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Abstract 

This dissertation represents a departure fiom the conventional design of fuzzy 

controllers. Two different design approaches axe proposed. One is a full- 

op timization for applications where high performance is crucial. The other 

involves ao efficient design approach where fast development is of primary 

A genetic algorithm, as an optimization technique, is employed to auto- 

mate and at  the same time to optimize the fuzzy controller design process. 

This optimizat ion requires a predefined performance index. 

An overview of fuzzy controllers is first presented in which the novel 

concept of characteristic points is developed. This concept allows one to 

appreciate the role of each set of fuzzy controller parameters, and leads to 

the  main motivation for automating the design process. An insight into the 

nature of the problem leads to the suitability of a genetic algorithm, as an ap- 

propriate search technique for this automation / optimization. A particulas 

genetic algorithm is coded for the concurrent optimization of controlier pa- 

rameters. This is contrasted with the alternative approach, where controller 

parameters are optimized sequent i d y .  

As an  application example, electricai drive systems are considered. A 

novel perspective on the field orieoted control of induction motors is first 

presented, followed by several possible designs of the fuzzy controller for 



such a drive system. In each case, the fuzy controller is designed using one 

of the proposed genetic dgorithms, and results are compared with those of 

a conventionai count erpart . 
Also in this dissertation, a novel perspective on the robustness of a hzzy 

controller is presented which suggests designing a fuzzy controller based on 

sliding mode control - a weii atablished robust control scheme. Based on 

t his view, an efficient near-optimal design technique of a fuzzy controuer 

is proposed. For instance, given a 7 x 7 decision table a search space of 

S4 dimensions collapses into a search space of 7 dimensions. While this is 

achieved at the expense of decreasing the performance index siightly, it can 

be employed for a large class of systems where fast tuning of the controller 

is t h e  primary concern. Furthemore, this approach is not restricted to the 

genet ic- based autedesign OF a fuzzy controuer. 
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Chapter 1 

Introduction 

1.1 Background 

Artificial Intelligence is machine emulation of the human thinking processes. 

The term began to be systematicdy used since the Dartmouth College con- 

ference in 1956 when Artiiifial intelligence was d e h e d  as computer processes 

that atternpt to emulate the human thought processes that are associated 

wi t h activi t ies t hat require the use of intelligence. 

In 1854, George Boole first published bis asticle entitled Investigations 

on the laws of thought, and as a result, Boolean algebra and set theory was 

born. Later, with the aid of vacuum tubes and the invention of t he  bipoIar 

jiinction transistor, the modern era of von Neumann type digital cornputation 

arrived. Digi ta1 computers were defined by some to be intelligent since they 

were able to emulate the process of human-like yes and no logic. Certainiy, by 

using binary logic, computers can solve some cornplex engineering, scientific, 

and other data processing problems. In one respect, this deserves applause. 

However, it was in the late 1960's and early 1970'~~ that the Limitation of 

computers in handling algori t hmic-type problems was felt . Consequent ly an 



1.2 Introduction to electrical motor drives 2 

entirely new paradigm for stnicturing software more Like the naturai human 

thinking process was boni. These expert systems, also cded knowledge based 

systems, are responsible for the acquisition of knowledge fiom human experts 

in a par ticdar domain and translating it into software. 

It was in the mid 1960's that a new theory cded  Juzq lugic was proposed 

which gradudy helped to supplement the expert systems as another branch 

of artificial intelligence. L.A. Zadeh [l], the originator of this theory, argued 

that most human thinking is fuzzy or imprecise in nature, and therefore, 

Boolean logic which involves distinct "On and "In cases cannot properly em- 

date  the human thinking process. In recent years, Fuzzy logic has emerged as 

an important artificial intelligence tool to characterize and control a system 

d o s e  model is not known, or ill-dehed. It has been widely applied in pro- 

cess control, estimation, identification, diagnostics, stock market prediction, 

agriculture, military science, etc. 

While fuzzy logic has the capability to (partly) model human knowledge, 

it cannot replace the human expert. In fact, the human mind has the Capa- 

bility to l e m  new things and to modi& its previous knowledge to achieve 

better results. This immediately leads to the question: is it feasible to add 

a learning feature to the existing fuzzy systems such that these can generate 

new knowledge, learn through experience, or modify t heir initial knowledge 

to achieve higher performance-? 

This dissertation, is a s m d ,  but signifiant effort CO answer the above 

question in the affirmative. 

1.2 Introduction to electrical motor drives 

It is estimated t hat electrical motors absorb over 60% of the electrical energy 

generated in North Arnerica ['LI. Apart from this fact,75% of all  electrical 
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motor drive applications require either a miable speed or variable torque [3]. 

As the speed of an electrical machine increases, its demand for electrical 

power increases as weU1. Thus a great amount of energy can be saved if 

electrical motors are k d  fiom a constant speed constraint and operate 

at speeds dictated by the load requirement. These aspects indicate how 

important miable  speed drives are in modem manufaduring or indus t rial 

processes fiom bo th the s t andpoint of practical requirement s and energy 

savings. 

Modern elect rical drives are a chdenging and sophis t icated technology 

iovolving major disciplines in electrical engineering such as modem control 

theory, electrical machine theory, power electronics, signal processing, and 

rnicrocomputers. The major requirements of electricd motor drives, in gen- 

eral, include high dyaamic performance, i.e. fast response without overshoot, 

zero steady state error, reliability, Iow maintenances, and robust performance 

in the presence of disturbances. While some of these requirements, mostly 

on the control side, can be fulfilled by dc drives, the others such as  cost, 

reliability, and low maintenance can not be met by these types of drives. 

In contrast to dc motors, induction rnotors have the advantoges of being 

ext remely low maintenance, low cost, robust , reliable machines which have 

a high power to weight ratio. The control of these motors, however. is very 

challenging because induction motors are high order. multi-variable. non- 

Linear, and uncertain syst ems2. Furthermore, the desirable variables such 

as torque and speed of the machine are not Lnearly dependent on accessi- 

l1f the mechanical load torque is proportional to the square of its speed, then the power 
absorbed by the machine would be in proportion to the cube of motor speed. In the case 
of constant load torque, the input power is proportionally retated to the rnotot speed. 

'Since the parameters of an induction motor are temperature dependent and further- 
more its mechanical load is, in general, unknown, these systems are categorized as uncer- 
tain systems. 
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ble variables such as voltages and currents. Ln fact, there is a link between 

flux and torque that prevents fast response of the machine to a step change 

in torque commands. Moreover, the speed control of induction motors re- 

quires change in the fiequency and phase angle of the terminal quantities 

in a cornplex maoner that calls for sophisticated control schemes and costly 

implernentat ion. 

This has been the case until two major technological changes took place: 

advances in solid state switching devices resulted in the availability and de- 

creasing cost of variable frequency power converters, and simultaneous en- 

hancements in digital control made feasible the implementation of sophisti- 

cated non-linear control techniques. At this juncture, it is important to note 

that the increased concern about the present and future cost and avaiiability 

of the electrical energy has accelerated such techno-economical justification. 

It ivas such an evolution that made possible the red  implementation 

of field oriented control, as the most sophisticated torque control method 

for induction rnotor drives. This approach which was invented in the early 

1970's [4], was ignored for a long period of time because of difficdties in 

the hardware implementation, due to the lack of advanced microprocessor 

technology. It also required instantaneous values of some state variables 

which were neither reliably measurable nor feasible to  b e  estimated quickly 

and precisely. 

Today, field oriented control has been widely accepted as  by far the most 

popular type of torque control for induction motors [3]. The new trends in 

this field now involve the application of modern non-linear control techniques 

to h t h e r  enhance the performance of such controllers as well as optimizing 

drive operation based on a specific requirement. 
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1.3 Introduction to fuzzy control 

Fuzzy logic3, as one of the principal elements of aificial intelligence, is 

playing a key role in dealing with uncertain@ and imprecise information. 

As stated earlier, originally, the main motivation behind fuzzy logic was the 

provision of a £?amework to (partly) represent human knowledge in which 

irnprecision is a common feature. To perform such a ta&, it should be able 

to model variables in classes such as large, low, high, etc, as is often done by 

a human. If one takes a closer look at such variables, it t m s  out that they 

have more or less a dornain nature rather than a point nature. This shows 

that in order to mathematically represent such variables, the concept of a set 

should be  used, and in one respect, the term fuz-y set [1] has been chosen to 

this end. 

.-\part from defining variable classes, a particular logic is required for 

processing such variables. Such a logic is called fuzzy logic which caii be 

viewed as a superset of two-value (Le. Boolean) logic and even multi-value 

logic. It is in this sense that fuzzy logic mimics the crucial ability of the 

human mind to summarize data and focus on decision relevant information. 

In fact, the key elements in human thinking are not numbers but some fuzzy 

sets, that is, classes of objects in which the transition fiom member to non- 

member is gradua1 rather than abrupt which is the case in crisp or Boolean 

sets. 

If such notions, i.e. fuzzy sets and hzzy logic, give the capability to model 

humm knowledge, then the knowledge of an expert or engineer can also be 

represented in the same manner. For this reason, fuzzy logic provides a 

framework to incorporate any knowledge including the intuition and expe- 

rience of an engineer designer. It is in this way that fuzzy logic found its 

3There is a glossary of fuzzy logic and genetic algorithm terms following the relerences. 
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applications in control and h z y  contro14, as a process control algorithm. 

As mentioned earlier, the essence of fuzzy logic is domain-wise mappuig. 

This implies that the exact model of a controued system is not required. Fur- 

themore, fuzzy logic also facilitates handling systems having non-linearity, 

parameter variations, and perturbations. This capability of fwzy control, 

on the one hand, and its feature of low cost hardware implementation, on 

the other, has made hzzy control very successfui in embedded control. The 

application of fuzzy control in electricd drives is quite new [5,6]. Since power 

elect ronic systems often do not have an exact mathematical model, and they 

are often non-linear with patameter variations, the fuzzy controller h a  a 

significant potential to enhance their performance [3.5,7- 161. 

1.4 Problems in the design of fuzzy controllers 

In general? the design of a fuzzy controller consists of five different stages. 

T hese stages are normalkat ion, fuzzification, the execution of d e s ,  defuzzi- 

ficat ion, and denormalization. Since the exact relation between the system 

dynamic performance and the controller parameters is not known, no sys- 

tematic approach e'cists to nicely design a fuzzy controller for a specific ap- 

plication. For this reason, the design process of hzzy controiiers at  some 

point becomes a trial-and-error approach [2,6,13,16-201. This equivalently 

means that the development of a fuzzy controller turns out to be completely 

based on designer intuition and experience. Such a trial-and-error approach 

requires a large oumber of repetitions, and it is therefoce, tinie consuniing 

and tedious. Furthermore, as the number of input/output signals of the con- 

troller increases, it tends to be more d iEcdt ,  if not impossible, to end up 

rvith an acceptable solution. Moreover, there are some cases where expert 

41n this dissertation, the term fuzzy control is used in place of the more common fuuy 
logic control, to emphasize the control aspects of Fuzzy set theory. 



1.5 Introduction to genetic algorithms 7 

knowledge is not available or the required knowledge about the system dy- 

namics is beyond the expert experience. Obviously in these cases, even the 

first steps in the design of the fuzzy controiier cannot be taken. Apart fiom 

all these aspects, even in the case that a fuzzy controller can be designed 

by such a trial-and-error approach, there is no guarantee that the resultant 

controller wiil be an optimal one. Notwithstanding the success of fuzzy con- 

trol, these limitations have impeded the application of fuzzy controllen to a 

wider range of control problems [7,21-271. 

1.5 Introduction to genetic algorithms 

A genetic algorithm is a probabilistic optimization approach inspired by bi- 

ological evolution in nature [%]. In cornmon with other optirnization tech- 

niques, a genetic algorithm performs a search in a multi-dimensional space in 

which a hyperspace is defined by an objective function. In general, genetic al- 

gorit hms have proven to be effective a t  solving a variety of corn plex problerns 

that other techniques have difficulty in solving. For instance. since genetic 

algorit h m s  do not rely on computing local decivatives to guide the direction 

of investigation in search space, they can hande probiems with discontin- 

uoits and non-differentiable hyperspace. Furt hermore, genetic algori thms 

part icularly are successful at finding the optimum where the hyperspace is 

non-linear, or highly convoluted with many local optima. In fact , in gradient 

based techniques, a point-wise search is performed by which a single point of 

search space is selected. tested, and used with some decision rules to conduct 

the search process. These methods may fail in a multi-modal situation by 

convergence to one local optima. 

In contrast, in a genetic algorithm, a population of points is chosen si- 

multaneously to be independently processed and this gives a better picture 
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of the entire search space. There is, hence, more probability of finding the 

global optimum. 

The basis of a genetic algorithm is that a population of solutions is first 

randomly produced. The size of the population is a free parameter, which 

trades off coverage of the search space against the required time to compute 

every iteration, a so-cded generation. Each solution in a population is coded 

as a binary string, normally c d e d  an individual. Individuals are then e d u -  

ated based on an objective function provided by the application and a value, 

known as the fitness value, is assigneci to each of thern. The individuais in 

the current generation are next processed by performing genetic operations 

such as reproduction, crossover, and mutation. Reproduction involves select- 

ing two individuds as parents based on their fitness; the higher the fitness of 

the individuals, the more likely they can reproduce. After selecting pairs of 

parents, a crossover is performed for each pair of parents, in which strings are 

chosen randomly and are cut at a random point to produce two heads and 

two tails. Then one of these segments, say tails. are swapped between two 

individuals and in this way a new individual is generated. Furthermore, as 

each bit is copied from one parent to offspring, it has a probability of being 

Bipped. Such flipping in one or more bits is called a mutation. A mutation 

can be viewed as a reinjection of information that may have been lost in 

previous generations. It can also be seen as an investigation in other parts 

of search space enabling the optimizer to locate the globol optimum. 

1.6 Thesis objectives 

The research underlying this dissertation involves the development of a novel 

synthesis methodology to automate and at the same time, to optimize the 

performance of fuzzy controllers based on a predefked objective function for 
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any particular application. It also aims, in particdar, to design an optimal 

fuzzy controiler for induction motor drives with indirect field oriented control. 

The proposed novel synthesis methodology, when encoded as a computer 

progam, provides a convenient design approach which is directly related 

to the desired system requirements and avoids the difficulties involved in 

the conventional trial-and-error techniques. Also a novel overview of fuzzy 

controuers with emphasis on underlying control concepts is presented which 

indicates fuzzy controllers can be viewed as a non-linear static transfer func- 

t ion. 

The technique proposed in this dissertation is based on a particular ge- 

net ic algori t hm. In the literature, some optimization approaches, mostly 

gradient based, have been used to optimize one set of fuzzy controller poram- 

eters or at best to optimize mernbership functions and d e s  in a sequential 

manner. What they have not taken into account. however. is the fact that 

t here exists an interaction among different sets of parameters. 

The primary, and original, contribution of this dissertation is concunent 

optimization of fuzzy controllers by which the entire set of control pararn- 

eters, Le. normdization factors, membership functions, and d e s ,  are pro- 

cessed simultaneously and therefore, the effect of their interdependencies is 

inherent in the optimization process. The approach proposecl in  t his disser- 

tation, not only is able to develop a new fuzzy controller from scratch. but 

it also is able to eohance the performance of an existing luzzy controller. 

Although in applying the proposed autedesign approach for the field 

oriented control of an induction motor, it shodd be noted that this approach 

is very general, and c m  be applied to a wide range of non-liner systems where 

fuzzy control is used. 
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1.7 Thesis outline 

To be able to propose a good solution to a given problem, a deep understand- 

ing of its underlying concepts is fkst requirrd. It is in this sense that the 

novel ovenriew to fuzzy controllers in Chapter 2 starts with some fundamen- 

ta1 concepts such as static functionality and non-linearity. By illustrating the 

impact of each parameter in a fuzzy controller, the main insight into the de- 

sign of a fuzzy controller is gained. Optimkation requirements are discussed 

in the first Section of Chapter 3. Next, after a brief introduction to genetic 

algorithms as an optimization technique. the  coding procedure is presented. 

An induction motor drive with field oriented control is chosen as one 

application for the proposed technique. In fact, a novel view to the field 

oriented control technique is presented in Chapter 4 followed by the design 

of an optimal fuzzy controller for such a drive. 

Sioce the genet ic-based auto-design of fuzzy controllers is a multi-faceted 

issue. different aspects of this technique are discussed in Chapter 5. Concur- 

rent design of fuzzy controllers is first compared with a sequential approach 

and then extended to an input and/or output partitioning approach. The 

concurrent auto-design of fuzzy controllers by a genetic dgorit hm is the prin- 

cipal contribution of this dissertation. 

Robustness is mother important aspect of modern control theory. If a 

higher level of robustness can be achieved, the controller can perform better 

and longer without retuning. Whîle, in the literature, it has been claimed 

that fuzzy controllers are highly robust, not every conventional design of such 

cont rollers should be considered as a robust controiier. Special considerat ions 

at the design stage of a fuzzy controuer should be taken into account to 

achieve a robust controller. This issue is addressed in Chapter 5, where the 

design of a fuzzy controller is presented €rom the perspective of slidiog mode 
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control, as a special case of the &able stmcture control technique. 

Condusions, and recommendationsfor future work are given in Chapter 6. 



Chapter 2 

Fuzzy controllers 

2.1 Introduction 

Fuzzy control has found many applications in the past decades. This is so, 

largely because fuzzy control has a capability to deai with non-hear, uncer- 

tain systems even if no mathematical mode1 is amilable for the controiled 

system. One of the most significant features of a fuzzy system is that, in 

principle, any continuous non-linear function can be approximated by such 

a system to any degree of precision. In spite of such features, there are a few 

bottle-necks hindering industry from broader exploitation of fuzzy control. 

In the first place. a systematic design approach for hzzy controuers is not 

available [?, 21-26]. This means that if a reliable expert knowledge is not 

available or if the controlled system is too complex to derive its appropriate 

control rules, development of a fuzzy controiler becomes tirne consuming and 

tedious and sometimes impossible. Even in the case that expert knowledge 

is available, fine tuning of the controller is not a trivial task. Furthemore, a 

near-optimal fuzzy controller is very 

error. 

Some efforts have been made to 

dinicdt to obtain by human trial-and- 

solve these problems and simplify the 
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task of parameter tuning and d e  development for a hizzy controiler [23- 

25,29-351. These approaches mainly use adaptation or learning techniques 

drawn from artificial intelligence or neural network theories [25,35-46]. 

In this chapter a novel overview of the fuzzy controller is discussed. First , 
a comparative perspective of the hzzy control approach is presented. The 

structure of a fuzzy controuer is then outlined and this is followed by exarn- 

ples of different types of fuzzy controilers. The characteristics of a fuzzy con- 

troller are then explrtined. The realization of a conventional fuzzy controller 

and its design parameters are discussed in the following sections. Finally 

after clarifying the relative importance of controiler design pararneters, the 

main motivation for the research underlying this dissertation is addressed as 

a problem description. Many of the notions stated in this chapter are new 

and are not discussed in the current iiterature with the exceptions of the 

concepts of the fuzzy controller structure, in Section 2-3, and the concept 

of a universd approximator, in Section 2.5.3. The purpose of this chapter 

is to provide the required background on the design aspects of a fuzzy con- 

troller, and to provide some motivation leading to the optimal design of hzzy 

cont rollers. 

2.2 A comparative view 

To illustrate the difference between a classical controller and a fuzzy con- 

troller (FC)? consider a non-linear dynamic system 

where x E R is the state vector, u E R, y E Rm are the system input 

and output vectors respectively, and r ,  rn , n are integers respectively. The 

mappings of f (.) E Rn, g( . )  E Rm are smooth and satisfy the conditions of 
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f : R" x K +P -t and g : R" x Rr + P. The main objective of a control 

designer is to find an appropriate control algorithm, using the feedback infor- 

mation extracted eithe. from state variables or system outputs, to force the 

system output to follow prescribed trajectories as closely as possible. The 

tracking error can be defined as t h e  difference between and x (if state 

feedback is used) or between y,-~ and y (if output feedback is used), where X,-J 

ond yd stand for the desired trajectories. The  differential equation 2.1 can 

then be equivalently expressed from the mathematicd viewpoint as: 

Find an appropriate mapping from the error domain to the system 

input domain such that the  solution of the differential error system 

is stable. 
To this end, a classical controller performs the desired mapping in a point- 

wise rnanner such as u = h(e ) ,  as shown in Fig. 2.1. 

Figure 2.1: A classical feedback control system. 

In contrast, in a fuzzy controiler, the same mapping is pelformed in a 

domain-wise m u e r  as shown in Fig. 2.2. This domain-wise mapping is 

called inference. To employ such a mapping, two interfaces are required: 

first transferring the crisp values into some domoin values (encoding) and 

second, transferring the domain values into r r i s p  values (decoding). The 

former is called ~uzzification and the latter is known as defuszification. This 

suggests three different stages within a fuzzy controller, as opposed to one 
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Figure 2.2: A fuzzy control system. 

stage h (e ) ,  in the classical controller. Further, to simplify the design process, 

the input-output signds may be normalized and denormalized. Then, a fuzzy 

controiler can be viewed as a five-step structure which is discussed in greater 

detail in the following section. 

2.3 Basic structure of fuzzy controllers 

The principal structure of a fuzzy controller, as illustrated in Fig. 2.3: con- 

sists of normalization factors, fuzzification of inputs, inference or rule firing, 

defuzzification of outputs, and denorrnalization. 

2.3.1 Normalization and denorrnalization 

To design a fuzzy controller independent of the variables' physical domains, 

the membership functions are defined within [-1, +1]. This requires nor- 

malization of physical variables. Similarly, in the denormaikation stage the 

normalized output value is mapped into the physical domain. Although these 

mappings are Linear, they become very crucial to the performance of the con- 

troller regardless of the manner in which they are implemented, i.e. ertpiicitly 

or implicitly. 
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- Control signal flow in operation 

----+ Information flow at design seage 

Figure 2.3: Basic structure of a fuzzy controlIer. 

2.3.2 hizzificat ion and defuzzification 

Since fuzzy inferencing is performed on fuzzy values, the point-wise input 

values (crisp values) must be converted into fuzzy d u e s  ( fuzzy sets). This 

is the purpose of fuzzification. in effect, in the fuzzification process, the in- 

put space is partitioned into sub-domains. Proper partitioning of this space 

requires some information about the system output state wiables which 

is a part of the data base (or expert knowledge) required to design a fuzzy 

controller. Fig. 2.4 demonst rates two conventional types of membership Func- 

tions, where the input space is partitioned into seven different fuzzy subsets 

in this illustration. Also. since the actuator input needs a crisp value as a 

control action, the output of the fuzzy inference which is again a fuzzy set, 

is t ranslat ed into a point-wise value. This process is c d e d  defuzzification. 

2.3.3 Inference mechanism 

If Xt and are the fuzzified controller inputs (e-g. error and error derivative) 

and Ut is the fuzzy value for the controiier output, and Rj  is the fuzzy 

function respoosible for the mapping from the input space into the output 
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Figure 2 -4: Convent ional membership functions;(a): gaussian ( b) t riangu- 
lar . 

space, then the fuzzy controiler can be represented [47] by 

rvhere x is the Cartesian product operator and o denotes the inference mech- 

anism (for this dissertation. the mau-min operation). In the case of the rule 

base, if the input and output spaces are partitioned into an odd number' of 

fuzzy sets for every variable (Le. for error, e, error derivative, é, and fuzzy 

controller output, u),  the control poiicy can be expressed in the form of a 

look-up table, which is also cdled a decision table. Figure 2.5 shows an ex- 

'Typically five or sevea fuzzy sets are used for such partitioning. 
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Figure 2.5: SLiding mode decision table 

ample of a decision table for a controiier of two inputs, Le. error and error 

derivative denoted by e, and 6 ,  and one output, u. In this figure, different 

fuzzy sets of the controUer7s output, u are denoted by NB, NM, NS, 2, PS, 

PM, PB, which stand for negative big, negative medium, negative small? 

zero, positive small, positive medium, and positive big, respectiveiy. Such a 

table, in the authoc's view, can be c d e d  a sliding mode decision table or, in 

short, a sliding mode table. Further details about this notion are presented 

in Chapter 5. 

2.4 Different types of fuzzy controllers 

In one respect, in connection with the classical control theory, four differ- 

ent  types of fuzzy controliers can be distinguished. From this viewpoint, 

fuzzy controllers c m  be classified into PD-like, PI-like, P-Lke, and PID-like 

controllers as follows: 
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2.4.1 PD-like fiuzy controller 

A conventional PD2 controiler can be described by 

where e and ë are error and error derivative and Kp and & are the propor- 

tional and the differential gain coefficients. The same equation in the context 

of fuzzy logic c m  be represented in a symbolic fashion as 

If e ( k )  is LI/. and Ae(k)  is LI/'. , then u(k) is LV, 

where L V refers to a linguistic miable (e-g. positive medium), and LV,, L 4. 

and LV, are specified membership functions for et ë, and u, respectively, and 

k is a sarnpling instant. 

This s-yrnbolic representation of an equation is called a fuzzy rule and a 

set of rules can emulate the complete dynamics of a differential equation. 

2.4.2 P 1-like fuzzy cont rouer 

A conventional PI3 controiier can be described by 

where I '  and lc are the proportional and the integral gain coefficients. If 

the above integral equation is converted into a differential equation by toking 

the derivative with respect to time, the equident  equation will be: 

- - -  

'Proportional plus differential 
3Proportional plus integral 
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The PI-Like fuzzy controller can then be modeled by foiiowing rule: 

If e(k)  is LV, and Ae(k) is LI$, then Au(k) is LVG 

In this case, the controller gives the inmemental value of the output and 

an integrator, therefore, is required outside of the hzzy controller to generate 

the final value of the coatrol action, u. 

2.4.3 P-like fuzzy controller 

The fuzzy rule representing the proportional controuer equation 

can be expressed in symbolic form as 

It should be mentioned here that due to the requirernent of a four di- 

mensiond decision table for a PID-like c o ~ t r o l l e r ~ ~  it is hardly used, if at dl. 

Furt hermore, Since the PI-iike fuzzy controller is easier to develop and has 

the property of zero steady state error, this type of controller has ben cchosen 

for t his dissertation. Therefore, henceforth, whenever a fuzzy controller is 

referred to. the PI-like controller is meant unless stated otherwise. Fig. 2.6 

demonstrates such a controller for which a typical decision table has dready 

been shown in Fig. 2.5. 

2.5 Fuzzy cont roller characterist ics 

To appreciate the essence of fuzzy controllers. these systems can be viewed 

from different perspectives. Foliowing this line, one might examine this con- 

4Proportional plus htegral plus Differential controller 
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Figure 2.6: PI-like fuzzy controller in a closed-Ioop control system. 

troller from the "functionai view". Lf this view is employed, the h z z y  con- 

troller with the stnicture shown in Fig. 2.6, wilI appear to have a static 

t ransfer function. This automaticaily cdls  for the requirement of adding 

some dynamic elements in the front-end aad output of the fuzzy controiier. 

In t his way, the "overd controUern wodd appear to have a dparnic transfer 

function while the fuzzy controller part is still static in nature. 

It is aIso worthwhile to look at the controller from both the linear and 

the non-linear viewpoints. As shown below, f u z y  controilea perform a non- 

linear mapping from input to output. Furthemore, fuzzy systems, in general, 

and fuzzy controilers, in particular, are universal approximators. This, in 

turn, means the fuzzy controller of Fig. 2.6 c m  approximate any non-linear 

static transfer fuoction to any degree of precision that is desired5. This makes 

fuzzy controllers potentiaiiy quite attractive in the control of a large class of 

non-linear systems. These are the issues that are discussed in greater detail 

in the foilowing section. Some other features of fuzzy controllers, such as its 

variable structure nature, sliding mode nature, and so on, will be discussed in 

Chapter 5 , in which the design problems of fuzzy controilers are investigated 

in different respects. 

5Provided that there is no restriction on the number of membership functions. 
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2.5.1 Fuzzy controuer as astatic transfer function 

A fuzzy controlier can be seen as an input-output mapping operator. One 

may ask whether the fuzzy controiler shown in Fig. 2.6 has a static transfer 

function o r  a dynamic one (We have clamied on the previous page that it is 

in fact static). To answer such a question, the structure of a typical d e  for 

a P 1-iike controller, is reconsidered here: 

If e(k)  is LV.  and Ae(k) is LE, then Au(k) is LVG 

-4s this d e  implies, since the value of the controller output at the instant 

k does not depend on its previous value, no dynamics is involved inside the 

fuzzy controller. This rnakes the luzzy controiier of Fig. 2.6 with the rule 

structure stated in Section 2-42 appear as a controller with a static tronsfer 

function. This notion can also be derived from the fact that d l  operators 

with respect to time, like derivative and integration are performed outside the 

fuzzy controiler. The dynamic behavior of the o v e r d  controller, therefore, 

cornes about by prefiltering, i.e. derivation, and postfiltering, i.e. integration. 

of the inputfoutput signals. This makes the entire controller from e -t u ,  

a controlier with a dynamic transfer function while the mapping (e, é) + Ù 

remains static. 

2.5.2 Fuzzy controller as a non-linear element 

A fuzzy logic controiler, in general, has a non-linear trmsfer function. In fact, 

this is one of the features that has made this controller very attractive for 

non-linear control applications. For instance, the d e  stated in Section 2.4.1 

is a non-linear PD-operation and a collection of such rules can be used, 

and, in fact, results in the modelling of a non-linear differential equation. 

Such a rule-based modelling of a non-linear differential equation we would 

c d  a qualitative differential equation. While the source of non-iinearity, on 
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the one hand, potentially can corne fiom des, on the other hand, the fuzzy 

operators involved in hzzification, inference, def'uzzi6cation, are non-linear in 

nature (refer to AppendLv A for a proof). Hoivever, the point that should be 

chri fied is t hat while the membership functions can introduce non-lùieori ty, 

in the author's view, the main non-Iinearity of the system's behavior must 

be defined by rdes (ia. the interference mechanism). This point becomes 

more clear when the roles of membership functions and rules are examined 

in Section 2 - 7 2  

2.5.3 h z z y  system as universal approximator 

It has been proved that fuzzy systems are universal approxi,mators [40]. As 

mentioned in the preceding sections, a fuzzy controiier can be viewed as a 

non-linear mapping of 

Y = f (4 (2.7) 

where x and y are the input and output vectors respectively. Keeping this 

in mind, the universal approximation theorem con be stated as 

Universal approximation theorem: 
For any given real continuous function F ( x )  on a set 

of Li E R", there exists a fuzzy system f such that 

SUP,,u IF@) - W l  < 6 

where F ( x )  is the function to be approxirnated and c is a positive 

number which can be set to any acbitrary small value [42]. 

It is quite clear that by increasing the number of membership functions (and 

consequently a better approximation of the original function can be 

attained. This is similar to the approximation of a continuous function by a 

number of points and some interpolation methods; the greater the nurnber 

of points, the better the approximation of the function. 

Figure 2.7 dernonstrates a pictorial view of how a non-linear Function 

can be approximated by a fuzzy system. By specifying such domains, the 
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X 

Figure 2.7: Approximation of a typical static function by hzzy domains. 

Figure 2.8: The process of defining membership functions for a typical non- 
Iinear function 

membership functions of inputfoutput spaces, in effect, con be defined as 

shown in Fig. 2.8 From which, in the author's view, the design process of a 

fuzzy system can be stôrted and followed by the definition of control rules. 

This procedure wiii be discussed in greater detail in section 2.7.2. 

2.6 Realization of conventional fuzzy controllers 

In the design of a fuzzy controller, one must first decide about the number 

of inputs and outputs for the controiler. Then the input and ou tpu t  spaces 
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must be partitioned by a proper numberof fiizzy sets with suitable shapes and 

overlaps. In the next stage, by convention, a prototype decision table should 

be constructed based on experience, expert knowledge, or intuition. At this 

point, the controiler is incorporated into the feedback Ioop of the system and 

tuning is performed based on trial-and-error, by changing normalization, 

denormalizat ion, members hi p funct ion parameters, and consequent parts of 

fuzzy d e s  which are, in fact, the ceiis of the decision table. 

To have an idea of the number of design parameters, consider a system 

wi th  n inputs and one output. and rn membership functions for each variable. 

Such a system requires 3rnn+mn design parameters where 3mn is the number 

of membership function parameters and mn is the number of possible rules. 

If the number of nonnalization and denormalization factors are dso taken 

into account, then the overdl number of design variables would be equal to 

mn+Srnn+n+l = mn+n(3m+l)+l. For instance, for the controuer shown in 

Fig. 2.6, which has two inputs and one output, if seven membership functions 

are chosen for each variable? the number of design parameters becornes mn + 
n (3m + 1) + L = 72 + 2 (3 x 7 + 1) + 1 = 94. It is now quite obvious how 

difficult, if not impossible, it would be to tune such a number of parameters 

by a trial-and-error approach if no systematic method exists. To clarify the 

effect of different design variables on controller performance, the role of each 

design paranleter is first presented. 

2.7 Design parameters of fuzzy controllers 

As stated in Section 2.3, there are five different computational steps in the 

operation of fuzzy controllers. The parameters involved in these steps, can 

be viewed as design parameters at the design stage. In what follows, the role 

of each design parameter is explained. 
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2.7.1 Role of normalkat ion and denormalizat ion fac- 

tors 

As mentioned in the Section 2.3.1, the design of a fuzzy controller on a 

fixed domain, Le. independent from the physicd domain, requires proper 

normalization and denormalization. Ife = X,.J - x represents the actual value 

of the error vector, where x is the state vector and is the desired value of 

the state vector, then the nomdized error vector, e ~ ,  is derived by 

where 

Net axe reai numbers and the nomalized domain for e is, Say [-a, a]. in our 

case [-1, 11. In particular, where e = (el,  ez)  = (e, è), the mappings from e 

to e,v and from è to élv are performed by 

The nomaiization and denormalization operations, as their names irn- 

ply, are Linear operations. Any linear adjustment of the controller funct ion, 

therefore, can be performed by changing these factors. They have one resem- 

blance with classical linear control, in which they emulate the proportional 

and the integral coefficients, i.e. Kp and hi. respectively. Thus while simple 

in operation, they have a crucial effect on the stability of the o v e r d  sys- 

tem. Moreover, this similarity between Kp, Ifi and Ne, N,, shows that the 
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other parts of a fuzzy controiler such as fiizzification, inference, dehizzifica- 

tion introduce extra degrees of &dom in tuning and adding non-linearity 

to the controLler. This dso implies that the conventionai PI controiler is, in 

effect, one special case of a fuzzy controuer [21]. Fig. 2.9 demonstrates how 

- 1 O +1 e 
N 

Normalized universe of discourse 
( c l  

Figure 2.9: Nomalization of the universe of discourse. 

the universe of discourses (domain of membership functions) are changed by 

the  normalization factors. Li effect , rat her t han defining membership func- 

tions on different universe of discourses, one can define such functions on a 

fixed domain, Say [-1, 11, and convert the physicôl values to the normalized 

values by proper normalization factors. This rnakes the design of the fuzzy 

controller independent from the physical domains. Note that the mernber- 

ship functions have only a local effect on the input domains, whereas the 

normalization factors have a global effect, as  implied by equation 2.10. 
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Figure 2.10: A typical mapping 
of the  controller. 

Figure 2.11: Defining the rnem- 
bership functions. 

2.7.2 Role of membership functions and rules 

To gain an insight into the relative importance of membership functions and 

rules. an example is presented. Assume that the functional mapping of the  

system is already known as depicted in Fig. 2.10, and our objective is to 

approximate this function by a fuzzy model. This assumption, in practice, is 

generally not valid as the rough behavior of the system may only be known, 

and the exact behavior of the system, more often, is not known. Nonethe- 

las.  at present, we make this assumption, in order to appreciate the role of 

membership funct ions and d e s .  

To design a fuzzy controlier to perform the required mapping, the first 

step after normalization is define the mernbership functions for the input- 

output spaces, i.e. s, y. Assume the input-output membership functions are 

derived as based on a selection of four arbitrary points on a curve as shown 

in Fig. 2.11. The arrows in this figure, are an indication of the design order 

in the  sense that one can define the proper membership functions of such 

a mapping by initially selecting four arbitral points on the functioo. This 

immediately leads to the parti tioning of the x - y space. The resultant parti- 
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Figure 2.12: Defining the frame- Figure 2.13: -4pproximated 
work by membership functions. function by fuzzy model. 

tioning can be viewed as defining a framework on this plane which introduces 

some intersection points such as b1 and b2 and so on as illustrated in Fig. '7.12. 

The next step is to define the required d e s  for this mapping in the 

partitioued space. [t is apparent that for such an ascending function, the 

rules can be readily stated as 

If x belongs to domain & , then y belongs to dornain Bo 

If x belongs to domain Al , then y belongs to domain BI 

If x belongs to domain A2, then y belongs to domain B2 

If x belongs to domain A3, then y belongs to domain B3 

As demonstroted in Fig. 2-12, the task of d e s  is then to select oniy one point, 

Say bl, out of the possible points. Le. bl:  b2, b3. b+ These selected points. in 

our view, can be called characteristic points because they characterize the 

approximated function of the controiler. It is now the defuzzification operator 

w hich is responsi ble for interpolating between adjacent choracteristic points6 

6 ~ t  should be clarified that the interpolation is not due to defuzzification, it is, in effect, 



2.7 Desinn  aram met ers of fuzzy controllers 30 

to constmct a new function which is, in effect, an approximation of the 

original one (see Fig. 2.13). 

Viewed from this perspective, the role of the membership functions and 

the d e s  can now be induced as follows: Whüe the rules are responsible 

for general shaping of the function (i.e. Iocally ascending, or descending), 

the membership functions appear to specify the dope of each ascending or 

descending part. Although the influence of the membership functions can be 

seen more locdy, wi t h the same of set of rules, they can dramatically change 

the functionality OF the system. For instance, consider the same membership 

Y 

Figure 2.14: The effect of membership Figure 2.15: Fuzzy mapping 
functions on mapping. in the case of more overlap. 

functions as above for x, but a different set for the output y. With the same 

mapping (Le. identical d e s ) ,  this time, a new function will result which is 

quite different from the original one (see Fig. 2-14? where previous output 

membership functions are indicated by dotted Iines). 

This illustrates the role of membership functions in fuzzy modelling. 

as a result of the overlapped membetship functions together witb fuzzy inference and de- 
fuzzification; but the point is tha t  the final interpolation is performed at the defuzzification 
stage. 
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While it seems that it is the membenhip functions which confine the possible 

location for the characteristic points in each domain, the entire vertical axis 

can be scanned if more than two membership functions axe overlapped by 

one membership hinction. This point is illustrated in Fig. 2.15 where a.ny 

point on the vertical line b1b4 can be selected, rather than being restricted to  

the prescribed junctions such as bl, b2, 63, br. In effect, more characteristic 

points are incorporated in the interpolation between, Say cl and cz, when 

ot her membership funct ions have greater overlap with corresponding mem- 

bership functions. CVe will later take advantage of this fact in the solution 

that we \viU propose for the design of hzzy  controllers. 

2.8 Problem description 

-As stated earlier, one of the most important concepts in luzzy systems is the 

uni versal approximation theorem. This theorem also provides an explanat ion 

for the practical success of fuzzy systems in control engineering. Nonetheless, 

the theorem has a remarkable drawback. It is just an existence theorern which 

implies that there exists a fuzzy logic system for this non-linear function 

but  it does not indicate how to find it. In practice, the design process of 

fuzzy controllers has evolved as a trial-and-error approach. Brie&. possible 

pro blems wit h the human t rial-and-error approach can be categorized as: 

0 The controlled system is too cornplex such t hat its proper decision rules 

camot easily be derived by human expertise. 

0 Designing and tuning a multi-input rnulti-output fuzzy controller is so 

tedious as to be unfeasible. 

0 Reliable expert knowledge is not available. 

0 Even with expert knowledge, fine tuning is oot a trivial task. 
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Some significant operat h g  changes (in dis t urbances or paramet ers) 

might be outside the expert's experience. 

a There is no guarantee of achieving the optimal fuzzy controller just by 

relying on intuition, experience, or expert knowledge. 

Since the resulting fuzy controuer is not optimal, a performance corn- 

parison of the fuzzy controiler with other controllers is not valid. 

To solve ail the foregoing problems, some insight into the problem is re- 

quired. Current fuzzy controuers perform the role of human-like controllers 

in the closed Ioop system. If, somehow, the process of knowledge develop 

ment of a humas can be modeled and simulated, the foregoing problems will 

be resolved to the extent that expert knowledge wil1 no longer be required 

(i.e. we wish to automate the  design process). 

The approach - proposed in this dissertation is not only to develop the 

required Fuzzy system, more importantly, it is also to find and shape the 

best (near-optimum) non-iinear function based on a prespecified performance 

index. While the technique is a lgori thic  and not based on any intuition, it 

is also able to incorporate heuristic knowledge in the design process. 

To implement this aut~designed, auto-t uned controller. the optimiza- 

tion technique must be able to address the optimization problems evolved 

in a fuzzy controller. A fuzzy controller, in structure, is a non-linear, multi- 

parameter element which does not have, in generai, a mathematical model 

in the conventional sense. Its model stems irom fuzzy sets, and fuzzy rules 

which makes it difficult, if not impossible, to optimize by conventional tech- 

niques. On the other hand, having a large number of design variables, differ- 

ent  in nature but interdependent, malres a very cornplex and unpredictable 

search hyper surface for such optimization. The degree of complexity in- 

creases when it is found that the search hyper surface has a muiti-modal 
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nature. Therefore, a calculus-based optimization technique f i l s  in finding 

the global optima if it starts €rom any other hi11 rather than the highest one 

on the search surface. Moreover, since the search space is not weU-known, 

existing non-differentiality or discontinuity, make it difficult to handle this 

problem by gradient methods. Furthermore, as this study shows, the opti- 

mization problem of a fuzzy controuer is not a sequential one but rather a 

concurrent optimization problem. This implies t hat the optimization tech- 

nique would preferably have a p a r d e l  nature to handle such a problem. 

The genetic algorithm, as an optimization technique, has the capability to 

deal rvi t b a non-linear, mult i-parameter, and multi-mode1 objective funct ion. 

These are the features that make this optimization approach weil suited with 

the design process of fuzzy controllers and this is where out discussion wiU 

nest turn. 

2.9 Chapter summary 

In this chapter, a novel overview for fuzzy control has been presented. The 

design structure of fuzzy controllers as well as different types of these con- 

trollers have been explained. The essentid features of a fuzzy controiier such 

as the stat ic transfer function and non-linear approximation have been de- 

scribed in the way that, in the author's view, is not available in the current 

li terature. The conventional realization of fuzzy controllers which is based 

on the hurnan trial-and-error approach has briefly been discussed. The prob- 

lems ossociated with the conventional design approach of fuzzy controllers 

have been addressed. The role of controller parameters has then been pre- 

sented providing the background for this dissertation toward the goal of fuzzy 

controller auto-design. 



Chapter 3 

Problem coding based on 

genetic algorithms 

3.1 Introduction 

In C hapter 2, the problems associated wit h the design of fuzzy controllers are 

discussed. This chap ter starts with the optimization requirernents for fuzzy 

controller design. A s  rvill be seen, the objective function for such an opti- 

mization problem, not only is lacking a conventional m e t i c a l  expression, 

but also, is highly multi-parameter, non-linear. and mult i-modal in nature. 

These are the features that make the geoetic algorithm a good candidate for 

such an optimization problem. 

Genetic algorithms are search techniques based on biological evolution in 

nature. They rvere first introduced, by John Houand, bis colieagues, and his 

students at the University of Michigan in 1975 [28]. Since then, the approach 

has led to some significant discoveries in both naturd and artificial system 

science. The application of the genetic algorithm, however, for optimization 

in engineering is quite new [48-511. To implement such a technique, however, 
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a proper representation of possible solutions must fLst be developed. Then, 

by starting with an initial random population of possible solutions, employing 

a type of suruiual of the fittest, and exploithg old knowledge in the mating 

pool, the ability of each new generation to solve the problem should irnprove. 

This is achieved through the three-step processes involving evaluation, repro- 

duction, and recombination [52]. Every individual refers to a special point 

in search space. This featuce, which is lacking in gradient-based approaches, 

enhances the ability of a genetic algorithm to fhd the global optimum in the 

case where the search space has a multi-modal nature. 

To design a fuzzy controlier, any feasible structure for the controller as a 

set of parameters. should be translated into a bit-string which cao easily be 

processed by a genetic algorit hm. At the same time, a fitness function should 

also be defined to let the genetic algorithm evaluate possible solutions and 

to direct them to evolve to near-optimal ones. These are the points that will 

be discussed in greater detail in the last part of this chapter. 

3.2 Opt imizat ion requirement s 

To select a particu1a.r optimization technique for the design. i-e. parameter 

selection, of a fuzzy controller, some insight into the problem is required. In 

the first place, a performance index for the control system should be defined 

which can be employed as the objective function in the optimization. This 

performance mesure côn be some explicit or implicit function of error for a 

particular transient response. For instance, for the system shown in Fig. 3.1, 

the performance index may be defined as 
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where 11 is some function of error, 1 is the system function, h is the con- 

trouer function, and x is the system state vector. The goal of the required 

Figure 3.1: fuzzy controiIer in closed loop system. 

optimization is to find a set of &own parameters of h(e , é) such that the 

objective function is rninimized. In gradient based optimization techniques, 

in general, the partial derivative of the objective function with respect to 

different design parameters of the function h ( e ,  é) should be calcdated and 

then a set of coupled non-linear differential equations is solved for the un- 

known parameters. Since in our case, the analyticd expression of fuzzy 

controller in the conventional sense, i.e. h ( e ,  é), is not known, the gradient 

techniques cannot be employed for a problem with this nature. Furthermore. 

there are some other aspects that shoiild be taken into account. First. the  

mapping function of fuzzy controllers, i.e. h(e , e), is a non-linear function 

(cf. section 2-52) .  This makes the objective function non-linear even if 71> and 

especially the system, i.e. f (x ,  u ,  t )  is Linear. As a cesuit: the optimization 

technique should be able to handle non-linearity. Second, as stated earlier, 

the number of parameters in the design of fuzzy controilers is very large. 

The objective function, therefore, appears to be a multi-parameter function 



3.3 Genetic algorithms; An o v e ~ e w  37 

by which a multi-dimensional space is introduced and more importantly, it 

can be shown that such a hyper surface has a multi-modal' nature. Viewed 

in this perspective, the search for a global optimum in such a mdti-modal 

hyper surface is not a trivial ta&. 

Genetic algorit hms, in contrast wit h gradient based techniques, do not 

require an analytical expression for the controller function, Le. h(e , é), and 

furthemore, they are d s o  able to  hande non-linearity and the multi-modal 

nature of the objective function. They work with bit-strings not deriva- 

tives, and this makes them, in general? more efficient2 particularly in the 

cases where the objective function is highly non-linear and multi-parameter. 

Moreover, genetic algorithrns look a t  a population of points rather than to 

one point which is the case in the gradient based techniques. This provides a 

better picture of the entire search space rvhich consequently leads to a higher 

probability of finding the global optimum as opposed to a local one. Gradi- 

ent based techniques are point-wise search approaches and t herelore. t here 

always exists a chance of being trapped in a local optima if t h e  hyper surface 

has a rnulti-modal nature and the starting point is not sufficientiy close to 

the global optimum. 

3.3 Genetic algorithms; An overview 

Genetic algorit hms are search algorithms which are based on the genetic 

processes of biological evolution. They are adaptive methods which may be 

used to solve search and optimization problems. They work with a popula- 

lime., in addition to a global optimum, there are some local optima as well. This can 
also be visualized as a multi-hiii hyper surface in search space. 

?r\n optimization technique is efficient i l  it has the following two properties; i )  a faster 
rate of convergence to the optimal point, and ii) a small nurnber of calculations within 
one design iteration. 
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tion of individuais, each representing a possible solution to a given problem. 

Each individual is assigned a fitness score according to how weU it solves the 

given problem. For instance, the fitness score might be the strengthlweight 

ratio for a given design or a performance index for a closed loop control sys- 

tem. In nature, this is equivalent to assessing how effective an organisrn is 

at competing for resources and dso attracting mates. The highly adapted 

individuals, dso  c d e d  fit individuals, will have relatively large numbers of 

offspring. Poorly performing individuals WU produce few or even no offspring 

at dl .  The combination of good characteristics from different ancestors can 

sometimes produce superfit offspring, whose fitness is greater than that of 

an earlier parent. In this way, species evolve to become more and more well 

sui ted to their environment . 

A new population of possible solutions is thus produced by selecting the 

best individuals from the curent generation and rnatiog them to produce a 

new set of individuals. In essence, by rnixing and exchanging components of 

better individuals over many generations, good characteristics are spread out 

through the population. With the view of an optimization perspective, by 

randomly generating the initial population, a broad area of search space is 

investigated, and then by mating the more fit individuals, the most promising 

area of this space is explored and it is in this sense that genetic algorithms 

may more Likely corne up with the global optimum. If a genetic algorithm is 

designed well? the population wilI then converge to a near-optimal solution. 

%y its probabilistic nature, genetic algorithms are not guasanteed to al- 

ways find the specific global optimal solution, but generally, they can fmd a 

very near-opt imal solut ion very effect ively. 

Before a genetic algorithm can be implemented as  a software program, 

a suitable coding (representation) must be made. Also required is a fitness 

function which is used to assign a figure of merit to each coded solution. 
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On the other hand, during program execution, parents must be selected for 

reproduction, and recombined to generate offsp ring. In w hat follows, t hese 

aspects are explained in greater detail. 

3.3.1 Coding 

To translate a problem into a suitable form for a genetic dgorithm, a poten- 

tial solution should be represented as a set of parameters (for instance the 

dimensions of beams in a bridge design, or the different control rules in a 

decision table in a fuzzy controiier). These parameters are then linked in a 

string, most often in a bit-string. Such parameters are referred to as  genes 

and the resultant string is cailed a chmmosome. For instance, if our problem 

is to minimize a function of three variables such as F ( x  , y , z), each variable 

should then be represented with a string of, say 4 bits3. Clearly, t he  resulting 

chromosome would consist of 12 binary digits as shown in Fig. 3.2. 

Figure 3.2: A typicd string in a genetic dgorithm. 

3.3.2 Evaluat ion 

The first step in every iteration of a genetic dgorithm is to determine how well 

each chromosome can solve the problem. This step which is called evaluation 

is the only one in which the interpretation of the chromosome is used. The 

result of this evaluation, which is called a fitness value, is used in the next 

- - - - - - - - - - - - 

3~ more practical resolution for each variable might be 10 bits, giving an accuracy of 
one part per thousand. 
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step to  specify how many offspring shouid be generated by any particular 

chromosome- 

3.3.3 Reproduction 

In this step, a new population is created based on the evaluation of the 

current one. For every chromosome in the current population, a nurnber of 

exact copies are generated with the best chromosomes producing the most 

copies. -4s a result. good individuals might be selected several times while 

poor ones may oot be chosen at  d. Figure 3.3 iliustrates this point. Ln 

Old population Fitness 
value 

M a ~ g  pool (Parents) 

Figure 3.3: Contribution to the mating pool based on fitness. 

this way, a genetic algorithm takes from biological evolution the  strategy of 

suruival of the filtest. There are several ways to calculate t he  number of 

offspring that each chromosome can be docated. The two most popular 

methods are referred to as the ratio technique and the r a d  scheme [53]. In 

the ratio technique, each individual is reproduced in proportion to its fitness. 

For instance, an individual whose fitness is ten times better t h m  another will 

produce ten times the nurnber of offspring. The nice point about this method 

is that if a good individual emerges soon, it can guide the population quickly. 

The shortcoming of this approach is that  if a good individual, but not the 
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best one, &ses then the population may converge prematureiy on a possibly 

suboptimal solution. 

In the ranking technique, the population is ranked and the number of 

offspnng that each chromosome generates will depend upon its rank. For 

instance, the top 20% of the offspring generate two offspring, the bottom 

20% offspring generate no offspring, and the rest generate only one offspring. 

B y using t his technique, no chromosome can dominate the population in only 

one generation. In fact, no matter how close the actual fitness d u e s  are, 

there is dways constant pressure to improve. On the other hand, this leads 

to a slow convergence once a superfit individual is present and is not able 

to guide the population to the solution as quickly as is possible in the ratio 

technique. 

3.3.4 Recornbination 

The previous step. reproduction. creats a population whose members are cur- 

rently best fitted to solve the problem. However, many of the chromosomes 

are identical and none are different from the previous generation. Therefore, 

it is now necessary to generate new individuals such that they have a higher 

performance index. This process is referred to as recombination4. To do 

that, some genetic operations should be used. Among the most cornmon are: 

One-point crossover: In this case, two individuals are selected and 

t heir strings are cut at some randomly chosen position5. This provides two 

head segments and two tail segments. The heads (or tails) of these two chro- 

mosomes are then swapped to produce two new offspring. In this way, each 

4 ~ t  should be noted that in some literature, the reproduction stage is referred as the 
selection stage and the recombination stage is known as the reproduction stage. In this 
work, by recombination, we mean how to choose parents frorn the existing population and 
the essence of recombination is how to generate otfspring. 

5The cut must not take place within a parameter bit field. 



3.3 Genetic alnorithrns: An overview 42 

offspring inherits some information fiom each parent. Since there is just one 

break point, the procedure is cded  one-point mssouer. Figure 3.4 illus 

trates the foregoing process by which information between two individuds 

is exchanged. Crossover is not usudy applied to a l l  individuds fiom the 

mating pool. -4 random choice is made for choosing two mates where the 

likelihood of crossover is more than 60% [53]. 

I 
Parents Offspriag 

Figure 3.4: One-point crossover. 

Two-point crossover: Based on this operation, two strings are split 

into three parts by two cut-points and the middle part is then swapped 

(cf. Fig. 3.5). The two-point crossover can be thought of as a one-point 

Parents Offspring 

Figure 3.5: Two-point crossover. 

crossover if the chromosome is viewed as a loop by joining its ends together 

and one cut point is assumed as the start of the string (see Fig. 3.6). 

Mutation: Mutation is applied to each individual independently after 

crossover. It randomly changes one gene with a small probability. Figure 3.7 

illustrates this point where mutation occurs in bit number four of the binary 

string shown in Fig. 3.2 on page 39. Although the probability of mutation 

is very srnall, it is very crucial to the success of the genetic algorithm. In 

effect, it explores the undiscovered part of the search space for finding the 
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Cut point 2 --- 

Figure 3.6: Chromosome viewed as a loop. 

global optimum. 

El El iii El El El 
Figure 3.7: Mutation. 

To visualize a single iteration, the so c d e d  generation, of the genetic 

algorithm technique. a population of nine elements is shown in Fig. 3.8. Ev- 

ery element represents an individual where the intensity is proportional to 

level of adaptation. First, reproduction is applied in favor of highly adapted 

individuals. This leads to a higher average fitness for the entire population 

frorn which the rnating pool is fomed. Following this stage, recombination 

operators are applied to the members of the mating pool to generate new 

individuals. As can be seen in Fig. 3.8 the number of fit individvals has in- 

crewed. The flowchart of the entire process of a genetic algorithm is depicted 

in Fig. 3.9. 
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o m  O 

Reproduction 

Old generation 

Figure 3.8: Graphical illustration of single iterat ion. 

3.4 Coding the design problem of a fuzzy con- 

troller 

To translate the fuzzy controIler design problem into a genetic algorithm, 

different parameters of the controller should be distinguished and encoded 

based on the desired resolution. h what foilows, three different parameters 

are discussed. 

3.4.1 Normalization and denormalization factors 

Normalization and denormakat ion factors, i.e. Né , Ni , iVÙ. are crucial to 

fuzzy controllers since they determine what  portion OF the decision table 

can be used. Ln fact, they change the membership functions uniformly over 

the  input/output domains. In this way, the controller's gain over the entire 

input domain can be adjusted. This immediately Leads to the fact that the 

normaiization and denormalization factors are also essentiai to the stability 
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I ( B a d  on fimcss value ) 

REPRODUCTION 

( Setdon pmcw ) 

Figure 3.9: Flowchart of a genetic algorithm. 
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of fuzzy controIlers. In reference to classical control theory, they have the 

same role as KP and & have in the proportional plus integral controller. 

Figure 3.10 illustrates the genetic representation of such factors as a 30-bit 

Figure 3.10: Bit-string representation of nomalization and denormaliza- 
tion factors. 

string where for every puameter a resolution of 10-bits has been assurned. 

3.4.2 Membership functions 

In contrast with normalization and denomalization factors. the membership 

Funct ions are responsible for local adjustment of the controlier's gain. Viewed 

in a state space perspective, by dividing this space, they construct a frame- 

work which defines the characteristic points. Therefore, they are as important 

as the characteristic points. As demonstrated in Section 2.7.2 of Chapter 2, 

two different sets of membership functions for input and output variables, 

results in a cornpletely different mapping even though the decision d e s  are 

identical. To bave complete freedom in partitionhg the state space, asym- 

metrical membership functions should be chosen that consequently suggest 

t hree different design parameters, i-e. Al , .A2 , and , A3 for each membership 

functions, (see Fig. 3.11). Let us consider seven membership functions for 

each variable for a controller with two inputs, 42 parameters are required to 

define the entire set of membership fmctions. Figure 3.12 illustrates such a 

string where every parameter is encoded with 10-bit resolution6. Note that as  

- -  - - -  

'1n the normalized domain of (-1.11, 10 bit molution ends up with a precision of 
(1 - (-1)/2l0 - 0.002). 
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îi 

- I O +1 

Figure 3.11: Membership function parameters. 

Figure 3.12: Bit-string representation of membership function parameters. 

was shown in Section 2.7.2, in the case of 50% overlap for membership func- 

tions, the mapping functions are restricted only to the characteristic points. 

Figure 3.13: Full overlap of rnembership functions. 

To have complete freedom, full overlap for membership functions is pos- 

sible as shown in Fig. 3.13. ui this way, the controller is able to scan any 

other mapping by which the performance index is reduced to a more desirable 
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value. 

3.4.3 Decision table 

The d e s  of a fuzzy controller are responsible for the general shape of the 

h z z y  mapping function. In state space, they, in fact, control the state tra- 

jectory into equilibrium. To translate these rules into string format, every 

consequent part of a d e  shouid be encoded in a binary fonn. Since every 

Figure 3.14: Bit-string representation of decision table. 

consequent can take on on- one of seven different values based on Table 2.5 

in Chapter 2, every consequent can be represented by ody  three bits. In this 

way. a string of 49 parameters or equivalentiy 3 x 49 = 147 bits wiil represent 

the entire decision table, (see Fig. 3.14). Such a string can also be seen as 

the decision table of Fig. 2.5, once different rows are put beside each other. 

3.4.4 Coding of the entire controller 

The existing design techniques, to the aut hor's knowledge, employ one part 

esclusively or at most three parts but sequeotially tuned for the design of 

a fuzzy controller [Z, 24,31,32,34,40,54]. In the sequential approach, first 

normalization factors are found by an optimization technique where the mem- 

benhip functions and decision table are assumed to be constant. Once the 

op t imization technique finds the best d u e s  of normalization factors, t hese 

parameters are fixed and the membership functions parameters are processed 

by the optimizatioa algorithm. Finally, with the optimal values of normal- 

ization factors onci rnembership functions a new decision table is found by a 
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1 factors J l 
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Figure 3.15: Bit-string representation of entire controlier. 

search technique, usudy gradient based. 

The point that the author intends to clatify is that the different parts 

of a fuzzy controller are not independent from each other and therefore, 

such approaches may Iead, in general, to sub-optimal performance. La fact, 

by changing one parameter of a fuzzy controiler some other parameters are 

changed. This implies that there is a interaction between different sets of 

controller parameters. For instance, by changing the normalization factors, 

the domain of every mernbership function is changed. Thus, for the same 

input value, some other membenhip functions are observed which fires some 

other rules. This, of course. Ieads to a new value for the controller output. 

It also indicates that the interaction of al1 design parameters of a fuzzy con- 

troller is, in effect, important to its success and hence the tuning and the 

organizing of the controller parameters should be, in principle, best done 

concurrently (see Fig. 3-15). TO do this, a new bit string is required consist- 

ing of ail the design parameters of the fuzzy controller. Such a string can 

be constructed by cascading the different strings together. It is evident that 

the  resultant string as shown in Fig. 3.15, in effect, constitutes the complete 

information for the design of a fuzzy controller. Therefore, if such a string is 

incorporated in the control system loop, a performance index by which the 

fitness value o l  the string is evaluated can be obtained. In Fact, the control 

loop is responsible for the evaluation of different individuals, i.e. solut ions. 

This notion is illustrated in Fig. 3.16 in which two loops can be distinguished. 
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Conml system loop % 

Genetic search loop 

Figure 3.16: illustration of internal and external loops. 

The intemal one, the closed loop systern including fuzzy controller, is respon- 

sible for system operation corresponding to a given individual and assigns 

the performance index which in turn determines the fitness value, required 

by the exterd  loop. This string is then processed by the genetic algorithm 

based on its fitness value. The process is continued until if converges to a 

near-op t i mal solut ion. 

Looking back to Fig. 3.3 on page 15, and its modified version in Fig. 3.15, 

it is now the optimization technique which is responsible for development of 

each block in a fuzzy controller's structure. More importantly, it would be 

better if the proposed approach could incorporate any existing knowledge 

about the controller. The task of such a design algorithm is the modification 

of the existing knowledge and, at the same time, the investigation of new fea- 

sible structures. The approach proposed in this dissertation includes such a 

feature by the incorporation of any tentative values for controiier parameters 

into the initial population. Figure 3.17 illustrates such a hierarchal approach 



3.4 Coding the design problem of a fuzzy controllet 51 

---- uiformation flow in design (generated by search algorithm ) 

- - - -  -c Information Bow in design ( acquited by expert ) 

Figure 3.17: Different types of information incorporated in the fuzzy con- 
troller design. 

to the design of fuzzy controilers. 

3.4.5 Fitness function 

Since in a genetic algorithm, each individual represents a possible solution to 

the problem, a particular Jtness /unctioon is required for the evaiuation of the 

individuals. In this way, for every particular chromosome (i.e. each solution), 

the fitness function returns a single numerical value, which inciicates the 

quality of that solution. In the context of optimization it is the performance 

index of the closed loop system that becomes the fitness function. 

While the examples presented in this dissertation are based upon a par- 

ticular performance index, this does not affect the generality of the proposed 
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technique. As shown in Section 4.4, a multiple performance index c m  also 

be used. Furthemore, any constraint on the controlles parameters or system 

models, can be incorporated into the optimization technique to convert the 

unconstrained optimization problem into a constrained op timization prob- 

lem, 

3.5 Chapter summary 

This chapter attempts to provide some insight for the task of fuzzy controller 

auto-design. It t u s  out that the objective h c t i o n ,  which is in fact respon- 

sible for the construction of the search space hyper surface: seems to have a 

multi-modal nature in a space with. Say 94 dimensions (cf. Section 2.6) .  -.\lso. 

the question whether or not such a hyper surface is continuous or differen- 

tiable, cannot precisely be answered ahead of time, and this is another fact 

t hat does not allow us to empioy gradient-based techniques for this optimiza- 

tion. It is such insight, therefore, that directed us to the genetic algorithm 

as an appropriate choice for our optimizer. As an alternative view, if fuzzy 

controllers are thought of as one t-ype of artificial intelligence, it seems more 

naturd to choose an optirnization approach, again from artificial intelligence. 

For instance, bot h techniques, i.e. f q  control and genetic algorithm, share 

the feature t hat they do not require derivatives for their information process- 

ing. 

With this fact in mind, a brief overview of the genetic algorithm has been 

presented. Our novel solution, which is concurrent auto-design of a fuzzy 

controller and simultaneous optimizing of performance, is proposed in the 

Last part of the chapter. The point, worth emphasizing here, is that even 

though each sub-string (e-g. devoted ody Say to membership functions) c m  

be  optimized aione br the autedesign of a fuzzy controller, it does not yield 

an over-al1 optimal solution. The interactions among different parts of a 
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fuzzy cont rouer, i.e. normalization factors, membership functions, and table 

ceUs must be taken into account, as is made deas in Chapter 5. 



Chapter 4 

Genetic based auto-design of a 

fuzzy controller for induction 

motor drives 

4.1 Introduction 

Adjustable speed drive technology has evolved enomously over the past 30 

years. This evolution has been made possible because of technological ad- 

vances in a number of related fields, such as power semiconductor devices, 

converter topologies and control techniques. Moreover, the advent of mi- 

crocontroilers and digital signa. processors (DSP) has greatly assisted the 

practical implernentation of the newer control techniques. In particular, the 

technique of field oriented control bas advanced the control characteristics of 

ac machines to such a degree that it is now the most attractive technique for 

torque control of ac machines and is becoming an industry standard. Un- 

der field oriented control, an induction motor drive dynamics imitate that 

of a separately excited dc motor drive, with al1 the advantages of using an 

induction machine. More recently, with the application of intelligent con- 
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trol technologies, such as expert systems, fuzzy logic and neural networks, 

the frontier of adjustable speed drive technoLogy [5,15] is advancing stiU fur- 

ther. Among the artificial intelligence (AI) techniques, fuzzy logic is perhaps 

the most successfid one, if judged fiom the standpoint of the number of 

practical applications [27]. Fuzzy logic demonstrates significant potentiai for 

advancing power electronics technology [2,5,7-161. Its ability to incorporate 

qualitative knowledge and to handle imprecise information makes it very at- 

tract ive to power electronic systems where non-Lnearity is a common feature 

and a precise model, in general, is difficult to obtain. 

In many cases drive systems are subject to load disturbances aad pa- 

rameter variations which make these systems highly uncertain. This leads 

to a quest for highly robust controuer schemes in such applications. Fuzzy 

logic controllers are quite rvell known for their robustness if designed prop- 

erly. Furthermore, if the performance benchmark of the drive system can 

only be expressed qualitat ively, fuzzy logic control is more convenient t han 

conventional counterparts. Despite these benefits, the application of fuzzy 

control has been impeded to some extend due to the lack of a systematic 

design approach [& 10,15,26,27,55]. Furthemore, a great deal of time and 

effort can be spent on fine tuniag and yet, there is no guarantee of achieving 

an optimal performance. 

The application of fuzzy logic control for the field oriented control of in- 

duction motor drives is quite new [6]. Although, some studies have been 

carried out, most, if not all, are based on conventional trial-and-error tech- 

niques [2,6,13, 16-20]. In [6], for instance, C. Y. Won and B. K. Bose have 

employed fuzzy logic for induction rnotor position control with field oriented 

control. They have proposecl two different decision tables. one for coarse 

tuning and the other for fine tuning. While this improves the system per- 

formance to some extent, the trial-and-error technique has been ernployed 
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to modify a standard decision table where the membership functions are as- 

sumed to be fixed. In another attempt, H. Liang and H. Y. Chen, in [20], 

have used the same approach but this time, for the speed control of induction 

rnotor. 

At this point, it is worthwhik to mention that the application of fuzzy 

control is not iimited to hding the best dynamic for e1ectrica.I drives. It 

can also be applied for other purposes such as minllnizing the input power, 

maximizing the power factor or efficiency, and so on. In these cases, new 

decision tables and new membership functions are required in which the 

foregoing design and tuning problems arise again. The EPA'. for instance, 

has conducted research [2] to enhance rnotor efficiency by employing fuzzy 

logic for variable speed drives. Here, not the closed loop, but the tradi tional 

open loop control approach is taken, in which the volts / Hz is held constant. 

The point is that even though the number of d e s  is small, e.g. 13 rules, 

to overcome the tuning problem of the fuzzy controller? the designers have 

used a development software tool, TILShellZ, by which the trial-and-error 

approach can be accomplished in a less tedious and less time consuming 

manner. 

In what follows, a generd description of indirect field oriented control, as 

used in an induction motor drive, is &st presented from two standpoints; one 

traditiond, another novel. Then a conventional fuzzy controller is employed 

for speed control of an induction motor with field oriented control. The 

proposed automat ic design technique is t hen employed to design an optimal 

fuzzy controiler for the same system. Three cases are considered followed 

by simulation results to demonstrate the eficiency and superiority of the 

proposed approach compaied to the other conventional counterparts. 

' Environmental Protection Agency of U.S.A. 
'TILShell is a software development tool by which the design and tuning of a fuzzy 

controller can be performed in a menu driven environment. 
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For the proposed technique the tuning processes of input /out put nor- 

malization factors and the developing and partitioning of a control surface 

are automated. While there has been a great deal of effort in the develop 

ment of field oriented control, and the invention of the idea stems fiom a 

deep understanding of physical phenornena of electrical machines, the novel 

view presented here has its roots in a pure mathematical fiamework. able 

to derive the same non-iinear transformation As mentioned eulier, the per- 

formance measure can be changed. This, in essence, is another indication 

that the proposed technique is very general, being applicable to most fuzzy 

control applications. It is in this sense that the application of the proposed 

technique is extended to highly non-linear systems in Chapter 5 where some 

other facets of the proposed approach are investigated. 

4.2 Field oriented control 

4.2.1 Tradit ional view 

An induction motor is a high order, rnulti-variable, non-linear, uncertain sys- 

tem which seems to be very difficult to control. The weil known dq mode1 

of an induction motor is presented in Appendix B. In effect, the termind 

voltages and currents of the machine, which axe readily accessible, are non- 

linearly related to the electromagnetic torque and flux. -4ny change in in- 

put currents not o d y  leads to a change in electromagnetic torque, but also 

changes the motor flux. This indicates that there is an inherent coupling 

between torque and flux. Since the flux has a slow transient, this coupling 

leads to a sluggish change if any incremental torque is demanded. On the 

other hand, it is quite well known that a linear relation between the control 

variable (currents or voltages) and the controlled variable (torque or speed)? 

is desirable in any control system. If this happens, not only a high perfor- 
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mance drive for fast torque response can be achieved, but also the heritage 

of linear control theory is effectively used for the development of powerfd 

control methods for non-Lnear systems. 

In 1969, Blaschke, a gennan engineer, established a new decoupling con- 

tro1 technique by which a hear  relationship between torque and stator cur- 

rent component is attainable [4]. Based on this technique, if an observer is 

situated on a rotor flux line3 and rotates with the same speed as the flux 

Line, it will be reported that the flux is constant in time and space (of his 

own frame). This can be equivalently interpreted as having a constant flux 

component of the stator current. Viewed in this perspective, any change in 

the torque component, which is perpendicular to the flux axis, does not affect 

the flux component of stator current. This equivalently means that a decou- 

pling between torque and flux has been achieved. In this way, the torque can 

be controlled in proportion tc' the torque component of the stator current 

while the level of rnagnetization is constant. Thus, a fast torque response 

is attainable and the complexity of the dynamic mode1 is greatly simplified. 

This d s o  facili tates the application of modern control techniques to enhance 

drive performance. 

To attain the decoupling discussed above, the flux component of stator 

current should be aligned with the rotor flux. This immediately requires two 

different transformations: one for three phase ta two phase mappings and 

the other for vector rotation of stator current. While the former is a simple 

linear transformation, the latter requires identification of the rotating flux at 

every instance. This shows how important it is to know the position of rotor 

flux in field oriented control. 

-4lthough the concept of field oriented control, in theory, was very im- 

3The most suitable location for such an observer would be along the Aux line of greatest 
flux density. 
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pressive, it was not readily applicable for more thaa one decade. However, 

the development of microprocessor digital circuit ry and the advent of high 

frequency power semiconductor devices, provided the practical means to im- 

plement field oriented control. In today's drive system, field oriented control 

has widely been accepted as the most attractive torque control scheme for 

ac machines. 

4.2.2 A novel view 

Global input-output lineuri=ation, as a part of the differential geornetry tech- 

nique, is ao approach to non-linear control design which has attracted a 

great deal of interest in recent years. Based on this technique, if the system 

is input-output linearizable, which is the case with the induction machine. 

t here exists a state feedback transformation t hat transforms the non-linear 

input-output relation into a linear one. The interesting part of this approach 

is global linearization as opposed to local Linearization as is done quite often 

in control system design. Figure 1.1 depicts the generai structure of global 

I Non-tUiear system 1 .  
I 1 i 

Figure 4.1: General st nicture of global input-out put linearization. 

input-output linearization where x denotes the state variable. y is the system 
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output, u is the system input, v is the state feedback transformation input, 

e is error, y* is the desired output, and TF denotes transfer function. in 

this figure, while the mapping u + y, i.e. actual system, is non-linear, the 

new mapping u + y, the overd  system, becomes gIobaily Linear [56]. That 

is the reason that this method has been cailed input-output linearization as 

opposed to input-date lineariration. It is quite clear that to achieve such 

a Linear relationship, the state feedback transformer should be non-linear as  

weU. If ail the state variables required for the linear transformation are not 

available by direct measurement, as is the case with the induction motor, a 

state observer is required to estimate the mavailable states. This estima- 

tion would be on the basis of a dynamic mode1 and output measurement 

(see Fig. 4.2). This is exactly the case for the so called direct field oriented 

control of an induction machine. If a feedforward input-output lineariza- 

1 Non- iinear syscem 1 
I 1 .  

Figure 4.2: Global input-output Linearization based on a state observer. 

tion is applied which requires a feedforward path, as  shown in Fig. 4.3, a new 

scheme wili be achieved which, in the context of variable speed ac drives, is 

called an  indirect field oriented control (IFOC) drive. In this case, the state 

transformation, which is in effect a non-linear compensatoc, turns out to be 

the field oriented equations for induction motor speed control (see Fig. 4.4). 
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Figure 4.3: Feedforward input-out put linearizat ion. 

Once this non-linear compensator is found properly, a iinear relation between 

input. I,',? and output electrornagnetic torque, Te, will be achieved and con- 

sequently Fig. 4.4 can be simplified as is shown in Fig. 4.5- This is valid as 

long as the parameter variations of the induction motor remain smdl, or if 

not, its variations are considered in the design of the non-linear compensator. 
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Figure 4.4: Block diagram for IFOC of an induction motor. 
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I 
Indhct field oriented conml 

of an induction machine 1 

Figure 4.5: Simplified control block diagram of IFOC for an induction mo- 
ter. 

4.3 Convent ional fuzzy controller 

As described in Chapter 2- a Fuzzy controiier consists of a decision table. two 

non-Linear interfaces (fuzzification and defuzzification), and two Linear inter- 

faces (nomalization, and denormalization factors), (cf. Fig. 2.3 on page 15). 

The controller has two inputs, e and é, and one output, ù, as shown in 

Fig. 4.6. Let the membership hnctions of input-output spaces be gaussian; 

Indicetc fieidoriZed&m>Ï 1 
1 of an induction machine I 

Figure 4.6: Simplified IFOC block diagram with fuzzy controller 

for convenience re-&am in Fig. 4.7. Also consider a commonly used deci- 
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sion table, which in Chaptei 2 is referred to as the sliding mode table; for 

convenience re-drawn in Fig. 4.8. 

'l 

Figure 4.7: Gaussian membership functions 

It is a comrnon practice in the design of f'zy controilers, that the designer 

starts with these standard forrns of membership functions and decision table 

and then modifies the normalization factors, rules, and membership func- 

tions until a reasonable performance is achieved. Such a conventional design 

procedure is shown in Fig. 1.9. How many times the modification loop should 

be iterated depends on the designer's experience, expertise and perhaps Luck! 

To avoid the pureIy blind trial-and-error technique, a new serni-algorithmic 

ap proach is described here t hat accelerates the modification loop. This semi- 

algorithmic approach is the basis for the evaluation of the proposed genetic 

algorithm autedesign approach, resulting in a much fairer cornparison than 

would be otherwise possible. 

Based on the semi-algorithmic approach, the system trajectory in state 

space is observed and then the cells of the decision table or correspond- 

ing membership functions are changed to fotlow the desired trajectory. The 

essence of this approach is based on the notion that a desired system step 

response has a general shape as shown in Fig. 4.10, and its corresponding 
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Figure 4.8: Sliding mode table. 

Understand physical system 

& 

control requirernent i 

Figure 4.9: Conventional design algorithm for a h z z y  controiler. 

r- 
I 

Design the coniroller 
based on 

stanàard membership fwictions 
& 

decision table 
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trajectory in fuzzy-partitioned state space4 has a shape as shown in Fig. 4.11. 

On the other hand, the cells of the decision table are responsible for accelera- 

tion or deceleration of the system trajectory. Therefore, the link between the 

ceUs and trajectory can readily be viewed in state space, and the modification 

process can be directed in a more convenient fashion5. 

Tirne ( Sec ) 

Figure 4.10: -4 typical desired step response for a drive system. 

Based on this modification approach, a fuzzy controller is designed for 

indirect field oriented control of an induction motor. The induction motor 

that is used for this simulation is a 3-phase, &pole, 220 V, 10 hp, 60 Hz motor 

(cf. Appendix B for the mathematical model) with the following parameters 

expressed in per unit [57]: 

'or as called in the fuzzy literature, linguistic stote space. 
semi-algorithmic approach is not the principal contribution of this thesis. 
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et 

Figure 4.11: Trajectory of the desired typical response in fuzzy- partitioned 
state space, 

The resultant control polics i .e. norrnalization factors, decision table, are 

shown in Table 4.1 and Fig. 4.lSrespectively. 

C 1 Conventional I/ 
fuzzy controller I l l  

Table 4.1: Normalization factors found by trial-and-error 

It sbould be noted that since the modification of membership functions is 

more difficult, the resultant membership functions have the sarne shape and 

overlap as the standard ones (cf. Fig. 4.7 on page 64) .  

The speed response of this fuzzy controLier is depicted in Fig. 4.13 for a 

step change in the reference command of the closed loop system. 
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Figure 4.12: Modifieci control policy of conventional approach. 

Figure 4.13: Step response of motor speed based on semi-algorithmic ap- 
proach. 



4.4 Optimal fuzay controller 69 

4.4 Optimal fuzzy controller 

Li this study of auto-design of a fuzy controller, two dXerent approaches 

are considered. First a sequential design of a f u z y  controller is considered, 

which consists of self-tuning6 as well as self-organizing7. These approaches 

are referred to as case-l and case-3, respectively. The second approach is 

a concurrent design of the fuzzy controller by which normalization factors, 

membeahip functions, and decision d e s  are optimized concurrently. In the 

following simulations, t bis ap  proach is referred as case-3. 

4.4.1 Performance index 

Every optimization requires an objective function. In control. the objective 

function is. in fact, the performance index which is a quantitative value, 

measuring deviation from an ideal performance. In some situations, there 

may be more than one criteria to be satisfied. In these cases, the optimization 

problem is called multi-objective optimization in which the ultimate objective 

funct ion is usudly a Linear combinat ion of some different objective functions. 

For drive applications, consider a step speed response where the god is 

a short rise time. small overshoot, and near-zero steady state error. Since 

most performance indices8 in classical control do not necessarily fulfill t hese 

requirements sirnultaaeously, a multiple objective function is required. 

In this respect. a mesure of a fast dynarnic response may be chosen as 

%orne words of caution, at this point, are tvorth mentioning. By sel/-luning, we do 
not rnean an on-line tuning. The proposed technique is, in effect, an off-line approach for 
finding the best values of normalization factors. 

'In a self-organizing approach, the consequent parts of the decision rules, i.e. table 
cells, are found based on the optimization. 

'Such as integral of absolute error, integral of square error, and so on. 



while the steady state error can be measured by 

The penalty on the multiple overshoot of the response can be defineci by 

where 

In t his case, 6(dy/dt ) detects the instances t hat overshoots (or undershoots) 

occur and the term ly' - y(t)( determines the response deviation from the 

desired value. 

To achieve these ob jective functions simuitaneousl~ the resultant perfor- 

mance index can be defined as 

J =  W. Ji (4-5 

rvhere Ji = [JI  . J2, J3] and W = [wt, w,, us,]' is the weight vector of the ob- 

jective function and is application dependant. Furthemore, even for a given 

system, the elements of this vector , i.e. M, q,, wSI , axe not independent from 

each other and should be  specified based on the relative importance of each 

terrn. For the drive systems with parameters given in table 1.1, the following 

d u e s  were found based on triai-and-error to fulfill our requirementsg. 

w~ = 1 w, = 6 w,, = 1. 

'~n lact, properly defining the performance index is usually a difficult tasic, requiring 
some design intuition. 
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Hence, the resdtant performance index becomes 

This performance index is used for all the folIowing simulations. In every 

case, simulation result s are compared wi t h t hose of convent iond counterparts 

designed based on the semi-algorithmic appmach. 

4.4.2 Sequential approach 

Case-1: Self-tuning fuzzy controller h this case, the genetic algo- 

rithm is applied to find the best nonnalization factors using the foregoing 

performance index. This is done with the standard decision table and mern- 

berslip functions used in the controller's structure. The proposed approach 

is able to find near-optimum normalization factors as [isted in Table 4.3- The 

free parameter of the genetic algorithm are shown in Table 4.2. Figure 4-14 

demonstrates the simulation results. As this table indicates the optirnization 

program bas converged in only 37 generations. Since the number of design 

parameten are smaii, the mutation rate is chosen high to permit the genetic 

algorithm to explore other points of the search space. The speed of conver- 

1 Number of individuals 1 30 1 
I 

1 Percentage of crossover l 100% n 

Table 4.3: Case-1: Normalization fac- 
Table 4.2: Case-1 : Free parameters of tors 
a genetic aigorithm 

gence is shown in Fig. 4-15 in rvhich the performance index (for the most fit 

individual) has been depicted versus the generation numberLO. 

l O ~ o r  our genetic algorithm with the parameters of Table 4.2, it takes around 30 minutes 
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Figure 4.14: Case-l: S tep response of motor speed for self-tuning approach. 

Figure 4.15: Case-1: Speed of convergence. 
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Case-%: SelGorganizing hizzy controller In another simulation 

experiment, the normalization factors, found in case4 by the genetic al- 

gorithm (see Table 4.3), are chosen and the genetic algorithm is used to 

generate the decision table in a sequential manner. Also, a standard deci- 

sion table is m a n u d y  tuned using the semi-algorithmic approach described 

above. The simulation results shown in Fig. 4.16 indicates the superiority 

of the sequential auto-designed fuzzy controller over the sequential manuauy 

t uned couterpart. 

The genetic algorithm with the free pammeters shown in Table 4.4 was 

able to determine t hese rules after about Y0 generakions. The speed of con- 

vergence is show in Fig. 4.17. 

Table 4.4: Case-2: Free parameters of a genetic algorithm 

4.4.3 Concurrent approach 

45 
P. 

100% 
3% 
P. 

SO 
-19 
14'7 

a. 

Case-& Sel&tuning self-organizing fuzzy controller Since the dif- 

ferent stages in a fuzzy controller are not independent, the sequential auto- 

design approach may not tead to the optimal solution. Therefore, concur- 

rently generating and modifying different pasameters of the fuzzy controiler 

seems to be a logical approach. Hence, in this case, the three normalization 

Number of individuds 
Percentage of crossover 

Max Percentage of mutation 

on SPARC 5 computer to find the optimum values. 

Number of generations 
Number of design parameters 

Bi t-string lengt h 
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Figure 4.16: Case-?: Step responses For different designs of decision table. 

Figure 4.17: Case-2: Sequential approach (a) Auto-design versus manual 
design (b)  Speed of convergence for a genetic algorithm. 
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factors, membenhip parameters, and the table celIs, are used in the con- 

st mction of the bit-string. While normalization factors determine the proper 

domain of the control surface, the table cells are responsible for the best 

coverage of the control space. At the same time, membership h c t i o n s  are 

involved in the partition of this surface in an optimal farhion. Ln effect, not 

only the antecedents and consequents of control d e s  are optimized, but dso 

the proper domain on which these membership functions rely, are found as 

tvell . 
To achieve complete freedom in overlap, support, and asymmetry. every 

rnembership function is represented by three parameters (cf. Fig. 3.1 1 on 

page 47). The center of gravity method is chosen as the defuzzification tech- 

nique. to achieve better smoothness in the control surface. Furthermore; the 

membership functions have been defined as gaussian-shaped to accompmy 

the defuzzificat ion technique in t his smoot hness process. 

A concurrent autedesign fuzzy controller for indirect field oriented con- 

trol was designed. Based on this experience, the genetic algorithm with the 

free parameters shown in Table 1.5 was able to find the near-optimum so- 

lution with a population of 32 individuds, in almost 310 generations (see 

Fig. 4.20). This is due to the large number of design parameters involved in 

concurrent optimization. The normalization factors and membership func- 

tions are given in Table 5.2 and Fig. 4.1ST respectively. The simulation results 

are shown in Fig. 4.19. 
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Il Number of generations 1 310 11 

3 

Number of individuah 
Percentage of crossover 

Max Percentage of mutation 
- n Number of design parameters 1 

1 

94 1 

Table 4.5: Case3: Free parameters of 

32 
100% 
12% 

a genetic algorithm 

.' 

I 

-- - - - - - - - - - -- - - - - . 

Table 4.6: Case3: Normalization fac- 
tors found by a genetic algorithm. 

Figure 4.18: Case-3: The new membership functions found by a genetic 
algori t hm. 
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Figure 4.19: Case-3: Step responseof motor speed For concurrent approach. 

I I -  ........ 
................. ..... .................. ................. 1000 --.--.-." ' --..-.-----*.: 2 

Figure 4.20: Case-3: Speed of convergence. 
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4.5 Chapter summary 

In this chapter, a novel approach to  field oriented control is presented, pre- 

ceded by a brief review of the traditional approach. Based on diResential 

geometry, a field oriented controIler can be seen as a non-hear compensator 

that requires a state feedback observer to linearize the overall system from 

a new dummy input to the original output. Also in this chapter, the pro- 

posed autedesign technique is employed for the speed control of an induction 

rnotor drive with indirect field oriented control. While in this particulor ex- 

ample, the performance index is chosen based on obtaining the best dynamic 

response, in other applications other criteria, such as input power, eEciency, 

power factor. and so on. can be ernployed to define the required cootrol strat- 

egy. To illustrate the efficiency of the proposed technique, a semi-algorithmic 

approach is also proposed to enhance the trial-and-error approach of conven- 

tional fuzzy control design. Findy, to demonstrate the flexibility of the pro- 

posed ap proach, t hree difFerent cases ore considered based on different sets 

of design parameters. The simulation results demonstrate the superiority of 

the proposed technique in contrast with the couventional counterpart. 



Chapter 5 

Discussion 

5.1 Introduction 

While the proposed approach was originally developed for high performance 

induction rnotor drives, it should not be confined only to this type of system, 

The approach presented in this dissertation, in fact, can be viewed as a much 

more general approach for a large class of non-linear systems. It con also be 

applied for multi-input multi-output systems where the conventional trial- 

and-error approach is difficult, if not impossible. For this reason, the main 

motivation of this chapter is to  demonstrate the generality of the proposed 

approach. and to point out several of its characteristics. 

Aside from the full op timization for the fuzzy controller design (58,591, a 

novel technique for the efficient design of a fuzzy controller is proposed. This 

technique is based on output partitioning as well as the sliding table. If fast 

tuning and development of the controller is of primary concern, the efficient 

approach should be ernployed. 

In this chapter, a non-linear system is first chosen to explore some aspects 

of the proposed approach. An output partitioning approach as  opposed to 

the input partitionhg approach is fust described. Then, a new point of view 
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to the robust design of a fiizzy controuer is discussed. Based on this view, 

a fuzzy controller, as  a specid class of mriable structure controllers, can be 

designed in such a way as to have a sliding motion. If that happens then the 

robustness of a fuzzy controiler can be ensured. 

The non-linear system, employed in this chapter, has the foilowing state 

space equations 

where xi and x2 are state variables and u and y denote the system input 

and output, respectively. Since the control objective is again to achieve the 

best dynamic and steady state behaviour, the same performance index as of 

equation 4.7 on page 71 is considered. For this system, however, the weight 

vector was found to be 

W = [l 4 0.51 

T hus the resultant performance index becomes 

5.2 Input partitionhg versus output parti- 

t ioning 

5.2.1 Overview 

While the optimal design of fuzzy controllers requires a search of the entire set 

of design parameters in a multi-dimensional space, the optimization problem 

can be simplified by reducing the number of these parameters. 
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To illustrate this point, consider the following example. For the time 

being, assume that the desired functioa of the controuer is already hown as 

given in Fig. 5.1, and our objective is to approximate this function to some 

degree of precision. One approach is to d o r m l y  discretize the output 

Figure 5.1: A desired function for the controller. 

Figure 5.2: Approximated function by uniforrnly discretizing the input 
space. 

space, along the y axis, and t hen obtain the desired discretized value for the 

input space, along the x axis, as shown in Fig. 5.2. The description rules are 
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if x is in domain A,, Then y is in domain A, 

If x is in domain Bz, Then y is in domain By 

With these rules and the uniform membership h c t i o n s  for output space 

the approximated cuve is, in fact, the piecewise-hear huiction shown in 

Fig. 5.2. On the other hand, one might think of d o d y  partitioning 

the input space, i.e. x auis, by standard membership functions and then 

speci-ing the desired membership functions for the output space. i.e. y axis. 

Figure 5.3 illustrates such an approach and again the piecewise Lines are the 

approxirnated function. 

Figure 5.3: Approximated function by unilorrnly discretizing the out put 
space. 

The essence of this section is that the sarne approach, i.e. output par- 

titioning, can be applied for our problem which involves discretization of 

a three dimensioaal space. Ln this case, the number of design parameters 

is decreased and a more efficient approach for the optimal design of fuzzy 

controllers can be achieved. 
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5.2.2 Input partitioning approach 

In this approach, the parameters of the output space axe assumed to be 

constant and uniforrnly distributed, while the optimal values of the input 

space are sought after. 

In this case, the optimization problem should be able to fmd 45' param- 

eters, and hence the optimization problem should search in a hyperspace of 

45 dimensions. As shown in the following sections, while this is simpler than 

complete input-output optimization, it is fâr  more complex than is the case 

for the output parti tioning approach. Figure .5.4 demonst rates the reqtiired 

bit string for this approach. 

1 ! Normalization . I 

Members hip func tions 
I factors I parameters i 

Figure 5.4: Bit-string for input partitioning. 

5.2.3 Output partitioning approach 

In this approach. for the sake of simplicity, the input space is uniformly 

partitioned and it is then only the consequent parts of rules as weii as the 

normdization factors rvhich are processed by the genetic algorithm. This. in 

effect, means the standard membership functions (cf. Fig. 2.1 on page Li) are 

chosen for the input space. Since the table cells are singletons, they do not 

require many parameters to be found. This decreases the nurnber of design 

parameters of the controuer. Figure 5.5 depicts the required string for this 

opt imization approach. 
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Decision table 
1 1  
B t 

I 1 1 

Figure 5 -5: Bit-string for output partitioning. 

However, as is shown later, if specid considerations are taken into ac- 

count, the optimization c m  be further simplified. Such simplification can be 

achieved using the sliding table approach as well as ouput partitioning ivhich 

results in an efficient approach for the auto-design of a fuzzy controller. The 

detailed study of this technique and the corresponding simulation results are 

given in Section 5.1. 

5 -2.4 Input-output partitioning approach 

While the output and input partitioning might give a satisfactory response, 

they are oot. in general, strictly optimal. Consider again the previous ex- 

ample shown in Fig. 5.6. If the k s t  and last points (points of A, D )  are 

assumed to be constant, the function can be approximated by choosing two 

arbitrary points (B,  C) at any arbitrary locations. This is not, however, 

t he  optimal approach. Therefore, the question which arises here is how to 

select the points B, C such that the best approximation of function can be 

achieved. In other words: which form of partitioning of the plane can lead 

to the optimal approach of the function? To answer this question, it is ev- 

ident that the framework should be fixed neither dong the horizontd avis 

nor along the vertical &S. It should be noted that in the case of output 

part itioning, verticd frames are fixed and the horizontal frames are free to 

scan the plane and in the case of input partitioning it is vice versa. In fact, 

in output partitioning the optimal algorithm should be able to End b',cr on 
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v 

Figure 5.6: Input-ouput parti tioning. 

y axis and point 6 ,  c on the x axis in Fig. 5.6. 

The origin of the problem cornes from the fact that in the discretizing pro- 

cess of a fuzzy controller, first one should defiae the input output membership 

functions i.e. constructing a framework such os Fig. 5.6, and the values that 

are responsible for connection of different vertices. Based on this insight, it is 

quite evident that  if the construction of such a framewock is not appropriate, 

a good approximation cannot be achieved even if the rules are completely 

perfect. In fact. the rules are responsible for increasing or decreasing the 

input to output function. It is the width of each frame (i.e. membership 

functions shapes) which determines the rate of change of the input to output 

function. This is the idea underlying the conciment optirnization of input 

and output parameters of a fuzzy controller. Based on this approach the en- 

tire set of paxameters of a fuzzy controller should be processed by a genetic 

algori t hm. 
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5.3 Robustness of a f h z y  controller 

5.3.1 Introduction 

Robustness is an issue that should be addressed in the design of a controller 

where the system is subject to parameter vaxiations or Ioad disturbances. 

Although it is quite weiI known that the hzzy controller is very robust in 

nature [16,60], its robustness has mostly been addressed by either empirical 

studies or simulation results [14,61] There are also a few cases where this 

issue has been tackled by a pure mathematical approach for some specific 

fitzzy operators (621. While these approaches are effective to some extent, 

t hey do not sufficient ly address the underlying concepts of fuzzy cont roller 

robustness. In what foilows, i t  is shown that fuzzy controllers can be viewed 

as a class of variable structure controilers. This perspective, in tuml leads to 

a novel view that a conventional hzzy controuer may be designed such that 

it possesses a sliding mode. To attain this goal, some particular conditions 

should be satisfied. 

To this end. a brief introduction to variable structure control is first 

presented. 

5.3.2 Variable structure control 

Variable structure control systerns are a class of non-linear feedback control 

systems whose str~.icture changes depending upon the state of the system. 

Hence, there are different structures in different regions of state space. This 

control systern has its roots in relay and bang-bang control theory. 

To illustrate the fundamentals of the variable structure control approach, 

consider a single input non-linear dynamic system which can be represented 
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by the following state equations [63]: 

and 

where x E Rn, u E R, Ri are m u t u d y  exclusive regions of the state space, 

g ( x ?  t )  is the control action in region Ri. It is quite clear that the union of 

al1 regions should b e  equal to the entire state space, i-e. 

The design of a sliding mode variable structure controller consists of the 

following steps. 

Step-1: Design a switching surface S in state space to  represent the de- 

sired dynamics for the  -stem. S can be defined as 

The interesting point of this surface is that it has a lower order than the 

original plant, and in the case of n = 2, it becomes a switching line in two 

dimensions as ihs t ra ted  in Fig. 5.7. As its name implies, once the state 

trajectory of the system is above the line, the controller has one gain and 

another gain (of opposite polarity) if the trajectory drops below the l i t ie .  

Step-2: Design a variable structure control with two different regions as 

follows. 
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Let 

such that the system state x can reach the switching surface from any initial 

state in state space in a finite time. The interesting point is that while neither 

of these structures is necessdy stable, their combined system results in a 

stable sliding mode. Once on the switching surface, the sliding mode takes 

place and the systern state is pushed toward the origin (equilibrium point) 

following the switching surface. This makes the system, on the one hand, 

globally asymptotically stable [64], and on the other hand, insensitive to 

parameter perturbations and external dist urbances which consequent ly leads 

to a highiy robust control appioach. 

Figure 5.7: Switching surface in two dimensional state space. 

There are two different modes in miable structure cont rol; reaching mode 

and sliding mode. To determine the dynarnics of a system in the reaching 

mode, the dynarnics of the switching function s(x) should be dehed. If the 
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switching function is represented by 

then the reachabiiity condition is already satisfied since the equation inher- 

ently has the pmperty of s(x)i(x) < O*. In fact, equation 5.7 is the control 

law for reachability that results f'rom the above condition. 

While the sliding mode control approach has the benefits of stability, 

desired performance, and robustness, it has two drawbacks [64]. First. the 

insensitivity property of a &able structure control system is present only 

when the system is in the sliding mode. In other words, the state trajec- 

tory starting away from the sliding surface remains sensitive to parameter 

variations and external disturbances. Second, smailer values of control gain 

increase the reaching time while reducing the chattering and vice versa for 

larger gain. Thus. there is a trade off between reaching time and the chatter- 

ing problern. Chattering is not acceptable for control systems since it causes 

significant changes in the control action. Furthemore, it may excite some 

iinmodelled high frequency dpamics  present in system. 

The assumption that srvitching from one control action to  the other be 

infinitely fast is not realistic. This is due to the finite time delay for con- 

trol computation and to the limitations of physical actuators. In effect, the 

fact that the control action cannot be changed very fast, may also lead to 

chattering. 

'In effect, if the Lyaponov function is considerd as 0.5 s2(z, t )  , which is globally positive 
definite. For the stability condition, it is sufficient that its derivate becomes negative, 
Le. S(X)S(Z) < 0. 
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5.3.3 Anot her view of t he conventional fuzzy controuer 

A closer look at the structure of a fuzzy controller shows that  for a large class 

of non-linear systems, these controllen are designed based on fuzzy partition- 

ing of the state space. In effect, the decision table s h o w  in Fig. 5.5 c m  be 

viewed as a paxtitioned state space with respect to the state variables e, é. 

Since the controller output, in general, can change fiom one cell to another, 

one might think of the  f u z y  controuer as a state dependent controDer whose 

control law is a function of the system states. 

This implies that. in essence, the fuzzy controller has a m i a b l e  structure 

nature, which in turn irnplies that fuzzy controllers can be considered a 

particular class of variable structure controllers. F u t  hermore. as  shown in 

Fig. .5.9, the diagonal avis of the decision table can potent idy be seen as the 

sliding surface of s ( x )  = O (cf. equation 5.6, in which O is a fuzzy nurnber). 

In other words, the surface of s(x) = O in the Fuzzy controller becomes a 

fu1-7~ diding surface as illustrated in Fig. 5.10. 

Mathematically. the existence of the sliding surface for the table of Fig. 5.S. 

can be verified by the  existence condition 

In fact , as Fig. 5.9 demonstrates for every point in the region-l while the value 

of s is positive: the value of B remains negative if a trajectory is approaching 

the sliding surface and vice versa for region-2. In other words, 

lims+o s ( x ) S ( x )  = Lirn.,o s- (x)if (x) < O if ( e ,  è) E 0 2 .  

Equivalently. the control law of equation 5.7 can be easily seen in the decision 

table shown in Fig. 5.9. 
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Figure 5.8: Variable structure of decision table 

Figure 5.9: Two distinct structures in the decision table 
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As a resdt, a fuzzy controller with the table shown in Fig. 5.8 possesses 

a variable st mct ure nature and if propes values for normaiization factors are 

chosen, a sliding motion is achieved in which the switching surface is a fuzzy 

surface, (see Fig. 5-10). 

Figure 5.10: Fuzzy sliding surface in a two dimensional state space. 

The slope of the sliding surface can be adjusted by changing normalization 

factors, Ne, 1%. In fact, the higher Ne and smaller Né is, the larger is the 

dope of the sliding surface. 

Since the proper design of the sliding surface is crucial to the success 

of sliding mode control, finding the best value of the normaiization factors 

is essential to the controtler design. Figure 5.11 illustrates how the sliding 

surface is changed wi t h the different values of the normalization Factors. 

Figure 5-12 shows a typicâl operating Lne for a sliding mode controller 

having upper and lower bounds, compareci to the fuzzy controller counter- 

part. While for the sliding mode controller the operating line is linear. for 

the fuzzy controller it appears to be piecewise Lnear whose slope and shape 
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Figure 5.1 1: Designing different fuzzy sliding surfaces based on normaliza- 
tion factors; (a) large N., smdl Né; (b) moderate Ney moder- 
ate !V& small Ne, large .RC 

strongly depend upon the nurnber and shape of the membership functions. 

Therefore, specifying an optimal operating Line will lead to the search for 

optimal membership functions. 

To this end, a fuzzy controller with the decision table of Fig. 5.8, can be 

viewed as a sliding mode controller whose sliding surface and operating line 

should be designed by proper selection of normalization factors, Ne, Né, and 

membership ftinctions. For this class of fuzzy cont rollers. t h e  robust ness of 

the controller has its basis in sliding mode control and furthermore, the pro- 

posed au to-design approach can be ernployed for finding the op t imd sliding 

surface and operating line of the controller. In this case. the table which 

is processed by the optimization technique should sustain the feature that 

the sign of the controller output does not change on each side of the sliding 

surface. This impiies that while Our intention is the optimal design of the 

fuzzy controller, a search is performed for an optimal sliding mode controller. 

If this happeos, a new type of controller which we cal1 a Juzy  controller with 
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Figure 5.12: Operating Lines for (a) sliding mode controller wit h boundary 
layer (b) special type of fuzzy controller. 

sliding ,mode can be  achieved. 

The interesting point is that at a large distance from the sliding surface, 

any modelled frequency dynamics are not able to cause a change in the sign 

of controller output. Therefore, the decision table can be adjusted in such a 

way that the further the systern state is from the sliding surface, the larger 

the controller gain. This equivdently means better dynamics in the reaching 

mode and a t  the same time, a smooth transition from one structure to the 

other. This resolves the trade-off problem for the reaching time and the 

chattering effect which is a major drawback in the conventional sliding mode 

control scheme. 

5.4 A novel approach for the efficient design 

of a fuzzy controller 

A closer look at the sliding table shown in Fig. 5.8 reveals that with uniformly 

partitioning of the output space. the fuzzy controiier of Fig. 5.13 demon- 

strates a linear behavior. This can simply be seen in the three-dimensional 

space as illustrated in Fig. 5.14 where u is the controller output and e and 
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è are the controuer inputs. However, in general, for a non-linear plant, a 

Figure 5.13: Basic stmcture of the fuzzy Logic controiler. 

Figure 5.14: Cont rol surface for the conventional fuzzy controller. 

non-linear controller is required to obtain the desired performance. Such a 

non-linear controller, for instance, is shown in Fig. 5.15 in a three dimen- 

sional space. To constmct a fuzzy controuer with non-linear behavior, one 

may think of changing only the output singletons, while the input member- 

ship functions are assumed constant. If this happens, there will be no need 

for processing the membership function parameters and hence the number 

of design parameters will be reduced to a large extent. Furthermore, if the 

sliding structure of this table, as shown in Fig. 5.8, is sustained, then one 

can view the whole table as the string illustrated in Fig. 5.16. 
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Figure 5.15: A non-linear control surface. 

e4 

Figure 5.16: A new view to the sliding table. 

Viewed in this perspective, a string of seven parameters can mode1 the 

ent ire decision table . Therefore, together with the normalization factors. 

Ne, Ari, Nu, a string with ten parameters would be suficient for the construc- 

tion of such a non-linear surface (see Fig. 5-17). It is now the responsibility of 

the optimizer to select these parameters based on a pûrticular performance 

index. It is interesting to note that the string can be further simplified if one 

can incorporate the following lcnowledge prior to the design. Fint .  in steady 

state conditions, i.e. when error and error derivrttive are zero, the value of the 
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Figure 5.17: A new string for an optimal design of a hzzy controller. 

controUer output, 8, must be zero. Second, since the input-output space has 

been normalized, the value of the two extremes of the output space, i.e. PB 

and NB, should be 1 and -1, respectively. These two facts imply that the 

Figure 5.18: The proposed string for an optimol design of a fuzzy controller. 

design of this class of fuzzy controllers can be Further simplified to a string of 

3+4 = 'T parameters (see Fig. 5.1s) where the singletons of NMI NS. PS. and 

P M  are free parameters to be Found based on the optimization algorithm. 

It is worthwhile to notice that  while the resultant decision table shares 

the  same structure with the conventional one, it has a different interpretation 

in reference to the output singletons. For instance, in the proposed approach, 

the value of singletons PS, PM axe completely free and it is the optirnizer 

t hat determines their values. In contrast, in the convention& table, the above 

singletons have constant values, Say 0.333, 0.667 respectively. 

Of course. such a simplification is achieved at the expense of rough ap- 

proximation of the non-linear function. The point, however. we would like 

to clarify here is that, while the optimization problem is simplified to a large 

estent, the performance indes decreases only slightly. 

Furthermore, the proposed technique can be viewed as an alternative 

approach for the full-optimization described in Section 3 .44  and it can be 

applied where the fast tuning of a fuzzy controller is the primary concern. 

It is also instructive to mention that, while a genetic dgorithm is used for 
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the proposed efficient tuning approach, other optirni-zation techniques can be  

ernployed. 

The proposed efficient tuning approach is appiied for the non-linear sys- 

tem defined in 5.1. For every parameter of the string shown in Fig. 5.18, a 

resolution of 10 bits is assigned. 

The control structure is found &er 45 generations with a population of 

30 individuals (see Table 5.1). The input rnembership fwictions have the 

standard form as shown in Fig. 2.4 in Section 2.3.2. The step response of 

such a controller is depicted in Fig. 5.19. 
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- - - - - - - - - - 

Table 5.2: Case 3: Nolrnalization fac- 
tors found by a genetic algorithm. Table 5.1: Case 3: Free parameters of 

a genetic algori t hm 

30 
90% 
10% 
2% 
45 
3 
30 

-l 

" 

----- - / /- ~ u l l  optimization 
proposed approach 

----- Conventional approach 

Number of individuals 
Percentage of crossover 

Raodody  generated individuals 
Max Percentage of mutation 

Number of generations 
Number of design pasameters 

Bit-string length 

4 6 8 10 
T i e  ( Sec ) 

Figure 5.19: Step responses of the non-linear system for different ap- 
proaches. 
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5.5 Chapter summary 

In this chopter an efficient approach for the autedesign of a fuzzy controller 

is proposed. It has b e n  s h o w  that such an approach can efficiently lead to 

a near-optimal solution. 

Ln addition to these techniques, some other aspects of hzzy controuer 

autedesign are discussed. First , the input / ouput partitioning approaches 

are proposed by which the number of controller design parameters can be de- 

creased. Uihile in either approach, i.e. input partit ioning or output partition- 

ing, one set of parameters is kept constant, the other set is processed by the 

optirnizer concurrently. This indicates that even in these cases the essence 

of simultmeous design of the  controuer parameters is sustained. Next, a 

novel view of the conventional table has been proposed by which the reach- 

ability condition of this table is satisfied. It then folIows that such a view 

can potentially lead to the design of a fuzzy controller based on  the sliding 

mode concept whose performance and robust ness is ensured mat hemat ically. 

This view is achieved by categorizing fuzzy controllers as a particular class 

of variable structure controllers. 



Chapter 6 

Conclusions and 

recomrnendat ions for future 

research 

6.1 Conclusions 

Fuzzy control has been found to be much more interesting when applied 

to non-linear. uncertain systems. Many unique features such as non-hear 

capability, domain-wise mapping, and robustness make this type of controller 

very attractive for a wide variety of applications. 

-4lthough fuzzy control was originally introduced by L. A. Zadeh, it was 

k~arndani who first practically applied this control technique to a real plant 

in 1972. Since then, a great deal of effort has been devoted to further develop 

this control approach. 

The wide applications of fuzzy control can be viewed as a natural conse- 

quence of the universal approximation theorem. Based on this theorem, any 

non-linear, continuous functioo can be approxirnated by a fuzzy system to 

any desired precision. However, while qui te signi ficant. t his t heorem does not 
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indicate how to develop suc6 a fuzy system. As a systematic design tech- 

nique is lacking, hzzy controllers to this point have been designed by human 

trail-and-error. The existing trial-and-error approaches require a large num- 

ber of iterations without the guaraotee of an optimal solution. Furthermore, 

if the number of controuer inputs and outputs increases, a trial-and-error 

approach may be so tedious as to be deasible.  Adaptiue fuuy  systems, in 

general, and a r t i f i a l  neural networks, in particular, axe the systems which 

use a Iearning algorithm to train a hzzy controLler for a specific task based 

on available input-output data. The key point. hotvever. is that  these ap- 

proaches require a tell-designed reference controller. ri prior i .  which rit- iiot 

be available. Moreovert only a s m d  part of the fuzzy controller is designed 

by t hese approaches. 

The essence of this dissertation involves the synthesis of a new design 

methodology for fuzzy controllers tmthout the requirement for any input- 

output training data. This is achieved using a genetic algorithm as the 

optimization technique, which employs a predefined performance index to 

guide its search. 

To verify the proposed technique, as just one example, an induction motor 

drive with fietd oriented control has been chosen where the performance index 

is defined for the best dyoamic and steady state response. Based on the 

proposed approach, an optimal fuzzy controller has been designed for such a 

system in Chapter 4. Furthermore, a novel view ol  the field oriented control 

of ac machines has also been proposed in the same chapter. 

Since the proposed approach is very general, a non-linear, uncertain sys- 

tem has been considered in Chapter 5. Different aspects of this approach, 

such as sequential versus concurrent optimization and input partitioning ver- 

sus output partitioning have been investigated. Ln the sequential approach, 

first the nomalization factors are optirnized while the membership func- 
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tions and decision table are kept constant. Once the optimization algorithm 

finds the best values for the normalization factors, these parameten are fixed 

w hile the members hip function parameters are processed by the O ptimizat ion 

technique. Finally, the consequent parts of the deùsion table are optimized 

while the optimal values of normalization factors and membership functions 

are used. As c m  be inferred, this sequential technique ignores the interde- 

pendency between different sets of parameters. 

In Chapter 5, a novel view of the robust design of a hzzy controller 

is presented which facilitates implementation of sliding mode cootrol by a 

fuzzy controller. Ftill optimization of a fuzzy cont roller involws searching for 

a large number of parameters. A novel alternative approach for the design of 

fuzzy controllers is presented in C hapter 5 which facilitates op t imization wit h 

an order of magnitude fewer parameters. With this approach, the system 

performance is only decreased slightly. 

The contributions and achievements of this dissertation can be summa- 

rized as: 

a -4 novel view of the fuzzy controller has been proposed in Chapter 2 

including the defini tion of characteristic points, a key concept which 

helps to define the role of the different parameters of a luzzy controller. 

A new coding for a fuzzy controller has been presented in Chapter 3 

based on asymmet rical membership functions. wit h complete freedom 

of overlap. This coding facilitates optimal and near-optimal desigii of 

a fuzzy controller. 

A novel perspective on field oriented control has been proposed in 

Chapter 4 employing differential geometry. Also in this chapter, the 

design of an optimal fuzzy controller for an induction motor drive with 

field oriented control is presented. 
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An in depth investigation of the different aspects of the proposed tech- 

nique is cmied out in Chapter 5. This includes inputoutput parti- 

t ioning approaches and the ro bustness issue. 

0 A novel approach to the optimization of a particular, but very common, 

class of fuzzy coatroilers is presented resulting in an efficient optimiza- 

tion process. 

The main contribution of this dissertation is the concurrent design of 

fuzzy controllers based on a new coding presented in Chapter 3. 

In short, this research work can be viewed as a departure from the uncer- 

tainty and cornplexit ies involved in the conventionai trial-and-error met hod 

of fuzzy controller design. It results in autedesign approaches For the devel- 

opment of fuzzy controllers in two different mmners; a full-optimization and 

an efficient design approach. 

6.2 Recommendations for future research 

To estend the curtent work. furt her research can be carried out w hich would 

comprise: 

O Designing optimal controUers for none minimum phase systems. In fact, 

a fuzzy controller which works well for a minimum phase plant, does not 

necessarily control a non-minimum phase plant. Special considerations 

should be taken into account at the design stage to enable a fuzzy 

controiler to handle such a systern. 

a Hardware implementation of the optimal fuzzy controller for induction 

motor drives. 

0 An investigation of the possible on-line adaptation of a fuzzy controuer 

based on the proposed efficient design approach. 
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Glossary 

Pùzzy Loglc: 

Artificial intelligence: 

"...the study of how t O mak cornp uters to do things at 

moment. people are better2-Elaine Rich ( 19SS) 

which. at the 

Ant ecendent: 

The initial (or ij) part of a fuzzy rule. 

Consequent : 

The final (or then) part of a fuzzy nile. 

Crisp value: 

The point-wise. i.e. normal. value of a variable. 

Defuzzification: 

The process of transforming a fuzzy output of a fuzzy inference system 

into a crisp output. 

Degree of membership: 

The output of a membership function. This value is always limited to 

between O and 1. Also known as a mernbership d u e .  

F'uzzification: 

The process of generating membership values for a fuzzy variable using 

membershi p funct ions. 



h z z y  inference system 

The overd  name of a system that uses fuzzy reasoning to map an input 

space to an output space- 

Fuzzy set: 

A set which contain elements with fd or partial degree of membership. 

Linguistic variable: 

A variable whose values are words or sentences in a natural or artificiai 

language. For instance, age is a linguistic miable if its d u e s  are 

linguistic rather than numerical, i-e. young. not young, very young, 

quite goung, old, not old, and not uery young, etc.: rather than 20. 21. 

22, 23, . . -, 

Mamdani-type inference: 

A t-ype of fuzzy inference in which the output fuzzy sets are not single- 

tons and they are combined to yield a complex fuzzy set. This resultant 

fuzzy set should then be defuzzified CO generate the crisp output of the 

fuzzy system. 

Membership function: 

A function that specifies the degree to which a given input belongs to 

a set. 

Singleton: 

-4 fuzzy set with a membership function that is unity at a one particular 

point and zero everywhere else. 

Sugeno-type inference: 

-4 type of fuzzy inference in which the consequent of each rule is a 

singleton, in general, a 1inea.r combination of inputs. The crisp output 

then becomes a weighted linear combination of the consequents. 
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Universe of discourse: 

The domain on which the fuzzy sets are defined, 



Genetic Al~orithms: 

Chromosome: 

A data-structure which holds a string of pitrameters (or genes). This 

may be stored, for instance, as a binary bit-string, or an array of inte- 

gers. 

Crossover: 

A reproduction operator which forms a new chromosome by combining 

parts of each of two parents. The simplest is a single-point crossover, in 

which an arbitrary point in the chromosome is chosen. Al1 the informa- 

tion From one pazent is copied from the starting point to the crossover 

point, while the aU the information from the other parent is compiled 

from the cross point to the end point of the chromosome. in this way, 

the new chromosome gets the head of one parent's chromosome com- 

bined with the tail of the other. Other definitions exist which use more 

than one crossover point, or even combine the information from parents 

in other ways. 

Evolution: 

The process by which a set of possible solutions (or population of indi- 

viduals) for a problem improves with each iteration, or so called gen- 

erat ion). 

Fitness: 

-4 value assigned to an individual wwhich reflects how well an individ- 

ual soives a specific task. A fitness function is employed to map a 

chromosome to a fitness function, 

Fitness landscape: 

The hyper surface obtained by applying a fitness function to every point 



of the search space. 

Function optimization: 

The task of finding the set of parameters which produce the maximum 

or minimum value of a firnction. 

Gene: 

A subsection of a chromosome which usually encodes the d u e  of a 

single parameter. 

Generation: 

An iteration of the measurements of fitness and the creation of a new 

population by means recombination operators. 

Genetic algorithrn: 

A mode1 of machine learning that uses a genetic metaphor from nature. 

it usually employs a string to represent their information, together 

with a population of individuals which is processed by crossover and 

mutation operations in order to find the interesting regions of the search 

space. 

Genetic operator: 

A search operator acting on a coding structure. 

Global optimization: 

The process by which a search is made for the extremum of a func- 

tion. In a genetic algorithm, this extremum corresponds to the fitness 

function that is used to assess the performance of any individual. 

Individual: 

A possible solution to the task being tacked, i.e. a single point in the 

search space. Evecy individual contains a chromosome and some other 

information such as  fitness. 



Mating pool: 

The whole set individuals ready for recombination, also c d e d  popula- 

tion. 

Mutation: 

A recombination operator which forms a new chromosome by making 

changes to the values of genes in a copy of a single parent. 

O ffspring: 

An individual generated by the process of recombination. 

Opt imization: 

The process of iteratively improving the solution to a problem with 

respect to a specific objective function. 

Parent: 

An individuai which takes part in recombination to generate one or 

more O t her inclividuals, known as offspring. 

Population: 

-4 group of individuais which may interact together, for instance by 

mat ing, to produce offspring. 

Recombination: 

The creation of a new individual from two parents. It involves the  

genetic operators such as crossover and mutation. 

Reproduction: 

The duplication process of a current generation for the selection of 

parents. 

Search space: 

If the solution of a task c m  be represented by a set of n real-valued 
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parameters, then the job offinding this solution may be thought of as a 

search in an n-dimensional space. This is referred as the search space. 

Select ion: 

The process by which some individuals in a population are chosen for 

recornbination. 

Vector optimization: 

An optimization problem wherein multipleobjectives must be satidied. 



Appendix A 

Proof of non-linearity of fuzzy 

controllers 
To prove a system is lineas. two following properties must be satisfied simui- 

taneousiy : 

1.  Additivity property or superposition property, i-e. if 

YI = fh) and Y2 = f b 2 )  

Then the additivity property requires 

2. Scaling property. Le. if assume 

then the scaling pmperty requires that for any reai constant a 

a - y  = f ( ~ . x )  
a. f(2) = f ( a . x )  

Every system which does not satisfy both properties is a non-linear system. 

In order to check the non-linearity of a fuzzy controiler, consider the following 
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fuzzy rule: 

Ifx is LK, then u is LU 

where LV and LU are the linguistic d u e s  taken on by the process state 

miable x and the control output variable u, respectively. The meaning of 

these two linguistic values is given by the mernbership functions p ~ x  : .X + 
[O, 11 and : U -+ [O, 11. Furthemore, let XI and x2 be two crisp inputs 

and ul and uz be their respective crisp outputs. Then the linearity or non- 

linearity of different stages of a fuzzy controller can be checked as follows. 

Normalizations and denormalization 

These steps are linear because they simply involve multipIication by a scalar 

:v* 
!V,.xi + X, .t, = !V, .(q +r2) (Aï )  

and 

Fuzzification 

Membership function p ~ x  of the linguistic value L X  is, in general. a non- 

linear function (cf. Fig. 2.4). The fuzzification of xl and r2 results in p L x ( x I )  

and pLX (x2), respectively. Linearity requires 

But this can not be Fulfilled because of the non-linear characteristic of p ~ x -  

Rule firing 

The membership function C ( L [ I  of the linguistic value L [rare. iri general. non- 

linear functions. With this in mind, the result of firing the rule for input x l  

would be: 

(A. 10) 
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and for input x2 

where A denotes the min b z y  operator and pcLu(u), in general, refen to a 

clipped fuzzy set for linguistic variable LU. Linearity requires 

However, this condition can not be met since p ~ x  and are a uon-Iiriear 

functions, Furthermore, the A operator is non-linear for A = min. As a 

result, the inference process, or the rde  king,  is again non-linear. 

Defuzzification 

Assume the defuzzification procedure is performed with the help of cenler of 

area approach [60]. Furt hemore, let ul and uz be the defuzzification results 

obtained by 

and 

Lineari ty requires 

This results in 
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which caanot be fdfiUed. Instead of this equation, we have 

Therefore, the defuzzification process is non-linear as weii. 

This proof indicates that the source of non-Lnearity of hzzy  controllers, in 

general, cornes fiom fuzzification, d e  firimg, and definufication. As has been 

pointed out in Section 5.3.3, a fuzzy controiler can be hearized piecewise if 

it is designed based on sliding mode controller. 



Appendix B 

Mat hematical mode1 of an 

induction motor with field 

oriented control 

The dynamic behavior of an induction motor in the synchronously rotating 

frame c m  be described by the following state equations [65,66] 
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where 

1 - L:/(LsLr) 

Lm [ds + LJdr  

Lm Iqs + U q r  

stator resis t ance per phase 

magnetizing inductance per phase 

rotor resistance per phase 

rotor inductance per phase referred to stator 

stator inductance per phase 

number of poles 

elec trical anguiar speed 

d axis stator voltage 

q auis stator voltage 

d axis stator current 

q axis stator current 

d axis rotor current 

q axis rotor current 

In the field-oriented control for an induction motor, the ideal decoupling 

between the d and axes c m  be achieved by Letting the rotor flux linkage in 

the d axis, Le. 

A,, = O 

dA,,/DT = 0. 

C'sing BA? the desired rotor flux linkage 1, = Ad, in t 

frorn the third row of B.1 as 

erms of Id, can be founcl 
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I 

For the highest utility of the machine core, 1 .  can be set constant for the 

desired rated rotor flux. In this situation if the dynamic characteristic of 

rotor flux in B.5 is neglected, the torque equation B.2 then becomes 

where 

For the mechanical system, the torque and rotor angular speed are related 

b~ 

L+(s) = G(s)(Te(s)  - T L ( s ) )  (B-8) 

with 

where B and J denote the total damping ratio and inertia constant of the 

drive system, respectively. 



Appendix C 

Simulation programs 

The cornputer program for auto-design of luzzy controilers has beeo written 

in C. The program includes three different files; optimization file, closed 

loop file, and a header file. As the header file indicates, the optimal fuzzy 

controller can be optimized based on any combination of different sets of 

controller pwameters. In what follows~ the header file and only the main 

Junction OF the genetic algorithm file and closed loop file are presented. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* FILE: header , h 

* AUTHOR: Farhad Ashrafzadeh 

* FUNCTION: header f i l e  f o r  ga. c & f lc .c fi les 

************************************************ 

/*"-@.LIœœœa FREE PARAMETERS OF GENETIC ALGORITHM : 

#define GENERATE-NOR "offt1 

#define GENERATE-MF "off" 

#define GENERATE-TABLE "on" 

#def ine GENERATE-SINGLETON "on" 
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#def ine UHICH,PART_CROSS 2 /* 0 : nor. 1: m f  , 2: table, %one point */ 
#define WHICH,PART,MUT 2 /* O :  nor, 1: mf, 2,3,4,.. : t ab l e  */ 

#define MAX-GENERATION 3 

#define POPüLATION-NO IO 

#def ine  MAX-MUT-PERC 30 

#def ine SEED 1 

#define AV,SCORE,PERC - 4  

#define TRANSFER 1 

#def ine HELP-GA O 

#def ine STRING-LENGTH 20 

" yes " 

" yes 

" yes" 

/*---*-- FUZZY CONTROLLER PARAMETERS: 

#def ine  NOR-DOMAIN 10 

#def ine  MF-PRECISION 10000 

#define NO-OF,MF-E 7 

#def ine  NO-OF-MF-E-DOT 7 

#define TOTAL-MF-NO (NO-OF-MF-E + NO-OF-MF-E-DOT) 

#define MF-PARAMETERES 3 * (NO-OF,MF-E + NO-OF-MF-E-DOT) 

#define NO-OF-CELLS (NO,OF,MF,E * NO,OF,MF,E,DOT) 
#define min(x,y) ( x < y ? x : y ) /+ MACRO */ 
tdef ine  max(x,y) ( x > y ? x : y ) /* MACRO */ 
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/*------ CONTROL LOOP PARAMETERS: 

#define TIME-WINDOW 10 

#def ine Y-REF i /* 1 pu, L e .  1800 r p m  */ 
#define H 0 .O01 

#def ine  U-MAX +1.5 

#def i n e  U-MIN -1 - 5  

/*-------- ELECTRICAL MOTOR PARAMETERS: 

#define T-LOAD 1 

#define K-torque 4 -44 

#def i n e  K-speed 1 /* K-speed = 1 / J */ 

*************4*********************4** 

* FILE: gcc . c 

* AUTHOR: Farhad Ashrafzadeh 

* FüNCTION: genetic aïgorithm f i l e -  

************************************** 

main () 

C 

init(o1d-generation, new-generation, variable-length, random-vector); 

while ( no-of-generation <= MAX-GENERATION ) 

C 

evaluation(old-generation); 
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nev-parents-ptr = select-parents (old-generation , 

best-parent-ptr, no-of _generation) ; 

mat ing-pool (neu-parent s-ptr , variable_length, tandom,vector , 

no-of ,generation) ; 

cross-over-l,table(new-parents-ptr, randon-vector, 

new-generat ion) ; 

mutation ( random-vector , new-generation, best-parent -ptr) ; 

nev-gen (old-generat i o n ,  new-generat ion) ; 

no-of-generation++; 

*+*************+******************************************* 
* FILE: f1c.c 

* AUTHOR: Farhad Ashrafzadeh 

* FUNCTION: Closed loop f i l e  with fuzzy logic c o n t r o l l e r .  

*********************************************************** 

double closed-loop (k,  nor-mem-table) 

int k;  

struct nor-mf-table nor-men-table; 

€ 

while ( t < TIME-WINDOW ) 

< 
e = Y-REF - y ;  

e-dot = (e - e-old) / H ;  

mp = over-shoot (y, e-dot); 

pi += t * fabs(e )  * H + 6 * mp; 
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e-old = e; 

u-dot = f lc (nor-mem-table, be, &e,dot) ; 

u += u-dot * H; 

u-sat = saturation (u) ; 

y = system-foc-IM (u-sat) ; 

t += H; 

3 

retum (pi )  ; 




