes, the addition of the flapping

mode gives us more complex behaviour than we saw before. We see two added

terms in Ȧ/A that will be third order terms when our transformed mode, A, is ex-

panded into its original components of x and y. Even though the flapping modes

only adds two terms to Ȧ/A, it significantly improves its capture of the underlying
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FIGURE 6.4. Observed values of Ȧ/A (blue line) compared against
the fitted values from the model (red line) for the Closed Ends data.
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FIGURE 6.5. Observed values (blue line) compared against the fitted
values from the model (red line) of ż (left) and ẇ (right) for the

Closed Ends data.

dynamics. With the addition of the flapping mode, we can now explain 13.11% of the

variation of Ȧ/A. Contrarily, it adds three terms to our equation for ż but only adds

slight improvement, capturing 44.8% of the variation. Unfortunately, the model does

not perform as well with regard to ẇ, only capturing 0.02% of the variation. We may

be able to improve on this with the addition of the second most energetic harmonic

oscillators.
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6.2.3 5 mode analysis

In terms of our transformed modes, this 5-mode model includes our mode represent-

ing the transformation of our most energetic harmonic oscillators (A or (x2 + y2)), our

shift mode (z), flapping mode (w) and our second pair of harmonic oscillators (u and

v) for the closed ends data. Once again, looking at 6.3, we see little difference be-

tween all the models within one standard error of our minimal model and therefore

we once again choose the most parsimonious model. This is the model associated

with a log penalty parameter of -5.5669. Due to its size, it can be viewed in D.1.3.

Unfortunately, we notice that our model is no longer as sparse as we’d like. It has

many third order terms, but fortunately it does not contain any in Ȧ/A which would

end up being fourth order terms when A is broken into its original components of x

and y. While we do see marked improvement in the modeling of ż with 52.07% of

the variation captured, we see little improvement in the modeling of Ȧ/A, capturing

13.6% of the variation. Strangely, we perform worse on our capture of variation

for ẇ, with -3.16% captured. With regards to u̇ the model performs very well with

45.27% of the variation captured. Our capture of v̇ is slightly better than Ȧ/A at

19.32%. With the improvements we see it is hard to say whether the addition of so

many terms and equation is merited. As this paper mainly focuses on the statistical

approach to modeling the data, we will leave the interpretation of these results to

experts in the field of fluid dynamics.

FIGURE 6.6. Mean square error vs log(λ) plot for Closed Ends data
(5-modes). The red dotted line signifies the model that is most

parsimonious within 1 standard error of the model with the minimal
standard error (blue line). The selected model has a log(λ) value of

-5.5669 and is on the red dotted line.
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FIGURE 6.7. Observed values of Ȧ/A (blue line) compared against
the fitted values from the model (red line) for the Closed Ends data.
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FIGURE 6.8. Observed values (blue line) compared against the fitted
values from the model (red line) of ż (left) and ẇ (right) for the

Closed Ends data.
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FIGURE 6.9. Observed values (blue line) compared against the fitted
values from the model (red line) of u̇ (left) and v̇ (right) for the

Closed Ends data.
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6.3 Open Ends Data

6.3.1 2 mode analysis

Transformed Model (1SE)

Ȧ
A

= −6.62 × 103 · z − 2.28 × 107 · xy

ż = −0.0214 + 3.31 × 103 · (x2 + y2)

FIGURE 6.10. Mean square error vs log(λ) plot for Open Ends data
(2-modes). The red dotted line signifies the model that is most

parsimonious within 1 standard error of the model with the minimal
standard error (blue line). We notice that the ’elbow’ occurs between

the read a blue lines and so we choose the point were the mean
square error levels off. The log(λ) value is -5.2058.
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FIGURE 6.11. Observed values (blue line) compared against the
fitted values from the model (red line) of Ȧ/A (left) and ż (right) for

the Open Ends data.

In terms of our transformed modes, our 2-mode model contains the mode represent-

ing the transformation of our most energetic harmonic oscillators (A or (x2 + y2)) and
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our shift mode (z) for the open ends data. If we look at 6.10, we see a greater dispar-

ity between models within one standard error of our minimal model. In this case,

we do not choose the most parsimonious model as it is not associated with the ’el-

bow’. Instead we pick the point were the mean square error begins to level out. Our

chosen model is the one that has a log penalty parameter of -5.2058.

With regard to our 2-mode model, it is reminiscent of cylindrical bluff body vortex

shedding, but there is an added xy term associated with Ȧ/A (which ends up being

a third order term when we represent A in terms of x and y. Also, there is no z term

associated with ż. In 6.11, we see that the performance of our variance is surprisingly

better than the closed ends model for Ȧ/A with 9.63% captured, but is dramatically

worse for ż with only 4.41% captured. It is our hope that we find more explanation

for the system with the inclusion of more modes. Next we look at the model that

includes the flapping mode.
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6.3.2 3 mode analysis

Model

Ȧ
A

= (−8.80 × 103) · z − (2.42 × 107) · xy + (3.23 × 107) · xw + (3.95 × 107) · yw

−(6.17 × 107) · w2

ż = −0.0275 + (4.40 × 103) · (x2 + y2)− (1.98 × 104) · xw + (1.47 × 104) · yw

+(7.16 × 105) · x2z + (4.54 × 106) · xzw − (1.89 × 106) · y2z − (6.87 × 106) · yzw

ẇ = (−4.89 × 101) · x + (1.49 × 102) · y + (1.98 × 104) · xz − (1.47 × 104) · yz

+(6.10 × 106) · x3 − (1.62 × 107) · x2y + (1.09 × 107) · x2w − (1.57 × 107) · xyw

−(1.61 × 107) · y3 − (4.49 × 105) · y2w − (4.48 × 107) · yz2

FIGURE 6.12. Mean square error vs log(λ) plot for Open Ends data
(3-modes). The red dotted line signifies the model that is most

parsimonious within 1 standard error of the model with the minimal
standard error (blue line). The model select is on the dotted red line

and has a log(λ) value of -5.2274.

In terms of our transformed modes, this 3-mode model contains our mode represent-

ing the transformation of our most energetic harmonic oscillators (A or (x2 + y2)), our

shift mode (z) and our flapping mode (w) for the open ends data. While there is a

smaller range of disparity between models within one standard error of the mini-

mal model (6.12), the ’elbow’ is much harder to identify. We do however choose the

most parsimonious model within one standard error of the minimal model. It has

an associated log penalty of -5.2274.
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FIGURE 6.13. Observed values of Ȧ/A (blue line) compared against
the fitted values from the model (red line) for the open ends data.
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FIGURE 6.14. Observed values (blue line) compared against the
fitted values from the model (red line) of ż (left) and ẇ (right) for the

open ends data.

Our 3-mode model offers more insight into the system, but still seems to miss some

key dynamics. It seems that the flapping mode is an important variable with regards

to Ȧ/A because its inclusion improves the variation capture to 15.81%. This comes at

a cost of 3 added terms to the Ȧ/A equation. It doesn’t fair so well with ż as we see

our variance capture decrease to 2.01% even with six added terms. Astonishingly

ẇ’s variance capture is significantly better than in the closed ends data at 47.94%.

The complexity of the equation may be justifiable because of this performance. We

will now look at the model with the second harmonic oscillators added.
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6.3.3 5 mode analysis

FIGURE 6.15. Mean square error vs log(λ) plot for Open Ends data
(3-modes). The red dotted line signifies the model that is most

parsimonious within 1 standard error of the model with the minimal
standard error (blue line). Our model of choice is on the red line and

has an associated log(λ) of -5.8893

In terms of our transformed modes, this 5-mode model includes our mode represent-

ing the transformation of our most energetic harmonic oscillators (A or (x2 + y2)), our

shift mode (z), flapping mode (w) and our second pair of harmonic oscillators (u and

v) for the open ends data. With 6.15, we see very few models that fall in the range of

one standard error of the minimal model and while we chose the most parsimonious

model in this case, it may be argued its not the ’elbow’. We also see some interesting

behaviour in the mean square error plot that we haven’t seen before. After reaching

a minimum, the mean square error appears to rise as the models get more complex

rather than level off. With all of that in mind, we remain content with our choice

of the most parsimonious model which has an associated log penalty parameter of
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FIGURE 6.16. Observed values of Ȧ/A (blue line) compared against
the fitted values from the model (red line) for the Open Ends data.
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FIGURE 6.17. Observed values (blue line) compared against the
fitted values from the model (red line) of ż (left) and ẇ (right) for the

Open Ends data.
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FIGURE 6.18. Observed values (blue line) compared against the
fitted values from the model (red line) of u̇ (left) and v̇ (right) for the

Open Ends data.

-5.8893. Due to its size, it can be viewed in D.2.3.

Once again, with our 5-mode model, the model obtained is not as sparse as we

would like. The inclusion of the second harmonic oscillators results in a compli-

cated model that doesn’t add much insight into the dynamics of the system that

wasn’t gained from the 3-mode model. While we see limited improvement in the

variance capture of ż at 9.36% and ẇ at 49.23% the other derivatives don’t do as well.

With u̇ we only get 6.4%, v̇ at 8.05%, and lastly we see a decrease in Ȧ/A to 15.65%.

In this case, it doesn’t appear that the 5-mode model performs well compared to the

3-mode model.
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Chapter 7

Conclusions

7.1 Conclusions

In summary, our approach looked at making adaptations to the newly developed

SINDy method to see if it was effective at identifying a representive low-dimensional

system of equations in the field of fluid dynamics. We explored the use of LASSO in

order to apply cyclical coordinate descent and path seeking algorithms in our search

for the governing equation of vortex shedding in the wake of a bluff body. We then

elaborated on sparse Galerkin regression and showed that it was possible to ap-

ply the constraints before obtaining the model. With these adjustments, we looked

at three different data sets, one being the classic cylindrical example presented in

(Brunton, Proctor, and Kutz, 2016), and the other two coming from new research

discussed in (Braun, Agrey, and Martinuzzi, 2020). Upon running adapted MAT-

LAB code, we analyzed output generated and established 2, 3 and 5-mode models

that contained our mode representing the transformation of our most energetic har-

monic oscillators, our shift mode, flapping mode and our second pair of harmonic

oscillators.

While we are uncertain how accurate our model is in its portrayal of the dynamics

of vortex shedding in the wakes of open and closed ended flat plates, we do feel that

our models do have some of the key features present in the system. Our assessment

of variation capture tells us that some of the components of the system are better

understood than others. For example, in the closed ends data, ż is explained excep-

tionally well with our 5-mode model, but all of the models that we obtained failed

to give any reasonable explanation of ẇ.
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Even with our models, there is still some understanding of the dynamics of the sys-

tem that are not captured. Perhaps our approach would benefit from the use of

multivariate time series analysis to model the residual behaviour of the generating

equations. While such an approach may shed more light on the systems we are ex-

amining, we save it for future research.

What we do glean from our models is that the closed ends data at its very base is

similar to vortex shedding in the wake of a cylinder. The model provides some un-

derstanding of the system, but not the complete picture. With the addition of the

flapping mode we see that it has more dynamic features than cylindrical bluff body

vortex shedding; we gain better understanding of the system. Finally, the addition

of the second most energetic harmonic oscillators adds more understanding to some

of the more chaotic components of the system, but little understanding to Ȧ/A.

With regards to the open ends data, the system does reasonably well with our ap-

proach, but the 5-mode model we obtain does not inspire confidence. The inclusion

of the second most energetic harmonic oscillators adds little understanding of the

system as a whole and using Occam’s razor, we lean towards the 3-mode model as

better explaining the system. While the complexity of the equations in the 5-mode

model may be merited, the amount of confusion added compared with the under-

standing gained leaves us with opting for the simpler choice.

Even with the success we have found, our approach has limitations to its applica-

tion. Firstly, our conclusions are subjective due to the nature of our approach. We

are unable to attribute objective measures such as misclassification rates since we

are dealing with the identification of an unknown, time-dependent stochastic pro-

cess. Another drawback of our approach is the possibility that the true model has

important variables with small coefficients. If this is the case, the LASSO method

will likely fail to capture these attributes, especially if noise in the system generates

variable coefficients larger than those we wish to identify. Furthermore, if there are

highly correlated variables in the true model, LASSO is likely to exclude all but one

of them due to the process by which LASSO arrives at a solution.

Even with our limitations, our constrained LASSO approach in the realm of SINDy

research presents opportunity for analysis of real data. The ability to extract key

features of a system when the data is noisy is beneficial even as a starting point in
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variable selection when attempting to identify the true underlying system. Our ap-

proach is not limited to fluid mechanics, but is applicable to any system where a

priori knowledge of constraints exists and where a transformation of the data can be

justified. In our case, the a priori understanding of constraints that result from our

POD transformation allows for low-order models to be generated that can provide

useful insight into a system’s behaviour without requiring cumbersome software

that comes with a high computational cost.
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Appendix A

Matrices and Vectors

In this section of the appendix, many of the matrices have only a handful of non-zero

elements. In order to make these entries easier to see, we will highlight them in red.

A.1 Galerkin Constraint Matrix

E10×60 =



1 2 3 4 5 6 7 8 9 10 11 . . . 20 . . .

1 0 0 0 0 0 0 0 0 1 0 0 . . . 0 . . .

2 0 0 0 0 1 0 0 0 0 0 0 . . . 0 . . .

3 0 0 0 0 0 0 0 0 0 0 0 . . . 0 . . .

4 0 0 0 0 0 0 0 0 0 0 0 . . . 0 . . .

5 0 0 0 0 0 1 0 0 0 0 0 . . . 0 . . .

6 0 0 0 0 0 0 0 1 0 0 0 . . . 0 . . .

7 0 0 0 0 0 0 1 0 0 0 0 . . . 0 . . .

8 0 0 0 0 0 0 0 0 0 1 0 . . . 0 . . .

9 0 0 0 0 0 0 0 0 0 0 0 . . . 0 . . .

10 0 0 0 0 0 0 0 0 0 0 0 . . . 0 . . .
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. . . 21 22 23 24 25 26 27 28 29 30 31 . . . 40 . . .

1 . . . 0 0 0 0 0 0 1 0 0 0 0 . . . 0 . . .

2 . . . 0 0 0 0 0 0 0 0 0 0 0 . . . 0 . . .

3 . . . 0 0 0 0 0 0 0 1 0 0 0 . . . 0 . . .

4 . . . 0 0 0 0 0 0 0 0 0 0 0 . . . 0 . . .

5 . . . 0 0 0 0 1 0 0 0 0 0 0 . . . 0 . . .

6 . . . 0 0 0 0 0 1 0 0 0 0 0 . . . 0 . . .

7 . . . 0 0 0 0 0 0 0 0 0 0 0 . . . 0 . . .

8 . . . 0 0 0 0 0 0 0 0 0 0 0 . . . 0 . . .

9 . . . 0 0 0 0 0 0 0 0 1 0 0 . . . 0 . . .

10 . . . 0 0 0 0 0 0 0 0 0 1 0 . . . 0 . . .





41 42 43 44 45 46 47 48 49 50 51 . . . 60

1 0 0 0 0 0 1 0 0 0 0 0 . . . 0

2 0 0 0 0 0 0 0 0 0 0 0 . . . 0

3 0 0 0 0 0 0 0 0 0 0 0 . . . 0

4 0 0 0 0 0 0 0 0 0 1 0 . . . 0

5 0 0 0 0 0 0 0 0 0 0 0 . . . 0

6 0 0 0 0 0 0 0 0 0 0 0 . . . 0

7 0 0 0 0 1 0 0 0 0 0 0 . . . 0

8 0 0 0 0 0 0 1 0 0 0 0 . . . 0

9 0 0 0 0 0 0 0 1 0 0 0 . . . 0

10 0 0 0 0 0 0 0 0 1 0 0 . . . 0
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A.2 Constraint Matrix Ẽ

Ẽ(1:10,1:20)



β̃A
1 β̃A

2 β̃A
3 β̃A

4 β̃A
5 β̃A

6 β̃A
7 β̃A

8 β̃A
9

˜βA
10

˜βA
11 . . . ˜βA

20

1 0 0 0 0 0 0 0 0 0 0 0 . . . 0

2 0 1 0 0 0 0 0 0 0 0 0 . . . 0

3 0 0 1 0 0 0 0 0 0 0 0 . . . 0

4 0 0 0 0 0 0 0 0 0 0 0 . . . 0

5 0 0 1 0 0 0 0 0 0 0 0 . . . 0

6 0 1 0 0 0 0 0 0 0 0 0 . . . 0

7 0 0 0 1 0 0 0 0 0 0 0 . . . 0

8 0 0 0 0 0 0 0 0 0 0 0 . . . 0

9 0 0 0 1 0 0 0 0 0 0 0 . . . 0

10 0 0 0 0 0 0 0 0 0 0 0 . . . 0


Ẽ(1:10,21:40)



βz
1 βz

2 βz
3 βz

4 βz
5 βz

6 βz
7 βz

8 βz
9 βz

10 βz
11 . . . βz

20

1 0 0 0 0 0 1 0 0 0 0 0 . . . 0

2 0 0 0 0 0 0 0 0 0 0 0 . . . 0

3 0 0 0 0 0 0 0 0 0 0 0 . . . 0

4 0 0 0 0 0 0 0 0 0 1 0 . . . 0

5 0 0 0 0 0 0 0 0 0 0 0 . . . 0

6 0 0 0 0 0 0 0 0 0 0 0 . . . 0

7 0 0 0 0 1 0 0 0 0 0 0 . . . 0

8 0 0 0 0 0 0 1 0 0 0 0 . . . 0

9 0 0 0 0 0 0 0 1 0 0 0 . . . 0

10 0 0 0 0 0 0 0 0 1 0 0 . . . 0


A.3 Theta Vector

θ⃗60×1 = [0 0 −θ̇ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
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. . . 0 θ̇ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]T

A.4 Vectors xId
20×1 and yId

20×1

A.4.1 Construction of xId
20×1

Elements containing x in XP0

[0]

Elements containing x in XP1

[1 0 0]

Elements containing x in XP2

[1 1 1 0 0 0]

Elements containing x in XP3

[1 1 1 1 1 1 0 0 0 0]

Concatenation and transposition of the above vectors gives us

xId = [0 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0]T

A.4.2 Construction of yId
20×1

Elements containing y in XP0

[0]

Elements containing y in XP1

[0 1 0]

Elements containing y in XP2

[0 1 0 1 1 0]
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Elements containing y in XP3

[0 1 0 1 1 0 1 1 1 0]

Concatenation and transposition of the above vectors gives us

yId = [0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0]T

A.5 Submatrices Ãx
20×20 and Ãy

20×20

A.5.1 Ãx20×20

Ãx20×20 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0





58 Appendix A. Matrices and Vectors

A.5.2 Ãy
20×20

Ãy
20×20 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix B

Calculations

B.1 Proposition Calculations

B.1.1 Calculations for βx

Ãx · ˜βA∗(:)(1:20)+ θ⃗(1:20,1) =



0 0 0 0 0 0 0 0 0 0 . . .

1
2 0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 0 . . .

0 1
2 0 0 0 0 0 0 0 0 . . .

0 0 1
2 0 0 0 0 0 0 0 . . .

0 0 0 1
2 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 1
2 0 0 0 0 0 . . .

0 0 0 0 0 1
2 0 0 0 0 . . .

0 0 0 0 0 0 1
2 0 0 0 . . .

0 0 0 0 0 0 0 1
2 0 0 . . .

0 0 0 0 0 0 0 0 1
2 0 . . .

0 0 0 0 0 0 0 0 0 1
2 . . .

0 0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 0 . . .



·



β̃A
1

β̃A
2

β̃A
3

β̃A
4

β̃A
5

β̃A
6

β̃A
7

β̃A
8

β̃A
9

β̃A
10

0

0

0

0

0

0

0

0

0

0



+



0

0

−θ̇

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0



=



0
β̃A

1
2

−θ̇

0
β̃A

2
2

β̃A
3

2
β̃A

4
2

0

0

0
β̃A

5
2

β̃A
6

2
β̃A

7
2

β̃A
8
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9
2
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0

0

0
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B.1.2 Calculations for β̃y

Ãy · ˜βA∗(:)(21:40)+ θ⃗(21:40,1) =



0 0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 0 . . .

1
2 0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 0 . . .

0 1
2 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 0 . . .

0 0 1
2 0 0 0 0 0 0 0 . . .

0 0 0 1
2 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 1
2 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 1
2 0 0 0 0 . . .

0 0 0 0 0 0 1
2 0 0 0 . . .

0 0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 1
2 0 0 . . .

0 0 0 0 0 0 0 0 1
2 0 . . .

0 0 0 0 0 0 0 0 0 1
2 . . .

0 0 0 0 0 0 0 0 0 0 . . .



·



β̃A
1

β̃A
2

β̃A
3

β̃A
4

β̃A
5

β̃A
6

β̃A
7

β̃A
8

β̃A
9

β̃A
10

0

0

0

0

0

0

0

0

0

0



+



0

θ̇

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0



=



0

θ̇

β̃A
1

2

0

0
β̃A

2
2

0
β̃A

3
2
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2

0
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5
2
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6
2
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0
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2
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Appendix C

Variation Table

FIGURE C.1. Table of Variation accounted for under different geome-
tries and models. Calculation to obtain values is

1 − (residual variation)/(observed variation)
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Appendix D

Models

D.1 Closed Ends Data

D.1.1 2 Mode Analysis

Model (λ = 0.0194)

AdotOverA Zdot

1 0 -2.71e-01

X 0 0

Y 0 0

Z -5.08e04 -9.13e01

X*X 0 2.54e04

X*Y 0 0

X*Z 0 0

Y*Y 0 2.54e04

Y*Z 0 0

Z*Z 0 0

X*X*X 0 0

X*X*Y 0 0

X*X*Z 0 0

X*Y*Y 0 0

X*Y*Z 0 0

X*Z*Z 0 0

Y*Y*Y 0 0

Y*Y*Z 0 0
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Y*Z*Z 0 0

Z*Z*Z 0 0

D.1.2 3 Mode Analysis

Model (λ = 0.0118)

AdotOverA Zdot Wdot

1 0 -2.61e-01 0

X 0 0 1.68e01

Y 0 0 0

Z -4.79e04 -8.45e01 0

W 0 0 0

X*X 0 2.39e04 0

X*Y -1.22e07 0 0

X*Z 0 0 1.20e04

X*W -3.13e07 -1.20e04 0

Y*Y 0 2.39e04 0

Y*Z 0 0 1.60e04

Y*W 0 -1.60e04 0

Z*Z 0 0 0

Z*W 0 0 -5.75e03

W*W 0 5.75e03 0

X*X*X 0 0 0

X*X*Y 0 0 0

X*X*Z 0 0 0

X*X*W 0 0 0

X*Y*Y 0 0 0

X*Y*Z 0 0 0

X*Y*W 0 0 0

X*Z*Z 0 0 0

X*Z*W 0 0 0

X*W*W 0 0 0
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Y*Y*Y 0 0 0

Y*Y*Z 0 0 0

Y*Y*W 0 0 0

Y*Z*Z 0 0 0

Y*Z*W 0 0 0

Y*W*W 0 0 0

Z*Z*Z 0 0 0

Z*Z*W 0 0 0

Z*W*W 0 0 0

W*W*W 0 0 0

D.1.3 5 Mode Analysis

Model (λ = 0.0038)

AdotOverA Zdot Wdot Udot Vdot

1 0 -1.53e-01 0 0 0

X 0 0 9.71e00 0 0

Y 0 0 8.02e00 0 1.33e00

Z -2.92e04 0 0 -6.85e01 -1.10e01

W 0 0 0 0 0

U 0 1.37e02 0 -1.76e01 -7.65e01

V 0 8.95e01 0 6.11e01 -2.17e01

X*X 0 1.46e04 0 0 0

X*Y -1.21e07 0 0 0 0

X*Z 0 0 0 0 0

X*W -3.24e07 0 0 -3.09e04 3.64e03

X*U 0 0 3.09e04 0 0

X*V 0 0 -3.64e03 0 0

Y*Y 0 1.46e04 0 0 0

Y*Z 0 0 8.60e03 0 0

Y*W 0 -8.60e03 0 2.21e04 1.71e04

Y*U 0 0 -2.21e04 0 0
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Y*V 0 0 -1.71e04 0 0

Z*Z 0 0 0 -9.30e03 0

Z*W 0 0 3.90e03 0 0

Z*U 0 9.30e03 0 0 0

Z*V 0 0 0 4.72e04 3.76e04

W*W -1.39e07 -3.90e03 0 0 0

W*U 0 0 0 0 0

W*V 0 0 0 0 0

U*U -6.11e07 0 0 0 0

U*V 0 -4.72e04 0 0 0

V*V 0 -3.76e04 0 0 0

X*X*X 0 0 0 0 0

X*X*Y 0 0 0 0 0

X*X*Z 0 0 0 0 0

X*X*W 0 0 0 0 0

X*X*U 0 0 0 0 0

X*X*V 0 0 0 0 0

X*Y*Y 0 0 0 0 0

X*Y*Z 0 0 0 0 0

X*Y*W 0 0 0 0 0

X*Y*U 0 0 0 0 0

X*Y*V 0 0 0 0 3.21e06

X*Z*Z 0 0 0 0 0

X*Z*W 0 0 0 8.35e06 0

X*Z*U 0 0 0 0 0

X*Z*V 0 0 4.16e07 0 0

X*W*W 0 0 1.05e07 0 0

X*W*U 0 -1.22e07 0 0 0

X*W*V 0 0 0 0 0

X*U*U 0 0 0 0 0

X*U*V 0 0 0 0 0
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X*V*V 0 0 0 -1.15e07 0

Y*Y*Y 0 0 0 0 0

Y*Y*Z 0 -6.05e06 0 0 0

Y*Y*W 0 0 7.15e06 0 0

Y*Y*U 0 0 0 0 -5.84e05

Y*Y*V 0 0 0 0 0

Y*Z*Z 0 0 0 0 0

Y*Z*W 0 0 0 -1.12e07 0

Y*Z*U 0 0 -2.47e07 0 0

Y*Z*V 0 0 6.43e07 0 6.91e06

Y*W*W 0 0 0 0 0

Y*W*U 0 -1.22e07 0 0 0

Y*W*V 0 1.40e07 0 -6.33e06 0

Y*U*U 0 0 0 0 0

Y*U*V 0 1.66e07 0 0 0

Y*V*V 0 0 0 0 0

Z*Z*Z 0 0 0 0 0

Z*Z*W 0 0 0 0 0

Z*Z*U 0 0 0 0 0

Z*Z*V 0 0 0 0 0

Z*W*W 0 0 0 0 -8.24e06

Z*W*U 0 0 0 0 0

Z*W*V 0 0 0 0 0

Z*U*U 0 0 0 0 -1.27e07

Z*U*V 0 0 0 0 -5.70e07

Z*V*V 0 -6.77e07 0 0 0

W*W*W 0 0 0 0 0

W*W*U 0 0 0 0 0

W*W*V 0 0 0 0 0

W*U*U 0 0 0 0 -1.44e07

W*U*V 0 0 -7.56e07 0 0
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W*V*V 0 0 -9.79e07 0 0

U*U*U 0 0 0 -1.76e07 0

U*U*V 0 0 0 4.97e07 0

U*V*V 0 0 0 0 0

V*V*V 0 0 0 0 0

D.2 Open Ends Data

D.2.1 2 Mode Analysis

Model (λ = 0.0080)

AdotOverA Zdot

1 0 -4.11e-02

X 0 0

Y 0 -1.18e00

Z -1.32e04 -1.40e01

X*X 0 6.60e03

X*Y -2.28e07 0

X*Z 0 0

Y*Y 0 6.60e03

Y*Z 0 0

Z*Z 0 0

X*X*X 0 0

X*X*Y 0 0

X*X*Z 0 -1.03e+06

X*Y*Y 0 0

X*Y*Z 0 -1.18e+06

X*Z*Z 0 0

Y*Y*Y 0 0

Y*Y*Z 0 0

Y*Z*Z 0 0

Z*Z*Z 0 0
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D.2.2 3 Mode Analysis

Model (λ = 0.0054)

AdotOverA Zdot Wdot

1 0 -2.75e-02 0

X 0 0 -4.89e01

Y 0 0 1.49e02

Z -8.80e03 0 0

W 0 0 0

X*X 0 4.40e03 0

X*Y -2.42e07 0 0

X*Z 0 0 1.98e04

X*W 3.23e07 -1.98e04 0

Y*Y 0 4.40e03 0

Y*Z 0 0 -1.47e04

Y*W 3.95e07 1.47e04 0

Z*Z 0 0 0

Z*W 0 0 0

W*W -6.17e07 0 0

X*X*X 0 0 6.10e06

X*X*Y 0 0 -1.62e07

X*X*Z 0 7.16e05 0

X*X*W 0 0 1.09e07

X*Y*Y 0 0 0

X*Y*Z 0 0 0

X*Y*W 0 0 -1.57e07

X*Z*Z 0 0 0

X*Z*W 0 4.54e06 0

X*W*W 0 0 0

Y*Y*Y 0 0 -1.61e07

Y*Y*Z 0 -1.89e06 0

Y*Y*W 0 0 -4.49e05
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Y*Z*Z 0 0 -4.48e07

Y*Z*W 0 -6.87e06 0

Y*W*W 0 0 0

Z*Z*Z 0 0 0

Z*Z*W 0 0 0

Z*W*W 0 0 0

W*W*W 0 0 0

D.2.3 5 Mode Analysis

Model (λ = 0.0027)

AdotOverA Zdot Wdot Udot Vdot

1 0 -2.46e-02 0 2.69e-02 -2.35e-02

X 0 0 -4.44e01 0 0

Y 0 0 1.42e02 0 0

Z -7.15e03 0 0 0 0

W 0 0 0 3.96e00 0

U 7.41e03 -9.14e00 0 0 2.33e01

V -5.57e03 3.70e01 0 -7.71e00 0

X*X 0 3.57e03 0 -3.71e03 2.78e03

X*Y -2.41e07 0 0 0 0

X*Z 0 0 1.89e04 7.22e02 0

X*W 3.14e07 -1.89e04 0 1.26e04 -1.50e04

X*U 0 -7.22e02 -1.26e04 0 0

X*V 0 0 1.50e04 0 0

Y*Y 0 3.57e03 0 -3.71e03 2.78e03

Y*Z 0 0 -2.00e04 0 0

Y*W 3.88e07 2.00e04 0 -6.42e03 1.69e03

Y*U 0 0 6.42e03 0 0

Y*V 0 0 -1.69e03 0 0

Z*Z 0 0 0 -7.58e03 0

Z*W 0 0 0 0 0
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Z*U 0 7.58e03 0 0 0

Z*V 0 0 0 8.88e03 0

W*W -6.20e07 0 0 0 0

W*U 0 0 0 0 0

W*V 0 0 0 0 0

U*U 0 0 0 0 3.17e04

U*V 0 -8.88e03 0 -3.17e04 -2.04e04

V*V 0 0 0 2.04e04 0

X*X*X 0 0 5.77e06 0 -8.03e04

X*X*Y 0 0 -1.54e07 0 0

X*X*Z 0 1.09e06 0 0 1.95e06

X*X*W 0 0 1.14e07 0 0

X*X*U 0 0 0 0 0

X*X*V 0 1.27e06 0 0 0

X*Y*Y 0 0 0 0 0

X*Y*Z 0 -1.41e06 0 1.38e06 -4.68e05

X*Y*W 0 0 -1.61e07 0 0

X*Y*U 0 0 0 -2.58e06 0

X*Y*V 0 -6.93e06 0 0 5.68e06

X*Z*Z 0 0 0 0 0

X*Z*W 0 5.99e06 0 -1.26e06 0

X*Z*U 0 0 0 0 0

X*Z*V 0 8.27e06 -2.94e07 0 0

X*W*W 0 0 0 0 0

X*W*U 0 0 0 0 0

X*W*V 0 0 0 4.05e06 0

X*U*U 0 0 0 4.86e06 -1.16e07

X*U*V 0 0 0 -1.29e07 0

X*V*V 0 0 -6.66e07 0 0

Y*Y*Y 0 0 -1.51e07 0 0

Y*Y*Z 0 -1.28e06 0 2.37e06 0
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Y*Y*W 0 0 -7.69e05 0 0

Y*Y*U 0 0 0 0 0

Y*Y*V 0 3.14e06 0 0 0

Y*Z*Z 0 0 -4.25e07 1.15e06 1.35e06

Y*Z*W 0 -5.89e06 0 0 5.97e06

Y*Z*U 0 0 -2.04e07 -6.37e06 2.42e06

Y*Z*V 0 0 0 0 0

Y*W*W 0 0 0 0 0

Y*W*U 0 0 0 0 0

Y*W*V 0 0 0 0 0

Y*U*U 0 0 7.50e06 0 0

Y*U*V 0 0 0 0 0

Y*V*V 0 0 -1.75e07 0 -1.69e07

Z*Z*Z 0 0 0 0 0

Z*Z*W 0 0 0 0 0

Z*Z*U 0 0 -1.28e07 0 0

Z*Z*V 0 -1.67e07 0 0 0

Z*W*W 0 0 0 0 -9.42e06

Z*W*U 0 2.87e07 0 0 0

Z*W*V 0 0 -5.83e07 0 0

Z*U*U 0 0 0 0 -1.81e07

Z*U*V 0 0 0 0 2.18e07

Z*V*V 0 -7.96e07 0 0 -3.85e07

W*W*W 0 0 0 1.02e06 0

W*W*U 0 0 0 0 -3.61e07

W*W*V 0 4.65e07 0 0 0

W*U*U 0 0 0 0 -2.73e07

W*U*V 0 0 0 0 0

W*V*V 0 0 0 0 0

U*U*U 0 -3.05e07 0 0 0

U*U*V 0 0 0 0 0



D.2. Open Ends Data 73

U*V*V 0 0 0 0 0

V*V*V 0 1.22e08 0 0 0
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Spectrograms

E.1 Closed Ends Data
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FIGURE E.1. Spectrogram of x, one of the modes that makes up our
first harmonic oscillating pair
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FIGURE E.2. Spectrogram of y, one of the modes that makes up our
first harmonic oscillating pair
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FIGURE E.3. Spectrogram of z, also referred to as our shift mode
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FIGURE E.4. Spectrogram of w, also referred to as our flapping mode
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FIGURE E.5. Spectrogram of u, one of the modes that makes up our
second harmonic oscillating pair
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FIGURE E.6. Spectrogram of v, one of the modes that makes up our
second harmonic oscillating pair

E.2 Open Ends Data
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FIGURE E.7. Spectrogram of x, one of the modes that makes up our
first harmonic oscillating pair
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FIGURE E.8. Spectrogram of y, one of the modes that makes up our
first harmonic oscillating pair
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FIGURE E.9. Spectrogram of z, also referred to as our shift mode
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FIGURE E.10. Spectrogram of w, also referred to as our flapping mode
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FIGURE E.11. Spectrogram of u, one of the modes that makes up our
second harmonic oscillating pair
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FIGURE E.12. Spectrogram of v, one of the modes that makes up our
second harmonic oscillating pair
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