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Abstract

This dissertation represents a departure from the conventional design of fuzzy
controllers. Two different design approaches are proposed. One is a full-
optimization for applications where high performance is crucial. The other
involves an efficient design approach where fast development is of primary
concern.

A genetic algorithm, as an optimization technique, is employed to auto-
mate and at the same time to optimize the fuzzy controller design process.
This optimization requires a predefined performance index.

An overview of fuzzy controllers is first presented in which the novel
concept of characteristic points is developed. This concept allows one to
appreciate the role of each set of fuzzy controller parameters, and leads to
the main motivation for automating the design process. An insight into the
nature of the problem leads to the suitability of a genetic algorithm, as an ap-
propriate search technique for this automation / optimization. A particular
genetic algorithm is coded for the concurrent optimization of controller pa-
rameters. This is contrasted with the alternative approach, where controller
parameters are optimized sequentially.

As an application example, electrical drive systems are considered. A
novel perspective on the field oriented control of induction motors is first

presented, followed by several possible designs of the fuzzy controller for
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such a drive system. In each case, the fuzzy controller is designed using one
of the proposed genetic algorithms, and results are compared with those of
a conventional counterpart.

Also in this dissertation, a novel perspective on the robustness of a fuzzy
controller is presented which suggests designing a fuzzy controller based on
sliding mode control - a well established robust control scheme. Based on
this view, an efficient near-optimal design technique of a fuzzy controller
is proposed. For instance, given a 7 x 7 decision table a search space of
34 dimensions collapses into a search space of 7 dimensions. While this is
achieved at the expense of decreasing the performance index slightly, it can
be employed for a large class of systems where fast tuning of the controller
is the primary concern. Furthermore, this approach is not restricted to the

genetic-based auto-design of a fuzzy controller.
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Chapter 1

Introduction

1.1 Background

Artificial Intelligence is machine emulation of the human thinking processes.
The term began to be systematically used since the Dartmouth College con-
ference in 1956 when Artificial Intelligence was defined as computer processes
that attempt to emulate the human thought processes that are associated
with activities that require the use of intelligence.

In 1854, George Boole first published his article entitled [nvestigations
on the laws of thought, and as a result, Boolean algebra and set theory was
born. Later, with the aid of vacuum tubes and the invention of the bipolar
junction transistor, the modern era of von Neumann type digital computation
arrived. Digital computers were defined by some to be intelligent since they
were able to emulate the process of human-like yes and no logic. Certainly, by
using binary logic, computers can solve some complex engineering, scieatific,
and other data processing problems. In one respect, this deserves applause.
However, it was in the late 1960’s and early 1970’s, that the limitation of

computers in handling algorithmic-type problems was felt. Consequently an



1.2 Introduction to electrical motor drives

entirely new paradigm for structuring software more like the natural human
thinking process was born. These expert systems, also called knowledge based
systems, are responsible for the acquisition of knowledge from human experts
in a particular domain and translating it into software.

It was in the mid 1960’s that a new theory called fuzzy logic was proposed
which gradually helped to supplement the expert systems as another branch
of artificial intelligence. L.A. Zadeh [1], the originator of this theory, argued
that most human thinking is fuzzy or imprecise in nature, and therefore,
Boolean logic which involves distinct “0” and “1” cases cannot properly em-
ulate the human thinking process. In recent years, fuzzy logic has emerged as
an important artificial intelligence tool to characterize and control a system
whose model is not known, or ill-defined. It has been widely applied in pro-
cess control, estimation, identification, diagnostics, stock market prediction,
agriculture, military science, etc.

While fuzzy logic has the capability to (partly) model human knowledge,
it cannot replace the human expert. In fact, the human mind has the capa-
bility to learn new things and to modify its previous knowledge to achieve
better results. This immediately leads to the question: is it feasible to add
a learning feature to the existing fuzzy systems such that these can generate
new knowledge, learn through experience, or modify their initial knowledge
to achieve higher performance?

This dissertation, is a small, but significant effort to answer the above

question in the affirmative.

1.2 Introduction to electrical motor drives

It is estimated that electrical motors absorb over 60% of the electrical energy

generated in North America [2]. Apart from this fact,75% of all electrical



1.2 Introduction to electrical motor drives

motor drive applications require either a variable speed or variable torque [3].
As the speed of an electrical machine increases, its demand for electrical
power increases as well'. Thus a great amount of energy can be saved if
electrical motors are freed from a constant speed constraint and operate
at speeds dictated by the load requirement. These aspects indicate how
important variable speed drives are in modern manufacturing or industrial
processes from both the standpoint of practical requirements and energy
savings.

Modern electrical drives are a challenging and sophisticated technology
involving major disciplines in electrical engineering such as modern control
theory, electrical machine theory, power electronics, signal processing, and
microcomputers. The major requirements of electrical motor drives, in gen-
eral, include high dynamic performance, i.e. fast response without overshoot,
zero steady state error, reliability, low maintenances, and robust performance
in the presence of disturbances. While some of these requirements, mostly
on the control side, can be fulfilled by dc drives, the others such as cost,

reliability, and low maintenance can not be met by these types of drives.

In contrast to dc motors, induction motors have the advantages of being
extremely low maintenance, low cost, robust, reliable machines which have
a high power to weight ratio. The control of these motors, however, is very
challenging because induction motors are high order, multi-variable. non-
linear, and uncertain systems®. Furthermore, the desirable variables such

as torque and speed of the machine are not linearly dependent on accessi-

L[f the mechanical load torque is proportional to the square of its speed, then the power
absorbed by the machine would be in proportion to the cube of motor speed. In the case
of constant load torque, the input power is proportionally related to the motor speed.

2Since the parameters of an induction motor are temperature dependent and further-
more its mechanical load is, in general, unknown, these systems are categorized as uncer-
tain systems.
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ble variables such as voltages and currents. In fact, there is a link between
flux and torque that prevents fast response of the machine to a step change
in torque commands. Moreover, the speed control of induction motors re-
quires change in the frequency and phase angle of the terminal quantities
in a complex manner that calls for sophisticated control schemes and costly

implementation.

This has been the case until two major technological changes took place:
advances in solid state switching devices resulted in the availability and de-
creasing cost of variable frequency power converters, and simultaneous en-
hancements in digital control made feasible the implementation of sophisti-
cated non-linear control techniques. At this juncture, it is important to note
that the increased concern about the present and future cost and availability

of the electrical energy has accelerated such techno-economical justification.

It was such an evolution that made possible the real implementation
of field oriented control, as the most sophisticated torque control method
for induction motor drives. This approach which was invented in the early
1970’s [4], was ignored for a long period of time because of difficulties in
the hardware implementation, due to the lack of advanced microprocessor
technology. [t also required instantaneous values of some state variables
which were neither reliably measurable nor feasible to be estimated quickly

and precisely.

Today, field oriented control has been widely accepted as by far the most
popular type of torque control for induction motors [3]. The new trends in
this field now involve the application of modern non-linear control techniques
to further enhance the performance of such controllers as well as optimizing

drive operation based on a specific requirement.



1.3 Introduction to fuzzy control

1.3 Introduction to fuzzy control

Fuzzy logic®, as one of the principal elements of artificial intelligence, is
playing a key role in dealing with uncertainty and imprecise information.
As stated earlier, originally, the main motivation behind fuzzy logic was the
provision of a framework to (partly) represent human knowledge in which
imprecision is a common feature. To perform such a task, it should be able
to model variables in classes such as large, low, high, etc, as is often done by
a human. If one takes a closer look at such variables, it turns out that they
have more or less a domain nature rather than a point nature. This shows
that in order to mathematically represent such variables, the concept of a set
should be used, and in one respect, the term fuzzy set [1] has been chosen to
this end.

Apart from defining variable classes, a particular logic is required for
processing such variables. Such a logic is called fuzzy logic which can be
viewed as a superset of two-value (i.e. Boolean) logic and even multi-value
logic. It is in this sense that fuzzy logic mimics the crucial ability of the
human mind to summarize data and focus on decision relevant information.
In fact, the key elements in human thinking are not numbers but some fuzzy
sets, that is, classes of objects in which the transition from member to non-
member is gradual rather than abrupt which is the case in crisp or Boolean
sets.

If such notions, i.e. fuzzy sets and fuzzy logic, give the capability to model
human knowledge, then the knowledge of an expert or engineer can also be
represented in the same manner. For this reason, fuzzy logic provides a
framework to incorporate any knowledge including the intuition and expe-

rience of an engineer designer. [t is in this way that fuzzy logic found its

3There is a glossary of fuzzy logic and genetic algorithm terms following the references.
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applications in control and fuzzy control®, as a process control algorithm.
As mentioned earlier, the essence of fuzzy logic is domain-wise mapping.
This implies that the exact model of a controlled system is not required. Fur-
thermore, fuzzy logic also facilitates handling systems having non-linearity,
parameter variations, and perturbations. This capability of fuzzy control,
on the one hand, and its feature of low cost hardware implementation, on
the other, has made fuzzy control very successful in embedded control. The
application of fuzzy control in electrical drives is quite new [5,6]. Since power
electronic systems often do not have an exact mathematical model, and they
are often non-linear with parameter variations, the fuzzy controller has a

significant potential to enhance their performance [2.5,7-16].

1.4 Problems in the design of fuzzy controllers

In general, the design of a fuzzy controller consists of five different stages.
These stages are normalization, fuzzification, the execution of rules, defuzzi-
fication, and denormalization. Since the exact relation between the system
dynamic performance and the controller parameters is not known, no sys-
tematic approach exists to nicely design a fuzzy controller for a specific ap-
plication. For this reason, the design process of fuzzy controllers at some
point becomes a trial-and-error approach [2,6,13,16-20]. This equivalently
means that the development of a fuzzy controller turns out to be completely
based on designer intuition and experience. Such a trial-and-error approach
requires a large number of repetitions, and it is therefore, time consuming
and tedious. Furthermore, as the number of input/output signals of the con-
troller increases, it tends to be more difficult, if not impossible, to end up

with an acceptable solution. Moreover, there are some cases where expert

“In this dissertation, the term fuzzy control is used in place of the more common fuzzy
logic control, to emphasize the control aspects of fuzzy set theory.
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knowledge is not available or the required knowledge about the system dy-
namics is beyond the expert experience. Obviously in these cases, even the
first steps in the design of the fuzzy controller cannot be taken. Apart from
all these aspects, even in the case that a fuzzy controller can be designed
by such a trial-and-error approach, there is no guarantee that the resultant
controller will be an optimal one. Notwithstanding the success of fuzzy con-
trol, these limitations have impeded the application of fuzzy controllers to a

wider range of control problems [7,21-27].

1.5 Introduction to genetic algorithms

A genetic algorithm is a probabilistic optimization approach inspired by bi-
ological evolution in nature [28]. In common with other optimization tech-
niques, a genetic algorithm performs a search in a multi-dimensional space in
which a hyperspace is defined by an objective function. In general, genetic al-
gorithms have proven to be effective at solving a variety of complex problems
that other techniques have difficulty in solving. For instance. since genetic
algorithms do not rely on computing local derivatives to guide the direction
of investigation in search space, they can handle problems with discontin-
uous and non-differentiable hyperspace. Furthermore, genetic algorithms
particularly are successful at finding the optimum where the hyperspace is
non-linear, or highly convoluted with many local optima. In fact, in gradient
based techniques, a point-wise search is performed by which a single point of
search space is selected, tested, and used with some decision rules to conduct
the search process. These methods may fail in a multi-modal situation by
convergence to one local optima.

In contrast, in a genetic algorithm, a population of points is chosen si-

multaneously to be independently processed and this gives a better picture
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of the entire search space. There is, hence, more probability of finding the
global optimum.

The basis of a genetic algorithm is that a population of solutions is first
randomly produced. The size of the population is a free parameter, which
trades off coverage of the search space against the required time to compute
every iteration, a so-called generation. Each solution in a population is coded
as a binary string, normally called an individual. Individuals are then evalu-
ated based on an objective function provided by the application and a value,
known as the fitness value, is assigned to each of them. The individuals in
the current generation are next processed by performing genetic operations
such as reproduction, crossover, and mutation. Reproduction involves select-
ing two individuals as parents based on their fitness; the higher the fitness of
the individuals, the more likely they can reproduce. After selecting pairs of
parents, a crossover is performed for each pair of parents, in which strings are
chosen randomly and are cut at a random point to produce two heads and
two tails. Then one of these segments, say tails, are swapped between two
individuals and in this way a new individual is generated. Furthermore, as
each bit is copied from one parent to offspring, it has a probability of being
flipped. Such flipping in one or more bits is called a mutation. A mutation
can be viewed as a reinjection of information that may have been lost in
previous generations. It can also be seen as an investigation in other parts

of search space enabling the optimizer to locate the global optimum.

1.6 Thesis objectives

The research underlying this dissertation involves the development of a novel
synthesis methodology to automate and at the same time, to optimize the

performance of fuzzy controllers based on a predefined objective function for
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any particular application. It also aims, in particular, to design an optimal

fuzzy controller for induction motor drives with indirect field oriented control.

The proposed novel synthesis methodology, when encoded as a computer
program, provides a convenient design approach which is directly related
to the desired system requirements and avoids the difficulties involved in
the conventional trial-and-error techniques. Also a novel overview of fuzzy
controllers with emphasis on underlying control concepts is presented which
indicates fuzzy controllers can be viewed as a non-linear static transfer func-

tion.

The technique proposed in this dissertation is based on a particular ge-
netic algorithm. In the literature, some optimization approaches, mostly
gradient based, have been used to optimize one set of fuzzy controller param-
eters or at best to optimize membership functions and rules in a sequential
manner. What they have not taken into account, however. is the fact that

there exists an interaction among different sets of parameters.

The primary, and original, contribution of this dissertation is concurrent
optimization of fuzzy controllers by which the entire set of control param-
eters, i.e. normalization factors, membership functions, and rules, are pro-
cessed simultaneously and therefore, the effect of their interdependencies is
inherent in the optimization process. The approach proposed in this disser-
tation, not only is able to develop a new fuzzy controller from scratch. but

it also is able to enhance the performance of an existing fuzzy controller.

Although in applying the proposed auto-design approach for the field
oriented control of an induction motor, it should be noted that this approach
is very general, and can be applied to a wide range of non-liner systems where

fuzzy control is used.
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1.7 Thesis outline

To be able to propose a good solution to a given problem, a deep understand-
ing of its underlying concepts is first required. It is in this sense that the
novel overview to fuzzy controllers in Chapter 2 starts with some fundamen-
tal concepts such as static functionality and non-linearity. By illustrating the
impact of each parameter in a fuzzy controller, the main insight into the de-
sign of a fuzzy controller is gained. Optimization requirements are discussed
in the first Section of Chapter 3. Next, after a brief introduction to genetic
algorithms as an optimization technique, the coding procedure is presented.

An induction motor drive with field oriented control is chosen as one
application for the proposed technique. In fact, a novel view to the field
oriented control technique is presented in Chapter 4 followed by the design
of an optimal fuzzy controller for such a drive.

Since the genetic-based auto-design of fuzzy controllers is a multi-faceted
issue, different aspects of this technique are discussed in Chapter 5. Concur-
rent design of fuzzy controllers is first compared with a sequential approach
and then extended to an input and/or output partitioning approach. The
concurrent auto-design of fuzzy controllers by a genetic algorithm is the prin-
cipal contribution of this dissertation.

Robustness is another important aspect of modern control theory. If a
higher level of robustness can be achieved, the controller can perform better
and longer without retuning. While, in the literature, it has been claimed
that fuzzy controllers are highly robust, not every conventional design of such
controllers should be considered as a robust controller. Special considerations
at the design stage of a fuzzy controller should be taken into account to
achieve a robust controller. This issue is addressed in Chapter 5, where the

design of a fuzzy controller is presented from the perspective of sliding mode
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control, as a special case of the variable structure control technique.

Conclusions, and recommendations for future work are given in Chapter 6.



Chapter 2

Fuzzy controllers

2.1 Introduction

Fuzzy control has found many applications in the past decades. This is so,
largely because fuzzy control has a capability to deal with non-linear, uncer-
tain systems even if no mathematical model is available for the controlled
svstem. One of the most significant features of a fuzzy system is that, in
principle, any continuous non-linear function can be approximated by such
a system to any degree of precision. In spite of such features, there are a few
bottle-necks hindering industry from broader exploitation of fuzzy control.
In the first place, a systematic design approach for fuzzy controllers is not
available [7,21-26]. This means that if a reliable expert knowledge is not
available or if the controlled system is too complex to derive its appropriate
control rules, development of a fuzzy controller becomes time consuming and
tedious and sometimes impossible. Even in the case that expert knowledge
is available, fine tuning of the controller is not a trivial task. Furthermore, a
near-optimal fuzzy controller is very difficult to obtain by human trial-and-

€rror.

Some efforts have been made to solve these problems and simplify the
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task of parameter tuning and rule development for a fuzzy controller [23-
25,29-35]. These approaches mainly use adaptation or learning techniques
drawn from artificial intelligence or neural network theories [25,35-46].

In this chapter a novel overview of the fuzzy controller is discussed. F'irst,
a comparative perspective of the fuzzy control approach is presented. The
structure of a fuzzy controller is then outlined and this is followed by exam-
ples of different types of fuzzy controllers. The characteristics of a fuzzy con-
troller are then explained. The realization of a conventional fuzzy controller
and its design parameters are discussed in the following sections. Finally
after clarifying the relative importance of controller design parameters, the
main motivation for the research underlying this dissertation is addressed as
a problem description. Many of the notions stated in this chapter are new
and are not discussed in the current literature with the exceptions of the
concepts of the fuzzy controller structure, in Section 2.3, and the concept
of a universal approximator, in Section 2.5.3. The purpose of this chapter
is to provide the required background on the design aspects of a fuzzy con-
troller, and to provide some motivation leading to the optimal design of fuzzy

controllers.

2.2 A comparative view

To illustrate the difference between a classical controller and a fuzzy con-

troller (FC), consider a non-linear dynamic system
:'c:f(x,u) , ¥ =g(x,u) (2'1)

where x € R" is the state vector, u € R", y € R™ are the system input
and output vectors respectively, and r, m, n are integers respectively. The

mappings of f(.) € R*, g(.) € R™ are smooth and satisfy the conditions of
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f:R*xR — R"and g: R x R" — R™. The main objective of a control
designer is to find an appropriate control algorithm, using the feedback infor-
mation extracted either from state variables or system outputs, to force the
system output to follow prescribed trajectories as closely as possible. The
tracking error can be defined as the difference between x4 and x (if state
feedback is used) or between y4 and y (if output feedback is used), where x4
and yq4 stand for the desired trajectories. The differential equation 2.1 can

then be equivalently expressed from the mathematical viewpoint as:

Find an appropriate mapping from the error domain to the system
input domain such that the solution of the differential error system

is stable.
To this end, a classical controller performs the desired mapping in a point-

wise manner such as u = h(e), as shown in Fig. 2.1.

u i=f(xvu)

y=g(x,u)

E- Domain U- Domain

Figure 2.1: A classical feedback control system.

In contrast, in a fuzzy controller, the same mapping is performed in a
domain-wise manner as shown in Fig. 2.2. This domain-wise mapping is
called inference. To employ such a mapping, two interfaces are required:
first transferring the crisp values into some domain values (encoding) and
second, transferring the domain values into crisp values (decoding). The
former is called fuzzification and the latter is known as defuzzification. This

suggests three different stages within a fuzzy controller, as opposed to one
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u x=f(x,u) y

y=g(x,u)

FC

Figure 2.2: A fuzzy control system.

stage h(e), in the classical controller. Further, to simplify the design process,
the input-output signals may be normalized and denormalized. Then, a fuzzy
controller can be viewed as a five-step structure which is discussed in greater

detail in the following section.

2.3 Basic structure of fuzzy controllers

The principal structure of a fuzzy controller, as illustrated in Fig. 2.3, con-
sists of normalization factors, fuzzification of inputs, inference or rule firing,

defuzzification of outputs, and denormalization.

2.3.1 Normalization and denormalization

To design a fuzzy controller independent of the variables’ physical domains,
the membership functions are defined within [—1,+1]. This requires nor-
malization of physical variables. Similarly, in the denormalization stage the
normalized output value is mapped into the physical domain. Although these
mappings are linear, they become very crucial to the performance of the con-
troller regardless of the manner in which they are implemented, i.e. explicitly

or implicitly.
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&
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Figure 2.3: Basic structure of a fuzzy controller.

2.3.2 Fuzzification and defuzzification

Since fuzzy inferencing is performed on fuzzy values, the point-wise input
values (crisp values) must be converted into fuzzy values (fuzzy sets). This
is the purpose of fuzzification. In effect, in the fuzzification process, the in-
put space is partitioned into sub-domains. Proper partitioning of this space
requires some information about the system output state variables which
is a part of the data base (or expert knowledge) required to design a fuzzy
controller. Fig. 2.4 demonstrates two conventional types of membership func-
tions, where the input space is partitioned into seven different fuzzy subsets
in this illustration. Also, since the actuator input needs a crisp value as a
control action, the output of the fuzzy inference which is again a fuzzy set,

is translated into a point-wise value. This process is called defuzzification.

2.3.3 Inference mechanism

If X, and X, are the fuzzified controller inputs (e.g. error and error derivative)
and U, is the fuzzy value for the controller output, and Ry is the fuzzy

function responsible for the mapping from the input space into the output
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-

n
-1 0 +1 -

(b)

Figure 2.4: Conventional membership functions;(a): gaussian (b) triangu-

lar.
space, then the fuzzy controller can be represented [47] by
U= (X x X.)o Ry (2.2)

where X is the Cartesian product operator and o denotes the inference mech-
anism (for this dissertation, the max-min operation). In the case of the rule
base, if the input and output spaces are partitioned into an odd number! of
fuzzy sets for every variable (i.e. for error, e, error derivative, é, and fuzzy
controller output, u), the control policy can be expressed in the form of a

look-up table, which is also called a decision table. Figure 2.5 shows an ex-

LTypically five or seven fuzzy sets are used for such partitioning.
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NM NM Z

Figure 2.5: Sliding mode decision table

ample of a decision table for a controller of two inputs, i.e. error and error
derivative denoted by e, and é, and one output, . In this figure, different
fuzzy sets of the controller’s output, u are denoted by NB, NM, NS, Z, PS,
PM, PB, which stand for negative big, negative medium, negative small.
zero, positive small, positive medium, and positive big, respectively. Such a
table, in the author’s view, can be called a sliding mode decision table or, in
short, a sliding mode table. Further details about this notion are presented

in Chapter 5.

2.4 Different types of fuzzy controllers

In one respect, in connection with the classical control theory, four differ-
ent types of fuzzy controllers can be distinguished. From this viewpoint,
fuzzy controllers can be classified into PD-like, Pl-like, P-like, and PID-like

controllers as follows:
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2.4.1 PD-like fuzzy controller

A conventional PD? controller can be described by
u=Kp.c+Kp.é, (2.3)

where e and ¢ are error and error derivative and Kp and Kp are the propor-
tional and the differential gain coefficients. The same equation in the context

of fuzzy logic can be represented in a symbolic fashion as
If e(k) is LV. and Ae(k) is LV;, then u(k) is LV,

where LV refers to a linguistic variable (e.g. positive medium), and LV,, LV;,
and LV, are specified membership functions for e, é, and u, respectively, and
k is a sampling instant.

This symbolic representation of an equation is called a fuzzy rule and a

set of rules can emulate the complete dynamics of a differential equation.

2.4.2 PIl-like fuzzy controller

A conventional PI® controller can be described by
u=[\'p.e+[(;-/edt (2.4)

where Kp and A are the proportional and the integral gain coefficients. If
the above integral equation is converted into a differential equation by taking

the derivative with respect to time, the equivalent equation will be:

w=FKp.é+K;.e (2.5)

*Proportional plus differential
3Proportional plus integral
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The PI-like fuzzy controller can then be modeled by following rule:
If e(k) is LV, and Ae(k) is LV;, then Au(k)is LV;

In this case, the controller gives the incremental value of the output and
an integrator, therefore, is required outside of the fuzzy controller to generate

the final value of the control action, u.

2.4.3 P-like fuzzy controller

The fuzzy rule representing the proportional controller equation
u = Kp - € (2.6)

can be expressed in symbolic form as
If e(k) is LV,, then u(k)is LV,

It should be mentioned here that due to the requirement of a four di-
mensional decision table for a PID-like controller®, it is hardly used, if at all.
Furthermore, Since the Pl-like fuzzy controller is easier to develop and has
the property of zero steady state error, this type of controller has been chosen
for this dissertation. Therefore, henceforth, whenever a fuzzy controller is
referred to. the Pl-like controller is meant unless stated otherwise. Fig. 2.6
demonstrates such a controller for which a typical decision table has already

been shown in Fig. 2.5.

2.5 Fuzzy controller characteristics

To appreciate the essence of fuzzy controllers, these systems can be viewed

from different perspectives. Following this line, one might examine this con-

*Proportional plus Integral plus Differential controller
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Figure 2.6: Pl-like fuzzy controller in a closed-loop control system.

troller from the “functional view”. If this view is employed, the fuzzy con-
troller with the structure shown in Fig. 2.6, will appear to have a static
transfer function. This automatically calls for the requirement of adding
some dynamic elements in the front-end and output of the fuzzy controller.
In this way, the “overall controller” would appear to have a dynamic transfer
function while the fuzzy controller part is still static in nature.

It is also worthwhile to look at the controller from both the linear and
the non-linear viewpoints. As shown below, fuzzy controllers perform a non-
linear mapping from input to output. Furthermore, fuzzy systems, in general,
and fuzzy controllers, in particular, are universal approximators. This, in
turn, means the fuzzy controller of Fig. 2.6 can approximate any non-linear
static transfer function to any degree of precision that is desired®. This makes
fuzzy controllers potentially quite attractive in the control of a large class of
non-linear systems. These are the issues that are discussed in greater detail
in the following section. Some other features of fuzzy controllers, such as its
variable structure nature, sliding mode nature, and so on, will be discussed in
Chapter 5, in which the design problems of fuzzy controllers are investigated

in different respects.

SProvided that there is no restriction on the number of membership functions.
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2.5.1 Fuzzy controller as a static transfer function

A fuzzy controller can be seen as an input-output mapping operator. One
may ask whether the fuzzy controller shown in Fig. 2.6 has a static transfer
function or a dynamic one (We have clamied on the previous page that it is
in fact static). To answer such a question, the structure of a typical rule for

a Pl-like controller, is reconsidered here:
If e(k) is LV, and Ae(k) is LV:, then Au(k)is LV,

As this rule implies, since the value of the controller output at the instant
k does not depend on its previous value, no dynamics is involved inside the
fuzzy controller. This makes the fuzzy controller of Fig. 2.6 with the rule
structure stated in Section 2.4.2 appear as a controller with a static transfer
function. This notion can also be derived from the fact that all operators
with respect to time, like derivative and integration are performed outside the
fuzzy controller. The dynamic behavior of the overall controller, therefore,
comes about by prefiltering, i.e. derivation, and postfiltering, i.e. integration,
of the input/output signals. This makes the entire controller from e — u,
a controller with a dynamic transfer function while the mapping (e,€) — u

remains static.

2.5.2 Fuzzy controller as a non-linear element

A fuzzy logic controller, in general, has a non-linear transfer function. In fact,
this is one of the features that has made this controller very attractive for
non-linear control applications. For instance, the rule stated in Section 2.4.1
is a non-linear PD-operation and a collection of such rules can be used,
and, in fact, results in the modelling of a non-linear differential equation.
Such a rule-based modelling of a non-linear differential equation we would

call a qualitative differential equation. While the source of non-linearity, on
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the one hand, potentially can come from rules, on the other hand, the fuzzy
operators involved in fuzzification, inference, defuzzification, are non-linear in
nature (refer to Appendix A for a proof). However, the point that should be
clarified is that while the membership functions can introduce non-linearity,
in the author’s view, the main non-linearity of the system’s behavior must
be defined by rules (i.e. the interference mechanism). This point becomes
more clear when the roles of membership functions and rules are examined

in Section 2.7.2.

2.5.3 Fuzzy system as universal approximator

It has been proved that fuzzy systems are universal approzimators {40]. As
mentioned in the preceding sections, a fuzzy controller can be viewed as a

non-linear mapping of

y = f(x) (2.7)

where x and y are the input and output vectors respectively. Keeping this

in mind, the universal approximation theorem can be stated as
Universal approximation theorem:
For any given real continuous function F(z) on a set
of U € R" there exists a fuzzy system f such that
supey 1F(x) — f(x)] < ¢
where F'(z) is the function to be approximated and ¢ is a positive

number which can be set to any arbitrary small value [42].
[t is quite clear that by increasing the number of membership functions (and
consequently rules), a better approximation of the original function can be
attained. This is similar to the approximation of a continuous function by a
number of points and some interpolation methods; the greater the number
of points, the better the approximation of the function.
Figure 2.7 demonstrates a pictorial view of how a non-linear function

can be approximated by a fuzzy system. By specifying such domains, the
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y

X

Figure 2.8: The process of defining membership functions for a typical non-
linear function

membership functions of input/output spaces, in effect, can be defined as
shown in Fig. 2.8 from which, in the author’s view, the design process of a
fuzzy system can be started and followed by the definition of control rules.

This procedure will be discussed in greater detail in section 2.7.2.

2.6 Realization of conventional fuzzy controllers

In the design of a fuzzy controller, one must first decide about the number

of inputs and outputs for the controller. Then the input and output spaces
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must be partitioned by a proper number of fuzzy sets with suitable shapes and
overlaps. In the next stage, by convention, a prototype decision table should
be constructed based on experience, expert knowledge, or intuition. At this
point, the controller is incorporated into the feedback loop of the system and
tuning is performed based on trial-and-error, by changing normalization,
denormalization, membership function parameters, and consequent parts of
fuzzy rules which are, in fact, the cells of the decision table.

To have an idea of the number of design parameters, consider a system
with n inputs and one output. and m membership functions for each variable.
Such a system requires 3mn+m" design parameters where 3mn is the number
of membership function parameters and m" is the number of possible rules.
If the number of normalization and denormalization factors are also taken
into account, then the overall number of design variables would be equal to
m*+3mn+n+1 = m"+n(3m+1)+1. For instance, for the controller shown in
Fig. 2.6, which has two inputs and one output, if seven membership functions
are chosen for each variable, the number of design parameters becomes m™ +
n3m+1)+1=72+2(3 x T+ 1)+ 1 =94. It is now quite obvious how
difficult, if not impossible, it would be to tune such a number of parameters
by a trial-and-error approach if no systematic method exists. To clarify the
effect of different design variables on controller performance, the role of each

design parameter is first presented.

2.7 Design parameters of fuzzy controllers

As stated in Section 2.3, there are five different computational steps in the
operation of fuzzy controllers. The parameters involved in these steps, can
be viewed as design parameters at the design stage. In what follows, the role

of each design parameter is explained.
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2.7.1 Role of normalization and denormalization fac-

tors

As mentioned in the Section 2.3.1, the design of a fuzzy controller on a
fixed domain, i.e. independent from the physical domain, requires proper
normalization and denormalization. If e = x4 — x represents the actual value
of the error vector, where x is the state vector and x4 is the desired value of

the state vector, then the normalized error vector, ey, is derived by

eN = Ne-e (2.8)
where
N, 0 - 0
0 N, - 0
Ne=| @ ° _ (2.9)
0 0 N,

ek
N, are real numbers and the normalized domain for e is, say [—a, a], in our
case [—1,1]. In particular, where e = (e;,e2) = (e, é), the mappings from e

to ey and from é to éy are performed by

en = N..e exy = N;:.é. (2.10)

The normalization and denormalization operations, as their names im-
ply, are linear operations. Any linear adjustment of the controller function,
therefore, can be performed by changing these factors. They have one resem-
blance with classical linear control, in which they emulate the proportional
and the integral coefficients, i.e. K, and K; respectively. Thus while simple
in operation, they have a crucial effect on the stability of the overall sys-

tem. Moreover, this similarity between K,, K; and N,, N;, shows that the
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other parts of a fuzzy controller such as fuzzification, inference, defuzzifica-
tion introduce extra degrees of freedom in tuning and adding non-linearity
to the controller. This also implies that the conventional PI controller is, in

effect, one special case of a fuzzy controller [21]. Fig. 2.9 demonstrates how

00000, M
3 %

e
- N
-1 0 +1 éN
Normalized universe of discourse
(c)

Figure 2.9: Normalization of the universe of discourse.

the universe of discourses (domain of membership functions) are changed by
the normalization factors. In effect, rather than defining membership func-
tions on different universe of discourses, one can define such functions on a
fixed domain, say [—1,1], and convert the physical values to the normalized
values by proper normalization factors. This makes the design of the fuzzy
controller independent from the physical domains. Note that the member-
ship functions have only a local effect on the input domains, whereas the

normalization factors have a global effect, as implied by equation 2.10.
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X
Figure 2.10: A typical mapping Figure 2.11: Defining the mem-
of the controller. bership functions.

2.7.2 Role of membership functions and rules

To gain an insight into the relative importance of membership functions and
rules, an example is presented. Assume that the functional mapping of the
system is already known as depicted in Fig. 2.10, and our objective is to
approximate this function by a fuzzy model. This assumption, in practice, is
generally not valid as the rough behavior of the system may only be known,
and the exact behavior of the system, more often, is not known. Nonethe-
less, at present, we make this assumption, in order to appreciate the role of
membership functions and rules.

To design a fuzzy controller to perform the required mapping, the first
step after normalization is define the membership functions for the input-
output spaces, i.e. ,y. Assume the input-output membership functions are
derived as based on a selection of four arbitrary points on a curve as shown
in Fig. 2.11. The arrows in this figure, are an indication of the design order
in the sense that one can define the proper membership functions of such
a mapping by initially selecting four arbitral points on the function. This

immediately leads to the partitioning of the z — y space. The resultant parti-
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Approximated

tioning can be viewed as defining a framework on this plane which introduces

some intersection points such as b, and b, and so on as illustrated in Fig. 2.12.

The next step is to define the required rules for this mapping in the

partitioned space. [t is apparent that for such an ascending function, the

rules can be readily stated as

If r belongs to domain Ay, then y belongs to domain By

If  belongs to domain A;, then y belongs to domain B,

If = belongs to domain A;, then y belongs to domain B,

If = belongs to domain A;, then y belongs to domain B;

As demonstrated in Fig. 2.12, the task of rules is then to select only one point,

say by, out of the possible points, i.e. b, by, bs. by. These selected points, in

our view, can be called characteristic points because they characterize the

approximated function of the controller. It is now the defuzzification operator

which is responsible for interpolating between adjacent characteristic points®

5[t should be clarified that the interpolation is not due to defuzzification, it is, in effect,
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to construct a new function which is, in effect, an approximation of the
original one (see Fig. 2.13).

Viewed from this perspective, the role of the membership functions and
the rules can now be induced as follows: While the rules are responsible
for general shaping of the function (i.e. locally ascending, or descending),
the membership functions appear to specify the slope of each ascending or
descending part. Although the influence of the membership functions can be
seen more locally, with the same of set of rules, they can dramatically change

the functionality of the system. For instance, consider the same membership

y b,
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Figure 2.14: The effect of membership Figure 2.15: Fuzzy mapping

functions on mapping. in the case of more overlap.

functions as above for z, but a different set for the output y. With the same
mapping (i.e. identical rules), this time, a new function will result which is
quite different from the original one (see Fig. 2.14, where previous output
membership functions are indicated by dotted lines).

This illustrates the role of membership functions in fuzzy modelling.

as a result of the overlapped membership functions together with fuzzy inference and de-
fuzzification; but the point is that the final interpolation is performed at the defuzzification
stage.



2.8 Problem description

31

While it seems that it is the membership functions which confine the possible
location for the characteristic points in each domain, the entire vertical axis
can be scanned if more than two membership functions are overlapped by
one membership function. This point is illustrated in Fig. 2.15 where any
point on the vertical line b, b4 can be selected, rather than being restricted to
the prescribed junctions such as by, by, b3, by. In effect, more characteristic
points are incorporated in the interpolation between, say ¢; and c;, when
other membership functions have greater overlap with corresponding mem-
bership functions. We will later take advantage of this fact in the solution

that we will propose for the design of fuzzy controllers.

2.8 Problem description

As stated earlier, one of the most important concepts in fuzzy systems is the
universal approximation theorem. This theorem also provides an explanation
for the practical success of fuzzy systems in control engineering. Nonetheless,
the theorem has a remarkable drawback. It is just an ezistence theorem which
implies that there exists a fuzzy logic system for this non-linear function
but it does not indicate how to find it. In practice, the design process of
fuzzy controllers has evolved as a trial-and-error approach. Briefly, possible

problems with the human trial-and-error approach can be categorized as:

The controlled system is too complex such that its proper decision rules

cannot easily be derived by human expertise.

Designing and tuning a multi-input multi-output fuzzy controller is so

tedious as to be unfeasible.

Reliable expert knowledge is not available.

Even with expert knowledge, fine tuning is not a trivial task.
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e Some significant operating changes (in disturbances or parameters)

might be outside the expert’s experience.

e There is no guarantee of achieving the optimal fuzzy controller just by

relying on intuition, experience, or expert knowledge.

o Since the resulting fuzzy controller is not optimal, a performance com-

parison of the fuzzy controller with other controllers is not valid.

To solve all the foregoing problems, some insight into the problem is re-
quired. Current fuzzy controllers perform the role of human-like controllers
in the closed loop system. If, somehow, the process of knowledge develop-
ment of a human can be modeled and simulated, the foregoing problems will
be resolved to the extent that expert knowledge will no longer be required
(i.e. we wish to automate the design process).

The approach proposed in this dissertation is not only to develop the
required fuzzy system, more importantly, it is also to find and shape the
best (near-optimum) non-linear function based on a prespecified performance
index. While the technique is algorithmic and not based on any intuition, it
is also able to incorporate heuristic knowledge in the design process.

To implement this auto-designed, auto-tuned controller, the optimiza-
tion technique must be able to address the optimization problems evolved
in a fuzzy controller. A fuzzy controller, in structure, is a non-linear, multi-
parameter element which does not have, in general, a mathematical model
in the conventional sense. [ts model stems from fuzzy sets, and fuzzy rules
which makes it difficult, if not impossible, to optimize by conventional tech-
niques. On the other hand, having a large number of design variables, differ-
ent in nature but interdependent, makes a very complex and unpredictable
search hyper surface for such optimization. The degree of complexity in-

creases when it is found that the search hyper surface has a multi-modal
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nature. Therefore, a calculus-based optimization technique fails in finding
the global optima if it starts from any other hill rather than the highest one
on the search surface. Moreover, since the search space is not well-known,
existing non-differentiality or discontinuity, make it difficult to handle this
problem by gradient methods. Furthermore, as this study shows, the opti-
mization problem of a fuzzy controller is not a sequential one but rather a
concurrent optimization problem. This implies that the optimization tech-
nique would preferably have a parallel nature to handle such a problem.
The genetic algorithm, as an optimization technique, has the capability to
deal with a non-linear, multi-parameter, and multi-model objective function.
These are the features that make this optimization approach well suited with
the design process of fuzzy controllers and this is where our discussion will

next turn.

2.9 Chapter summary

In this chapter, a novel overview for fuzzy control has been presented. The
design structure of fuzzy controllers as well as different types of these con-
trollers have been explained. The essential features of a fuzzy controller such
as the static transfer function and non-linear approximation have been de-
scribed in the way that, in the author’s view, is not available in the current
literature. The conventional realization of fuzzy controllers which is based
on the human trial-and-error approach has briefly been discussed. The prob-
lems associated with the conventional design approach of fuzzy controllers
have been addressed. The role of controller parameters has then been pre-
sented providing the background for this dissertation toward the goal of fuzzy

controller auto-design.



Chapter 3

Problem coding based on

genetic algorithms

3.1 Introduction

[n Chapter 2, the problems associated with the design of fuzzy controllers are
discussed. This chapter starts with the optimization requirements for fuzzy
controller design. As will be seen, the objective function for such an opti-
mization problem, not only is lacking a conventional analytical expression,
but also, is highly multi-parameter, non-linear. and multi-modal in nature.
These are the features that make the genetic algorithm a good candidate for
such an optimization problem.

Genetic algorithms are search techniques based on biological evolution in
nature. They were first introduced, by John Holland, his colleagues, and his
students at the university of Michigan in 1975 [28]. Since then, the approach
has led to some significant discoveries in both natural and artificial system
science. The application of the genetic algorithm, however, for optimization

in engineering is quite new [48-51]. To implement such a technique, however,
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a proper representation of possible solutions must first be developed. Then,
by starting with an initial random population of possible solutions, employing
a type of survival of the fittest, and exploiting old knowledge in the mating
pool, the ability of each new generation to solve the problem should improve.
This is achieved through the three-step processes involving evaluation, repro-
duction, and recombination [52]. Every individual refers to a special point
in search space. This feature, which is lacking in gradient-based approaches,
enhances the ability of a genetic algorithm to find the global optimum in the

case where the search space has a multi-modal nature.

To design a fuzzy controiler, any feasible structure for the controller as a
set of parameters, should be translated into a bit-string which can easily be
processed by a genetic algorithm. At the same time, a fitness function should
also be defined to let the genetic algorithm evaluate possible solutions and
to direct them to evolve to near-optimal ones. These are the points that will

be discussed in greater detail in the last part of this chapter.

3.2 Optimization requirements

To select a particular optimization technique for the design. i.e. parameter
selection, of a fuzzy controller, some insight into the problem is required. In
the first place, a performance index for the control system should be defined
which can be employed as the objective function in the optimization. This
performance measure can be some explicit or implicit function of error for a
particular transient response. For instance, for the system shown in Fig. 3.1,

the performance index may be defined as

J= t:,ll)(e)dt:/t:l d)(f(x,u,t))dt:/ttlzb(f(x,h(e,é),t))clt (3.1)
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where 1 is some function of error, f is the system function, h is the con-

troller function, and x is the system state vector. The goal of the required

y=f(x,u,t)

Figure 3.1: fuzzy controller in closed loop system.

optimization is to find a set of unknown parameters of h{e, €) such that the
objective function is minimized. In gradient based optimization techniques,
in general, the partial derivative of the objective function with respect to
different design parameters of the function (e, €) should be calculated and
then a set of coupled non-linear differential equations is solved for the un-
known parameters. Since in our case, the analytical expression of fuzzy
controller in the conventional sense, i.e. h(e, €), is not known, the gradient
techniques cannot be employed for a problem with this nature. Furthermore,
there are some other aspects that should be taken into account. First. the
mapping function of fuzzy controllers, i.e. A(e, €), is a non-linear function
(cf. section 2.5.2). This makes the objective function non-linear even if ¥ and
especially the system, i.e. f(x,u,t) is linear. As a result, the optimization
technique should be able to handle non-linearity. Second, as stated earlier,
the number of parameters in the design of fuzzy controllers is very large.

The objective function, therefore, appears to be a multi-parameter function
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by which a multi-dimensional space is introduced and more importantly, it
can be shown that such a hyper surface has a multi-modal' nature. Viewed
in this perspective, the search for a global optimum in such a multi-modal
hyper surface is not a trivial task.

Genetic algorithms, in contrast with gradient based techniques, do not
require an analytical expression for the controller function, i.e. k(e, €), and
furthermore, they are also able to handle non-linearity and the multi-modal
nature of the objective function. They work with bit-strings not deriva-
tives, and this makes them, in general, more efficient? particularly in the
cases where the objective function is highly non-linear and multi-parameter.
Moreover, genetic algorithms look at a population of points rather than to
one point which is the case in the gradient based techniques. This provides a
better picture of the entire search space which consequently leads to a higher
probability of finding the global optimum as opposed to a local one. Gradi-
ent based techniques are point-wise search approaches and therefore. there
always exists a chance of being trapped in a local optima if the hyper surface
has a multi-modal nature and the starting point is not sufficiently close to

the global optimum.

3.3 Genetic algorithms; An overview

Genetic algorithms are search algorithms which are based on the genetic
processes of biological evolution. They are adaptive methods which may be

used to solve search and optimization problems. They work with a popula-

lie., in addition to a global optimum, there are some local optima as well. This can
also be visualized as a multi-hill hyper surface in search space.

?An optimization technique is efficient if it has the following two properties; i) a faster
rate of convergence to the optimal point, and ii) a small number of calculations within
one design iteration.
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tion of individuals, each representing a possible solution to a given problem.
Each individual is assigned a fitness score according to how well it solves the
given problem. For instance, the fitness score might be the strength/weight
ratio for a given design or a performance index for a closed loop control sys-
tem. In nature, this is equivalent to assessing how effective an organism is
at competing for resources and also attracting mates. The highly adapted
individuals, also called fit individuals, will have relatively large numbers of
offspring. Poorly performing individuals will produce few or even no offspring
at all. The combination of good characteristics from different ancestors can
sometimes produce superfit offspring, whose fitness is greater than that of
an earlier parent. In this way, species evolve to become more and more well

suited to their environment.

A new population of possible solutions is thus produced by selecting the
best individuals from the current generation and mating them to produce a
new set of individuals. In essence, by mixing and exchanging components of
better individuals over many generations, good characteristics are spread out
through the population. With the view of an optimization perspective, by
randomly generating the initial population, a broad area of search space is
investigated, and then by mating the more fit individuals, the most promising
area of this space is explored and it is in this sense that genetic algorithms
may more likely come up with the global optimum. If a genetic algorithm is

designed well. the population will then converge to a near-optimal solution.

By its probabilistic nature, genetic algorithms are not guaranteed to al-
ways find the specific global optimal solution, but generally, they can find a

very near-optimal solution very effectively.

Before a genetic algorithm can be implemented as a software program,
a suitable coding (representation) must be made. Also required is a fitness

function which is used to assign a figure of merit to each coded solution.



3.3 Genetic algorithms; An overview

39

On the other hand, during program execution, parents must be selected for
reproduction, and recombined to generate offspring. In what follows, these

aspects are explained in greater detail.

3.3.1 Coding

To translate a problem into a suitable form for a genetic algorithm, a poten-
tial solution should be represented as a set of parameters (for instance the
dimensions of beams in a bridge design, or the different control rules in a
decision table in a fuzzy controller). These parameters are then linked in a
string, most often in a bit-string. Such parameters are referred to as genes
and the resultant string is called a chromosome. For instance, if our problem
is to minimize a function of three variables such as F(z, y, z), each variable
should then be represented with a string of, say 4 bits®. Clearly, the resulting

chromosome would consist of 12 binary digits as shown in Fig. 3.2.

i A

1 1
1 I

— i e
] .

Figure 3.2: A typical string in a genetic algorithm.

3.3.2 Evaluation

The first step in every iteration of a genetic algorithm is to determine how well
each chromosome can solve the problem. This step which is called evaluation
is the only one in which the interpretation of the chromosome is used. The

result of this evaluation, which is called a fitness value, is used in the next

3A more practical resolution for each variable might be 10 bits, giving an accuracy of
one part per thousand.
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step to specify how many offspring should be generated by any particular

chromosome.

3.3.3 Reproduction

In this step, a new population is created based on the evaluation of the
current one. For every chromosome in the current population, a number of
exact copies are generated with the best chromosomes producing the most
copies. As a result. good individuals might be selected several times while

poor ones may not be chosen at all. Figure 3.3 illustrates this point. In

L 2 T
P R g
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Old population Fitness Mating pool (Parents)
value

Figure 3.3: Contribution to the mating pool based on fitness.

this way, a genetic algorithm takes from biological evolution the strategy of
survival of the fittest. There are several ways to calculate the number of
offspring that each chromosome can be allocated. The two most popular
methods are referred to as the ratio technique and the rank scheme [53]. In
the ratio technique, each individual is reproduced in proportion to its fitness.
For instance, an individual whose fitness is ten times better than another will
produce ten times the number of offspring. The nice point about this method
is that if a good individual emerges soon, it can guide the population quickly.

The shortcoming of this approach is that if a good individual, but not the
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best one, arises then the population may converge prematurely on a possibly
suboptimal solution.

In the ranking technique, the population is ranked and the number of
offspring that each chromosome generates will depend upon its rank. For
instance, the top 20% of the offspring generate two offspring, the bottom
20% offspring generate no offspring, and the rest generate only one offspring.
By using this technique, no chromosome can dominate the population in only
one generation. In fact, no matter how close the actual fitness values are,
there is always constant pressure to improve. On the other hand, this leads
to a slow convergence once a superfit individual is present and is not able
to guide the population to the solution as quickly as is possible in the ratio

technique.

3.3.4 Recombination

The previous step. reproduction, creats a population whose members are cur-
rently best fitted to solve the problem. However, many of the chromosomes
are identical and none are different from the previous generation. Therefore,
it is now necessary to generate new individuals such that they have a higher
performance index. This process is referred to as recombination®. To do
that, some genetic operations should be used. Among the most common are:

One-point crossover: In this case, two individuals are selected and
their strings are cut at some randomly chosen position®. This provides two
head segments and two tail segments. The heads (or tails) of these two chro-

mosomes are then swapped to produce two new offspring. In this way, each

41t should be noted that in some literature, the reproduction stage is referred as the
selection stage and the recombination stage is known as the reproduction stage. In this
work, by recombination, we mean how to choose parents from the existing population and
the essence of recombination is how to generate offspring.

5The cut must not take place within a parameter bit field.
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offspring inherits some information from each parent. Since there is just one
break point, the procedure is called one-point crossover. Figure 3.4 illus-
trates the foregoing process by which information between two individuals
is exchanged. Crossover is not usually applied to all individuals from the
mating pool. A random choice is made for choosing two mates where the

likelihood of crossover is more than 60% [53].

d T |
C ﬁE:>L i

Parents Offspring

Figure 3.4: One-point crossover.

Two-point crossover: Based on this operation, two strings are split
into three parts by two cut-points and the middle part is then swapped

(cf. Fig. 3.5). The two-point crossover can be thought of as a one-point

——

Parents Offspring

Figure 3.5: Two-point crossover.

crossover if the chromosome is viewed as a loop by joining its ends together
and one cut point is assumed as the start of the string (see Fig. 3.6).
Mutation: Mutation is applied to each individual independently after
crossover. [t randomly changes one gene with a small probability. Figure 3.7
illustrates this point where mutation occurs in bit number four of the binary
string shown in Fig. 3.2 on page 39. Although the probability of mutation
is very small, it is very crucial to the success of the genetic algorithm. In

effect, it explores the undiscovered part of the search space for finding the
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Figure 3.6: Chromosome viewed as a loop.

global optimum.
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Figure 3.7: Mutation.

To visualize a single iteration, the so called generation, of the genetic
algorithm technique. a population of nine elements is shown in Fig. 3.8. Ev-
ery element represents an individual where the intensity is proportional to
level of adaptation. First, reproduction is applied in favor of highly adapted
individuals. This leads to a higher average fitness for the entire population
from which the mating pool is formed. Following this stage, recombination
operators are applied to the members of the mating pool to generate new
individuals. As can be seen in Fig. 3.8 the number of fit individuals has in-
creased. The flowchart of the entire process of a genetic algorithm is depicted

in Fig. 3.9.
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Old generation Parents New generation
( mating pool ) ( Offspring )

Figure 3.8: Graphical illustration of single iteration.

3.4 Coding the design problem of a fuzzy con-

troller

To translate the fuzzy controller design problem into a genetic algorithm,
different parameters of the controller should be distinguished and encoded
based on the desired resolution. In what follows, three different parameters

are discussed.

3.4.1 Normalization and denormalization factors

Normalization and denormalization factors, i.e. N., N;, V;, are crucial to
fuzzy controllers since they determine what portion of the decision table
can be used. In fact, they change the membership functions uniformly over
the input/output domains. In this way, the controller’s gain over the entire
input domain can be adjusted. This immediately leads to the fact that the

normalization and denormalization factors are also essential to the stability
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Figure 3.9: Flowchart of a genetic algorithm:.
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of fuzzy controllers. In reference to classical control theory, they have the
same role as Kp and K; have in the proportional plus integral controller.

Figure 3.10 illustrates the genetic representation of such factors as a 30-bit

Figure 3.10: Bit-string representation of normalization and denormaliza-
tion factors.

string where for every parameter a resolution of 10-bits has been assumed.

3.4.2 Membership functions

In contrast with normalization and denormalization factors, the membership
functions are responsible for local adjustment of the controller’s gain. Viewed
in a state space perspective, by dividing this space, they construct a frame-
work which defines the characteristic points. Therefore, they are as important
as the characteristic points. As demonstrated in Section 2.7.2 of Chapter 2,
two different sets of membership functions for input and output variables,
results in a completely different mapping even though the decision rules are
identical. To have complete freedom in partitioning the state space, asym-
metrical membership functions should be chosen that consequently suggest
three different design parameters, i.e. A;, A;, and, A3 for each membership
functions, (see Fig. 3.11). Let us consider seven membership functions for
each variable for a controller with two inputs, 42 parameters are required to
define the entire set of membership functions. Figure 3.12 illustrates such a

string where every parameter is encoded with 10-bit resolution®. Note that as

®In the normalized domain of [—1,1], 10 bit resolution ends up with a precision of
(1= (-1)/2'° ~0.002).
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Figure 3.12: Bit-string representation of membership function parameters.

was shown in Section 2.7.2, in the case of 50% overlap for membership func-
tions, the mapping functions are restricted only to the characteristic points.

n

[

Figure 3.13: Full overlap of membership functions.

To have complete freedom, full overlap for membership functions is pos-
sible as shown in Fig. 3.13. In this way, the controller is able to scan any

other mapping by which the performance index is reduced to a more desirable
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value.

3.4.3 Decision table

The rules of a fuzzy controller are responsible for the general shape of the
fuzzy mapping function. In state space, they, in fact, control the state tra-
jectory into equilibrium. To translate these rules into string format, every

consequent part of a rule should be encoded in a binary form. Since every

—p——r >—
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CELL-1 CELL-2 CELL-49

Figure 3.14: Bit-string representation of decision table.

consequent can take on only one of seven different values based on Table 2.5
in Chapter 2, every consequent can be represented by only three bits. In this
way, a string of 49 parameters or equivalently 3 x 49 = 147 bits will represent
the entire decision table, (see Fig. 3.14). Such a string can also be seen as

the decision table of Fig. 2.5, once different rows are put beside each other.

3.4.4 Coding of the entire controller

The existing design techniques, to the author’s knowledge, employ one part
exclusively or at most three parts but sequentially tuned for the design of
a fuzzy controller {22,24,31,32,34,40,54]. In the sequential approach, first
normalization factors are found by an optimization technique where the mem-
bership functions and decision table are assumed to be constant. Once the
optimization technique finds the best values of normalization factors, these
parameters are fixed and the membership functions parameters are processed
by the optimization algorithm. Finally, with the optimal values of normal-

ization factors and membership functions a new decision table is found by a
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Figure 3.15: Bit-string representation of entire controller.

search technique, usually gradient based.

The point that the author intends to clarify is that the different parts
of a fuzzy controller are not independent from each other and therefore,
such approaches may lead, in general, to sub-optimal performance. In fact,
by changing one parameter of a fuzzy controller some other parameters are
changed. This implies that there is a interaction between different sets of
controller parameters. For instance, by changing the normalization factors,
the domain of every membership function is changed. Thus, for the same
input value, some other membership functions are observed which fires some
other rules. This, of course, leads to a new value for the controller output.
[t also indicates that the interaction of all design parameters of a fuzzy con-
troller is, in effect, important to its success and hence the tuning and the
organizing of the controller parameters should be, in principle, best done
concurrently (see Fig. 3.15). To do this, a new bit string is required consist-
ing of all the design parameters of the fuzzy controller. Such a string can
be constructed by cascading the different strings together. It is evident that
the resultant string as shown in Fig. 3.15, in effect, constitutes the complete
information for the design of a fuzzy controller. Therefore, if such a string is
incorporated in the control system loop, a performance index by which the
fitness value of the string is evaluated can be obtained. In fact, the control
loop is responsible for the evaluation of different individuals, i.e. solutions.

This notion is illustrated in Fig. 3.16 in which two loops can be distinguished.

N B
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Control system loop

Genetic search loop

Figure 3.16: [llustration of internal and external loops.

The internal one, the closed loop system including fuzzy controller, is respon-
sible for system operation corresponding to a given individual and assigns
the performance index which in turn determines the fitness value, required
by the external loop. This string is then processed by the genetic algorithm
based on its fitness value. The process is continued until if converges to a
near-optimal solution.

Looking back to F'ig. 2.3 on page 15, and its modified version in Fig. 3.17,
it is now the optimization technique which is responsible for development of
each block in a fuzzy controller’s structure. More importantly, it would be
better if the proposed approach could incorporate any existing knowledge
about the controller. The task of such a design algorithm is the modification
of the existing knowledge and, at the same time, the investigation of new fea-
sible structures. The approach proposed in this dissertation includes such a
feature by the incorporation of any tentative values for controller parameters

into the initial population. Figure 3.17 illustrates such a hierarchal approach
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Figure 3.17: Different types of information incorporated in the fuzzy con-
troller design.

to the design of fuzzy controllers.

3.4.5 Fitness function

Since in a genetic algorithm, each individual represents a possible solution to
the problem, a particular fitness function is required for the evaluation of the
individuals. In this way, for every particular chromosome (i.e. each solution),
the fitness function returns a single numerical value, which indicates the
quality of that solution. In the context of optimization it is the performance
index of the closed loop system that becomes the fitness function.

While the examples presented in this dissertation are based upon a par-

ticular performance index, this does not affect the generality of the proposed
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technique. As shown in Section 4.4, a multiple performance index can also
be used. Furthermore, any constraint on the controller parameters or system
models, can be incorporated into the optimization technique to convert the
unconstrained optimization problem into a constrained optimization prob-

lem.

3.5 Chapter summary

This chapter attempts to provide some insight for the task of fuzzy controller
auto-design. [t turns out that the objective function, which is in fact respon-
sible for the construction of the search space hyper surface, seems to have a
multi-modal nature in a space with. say 94 dimensions (cf. Section 2.6). Also.
the question whether or not such a hyper surface is continuous or differen-
tiable, cannot precisely be answered ahead of time, and this is another fact
that does not allow us to employ gradient-based techriques for this optimiza-
tion. It is such insight, therefore, that directed us to the genetic algorithm
as an appropriate choice for our optimizer. As an alternative view, if fuzzy
controllers are thought of as one type of artificial intelligence, it seems more
natural to choose an optimization approach, again from artificial intelligence.
For instance, both techniques, i.e. fuzzy control and genetic algorithm, share
the feature that they do not require derivatives for their information process-
ing.

With this fact in mind, a brief overview of the genetic algorithm has been
presented. Qur novel solution, which is concurrent auto-design of a fuzzy
controller and simultaneous optimizing of performance, is proposed in the
last part of the chapter. The point, worth emphasizing here, is that even
though each sub-string (e.g. devoted only say to membership functions) can
be optimized alone for the auto-design of a fuzzy controller, it does not yield

an over-all optimal solution. The interactions among different parts of a
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fuzzy controller, i.e. normalization factors, membership functions, and table

cells must be taken into account, as is made clear in Chapter 5.



Chapter 4

Genetic based auto-design of a
fuzzy controller for induction

motor drives

4.1 Introduction

Adjustable speed drive technology has evolved enormously over the past 30
vears. This evolution has been made possible because of technological ad-
vances in a number of related fields, such as power semiconductor devices.
converter topologies and control techniques. Moreover, the advent of mi-
crocontrollers and digital signal processors (DSP) has greatly assisted the
practical implementation of the newer control techniques. In particular, the
technique of field oriented control has advanced the control characteristics of
ac machines to such a degree that it is now the most attractive technique for
torque control of ac machines and is becoming an industry standard. Un-
der field oriented control, an induction motor drive dynamics imitate that
of a separately excited dc motor drive, with all the advantages of using an

induction machine. More recently, with the application of intelligent con-



4.1 Introduction

55

trol technologies, such as expert systems, fuzzy logic and neural networks,
the frontier of adjustable speed drive technology [5,15] is advancing still fur-
ther. Among the artificial intelligence (AI) techniques, fuzzy logic is perhaps
the most successful one, if judged from the standpoint of the number of
practical applications [27]. Fuzzy logic demonstrates significant potential for
advancing power electronics technology [2,5,7-16]. Its ability to incorporate
qualitative knowledge and to handle imprecise information makes it very at-
tractive to power electronic systems where non-linearity is a common feature

and a precise model, in general, is difficult to obtain.

In many cases drive systems are subject to load disturbances and pa-
rameter variations which make these systems highly uncertain. This leads
to a quest for highly robust controller schemes in such applications. Fuzzy
logic controllers are quite well known for their robustness if designed prop-
erly. Furthermore, if the performance benchmark of the drive system can
only be expressed qualitatively, fuzzy logic control is more convenient than
conventional counterparts. Despite these benefits, the application of fuzzy
control has been impeded to some extend due to the lack of a systematic
design approach [7,10,15,26,27,55]. Furthermore, a great deal of time and
effort can be spent on fine tuning and yet, there is no guarantee of achieving

an optimal performance.

The application of fuzzy logic control for the field oriented control of in-
duction motor drives is quite new [6]. Although, some studies have been
carried out, most, if not all, are based on conventional trial-and-error tech-
niques [2,6,13,16-20]. In [6], for instance, C. Y. Won and B. K. Bose have
employed fuzzy logic for induction motor position control with field oriented
control. They have proposed two different decision tables. one for coarse
tuning and the other for fine tuning. While this improves the system per-

formance to some extent, the trial-and-error technique has been employed
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to modify a standard decision table where the membership functions are as-
sumed to be fixed. In another attempt, H. Liang and H. Y. Chen, in [20],
have used the same approach but this time, for the speed control of induction
motor.

At this point, it is worthwhile to mention that the application of fuzzy
control is not limited to finding the best dynamic for electrical drives. It
can also be applied for other purposes such as minimizing the input power,
maximizing the power factor or efficiency, and so on. In these cases, new
decision tables and new membership functions are required in which the
foregoing design and tuning problems arise again. The EPA!, for instance,
has conducted research {2], to enhance motor efficiency by employing fuzzy
logic for variable speed drives. Here, not the closed loop, but the traditional
open loop control approach is taken, in which the volts / Hz is held constant.
The point is that even though the number of rules is small, e.g. 13 rules,
to overcome the tuning problem of the fuzzy controller, the designers have
used a development software tool, TILShell?, by which the trial-and-error
approach can be accomplished in a less tedious and less time consuming
manner.

In what follows, a general description of indirect field oriented control, as
used in an induction motor drive, is first presented from two standpoints; one
traditional, another novel. Then a conventional fuzzy controller is employed
for speed control of an induction motor with field oriented control. The
proposed automatic design technique is then employed to design an optimal
fuzzy controller for the same system. Three cases are considered followed
by simulation results to demonstrate the efficiency and superiority of the

proposed approach compared to the other conventional counterparts.

I Environmental Protection Agency of U.S.A.
2TILShell is a software development tool by which the design and tuning of a fuzzy
controller can be performed in a menu driven environment.
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For the proposed technique the tuning processes of input/output nor-
malization factors and the developing and partitioning of a control surface
are automated. While there has been a great deal of effort in the develop-
ment of field oriented control, and the invention of the idea stems from a
deep understanding of physical phenomena of electrical machines, the novel
view presented here has its roots in a pure mathematical framework. able
to derive the same non-linear transformation As mentioned earlier, the per-
formance measure can be changed. This, in essence, is another indication
that the proposed technique is very general, being applicable to most fuzzy
control applications. It is in this sense that the application of the proposed
technique is extended to highly non-linear systems in Chapter 5 where some

other facets of the proposed approach are investigated.

4.2 Field oriented control

4.2.1 Traditional view

An induction motor is a high order, multi-variable, non-linear, uncertain sys-
tem which seems to be very difficult to control. The well known dq model
of an induction motor is presented in Appendix B. In effect, the terminal
voltages and currents of the machine, which are readily accessible, are non-
linearly related to the electromagnetic torque and flux. Any change in in-
put currents not only leads to a change in electromagnetic torque, but also
changes the motor flux. This indicates that there is an inherent coupling
between torque and flux. Since the flux has a slow transient, this coupling
leads to a sluggish change if any incremental torque is demanded. On the
other hand, it is quite well known that a linear relation between the control
variable (currents or voltages) and the controlled variable (torque or speed},

is desirable in any control system. If this happens, not only a high perfor-
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mance drive for fast torque response can be achieved, but also the heritage
of linear control theory is effectively used for the development of powerful
control methods for non-linear systems.

In 1969, Blaschke, a german engineer, established a new decoupling con-
trol technique by which a linear relationship between torque and stator cur-
rent component is attainable [4]. Based on this technique, if an observer is
situated on a rotor flux line® and rotates with the same speed as the flux
line, it will be reported that the flux is constant in time and space (of his
own frame). This can be equivalently interpreted as having a constant flux
component of the stator current. Viewed in this perspective, any change in
the torque component, which is perpendicular to the flux axis, does not affect
the Aux component of stator current. This equivalently means that a decou-
pling between torque and flux has been achieved. In this way, the torque can
be controlled in proportion to the torque component of the stator current
while the level of magnetization is constant. Thus, a fast torque response
is attainable and the complexity of the dynamic model is greatly simplified.
This also facilitates the application of modern control techniques to enhance
drive performance.

To attain the decoupling discussed above, the flux component of stator
current should be aligned with the rotor flux. This immediately requires two
different transformations, one for three phase to two phase mappings and
the other for vector rotation of stator current. While the former is a simple
linear transformation, the latter requires identification of the rotating flux at
every instance. This shows how important it is to know the position of rotor

flux in field oriented control.

Although the concept of field oriented control, in theory, was very im-

3The most suitable location for such an observer would be along the flux line of greatest
flux density.
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pressive, it was not readily applicable for more than one decade. However,
the development of microprocessor digital circuitry and the advent of high
frequency power semiconductor devices, provided the practical means to im-
plement field oriented control. In today’s drive system, field oriented control
has widely been accepted as the most attractive torque control scheme for

ac machines.

4.2.2 A novel view

Global input-output linearization, as a part of the differential geometry tech-
nique, is an approach to non-linear control design which has attracted a
great deal of interest in recent years. Based on this technique, if the system
is input-output linearizable, which is the case with the induction machine,
there exists a state feedback transformation that transforms the non-linear
input-output relation into a linear one. The interesting part of this approach
is global linearization as opposed to local linearization as is done quite often

in control system design. Figure 4.1 depicts the general structure of global

Input-cutput linearfzed system

-
! Non-linear system .
t [
L o x |
y* f Y Napdk Pt Input [T 7| Oupu |[!:
o Contoller Y ‘o Nowliear iUl pemediate | Intermediate |1 Y
Ny i transformation: | :
H b T [

%3 + I

Loe cebenl semmee seeden eeesr eeieese -

Figure 4.1: General structure of global input-output linearization.

input-output linearization where = denotes the state variable, y is the system
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output, u is the system input, v is the state feedback transformation input,
e is error, y* is the desired output, and TF denotes transfer function. In
this figure, while the mapping u — vy, i.e. actual system, is non-linear, the
new mapping v — y, the overall system, becomes globally linear [56]. That
is the reason that this method has been called input-output linearization as
opposed to input-state linearization. It is quite clear that to achieve such
a linear relationship, the state feedback transformer should be non-linear as
well. If all the state variables required for the linear transformation are not
available by direct measurement, as is the case with the induction motor, a
state observer is required to estimate the unavailable states. This estima-
tion would be on the basis of a dynamic model and output measurement
(see Fig. 4.2). This is exactly the case for the so called direct field oriented
control of an induction machine. If a feedforward input-output lineariza-

Input-outpul fincariesd system

y* Non-Lincar | Input Quiput y
< Controller -l—-- Nm.x kincar —u-l- [ntermediate [ntermediate >
MYy i apsiormation: | TF TF
: |
e e e e e 3

State
cbsegver

Figure 4.2: Global input-output linearization based on a state observer.

tion is applied which requires a feedforward path, as shown in Fig. 4.3, a new
scheme will be achieved which, in the context of variable speed ac drives, is
called an indirect field oriented control (IFOC) drive. In this case, the state
transformation, which is in effect a non-linear compensator, turns out to be

the field oriented equations for induction motor speed control (see Fig. 4.4).
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Figure 4.3: Feedforward input-output linearization.

Once this non-linear compensator is found properly, a linear relation between

input, I7,, and output electromagnetic torque, T., will be achieved and con-

sequently Fig. 4.4 can be simplified as is shown in Fig. 4.5. This is valid as

long as the parameter variations of the induction motor remain small, or if

not, its variations are considered in the design of the non-linear compensator.
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Indirect field oriented control
I of an induction machine

v+ e T [;,l w
——Q-—‘ Controller - 4 Kfoc G(s) | -
Y L /]

Figure 4.5: Simplified control block diagram of [FOC for an induction mo-
tor.

4.3 Conventional fuzzy controller

As described in Chapter 2, a fuzzy controller consists of a decision table. two
non-linear interfaces (fuzzification and defuzzification), and two linear inter-
faces (normalization, and denormalization factors), (cf. Fig. 2.3 on page 15).
The controller has two inputs, e and é, and one output, uz, as shown in

Fig. 4.6. Let the membership functions of input-output spaces be gaussian;

r Indirect field oriented control R
| of an induction machine |
— — — — —
. l % tl |
Fuzzy u S Te Ig Lwr
controller 1 — I G(s) 1~
—_— e - - _ . . 1

Figure 4.6: Simplified IFOC block diagram with fuzzy controller

for convenience re-drawn in Fig. 4.7. Also consider a commonly used deci-
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sion table, which in Chapter 2 is referred to as the sliding mode table; for

convenience re-drawn in Fig. 4.8.

-'1 0 1

Figure 4.7: Gaussian membership functions

It is a common practice in the design of fuzzy controllers, that the designer
starts with these standard forms of membership functions and decision table
and then modifies the normalization factors, rules, and membership func-
tions until a reasonable performance is achieved. Such a conventional design
procedure is shown in Fig. 4.9. How many times the modification loop should
be iterated depends on the designer’s experience, expertise and perhaps luck!
To avoid the purely blind trial-and-error technique, a new semi-algorithmic
approach is described here that accelerates the modification loop. This semi-
algorithmic approach is the basis for the evaluation of the proposed genetic
algorithm auto-design approach, resulting in a much fairer comparison than
would be otherwise possible.

Based on the semi-algorithmic approach, the system trajectory in state
space is observed and then the cells of the decision table or correspond-
ing membership functions are changed to follow the desired trajectory. The
essence of this approach is based on the notion that a desired system step

response has a general shape as shown in Fig. 4.10, and its corresponding
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Figure 4.8: Sliding mode table.

Understand physical system
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Design the controller
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Loop &
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Figure 4.9: Conventional design algorithm for a fuzzy controller.
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trajectory in fuzzy-partitioned state space* has a shape as shown in Fig. 4.11.
On the other hand, the cells of the decision table are responsible for accelera-
tion or deceleration of the system trajectory. Therefore, the link between the
cells and trajectory can readily be viewed in state space, and the modification

process can be directed in a more convenient fashion®.
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Figure 4.10: A typical desired step response for a drive system.

Based on this modification approach, a fuzzy controller is designed for
indirect field oriented control of an induction motor. The induction motor
that is used for this simulation is a 3-phase, 6-pole, 220 V, 10 hp, 60 Hz motor
(cf. Appendix B for the mathematical model) with the following parameters

expressed in per unit [57]:

X, =2119 X, =2.0420 R, =0.0453
X, =2.0742 H=1s R, =0.0222

‘or as called in the fuzzy literature, linguistic state space.
5This semi-algorithmic approach is not the principal contribution of this thesis.
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Figure 4.11: Trajectory of the desired typical response in fuzzy- partitioned
state space.

The resultant control policy, i.e. normalization factors, decision table, are

shown in Table 4.1 and Fig. 4.12respectively.

Conventional
fuzzy controller
N, 10.07
N; 2.97
N; 6.60

Table 4.1: Normalization factors found by trial-and-error

It should be noted that since the modification of membership functions is
more difficult, the resultant membership functions have the same shape and
overlap as the standard ones (cf. Fig. 4.7 on page 64).

The speed response of this fuzzy controller is depicted in Fig. 4.13 for a

step change in the reference command of the closed loop system.
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Figure 4.12: Modified control policy of conventional approach.
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Figure 4.13: Step response of motor speed based on semi-algorithmic ap-
proach.
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4.4 Optimal fuzzy controller

In this study of auto-design of a fuzzy controller, two different approaches
are considered. First a sequential design of a fuzzy controller is considered,
which consists of self-tuning® as well as self-organizing”. These approaches
are referred to as case-1 and case-2, respectively. The second approach is
a concurrent design of the fuzzy controller by which normalization factors,
membership functions, and decision rules are optimized concurrently. In the

following simulations, this approach is referred as case-3.

4.4.1 Performance index

Every optimization requires an objective function. In control. the objective
function is, in fact, the performance index which is a quantitative value,
measuring deviation from an ideal performance. In some situations, there
may be more than one criteria to be satisfied. In these cases, the optimization
problem is called multi-objective optimization in which the ultimate objective
function is usually a linear combination of some different objective functions.
For drive applications, consider a step speed response where the goal is
a short rise time. small overshoot, and near-zero steady state error. Since
most performance indices® in classical control do not necessarily fulfill these
requirements simultaneously, a multiple objective function is required.

In this respect, a measure of a fast dynamic response may be chosen as

t
Jy =w,/o le| dt (4.1)

5Some words of caution, at this point, are worth mentioning. By self-tuning, we do
not mean an on-line tuning. The proposed technique is, in effect, an off-line approach for
finding the best values of normalization factors.

“In a self-organizing approach, the consequent parts of the decision rules, i.e. table
cells, are found based on the optimization.

8Such as integral of absolute error, integral of square error, and so on.
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while the steady state error can be measured by
t
Jy = wes [o le| ¢ dt (4.2)

The penalty on the multiple overshoot of the response can be defined by

¢ d
=y 85D v - ()] de (43)
where
o+ g 1 : dy/dt =0
5y = y/ (4.4)
o- dt 0 : dy/dt #0

In this case, §(dy/dt) detects the instances that overshoots (or undershoots)
occur and the term [y* — y(t)| determines the response deviation from the

desired value.

To achieve these objective functions simultaneously, the resultant perfor-

mance index can be defined as

J=W.J; (4.5)
where J; = [Jy . J2, J3] and W = [wy, wp, ws,]* is the weight vector of the ob-
jective function and is application dependant. Furthermore, even for a given
system, the elements of this vector , i.e. w;, wp, ws,, are not independent from
each other and should be specified based on the relative importance of each
term. For the drive systems with parameters given in table 4.1, the following

values were found based on trial-and-error to fulfill our requirements®.

wr =1 wp, =6 Wes = 1. (4.6)

®In fact, properly defining the performance index is usually a difficult task, requiring
some design intuition.
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Hence, the resultant performance index becomes

t t dy . 4
J_/o |e|dt+6/o 8% ly —y(t)[dt-{—/o le| ¢ dt (4.7)

This performance index is used for all the following simulations. In every
case, simulation results are compared with those of conventional counterparts

designed based on the semi-algorithmic approach.

4.4.2 Sequential approach

Case-1: Self-tuning fuzzy controller In this case, the genetic algo-
rithm is applied to find the best normalization factors using the foregoing
performance index. This is done with the standard decision table and mem-
bership functions used in the controller’s structure. The proposed approach
is able to find near-optimum normalization factors as listed in Table 4.3. The
free parameter of the genetic algorithm are shown in Table 4.2. Figure 4.14
demonstrates the simulation results. As this table indicates the optimization
program has converged in only 37 generations. Since the number of design
parameters are small, the mutation rate is chosen high to permit the genetic

algorithm to explore other points of the search space. The speed of conver-

Number of individuals 30 - -
Auto-Design | Conventional

Percentage of crossover 100% FLC FLC
Max Percentage of mutation | 8% = =

- - N, 4.58 10.07
Number of generations 37 7 055 5.97
Number of design parameters | 3 Nf 10' 0% 5.60

Bit-string length 30 = - -
Table 4.3: Case-1: Normalization fac-
Table 4.2: Case-1: Free parameters of tors

a genetic algorithm

gence is shown in Fig. 4.15 in which the performance index (for the most fit

individual) has been depicted versus the generation number*®.

®For our genetic algorithm with the parameters of Table 4.2, it takes around 30 minutes
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Figure 4.14: Case-1: Step response of motor speed for self-tuning approach.
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Case-2: Self-organizing fuzzy controller In another simulation
experiment, the normalization factors, found in case-1 by the genetic al-
gorithm (see Table 4.3), are chosen and the genetic algorithm is used to
generate the decision table in a sequential manner. Also, a standard deci-
sion table is manually tuned using the semi-algorithmic approach described
above. The simulation results shown in Fig. 4.16 indicates the superiority
of the sequential auto-designed fuzzy controller over the sequential manually
tuned counterpart.

The genetic algorithm with the free parameters shown in Table 4.4 was
able to determine these rules after about §0 generations. The speed of con-

vergence is shown in Fig. 4.17.

Number of individuals 48
Percentage of crossover 100%
Max Percentage of mutation | 3%
Number of generations 80
Number of design parameters | 49
Bit-string length 147

Table 4.4: Case-2: Free parameters of a genetic algorithm

4.4.3 Concurrent approach

Case-3: Self-tuning self-organizing fuzzy controller Since the dif-
ferent stages in a fuzzy controller are not independent, the sequential auto-
design approach may not lead to the optimal solution. Therefore, concur-
rently generating and modifying different parameters of the fuzzy controller

seems to be a logical approach. Hence, in this case, the three normalization

on SPARC 5 computer to find the optimum values.
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factors, membership parameters, and the table cells, are used in the con-
struction of the bit-string. While normalization factors determine the proper
domain of the control surface, the table cells are responsible for the best
coverage of the control space. At the same time, membership functions are
involved in the partition of this surface in an optimal fashion. In effect, not
only the antecedents and consequents of control rules are optimized, but also
the proper domain on which these membership functions rely, are found as
well.

To achieve complete freedom in overlap, support, and asvmmetry. every
membership function is represented by three parameters (cf. Fig. 3.11 on
page 47). The center of gravity method is chosen as the defuzzification tech-
nique, to achieve better smoothness in the control surface. Furthermore, the
membership functions have been defined as gaussian-shaped to accompany
the defuzzification technique in this smoothness process.

A concurrent auto-design fuzzy controller for indirect field oriented con-
trol was designed. Based on this experience, the genetic algorithm with the
free parameters shown in Table 4.5 was able to find the near-optimum so-
lution with a population of 32 individuals, in almost 310 generations (see
Fig. 4.20). This is due to the large number of design parameters involved in
concurrent optimization. The normalization factors and membership func-
tions are given in Table 5.2 and Fig. 4.18, respectively. The simulation results

are shown in Fig. 4.19.
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Number of individuals 32 Auto-Design | Conventional
Percentage of crossover 100% FLC FLC
Max Percentage of mutation | 12%
- | N, 10.14 10.07
Number of generations 310 N 156 597
Number of design parameters | 94 Nf 9'35 6.60
Bit-string length 597 < - -
Table 4.6: Case3: Normalization fac-

Table 4.5: Case3: Free parameters of tors found by a genetic algorithm.

a genetic algorithm

1 g

0

-1
Figure 4.18: Case-3: The new membership functions found by a genetic

algorithm.
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4.5 Chapter summary

In this chapter, a novel approach to field oriented control is presented, pre-
ceded by a brief review of the traditional approach. Based on differential
geometry, a field oriented controller can be seen as a non-linear compensator
that requires a state feedback observer to linearize the overall system from
a new dummy input to the original output. Also in this chapter, the pro-
posed auto-design technique is employed for the speed control of an induction
motor drive with indirect field oriented control. While in this particular ex-
ample, the performance index is chosen based on obtaining the best dynamic
response, in other applications other criteria, such as input power, efficiency,
power factor. and so on, can be employed to define the required control strat-
egy. To illustrate the efficiency of the proposed technique, a semi-algorithmic
approach is also proposed to enhance the trial-and-error approach of conven-
tional fuzzy control design. Finally, to demonstrate the flexibility of the pro-
posed approach, three different cases are considered based on different sets
of design parameters. The simulation results demonstrate the superiority of

the proposed technique in contrast with the conventional counterpart.



Chapter 5

Discussion

5.1 Introduction

While the proposed approach was originally developed for high performance
induction motor drives, it should not be confined only to this type of system.
The approach presented in this dissertation, in fact, can be viewed as a much
more general approach for a large class of non-linear systems. It can also be
applied for multi-input multi-output systems where the conventional trial-
and-error approach is difficult, if not impossible. For this reason, the main
motivation of this chapter is to demonstrate the generality of the proposed
approach, and to point out several of its characteristics.

Aside from the full optimization for the fuzzy controller design [58,359], a
novel technique for the efficient design of a fuzzy controller is proposed. This
technique is based on output partitioning as well as the sliding table. If fast
tuning and development of the controller is of primary concern, the efficient
approach should be employed.

In this chapter, a non-linear system is first chosen to explore some aspects
of the proposed approach. An output partitioning approach as opposed to

the input partitioning approach is first described. Then, a new point of view
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to the robust design of a fuzzy controller is discussed. Based on this view,
a fuzzy controller, as a special class of variable structure controllers, can be
designed in such a way as to have a sliding motion. If that happens then the
robustness of a fuzzy controller can be ensured.
The non-linear system, employed in this chapter, has the following state

space equatious

I _ Ta + 0 u(t)

o —z2 — Tz, 2, 1 (5.1)

y=o

where z, and z, are state variables and u and y denote the system input
and output, respectively. Since the control objective is again to achieve the
best dynamic and steady state behaviour, the same performance index as of
equation 4.7 on page 71 is considered. For this system, however, the weight

vector was found to be

W=[ 4 05] (5.2)

Thus the resultant performance index becomes

E tody. . ot .
J-/(; |e|dt+4/o 5% 1y —y(t)|dt+0.a/0 lejtdt|  (5.3)

5.2 Input partitioning versus output parti-
tioning
5.2.1 Overview

While the optimal design of fuzzy controllers requires a search of the entire set
of design parameters in a multi-dimensional space, the optimization problem

can be simplified by reducing the number of these parameters.
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To illustrate this point, consider the following example. For the time
being, assume that the desired function of the controller is already known as
given in Fig. 5.1, and our objective is to approximate this function to some

degree of precision. One approach is to uniformly discretize the output

‘Y

-

X

Figure 5.1: A desired function for the controller.

Figure 5.2: Approximated function by uniformly discretizing the input
space.

space, along the y axis, and then obtain the desired discretized value for the

input space, along the z axis, as shown in Fig. 5.2. The description rules are
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If z is in domain A, Then y is in domain A,

If z is in domain B;, Then y is in domain B,

With these rules and the uniform membership functions for output space
the approximated curve is, in fact, the piecewise-linear function shown in
Fig. 5.2. On the other hand, one might think of uniformly partitioning
the input space, i.e. £ axis, by standard membership functions and then
specifying the desired membership functions for the output space. i.e. y axis.
Figure 3.3 illustrates such an approach and again the piecewise lines are the

approximated function.

Figure 5.3: Approximated function by uniformly discretizing the output
space.

The essence of this section is that the same approach, i.e. output par-
titioning, can be applied for our problem which involves discretization of
a three dimensional space. In this case, the number of design parameters
is decreased and a more efficient approach for the optimal design of fuzzy

controllers can be achieved.
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5.2.2 Input partitioning approach

In this approach, the parameters of the output space are assumed to be
constant and uniformly distributed, while the optimal values of the input

space are sought after.

In this case, the optimization problem should be able to find 45! param-
eters, and hence the optimization problem should search in a hyperspace of
45 dimensions. As shown in the following sections, while this is simpler than
complete input-output optimization, it is far more complex than is the case
for the output partitioning approach. Figure 5.4 demonstrates the required

bit string for this approach.

! A .
Normalization . Membership functions
i r<

1

Figure 5.4: Bit-string for input partitioning.

5.2.3 Output partitioning approach

[n this approach, for the sake of simplicity, the input space is uniformly
partitioned and it is then only the consequent parts of rules as well as the
normalization factors which are processed by the genetic algorithm. This, in
effect, means the standard membership functions (cf. Fig. 2.4 on page 17) are
chosen for the input space. Since the table cells are singletons, they do not
require many parameters to be found. This decreases the number of design
parameters of the controller. Figure 5.5 depicts the required string for this

optimization approach.

134+ 42 =45
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CELL2} ... CELL49

Decision table

i

Figure 5.5: Bit-string for output partitioning.

However, as is shown later, if special considerations are taken into ac-
count, the optimization can be further simplified. Such simplification can be
achieved using the sliding table approach as well as ouput partitioning which
results in an efficient approach for the auto-design of a fuzzy controller. The
detailed study of this technique and the corresponding simulation results are

given in Section 5.4.

5.2.4 Input-output partitioning approach

While the output and input partitioning might give a satisfactory response,
they are not, in general, strictly optimal. Consider again the previous ex-
ample shown in Fig. 5.6. If the first and last points (points of A, D) are
assumed to be constant, the function can be approximated by choosing two
arbitrary points (B, C) at any arbitrary locations. This is not, however,
the optimal approach. Therefore, the question which arises here is how to
select the points B, C such that the best approximation of function can be
achieved. In other words: which form of partitioning of the plane can lead
to the optimal approach of the function? To answer this question, it is ev-
ident that the framework should be fixed neither along the horizontal axis
nor along the vertical axis. It should be noted that in the case of output
partitioning, vertical frames are fixed and the horizontal frames are free to
scan the plane and in the case of input partitioning 1t is vice versa. In fact,

in output partitioning the optimal algorithm should be able to find ¥, ¢’ on
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Figure 5.6: Input-ouput partitioning.

y axis and point b, c on the z axis in Fig. 5.6.

The origin of the problem comes from the fact that in the discretizing pro-
cess of a fuzzy controller, first one should define the input output membership
functions i.e. constructing a framework such as Fig. 5.6, and the values that
are responsible for connection of different vertices. Based on this insight, it is
quite evident that if the construction of such a framework is not appropriate,
a good approximation cannot be achieved even if the rules are completely
perfect. In fact. the rules are responsible for increasing or decreasing the
input to output function. It is the width of each frame (i.e. membership
functions shapes) which determines the rate of change of the input to output
function. This is the idea underlying the concurrent optimization of input
and output parameters of a fuzzy controller. Based on this approach the en-
tire set of parameters of a fuzzy controller should be processed by a genetic

algorithm.
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5.3 Robustness of a fuzzy controller

5.3.1 Introduction

Robustness is an issue that should be addressed in the design of a controller
where the system is subject to parameter variations or load disturbances.
Although it is quite well known that the fuzzy controller is very robust in
nature [16,60], its robustness has mostly been addressed by either empirical
studies or simulation results [14,61] There are also a few cases where this
issue has been tackled by a pure mathematical approach for some specific
fuzzy operators [62]. While these approaches are effective to some extent,
they do not sufficiently address the underlying concepts of fuzzy controller
robustness. In what follows, it is shown that fuzzy controllers can be viewed
as a class of variable structure controllers. This perspective, in turn, leads to
a novel view that a conventional fuzzy controller may be designed such that
it possesses a sliding mode. To attain this goal, some particular conditions

should be satisfied.

To this end. a brief introduction to variable structure control is first

presented.

5.3.2 Variable structure control

Variable structure control systems are a class of non-linear feedback control
systems whose structure changes depending upon the state of the system.
Hence, there are different structures in different regions of state space. This

control system has its roots in relay and bang-bang control theory.

To illustrate the fundamentals of the variable structure control approach,

consider a single input non-linear dynamic system which can be represented
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by the following state equations [63]:
z = f(z,t) + g(z, t)u (5.4)

and
u = g(z,t) if ze

u = go(z,t) if ze,
u = gm(z,t) if z€Qn

wherer € R™, u € R, ; are mutually exclusive regions of the state space,
g(z.t) is the control action in region §2;. It is quite clear that the union of

all regions should be equal to the entire state space, i.e.

QUQU---UQ, =R (5.

(1]
(1]
~—

The design of a sliding mode variable structure controller consists of the

following steps.

Step-1: Design a switching surface S in state space to represent the de-

sired dynamics for the system. S can be defined as

S = {z € R*|s(z) = 0} (5.6)

The interesting point of this surface is that it has a lower order than the
original plant, and in the case of n = 2, it becomes a switching line in two
dimensions as illustrated in Fig. 5.7. As its name implies, once the state
trajectory of the system is above the line, the controller has one gain and

another gain (of opposite polarity) if the trajectory drops below the line.

Step-2: Design a variable structure control with two different regions as

follows.



5.3 Robustness of a fuzzy controller

88

Let

u(t) = ut(z) if s(z)>0 5.7)
u~(z) if s(z)<0

such that the system state z can reach the switching surface from any initial
state in state space in a finite time. The interesting point is that while neither
of these structures is necessarily stable, their combined system results in a
stable sliding mode. Once on the switching surface, the sliding mode takes
place and the system state is pushed toward the origin (equilibrium point)
following the switching surface. This makes the system, on the one hand,
globally asymptotically stable [64], and on the other hand, insensitive to

parameter perturbations and external disturbances which consequently leads

to a highly robust control approach.

KZ‘

s(x)=0

Figure 5.7: Switching surface in two dimensional state space.

There are two different modes in variable structure control; reaching mode
and sliding mode. To determine the dynamics of a system in the reaching

mode, the dynamics of the switching function s(x) should be defined. If the
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switching function is represented by
$(z) = —Ksign(s) ; K>0 (5.8)

then the reachability condition is already satisfied since the equation inher-
ently has the property of s(z)s(z) < 0%. In fact, equation 5.7 is the control

law for reachability that results from the above condition.

While the sliding mode control approach has the benefits of stability,
desired performance, and robustness, it has two drawbacks [64]. First, the
insensitivity property of a variable structure control system is present only
when the system is in the sliding mode. In other words, the state trajec-
tory starting away from the sliding surface remains sensitive to parameter
variations and external disturbances. Second, smaller values of control gain
increase the reaching time while reducing the chattering and vice versa for
larger gain. Thus. there is a trade off between reaching time and the chatter-
ing problem. Chattering is not acceptable for control systems since it causes
significant changes in the control action. Furthermore, it may excite some

unmodelled high frequency dynamics present in system.

The assumption that switching from one control action to the other be
infinitely fast is not realistic. This is due to the finite time delay for con-
trol computation and to the limitations of physical actuators. In effect, the
fact that the control action cannot be changed very fast, may also lead to

chattering.

2[n effect, if the Lyaponov function is considered as 0.5 s%(z, t), which is globally positive
definite. For the stability condition, it is sufficient that its derivate becomes negative,
i.e. s(z)s(z) < 0.
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5.3.3 Another view of the conventional fuzzy controller

A closer look at the structure of a fuzzy controller shows that for a large class
of non-linear systems, these controllers are designed based on fuzzy partition-
ing of the state space. In effect, the decision table shown in Fig. 5.8 can be
viewed as a partitioned state space with respect to the state variables e, e.
Since the controller output, in general, can change from one cell to another,
one might think of the fuzzy controller as a state dependent controller whose
control law is a function of the system states.

This implies that, in essence, the fuzzy controller has a variable structure
nature, which in turn implies that fuzzy controllers can be considered a
particular class of variable structure controllers. Furthermore, as shown in
Fig. 5.9, the diagonal axis of the decision table can potentially be seen as the
sliding surface of s(z) = 0 (cf. equation 5.6, in which 0 is a fuzzy number).
[n other words, the surface of s(z) = 0 in the fuzzy controller becomes a

fuzzy sliding surface as illustrated in Fig. 5.10.

Mathematically. the existence of the sliding surface for the table of Fig. 5.8.

can be verified by the existence condition
}l_%s(a:)s(:z:) <0. (5.9)

In fact, as Fig. 5.9 demonstrates for every point in the region-1 while the value
of s is positive, the value of $ remains negative if a trajectory is approaching
the sliding surface and vice versa for region-2. In other words,

limsno $(z)8(z) = limy0sT(2)$7(2) <0 if  (e,€) € (5.10)

limyy s(z)$(z) = limgyo s™(z)$%(z) < 0 if (e, é) €.

Equivalently, the control law of equation 5.7 can be easily seen in the decision

table shown in Fig. 5.9.
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Figure 5.8: Variable structure of decision table

S

Figure 5.9: Two distinct structures in the decision table



5.3 Robustness of a fuzzy controller

92

As a result, a fuzzy controller with the table shown in Fig. 5.8 possesses
a variable structure nature and if proper values for normalization factors are
chosen, a sliding motion is achieved in which the switching surface is a fuzzy
surface, (see Fig. 5.10).

s(x)=0

Figure 5.10: Fuzzy sliding surface in a two dimensional state space.

The slope of the sliding surface can be adjusted by changing normalization
factors, N, Ni:. In fact, the higher N, and smaller N; is, the larger is the
slope of the sliding surface.

Since the proper design of the sliding surface is crucial to the success
of sliding mode control, finding the best value of the normalization factors
is essential to the controller design. Figure 5.11 illustrates how the sliding
surface is changed with the different values of the normalization factors.

Figure 5.12 shows a typical operating line for a sliding mode controller
having upper and lower bounds, compared to the fuzzy controller counter-
part. While for the sliding mode controller the operating line is linear. for

the fuzzy controller it appears to be piecewise linear whose slope and shape
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e

(a)

Figure 5.11: Designing different fuzzy sliding surfaces based on normaliza-
tion factors; (a) large NV, small N;; (b) moderate N,, moder-
ate Vg; small V., large N;

strongly depend upon the number and shape of the membership functions.
Therefore, specifying an optimal operating line will lead to the search for
optimal membership functions.

To this end, a fuzzy controller with the decision table of Fig. 5.8, can be
viewed as a sliding mode controller whose sliding surface and operating line
should be designed by proper selection of normalization factors, V., V:, and
membership functions. For this class of fuzzy controllers. the robustness of
the controller has its basis in sliding mode control and furthermore, the pro-
posed auto-design approach can be employed for finding the optimal sliding
surface and operating line of the controller. In this case, the table which
is processed by the optimization technique should sustain the feature that
the sign of the controller output does not change on each side of the sliding
surface. This implies that while our intention is the optimal design of the
fuzzy controller, a search is performed for an optimal sliding mode controller.

If this happens, a new type of controller which we call a fuzzy controller with
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u u
[ | |

_ .

(a) (b)

Figure 5.12: Operating lines for (a) sliding mode controller with boundary
layer (b) special type of fuzzy controller.

sliding mode can be achieved.

The interesting point is that at a large distance from the sliding surface,
any modelled frequency dynamics are not able to cause a change in the sign
of controller output. Therefore, the decision table can be adjusted in such a
way that the further the system state is from the sliding surface, the larger
the controller gain. This equivalently means better dynamics in the reaching
mode and at the same time, a smooth transition from one structure to the
other. This resolves the trade-off problem for the reaching time and the
chattering effect which is a major drawback in the conventional sliding mode

control scheme.

5.4 A novel approach for the efficient design

of a fuzzy controller

A closer look at the sliding table shown in Fig. 5.8 reveals that with uniformly
partitioning of the output space, the fuzzy controller of Fig. 5.13 demon-
strates a linear behavior. This can simply be seen in the three-dimensional

space as illustrated in Fig. 5.14 where u is the coatroller output and e and

[ 7]
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é are the controller inputs. However, in general, for a non-linear plant, a

N.

€,

.

Inference S u
N . o~
[ Mechanism / z
_.gé_de ; [
Fuzzification Defuzzification

Figure 5.13: Basic structure of the fuzzy logic controller.

Change in control action ()

Figure 5.14: Control surface for the conventional fuzzy controller.

non-linear controller is required to obtain the desired performance. Such a
non-linear controller, for instance, is shown in Fig. 5.15 in a three dimen-
sional space. To construct a fuzzy controller with non-linear behavior, one
may think of changing only the output singletons, while the input member-
ship functions are assumed constant. If this happens, there will be no need
for processing the membership function parameters and hence the number
of design parameters will be reduced to a large extent. Furthermore, if the
sliding structure of this table, as shown in Fig. 5.8, is sustained, then one

can view the whole table as the string illustrated in Fig. 5.16.
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Change in conirol action (b )

B
¥

Figure 5.16: A new view to the sliding table.

Viewed in this perspective, a string of seven parameters can model the
entire decision table . Therefore, together with the normalization factors,
N, V¢, Ny, a string with ten parameters would be sufficient for the construc-
tion of such a non-linear surface (see Fig. 5.17). It is now the responsibility of
the optimizer to select these parameters based on a particular performance
index. It is interesting to note that the string can be further simplified if one
can incorporate the following knowledge prior to the design. First. in steady

state conditions, i.e. when error and error derivative are zero, the value of the
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' Z |PS |PM}|PB

Figure 5.17: A new string for an optimal design of a fuzzy controller.

controller output, %, must be zero. Second, since the input-output space has
been normalized, the value of the two extremes of the output space, i.e. PB

and NB, should be 1 and -1, respectively. These two facts imply that the

PS |PM

Figure 5.18: The proposed string for an optimal design of a fuzzy controller.

design of this class of fuzzy controllers can be further simplified to a string of
3+4 = 7 parameters (see Fig. 5.18) where the singletons of NM, NS_ PS. and
PM are free parameters to be found based on the optimization algorithm.

It is worthwhile to notice that while the resultant decision table shares
the same structure with the conventional one, it has a different interpretation
in reference to the output singletons. For instance, in the proposed approach,
the value of singletons PS, PM are completely free and it is the optimizer
that determines their values. In contrast, in the conventional table, the above
singletons have constant values, say 0.333, 0.667 respectively.

Of course. such a simplification is achieved at the expense of rough ap-
proximation of the non-linear function. The point, however. we would like
to clarify here is that, while the optimization problem is simplified to a large
extent, the performance index decreases only slightly.

Furthermore, the proposed technique can be viewed as an alternative
approach for the full-optimization described in Section 3.4.4 and it can be
applied where the fast tuning of a fuzzy controller is the primary concern.

It is also instructive to mention that, while a genetic algorithm is used for
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the proposed efficient tuning approach, other optimization techniques can be
employed.

The proposed efficient tuning approach is applied for the non-linear sys-
tem defined in 5.1. For every parameter of the string shown in Fig. 5.18, a
resolution of 10 bits is assigned.

The control structure is found after 45 generations with a population of
30 individuals (see Table 5.1). The input membership functions have the
standard form as shown in Fig. 2.4 in Section 2.3.2. The step response of

such a controller is depicted in Fig. 5.19.
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f Number of individuals 30
Percentage of crossover QOWiﬂ Auto-Design | Conventional |
Randomly generated individuals | 10% FLC FLC
Max Percentage of mutation 2% || N, 4.58 8.07
Number of generations 45 N; 0.55 3.97
Number of design parameters 3 I Vi 10.05 6.60 "
Bit-string length 30

Table 5.1: Case 3: Free parameters of

a genetic algorithm

Table 5.2: Case 3: Normalization fac-
tors found by a genetic algorithm.
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Figure 5.19: Step responses of the non-linear system for different ap-

proaches.
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5.5 Chapter summary

In this chapter an efficient approach for the auto-design of a fuzzy controller
is proposed. It has been shown that such an approach can efficiently lead to
a near-optimal solution.

In addition to these techniques, some other aspects of fuzzy controller
auto-design are discussed. First, the input/ouput partitioning approaches
are proposed by which the number of controller design parameters can be de-
creased. While in either approach, i.e. input partitioning or output partition-
ing, one set of parameters is kept constant, the other set is processed by the
optimizer concurrently. This indicates that even in these cases the essence
of simultaneous design of the controller parameters is sustained. Next, a
novel view of the conventional table has been proposed by which the reach-
ability condition of this table is satisfied. It then follows that such a view
can potentially lead to the design of a fuzzy controller based on the sliding
mode concept whose performance and robustness is ensured mathematically.
This view is achieved by categorizing fuzzy controllers as a particular class

of variable structure controllers.



Chapter 6

Conclusions and
recommendations for future

research

6.1 Conclusions

Fuzzy control has been found to be much more interesting when applied
to non-linear, uncertain systerns. Many unique features such as non-linear
capability, domain-wise mapping, and robustness make this type of controller
very attractive for a wide variety of applications.

Although fuzzy control was originally introduced by L. A. Zadeh, it was
Mamdani who first practically applied this control technique to a real plant
in 1972. Since then, a great deal of effort has been devoted to further develop
this control approach.

The wide applications of fuzzy control can be viewed as a natural conse-
quence of the universal approrimation theorem. Based on this theorem, any
non-linear, continuous function can be approximated by a fuzzy system to

any desired precision. However, while quite significant. this theorem does not
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indicate how to develop such a fuzzy system. As a systematic design tech-
nique is lacking, fuzzy controllers to this point have been designed by human
trail-and-error. The existing trial-and-error approaches require a large num-
ber of iterations without the guarantee of an optimal solution. Furthermore,
if the number of controller inputs and outputs increases, a trial-and-error
approach may be so tedious as to be unfeasible. Adaptive fuzzy systems, in
general, and artificial neural networks, in particular, are the systems which
use a learning algorithm to train a fuzzy controller for a specific task based
on available input-output data. The key point. however. is that these ap-
proaches require a well-designed reference controller. « priori. which may not
be available. Moreover, only a small part of the fuzzy controller is designed

by these approaches.

The essence of this dissertation involves the synthesis of a new design
methodology for fuzzy controllers without the requirement for any input-
output training data. This is achieved using a genetic algorithm as the
optimization technique, which employs a predefined performance index to

guide its search.

To verify the proposed technique, as just one example, an induction motor
drive with field oriented control has been chosen where the performance index
is defined for the best dynamic and steady state response. Based on the
proposed approach, an optimal fuzzy controller has been designed for such a
system in Chapter 4. Furthermore, a novel view of the field oriented control

of ac machines has also been proposed in the same chapter.

Since the proposed approach is very general, a non-linear, uncertain sys-
tem has been considered in Chapter 5. Different aspects of this approach,
such as sequential versus concurrent optimization and input partitioning ver-
sus output partitioning have been investigated. In the sequential approach,

first the normalization factors are optimized while the membership func-
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tions and decision table are kept constant. Once the optimization algorithm
finds the best values for the normalization factors, these parameters are fixed
while the membership function parameters are processed by the optimization
technique. Finally, the consequent parts of the decision table are optimized
while the optimal values of normalization factors and membership functions
are used. As can be inferred, this sequential technique ignores the interde-
pendency between different sets of parameters.

In Chapter 5, a novel view of the robust design of a fuzzy controller
is presented which facilitates implementation of sliding mode control by a
fuzzy controller. Full optimization of a fuzzy controller involves searching for
a large number of parameters. A novel alternative approach for the design of
fuzzy controllers is presented in Chapter 5 which facilitates optimization with
an order of magnitude fewer parameters. With this approach, the system
performance is only decreased slightly.

The contributions and achievements of this dissertation can be summa-

rized as:

¢ A novel view of the fuzzy controller has been proposed in Chapter 2
including the definition of characteristic points, a key concept which

helps to define the role of the different parameters of a fuzzy controller.

® A pew coding for a fuzzy controller has been presented in Chapter 3
based on asvmmetrical membership functions, with complete freedom
of overlap. This coding facilitates optimal and near-optimal design of

a fuzzy controller.

® A novel perspective on field oriented control has been proposed in
Chapter 4 employing differential geometry. Also in this chapter, the
design of an optimal fuzzy controller for an induction motor drive with

field oriented control is presented.
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e An in depth investigation of the different aspects of the proposed tech-
nique is carried out in Chapter 5. This includes input-output parti-

tioning approaches and the robustness issue.

¢ A novel approach to the optimization of a particular, but very common,
class of fuzzy controllers is presented resulting in an efficient optimiza-

tion process.

The main contribution of this dissertation is the concurrent design of
fuzzy controllers based on a new coding presented in Chapter 3.

In short, this research work can be viewed as a departure from the uncer-
tainty and complexities involved in the conventional trial-and-error method
of fuzzy controller design. It results in auto-design approaches for the devel-
opment of fuzzy controllers in two different manners; a full-optimization and

an efficient design approach.

6.2 Recommendations for future research

To extend the current work. further research can be carried out which would

comprise:

¢ Designing optimal controllers for none minimum phase systems. In fact,
a fuzzy controller which works well for a minimum phase plant, does not
necessarily control a non-minimum phase plant. Special considerations
should be taken into account at the design stage to enable a fuzzy

controller to handle such a system.

e Hardware implementation of the optimal fuzzy controller for induction

motor drives.

¢ An investigation of the possible on-line adaptation of a fuzzy controller

based on the proposed efficient design approach.
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Glossary

Fuzzy Logic:

Artificial intelligence:
“_..the study of how to make computers to do things at which, at the

moment. people are better”—Elaine Rich (1938)

Antecendent:

The initial (or if) part of a fuzzy rule.

Consequent:

The final (or then) part of a fuzzy rule.

Crisp value:

The point-wise. i.e. normal, value of a variable.

Defuzzification:
The process of transforming a fuzzy output of a fuzzy inference system

into a crisp output.

Degree of membership:
The output of a membership function. This value is always limited to

between 0 and 1. Also known as a membership value.

Fuzzification:
The process of generating membership values for a fuzzy variable using

membership functions.
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Fuzzy inference system
The overall name of a system that uses fuzzy reasoning to map an input

space to an output space.

Fuzzy set:
A set which contain elements with full or partial degree of membership.

Linguistic variable:
A variable whose values are words or sentences in a natural or artificial
language. For instance, age is a linguistic variable if its values are
linguistic rather than numerical, i.e. young, not young, very young,
quite young, old, not old, and not very young, etc., rather than 20, 21,

22,23, ...

P23

Mamdani-type inference:
A type of fuzzy inference in which the output fuzzy sets are not single-
tons and they are combined to yield a complex fuzzy set. This resultant
fuzzy set should then be defuzzified to generate the crisp output of the

fuzzy system.

Membership function:
A function that specifies the degree to which a given input belongs to

a set.

Singleton:
A fuzzy set with a membership function that is unity at a one particular

point and zero everywhere else.

Sugeno-type inference:
A type of fuzzy inference in which the consequent of each rule is a
singleton, in general, a linear combination of inputs. The crisp output

then becomes a weighted linear combination of the consequents.
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Universe of discourse:

The domain on which the fuzzy sets are defined.
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Genetic Algorithms:

Chromosome:

A data-structure which holds a string of parameters (or genes). This
may be stored, for instance, as a binary bit-string, or an array of inte-

gers.

Crossover:

A reproduction operator which forms a new chromosome by combining
parts of each of two parents. The simplest is a single-point crossover, in
which an arbitrary point in the chromosome is chosen. All the informa-
tion from one parent is copied from the starting point to the crossover
point, while the all the information from the other parent is compiled
from the cross point to the end point of the chromosome. I[n this way,
the new chromosome gets the head of one parent’s chromosome com-
bined with the tail of the other. Other definitions exist which use more
than one crossover point, or even combine the information from parents

in other ways.

Evolution:

Fitness:

The process by which a set of possible solutions (or population of indi-
viduals) for a problem improves with each iteration, or so called gen-

eration).

A value assigned to an individual which reflects how well an individ-
ual solves a specific task. A fitness function is employed to map a

chromosome to a fitness function.

Fitness landscape:

The hyper surface obtained by applying a fitness function to every point
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of the search space.

Function optimization:
The task of finding the set of parameters which produce the maximum

or minimum value of a function.

Gene:
A subsection of a chromosome which usually encodes the value of a
single parameter.

Generation:

An iteration of the measurements of fitness and the creation of a new

population by means recombination operators.

Genetic algorithm:
A model of machine learning that uses a genetic metaphor from nature.
[t usually employs a string to represent their information, together
with a population of individuals which is processed by crossover and

mutation operations in order to find the interesting regions of the search

space.

Genetic operator:

A search operator acting on a coding structure.

Global optimization:
The process by which a search is made for the extremum of a func-
tion. In a genetic algorithm, this extremum corresponds to the fitness

function that is used to assess the performance of any individual.

Individual:
A possible solution to the task being tacked, i.e. a single point in the
search space. Every individual contains a chromosome and some other

information such as fitness.
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Mating pool:
The whole set individuals ready for recombination, also called popula-

tion.

Mutation:
A recombination operator which forms a new chromosome by making

changes to the values of genes in a copy of a single parent.

Offspring:

An individual generated by the process of recombination.

Optimization:
The process of iteratively improving the solution to a problem with

respect to a specific objective function.

Parent:
An individual which takes part in recombination to generate one or

more other individuals, known as offspring.

Population:
A group of individuals which may interact together, for instance by

mating, to produce offspring.

Recombination:
The creation of a new individual from two parents. It involves the

genetic operators such as crossover and mutation.

Reproduction:
The duplication process of a current generation for the selection of

parents.

Search space:

If the solution of a task can be represented by a set of n real-valued
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parameters, then the job of finding this solution may be thought of as a

search in an n-dimensional space. This is referred as the search space.

Selection:
The process by which some individuals in a2 population are chosen for

recombination.

Vector optimization:

An optimization problem wherein multiple objectives must be satisfied.



Appendix A

Proof of non-linearity of fuzzy

controllers

To prove a system is linear, two following properties must be satisfied simul-
taneously:

1. Additivity property or superposition property, i.e. if
= flz) and y2 = f(z2) (A.1)
Then the additivity property requires
Y1 +y2 = fz1 + x2) (A.2)

Hence

f(z1) + f(z2) = fz1 + 72) (A.3)

2. Scaling property. i.e. if assume
y = f(z) (A4)

then the scaling property requires that for any real constant «

fla.z) (A.5)
fla.z) (A.6)

a.y

a. f(z)

Every system which does not satisfy both properties is a non-linear system.

In order to check the non-linearity of a fuzzy controller, consider the following
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fuzzy rule:
Ifzis LV, then uis LU

where LV and LU are the linguistic values taken on by the process state
variable z and the control output variable u, respectively. The meaning of
these two linguistic values is given by the membership functions prx : X —
[0,1] and gy : U — [0,1]. Furthermore, let =, and z, be two crisp inputs
and u, and uz be their respective crisp outputs. Then the linearity or non-
linearity of different stages of a fuzzy controller can be checked as follows.
Normalizations and denormalization
These steps are linear because they simply involve multiplication by a scalar
N,

Npe.zi+ Npoxzg=Np (2 +1y) (A7)

and

a.Nz.z; =N . (a.zy). (A.8)

Fuzzification
Membership function prx of the linguistic value LX is, in general. a non-
linear function (cf. Fig. 2.4). The fuzzification of z, and x, results in ppx ()

and prx(z2), respectively. Linearity requires

prx(z1) + prx(z2) = pox (T + z2). (A.9)

But this can not be fulfilled because of the non-linear characteristic of urx.
Rule firing

The membership function u. of the linguistic value L {7 are. in general. non-
linear functions. With this in mind, the result of firing the rule for input z,

would be:
Vu : porp(u) = prx(z) A pro(u), (A.10)
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and for input z»

Vu : pepy(u) = prx(z2) A pru(u), (A.11)

where A denotes the min fuzzy operator and pcry(u), in general, refers to a

clipped fuzzy set for linguistic variable LU. Linearity requires

Yu : pery(u) + peru(u) = prx(z +22) A pro(u). (A.12)

However, this condition can not be met since u;x and pyp are a non-linear
functions. Furthermore, the A operator is non-linear for A = min. As a
result, the inference process, or the rule firing, is again non-linear.
Defuzzification

Assume the defuzzification procedure is performed with the help of center of
area approach [60]. Furthermore, let u; and u; be the defuzzification results

obtained by

{ ’ . .
— I=ll F‘cr;cr(ut) - Ui (A.13)
2 =1 bery(ui)
and
l
4y = SiztbeLu(ui) 4 (A.14)

Z‘t:l péro(us)

Linearity requires

ZII=1(I—"CLU(ui) + zl_-.-n l"c'.-u,.'(ui)) - U )
zl1=1(/'"C.‘LU(ui) + pépy(ui))

uy +uy; = (A.15)

This results in

Zlf:l ,'l',CLU(ui) - Ui lI=l “IC{,'LU(ui) - Uy A.16)

uUrtuz = .
Z?:n(#cw(ui) + péro(ui)) 2‘:1(#'0[.[}(“{) + popy(w:))
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which cannot be fulfilled. Instead of this equation, we have

2‘1:1 l"cLU(“i) -Ug Z‘z.—:x By (us) - u:
Yoim pery(us) e Bl Ly (i)

U +ux =

(A.17)

Therefore, the defuzzification process is non-linear as well.

This proof indicates that the source of non-linearity of fuzzy controllers, in
general, comes from fuzzification, rule firing, and defuzzification. As has been
pointed out in Section 5.3.3, a fuzzy controller can be linearized piecewise if

it is designed based on sliding mode controller.
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Mathematical model of an

induction motor with field

oriented control

The dynamic behavior of an induction motor in the synchronously rotating

frame can be described by the following state equations [65,66]
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where

In the field-oriented control for an induction motor, the ideal decoupling
between the d and axes can be achieved by letting the rotor flux linkage in

the d axis, i.e.

Using B.4, the desired rotor flux linkage A = Ay, in terms of [4s can be found

&g

S

° B

1— L2 /(L.L.)

Lonlgs + L Iy

Lnlye + Lo [y

stator resistance per phase
magnetizing inductance per phase
rotor resistance per phase

rotor inductance per phase referred to stator
stator inductance per phase
number of poles

electrical angular speed

d axis stator voltage

q axis stator voltage

d axis stator current

q axis stator current

d axis rotor current

q axis rotor current

Agr =0
dA- /DT =0.

from the third row of B.1 as

Adr = (lasLm)/(1 + Lrs/ Ry).

(B.3)

(B.-4)

(B.5)
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s

For the highest utility of the machine core, Iy, can be set constant for the
desired rated rotor flux. In this situation if the dynamic characteristic of

rotor flux in B.5 is neglected, the torque equation B.2 then becomes
T. = Kfachs (B.G)

where

Kfoc = (3P[4)(L7,/ Le)as- (B.7)

For the mechanical system, the torque and rotor angular speed are related

bv

wr(s) = G(s)(Te(s) — Te(s)) (B.3)

with
(B.9)

L g b
G =T8T " s7a

where B and J denote the total damping ratio and inertia constant of the

drive system, respectively.



Appendix C

Simulation programs

The computer program for auto-design of fuzzy controllers has been written
in C. The program includes three different files; optimization file, closed
loop file, and a header file. As the header file indicates, the optimal fuzzy
controller can be optimized based on any combination of different sets of
controller parameters. In what follows, the header file and only the main

function of the genetic algorithm file and closed loop file are presented.

B L R e L T T L T T T T S o g s

* FILE: header.h
* AUTHOR: Farhad Ashrafzadeh
* FUNCTION: header file for ga.c & flc.c files

EEE 2 I 22222 22 222 2222222222222 222 222222222222 2222 23

VA St FREE PARAMETERS OF GENETIC ALGORITHM :
#define GENERATE_NOR "off"

#define GENERATE_MF "off"

#define GENERATE_TABLE “on"

#define GENERATE_SINGLETON ‘*“on"
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#define WHICH_PART_CROSS 2 /* 0: nor, 1: mf, 2: table, 3:one point */
#define WHICH_PART_MUT 2 /* 0: nor, 1: mf, 2,3,4,.. : table */
#define NO_OF_INITIAL 0

#define EXISTING_KNOW_NOR "yes"
#define EXISTING_KNOW_MF "yes"
#define EXISTING_KNOW_TABLE ‘"yes"

#define MAX_GENERATION 3
#define POPULATION_NO 10
#define MAX_MUT_PERC 30
#define SEED 1

#define AV_SCORE_PERC .4
#define TRANSFER 1
#tdefine HELP_GA 0

#define STRING_LENGTH 20

V£ S FUZZY CONTROLLER PARAMETERS:

#define NOR_DOMAIN 10

#define MF_PRECISION 10000

#define NO_OF_MF_E 7

#define NO_OF_MF_E_DOT 7

#define TOTAL_MF_NO (NO_OF_MF_E + NO_OF_MF_E_DOT)

#define MF_PARAMETERES 3 * (NO_OF_MF_E + NO_OF_MF_E_DOT)
#define NO_OF_CELLS (NO_OF_MF_E * NO_OF_MF_E_DOT)
#define min(x,y) ( x <y ?x :y) /* MACRO =/
#define max(x,y) ( x>y ?x :y) /* MACRO =*/
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#define NN_E 10 * 100
#define NN_E_DOT 1.61 * 100
#define NN_U_DOT 10 * 100

V4 S CONTROL LOOP PARAMETERS:

#define TIME_WINDOW 10

#define Y_REF 1 /* 1 pu, i.e. 1800 rpm */
#define H 0.001

#define U_MAX +1.5

#define U_MIN -1.5

V4 ittt ELECTRICAL MOTOR PARAMETERS:

#define T_LOAD 1

#define K_torque 4.44

#define K_speed 1 /+* K speed =1/ ] =*/

S N e e
* FILE: gec.c

* AUTHOR: Farhad Ashrafzadeh

* FUNCTION: genetic algorithm file.

bR 2222222 22222222222 22222322222 223 224 2 2

main()

{

init(old,generation, new_generation, variable_length, random_vector) ;
while ( no_of_generation <= MAX_GENERATION )

{

evaluation(old_generation);
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new_parents_ptr = select_parents(old_generation,
best_parent_ptr, no_of_generation);

mating_pool(new_parents_ptr, variable_length, random_vector,
no_of_generation);

cross_over_1_table(new_parents_ptr, random_vector,
new_generation);

mutation( random_vector, new_generation, best_parent_ptr);

nev_gen(old_generation, new_generation);

no_of_generation++;

}

}

kkkkkkEkkkkkkkkkkkrkkkkkkkkkkkkkkkkkkkkrbkhkkkkkkkkkkkkkkixk
* FILE: flc.c

* AUTHOR: Farhad Ashrafzadeh

* FUNCTION: Closed loop file with fuzzy logic controller.

223222 222222222 222222222222 2222222222 2222222222222 2yl 2y

double closed_loop (k, nor_mem_table)
int k;

struct nor_mf_table nor_mem_table;

{

while ( t < TIME_WINDOW )

{

e = Y_REF - y;

e_dot = (e - e_old) / H;

mp = over_shoot (y, e_dot);

pi += t * fabs(e) * H+ 6 * mp;
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e_old = e;

u_dot = flc (nor_mem_table, &e, &e_dot);
u += y_dot * H;

u_sat = saturation (u);

y = system_foc_IM (u_sat);

t += H;
}
return(pi);

}





