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Abstract 

Flash floods are the foremost cause of irretrievable environmental damage in the arid 

Arabian Peninsula, particularly over the Sultanate of Oman. The rapidly changing climate 

has led to year-by-year increases in the frequency and severity of flooding. The better 

understanding of the geomorphologic, topographic, climatic, and hydrologic characteristics 

of a selected watershed, and determining their geospatial relationships with respect to the 

flood extent are the core steps for mitigating and minimizing negative impacts of flooding. 

Therefore, the overall aim of the current study was to employ different remote sensing 

datasets in predicting prone areas to future flash floods in the ‘wilayats’ (i.e., cities) of El 

Hamra, Bahla, and Nizwa, Ad Dakhiliyah Governate, the Sultanate of Oman. In this respect, 

three specific objectives were studied to achieve the main goal.  

First, precipitation is a crucial variable for studying various climate-related research 

such as flash flood monitoring and prediction. However, given the fact that in-situ rainfall 

gauge measurements are usually limited in this arid area. The performance of five global 

satellite precipitation estimates (GSPEs) (i.e., Global Precipitation Mission-Integrated 

Multi-satellitE Retrievals for the GPM (GPM-IMERG), and Global Satellite Mapping of 

Precipitation (GSMaP)) was evaluated using the available sub-daily and daily ground rainfall 

records. While GSPEs can provide wide coverage with high spatio-temporal resolutions, 

assessing related accuracies is a compulsory step before researchers can include them in 

flood susceptibility modeling. Generally, the five sub-daily and daily GSPEs showed good 

performance compared to the in-situ measurements. Moreover, statistical error models were 

employed to quantify the uncertainties in the daily GSPEs.  

Second, accurate digital terrain model (DTM) and channel network/orders with fine 

spatial details are mandatory for flood extent modeling. The DTM has been applied 

successfully in multiple studies to extract various topographic (e.g., altitude, aspect, and 

convergence index) and hydrologic (e.g., flow direction, length, and accumulation) 

attributes. Furthermore, channel networks have been used effectively by different 

researchers in deriving various geomorphometric measures (e.g., stream order, frequency, 

and density), as well as topographic and hydrologic features (e.g., height above nearest 

drainage network (HAND), valley depth (VD), and topographic wetness index (TWI)). 
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Therefore, a new pixel-based method was developed to quantify the horizontal accuracy of 

channel networks/orders-based three global digital elevation models (DEMs) (i.e., Advanced 

Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar 

(PALSAR), Shuttle Radar Topography Mission (SRTM), and ALOS Panchromatic Remote-

sensing Instrument for Stereo Mapping (PRISM)) using those extracted from light detection 

and ranging (LiDAR) datasets as references. The vertical accuracy of global DEMs were 

also evaluated utilizing reference LiDAR elevation datasets. Based on the achieved results, 

the PALSAR DTM (12.5 m) and its derived channel network/orders were found to be the 

optimal candidates to derive various geospatial layers required for flood susceptibility 

modeling. 

 Last, integrated statistical based-improved flood-susceptibility models were 

developed to define the likelihood of future flash flooding—the extent of which depends on 

the intrinsic characteristics of the selected study area, including rainfall, soil, HAND, VD, 

TWI, among others. The spatial relationships between different flood triggering factors (i.e., 

climatic, geomorphic, topographic, and hydrologic attributes) and flood inventory map were 

quantified. Random spatially distributed flood and non-flood locations were used for the 

purpose of training and testing the introduced models. The findings showed that the 

integrated bivariate and multivariate statistical methods-based flood susceptibility models 

provided precise maps to predict future flood-prone areas under a close rainfall intensity to 

that which prevailed during the past flood event, at both high- and low- lands. In addition, 

the outcomes of the validation of different releases of recent GSPEs can help to have 

continuous rainfall records that, even in the absence of permanent in-situ rain gauges’ 

measurements, can significantly contribute to future flash flood studies. The developed flood 

susceptibility models can contribute to mitigating the negative impacts of flash floods by 

providing accurate information to both the administrators and local settlers about future flash 

flooding extent at a fine spatial resolution (12.5 m).   
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1.1. Introduction and Background 

Natural disasters are deemed to be the principal cause of irrecoverable damages to 

the environment, on a global scale [1], with flash flooding being one of the most extreme 

[2]. Flash floods can cause severe casualties, destroy infrastructures, increase land erosion, 

pollution, and place serious constraints on the development of the affected areas [3]. 

Furthermore, the potential negative impacts of flash floods in the arid Arabian Peninsula are 

heightened due to a lack of effective responses at their rapid onset, which is usually less than 

six hours after rainfall events [4]. Flash floods can be generated instantly, during, or shortly 

after rainfall events, especially when rain falls on steep mountain slopes with exposed rocks 

and lack of vegetation [5], [6]. They occur whenever a drainage system receives more water 

than it can handle [7]. In particular, the negative effects of flooding are exacerbated when 

extreme rainfall invades areas of impervious and/or hard ground surfaces that significantly 

reduce the infiltration rate of surface runoff. The latter may take the form of water sheets [8]. 

Flash flood is a linked hydro-meteorological system [9] where hydrologic, climatic, 

geomorphic, and topographic characteristics of the watersheds under considerations control 

it. Rainfall is the primary hydrological input that initiates the flash flood [6]. Though for 

many decades, flash floods have been considered as an environmental hazard, the exact 

processes triggering its initiation and spreading remain uncertain and/or are insufficiently 

documented [10]. Therefore, the first step in mapping the flash flood-prone areas is to 

determine the spatial and temporal rainfall distribution that initially controls the generation 

of rapid runoff in the catchment area under investigation.  

Predictive global climate change models indicate that changing precipitation patterns 

and the increasing number of extreme rainfall events will raise the magnitude and frequency 

of future flood events [11]. Over the last decade, severe and unstable global climatic changes 

induced flash floods that were more violent, extensive, and frequent [8]. Flash flooding is 

often associated with convective thunderstorms, monsoons, and tropical cyclones, which can 

be intensified during complex weather patterns such as ice melting [8]. Nowadays, climatic 

changes are more pronounced and, thereby, profoundly affect global weather leading to 
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intensive rainfall and associated severe flash floods [12]. For instance, in recent years, most 

of the arid and semi-arid countries were invaded by intense flash floods that reached more 

than one meter in height (e.g., flooding events in the Sultanate of Oman, Arab Republic of 

Egypt, Hashemite Kingdom of Jordan, Kingdom of Saudi Arabia, Yemen, Qatar, and Iraq). 

The destructive effects of such tremendous flash flooding were recorded over the 

Arabian Peninsula, particularly the Sultanate of Oman. In the last few years, a series of 

successive flood events were frequently reported in Oman. For example, on November 15, 

2013, a major flash flood hit Oman and other Gulf countries following an unexpected and 

intense rainfall event and resulted in the death of one person [13]. Five months later, at the 

Niyabat of Lima of Khasabon, Northern Oman, an extreme rainfall event of 415 mm that 

resulted in the death of six people, that had been, essentially, washed away by the fast runoff 

and sediment load [14]. Northern Oman is continuing to face flash flood hazards. In 2015, 

for four days (October 14 to 17), the areas of Nizwa, Ras Al Hadd, and Bahla received severe 

flash floods. On October 16, according to the report of Oman’s Ministry of Regional 

Municipalities and Water Resources [15], the city of Ibra received rainfall with an intensity 

of 104 mm, while three other locations endured a cumulative rainfall intensity of around 40 

mm. These extreme flood events caused the death of seven people, while fifty others were 

rescued. Similarly, on Friday, September 04, of that same year, four people died, and one 

was declared missing as a result of flooding associated with thundershowers in northeastern 

Oman, with Amerat and Rustaq, respectively, experiencing a maximum intensity of 59.8 and 

17.4 mm [16]. Moreover, during the period from December 16 to 19, 2017, another 

devastating flood event occurred over northern Oman, whereby, the affected areas received 

around 20 mm of rainfall [17]. Three persons died, while dozen were injured due to severely 

damaged homes and road accidents. 

The combination of the flood event itself (i.e., source), pathways (i.e., surface 

overflow and inundation), receptors (i.e., people, property, and environment), and 

consequences (i.e., lives loss and infrastructure damage) can quantify the magnitude of the 

flood risk [18], [19]. Many infrastructures, such as towns and roads, are inadequately located 

and unprotected from flood hazards to mitigate the potential damage of future flood events 
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[20]. It is mandatory to analyze past flash floods’ events thoroughly [5]. However, less 

attention has been given to historic flash floods in the aforementioned arid areas due to 

various long intervals between flood events. This lack of awareness makes the local 

populations have a false sense of security to the catastrophic flash floods. 

Furthermore, newcomers to flood-prone areas usually settle and develop the land 

without consideration of the expected hazards [10]. Accurate prediction of the vulnerable 

areas to flash floods would help in designing measures to protect such zones from future 

damage and assist in preparing new developments such as roads and housing [10]. The 

hydrological response of the flood-prone basin to rainfall is governed intrinsically by its 

geomorphometric, topographic, and hydrologic characteristics. As it stands, the drainage 

basin is very sensitive to the size, intensity, and location of the rainstorm, which can affect 

response [20]. Although flash flooding is one of the main hazards in the arid regions, it is 

also considered a vital natural recharge source of groundwater [21]. 

Flood management can be achieved through four significant steps: prediction, 

preparation, prevention, and damage assessment [22]. Flood extent mapping allows 

emergency responders to handle extreme flood events while directing their limited resources 

to the highest-priority areas [23]. Flash floods are very challenging to predict as they 

characterize by rapid and intense run-off generation leading to a rapid rise in water levels 

and high-peak discharge over a short duration proceeding the onset of the generating storm 

[24]. 

Earth observation satellites and GIS techniques introduce valuable datasets and 

methods to study flash floods (e.g., [24]–[29]) since they (i) provide essential tools for 

observing and investigating the spatial dynamics of floods, (ii) have relatively low or no 

acquisition and mapping costs, (iii) allow mapping over large, and sometimes inaccessible, 

regions, in a time repetitive manner, (iv) grant a compelling set of tools for analyzing and 

extracting spatial information to support decision making reliably and consistently, and (v) 

introduce new methods to process big digital data volumes since the repeated acquisitions 
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offer a wealth of archival data to enable the detection of flash floods changes over space and 

time. 

Determining future flash floods’ extents (i.e., flood susceptibility assessments) based 

on the current and past prevailing physical factors is the central concept used in most 

available flood research. Flood susceptibility (i.e., potential) map can be defined as the 

likelihood of future flooding extent depending on the intrinsic properties of a given area such 

as rainfall, lithologic units, soil type, topographic wetness index, and more [30]. Such models 

were developed using either statistical or machine learning or integration between both 

techniques [31]. It is imperative to have a spatial association in each input factor to gain 

accurate results [32]. Flood susceptibility maps can assess the past spatial extents of flood 

events [33] and classify the hazard degree in prone areas [34]. It can also help policymakers 

and authorities to prepare necessary emergency plans and implement mitigation measures to 

reduce the loss of life and property damage. 

 Precipitation is one of the key components of the water cycle that is crucial to study 

flood modeling, water resources management,  as well as critical social and climatological 

issues [35]. However, quantifying precipitation is complicated because it is highly variable 

over space and time, even on a small scale [35], [36], particularly in the arid areas. The 

unknown future precipitation still constitutes the largest source of uncertainty in flash flood 

mapping [37]. Many global satellite precipitation estimates (GSPEs) are currently available 

to introduce real contributions to the scientific community [38]–[40]. Earth observation-

based precipitation products have proved to be the world’s most cost-effective and 

continuous method to locate the spatial and temporal variability of rainfall, particularly over 

extensive ungauged regions [41]–[43]. The main hurdles associated with GSPEs are the high 

uncertainties associated with rainfall estimates. Therefore, evaluating the performance of 

GSPEs against a less biased in-situ rain gauge measurements in the areas under investigation 

is a mandatory step before researchers can incorporate them into further flash flood 

modeling. 
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Traditional point rain gauges cannot capture the areal representation and variation of 

rainfall, especially in regions where the in-situ rain gauges are limited in number and 

coverage [44]. Even if rain gauge network measurements are interpolated, they yield a 

uniform rainfall field that does not represent the real spatial and temporal rainfall variability 

[45]. Furthermore, the operation of rain gauges is costly, and in most cases, they are sparsely 

distributed or unavailable in remote areas due to accessibility challenges and limitations with 

respect to installation and maintenance [24]. The latter case has been escalated among the 

arid Gulf countries.  

The shortcomings of the previously mentioned ground-based methods to measure 

precipitation highlighted the need for enhanced global coverage by the Earth observation 

satellites [46]. GSPEs are usually used to identify the spatial magnitude of rainfall events at 

fine spatial and temporal resolutions [47]. The respective advantages were outlined by 

Gebregiorgis and Hossain [48], such as (i) overcoming the problem of geopolitical 

boundaries, (ii) covering continents and oceans, (iii) producing consecutive records at day 

and night, (iv) introducing a cost-effective way comparing to in-situ networks, and (v) 

delivering the data in a near-real-time, which would be critical to some applications such as 

monitoring and forecasting of flash flooding events.  

GSPEs are usually unable to provide estimates that are entirely similar to the gauge 

measurements in both temporal and spatial scales [49]. The uncertainties (i.e., non-negligible 

errors) associated with GSPEs introduce a significant challenge for the end-users to apply 

these data in practical meteorological and hydrological applications [50]. Therefore, the 

nature and magnitude of these errors must be thoroughly evaluated and determined to take 

better advantage of GSPEs’ products. Quantifying the level of uncertainty in different 

GSPEs can be helpful for data producers to improve their algorithms and for the end-users 

to verify the accuracy of these products before utilizing them in a specific application [48].  

Moreover, GSPEs involve indirect precipitation estimates from visible-, infrared 

(IR)-, and/or passive microwave (PMW)-based cloud properties information. As such, they 

include inherent errors [51]. GSPEs are not always reliable, and a consensus has been 
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reached that they require the quantification of the associated uncertainties using statistical 

error models. The in-situ rain gauges’ measurements represented the reference data [52] to 

assess the reliability and accuracy of GSPEs. Tian et al. [53] assumed that the ground rain 

gauge records are error-free, insofar as the associated biases were considered much smaller 

than those in the GSPEs. Furthermore, it is simple to take these errors into account if they 

are available [54]. 

Current advances in remote sensing techniques are essential in producing high-

quality Digital Elevation Models (DEMs). In general, a DEM is an umbrella term for any 

electronically accessible elevation datasets, such as digital terrain models (DTMs) and digital 

surface models (DSMs). It comprises elevation measures of the Earth’s terrain, in addition 

to natural- and human-based objects above a specific vertical datum [55].  DEMs have been 

used extensively for a wide range of applications, particularly for various hydrological and 

geomorphological models. The outcomes of these models depend mainly on the accuracy 

and quality of the utilized DEMs [56]–[61]. 

Extracting channel networks from DEMs is mandatory in various hydrological [62] 

and geomorphological [63] studies. A drainage system’s evolution over time is profoundly 

affected by different variables, such as geomorphology, geologic units, soil, tectonics, 

landscape topography, and land cover [64]. Furthermore, it was used to explicate the 

hydrological behavior of drainage basins and to quantify surface water potentialities [65].  

Most of the available global DEM datasets can be considered as compromises 

between DTM and DSM [66], [67], [68]. DTMs are more applicable to different 

hydrological-related research than DSMs. The DTMs have been applied successfully to 

determine the spatial distributions of many topographic (e.g., aspect, slope, surface 

curvature, and gully morphology) [69]–[72] and hydrologic (e.g., flow direction, length, and 

accumulation) attributes [73]. Furthermore, many hydrologists have used DTMs to extract 

channel networks accurately [69], [74], [75]. Different geomorphometric measures (e.g., 

stream order, frequency, density) can be estimated utilizing channel networks. These 

topographic, hydrologic, and geomorphometric parameters contribute as the primary inputs 
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to various physical and conceptual hydrological models that address the link between 

hydrological and geomorphic processes operating on the Earth's surface [70], [76]. 

Recently, airborne light detection and ranging (LiDAR)-based DTMs have been 

broadly used for various hydrological modeling studies [74], [77], [78], as well as channel 

network delineation [79], [80]. Note that airborne LiDAR-based DEMs are only available 

over a small percentage of the Earth's landmass, due to their high cost. Therefore, for many 

studies—particularly for flood monitoring and flood hazard zoning over the arid regions—

researchers have used the freely available remote sensing-based DEMs with global coverage 

(e.g., [81]–[88]). However, most of these researchers did not investigate the nature of the 

DEM used (i.e., either a DSM or a DTM) and errors that could profoundly affect their 

developed models. In addition, most of these studies did not evaluate the horizontal accuracy 

of the channel networks extracted from different global DEMs to select the optimum channel 

network for their environmental research.  

One efficient method to reduce the risk of flash floods lies in the implementation of 

an adequate monitoring system and predictions of probable floods’ extents [4]. Prediction of 

flooding extent requires a good understanding of climatic, hydrological, topographical, and 

geomorphological behaviors for the particular areas in question.  
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1.2. Problem Statement 

Flash flooding is the foremost cause of irretrievable environmental damage in the 

arid Arabian Peninsula, particularly over the Sultanate of Oman. Currently, climatic changes 

such as global changing patterns of temperature and precipitation, are noticeable and 

represent a challenging problem for all scientists [89], [90]. The unstable global climatic 

changes can cause many negative consequences, such as tremendous increases in 

temperature and generation of heavy precipitation—the precursor of deadly flash floods, 

especially in the aforementioned arid area. The frequency and severity of flooding 

immensely increase year-by-year, particularly with the rapid change in the global climate. 

Moreover, the frequency of intense precipitation events increases during warming periods 

[91].  

The Sultanate of Oman, along with other countries located in the arid zone, is 

frequently affected by flooding hazards. To the best of my knowledge, detecting spatial 

variabilities of flash floods’ extents in ‘wilayats’ (i.e., cities) of El Hamra, Bahla, and Nizwa, 

Ad Dakhiliyah Governate, the Sultanate of Oman, has not, to date, been carried out. The 

better understanding of the geomorphologic, topographic, climatic, and hydrologic 

characteristics of the selected catchment is the core step for mitigating and minimizing 

negative flooding impacts. Therefore, developing models to identify potential flood-prone 

areas is mandatory to predict future flash floods and subsequent mitigation measures. Flash 

flood management is becoming more significant as a program to reduce both accelerating 

losses of life and infrastructure damage. Developing flood risk maps to detect the flood-

prone areas and predict inundation at similar future topographic and climatic conditions is a 

compulsory process to educate administrators and local settlers [92]. The availability of such 

flooding risk maps is the key requirement for any future sustainable development of areas 

under investigation.  

In natural hazards research, massive databases are often needed [93]. These data are 

not easy to collect, and in some cases, the lack of thereof can impede such research [94]. The 

majority of studies related to flash flooding in arid and semi-arid areas were performed in 
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the absence of real- and near-real-time rainfall data (e.g., [25], [95]–[98]). Systems of field-

based monitoring that are required to record detailed rainfall and runoff datasets are limited 

(or absent) [99], especially in many countries in the Arabian Peninsula. To date, it is 

questionable that such field monitoring systems will be installed anytime soon on account 

of the enormous efforts and resources entailed to create and maintain such systems. This 

situation makes it difficult to characterize and monitor the floods’ extents. Furthermore, 

field-based mapping of flooded zones is limited in terms of the spatial and temporal extents 

and can be labor-intensive and costly [100]. Current advances in remote sensing and GIS 

methods have introduced valuable contributions in flood modeling and prediction and have 

held the promise to address the previously mentioned inadequacies.  

In the case of extreme flash floods, understanding what might happen in the future is 

necessary to set requisite adaptation policies and develop preparatory guidelines and 

mechanisms for climatic changes [101]. Flash floods are a linked hydro-meteorological 

system [9], with rainfall being the primary hydrological input, for the most part, initiates the 

flash flood [6], as well as inherent watershed characteristics (e.g., drainage line density 

(DLD), valley depth (VD), flow length in the downstream direction FL_DS) controlling the 

flood spreading [92].  

Lack of accurate and continuous hydro-meteorological data increases the 

uncertainties associated with flash flooding events [4]. The primary cause of flash floods in 

the arid regions is precipitation. However, the in-situ rainfall gauges are usually limited or 

absent in the arid regions of the world, particularly in the Arabian Peninsula. Additionally, 

the point rain measurements cannot represent the spatial rainfall field. GSPEs, with relatively 

fine spatio-temporal resolutions, introduce alternative means for estimating the precipitation 

intensity over the selected area of study. Therefore, the first step to maintain a reliable model 

for predicting future flash flood inundation scenarios is to detect the intensity of rainfall 

required to initiate the flooding process.  

Validating GSPEs to acquire the spatiotemporal variation of rainfall introduces an 

optimistic alternative to the in-situ rain gauges. However, very few studies attempted to 
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validate the satellite precipitation in arid areas, especially over sub-daily and daily time 

scales at local watershed spatial details. The restriction of these studies was due to a lack of 

rain gauge measurements covering these areas, and the uncertainties associated with the 

space-borne precipitation estimates, particularly light ones. Moreover, these studies were 

mainly validated monthly, seasonally, and annually. GSPEs have to be investigated against 

reliable ground gauges’ measurements for quantifying the uncertainties, followed by 

updating the developers by the drawbacks of their algorithms in order to improve rainfall 

estimations in these arid locations [102], [103]. Ground truth data from rain gauges and/or 

radar measurements are necessary to validate the GSPEs, but the majority of the Earth’s land 

is ungauged or has limited in-situ measurements. This situation is worsening since the in-

situ observation networks continue to decrease worldwide [103].  

GSPEs are not always reliable, and consensus has been reached that they require the 

quantification of the deviation of the GSPEs from the reference datasets. The in-situ rain 

gauges’ measurements are considered to be the primary reference data [52] to assess the 

reliability and accuracy of GSPEs. Tian et al. [53] assumed that the ground rain gauge 

records are error-free, where the associated biases considered much smaller than those in the 

GSPEs.  Although there were many studies aimed at evaluating GSSEs, they were limited to 

specific regions, and quantifying the uncertainties in the GSPEs using statistical error models 

in the arid Arabian Peninsula has not been systematically investigated enough to date. The 

different performance of GSPEs makes it mandatory to determine whether a product is 

suitable for a specific environment or region.     

The accuracy of a DEM in representing the land surface mainly depends on its source 

data’s spatial resolution [104]. The more accurate the information, the higher the spatial 

resolution the DEM can have. A DEM’s spatial resolution has been shown to affect the 

outcomes of many hydrological parameters [105]–[109]. Extracting channel networks from 

DEMs is mandatory in various hydrological [62] and geomorphological [63] studies. The 

DTMs have been applied successfully to extract different topographic, hydrologic, and 

geomorphometric parameters that contribute as the primary inputs to flood susceptibility 

modeling [110], [34]. Each DEM source has intrinsic errors due to data acquisition 
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technology and processing methodology with respect to specific terrains and land cover 

types [111]. Therefore, it was mandatory to evaluate the vertical accuracy of DEMs and the 

horizontal variability of its derived channel network/orders before involving them and their 

derivatives in the flood susceptibility models. 

The regionalization techniques have been successful in transferring parameters from 

a calibrated catchment to a similar ungauged basin (i.e., has similar climatic, topographic, 

geologic, and land cover features to the ungauged basin). It used to transfer rainfall, runoff, 

and recharge data over the arid areas lacking adequate coverage of in-situ measurements 

[99], [112]–[114]. Precise LiDAR DTM datasets are still limited in most areas of the world 

due to the required extensive cost and labor work to collect them. Additionally, the 

catchment under study in the current research has a vast area (i.e., around 5000 km2). 

Therefore, the concept of regionalization was adopted as a mean to transfer evaluation results 

of the global DEMs between two similar catchments. Accurate LiDAR datasets were 

acquired from an area in the United States of America (USA) of similar topographic 

characteristics to my current study area, were selected to act as reference dataset to evaluate 

global DEMs and their derived drainage networks/orders.  

Flood susceptibility mapping shows the inundation’s likelihood of vulnerable areas 

depending on the intrinsic climatic, geomorphic, topographic, and hydrologic properties of 

a given area [30]. The local residents in the arid flood dangerous zones commonly tend to 

have a misinformed sense of being safe as a consequence of the long periods of time among 

flash flood events. In this respect, flood predictive susceptibility modeling can evaluate the 

past, current, and upcoming spatial flood dynamics [33] and quantify the hazard level of the 

susceptible regions [34]. There were some limitations to the previously defined flood 

susceptibility modeling. It is extremely challenging to obtain a reasonable flood inundation 

map from most of the countries in the Arabian Peninsula in order to validate predictive flood 

models. Conventional methods for generating flood inventory maps such as field work and 

topographic maps were not effective enough. It was only possible to collect a few points of 

representation of flood locations that were mostly located along the main valleys due to 

complex topography and the required extensive cost and effort [34], [96]. Additionally, the 
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previous researchers located non-flood points on the upstream areas of the complex 

topography, which did not represent the real spatial distribution of non-flood locations 

through the entire study areas. The use of an innovative approach to detect the flood extent 

was obligatory during the current study. The synthetic aperture Radar (SAR) sensors that 

can provide their illumination source, record data at both day and night, and penetrate cloud 

cover [115]–[117]. The current advances in these satellite sensors provide optimum means 

to monitor the extent of floods. Furthermore, volunteered geographic information (VGI) is a 

quickly growing data source for natural hazards research [118]. A vast amount of real-time 

ground data has become available as a result of rapid advancement in technology. Some 

authors used volunteered data in their studies about such hazardous events, particularly to 

estimate the extent of flood inundation [119]–[125]. The integration of these data with 

conventional ones introduces valuable information for mapping the extents of flash floods.  

Many studies have been carried out on flash floods in the arid regions, but daily 

rainfall data were usually not considered in the different developed models [21], [95], [96], 

[126]. In addition, most of the previous authors collected flood locations from multiple past 

flood events. Sometimes, these authors used average yearly rainfall data that was not 

matched with a certain flood extent. With the rapidly changing global climate, it was critical 

to develop susceptibility models using a corresponding daily rainfall and related flood event 

to predict a future flood extent under a similar rainfall intensity to that prevailed during a 

past flood event. Even at low rainfall intensity (i.e., from less than 1 mm to 5 mm), it is 

possible to have multiple flood events in arid catchments [4]. The annual average 

precipitation data could not capture the dynamicity of the flash floods. 

There is no agreement about the optimum number of conditioning factors required to 

generate an efficient flood susceptibility map [110], [127]. However, different studies 

recommend using more than six factors to avoid misidentifying flood-prone areas that could 

be affected by a single weight of a specific class and subsequent over-rating of the probability 

of certain contributing variables [128]. Selecting and testing non-collinear flood triggering 

factors needed a thorough understanding of the hydrogeomorphical characteristics, detailed 
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literature survey, and previous field experience in regions similar to the current study area 

in topography and climate. 

Earth observation satellites and GIS techniques introduce valuable datasets and 

methods to detect susceptible areas to flash floods. Reliable and precise dynamic flood 

susceptibility maps can efficiently help the decision-makers and planners to develop their 

plans to reduce the costs, infrastructure damage, and human life threat associated with future 

flash floods. The current study overcame the limitations mentioned above, whereby it 

introduced an improved flood susceptibility modeling that included both spatial and 

temporal details. It employed corresponding flood inventory mapping and satellite-based 

rainfall data that contributed to the selected flood event. The achieved enhancement resulted 

in developing more accurate maps that can mimic the susceptible areas to future flood 

hazards over space and time at a similar rainfall intensity. The predictive flood maps can 

assist the planners and government authorities to deploy emergency plans to mitigate the 

negative impacts associated with potential flooding. 
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1.3. Research Objectives 

The main goal of this research is to develop a model to detect and predict areas prone 

to flash floods at the local watershed scale of 12.5 m in the arid area of Ad Dakhiliyah 

Governate, the Sultanate of Oman. This overall objective was achieved through the 

integration of different geomorphological, hydrological, topographical, and climatological 

geospatial datasets derived from remote sensing sources. The specific objectives were to: 

1) evaluate the performance of five daily and sub-daily ground satellite precipitation 

estimates (GSPEs) (i.e., Global Precipitation Mission-Integrated Multi-satellitE 

Retrievals for the GPM (GPM-IMERG), and Global Satellite Mapping of 

Precipitation (GSMaP)), per different rainfall intensity classes, utilizing the in-situ 

rain gauge measurements over the selected watershed at the Sultanate of Oman. Next, 

to model the errors in these five daily GSPEs using statistical approaches. 

2) develop a new pixel-based geometric assessment method of the spatial horizontal 

variability in the channel networks/orders derived from global spaceborne digital 

elevation models (DEMs) (i.e., Advanced Land Observing Satellite (ALOS) Phased 

Array type L-band SAR (PALSAR), Shuttle Radar Topography Mission (SRTM), 

and ALOS Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM)) 

at different area thresholds (ATs) and pixel buffer tolerance values (PBTVs). This 

objective also included: (i) pixel-based vertical evaluation of the elevation accuracies 

of satellite DEMs, (ii) determining which global DEM dataset would be closer in 

performance to the airborne LiDAR DTM or LiDAR DSM, and (iii) developing a 

new Python toolbox for ArcGIS to automate the previously-mentioned approaches. 

3) develop improved flood susceptibility models using integrated bivariate and 

multivariate statistical methods to predict and classify the degree of hazard 

underlying the future flood-prone areas. 
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1.4. Research Challenges 

There is insufficient availability of rain gauge datasets. In-situ rain gauge records are 

usually limited or absent in the Arid Arabian Peninsula. There is a poor coverage of the rain 

gauge networks over the desert and rugged mountainous areas occupy most of the Arabian 

Peninsula. Installing and maintenance of such rain gauge are costly and labor extensive. 

There is a limited understanding of the responses of different wadis to flood 

inundation. Proper selection of the flood triggering factors and detecting their spatial 

association with flood inundation are the key steps in the geospatial flood predictive models. 

Flow measurements are usually absent as a consequence of the devastating power of 

flash floods. In general, limited flow gauges are often located in the valleys’ outlets across 

paths of different flash flood events, which cause the gauges to be ruined. As a consequence, 

many studies in the Arabian Peninsula have been carried out without flow measurements. 

The remoteness, severe climate, and damaged roads inside wadis make it 

complicated and unsafe to measure and collect field data related to flood and non-flood 

locations. Field-based monitoring of flooded areas requires much time and effort, as well as 

it requires high degrees of safety and multiple precautions. In most of the cases, researchers 

can only monitor flood traces after the complete retreat of the flood water.  

In natural hazards research, massive databases are often needed [93]. These data are 

not easy to collect, and in some cases, the lack of thereof can impede such research [94]. 
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1.5. Thesis Structure  

Figure 1.1 demonstrates the current Ph. D. thesis outlines. It comprises five chapters; 

each chapter has its detailed literature review included within the section of introduction and 

background.  

In general, Chapter 1 introduces background information about flash floods 

occurrences, trigger factors, and negative consequences in the selected arid area for the 

current study. It also includes: (i) the problem statement outlined the past flood studies over 

the selected watershed, respective limitations, and the introduced solutions for addressing 

these concerns in the current research, (ii) overall and specific objectives, (iii) research 

challenges, and (iv) thesis outlines. 

Chapter 2 shows information about the statistical evaluation of the performance of 

the five sub-daily and daily GSPEs. Additionally, it involves modeling the errors in these 

five GSPEs using statistical approaches.  

Chapter 3 presents the development of a new pixel-based methodology to evaluate 

the horizontal accuracies of the channel networks/orders derived from three global DEMs 

based on LiDAR datasets. It also incorporates the assessment of the vertical accuracies of 

these global DEMs and the development of a new Python toolbox for ArcGIS to automate 

the introduced methods. This chapter helped select the DEM with the highest accuracy to be 

applied for deriving different spatial layers used in developing flood susceptibility models. 

Chapter 4 introduces integrated bivariate and multivariate statistical approaches-

based improved flood susceptibility models to predict future flood-prone areas at similar 

climatic and topographic conditions to those which dominated during the current models. It 

also includes the generation of flood inventory accuracy from SAR scenes and deriving flood 

conditioning factors from PALSAR DEM (12.5 m), as well as preparing soil and geologic 

maps. 
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Chapter 5 summarizes the concluding remarks of each objective, research 

contributions, and future work recommendations. 

 

                                         Figure 1.1. A schematic diagram shows the thesis outlines. 
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Abstract 

Precipitation is a critical variable for comprehending various climate-related 

research, such as water resources management, flash flood monitoring and forecasting, 

climatic analyses, and hydrogeological studies, etc. Here, the current objective was to 

evaluate the rainfall estimates obtained from Global Precipitation Mission (GPM), and 

Global Satellite Mapping of Precipitation (GSMaP) constellation over an arid environment 

like the Sultanate of Oman that is characterized by complex topography and extremely 

variable rainfall patterns. Global Satellite-based Precipitation Estimates (GSPEs) can 

provide wide coverage and high spatial and temporal resolutions, but evaluating their 

accuracy is a mandatory step before involving them in different hydrological applications. 

In this paper, the reliability of the Integrated Multi-satellitE Retrievals for the GPM 

(IMERG) V04 and GSMaP V06 products were evaluated using the reference in-situ rain 

gauges at sub-daily (e.g., 6, 12, and 18 h) and daily time scales during the period of March 

2014–December 2016. A set of continuous difference statistical indices (e.g., mean absolute 

difference, root mean square error, mean difference, and unconditional bias), and categorical 

metrics (e.g., probability of detection, critical success index, false alarm ratio, and frequency 

bias index) were used to evaluate recorded precipitation occurrences. The results showed 

that the five GSPEs could generally delineate the spatial and temporal patterns of rainfall 

while they might have over- and under-estimations of in-situ gauge measurements. The 

overall quality of the GSMaP runs was superior to the IMERG products; however, it also 

encountered an exaggeration in case of light rain and an underestimation for heavy rain. The 

effects of the gauge calibration algorithm (GCA) used in the final IMERG (IMERG-F) were 

investigated by comparison with early and late runs. The IMERG-F V04 product did not 

show a significant improvement over the early (i.e., after 4 h of rainfall observations) and 

late (i.e., after 12 h of rainfall observations) products. The results indicated that GCA could 

not reduce the missed precipitation records considerably. The statistical additive and 

multiplicative schemes mostly succeed in modeling the errors in the daily GSPEs. However, 

the additive approach was more effective than multiplicative one in quantifying the 

uncertainties associated with GSPEs at different classified rainfall intensities. GSMaP 
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products behaved better than the IMERG run based on using the error models. IMERG-F 

showed better performance than other IMERG estimates. 
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(2A) PERFORMANCE ASSESSMENT OF SUN-DAILY AND DAILY 

GPM AND GSMaP PRODUCTS OVER AN ARID ENVIRONMENT 

2A.1. Introduction and Background 

Precipitation is one of the key components of the water cycle that is crucial to study 

the hydrological balance, water resources management, drought monitoring, flood 

forecasting, as well as critical social and climatological issues [1]. However, quantifying 

precipitation is complicated because it has a high variability, even at a small scale [1], [2]. 

In general, direct surface rain observations from in-situ gauges and indirect measurements 

through optical and microwave satellites or weather Radars are the currently available data 

sources to estimate the precipitation rates. The ground rainfall gauges are used to measure 

rainfall flux directly and determine its rate in a small area [3]. They can capture continuous 

measurements at high temporal frequencies. However, traditional point rain gauges cannot 

capture the areal representation and variation of rainfall, especially in regions where the in-

situ rain gauges are limited in number and coverage [3]. Even if rain gauge network 

measurements are interpolated, they yield a uniform rainfall field that does not represent the 

real spatial and temporal rainfall variability [4]. Furthermore, the operation of rain gauges is 

costly, and in most cases, they are sparsely distributed or unavailable in remote areas due to 

difficulties of access for installation and maintenance [5]. The latter case has been escalated 

over the arid Gulf countries. Ground weather Radars can gain information about the internal 

structure of storms and provide real-time high-resolution monitoring of precipitation over 

vast areas [6]. However, they are also unavailable or not dense enough over most regions of 

the world. 

The shortcomings of the previously-mentioned ground-based methods to measure 

precipitation highlighted the need for the global coverage of the Earth observation satellites 

[7]. Over the last few decades, different Global Satellite-based Precipitation Estimates 

(GSPEs) were made available from multiple international organizations allowing high-

quality rainfall monitoring at fine spatial and temporal resolutions. Nowadays, a new 
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generation of GSPEs is being made available to ensure frequent and continuous rainfall 

monitoring.  

The GSPEs are usually used to identify the spatial extent and magnitude of the 

rainfall events, especially the extreme ones [8]. Their advantages were outlined by 

Gebregiorgis and Hossain [9], such as: (i) overcoming the problem of geopolitical 

boundaries, (ii) covering continents and oceans, (iii) producing consecutive records at day 

and night, (iv) introducing a cost-effective way comparing to in-situ networks, and (v) 

delivering the data in a near-real-time, which would be critical to some applications such as 

monitoring and forecasting of flash flooding events.  

GSPEs involve indirect blended precipitation estimates from Geosynchronous 

Infrared (GEO-IR)- and Low Earth Orbit-Passive Microwave (LEO-PMW)-based sensors 

[10]. The GEO-IR satellite data identifies the cloud-top characteristics that have an indirect 

relationship with the rainfall rate. Additionally, they cannot record rainfall from warm 

clouds. The LEO-PMW estimates can be profoundly affected by the ice particles or droplets 

associated with rainfall. They are less frequent than GEO-IR estimates and have poor spatial 

resolutions. Furthermore, they encounter significant sampling errors, particularly when 

comparing to the short-term rainfall measurements. Therefore, blending the LEO-PMW and 

GEO-IR satellite data to generate the new versions of GSPEs helped to gain improved 

rainfall estimates. 

Weather satellites, despite uncertainties in their estimates, can monitor the rainfall at 

effective spatial and temporal resolutions. Their effective spatial and temporal coverage 

allows satellite sensors to generate information at regular intervals [3], [11]–[13]. GSPEs are 

usually unable to provide estimates that are entirely similar to the gauge measurements in 

both temporal and spatial scales [14]. The uncertainties (i.e., non-negligible errors) 

associated with GSPEs introduce a significant challenge for the end-users to apply these data 

in practical meteorological and hydrological applications [15]. Therefore, the nature and 

magnitude of these errors must be thoroughly evaluated and determined to take better 

advantage of GSPEs’ products. Quantifying the level of uncertainty in different GSPEs can 
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be helpful for data producers to improve their algorithms and for the end-users to verify the 

accuracy of these products before utilizing them in a specific application [9].  

Dedicated efforts have been made by different researchers to evaluate the 

performance of various GSPEs. Many authors have studied different runs of Global 

Precipitation Mission-based Integrated Multi-satellitE Retrievals (GPM-IMERG) over 

different climatic zones in many parts of the world. The annual and seasonal average 

precipitation of daily re-sampled Global Satellite Mapping of Precipitation, i.e., GSMaP V06 

(0.25° × 0.25°) product, capture a more accurate spatial rainfall pattern than the IMERG-

Final, i.e., IMERG-F V03 and V04 for most regions of China [16]. Despite the GSMaP-

Gauge, i.e., GSMaP-G V07 overestimated light rainfall and underestimated heavy rain, its 

overall quality still slightly outperformed the IMERG V04 and V05 over east and south 

China [17]. Besides, the performance of the calibrated IMERG V05 did not have a significant 

improvement over that of IMERG V04 [17]. 

Milewski et al. [18] assessed the GPM predecessor, i.e., Tropical Rainfall Measuring 

Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA products) using a rain gauge 

network in northern Morocco. They found that TMPA 3B42 V7 was the most spatially 

consistent with the rain gauge measurements. Additionally, all four products showed 

overestimations across this arid environment. Monthly GSMaP Moving Vector with Kalman 

filter, i.e., GSMaP-MVK V06 had slightly superior performance to V06 datasets over 

Pakistan [19]. At daily and monthly timescales, the IMERG V04 was considered as the most 

suitable IMERG version to detect precipitation estimates over the extreme arid region in 

Pakistan. Furthermore, the daily GSMaP-G V06 had superior performance with respect to 

IMERG V05 and TMPA V06 in all areas and all precipitation thresholds in Brazil [20]. 

Mahmoud et al. [21] evaluated the daily performance of the early, late, and final GPM-

IMERG over entire Saudi Arabia using 1455 measurements from in the Sultanate of Oman. 

They evaluated the 189 in-situ rain gauges from October 2015 to April 2016. The early and 

late IMERG (i.e., IMERG-E and IMERG-L) products performed well in some parts of Saudi 

Arabia, but the IMERG-F run had better performance than both. Moreover, Mahmoud et al. 

[22] evaluated the spatiotemporal performance of three daily GPM-IMERG runs over the 
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entire area of the United Arab Emirates (UAE) (i.e., 83,600 km2) using 1610 rainy events 

from January 2015 to December 2017. They interpolated rainy measurements when at least 

30 in-situ rain gauge stations had records across the entire UAE on the same day. They 

mentioned that IMERG-F had the highest agreement with the ground measurements. 

Utilizing observations from 53 ground gauges from 2003–2010 over the entire UAE, Wehbe 

et al. [23] stated that the daily TMPA 3B42 V06 (0.25°) had a higher agreement with gauge 

measurements than daily Climate Prediction Center MORPHing technique (CMORPH) 

product (0.25°).  

In the Sultanate of Oman (i.e., the selected study area), water resources are scarce 

[24]. The primary source of surface and sub-surface water is the rainfall, and complex 

mountains (400 m–3000 m above sea level [25]) act as water towers [26]. The spatiotemporal 

performance of GPM and GSMaP estimates has not been studied over arid areas 

performance of 5 quasi-global GSPEs over an arid environment using in-situ rain gauge 

measurements as benchmarks. The current paper introduces the first detailed daily and sub-

daily assessment of GSPEs over the Arabian Peninsula. With an emphasis on the latency 

time aspect of these GSPEs, the ultimate objective of this research was to assess their 

performance per entire ground stations in relationship to different rainfall intensity classes. 

Because GSPEs have mostly global or quasi-global orientations, the performance of these 

products is expected to vary from one location to the other. Therefore, it is mandatory to 

assess the performances of GSPEs using the local in-situ rain gauge datasets before they can 

be utilized with high confidence in different environmental applications over a specific study 

area. Such evaluation and inter-comparison can also help to determine the most accurate and 

appropriate GSPEs among various alternatives. 
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2A.2. Study Area and Datasets 

2A.2.1. Study Area 

The Sultanate of Oman is located along the south-eastern coast of the Arabian 

Peninsula in western Asia. It covers an area of approximately 309,814 km2 [27]. It can be 

divided geographically into three distinct parts: desert (75%), mountainous area (15%), and 

coastal zone and alluvial plains (5%). The current study was carried out at the foothill of the 

Al-Jabal Al-Akhdar chain at Ad Dakhiliyah Governorate, the Sultanate of Oman (Figure 

2A.1). It is characterized by the arid climate with little precipitation over the whole year. It 

is highly variable and fluctuated with an average annual rainfall of more than 300 mm in the 

northern Oman mountains [28]. In fact, there are four main mechanisms that help generate 

rainfall in Oman [24], [28]–[30], i.e., (i) convective rainstorms that often occur during the 

summer and may reoccur at any time of the year, (ii) cold frontal troughs that originate over 

the Atlantic Ocean or the Mediterranean Sea and prevail throughout winter and early spring, 

(iii) onshore monsoon currents that induce a complex regional circulation from June to 

September and usually come in the form of drizzle over the southern Oman (Dhofar), and 

(iv) tropical cyclones that move from the Arabian Sea-side to generate extreme rainfall and 

can reoccur once in every five years in Dhofar and about once in every ten years over Muscat 

coastal regions. Figure 2A.1 showed the selected area of study, where the source of the top 

image is ESRI xc and the lower image contains Advanced Land Observing Satellite-Phased 

Array type L-band Synthetic Aperture Radar (ALOS PALSAR) [31] digital elevation model 

(DEM)  with a spatial resolution of 12.5 m. 
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Figure 2A.1. The study area is enclosed in the red polygon (as shown in the upper panel), and the 38 

meteorological ground rainfall gauges are shown in black dots shown in the bottom panel. The 

elevation irregularities (color in m) were derived from ALOS PALSAR DEM with a spatial resolution 

of 12.5 m. The source of the satellite imagery (top part) is ESRI [32]. 
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2A.2.2. Rainfall Datasets 

In this study, three different precipitation-related datasets were used: (i) GPM-

IMERG, (ii) GSMaP, and (iii) in-situ gauge data. These datasets are briefly described in the 

following sub-sections.  

2A.2.2.1. GPM-IMERG Products 

The GPM is a constellation of satellite platforms operated by the National 

Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration 

Agency (JAXA) in cooperation with other international space agencies [33]. This system 

provides precipitation measurements in near-real time (NRT) within 3 hours of observation 

to enhance the understanding of Earth’s energy and the water cycle. It consists of two 

integrated instruments, i.e., the GPM Microwave Imager (GMI) captures precipitation 

intensities and horizontal patterns, and the Dual-frequency Precipitation Radar (DPR) to 

produce a 3D structure of precipitating particles. It generates Integrated Multi-satellite 

Retrievals for GPM (IMERG) products by merging and interpolating of: (i) all satellite 

passive microwave precipitation estimates in the GPM constellation, (ii) microwave 

calibrated IR satellite measurements, (iii) rainfall gauge records, and (iv) other precipitation 

products of different sensors at fine spatial and temporal resolutions [33]. The involved 

methods for developing these IMERG products can be summarized in the following steps as 

described in [33]: (i) creating a linear interpolation between the LEO-PMW estimates and 

the GEO-IR-based feature motion, (ii) applying Kalman filter to process the GEO-IR 

precipitation when the LEO-PMW are too scattered, (iii) implementing satellite sounding-

based algorithms at the high latitudes to overcome the shortcomings of the usual PMW 

imager channels, and (iv) utilizing the precipitation gauge networks to correct the bias of the 

satellite measurements and produce reliable regionalization. The system runs several times 

for every observation time to generate products of 0.1° and 30 minutes of spatial and 

temporal resolution, respectively. There are three IMERG products [34], [35]: (i) the NRT 

IMERG-E run provides quick estimates after 4 h of observations, (ii) the IMERG-L run 

yields better estimates as more data arrives after 12 h of observations, and (iii) the IMERG-

F research-grade that used the monthly in-situ gauge estimates for validation purposes, and 
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has latency time of 3.5 months. The IMERG V04 algorithms use the Goddard Profiling 

Algorithm (GPROF 2014) to measure the precipitation estimates from all PMW sensors 

onboard GPM satellites, which represents an improvement compared with GPROF 2010 of 

the TRMM-TMPA products [33].  

2A.2.2.2. GSMaP Estimates 

GSMaP is a blended Microwave-IR product and has been developed in Japan for the 

GPM mission. Processing and distributing global rainfall data on an NRT basis by merging 

multi-satellite data. It is an hourly product at a 0.1° × 0.1° latitude/longitude grid. The 

prototype version has been in operation in JAXA since 2006 data, and the GPM-GSMaP 

products were released in September 2014. A new version of GSMaP (V06) was released on 

17 January 2017. Based on launching the GPM mission, the GSMaP project developed a 

corresponding GPM-era precipitation retrieval algorithm (GPM-GSMaP version 06) by 

adding information from GPM Core GMI. The GSMaP algorithm generates precipitation 

estimates according to following steps as described in [36]–[38]: (i) calculating the rainfall 

rate from PMW sensors, (ii) then propagating rainfall affected area using forward and 

backward morphing technique, and (iii) finally, refining the estimated data based on infrared 

brightness temperature using Kalman filter approach. The GSMaP-G is an error-corrected 

GSMaP product, which is based on GSMaP-MVK (i.e., a pure satellite-based GSMaP 

product without gauge correction) and adjusted by the CPC unified gauge-based analysis of 

global daily precipitation data analysis. In this study, I used “GSMaP-G” to stand for 

GSMaP-Gauge adjusted data, and “GSMaP-S” to denote GSMaP-MVK. More details about 

GSMaP algorithms, validation, and products can be obtained from [36]–[38].  

2A.2.2.3. Rain Gauge Data 

In total, the rain measurements from 38 in-situ gauges were collected by the Ministry 

of Regional Municipalities and Water Resources, the Sultanate of Oman, over the period 

from March 2014 to October 2016. These in-situ rain gauge data were converted to a spatial 

vector data structure and georeferenced to the projection system of the GSPEs. Besides, the 

GSPEs were adjusted to match with the Omani day, which starts 4 h ahead of Coordinated 
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Universal Time/Greenwich Mean Time (UTC/GMT) (i.e., UTC/GMT + 4 h). To compare 

the GSPEs with the corresponding ground rain records at daily and sub-daily temporal scales, 

the five products of half-hourly, i.e., HH IMERG and hourly GSMaP were aggregated into 

daily and sub-daily datasets every 6 h ranging from 00.00 UTC to 24.00 UTC and details 

can be found in [39]. 

2A.3. Methods  

Figure 2A.2 demonstrates the proposed method in the form of a schematic diagram. 

It consists of two distinct components: (i) data preparation, and (ii) statistical comparison 

processes (i.e., continuous and categorical metrics) for daily and sub-daily GSPEs based on 

the entire in-situ rain gauges’ measurements at different rainfall intensities and thresholds. 

 

Figure 2A.2. The flow chart for comparing the Global Satellite-based Precipitation Estimates (GSPEs) against 

the in-situ rain gauges’ measurements over an arid area (Ad Dakhiliyah, the Sultanate of Oman). 
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2A.3.1. Data Preparation 

Llasat [40] stated that there was no generic schema for classifying the rainfall 

intensity into different categories as they could significantly vary from one country to 

another. The analysis of in-situ rainfall measurements for the period from 1997 to 2003 over 

Al-Jabal Al Akhdar toward Ad Dakhiliyah Governorate (Nizwa, Bahla, and Al Hamra 

cities), Sultanate of Oman revealed that the intensity of rainfall less than 10 mm/day 

constituted 66-95% of the total rainfall amount, while rainfall of at least 50 mm/day was 

erratic [24]. Therefore, I selected certain accumulated rainfall intervals (i.e., 0.0–2.5 mm, 

2.5–10 mm, 10–50 mm, greater than 50 mm that can represent light, moderate, heavy, and 

very heavy rainfall in the selected arid study area) to evaluate the GSPEs, per different sub-

daily and daily temporal resolutions, using the in-situ rain gauges’ measurements. The three 

runs of the HH IMERG datasets were originally stored in a native complex Hierarchical Data 

Format (HDF5). The HDF5 is a unique open-source, cross-platform technology for data 

storage of scientific and descriptive metadata in an organized hierarchy. The IMERG V04 

runs were downloaded from the Mirador web tool of NASA Goddard Earth Sciences Data 

and Information Services Center (GES DISC) for the period from March 2014 to October 

2016. The downloaded data were converted to the GeoTIFF data format with subsequent 

extraction of the calibrated precipitation datasets. The IMERG products were projected to 

the Geographic Coordinate System (GCS), WGS 1984. The next step was to correct the 

orientation of the grids by rotating the images through a 90° counter-clockwise, then the 

corrected georeferenced longitude and latitude values were defined. The point rain gauges 

were transferred into the same projected coordinate system of the IMERG data. The daily 

precipitation estimates were calculated by summing the 48 HH precipitation estimates for 

each day and dividing them by two. The HH IMERG data were divided by two to convert 

the unit of measurements into mm/hour. The precipitation estimates in successive two HH 

periods (Xnmm/hh, Xn+1mm/hh) were converted into hourly precipitation estimates (Xmm/h) 

based on the following mathematical relationship: 

                                X��/� =  [Xn��/�� +  (Xn + 1��/��)]/2                                 (2A.1) 
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The GSMaP datasets were available in a CSV file format that contained latitudes, 

longitudes, and rainfall values. To convert these data into GeoTIFF format, the maximum 

and minimum values of the longitudes and latitudes were defined. Then, based on 

determining the full spatial extent of the GSMaP data, the grids were generated, and the 

pixels were filled iteratively by the precipitation values. The images were then converted to 

GeoTIFF format and projected to the GCS, WGS 1984. 

In order to perform the comparison between the five GSPEs and in-situ gauge 

measurements, the IMERG and GSMaP raster datasets were converted to vector points that 

represented the centroid of each pixel. The gauge points were overlaid the IMERG grids, 

and the nearest neighbor pixel value to each ground station were extracted into matrix of the 

points’ values (i.e., as columns) (e.g., [20]) using the nearest neighbor approach (i.e., the 

closest center of the correspondent GSPEs’ grid points were selected). The nearest neighbor 

could be used to search for k nearest neighbors, or neighbors within some distance (or both). 

The maximum distance between the center of the GSPEs’ grids and the in-situ gauges was 

approximately five km (i.e., below the spatial resolution of the GSPEs). This approach is 

used frequently in evaluating the performance of the GSPEs to ensure using the original 

retrievals of each satellite estimate [20], [41]. The corresponding rainfall event from GSMaP 

and IMERG grids, and in-situ point measurements were extracted to compute the statistical 

comparison measures. Ground stations’ records were spatially joined with the closest 

centroid of the GSPEs’ grids. The results from these spatial joins were used to identify hits 

and misses. 

The in-situ rain measurements and the corresponding GSPEs were aggregated into 

sub-daily and daily products every 6 h from 00.00 UTC to 24.00 UTC (i.e., from 00.00 to 

06.00 UTC, 06.00 to 12.00 UTC, 12.00 to 18.00 UTC, and 18.00 to 24.00 UTC) per all 

involved gauges in the evaluation. These accumulated products were initially compared per 

the total rainfall intensity per all in-situ gauges. In addition, in order to gain in-depth 

information about the performance of GSPEs, I also evaluated them using in-situ rain gauges 

measurements at different rain intensity intervals (i.e., 0.00–2.5 mm, 2.5–10 mm, 10–50 mm, 
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greater than 50 mm), and at different rainfall initiation thresholds (0.00 mm, 2.5 mm, and 10 

mm). 

2A.3.2. Statistical Comparison Procedures 

In general, statistical evaluation of the performance of GSPEs could be carried out 

based on the continuous difference (Table 2A.1) and categorical methods (Tables 2A.2 and 

2A.3). In this case, sub-daily and daily cumulative precipitation estimates were used. These 

assessments were carried out based on different rainfall intensities, as well as different 

thresholds to differentiate rain and no rain events.  

Table 2A.1. The continuous difference statistical metrics used for evaluating the performance of different 

GSPEs. Note: Variables: i: sample size “single rainfall event for a single satellite grid point”; N: 

number of pixels “observed days”; S: satellite precipitation estimates (centers of grids); O: observed 

point ground rain data. 

Metrics Mathematical Formula Range Ideal Value Units 

MD 
1

N
�(S� − O�)

�

���

 −∞ to +∞ 0 mm/n h 

MAD 

1

N
�|S� − O�|

�

���

 

 

0 to +∞ 0 mm/n h 

RMSE �
1

N
� (S� − O�)

�
�

���
 0 to +∞ 0 mm/n h 

UB 
∑ (S�)

�
���

∑ (O�)
�
���

 0 to +∞ 1 - 

 

Table 2A.2. Contingency table to determine the possible conditions (combination) for detecting rainfall from 

the GSPEs and ground measurements. 

Possible Combinations of Rain Detection Satellite Product Gauge Data 

Hit (H) Yes Yes 

False (F) Yes No 

Miss (M) No Yes 

Null (X) No No 
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Table 2A.3. The categorical statistical indicators utilized for evaluating the performance of the GSPEs. 

Indicators Mathematical Formula Range Ideal Value 

POD 
H

H + M
 0 to 1 1 

CSI 
H

H + M + F
 0 to 1 1 

FAR 
F

H + F
 0 to 1 0 

FBI 
H + F

H + M
 0 to +∞ 1 

2A.3.2.1. Continuous Statistical Metrics 

The continuous difference methods (see Table 2A.1) were mainly directed toward 

measuring the difference between GSPEs and the corresponding in-situ rain gauges. 

Numerous statistical difference methods have been reported by various researchers (e.g., [1], 

[16], [17], [20], [42]) to evaluate the performance of different GSPEs. Both root mean square 

error (RMSE) and mean absolute difference (MAD) measure the average error magnitude, 

but RMSE provides greater weights to the more substantial errors than the MAD. MD also 

determines the difference between two products. In the case of using observation data (i.e., 

reference in-situ gauges’ measurements) are utilized for assessing the performance of the 

GSPEs, MD is corresponding to the bias. The unconditional bias (UB) is the ratio between 

the GSPE and in-situ rainfall measurements. Perfect satellite precipitation estimation results 

in a UB of unity. Overestimation leads to values higher than unity, while underestimation 

causes values less than unity. 

2A.3.2.2. Categorical Indices 

The categorical indicators were determined using a 2 by 2 contingency table (Table 

2A.2). Precipitation is collected as discrete observable estimates, so there are four possible 

combinations (Table 2A.3), where ‘H’ is hit (i.e., number of pixels that both of satellite and 

gauge data simultaneously detected the rainfall at the same location), ‘F’ stands for false 

alarm (i.e., number of pixels that are recorded by satellite product as rainfall but not by the 

in-situ gauge), ‘M’ is missed (i.e., number of pixels that are reported as rainfall by the ground 
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gauge but not by the satellite sensor), and ‘X’ refers to ‘null’ or correct negatives (i.e., the 

number of pixels that are not recognized as rainfall for both satellite data and ground gauge). 

The possible forms of the categorical statistics [43] are the probability of detection (POD), 

critical success index (CSI), false alarm ratio (FAR), and frequency bias (FBI) (Table 2A.3). 

The POD is defined as how often the satellite product successfully estimates the rainfall. IF 

the POD is equal to 1, this means that the satellite product correctly detects all the rainy 

pixels compared to the in-situ gauge data. CSI defines the fraction of rain events correctly 

captured by the satellite sensor. The FAR specifies how often the satellite data detects 

rainfall when rain does not actually fall to the ground. The FBI explains the ratio of total 

satellite rainfall alarms to gauges’ fall alarms. FBI is the ratio between predicted and 

observed rain events [44]. An ideal FBI value is 1, and it can occur if the frequencies of false 

alarms and missed rainfall events are equal [45], [46]. More details about the categorical 

classification for GSPEs could be found in [41]. 

2A.4. Results  

In this section, the results were computed based on comparing sub-daily and daily 

gauge measurements with the corresponding GSPEs, at different rainfall intensity classes 

(except greater than 50 mm) and thresholds, using traditional continuous and categorical 

statistical metrics. The rationale of excluding the ‘greater than 50 mm’ intensity class was 

due to the fact that such events were not commonly occurred (i.e., only 14 events) within the 

study period of interest.  

2A.4.1. Daily Analysis Utilizing Traditional Statistical Metrics per Entire Ground Rain 
Gauges 

The evaluation of the daily 5 GSPEs against 38 ground rain gauges has been carried 

out based on days with only observed rainfall values (Table 2A.4). The number of events 

captured by both GSMaP products was higher than those recorded by the different GPM-

IMERG runs. The MD and UB metrics indicated if the GSPEs under- or over-valued the in-

situ rain gauge measurements. At the daily accumulated rainfall intensity, the IMERG-L 

showed the lowest underestimation rate with MD of −0.43 mm/day and UB closed to unity, 
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i.e., 0.92 (Table 2A.4). The 5 GSPEs slightly overestimated the light rainfall of intensity of 

less than 2.5 mm. The IMERG-F reported the lowest overestimation and followed by 

GSMaP-G and GSMaP-S. The UB and MD metrics were consistent in the case of IMERG-

F, GSMaP-G, and GSMaP-S with values of 1.75, 1.84, and 2.08 and 0.64 mm/day, 0.71 

mm/day, and 0.92 mm/day, respectively (Table 2A.4). The IMERG-L and IMERG-E, 

respectively, had the best performance with reporting the lowest underrated values of 

moderate to heavy ground rainfall observations. They slightly, moderately, and massively 

undervalued in-situ measurements at rainfall intensity classes of 2.5–10 mm/day, 10–50 

mm/day, and greater than 50 mm/day, respectively (Table 2A.4).  

Also, the GSMaP-G, GSMaP-S, and IMERG-F yielded the best (i.e., lowest) values 

of RMSE and MAE at the accumulated rainfall intensity per day (Table 2A.4). At the first 

three rainfall intensity classes in ascending order, the GSMaP-G kept providing lower values 

of RMSE and MAE than other GSPEs (Table 2A.4). There were some exceptions where the 

IMERG-F and IMERG-E ranked first at rainfall intensity classes of 10–50 mm and greater 

than 50 mm, respectively. 
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Table 2A.4. Statistical metrics of daily rainfall events per different intensities (mid-March 2014 to October 

2016). NoE refers to the number of recorded rainfall events. 

Intensity Metrics GSMaP-S GSMaP-G IMERG-E IMERG-L IMERG-F 

Total Rainfall 
(mm/day) 

NoE 2499 2499 2471 2471 2468 

MD −1.92 −2.96 −1.08 −0.43 −2.85 

MAD 4.98 4.69 6.22 6.38 4.77 

RMSE 10.12 9.23 14.09 15.29 9.32 

UB 0.66 0.47 0.81 0.92 0.49 

0.0–2.5 (mm/day) 

NoE 1395 1395 1370 1370 1367 

MD 0.92 0.71 1.55 2.00 0.64 

MAD 1.82 1.61 2.56 2.91 1.59 

RMSE 3.93 2.87 8.47 10.16 3.40 

UB 2.08 1.84 2.82 3.33 1.75 

2.5–10 (mm/day) 

NoE 674 674 673 673 673 

MD −2.36 −2.90 −1.37 −0.50 −3.11 

MAD 4.71 4.18 6.22 6.54 4.62 

RMSE 5.93 4.90 13.42 15.59 5.75 

UB 0.57 0.47 0.75 0.91 0.43 

10–50 (mm/day) 

NoE 418 418 416 416 416 

MD −9.27 −13.61 −8.27 −7.26 −12.30 

MAD 14.59 14.14 16.97 16.22 13.93 

RMSE 18.44 16.24 22.09 22.18 15.89 

UB 0.52 0.29 0.57 0.62 0.36 

> 50 (mm/day) 

NoE 14 14 14 14 14 

MD −44.16 −55.03 −33.25 −31.30 −50.74 

MAD 46.37 55.03 44.25 45.97 50.81 

RMSE 70.02 73.28 69.68 69.92 71.38 

UB 0.37 0.22 0.53 0.56 0.28 
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2A.4.2. Sub-daily Analysis Utilizing Traditional Statistical Metrics per Entire Ground 
Gauges 

In terms of MD and UB metrics, it was found that the GSMaP-G, IMERG-E, and 

GSMaP-S tended to underestimate the ground rain measurements in ascending order at the 

accumulated total rainfall intensity per 6 h (Table 2A.5). The computed MD and UB values 

were close to each other among 5 GSPEs with difference ranges of 0.58 mm/6 h and 0.24, 

respectively. Using the same metrics per 12 h, the 5 GSPEs kept underestimating the in-situ 

rain records, where IMERG-L yielded the best MD and UB scores, i.e., −1.59 mm/12 h and 

0.58, and followed by GSMaP-S and IMERG-E. Moving toward the accumulated rain per 

18 h, it was found that IMERG-L, IMERG-E, and GSMaP-S outperformed the other two 

GSPEs by reporting the lowest MD values and the closest UB values to the unity (Table 

2A.5). 

The MAD and RMSE values increased with the rise of accumulated hours from 6 to 

18 h (Table 2A.5). The GSMaP-G showed the best performance with reporting lowest RMSE 

and MAD values of 4.38 mm/6 h, 7.55 mm/12 h, and 8.87 mm/h and 1.88 mm/6 h, 3.3 

mm/12 h, and 4.55 mm/18 h, respectively. The IMERG-F showed similar performance to 

GSMaP-G at 12 and 18 h. GSMaP-S had the lowest performance per 6 h, while IMERG-L 

outperformed by other GSPEs per 12 and 18 h (Table 2A.5). 
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Table 2A.5. Statistical metrics of sub-daily rainfall events of total intensity (mid-March 2014 to October 2016). 

NoE refers to the number of recorded rainfall events. 

Time Metrics GSMaP-S GSMaP-G IMERG-E IMERG-L IMERG-F 

6 h 

NoE 406 406 404 404 404 

MD −1.30 −1.19 −1.20 −1.34 −1.77 

MAD 2.56 1.88 2.39 2.25 2.16 

RMSE 5.74 4.38 5.35 5.20 5.34 

UB 0.44 0.48 0.48 0.42 0.24 

12 h 

NoE 1409 1409 1397 1397 1394 

MD −1.89 −2.35 −2.25 −1.59 −2.68 

MAD 3.75 3.30 3.94 4.03 3.47 

RMSE 8.27 7.55 9.43 9.66 7.94 

UB 0.50 0.38 0.41 0.58 0.30 

18 h 

NoE 2339 2339 2315 2315 2312 

MD −1.68 −2.88 −1.33 −0.64 −2.71 

MAD 4.77 4.45 5.73 5.93 4.42 

RMSE 9.90 8.87 13.71 15.05 8.91 

UB 0.67 0.44 0.74 0.88 0.48 

Table 2A.6 shows that the 5 GSPEs inclined to overestimate the sub-daily ground 

rain measurements at a rain intensity of 0.0–2.5 mm. The MD and UB values ranged from 

0.00–0.32 mm and 0.24–0.48, respectively, for the accumulated rain per 6 h, where 5 GSPEs 

tended to overestimate the in-situ rain measurements except for the IMERG-F slightly. 

GSMaP-G showed the highest performance per 6 h, and IMERG-F ranked first per 12 and 

18 h with reporting best MD and UB scores. For the other GSPEs, the IMERG-E, GSMaP-

S, and IMERG-L ranked in descending order with MD and UB values of 0.21 mm/12 h, 0.51 

mm/12 h, and 0.59 mm/12 h and 1.28, 1.69, and 1.79, respectively (Table 2A.6). The same 

rank was achieved at a temporal resolution of 18 h, except that the GSMaP-G outperformed 

the IMERG-E. The scores of RMSE and MAD were close to each other at different sub-

daily time scales except for the extreme RMSE reported at a temporal resolution of 18 h by 

the IMERG-L, i.e., 10.01 mm/18 h and IMERG-F, i.e., 8.32 mm/18 h (Table 2A.6). The 
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GSMaP-G and IMERG-F alternately had the best performance at different sub-daily time 

scales.  

Table 2A.6. Statistical metrics of sub-daily rainfall events at a rainfall intensity of less than 2.5 mm (mid-

March 2014 to October 2016). NoE refers to the number of recorded rainfall events. 

Time Metrics GSMaP-S GSMaP-G IMERG-E IMERG-L IMERG-F 

6 h 

NoE 331 331 328 328 328 

MD 0.26 0.00 0.32 0.22 −0.11 

MAD 0.96 0.65 0.95 0.82 0.52 

RMSE 2.17 1.10 1.97 1.56 0.86 

UB 1.50 1.00 1.62 1.42 0.79 

12 h 

NoE 899 899 888 888 885 

MD 0.51 0.19 0.21 0.59 0.00 

MAD 1.45 1.08 1.28 1.52 0.97 

RMSE 3.53 1.71 3.49 4.28 2.02 

UB 1.69 1.26 1.28 1.79 1.00 

18 h 

NoE 1339 1339 1317 1317 1314 

MD 0.89 0.60 1.35 1.80 0.50 

MAD 1.78 1.54 2.34 2.71 1.46 

RMSE 3.86 2.68 8.23 10.01 3.20 

UB 2.05 1.71 2.59 3.12 1.59 

Within accumulated rainfall intensity ranged from 2.5–10 mm, the GSMaP-G was 

found to be the best depending among different intervals of computations (Table 2A.7). 

GSMaP-G was the best performer for 8 out of 12 times, i.e., (i) −2.54 mm, 3.74 mm, 4.38 

mm, and 0.54 for MD, MAD, RMSE, and UB, respectively, per 6 h; and (ii) approximately 

4.16 mm, 4.86 mm for MAD and RMSE, respectively, per 12 and 18 h. In terms of MD and 

UB metrics, the 5 GSPEs tended to underestimate moderately the in-situ rain measurements 

(Table 2A.7). The IMERG-L demonstrated the closest matching with in-situ rainfall 

measurements with reporting lowest MD values, i.e., −2.65 mm and −0.57 mm, and UB 

scores, i.e., 0.52 and 0.89 per 12 and 18 h, respectively. 
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Table 2A.7. Statistical metrics of sub-daily rainfall events at intensity 2.5–10 mm (mid-March 2014 to October 

2016). NoE refers to the number of recorded rainfall events. 

Time Metrics GSMaP-S GSMaP-G IMERG-E IMERG-L IMERG-F 

6 h 

NoE 52 52 52 52 52 

MD −3.26 −2.54 −3.36 −3.66 −4.39 

MAD 5.36 3.74 4.54 4.25 4.73 

RMSE 6.22 4.38 5.57 5.05 5.36 

UB 0.41 0.54 0.39 0.34 0.21 

12 h 

NoE 363 363 362 362 362 

MD −2.98 −3.64 −3.77 −2.65 −4.04 

MAD 4.95 4.16 5.02 5.17 4.55 

RMSE 6.05 4.86 6.70 7.83 5.19 

UB 0.46 0.33 0.31 0.52 0.26 

18 h 

NoE 627 627 626 626 626 

MD −2.29 −2.94 −1.55 −0.57 −3.11 

MAD 4.64 4.16 5.96 6.36 4.50 

RMSE 5.86 4.89 13.48 15.84 5.67 

UB 0.57 0.45 0.71 0.89 0.42 

 

In terms of MAD and RMSE, the GSMaP-G and IMERG-F had the highest 

performance and followed by the GSMaP-S, IMERG-E, and IMERG-L at the three temporal 

resolutions. There was an exception at a temporal resolution of 6 h where IMERG-L and 

GSMaP-S were ranked second and fifth in the performance order, respectively. 

Within a rainfall intensity between 10 mm and 50 mm (Table 2A.8), the computed 

MD and UB values were much larger than those estimated at a rainfall intensity of 2.5–10 

mm (Table 2A.7). These values can be interpreted by the possible occurrence of heavy 

rainfall events that were captured by the in-situ gauges while heavily undervalued by the 

GSPEs. The GSMaP-G reported the minimum MD values, i.e., −14.74 and −3.64 mm at 

temporal resolutions of 6 and 12 h, and the IMERG-L, i.e., −8.42 mm when evaluating the 

accumulated rainfall per 18 h (Table 2A.8). The UB and MD values were consistent, where 
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the UB scores also proved that IMERG-F heavily underestimated the ground rain 

measurements at temporal resolutions of 6 and 12 h, and GSMaP-G at a time interval of 18 

h (Table 2A.8).  

Table 2A.8. Statistical metrics of sub-daily rainfall events at intensity 10–50 mm (mid-March 2014 to October 

2016). NoE refers to the number of recorded rainfall events. 

Time Metrics GSMaP-S GSMaP-G IMERG-E IMERG-L IMERG-F 

6 h 

NoE 24 24 24 24 24 

MD −18.57 −14.74 −17.35 −17.57 −18.90 

MAD 18.57 14.74 17.35 17.57 18.90 

RMSE 20.24 16.35 19.03 19.16 20.20 

UB 0.06 0.26 0.13 0.12 0.05 

12 h 

NoE 147 147 147 147 147 

MD −12.67 −13.51 −12.12 −10.95 −14.21 

MAD 13.58 13.57 16.10 15.15 14.61 

RMSE 15.66 15.08 20.44 19.52 16.24 

UB 0.25 0.20 0.28 0.35 0.16 

18 h 

NoE 368 368 367 367 367 

MD −8.95 −14.13 −9.55 −8.42 −12.41 

MAD 14.72 14.24 16.34 15.62 13.80 

RMSE 18.60 16.20 21.62 21.81 15.77 

UB 0.52 0.25 0.49 0.55 0.34 

 

The computed MAD and RMSE values at a rainfall intensity of 10–50 mm (Table 

2A.8) were approximately three times more than those estimated at rainfall intensity of 2.5–

10 mm (Table 2A.7). The reported MAD and RMSE values at a temporal resolution of 6 h 

were larger than those computed at the accumulated rainfall per 12 h and 18 h. This could 

be interpreted by the extreme rainfall intensities at the early night times (i.e., 00.00 to 06:00 

UTC/GMT). The MAD and RMSE values were matched at a time interval of 6 h since the 

GSMaP-G had the best performance and followed by the IMERG-E, IMERG-L, GSMaP-S, 

and IMERG-F in ascending order. On the contrary, there was a different performance, where 
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GSMaP-G ranked first and was followed by GSMaP-S, IMERG-F, IMERG-L, and IMERG-

E at a temporal resolution of 12 h. Furthermore, the smallest MAD and RMSE values were 

reported by the IMERG-F, i.e., 13.8 mm and 15.77 mm, and GSMaP-G, i.e., 14.24 mm and 

16.2 mm, respectively, at 18 h. (Table 2A.8).  

2A.4.3. Daily Analysis Utilizing Categorical Metrics per Entire Ground Gauges 

In order to calculate the categorical metrics, each day over the whole period of study 

was considered whether the observations from either both in-situ gauges and GSPEs were 

available or not. Figure 2A.3 shows that the GSMaP-G, IMERG-L, and a GSMaP-S had the 

highest POD with a value of approximately 0.7 and 0.4 at the initialization thresholds of 0.00 

and 2.5 mm/day, respectively. The IMERG-L and GSMaP-S kept providing most top POD 

scores, and IMERG-E showed a significant improvement at a initialization threshold of 10 

mm. The POD decreased with the rise of rainfall initiation threshold from 0.00 to 10 mm. 

Low POD might be interpreted by the missed precipitation due to possible occurrences of 

snow coverage on the top of Al-Jabal Al Khader, and by the incapability of capturing warm 

rain processes or short-lived convective storms [41], where these conditions prevailed along 

the Gulf of Oman. The GSMAP-S and GSMaP-G reported the highest CSI values at the three 

rainfall thresholds. The other GSPEs had close CSI values to those reported by the GSMAP-

S and GSMaP-G with a maximum difference of 0.1 in the case of IMERG-F (Figure 2A.3).  

At the initialization threshold of 0 mm/day, the GSMaP-S had the best performance 

with the lowest FAR, i.e., 0.64, while the other GSPEs had closer FAR values with a 

difference of 0.06 (Figure 2A.3). GSMaP-S again had the lowest FAR, i.e., 0.61 at a rain 

threshold of 2.5 mm, while the IMERG-L ranked last among the 5 GSPEs with FAR of 0.71. 

The IMERG-F reported the lowest FAR and was followed by GSMaP-G and GSMaP-S by 

values of 0.57, 0.59, and 0.63, respectively, at a rain threshold of 10 mm/day. The FBI and 

FAR scores were consistent, where GSMaP-S reported the best values, i.e., 2.07, 1.06, and 

at rain thresholds of 0.00 and 2.5 mm/day, respectively. With the increase of the rain 

threshold value to 10 mm/day, the IMERG-F and GSMaP-G had the best FAR, i.e., 

approximately 1.  
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(a) (b) 

  

(c)   

 

 

Figure 2A.3. Categorical statistical indices of daily rainfall events at different initialization thresholds: (a) 0.00 

mm/day, (b) 2.5 mm/day, and (c) 10 mm/day. 

2A.4.4. Sub-daily Analysis Utilizing Categorical Metrics per Entire Ground Gauges 

GSMaP-G generally showed the best performance since it came in the first place 

among other GSPEs at temporal resolutions of 6 h and 12 h, and third at 18 h with POD 

values of 0.57, 0.66, and 0.64, respectively (Figure 2A.4). The GSMaP-S came in the second 

rank with reporting POD values of 0.65 and 0.75 at the sub-daily time scales of 12 and 18 h; 

however, it ranked last in at 6 h (Figure 2A.4). High POD might be interpreted by the 

domination of convective storms [38]. IMERG-L and IMERG-F reported approximately 

similar POD values that were lower than those computed from GSMaP-G and GSMaP-S at 

different latency times (Figure 2A.4). CSI of GSMaP S seems to be better than other GSPEs 

at daily time scales of 6, 12, and 18 h (Figure 2A.4) by values of 0.19, 0.24, and 0.32, 

respectively.  
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In general, the GSMaP-S mostly recorded the lowest FAR and FBI values at different 

temporal resolutions. The GSMaP-G had the worst FAR and FBA at 6 and 12 h. Its 

performance improved 18 h, where it ranked first with reporting the lowest FAR and FBI, 

i.e., 0.67 and 1.97, respectively. The IMERG-L and IMERG-E yielded the highest FAR and 

FBI scores at the three sub-daily time scales (Figure 2A.4). 

(a) (b) 

  

(c)   

 

 

Figure 2A.4. Categorical statistical indices of sub-daily rainfall events using the total rainfall intensity per 

three temporal resolutions: (a) 6 h, (b) 12 h, and (c) 18 h. 

Figure 2A.5 shows the results of evaluating 5 GSPEs using the categorical indices at 

a light rainfall intensity from 0.00–2.5 mm. Both GSMaP products showed the highest POD 

and CSI values at different sub-daily and daily times scales. They have equal POD values, 

i.e., 0.65, at a daily time scale, while GSMaP-G outperformed the GSMaP-S by differences 

of 0.19 and 0.04 at the time latency of 6 and 12 h, respectively. At a time-scale of 18 h, 

GSMaP-S had a higher POD value than GSMap-G. GSMaP-S slightly outperformed 
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GSMaP-G with reporting higher CSI scores at 6, 12, 18, and 24 h. The IMERG products had 

the lowest performance with reporting approximately equal POD and CSI scores with a 

slight improvement in the case of IMERG-F and IMERG-L at different sub-daily and daily 

scales. 

The GSMaP-S had the best performance with the lowest reported FAR values of 

0.79, 0.83, 0.78, and 0.78 at time scales of 6, 12, 18, and 24 h, respectively (Figure 2A.5). 

The GSMaP-G outperformed the other three IMERG products; however, the reported FAR 

sores from these 4 GSPEs were very close with minimum values of 0.92, 0.87, 0.8, and 0.83 

at time latency of 6, 12, 18, and 24 h, respectively (Figure 2A.5). The FBI values also 

supported that the GSMaP-S had the highest performance among other GSPEs at different 

time scales. The other GSPEs had fluctuated performance at different times scales. The 

IMERG-E reported the lowest FBI values except at a time scale of 18 h, where GSMaP-S 

yielded the lowest value, i.e., 2.94 (Figure 2A.5). IMERG-F and IMERG-L showed the 

weakest performance with respect to FBI values, except at a temporal resolution of 6 h 

(Figure 2A.5).  
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(a) (b) 

  

(c)  (d) 

  

Figure 2A.5. Categorical statistical indices of sub-daily rainfall events at an intensity less than 2.5 mm and 

three-time scales: (a) 6 h, (b) 12 h, (c) 18 h, and (d) 24 h. 

2A.5. Discussion 

The use of the daily in-situ rainfall gauges as benchmarks to evaluate the 

performance of the GSPEs has been less documented by previous studies over the arid 

Arabian Peninsula. Over entire Saudi Arabia, Mahmoud et al. [21] evaluated the three GPM-

IMERG runs using 1455 records from 189 in-situ rain gauges during the period October 

2015–April 2016. Utilizing the entire ground stations, the reported RMSE and MAD values 

ranged from 10 mm/day to greater than 40 mm/day. The reported categorical performance 

metrics such as POD and CSI were greater than 0.6, 0.7, and 0.9 in case of the early, late, 

and final IMERG products, respectively. The MAE values of the IMERG-E run ranged from 

10–25 mm/day, while they showed slight improvement in the case of IMERG-L. The 

IMERG-F yielded the lowest MAD with values less than 10 mm/day. The reported RMSE 
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values ranged from 10 mm/day to greater than 30 mm/day in the case of IMERG-E, and they 

provided considerable improvement with reduced RMSE values from 40 mm/day to 20 

mm/day over some regions. The IMERG-F mostly yielded RMSE values less than 10 

mm/day, with few exceptions at some regions where they reached 30 mm/day.  Based on the 

individual stations, the estimated RMSE, MD, and MAD ranged from 15 mm/day to greater 

than 55 mm/day, −20 mm/day to greater than 20 mm/day, and 5 mm/day to greater than 40 

mm/day, respectively. The reported categorical performance metrics such as POD and CSI 

values ranged from less than 0.5 to greater than 0.85. The IMERG-F showed a higher 

accuracy over the other two IMERG runs that had fluctuated performance between over- and 

under-estimation of the in-situ gauge measurements over the different regions of Saudi 

Arabia.  

In 2019, Mahmoud et al. [22] evaluated the accuracy of the three GPM-IMERG 

products utilizing 1600 in-situ measurements recorded from 81 rain gauges from January 

2015–December 2017 over the entire area of UAE. The IMERG-F reported the highest 

accuracy and lowest estimation error compared to other IMERG products. The late run 

showed a slight improvement over the early product. The regional evaluation of the early, 

late, and final IMERG products reported POD values that ranged from 0.68–0.8, 0.7–greater 

than 0.8, and greater than 0.85, respectively. On the basis of evaluating the individual 

stations, an overall high detection accuracy with POD greater than 0.75 was recorded. Based 

on the evaluation of the IMERG products using the entire ground stations, the early and late 

runs showed MAD and RMSE values that generally ranged from 10 mm/day to greater than 

15 mm/day, and 15 mm/day to 30 mm/day, respectively. The late run showed a higher 

estimation error than that observed in the early product with an average increment of 15%. 

The IMERG-F product reported difference error lower than the other IMERG product with 

MAD and RMSE values that ranged from 9–11 mm/day and from less than 15–21 mm/day. 

The individual station-based assessment showed similar results to the regional assessment, 

but the RMSE reached more than 40 mm/day in some locations.  

Nashwan et al. [47] validated three GSPEs (IMERG-F V05, GSMaP V07, and 

Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS)) over Egypt during 
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the period from March 2014–May 2018. They used 670 rainfall events recorded by 29 in-

situ meteorological stations that collected by the US National Climate Data Center Global 

Summary of Days (GSOD). Although the three GSPEs are gauge-corrected, they did not 

show consistent performance. Therefore, no single product can be named as the best/worst 

performing product in Egypt. Without classifying the rainfall intensity, the CHIRPS ranked 

first with the lowest estimation error, i.e., median RMSE = 2 mm/day. The median values of 

RMSE reported by the IMERG-F and GSMaP-G were found to be close to that provided by 

CHIRPS. For the light rainfall intensity class, the GSMaP-G and CHIRPS generally 

demonstrated similar median RMSE values, i.e., 1.03 mm/day. The same results were 

reported from the low-moderate rainfall intensity class, but CHIRPS showed a slightly 

higher median RMSE value, i.e., 2.82 mm/day, than the GSMaP_G. Furthermore, GSMaP-

G recorded also the lowest median RMSE at the heavy rainfall intensity class. The three 

GSPEs reported weak performance for the heavy rainfall class with the highest median 

RMSE value, i.e., 51 mm/day. The GSMaP-G and IMERG-F similarly captured the spatial 

distribution of the rainfall, but the GSMaP-G was more consistent with the in-situ 

observations than the IMERG-F run. In general, the lack of detailed ground rainfall records 

may contribute significantly to the unsatisfactory performance of the three GSPEs. The 

accurate detection of rainfall using the GSPEs over the arid climate, particularly the deserts 

of hot climate is still challenging and open for further studies. Nashwan et al. [47] stated that 

their research was constrained by the lack of dense in-situ rainfall measurements. More daily 

and sub-daily ground gauge records are needed to evaluate the diurnal rainfall cycles of the 

IMERG-F and GSMaP-G at fine temporal resolutions.  

The findings of Nashwan et al. [47] were similar to the current results at the daily 

time scale, but the magnitude of the estimated errors was lower in my case study. 

Additionally, the previous studies showed that the performance of the different GSPEs was 

inconsistent with respect to the in-situ gauge measurements. Although this fluctuated 

performance, current findings agreed with the other authors that GSMaP-G mostly provides 

the best performance. Additionally, the IMERG-F slightly outperformed the IMERG-E and 

IMERG-L.  
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Water was, still, and will be the most influential factor in Earth's evolution [48]. The 

need for continuous and long precipitation records of high accuracy and free availability is 

a frequent problem for the environmental modelers [49]. Reliable rainfall records constitute 

integral inputs of different environmental models, particularly flood inundation modeling 

(e.g., [50] and their associated watershed (e.g., [51], [52]), runoff (e.g., [53]), groundwater 

flow and recharge (e.g., [54]), surface and subsurface water pollution (e.g., [55]), soil 

moisture (e.g., [56]), optimum water management (e.g., [57]), climate prediction and 

forecasting (e.g., [58], and hazard assessment (e.g., [59]) models. The GSPEs introduce an 

alternative and promising source of continuous rainfall records for different hydrological and 

environmental applications, particularly over the arid area [47], [60]. There is no perfect 

rainfall data, but selecting the optimum datasets depend mainly on the purpose of the given 

application [49]. Additionally, choosing precipitation records depend on the method, spatial, 

and temporal resolutions [61], which can give the advantage of using GSPEs over the 

traditional gauge data in various environmental applications. 

2A.6. Conclusions 

This paper presented a detailed statistical evaluation of 5 GSPEs (GEMaP-S, 

GSMaP-G, IMERG-E, IMERG-L, and IMERG-F). In general, the performance of the 5 

GSPEs enhanced with receiving more spaceborne estimates throughout the day. Both 

GSMaP products reported the best statistical metrics, among other GSPEs, in most of daily 

and sub-daily comparisons with the in-situ rain gauge measurements. The IMERG-F slightly 

outperformed the IMERG-L and IMERG-E. However, the early and late IMERG runs gave 

promising results, particularly they have shorter latency times (i.e., 4 and 12 h, respectively) 

and uncorrected with gauge information. The availability of these products within shorter 

times than the other GSPEs can help in different hydrological applications such as 

monitoring flash flood over fine sub-daily temporal resolutions. Up to my best knowledge, 

there were no previous studies concerning evaluating different GSPEs at sub-daily time 

scales over this extremely arid area of the world. The assessment of the 5 GSPEs over daily 

and sub-daily time intervals revealed the following:  
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The overall performance of the 5 GSPEs in capturing daily rainfall events of the total 

intensity class was acceptable in comparison with the results reported from previous 

literature mentioned above in the discussion section. With respect to the error difference 

between GSPEs and ground gauge records, the GSMaP-G, IMERG-F, and GSMaP-S 

showed the lowest recorded RMSE and MAD values. In terms of MD and UB metrics, The 

IMERG-L ranked first with reporting the lowest underestimation values, and IMERG-E and 

GSMaP-G came in the second and third places, respectively. 

 The 5 GSPEs generally underestimated the in-situ rainfall measurements at different 

rainfall intensity classes, except for the light rainfall of an intensity less than 2.5 

mm/day. With respect to the underestimation of moderate to heavy in-situ rainfall 

records per daily basis, the IMERG-L ranked first with reporting the lowest 

underestimation values and followed by IMERG-E and GSMaP-S. 

 The underestimation of ground rainfall measurements per day raised with the 

increase of the rainfall intensity from less than 2.5 mm/day to greater than 50 

mm/day.  

 At both daily and sub-daily time scales, the lowest RMSE and MAD values were 

mostly demonstrated by GSMaP-G, IMERG-F, and GSMaP-S, respectively. The 

only exception was at a rainfall intensity greater than 50 mm/day, where IMERG-E 

and IMERG-L came in the first two places with reporting the lowest recorded RMSE 

and MAD values. 

 The daily performance of the 5 GSPEs at a rainfall intensity greater than 50 mm was 

very low, where they heavily underestimated the ground rainfall measurements. This 

weak performance could be interpreted by the minor amount of reported rainfall 

events (i.e., 14) for the short period of mid-March 2014 to October 2016, as well as 

the erratic behavior of rain over the arid areas. 
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 For the 5 GSPEs, the POD and CSI values improved, and FAR and FBI measures 

decreased with the increase of the temporal resolution from 6 to 18 h. 

 The GSMaP-G showed the lowest underestimation degree of the ground rainfall 

measurements of accumulated rain intensity per 6 h, while IMERG-L outperformed 

the other GSPEs per 12 and 18 h. 

 At a rainfall intensity of less than 2.5 mm per sub-daily time intervals, the GSMaP-

G and IMERG-F closely matched with ground rainfall measurements with reporting 

the lowest MD, MAD, and RMSE values, as well as UB sores close to unity. 

 Within a rainfall intensity class between 2.5–10 mm/h, GSMaP-G had a good 

agreement with in-situ rain observations per 6 h, while IMERG-L showed higher 

matching than the other GSPEs at the time intervals of 12 and 18 h. The GSMaP-G 

and IMERG-F showed the lowest statistical error differences at the three different 

temporal resolutions. 

 At a rainfall intensity of 10–50 mm/h, the estimated MD and UB values were much 

larger than those estimated at the light and moderate rainfall intensity classes. These 

values could be interpreted by the possible occurrence of heavy rainfall events that 

were captured by the in-situ gauges while massively undervalued by the GSPEs. 

 GSMaP-G had the closest matching with the ground rain measurements at the early 

night hours (i.e., 00.00 to 06:00 UTC/GMT). With moving toward the daytime (i.e., 

06:00 to 12:00 and 12:00 to 18:00 UTC/GMT), IMERG-F showed the best 

performance with reporting the lowest MD among other GSPEs. Additionally, the 

reported error differences during early night times were larger than those computed 

in the day time. 

 Concerning the accumulated rainfall at a rain threshold of 0.00 mm per different sub-

daily time scales, the two GSMaP products kept mostly achieving the top 
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performance on the basis of POD and CSI metrics. GSMaP-S ranked first with 

reporting lowest FAR and FBI at different time intervals except at 18 h, where it 

came second after GSMaP-G.  

 With respect to evaluating light rainfall of an intensity of less than 2.5 mm per sub-

daily and daily time intervals, the GSMaP products outperformed IMERG runs based 

on the 4 categorical measures. 

Based on the achieved findings and with the difficulties in having continuous and 

reliable rainfall records from in-situ gauge networks, I would recommend that the 

researchers in the arid areas should pay more attention to use and assess the available GSPEs 

in their hydrological and water management studies, and particularly for flood susceptibility 

modeling. 
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(2B) QUANTIFYING UNCERTAINTIES ASSOCIATED WITH 

DIFFERENT GLOBAL SATELLITE ESTIMATES USING 

STATISTICAL ERROR MODELS 

2B.1. Introduction and Background 

Quantifying precipitation is a complex process since it is highly variable at a small 

scale and time [1], [2]. A variety of satellite platforms have been used to build a global 

precipitation network by combining from visible, infrared (IR), and/or passive microwave 

(PMW) data [62]. Global Satellite Precipitation Estimates (GSPEs) such as Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Networks 

(PERSIANN) [63], the US National Oceanic Atmospheric Administration (NOAA) Climate 

Prediction Center’s (CPC) morphing technique (CMORPH) [64], and the National 

Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission 

(TRMM) Multi-satellite Precipitation Analysis (TMPA) [2] have great potential for 

scientific research on climate and hydrology. However, numerous studies have revealed that 

GSPEs showed non-negligible bias when compared with in-situ gauge observations (e.g., 

[65], [66]). GSPEs involve indirect precipitation estimates from visible-, IR-, and/or PMW-

based cloud properties information. Therefore, they include Inherent biases, and quantifying 

uncertainties in the satellite precipitation estimates is essential to overcome the 

underestimation or exaggeration of the actual rainfall values [67]. 

Considerable progress has been achieved in recent years in the development and 

availability of real-time GSPEs’ algorithms. However, GSPEs still include major biases that 

need to be quantified and adjusted before the precipitation products can be used in different 

hydrological applications. These inherent biases are mainly due to the inaccurate estimation 

of climate variables and their temporal variations, or the incorrect detection of rainfall events 

[68]. 

Different bias correction schemes for GSPEs were utilized in various studies such as 

the study by Kim et al. [69]. They indicated that GSPEs require post-processing of bias 
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adjustment. Different approaches for modeling the errors in the GSPEs were introduced such 

as the linear scaling (e.g., [70]), additive error model (e.g., [71][72]), and multiplicative error 

model (e.g., [71][73]).  

GSPEs are prone to systematic and random errors because the satellite precipitation 

products are indirect rainfall estimates from visible, IR, and/or MW based information of 

cloud properties [74]. Bias is defined as the systematic error or difference between rain gauge 

estimates and GSPEs and can be positive or negative [75]. Bias can express rainfall depth, 

occurrence, and intensity [67]. Quantifying the deviation of the GSPEs from the reference 

datasets serve to correct for systematic errors of the GSPEs and aim to improve the reliability 

of GSPEs [76]. Statistical error models rely on assumptions that adjust for rainfall variability 

in space and time [77].  

On the one side, many studies of modeling errors in the GSPEs have carried out over 

different areas of the world such as North America (e.g., [76]), South America (e.g., [66]), 

Asia (e.g., [78]), Africa (e.g., [68]), Europe (e.g., [60]), and Australia (e.g., [79]). On the 

other side and up to my best knowledge, there is no studies have been performed to model 

the daily errors in the GSPEs over the arid Arabian Peninsula. There were two analyses 

reported by Wehbi et al. [23] and Almazroui et al. [80] over the United Arab Emirates (UAE) 

and Saudi Arabia, respectively. These studies used the linear regression to quantify the bias 

associated with TRMM data based on the in-situ monthly-averaged rainfall records 

throughout 2003–2010 and 1998–2009, respectively.  

The GSPEs’ errors are mostly related to sampling and retrieval of rain rates [81], 

[82]. The sampling errors result from estimating the precipitation amount for a continuous 

spatial and temporal domain with measurements at discrete space and time intervals, such as 

computing the daily or monthly total precipitation from instantaneous observations at a 3 h 

interval. The sampling error has studied extensively, and its relationship with rain-rate and 

spatial/temporal resolution have established both empirically and theoretically (e.g.,  [83], 

[84]). As well, this part of the errors is beyond the scope of this research.  
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The retrieval error arises from the remote-sensing procedures involved to convert 

satellite observations (brightness temperature) to rain rate. This error type is more complex, 

because of its dependencies on many factors, including sensor type (i.e., conical vs. cross-

track, active vs. passive MW), sensor resolution and viewing geometry, precipitation type, 

surface type, atmospheric condition, cloud microphysics, and retrieval algorithm itself (e.g., 

[85], [86]). The retrieval biases can be further decomposed into systematic and random 

errors. The systematic errors reflect predictable, consistent error behaviors often associated 

with instrument or algorithm characteristics (e.g., miss calibration), and it can be further 

decomposed into miss (M), false (F), and hit (H) errors (e.g., [87], [88]). It is, therefore, 

necessary to assess the contributions of each source of uncertainties in GSPEs before these 

products used for operational applications. However, validation datasets are limited in terms 

of both coverage and quality [82]. For these reasons, there is a great difficulty in 

unambiguously identifying a specific product as “best” in terms of precipitation amount and 

rate over most of the globe [89], [90]. The random error is the stochastic component that its 

magnitude directly determines the uncertainty [82].  

GSPEs are not always reliable, and consensus has been reached that they require the 

quantification of the uncertainties associated with these estimates. The in-situ rain gauges’ 

measurements considered to be the reference data [91] to assess the reliability and accuracy 

of GSPEs. Tian et al. [71] assumed that the ground rain gauge records are error-free, where 

the associated biases considered much smaller than those in the GSPEs. Furthermore, it is 

simple to take these errors into account if they are available or can be determined  [92]. 

Defining and quantifying the uncertainties in GSPEs depend mainly on the 

underlying mathematical error model that expressed the deviation of satellite estimates from 

the truth datasets [93]. The error model can predict the precipitation measurements and their 

associated biases when the reference in-situ rain gauges are available and vice versa [71]. 

Although there were many studies aimed at evaluating GPSEs, they were limited to specific 

regions, and modeling the errors in the daily GSPEs in the arid Arabian Peninsula has not 

systematically investigated enough to date. The different performance of GSPEs makes it 

mandatory to determine whether a product is suitable for a specific environment or region. 
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In the current research, the performance of the Global Precipitation Mission (GPM)-

Integrated Multi-satellitE Retrievals for the GPM (IMERG) and Global Satellite Mapping of 

Precipitation (GSMaP) the in the arid region of the Sultanate of Oman using rain 

measurements from 38 in-situ ground gauges were performed. The statistical additive and 

multiplicative error models were used to quantify the deviation of the GSPEs from the in-

situ reference data. 

2B.2. Methods 

In this study, the error decomposition method introduced by Tian et al. [71] and 

Habib et al. [88] was utilized, where the total errors were divided into three different 

components (i.e., H, M, and F, see section 2A.3.2.2. for more details). These components 

can have substantial magnitudes with coarse spatial and temporal variations.  

Next, multiplicative and additive error models [71] have been utilized to quantify the 

hit errors derived from the above-described error decomposition. The additive and 

multiplicative models define the bias as the difference and as the ratio between the GSPEs 

and in-situ rainfall measurements (i.e., the truth), respectively [71]. The additive error model 

is defined as:  

                                                         Y� = a +  bX� +  ε�                                               (2B.1) 

where i refers to a single in-situ gauge at a certain grid center of the GSPEs (i.e., 

index), Xi refers to the reference datasets assumed error-free, Yi points to the estimates, a 

denotes the offset, b is a scale parameter to compute the differences in the dynamic ranges 

between the ground rainfall observations and GSPEs, and εi is a random error of zero mean 

and variance of σ2. This model is defined by three parameters, namely, a, b, and σ, where a 

and b quantify the deterministic systematic error and σ specify the random error in the 

estimates Yi. 

While the multiplicative model is presented by the following equation: 
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                                                       Y� = aX�
�e��                                                          (2B.2)                                                                                                               

where a and b denote for the systematic error that represents a non-linear function of 

the reference data. The random error ��� is a multiplicative factor, with the average of being 

zero and the variance σ2.  

The three parameters (a, b, and σ) of both models (Equations 2B.1 and 2B.2) can be 

estimated with the ordinary least squares (OLS) assuming the residuals (random errors) are 

uncorrelated with a constant variance σ2 (e.g., [43]). 

Meanwhile, if a natural logarithm transformation of the variables in Equation (2B.2) 

was performed, the multiplicative model becomes as follows:  

                                        ln(Y)� = ln(a) +  bln(X�) +  ε�                                            (2B.3) 

which is also a simple linear regression in the transformed domain, and the 

parameters can be estimated with the same OLS procedure. To have statistically reliable 

results, the entire in-situ rain gauge measurements and the corresponding GSPEs were 

divided for training (70%) and testing (30%) both additive and multiplicative error models 

and cross-validated for ten times (i.e., runs). The statistical metrics (i.e., mean difference 

(MD) and root mean square error (RMSE)) were used to evaluate the performances of both 

additive and multiplicative models in quantifying the errors associated with different GSPEs 

at accumulated and classified rainfall intensities per day.  

 

 

 

 



76 

 

2B.3. Results 

In general, based on the estimated RMSE’s small values and MD close to zero values, 

the additive and multiplicative error models were able to quantify the deviation of the GSPEs 

from the in-situ reference data at classified rainfall intensities per day (Figures 2B.1a, and 

2B.1b) (Appendix A).  

After using the error models, the performance metrics were calculated with respect 

to predicted GSPEs and associated uncertainties based on the refence datasets. Using the 

MD measure, Figure 2B.1a shows that the additive error model was able to significantly 

reduce the rate of the under- and over-estimation per the total and classified rainfall 

intensities. The multiplicative model provided close performance to the additive one, but 

with reporting lower performance’s values than those reported by additive model at the three 

classified rainfall intensities.  

Figure 2B.1b displays RMSE values that were resulted from utilizing error models. 

The RMSE values were generally low after using the additive and multiplicative models, 

particularly at categorized rainfall intensities. At the total rainfall intensity per day, the 

additive model showed a slight improvement in providing lower RMSE values than those 

reported before using error models. The multiplicative model failed to improve the results in 

the latter case except in the case of IMERG-E. Though the additive model was superior to 

the performance of the multiplicative one in modeling the errors in the GSPEs, where both 

models showed low RMSEs at different rainfall intensity classes. The results reported by 

both additive and multiplicative error models were statistically significant [94], [95], with 

reporting p-values of less than 0.001 (< .001) at each run at total and classified rainfall 

intensities. There were few runs in case of GSMaP where p-values were less than 0.01 (< 

.01). 
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(a)

 

 

(b) 

 

 

Figure 2B.1. Evaluating performance of the additive and multiplicative error models in quantifying the 

uncertainties in the GSPEs at different rainfall intensity classes using: (a) MD and (b) RMSE. 

. 
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2B.4. Discussion 

The additive error model essentially defines the error as the difference between the 

measurement and the truth data, while the multiplicative error model expresses the error as 

the ratio between the two. The current findings indicated that the additive scheme was able 

to quantify the uncertainties associated with GSPEs per the accumulated total rainfall per 

day. In general, the additive model outperformed multiplicative one in computing the errors 

in the five daily GSPEs at different rainfall intensity classes. 

Tian et al. [71] noted that the multiplicative error model is a better choice than the 

adaptive model in estimating the deviation of the GSPEs from the truth datasets. It was more 

consistent with the large variability of precipitation estimates and can detect systematic 

errors more cleanly and equally well on a daily scale. On the one side, the current results 

contradict with Tian et al. [71], where the multiplicative error model failed to quantify the 

uncertainties in the GSPEs at the accumulated rainfall intensity per day. On the other hand, 

the current outcomes matched with Tian et al. [71], where the multiplicative error approach 

showed better performance for quantifying the errors associated with the daily GSPEs at 

rainfall intensity classes of 0.00–2.5, 2.5–10, and 10–50 mm/day. However, based on MD 

and RMSE values, the additive error model provided better performance than the 

multiplicative model at most of the rainfall intensity classes. The differences between both 

findings could be interpreted by: (1) different scale of both studies, where the current 

analysis was carried out at local scale over a particular area at the Sultanate of Oman, and 

the other study was performed with a regional scale over the entire USA, (2) the climate 

were mostly consistent over the current area of study, while it was varied over the USA, (3) 

different data used in both studies, wherein the present study, the GSMaP and GPM-IMERG 

products with spatial resolution 10 km were utilized, while the other study used TRMM-

3B42RT with a spatial details of 25 km, and (4) different reference datasets where the current 

research utilized in-situ rain gauge measurements of point scales, and other study used the 

pixel-based Climate Prediction Center (CPC) Unified Daily Gauge Dataset [96]. 
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2B.5. Conclusions 

In this study, the additive and multiplicative error models were used to model the 

errors in the daily GSPEs. The daily 38 rainfall gauges stations for the period 2014–2016 

were used for the purpose of evaluation at the Sultanate of Oman. The additive bias method 

was more effective than the multiplicative method in computing the uncertainties associated 

with GSPEs at different rainfall classes. It is worth mentioning that the multiplicative error 

scheme also performs in some cases closely to the additive one at different rainfall classes. 

The analyses showed that the statistical additive approach performed well in case of GSMaP-

G and GSMaP-S products. Additionally, the other IMERG products behaved reasonably 

with the two error approaches. This finding is very important because based on the required 

application and degree of accuracy, it could be possible to use the IMERG products with 

shorter time latencies. The current results indicated that modeling the errors in the GSPEs, 

in regions of arid climate, can be carried out using an additive approach. The achieved 

finding can be valuable for both algorithm developers and end-data users. It is recommended 

to explore the role of additional error models in quantifying the uncertainties associated with 

GSPEs over other arid areas and over longer evaluation periods. 
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Abstract 

Digital Elevation Models (DEMs) contribute to geomorphological and hydrological 

applications. DEMs can be derived using different remote sensing-based datasets, such as 

Interferometric Synthetic Aperture Radar (InSAR) (e.g., Advanced Land Observing Satellite 

(ALOS) Phased Array type L-band SAR (PALSAR) and Shuttle Radar Topography Mission 

(SRTM) DEMs). In addition, there is also the Digital Surface Model (DSM) derived from 

optical tri-stereo ALOS Panchromatic Remote-sensing Instrument for Stereo Mapping 

(PRISM) imagery. In this study, the satellite-based DEMs, SRTM (Global) GL1 DEM V003 

28.5 m, ALOS DSM 28.5 m, and PALSAR DEMs 12.5 m and 28.5 m, and their derived 

channel networks/orders were evaluated. These assessments were carried out using Light 

Detection and Ranging (LiDAR) Digital Surface Models (DSMs) and Digital Terrain 

Models (DTMs) and their derived channel networks and Strahler orders as reference datasets 

at comparable spatial resolutions. A pixel-based method was introduced for the quantitative 

horizontal evaluation of the channel networks and Strahler orders derived from global DEMs 

utilizing confusion matrices at different flow accumulation area thresholds (ATs) and pixel 

buffer tolerance values (PBTVs) in both ±X and ±Y directions. A new Python toolbox for 

ArcGIS was developed to automate the introduced method. A set of evaluation metrics—(i) 

producer accuracy (PA), (ii) user accuracy (UA), (iii) F-score (F), and (iv) Cohen’s kappa 

index (KI)—were computed to evaluate the accuracy of the horizontal matching between 

channel networks/orders extracted from global DEMs and those derived from LiDAR DTMs 

and DSMs. PALSAR DEM 12.5 m ranked first among the other global DEMs with the 

lowest root mean square error (RMSE) and mean difference (MD) values of 4.57 m and 0.78 

m, respectively, when compared to the LiDAR DTM 12.5 m. The ALOS DSM 28.5 m had 

the highest vertical accuracy with the lowest recorded RMSE and MD values of 4.01 m and 

–0.29 m, respectively, when compared to the LiDAR DSM 28.5 m. PALSAR DEM 12.5 m 

and ALOS DSM 28.5 m-derived channel networks/orders yielded the highest horizontal 

accuracy when compared to those delineated from LiDAR DTM 12.5 m and LiDAR DSM 

28.5 m, respectively. The number of unmatched channels decreased when the PBTV 

increased from 0 to 3 pixels using different ATs. 
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3.1. Introduction 

Current advances in remote sensing techniques are essential in producing high-

quality Digital Elevation Models (DEMs). Because of the general availability of different 

optical and microwave satellite data-based DEMs, many authors have extensively used these 

elevation datasets for a wide range of applications, particularly for various hydrological and 

geomorphological models. The outcomes of these models depend mainly on the accuracy 

and quality of the utilized DEMs [1]–[6].  

In general, a DEM is an umbrella term for any electronically accessible elevation 

datasets, such as Digital Terrain Models (DTMs) and Digital Surface Models (DSMs). It 

includes elevation measures of the Earth’s terrain, in addition to natural- and human-based 

objects above a certain vertical datum [7]. Some researchers apply the terms bare-earth DEM 

and DTM interchangeably, because of their opposite usage in the United States of America 

(USA) and Europe [8]. A DEM (hereinafter referred to as both DTM and DSM) can be 

represented mainly by vector- and raster-based spatial representations [9]. The elevation 

datasets required to create a DEM can be collected using various ground- and satellite-based 

techniques, including conventional topographic surveys [10], digitizing and interpolation of 

contours [11], kinematic global navigation satellite system surveys [12], stereo-

photogrammetry [13], Synthetic Aperture Radar (SAR) interferometry [14], airborne laser 

scanning [15], and fusion of data from different sources [16]. 

The spatial resolution of a DEM is expressed by the geometric size of a cell in the X 

and Y horizontal directions, in addition to the distance between two adjacent cells [17]. The 

accuracy of a DEM in representing the land surface mainly depends on its source data’s 

spatial resolution [18]. The more accurate the information, the higher the spatial resolution 

the DEM can have. A DEM’s spatial resolution has been shown to affect the outcomes of 

many hydrological parameters. For example, it was found that the DEM resolution had a 

significant effect on the prediction outputs of different hydrologic models, such as the 

topography-based hydrological model [19] and the soil and water assessment tool model 

[20]. Furthermore, different DEM sources introduce various levels of spatial details and 
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accuracies (either horizontal or vertical). Therefore, many hydrological studies fail to 

provide consistent results. For instance, the DEM source profoundly affected the accuracy 

of river hydrodynamic modeling outputs, particularly flood extents and depths [21]. The 

difference between DEM sources and extracted channel networks explicitly affected the 

outputs of different hydrological models [22], [23]. Schumann et al.  [24] noted the impact 

of an accurate bare-earth DEM on flood modeling. Li and Wong 2010 [3] reported that the 

simulation results of flood inundation areas varied significantly using channel networks 

derived from different DEM datasets (Shuttle Radar Topography Mission (SRTM), Light 

Detection and Ranging (LiDAR), and the National Elevation Dataset). They emphasized the 

need for evaluating the channel networks extracted from different DEM sources before 

utilizing them in further hydrologic applications. Vaze et al.  [25] confirmed that a LiDAR-

based DTM with high accuracy and resolution improved the overall quality of the extracted 

hydrological features. 

In this article, two abbreviations are used to describe DEMs. First is the DTM, which 

provides information about the heights of bare soil in terms of X, Y, and Z coordinates [26]. 

X and Y stand for the horizontal position of a point that can be defined by geographic 

coordinates or by grid coordinates in a map projection system, while Z represents the 

orthometric or ellipsoidal elevation. Second is the DSM, which represents top faces of all 

objects situated on a terrain, such as human-made features and natural canopy, in addition to 

the bare ground itself in open areas [27].  

Most of the available global DEM datasets can be considered as compromises 

between DTM and DSM. For instance, the SRTM DEM was originally generated to provide 

near-global DTMs for the Earth's land surface. However, a significant positive bias in the 

SRTM (C-band) DEM was observed in areas with extensive tree and/or shrub coverage (e.g., 

boreal and Amazon regions) [28]. In addition, the C-band radar imagery used by the NASA 

Jet Propulsion Laboratory to generate the SRTM DEM could not fully penetrate the 

vegetation canopy for a region of the Amazon Basin to the ground [29]. Consequently, the 

SRTM C-band DEM might be more appropriately identified as a DSM. Moreover, for DTM-
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based applications requiring accurate estimates of bald-earth elevations, the SRTM DEM 

may prove unsuitable in its current form [30]. 

A channel network consists of a set of tributaries and master streams along which the 

water and sediments are transported under the effect of gravity from higher- to lower-

elevation landscapes in a drainage basin [31], [32]. Extracting channel networks from DEMs 

is mandatory in various hydrological [33] and geomorphological [32] studies. In fact, a 

drainage system’s evolution over time is profoundly affected by different variables, such as 

geomorphology, geologic units, soil, tectonics, landscape topography, and land cover [34]. 

The detailed morphometric analysis of a channel network and its watershed can help to 

characterize the impact of channel morphometry on the landforms [35]. Furthermore, it was 

used to explicate the hydrological behavior of drainage basins and to quantify surface water 

potentialities [36].  

The widespread availability of remote sensing-based DEMs facilitates the 

development of new approaches to extract channel networks (e.g., [32], [37]–[40]), as well 

as precise algorithms to derive surface flow direction (e.g., [37], [39], [41], [42]). DEMs-

derived channel networks proved to be more efficient for computing hillslope travel 

distances [43] and measuring hydrological proximities [44] than traditionally mapped 

channel networks (i.e., derived from topographic maps, aerial photographs, and field 

surveying). Vaze et al. [25] stated that channel networks extracted from LiDAR-based DEMs 

should be used instead of those derived from contour-derived DEMs. Furthermore, the direct 

delineation of the channel networks from DEMs significantly reduces the amount of human 

labor [45]. 

The horizontal assessment of channel networks was rarely discussed in the literature, 

where Anderson et al. [46] and Mozas-Calvache et al. [47] proposed two vector-based 

approaches for the horizontal evaluation of stream networks. However, both methods had 

some constraints in the selection and preparation of the channels for the evaluation. 
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Requirements for accurate DTMs and DSMs with enhanced spatial details are 

mandatory for different fields of environmental applications. DSMs are of considerable 

interest for various applications, such as urban planning [48] and three-dimensional (3-D) 

city modeling [49]. DTMs are more applicable to different hydrological-related research than 

DSMs. The DTMs have been applied successfully to determine the spatial distributions of 

many topographic (e.g., aspect, slope, surface curvature, and gully morphology) [50]–[53] 

and hydrologic (e.g., flow direction, length, and accumulation) attributes [40]. Furthermore, 

many hydrologists have used DTMs to extract channel networks accurately [50], [54], [55]. 

Different geomorphometric measures (e.g., stream order, frequency, density) can be 

estimated utilizing channel networks. These topographic, hydrologic, and geomorphometric 

parameters contribute as the primary inputs to various physical and conceptual hydrological 

models that address the link between hydrological and geomorphic processes operating on 

the Earth's surface [10], [51].  

Recently, airborne LiDAR-based DTMs have been broadly used for various 

hydrological modeling studies [54], [56], [57], as well as channel network delineation [58], 

[59]. LiDAR point cloud datasets can be obtained by using airborne or terrestrial 

instruments. It is a surveying method that measures distances to a target frequently and 

precisely, and usually LiDAR point cloud measurements render a so-called DSM. It is 

possible to derive a DTM from a DSM if the distinction between ground and non-ground 

pixels can be automated (e.g., Sharma et al. [60]). 

Note that airborne LiDAR-based DEMs are only available over a small percentage 

of the Earth's landmass, due to their high cost. Therefore, for many studies—particularly for 

flood monitoring and flood hazard zoning—researchers have used the freely available 

remote sensing-based DEMs with global coverage (e.g., Reference [61]–[68]). However, 

most of these researchers did not investigate the nature of the DEM used (i.e., either a DSM 

or a DTM) and errors that could profoundly affect their developed models. In addition, most 

of these studies did not evaluate the horizontal accuracy of the channel networks extracted 

from different global DEMs to select the optimum channel network for their environmental 

research.  
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Each DEM source has intrinsic errors, because of data acquisition technology and 

processing methodology in relation to specific terrains and land cover types [69]. Many 

studies have evaluated the vertical elevation accuracy of various DEM datasets using ground 

truth points of known accurate elevations [14] and pairwise comparisons of different DEMs 

and/or their surface derivatives (e.g., slope and aspect) by means of conventional statistical 

metrics, such as root mean square error (RMSE) or mean difference (MD) [25], [69]. Other 

researchers have assessed different DEMs’ vertical accuracy by evaluating the channel 

network-derived geomorphometric parameters [69]–[72].  

Considering the above-mentioned issues, my objectives were five-fold: (i) To 

evaluate the pixel-based vertical elevation accuracies of spaceborne-based global DEMs 

(i.e., SRTM DEM 28.5 m, Advanced Land Observing Satellite (ALOS) DSM 28.5 m, and 

Phased Array type L-band SAR (PALSAR) DEMs 28.5 m and 12.5 m) based on LiDAR-

based DTM and DSM utilizing traditional statistical metrics, such as the root mean square 

error (RMSE) and mean difference (MD), (ii) to introduce a pixel-based technique to assess 

the horizontal spatial variability in the channel networks/orders extracted from the global 

elevation sources using those delineated from LiDAR DTM and DSM at similar spatial 

resolutions and at different pixel buffer tolerance values (PBTVs), (iii) to develop a new 

Python toolbox for ArcGIS to automate the previous objectives, (iv) to determine which 

global DEM dataset would be closer in performance to the airborne LiDAR DTM or LiDAR 

DSM in the study area, and (v) to compare the outcomes of the first and the second objectives 

to depict the degree of matching between the results achieved from both methods.  

3.2. Materials  

3.2.1. Study Area 

An area covering 235.56 km2 in San Luis Obispo County along the western coast of 

California, USA, was used to test the introduced method. The study area is geographically 

located between 672,000 m E to 696,000 m E and 3,924,000 m N to 3,940,000 m N (Figure 

3.1). It is moderately rugged and has significant variations in the relief height, ranging from 
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–1 m to +437 m above sea level. Geomorphologically, the area is characterized by a narrow 

coastal area of steep cliffs, in addition to a coastal range sculpted by hills and valleys [73]. 

It is also characterized by the presence of the Whale Rock Reservoir to the south. It has a 

watershed area of 53 km2, and the reservoir has a capacity of 50.156 m3 and the maximum 

water height of 66 m [74]. Geologically, the study area is dominated mainly by sandstone, 

in addition to exposures of serpentinites, rhyolite, basalt and alluvium terraces [75]. The 

dominant forests are evergreen, deciduous, and mixed, and their density varies from low to 

scattered [76], [77]. Furthermore, the area is covered by grassland, and scattered vegetation 

is present on both sides of the lake. Figure 3.1 shows the area of study at San Luis Obispo 

County, California, United States of America (USA), where the source of the satellite 

imagery (top left) is ESRI, 2018 [78]. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. The study area in San Luis Obispo County, the western part of the central 

coast of California, USA. (1 to 4) refer to Cambria, Harmony, Cayucos, and 

Whale Reservoir, respectively. The source of the satellite imagery (top left) 

is ESRI, 2018 [78]. 
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3.2.2. Data Requirements 

In this study, two types of data were used. One was the global DEM datasets [13], 

[79]–[81]; their major characteristics are summarized in Table 3.1. The other was the LiDAR 

point cloud datasets that were acquired for the Diablo Canyon Power Plant (DCCP) San 

Simeon project for the Pacific Gas and Electric Company (PG&E) [82], California, USA. 

Although these data were over an area of 810 km2, this study deals with an area of 235.56 

km2 in order to demonstrate the effectiveness and applicability of the proposed approach. 

The airborne LiDAR point cloud datasets were acquired, calibrated, and verified by 

Quantum Spatial for the funder PG&E. These LiDAR data were made available to the public 

through OpenTopography (a public data domain: https://opentopography.org/) on 29 March 

2013.  

Table 3.1. Descriptions of the three global Digital Elevation Models (DEMs). SRTM, Shuttle Radar 

Topography Mission; ALOS, Advanced Land Observing Satellite; PALSAR, Phased Array type L-

band Synthetic Aperture Radar; DSM, Digital Surface Model; ASF DAAC, Alaska Satellite Facility 

Distributed Active Archive Data Center; JAXA, Japan Aerospace Exploration Agency. 

Feature SRTM GL1 V003 DEM ALOS PALSAR DEM 
ALOS World 3D 

(ALOS DSM) 

Spatial Extent 
Near global 

(60° N to 56° S) 
Near global 

(60° N to 59° S) 
Near global 

(60° N to 60° S) 

Spatial Resolution ≈ 28.5 m 12.5 m ≈ 28.5 m 

Horizontal Reference WGS 1984 NAD 83 WGS 1984 

Vertical Reference WGS 1984/EGM 96 NAVD 88 WGS 1984/EGM 96 

Sensor Type Radar (C band) Radar (L band) Optical (pan-chromatic band) 

Generation 
Techniques 

SAR interferometry SAR interferometry Optical stereo matching 

Data Access OpenTopography ASF DAAC OpenTopography 

Owner Agency NASA, NGA, DLR JAXA, NASA JAXA 

Data Type 16-bit signed integer 16-bit signed integer 16-bit signed integer 

File Format GeoTIFF GeoTIFF GeoTIFF 

Temporal Extent 02/11/2000 - 02/21/2000 2006 - 2011 2017 

Additional Details [79] [80] [13], [81] 
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The LiDAR survey was accomplished using a Leica ALS70 sensor mounted on a 

Cessna Grand Caravan. The ALS70 system was set to capture a scan angle of 15° from nadir 

to yield high-resolution data of more than 15 pulses per square meter and a swath width of 

191 m over terrestrial surfaces. It flew 1100 m above ground level and acquired at least 

240,000 laser pulses per second. The LiDAR scanning was achieved without data voids and 

gaps, excluding non-reflective surfaces (e.g., open water, wet asphalt). The LiDAR data were 

acquired under optimum conditions with minimal to no cloud cover (i.e., less than 10% cloud 

shadow) and maximum solar zenith angles. In addition, consistent aircraft altitude over the 

terrain was obtained to eliminate the potential for data gaps related to acquisition and laser 

shadowing of targets. Furthermore, an accurate ground survey was achieved by Watershed 

Sciences Inc. in parallel with the airborne LiDAR scanning. 

The absolute vertical accuracy of the LiDAR datasets was initially assessed using 

ground checkpoints collected from bare earth surfaces of constant slope. For this project, the 

reported RMSE and MD values of the absolute and average relative vertical accuracies of 

the LiDAR datasets were 2.6 cm and 5 cm, respectively (see Wilson and Steinberg 2013 [82] 

for additional details).  

3.3. Methods 

Figure 3.2 shows our proposed method in the form of a schematic diagram. It 

consisted of 4 distinct components: (i) Data preparation, (ii) evaluation of the vertical 

elevation accuracy of the global DEMs utilizing LiDAR DTM/DSM, (iii) extraction of the 

channel networks, and (iv) development of ArcGIS Python toolbox for the geometric 

assessment of channel networks/orders. They are described in the following sub-sections. 
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 Figure 3.2. Methodology flow chart for the per-pixel geometric evaluation of channel networks/Strahler 

orders. 

3.3.1. Data Preparation 

The global SRTM DEM and ALOS DSM were obtained from the OpenTopography 

(High-Resolution Topography Data and Tools) website in GeoTIFF format with a horizontal 

resolution of approximately 1 arcsec/28.5 m (Table 3.1). The PALSAR DEM was 

downloaded from the Alaska Satellite Facility Distributed Active Archive Data Center (ASF 

DAAC) in geographic information systems (GIS)-ready GeoTIFF format with a horizontal 

resolution of 12.5 m. For full coverage of the area under study, two dual-polarization (HH + 
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HV) PALSAR scenes operating in fine beam mode (FBD) were obtained from an ascending 

path on 15 June 2007. 

The ground and unclassified LiDAR point cloud data, with a point density of 3.1 and 

21 pts/m2, were downloaded from the OpenTopography domain in a compressed LAS file 

format. LAS is a public file format for the interchange of 3-D LiDAR point cloud datasets. 

The LAS binary file format is an alternative to proprietary systems or a generic ASCII file 

interchange system and is compatible with many commercial and open source software 

packages. Each point within the LiDAR datasets was classified by whether it was returned 

from the ground, vegetation, or building/structure. The vertical and horizontal references of 

the LiDAR point cloud data are NADV 88 and NAD 83. The LiDAR point cloud datasets 

were geocoded to the Universal Transverse Mercator (UTM) projection system, Zone 10N. 

Both ground and unclassified LiDAR points were gridded, resampled, and averaged 

based on the spatial extent and resolution of the SRTM DEM 28.5 m, ALOS DSM 28.5 m, 

PALSAR DEM 12.5 m, and resampled PALSAR DEM 28.5 m.  

Before the global elevation datasets (SRTM DEM V003 28.5 m, ALOS DSM 28.5 

m, and PALSAR DEMs 12.5 m and 28.5 m) could be directly compared with LiDAR 

DTM/DSM of similar spatial resolution, it was imperative to have them in a common 

reference system. The global elevation products were transformed into the LiDAR reference 

system. Additionally, the projected coordinate systems were made consistent among the 

global elevation products and LiDAR datasets. Each pair of comparable DEMs had the same 

number of rows and columns and were well aligned. 

3.3.2. Evaluating the Vertical Elevation Accuracy of Global DEMs Based on LiDAR 

DTM/DSM 

Elevation differences among LiDAR DTM and DSM (reference datasets) and the 

other global DEMs were assessed by computing the traditional statistical metrics (RMSE 

and MD) grids at the co-located pixels.  
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Validation accuracy measures the closeness of observation to a true value [7]. RMSE 

has become a standard statistical tool for analyzing DEM accuracy and has been used in 

many studies to quantify the vertical accuracy in DEMs [83], [84]. RMSE is a single measure 

that characterizes the error surface, while MD indicates the bias of the error surface and their 

equations are as follows: 

RMSE =  �
1

N
 �(LDEM��� − GDEM)�

�

���

 (3.1) 

MD =  
1

N
 �(LDEM��� − GDEM)

�

���

 (3.2) 

where N is the number of pixels; LDEMref is the reference LiDAR DEM (DTM or 

DSM); and GDEM is the global DEM (SRTM DEM V003, ALOS DSM, or PALSAR 

DEM). 

For the purpose of this paper, the elevations values are represented by the geometric 

centers of all DEM cells included in the evaluation.  

3.3.3. Extraction of the Channel Networks/Orders 

The channel network is the most significant terrain parameter derived from DEMs; 

along its tributaries, fluvial processes act to transport water and sediments from an upstream 

high-elevated region by gravity downslope to a lower, flat landscape [32]. The hydrology 

geoprocessing tools assembled in the ArcGIS ModelBuilder [85] were utilized to extract 

channel networks/orders from the global DEMs, as well as from LiDAR DTM and DSM.  

Delineating a channel network depends mainly on detecting the flow path of every 

cell in the DEM grid through a series of consecutive steps [38], [86]. The first step was to 

create a depression-less DEM by filling the pits [37]. The presence of sinks within DEMs is 

a common problem that affects the proper detection of flow directions. Therefore, to have a 
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hydrologically-corrected DEM, it is necessary to first fill these sinks [32], [39]. The 

algorithm developed by Jenson and Dominque 1988 [39] has been widely used in many GIS 

software packages for sink filling [39], where every depression is converted to a flat area by 

raising each cell’s elevation to the lowest elevation of its neighbors.  

Based on the availability of high-resolution remote sensing-based DEMs, many 

authors developed accurate flow direction algorithms. They derived paths of surface flow 

using a nondispersive single (e.g., [39], [41], [42]) and dispersive multiple (e.g., Reference 

[87]) flow direction methods. Orlandini and Moretti 2009 [42] stated that nondispersive 

algorithms should be used when the extraction of channel systems and surface flow 

directions is the main focus of the study. Furthermore, Zhu et al. [88] mentioned that most 

pit filling algorithms were based on a 1-D single flow direction (e.g., Reference [32], [39]). 

Therefore, in the second step, the flow direction grid was derived from the conditioned DEM 

by using the nondispersive eight-direction (D8) surface flow method [39]. The flow path was 

determined by comparing each cell’s elevation with its eight adjacent or diagonal 3 × 3 cell 

neighbors, where the cell with the steepest downward direction is identified as the flow path 

based on the underlying topography [39], [42]. The direction of flow determines the ultimate 

destination of the surface water flowing across the land toward downslope zones.  

Third, using the predetermined flow direction spatial layer, it was possible to define 

cells with high flow concentration to detect how the flow would be accumulated and where 

small groups of cells could turn into streams [37], [39]. In fact, cells with flow accumulation 

values greater than a certain threshold would constitute an effective part of the stream. The 

threshold is called the flow accumulation area threshold (AT), and it defines the minimum 

contributing area required to initiate the channels [32], [86], [89]. The AT is the main factor 

in extracting the channel networks, where it determines the channels’ initiation and 

differentiates between stream and non-stream pixels. The AT is strongly affected by 

topography, geomorphology, geology, climate, vegetation, and human influence [40], [90]. 

The determination of the AT is a matter of debate, but utilizing a constant value for 

delineating DEM-based channels network has been well-accepted among different 

researchers [32], [91]. Most GIS software used 1% of the maximum flow accumulation value 
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as a default to determine the AT [92]. Orlandini et al. [86] specified the AT by comparing 

the predicted and observed channel heads determined from LiDAR DEM and field 

measurements, respectively. Tarboton et al. [37] extracted channel networks of high density 

from DEMs that satisfy the scaling laws computed from the contour DEMs-derived networks 

(blue lines). Tribe 1992 [90] selected the optimum AT when there was a close match between 

the channel networks extracted from DEMs and manually drawn blue lines. Jones 2002 [93] 

visually determined the flow accumulation support AT by a trial and error approach. 

The channel network extracted from LiDAR DEM had higher accuracy than that 

delineated from contour-based DEM [25]. The Google Earth Pro tool provides rich spatial 

details for determining individual objects [94]. Therefore, it is widely and efficiently used in 

different remote sensing applications, in particular for land use/cover mapping (e.g., 

Reference [94]–[96]). In this study, the approach of a trial and error [93] was used with a 

subsequent visual verification using Google Earth imagery to detect 4 ATs to test the 

developed method for evaluating the horizontal accuracy of channel networks. The ATs were 

equal to at least 0.004 km2, 0.008 km2, 0.012 km2, and 0.016 km2, and 0.020 km2, 0.041 km2, 

0.061 km2, and 0.081 km2 for spatial resolutions of 12.5 m and 28.5 m, respectively. The 

ATs corresponded to at least 25, 50, 75, and 100 pixels at spatial resolutions of 12.5 m and 

28.5 m. Applying the predetermined threshold values to the flow accumulation grid, the real 

channels of the network began to be defined. Then, the extracted channel grids were 

converted to vector layers and then exported them to keyhole markup language (KML) 

format to visually check the quality of the extracted channels using Google Earth Pro. The 

delineated channels were well matched with the actual watercourses of Google Earth 3-D 

imagery. To obtain the equivalent AT values among multiple DEM grids with different 

spatial resolutions, a simple derived mathematical relationship was used based on the 

following equation: 

CAT =  �
���

���
�

�

 × OAT                                       (3.3) 

where CAT is the comparable area threshold that needs to be estimated; LRD is the 

lower-resolution DEM (test DEM); HRD is the higher-resolution DEM (reference DEM); 
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and OAT is the original area threshold based on which the channel network/orders were 

extracted. 

Finally, the channel segment links were generated with unique identifications by 

using the most common [34] stream order designation method (i.e., the Strahler method [97], 

modified from Horton 1945 [98]), which was applied to delineate the order of stream 

segments in the network. The channel order is in direct proportion to the channel size, 

watershed dimension, and discharge of water and sediments [97]. The Strahler ordering 

approach [97] assigned a numeric order for each channel segment based on a hierarchy of 

tributaries. In this method, the unbranched fingertip tributaries are designated as first order, 

and the order increases to the next higher one when branches of the same orders are joined. 

For instance, the joining of 2 first-order channels at a specific point will generate a second-

order channel (Figure 3.3a,b), and so on. The stream ordering method can be simplified using 

the following relationships: 

Order� "v" Order� =  Order���� �� � �� ����                         If A =  A       (3.4) 

    Order� "v" Order�  =  Order������� �� � & �                     If A ≠ B (3.5) 

where A and B denote the ranks of channel orders and “v” refers to the joining 

between 2 channels. The trunk stream through which water and sediments discharge 

downstream was assigned the highest order [97].  

3.3.4. Developing ArcGIS Python Toolbox for Geometric Assessment of Channel 

Networks 

A new Python toolbox for ArcGIS were developed for the purpose of pixel-based 

geometric evaluation of the channel networks/orders derived from open-source global DEMs 

based on those extracted from LiDAR DTMs/DSMs (Appendix B). The availability of 

numerous GIS software packages enabled the extraction of channel networks from remote 

sensing-based DEMs such as ArcGIS [85], Geographic Resources Analysis Support System 

(GRASS) GIS [99], and Quantum GIS [100]. In this study, the ArcGIS environment was 
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used to introduce the developed toolbox, because ArcGIS and its powerful geoprocessing 

toolboxes have been widely used by different authors in different hydrological and 

geomorphological related research (e.g., [57], [66], [101]). 

Accuracy assessment is a mandatory step in evaluating the results of different remote 

sensing related studies [102], [103]. Users with different applications should be able to assess 

whether the accuracy of their outcomes (e.g., map) fits their objectives [104]. In the remote 

sensing literature, the confusion matrix is the most commonly endorsed and utilized method 

(i.e., the core) of the accuracy assessment [102], [103]. It consists of a simple cross-

tabulation that introduces the foundation to define the classification accuracy and 

characterize errors (Tables 3.2 and 3.3). It has been widely used by different authors to 

evaluate the accuracy of different remote sensing-based models (e.g., fragmented 

agricultural landscapes [105], automatic classification of LiDAR datasets in an urban area 

[106], global climatic maps [107], object extraction [108], change detection [109], and land 

cover/use classifications [110]–[112]). 

In this study, the calculated two-class (Figure 3.3c and Table 3.2) and multiclass 

(Figure 3.3d and Table 3.3) confusion matrices arranged the channel networks (Table 3.2), 

and channel orders (Table 3.3) of the reference data in the rows and the test datasets in the 

columns. The PBTVs (Figure 3.4) around the LiDAR DTMs/DSMs 12.5 m and 28.5 m-

derived networks/orders were set to 0, 1, 2, and 3 pixels, to detect the horizontal matching 

with those derived from global DEMs in both ±X and ±Y directions and at comparable 

spatial resolutions. 
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(a) (b) 

  

(c)  

  

(d)  

  

Figure 3.3. Sketch for comparing pixels of channel networks/orders using error matrices: (a) reference 

datasets, (b) test datasets, (c) two-class confusion matrix outcomes resulting from matching between 

the whole networks in a and b (regardless of the channels’ of the channels’ orders), and (d) multiclass 

error matrix outcomes resulting from matching between channels that have the same order in a and 

b.TP, true positive; FP, false positive; FN, false negative; and TN, true negative. 

 



110 

 

 

Figure 3.4. Concept of the pixel buffer tolerance values (PBTVs). 

In general, a confusion matrix is a statistical technique for summarizing the 

performance of a classification algorithm [113], [114]. In this study, an N × N error matrix 

(Figure 3.3 and Table 3.2) was used to geometrically evaluate the channel networks, where 

N is equal to the number of classes (whole channel networks) in the case of the simplest 2 × 

2 array (Table 3.2). When separately evaluating the channels having the same order, N was 

equal to the number of classes (orders) (Table 3.3). Each column and row of the matrix 

corresponds to the test (one of the global DEMs-derived networks/orders) and reference (one 

of the LiDAR DTMs/DSMs-based networks/orders) classes, respectively. The counts of 

correct and incorrect agreements (i.e., disagreements) were then filled into the confusion 

matrices (Tables 3.2 and 3.3).  

The results of the geometric evaluation of the channel networks/orders derived from 

global DEMs (test data) and LiDAR DTMs/DSMs (reference data) were arranged in a matrix 

format (Tables 3.2 and 3.3) with the following 4 outcomes: (i) True positive (TP), where the 

matched pixels were correctly classified as the same channel segment of the networks/orders 

of both test and reference datasets, (ii) true negative (TN), where co-located pixels were 

correctly classified as non-channel networks/orders of both test and reference classes (iii) 

false positive (FP), where pixels of the test data were unmatched with the reference data (i.e., 

the test pixels corresponded to a channel of another order or to the background), and (iv) 

false negative (FN), where pixels of the reference data were incorrectly matched by the test 
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data (i.e., the reference pixels corresponded to the background or to a channel belonging to 

another order). 

Table 3.2. Outcomes of classification matrix resulting from comparing a LiDAR DTM/DSM-derived channel 

network (reference class) and a global DEM-based network (test class); where Net denotes network. 

Test Class 

Reference Class                              Net0                                                                   Net1 

Net0 
Net0,0 (TN) = Number of Net0 pixels 

classified correctly as Net0 
Net0,1 (FP) = Number of Net0 pixels 

classified incorrectly as Net1 

Net1 
Net1,0 (FN) = Number of Net1 pixels 

classified incorrectly as Net0 
Net1,1 (TP) = Number of Net1 pixels 

classified correctly as Net1 

 

Table 3.3. Outputs of multiclass error matrix resulting from comparing a LiDAR DTM/DSM (reference data)-

derived channel orders and a global DEM (test data)-based orders with a channel having a higher 

order of n; where Ord denotes channel order and B0 refers to the background of 0 value. 

  
   Test Data 

 Global DEMs-based Channel Orders 

  B_0 Ord_1 Ord_2 Ord_3 Ord_4 Ord_5 Ord_n 

R
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M
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as

ed
 O

rd
er

s B_0 B0, B0 B0, Ord1 B0, Ord2 B0, Ord3 B0, Ord4 B0, Ord5 B0, Ordn 

Ord_1 Ord1, B0 Ord1,1 (TP)
 Ord1,2 Ord1,3 Ord1,4 Ord1,5 Ord1,n 

Ord_2 Ord2, B0 Ord2,1 Ord2,2 (TP) Ord2,3 Ord2,4 Ord2,5 Ord2,n 

Ord_3 Ord3, B0 Ord3,1 Ord3,2 Ord3,3 (TP) Ord3,4 Ord3,5 Ord3,n 

Ord_4 Ord4, B0 Ord4,1 Ord4,2 Ord4,3 Ord4,4 (TP) Ord4,5 Ord4,n 

Ord_5 Ord5, B0 Ord5,1 Ord5,2 Ord5,3 Ord5,4 Ord5,5 (TP) Ord5,n 

Ord_n Ordn, B0 Ordn,1 Ordn,2 Ordn,3 Ordn,4 Ordn,5 Ordn,n (TP) 

 

The auto-extracted channel networks/orders from global DEM grids were 

geometrically evaluated using those derived from LiDAR DTMs and DSMs at similar spatial 

resolutions. The maximum PBTVs around each channel segment-based reference LiDAR 

DTMs/DSMs were set to 0, 1, 2, and 3 pixels (Figure 3.4). These PBTVs were equal to 
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horizontal distances of 0 m, 12.5 m, 25 m, and 37.5 m, and 0 m, 28.5 m, 57 m, and 86.5 m, 

at spatial resolutions of 12.5 m and 28.5 m, respectively. The developed algorithm was first 

checked for the matched co-located non-classified or classified (i.e., ordered) channels’ 

pixels (i.e., a PBTV of 0) from the test data with respect to the reference datasets. If there 

were no more matched pixels, the algorithm kept running to locate the closest horizontal 

matching between the remainder of the deviated pixels within the subsequent nearest 1-pixel, 

2- pixels, and 3-pixels neighbors with respect to the reference datasets (i.e., PBTV of 1 to 3 

pixels) (Figure 3.4). 

3.3.5. Categorical Performance Measures for Assessing the Horizontal Accuracy of 

Channel Networks/Orders 

In this study, different evaluation measures, such as producer accuracy (PA), user 

accuracy (UA), F-score (F), and Cohen’s kappa index (KI), from the error matrices at 

different ATs and PBTVs were used to quantify the reliability and accuracy of the matching 

between networks/orders. Many studies have used these measures to evaluate the accuracy 

of various remote sensing datasets and models (e.g., [106], [108], [115], [116]). 

The PA and UA [114] were calculated using the marginal row or column of the 

matrix, respectively. PA (i.e., row values) was computed considering the agreement of a 

particular class with the summation of all classes in that row (Tables 3.2 and 3.3). The rows 

of the table represent the actual class (LiDAR DTM/DSM-based network/orders), while the 

columns represent the test class (global DEM-derived network/orders). TP and TN (Tables 

3.2 and 3.3) denote the correctly classified pixels, while FP and FN represent the incorrectly 

classified cells.  

 UA (i.e., column values) was similarly calculated, but with respect to the summation 

of all classes in that column (Tables 3.2 and 3.3). PA and UA represent measures of 

completeness and correctness, respectively. The difference between PA and UA lies in the 

definitions of how well the channel networks/orders can be matched (PA) versus how 

reliable the matching accuracy is (UA). Therefore, both PA and UA are of interest and 
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considered as important accuracy metrics. In particular, the accuracy of each channel order 

using PA and UA is useful in determining how different models perform (see Congalton 

1991 [102] and Stehman 1997 [117]) for an in-depth discussion). In Table 3.3, for channels 

of order 1 (i.e., Ord_1 class), the TP, FN, FP, and TN outcomes were labeled in yellow, 

green, orange, and gray, respectively. In other words, the total number of FN outputs for an 

Ord_1 (i.e., channels that had the order of 1) (Table 3.3) equalled the summation of values 

in the corresponding row, excluding the TP. If a channel pixel of order 1 was located in the 

reference class (LiDAR DEM-based orders), and no corresponding channel pixel of the same 

order was reported in the test data (global DEM-based orders) (i.e., a channel of another 

order or a background pixel of 0 value was recorded), this cell was assigned the value of (1, 

the other order recorded in the test data) or (1, 0) in the error matrix, respectively. In the 

same way, the total number of the FP outcomes for an Ord_1 (Table 3.3) equalled the 

summation of values in the corresponding column, excluding the TP. If a channel pixel of 

order 1 was not located in the reference data, but was recorded in the test data, this cell was 

assigned the value of (0, the other order recorded in the test data) or (0, 1), in the matrix. 

The F metric represents the harmonic mean (i.e., weighted average) of PA and UA 

[118]. It measures the accuracy of the compared whole networks, as well as the channels 

with the same order. The F value provides the balance between precision (UA) and recall 

(PA). Therefore, it takes both FP and FN into account, and it addresses how similar the PA 

and UA values are. The F-score can summarize UA and PA into a single value, which makes 

it simple to determine the level of matching between the networks/orders extracted from 

different DEMs at different ATs and PBTVs. 

The higher the PA, UA, and F values, the better the performance of the matching 

between the channel networks/orders. A score of 1 means perfect matching. The lowest 

possible score of the PA, UA, and F is 0, which denotes no horizontal matching between the 

networks/orders. 

The KI is a measure of the overall agreement of a matrix, calculating the proportion 

of agreement beyond chance agreement and expected disagreement [119]. It was introduced 
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to the remote sensing community in the early 1980s [113], [120] and has become a widely 

accepted measure for classification accuracy [102]. The KI provides an overall assessment 

of the accuracy of the classification [121]. It has a negative value if the chance agreement 

increases, a positive value if the strength of the agreement increases, and a value of zero 

when the agreement between reference and test datasets equal the chance agreement (i.e., no 

agreement) [122]. The KI uses both the overall accuracy of the model and the accuracy 

within each class; therefore, it has the advantage of statistically comparing two classification 

outcomes. In contrast to the overall accuracy [113], the KI takes the non-diagonal elements 

into consideration as expressed by Equation (9) [119]. The equations for computing PA 

[114], UA [114], KI, and F [118] are as follows: 

PA =
TP

(TP + FN)
 

(3.6) 

UA =
TP

(TP + FP)
 

(3.7) 

F =
2 × TP

(2 × TP + FP + FN)
 

(3.8) 

KI =
N ∑ s�� −�

��� N ∑ (s�� ×  s��)
�
���

N� −  ∑ (s�� × s��)
�
���

 
(3.9) 

where m is the numbers of rows; sii is the numbers of channel network/order pixels 

in row i and column i (on the major diagonal); si+ is the total number of the channel 

network/order pixels in row I; s+i is the total number of the observations in column I; and N 

is the total number of observations. 
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3.4. Results  

3.4.1. Traditional Statistical Indices for Evaluating the Vertical Height Accuracy of 

Global DEMs  

The vertical accuracies of the global DEMs (SRTM DEM V003 28.5 m, ALOS DSM 

28.5 m, and PALSAR DEMs 12.5 m and 28.5 m) were assessed by computing the per-pixel 

difference with the LiDAR DTMs/DSMs at similar spatial details. The continuous elevation 

differences were generated and pairwise RMSE and MD values were calculated for each 

error surface in meters (Figure 3.5). In general, LiDAR DTMs and DSMs had higher 

elevation values than PALSAR DEMs with spatial resolutions of 12.5 m and 28.5 m. 

Significant positive height differences were observed in the northwestern part of the study 

area, comparing the PALSAR DEM 12.5 m to LiDAR DTM and DSM (Figure 3.5c,d). 

Negative elevation differences were dominant in the comparison between SRTM DEM 28.5 

m and ALOS DSM 28.5 m against LiDAR DTM 28.5 m and DSM 28.5 m, respectively.  

Based on the comparison results using LiDAR DTM (Table 3.4), the PALSAR DEM 

12.5 m reported the lowest overall RMSE of 4.57 m. The ALOS DSM 28.5 m and PALSAR 

DEM 28.5 m provided acceptable RMSE values of approximately 4.6 m and 4.9 m, 

respectively. The SRTM DSM ranked last, with the lowest accuracy and the highest RMSE 

of 5.172 m. The ALOS DSM 28.5 m showed better vertical accuracy, with RMSE of 4.012 

m than the SRTM DEM 28.5 m and PALSAR DEMs 12.5 m and 28.5 m when compared to 

the LiDAR DSMs at comparable spatial resolution, with RMSE values of 4.53 m, 5.19 m, 

and 5.43 m, respectively. 
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(a) (b) 

  

(c)  (d) 

  

(e) (f) 
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(g) 

 

(h) 

  

Figure 3.5. Elevation surface differences between: (a) LiDAR DTM and PALSAR DEM 28.5 m, (b) LiDAR 

DSM and PALSAR DEM 28.5 m, (c) LiDAR DTM and PALSAR DEM 12.5 m, (d) LiDAR DSM 

and PALSAR DEM 12.5 m, (e) LiDAR DTM and SRTM DEM 28.5 m, (f) LiDAR DSM and SRTM 

DEM 28. 

Table 3.4 shows four positive MD values, with PALSAR DEMs with spatial 

resolutions of 12.5 m and 28.5 m underestimating the LiDAR DTMs 12.5 m and 28.5 m by 

0.78 m and 1.93 m, respectively. In addition, the ALOS DSM 28.5 m showed the lowest MD 

(–0.29 m) when compared to LiDAR DSM 28.5 m. Furthermore, the SRTM DEM 28.5 m 

ranked last when compared to LiDAR DTM 28.5 m with an MD of –2.66 m. The differences 

between the remote sensing-based elevation products were likely due to the nature and 

capabilities of the acquired sensors and generation algorithms [69]. On the other hand, four 

negative MD values were recorded (Table 3.4) in the evaluation of SRTM DEM 28.5 m and 

ALOS DSM 28.5 m using LiDAR DTM 28.5 m and DSM 28.5 m. SRTM DEM 28.5 m and 

ALOS DSM 28.5 m overestimated the elevation values of LiDAR DTM and DSM, 

respectively. The best-matched elevation values were recorded in the comparison of ALOS 

DSM 28.5 m against LiDAR DSM, with an MD value of –0.29 m.  
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Table 3.4. Statistical vertical differences between global DEMs and LiDAR DTMs/DSMs expressed in terms 

of RMSE and MD in m. 

Reference Data Test Data Spatial Resolution RMSE (m) MD (m) 

LiDAR DTM ALOS DSM 28.5 m 4.695 -1.260 

LiDAR DTM SRTM DEM 28.5 m 5.172 -2.655 

LiDAR DTM PALSAR DEM 28.5 m 4.988 0.952 

LiDAR DTM PALSAR DEM 12.5 m 4.571 0.777 

LiDAR DSM ALOS DSM 28.5 m 4.012 -0.288 

LiDAR DSM SRTM DEM 28.5 m 4.537 -1.699 

LiDAR DSM PALSAR DEM 28.5 m 5.434 1.929 

LiDAR DSM PALSAR DEM 12.5 m 5.186 1.741 

3.4.2. Horizontal Evaluation of the Channel Networks 

The whole networks were evaluated using the four categorical measures (PA, UA, F, 

and KI) derived from the two-class pixel-based confusion matrix outcomes (Table 3.2 and 

Figure 3.3c). The flow accumulation ATs were set to correspond to at least 25, 50, 75, and 

100 pixels. Figure 3.6 shows some examples of the outcomes of the confusion matrices (TP, 

FP, TN, and FN) resulting from comparing the whole networks extracted from global DEMs 

based on those derived from LiDAR DTMs/DSMs. In general, the values of these metrics 

were improved with the increase the PBTVs from 0 to 3 pixels. Slight differences were 

recorded among these measures in the comparison between networks extracted from global 

DEMs 28.5 m and LiDAR DTM/DSM 28.5 m at comparable ATs and PBTVs (Tables 3.5–

3.8).  

 

 

 



119 

 

(a) (b) 

  

(c)  (d) 

  

(e) (f) 
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(g) (h) 

  

Figure 3.6. Confusion matrix outcomes resulting from comparing channel networks extracted from: (a,b) 

LiDAR DTM and PALSAR DEM 12.5 m at an area threshold (AT) corresponding to 25 pixels and 

pixel buffer tolerance value (PBTV) of 0 and 3 pixels, respectively, (c,d) LiDAR DSM and PALSAR 

DEM 12.5 m using an AT corresponding to 25 pixels and PBTV of 0 and 3 pixels, respectively, (e,f) 

LiDAR DTM and PALSAR DEM 28.5 m using an AT corresponding to 100 pixels and PBTV of 0 

and 3 pixels, respectively, and (g,h) LiDAR DSM and PALSAR DEM 28.5 m using an AT 

corresponding to 100 pixels and PBTV of 0 and 3 pixels, respectively. 

 

For the evaluation using the networks extracted from LiDAR DTM 28.5 m, the 

networks derived from PALSAR DEM 28.5 m (Table 3.7) reported the highest performance 

measure values. There were a few insignificant exceptions where the ALOS DSM 28.5 m-

based network (Table 3.5) slightly outperformed that derived from PALSAR DEM 28.5 m 

(Table 3.7) using a PBTV of 3. The PA, UA, F, and KI values computed in the assessment 

of the PALSAR DEM 28.5 m-based network (Table 3.7) were higher than those estimated 

from evaluating the ALOS DSM 28.5-derived network (Table 3.5) by 0.025, 0.064, 0.045, 

and 0.052 and 0.056, 0.081, 0.068, and 0.073, respectively, using a PBTV of 0 and ATs 

corresponding to 25 and 100 pixels. Additionally, using the previously mentioned 

conditions, but employing a PBTV of 3, the differences were –0.039, 0.029, –0.005, and –

0.005 and – 0.025, 0.019, –0.003, and –0.003, respectively.  
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Table 3.5. Performance accuracy metrics computed based on a comparison between whole channel 

networks/orders extracted from the LiDAR DTM/DSM 28.5 m and the ALOS DSM 28.5 m at 

different ATs expressed in the corresponding number of pixels and PBTV in pixels. 

Reference      
LiDAR-based Net 

DTM DSM DTM DSM DTM DSM DTM DSM 

PBTV_AT 0_25 0_25 3_25 3_25 0_100 0_100 3_100 3_100 

PA_Net 0.505 0.518 0.938 0.929 0.453 0.476 0.916 0.919 

UA_Net 0.483 0.506 0.897 0.907 0.456 0.476 0.920 0.919 

F_Net 0.494 0.512 0.917 0.918 0.455 0.476 0.918 0.919 

KI_Net 0.431 0.444 0.907 0.907 0.423 0.446 0.913 0.914 

KI_Ords 0.389 0.403 0.766 0.766 0.395 0.419 0.816 0.827 

         

PA_Ord1 0.423 0.417 0.751 0.733 0.426 0.439 0.771 0.784 

PA_Ord2 0.371 0.380 0.588 0.581 0.382 0.425 0.736 0.757 

PA_Ord3 0.354 0.389 0.605 0.610 0.287 0.345 0.638 0.680 

PA_Ord4 0.294 0.340 0.544 0.563 0.280 0.262 0.585 0.627 

PA_Ord5 0.222 0.147 0.452 0.347 0.113 0.160 0.437 0.564 

PA_Ord6 0.057 0.178 0.179 0.377     

UA_Ord1 0.385 0.393 0.683 0.691 0.432 0.443 0.781 0.790 

UA_Ord2 0.372 0.381 0.590 0.583 0.379 0.416 0.730 0.742 

UA_Ord3 0.360 0.399 0.616 0.626 0.287 0.334 0.637 0.659 

UA_Ord4 0.316 0.315 0.585 0.521 0.251 0.273 0.523 0.652 

UA_Ord5 0.135 0.195 0.275 0.460 0.143 0.187 0.554 0.659 

UA_Ord6 0.167 0.280 0.520 0.593     

 

The SRTM DEM-derived network ranked third in comparison with the LiDAR DTM 

28.5 m-based network (Table 3.6). Employing the previously mentioned conditions, the 

measures were 0.910, 0.891, 0.900, and 0.887 and 0.891, 0.912, 0.902, and 0.896, 

respectively, in the comparison between networks extracted from SRTM DEM and LiDAR 

DTM (Table 3.6). The performance metrics calculated from comparing the networks 

delineated from PALSAR DEM and LiDAR DTM at a spatial resolution of 28.5 m (Table 
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3.7) were higher than those reported at spatial details of 12.5 m (Table 3.8) by average values 

of 0.068 and 0.075 using a comparable PBTV of 3 and ATs corresponding to 25 and 100 

pixels, respectively. 

Using different PBTVs and ATs, the metrics computed from comparing networks 

extracted from ALOS and LiDAR DSM 28.5 m (Table 3.5) were almost equal to those 

reported from evaluating networks derived from ALOS DSM and LiDAR DTM 28.5 m 

(Table 3.5), with a maximum absolute difference of 0.024. The channel network-based 

ALOS DSM 28.5 m (Table 3.5) reported the best evaluation metrics when compared to that 

extracted from LiDAR DSM. The PALSAR DEM 28.5 m and SRTM DEM 28.5 m (Table 

3.6)-derived networks ranked second and third in accuracy performance when compared to 

the LiDAR DSM 28.5 m-based network.  

The average of the differences between the performance measures reported from 

comparing the network delineated from ALOS DSM 28.5 m (Table 3.5) against networks 

extracted from PALSAR DEM 28.5 m (Table 3.7) and SRTM DEM 28.5 m (Table 3.6) was 

0.006 and 0.016, and 0.074 and 0.014 using an AT corresponding to 25 pixels and PBTV of 

0 and 3, respectively. Under the previously mentioned conditions, but with using an AT 

corresponding to 100 pixels, the average of differences was 0.012 and 0.018, and 0.066 and 

0.015, respectively. The PALSAR DEM 12.5 m-derived channel network (Table 3.8) 

reported the lowest accuracy measures compared to that extracted from LiDAR DSM. 
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Table 3.6. Performance accuracy metrics computed based on a comparison between whole channel 

networks/orders extracted from the LiDAR DTM/DSM 28.5 m and the SRTM DEM 28.5 m at 

different ATs expressed in the corresponding number of pixels and PBTV in pixels. 

Reference      
LiDAR-based Net 

DTM DSM DTM DSM DTM DSM DTM DSM 

PBTV_AT 0_25 0_25 3_25 3_25 0_100 0_100 3_100 3_100 

PA_Net 0.429 0.439 0.910 0.905 0.384 0.406 0.891 0.895 

UA_Net 0.420 0.438 0.891 0.904 0.394 0.414 0.912 0.913 

F_Net 0.425 0.438 0.900 0.905 0.389 0.410 0.902 0.904 

KI_Net 0.354 0.369 0.887 0.892 0.354 0.377 0.896 0.898 

KI_Ords 0.305 0.319 0.721 0.725 0.326 0.348 0.793 0.797 

         

PA_Ord1 0.311 0.311 0.675 0.667 0.355 0.369 0.759 0.764 

PA_Ord2 0.300 0.310 0.534 0.523 0.322 0.338 0.675 0.670 

PA_Ord3 0.287 0.311 0.499 0.500 0.188 0.239 0.515 0.529 

PA_Ord4 0.190 0.293 0.422 0.501 0.203 0.245 0.683 0.679 

PA_Ord5 0.109 0.130 0.343 0.317 0.115 0.147 0.522 0.603 

PA_Ord6 0.101 0.110 0.336 0.407     

UA_Ord1 0.298 0.308 0.647 0.662 0.353 0.364 0.753 0.754 

UA_Ord2 0.298 0.307 0.529 0.518 0.349 0.361 0.730 0.716 

UA_Ord3 0.315 0.345 0.550 0.554 0.233 0.288 0.639 0.638 

UA_Ord4 0.193 0.256 0.428 0.437 0.132 0.184 0.443 0.512 

UA_Ord5 0.056 0.145 0.176 0.355 0.144 0.170 0.654 0.697 

UA_Ord6 0.147 0.087 0.488 0.321     

3.4.3. Performance Evaluation Metrics of the Geometric Assessment of Channel 

Orders 

Three performance measures (PA, UA, and KI) were computed using the outcomes 

of the multiclass error matrices (Figure 3.3d and Table 3.3) derived from the comparison 

between channels of similar orders (Tables 2.5–2.8).  
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In general, comparing the PALSAR DEM 28.5 m and LiDAR DTM 28.5 m-derived 

orders (Table 3.7) at similar ATs and PBTVs showed the best evaluation measures with few 

exceptions. Using a PBTV of 3 and an AT corresponding to 100 pixels, the estimated PA 

and UA values for channels of orders 1, 2, 3, 4, and 5 were equal to 0.790, 0.699, 0.691, 

0.568, and 503 and 0.806, 0.809, 0.682, 0.548, 0.742, respectively (Table 3.7). Using the 

previously mentioned conditions, the measures computed from assessing the orders 

extracted from PALSAR DEM (Table 3.7) were slightly higher than those estimated from 

evaluating orders derived from ALOS DSM (Table 3.5) and SRTM DEM (Table 3.6), when 

compared to the LiDAR DTM 28.5 m-based orders with absolute differences ranging from 

0.017 to 0.188 and from 0.025 to 0.177, respectively. The estimated KIs per orders using a 

PBTV of 3 confirmed the previous results, since they were equal to 0.766, 0.721, and 0.769 

and 0.816, 0.793, and 0.828 in the evaluation of orders delineated from ALOS DSM (Table 

3.5), SRTM DEM (Table 3.6), and PALSAR DEM (Table 3.7) using those extracted from 

LiDAR DTM 28.5 m at ATs corresponding to 25 and 100 pixels, respectively. The average 

of the differences between the PA and UA values for channels of orders 1 to 5 resulting from 

comparing orders delineated from PALSAR DEM 28.5 m (Table 3.7) and LiDAR DTM was 

0.184 and 0.181 using an AT corresponding to 25 pixels and PBTV of 0 and 3, respectively. 

Using the previously mentioned conditions, but with an AT corresponding to 100 pixels, the 

average of differences was 0.266 and 0.300, respectively (Table 3.7). The PA and UA values 

estimated from evaluating orders extracted from PALSAR DEM 28.5 m (Table 3.7) were 

higher than those computed from assessing PALSAR DEM 12.5 m-derived orders (Table 

3.8), when compared to those delineated from LiDAR DTMs, at equivalent spatial 

resolutions, with average values of 0.117 and 0.123 at an AT corresponding to 100 pixels, 

respectively. In addition, the estimated KI from evaluating orders delineated from PALSAR 

DEM 28.5 m was higher than that reported from assessing orders derived from PALSAR 

DEM 12.5 m when compared to LiDAR DTMs by difference values of 0.127 and 0.112 

utilizing a PBTV of 3 and ATs corresponding to 25 and 100 pixels, respectively. 

The performance metrics of the orders derived from ALOS DSM 28.5 m (Table 3.5) 

had the highest accuracy when compared to those extracted from LiDAR DTM. Employing 

a PBTV of 3 and an AT corresponding to 25 pixels, the PA and UA values calculated from 
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comparing ALOS and LiDAR DSMs-derived channels having orders of 1 to 6 were equal to 

0.733, 0.581, 0.610, 0.563, 0.347, and 0.377 and 0.691, 0.583, 0.626, 0.521, 0.460, and 

0.593, respectively (Table 3.5). Using a PBTV of 3 and an AT corresponding to 100 pixels, 

the differences between the PA values of channels having orders 1 to 5 reported from 

evaluating ALOS DSM 28.5 m (Table 3.5) and those derived from SRTM DEM (Table 3.6) 

and PALSAR DEM (Table 3.7) were 0.020, 0.087, 0.151, –0.052, and –0.040 and 0.015, 

0.067, 0.037, 0.135, and 0.127, respectively, when compared to those derived from LiDAR 

DSM 28.5 m. Additionally, the UA differences for channels of orders 1 to 5 were 0.036, 

0.025, 0.022, 0.140, and 0.039 and 0.009, –0.047, 0.043, 0.101, and 0.066, respectively. 

There were minor exceptions where the performance of orders delineated from SRTM DEM 

28.5 m (Table 3.6) exceeded that of PALSAR DEM 28.5 m-derived orders (Table 3.7), 

particularly for PA values of orders 4 and 5 and UA of order 5, using an AT corresponding 

to 100 pixels and PBTV of 0 and 3, respectively. The estimated KIs per orders assured the 

previous results, since they were equal to 0.766, 0.725, and 0.749 and 0.827, 0.797, and 

0.806, respectively, when assessing orders delineated from ALOS DSM (Table 3.5), SRTM 

DEM (Table 3.6), and PALSAR DEM (Table 3.7) based on those extracted from LiDAR 

DSM using a PBTV of 3 and ATs corresponding to 25 and 100 pixels. 
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Table 3.7. Performance accuracy metrics computed based on a comparison between whole networks/orders 

extracted from the LiDAR DTM/DSM 28.5 m and the PALSAR DEM 28.5 m at different ATs 

expressed in the corresponding number of pixels and PBTV in pixels. 

Reference 
LiDAR-based 

Net 
DTM DSM DTM DSM DTM DSM DTM DSM 

PBTV_AT 0_25 0_25 3_25 3_25 0_100 0_100 3_100 3_100 

PA_Net 0.530 0.491 0.899 0.880 0.509 0.452 0.892 0.880 

UA_Net 0.547 0.517 0.927 0.926 0.537 0.475 0.940 0.923 

F_Net 0.538 0.504 0.913 0.902 0.523 0.463 0.915 0.901 

KI_Net 0.483 0.444 0.902 0.890 0.496 0.433 0.910 0.895 

KI_Ords 0.440 0.404 0.769 0.749 0.471 0.409 0.828 0.806 

         

PA_Ord1 0.438 0.414 0.731 0.695 0.475 0.428 0.790 0.769 

PA_Ord2 0.407 0.370 0.585 0.555 0.430 0.410 0.699 0.690 

PA_Ord3 0.403 0.368 0.576 0.546 0.437 0.336 0.691 0.643 

PA_Ord4 0.404 0.340 0.570 0.541 0.360 0.176 0.568 0.492 

PA_Ord5 0.355 0.147 0.466 0.341 0.221 0.112 0.503 0.436 

UA_Ord1 0.433 0.424 0.722 0.712 0.484 0.434 0.806 0.781 

UA_Ord2 0.436 0.396 0.626 0.595 0.497 0.469 0.809 0.788 

UA_Ord3 0.476 0.437 0.679 0.649 0.431 0.322 0.682 0.617 

UA_Ord4 0.402 0.292 0.568 0.464 0.347 0.197 0.548 0.551 

UA_Ord5 0.186 0.168 0.244 0.390 0.325 0.153 0.742 0.593 

3.4.4. Effect of Global DEM Spatial Resolution on the Evaluation of Channel 

Networks/Orders  

Although the previously mentioned results, the PALSAR DEM 12.5 m-derived 

channel network and Strahler orders (Table 3.8) was still the most accurate and had the best 

agreement with those extracted from LiDAR DTM, with taking into the account the fine 

spatial resolution it had.  
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Table 3.8. Performance accuracy metrics computed based on the comparison between whole networks/orders 

extracted from the LiDAR DTM/DSM 12.5 m and the PALSAR DEM 12.5 m at different ATs 

expressed in the corresponding number of pixels and PBTVs in pixels. 

Reference 
LiDAR-based 

Net 
DTM DSM DTM DSM DTM DSM DTM DSM 

PBTV_AT 0_25 0_25 3_25 3_25 0_100 0_100 3_100 3_100 

PA_Net 0.378 0.347 0.852 0.831 0.331 0.291 0.813 0.782 

UA_Net 0.367 0.345 0.826 0.825 0.354 0.318 0.870 0.853 

F_Net 0.373 0.346 0.838 0.828 0.342 0.304 0.841 0.816 

KI_Net 0.294 0.263 0.817 0.805 0.305 0.265 0.832 0.805 

KI_Ords 0.243 0.218 0.643 0.627 0.275 0.239 0.716 0.686 

         

PA_Ord1 0.250 0.229 0.607 0.579 0.271 0.243 0.661 0.623 

PA_Ord2 0.221 0.200 0.422 0.399 0.248 0.215 0.544 0.507 

PA_Ord3 0.212 0.194 0.382 0.375 0.219 0.188 0.497 0.499 

PA_Ord4 0.208 0.189 0.386 0.391 0.216 0.188 0.475 0.484 

PA_Ord5 0.215 0.189 0.381 0.380 0.191 0.074 0.462 0.240 

PA_Ord6 0.233 0.088 0.412 0.217 0.253 0.062 0.625 0.192 

PA_Ord7 0.253 0.144 0.515 0.313     

UA_Ord1 0.223 0.209 0.543 0.528 0.273 0.254 0.667 0.652 

UA_Ord2 0.224 0.214 0.428 0.426 0.270 0.245 0.591 0.577 

UA_Ord3 0.237 0.229 0.428 0.442 0.256 0.230 0.581 0.610 

UA_Ord4 0.241 0.227 0.448 0.470 0.279 0.177 0.616 0.454 

UA_Ord5 0.263 0.176 0.466 0.355 0.227 0.090 0.548 0.293 

UA_Ord6 0.264 0.112 0.467 0.277 0.274 0.155 0.676 0.481 

UA_Ord7 0.274 0.155 0.557 0.335     

An AT corresponding to 519 pixels (equivalent to an AT corresponding to 100 pixels 

at a spatial resolution of 28.5 m using Equation (3)) was used to compare the channel network 

and orders extracted from PALSAR DEM versus those derived from LiDAR DTM 12.5 m 

(Table 3.9). It was found that the calculated performance measures were improved. These 

measures were found to be closer to those estimated from the comparison between networks 
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extracted from ALOS DSM (Table 3.5) and PALSAR DEM (Table 3.7) with that delineated 

from LiDAR DTM 28.5 m. Furthermore, the differences between PA and UA values resulted 

from comparing channels of orders 1 to 5 delineated from PALSAR DEM 12.5 m, PALSAR 

DEM 28.5 m, and ALOS DSM 28.5 m were 0.020, –0.026, 0.151, –0.005, and 0.081 and 

0.002, 0.011, 0.098, 0.011, and 0.014, respectively, when compared to those derived from 

LiDAR DTMs using a PBTV of 3 and ATs corresponding to 519 and 100 for spatial 

resolutions of 12.5 m and 28.5 m, respectively (Table 3.9). Additionally, the UA differences 

for channels of orders 1 to 5 were –0.064, –0.072, –0.022, –0.002, and 0.195 and –0.088, –

0.151, –0.068, –0.026, and 0.007, respectively (Table 3.9). Moreover, the KI differences 

were 0.061 and –0.052 using the same previously mentioned conditions (Table 3.9). 

In the comparison of channel network and orders extracted from PALSAR DEM 12.5 

m with those derived from LiDAR DTM at an AT corresponding to 100 pixels, it has been 

found the performance metrics started to noticeably improve after utilizing only one pixel as 

a buffer tolerance. This means that an approximate deviation of only one pixel 

(corresponding to a horizontal distance of 12.5 m) was required to directly gain an obvious 

improvement in the matching accuracy. A horizontal offset of three pixels (corresponding to 

a horizontal distance of 87.5 m) was required to achieve an apparent enhancement in 

matching during the assessment of the networks/orders extracted from ALOS DSM and 

PALASR DEM based on those delineated from LiDAR DTM at a spatial resolution of 28.5 

m (Table 3.9).  
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Table 3.9. Performance metrics computed based on the comparison between networks/orders extracted from 

LiDAR DTMs and global DEMs at different ATs expressed in the corresponding number of pixels, 

PBTV in pixels, and spatial resolution in m. 

Reference 
Nets 

LiDAR DTMs-based Nets 

Test Nets PALSAR DEMs-based Nets 
ALOS DSM-

based Net 
SRTM DEM-

based Net 
Spatial 

Resolution 
12.5 m 12.5 m 12.5 m 28.5 m 28.5 m 28.5 m 

PBTV_AT 3_519 3_25 3_100 3_100 3_100 3_100 

PA_Net 0.804 0.852 0.813 0.892 0.916 0.891 

UA_Net 0.900 0.826 0.870 0.940 0.920 0.912 

F_Net 0.849 0.838 0.841 0.915 0.918 0.902 

KI_Net 0.846 0.817 0.832 0.910 0.913 0.896 

KI_Ords 0.776 0.643 0.716 0.828 0.816 0.793 

       

PA_Ord1 0.792 0.607 0.661 0.790 0.771 0.759 

PA_Ord2 0.710 0.422 0.544 0.699 0.736 0.675 

PA_Ord3 0.789 0.382 0.497 0.691 0.638 0.515 

PA_Ord4 0.580 0.386 0.475 0.568 0.585 0.683 

PA_Ord5 0.518 0.381 0.462 0.503 0.437 0.522 

PA_Ord6  0.412 0.625    

PA_Ord7  0.515     

UA_Ord1 0.717 0.543 0.667 0.806 0.781 0.753 

UA_Ord2 0.658 0.428 0.591 0.809 0.730 0.730 

UA_Ord3 0.615 0.428 0.581 0.682 0.637 0.639 

UA_Ord4 0.522 0.448 0.616 0.548 0.523 0.443 

UA_Ord5 0.749 0.466 0.548 0.742 0.554 0.654 

UA_Ord6  0.467 0.676    

UA_Ord7  0.557     

3.4.5. Characterizing the Horizontal Offset Between the Extracted Channel Networks 

Figure 3.7 shows the histograms estimated based on the comparison between channel 

networks extracted from global DEMs based on those derived from the reference LiDAR 
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DTMs/DSMs. They displayed each channel segment’s displacement in both ±X and ±Y 

directions, at PBTVs ranging from 0 to 3 pixels and four ATs (corresponding to at least 25, 

50, 75, and 100 pixels). The number of co-located channels’ pixels using a PBTV of 0 was 

always higher than that reported using other PBTVs (1 to 3 pixels). Employing larger ATs 

and a PBTV of 3, the number of unmatched pixels decreased (Figure 3.7). Moreover, using 

different ATs, the number of displaced channels’ pixels reduced with the increase of PBTV 

from 0 to 3 pixels (Figure 3.7). The number of channels’ pixels that remained without 

displacement (i.e., had 0 PBTV) was always greater when comparing the networks extracted 

from global DEMs based on those derived from LiDAR DTMs rather than LiDAR DSMs. 

The highest, and a nearly equal number of co-located pixels (using a PBTV of 0) were 

reported from evaluating the networks derived from ALOS DSM (Figure 3.7c) and PALSAR 

DEM (Figure 3.7e) when compared to that extracted from LiDAR DTM with a similar 

spatial resolution of 28.5 m. Due to the fine spatial details of the PALSAR DEM 12.5 m, the 

number of matched pixels using a PBTV of 0 was higher than that with a spatial resolution 

of 28.5 m.  

Using a PBTV of 3 pixels and ATs corresponding to 25 and 100, the PALSAR DEM 

28.5 m-derived channel segments shifted 1689 and 973 pixels in +X direction and 1151 and 

541 pixels in +Y direction, and 159 pixels and 54 pixels in –X direction and 653 and 325 

pixels in –Y direction, respectively; with respect to LiDAR DTM-based channels’ pixels 

(Figure 3.7e).  

The number of unmatched pixels was higher in evaluating the network extracted from 

PALSAR DEM 12.5 m (Figure 3.7g), due to its finer details than at a spatial resolution of 

28.5 m (Figure 3.7e). Using a PBTV of 3 and an AT corresponding to 100 pixels, a shifting 

in the channel segments by 8342 and 5655 pixels toward the +X and +Y directions, and 754 

and 2300 pixels toward the –X and –Y directions, respectively, in the assessment of 

channels’ pixels derived from PALSAR DEM and LiDAR DTM 12.5 m was found (Figure 

3.7g).  
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In the comparison between the channels extracted from ALOS DSM and LiDAR 

DSM 28.5 m, the ALOS DSM-derived network was displaced by 1163 and 667 pixels in the 

+X and +Y directions, and 82 and 366 pixels in the –X and –Y direction, respectively, with 

respect to LiDAR DSM-based network at a PBTV of 3 pixels and an AT corresponding to 

100 pixels (Figure 3.7d). 

(a) (b) 

  

(c)  (d) 

  

(e) (f) 

  

 

 

 

 



132 

 

 

(g) 

 

(h) 

  

Figure 3.7. Deviations of channels’ pixels in in both ±X and ±Y directions at different ATs and PBTVs in a 

comparison between the networks extracted from both: (a) LiDAR DTM and SRTM 28.5 m, (b) 

LiDAR DSM and SRTM 28.5 m, (c) LiDAR DTM and ALOS DSM 28.5 m, (d) LiDAR DSM and 

ALOS DSM 28.5 m, (e) LiDAR DTM and PALSAR DEM 28.5 m, (f) LiDAR DSM and PALSAR 

DEM 28.5 m, (g) LiDAR DTM and PALSAR DEM 12.5 m, and (h) LiDAR DSM and PALSAR 

DEM 12.5 m.  

3.5. Discussion 

3.5.1. Vertical Accuracy of Global DEM 

The use of LiDAR DEMs with fine spatial resolutions as benchmarks to assess global 

spaceborne DEM sources has been well documented by previous studies. Dewitt et al.  [123] 

employed the LiDAR DEM as a reference to evaluate the SRTM DEM 30 m over a heavily 

forested section in West Virginia, USA. The SRTM DEM showed low accuracy with an 

RMSE of 16.77 m and systematic negative bias. Acharya et al. [124] evaluated both SRTM 

DEM and ALOS DSM using LiDAR DEM 30 m in Chuncheon, Korea. The ALOS DSM 

outperformed the SRTM DEM when compared to the LiDAR DTM, with RMSE values of 

12.232 m and 16.843 m, respectively. Furthermore, Liu et al.  [125] found that the vertical 

difference between ALOS DSM and resampled LiDAR DSM 30 m ranged from 0 to 2.75 m 

with a standard deviation of 1.58 m over Tsengwen, Taiwan.  
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Many other researchers have used ground control points (GCPs) to evaluate different 

open DEM sources. Alganci et al. [126] computed the relative accuracies of the SRTM DEM 

V03 30 m and ALOS DSM 30 m utilizing different sets of ground checkpoints in the Istanbul 

metropolitan area, Turkey. Under bare terrain condition, the ALOS DSM had better 

performance than the SRTM DEM, with RMSE values of 2.41 m and 3.53 m, respectively. 

With respect to different land cover classes, the ALOS DSM still provided higher accuracy 

than the SRTM DEM. Santillan and Makinano-Santillan 2016 [127] conducted vertical 

accuracy assessment of recent releases of the ALOS DSM 30 m and SRTM DEM 30 m using 

scattered control points in Mindanao, Philippines. Their results showed that the ALOS DSM 

30 m and SRTM DEM 30 m had RMSE values of 5.68 m and 8.28 m, respectively. 

Tadono et al. [13] estimated the vertical height difference between ALOS DSM and 

SRTM-3 V02 over different sites and the computed RMSE values ranged from 1.91 m to 

5.19 m. Takaku et al. [81] reported that the height difference between the ALOS DSM and 

SRTM-3 V02 had RMSE values ranging from 1.93 m to 11.38 m. In addition, an evaluation 

of the LiDAR DSM using GCPs resulted in an RMSE of 3.94 m. Moreover, the ALOS DSM 

30 m showed similar accuracy to the SRTM 1 DEM 30 m when compared to a 1: 50,000 cm 

reference DEM over different types of terrain in China [128]. Alganci et al. [126] explained 

the higher accuracy of the ALOS DSM 30 m by its generation process through down-

sampling of a 5 m mesh version utilizing statistical central tendency measures (i.e., average 

and median). 

To my best knowledge, there have been no studies to evaluate the PALSAR DEM 

12.5 m using LiDAR datasets. However, the higher accuracy of the PALSAR DEM 12.5 m 

could be interpreted by the use of high-quality DEMs with fine spatial resolutions (i.e., the 

National Elevation Dataset (NED)) in the detailed radiometric and geometric correction of 

PALSAR imagery (see [80], [129] for more details). 

Some previous studies reported findings that were similar to the current results, but 

with different RMSE values. Therefore, a number of factors would be worthwhile to consider 

when quantifying the vertical height accuracy of optical and radar satellite data-based 
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DEMs,, such as the presence of: (i) An extensive topographic change (e.g., due to surface 

mining excavations) (e.g., Reference [126]), (ii) rugged mountainous regions, particularly 

for interferometric SAR returns that may potentially be affected by foreshortening, layover, 

and shadow [130], (iii) vegetation canopy of varied roughness (e.g., [126], [131]), (iv) 

different dates for collecting the original data to generate various DEMs, possible land use 

changes, and growth of trees during extended time spans (e.g., Reference [128]), (v) slope 

change due to abrupt change in relief, where it was proved that DEM errors rapidly increased 

if the slope was greater than 20° [69], (vi) significant differences in the elevation ranges (i.e., 

difference between minimum and maximum relief) within a particular study area, where a 

high elevation variance can reduce the DEM’s vertical accuracy [69], and (vii) various 

versions of the same global elevation dataset with different levels of accuracy.  

3.5.2. Horizontal Accuracy of Channel Networks 

To my best knowledge, there are two similar studies in the literature, in which 

Anderson et al. [46] and Mozas-Calvache et al. [47] introduced two methods for the 

quantitative comparison of vector-based stream networks. Anderson et al. [46] mentioned 

that it is a complex and challenging task to compare and evaluate the degree of matching 

between two networks of several sets of polylines. They proposed the relative sinuosity, and 

longitudinal root mean square error (LRMSE) techniques for the quantitative evaluation of 

the quality and variation in linear stream features. They found that matched sinuosity could 

indicate a similar level of meandering but did not imply that both channel network polylines 

were well matched. Therefore, they recommended using the LRMSE technique to evaluate 

the horizontal similarity between channel lines rather than sinuosity deviation. However, 

they stated that both techniques must be carefully reviewed before being used to avoid the 

no-data anomalies, such as significantly unequal polyline lengths.  

Mozas-Calvache et al. [47] proposed a method to determine the maximum and mean 

positional displacements of DEMs-based drainage networks. They used the adapted 

Hausdorff distance (i.e., a 2-D maximum distance between channels) and vertex influence 

(i.e., weighting each vector of the 3-D channel by the segments’ lengths adjacent to each 
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vertex) methods [132] to determine the horizontal displacement between the networks. Their 

findings demonstrated their method’s applicability to determine the positional displacement 

of the selected channels [47]. However, the proposed methods by Mozas-Calvache et al. [47] 

and Anderson et al. [46] had similar limitations in the selection and preparation of channels 

for evaluation. They selected only a subset of channels; also, they checked that there were a 

one-to-one correspondence and proximity between the channels’ polylines in both the 

reference and test datasets. Moreover, they edited the selected channels, and if a particular 

channel was missed in the test data, they either ignored or deleted the reference channel of 

interest. The last consideration was that they manually trimmed the more extended channels 

around the missing branches.  

In this study, the introduced method overcame all the previously mentioned 

constraints, so it is a practical method that can be used without any prior selection, 

adjustment, trimming, and deletion of the comparable channel networks/orders. It directly 

considered all the channels in both the reference and test datasets, whether they were co-

located or not. Furthermore, the introduced method and the developed toolbox can automate 

the quantification and visualization of the horizontal spatial variations between channel 

networks/orders, as well as they have the advantage of evaluating unmatched pixels using 

different PBTVs (any number of pixels).  

3.5.3. Similarity Between the Findings of the Vertical Assessment of Global DEMs 

and the Horizontal Evaluation of Their Derived Channel Networks/Orders 

The achieved results in Section 4 demonstrated that the findings of both methods 

(pixel-based vertical accuracy of global DEMs and horizontal accuracy of their derived 

networks/orders) were similar in some cases, but not in others. 

Using traditional statistical indices (RMSE and MD), it was found that PALSAR 

DEM 12.5 m had the best performance with respect to the PALSAR DEM 28.5 m, ALOS 

DSM 28.5 m, and SRTM DEM 28.5 m, when compared to the LiDAR DTMs at comparable 

spatial resolutions. The channel network/orders derived from PALSAR DEM 28.5 m had 
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the highest accuracy, followed by those extracted from ALOS DSM 28.5 m and SRTM DEM 

28.5 m in comparison with those derived from LiDAR DTM 28.5 m. The findings of both 

methods were similar, except for the performance of networks/orders delineated from 

PALSAR DTM 12.5 m using ATs corresponding to at least 25, 50, 75, and 100 pixels. 

However, employing an equivalent AT to that at a spatial resolution of 28.5 m, it was found 

that the performance of channel network/orders extracted from PALSAR DEM 12.5 m was 

obviously improved. I suggest selecting the channel network/orders extracted from the DEM 

with the finest spatial resolution for using in geomorphological and hydrological applications 

if the accuracy metrics evaluating both original DEMs and their derived drainage 

networks/orders were high and close to each other. Consequently, the channel network and 

Strahler orders extracted from PALSAR DEM 12.5 m were considered to have the best 

accuracy performance (see Section 4.4 for more details) when compared to those delineated 

from LiDAR DTM (i.e., the findings of both methods were considered similar in the cases 

mentioned above). 

Employing the RMSE and MD statistical measures, the ALOS DSM showed the 

highest vertical accuracy, followed by SRTM DEM 28.5 m, PALSAR DEM 12.5 m, and 

PALSAR DEM 28.5 m, when compared to the LiDAR DSMs at comparable spatial 

resolutions. Channel networks/orders derived from ALOS DSM 28.5 m and PALSAR DEM 

12.5 m also showed the highest and lowest performance, respectively, when compared to 

those extracted from LiDAR DSMs at similar spatial resolutions. Therefore, the reported 

results from both methods were similar in the latter case. However, there were two 

exceptions where the networks/orders extracted from PALSAR DEM 28.5 m and SRTM 

DEM 28.5 m ranked second and third in the horizontal accuracy, respectively, contrary to 

the performance of the original DEMs. Therefore, the findings of the two methods were 

dissimilar when comparing PALSAR DEM 28.5 m and SRTM DEM 28.5 and their derived 

networks/orders with LiDAR DSM 28.5 m and its extracted network/orders. 
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3.5.4. Potential Applications of the Introduced Method 

In terms of other potential applications related to remote sensing research, the 

introduced method can also be used to: (i) Determine the optimum AT by comparing the 

extracted drainage network from any remote sensing technology-based DEM with a 

reference network derived from high-quality DEM source (e.g., high-quality satellite 

imagery and aerial photographs, with the help of topographic maps and field measurements), 

(ii) assess the effectiveness of different channel networks’ extraction algorithms, and (iii) 

quantify the degree of horizontal variation between other linear geologic and 

geomorphological features (e.g., structural lineaments, surface geologic contacts, and 

shorelines) extracted from remote sensing-based geospatial datasets of simultaneous or 

different temporal series, after converting them to raster format. For extended applications, 

and even if the LiDAR point cloud datasets are not available elsewhere in the world, other 

accurate DEM sources and their derived channel networks/orders can be used as benchmarks 

to quantify the vertical height accuracy of the DEMs used, as well as the horizontal accuracy 

of their channel networks/orders. 

3.6. Conclusions 

 This paper presents a pixel-based method to evaluate the horizontal accuracy of 

channel networks and Strahler orders delineated from three global DEMs with four spatial 

resolutions using reference LiDAR DTMs/DSMs and their derived networks/orders at 

comparable spatial resolutions and different ATs and PBTVs. the horizontal displacements 

between the extracted channels in both the ±X and ±Y directions were quantified. The pixel-

based vertical elevation accuracies of SRTM DEM 28.5 m, ALOS DSM 28.5 m, and 

PALSAR DEMs 12.5 m and 28.5 m were also determined using traditional statistical metrics 

(RMSE, MD). In particular, the vertical accuracy of the newly released ALOS PALSAR 

DEM with two spatial resolutions, 12.5 and 28.5 m, as well as their derived channel 

networks/orders were thoroughly studied. The similarity between the findings of the vertical 

assessment of the remote sensing-based DEMs and the horizontal variation of their 

delineated channel networks/orders were examined. Additionally, a new Python toolbox for 
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ArcGIS to automate the introduced method has been developed. The presented method 

effectively determines the horizontal accuracy of the different networks/orders. It was able 

to detect the performance of the networks/orders beyond the co-located channels’ pixels 

using different PBTVs. In general, the PALSAR DEM 12.5 m and ALOS DSM 28.5 m and 

their derived channel networks/orders were very close in performance to the LiDAR DTM 

12.5 m and DSM 28.5 m and their extracted networks/orders, respectively, at comparable 

spatial resolutions. 

The evaluations of the vertical accuracy of spaceborne DEMs and their derived 

channel networks and Strahler orders revealed the following: 

 The ALOS DSM 28.5 m and PALSAR DEM 12.5 m had the best performance when 

compared to the LiDAR DSM 28.5 m and LiDAR DTMs 12.5 m, respectively.  

 The categorical performance measures were improved with the increase of PBTVs 

from 0 to 3 pixels. When evaluating the horizontal accuracy using LiDAR DTM 28.5 

m derived-channel networks/orders, it was found that networks/orders delineated 

from PALSAR DEM 28.5 had the highest performance, followed by those from 

ALOS DSM 28.5 and SRTM DEM 28.5 m. However, taking into consideration the 

high spatial details of the PALSAR DEM 12.5 m, there was an extended possibility 

for observing more unmatched pixels, particularly with the use of an AT 

corresponding to 100 pixels. However, using an AT corresponding to 519 pixels 

(equivalent to an AT corresponding to 100 pixels at a spatial resolution of 28.5 m), 

the evaluation performance of the network/orders derived from LiDAR DEM 12.5 m 

was noticeably improved with the use of only one pixel as a PBTV. Therefore, the 

channel network and Strahler orders derived from PALSAR DEM 12.5 m were 

considered to have high horizontal accuracy (see Sections 4.4 and 5.3 for additional 

details). 

 Using a PBTV of 0, the number of co-located channels’ pixels was higher than those 

resulting from the use of more PBTVs. The number of unmatched pixels decreased 
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with the increase of PBTV from 0 to 3 at different ATs. The number of channels that 

remained without displacement (a PBTV of 0) was greater when evaluating the 

networks delineated from global DEMs using those derived from LiDAR DTMs 

rather than LiDAR DSMs at comparable spatial resolutions. Furthermore, the highest 

number of matched co-located pixels was recorded in the comparison of the 

PALSAR DEM 28.5 m- and ALOS DSM 28.5 m-derived networks with that derived 

from LiDAR DTM 28.5 m. 

The findings of the two methods (pixel-based vertical accuracy of global DEMs and 

horizontal accuracy of their derived channel networks/orders) were mostly similar, but there 

were exceptions, particularly in comparison with LiDAR DSM 28.5 m and its derived 

network/orders. 

I recommend that other researchers evaluate DEMs and their channel 

networks/orders before involving them in their geomorphological and hydrological studies. 

Additionally, I suggest using the introduced method over areas of different land covers, 

geomorphic units, lithology, and climatic zones elsewhere in the world. 
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Abstract 

In recent years, flash floods are frequently occurring with accelerated severity in at 

Ad Dakhiliyah Governate, north of the Sultanate of Oman. Thus, developing flood 

susceptibility models is necessary to detect flood zones with different degrees of hazards to 

improve the mitigation of the negative consequences of flooding. Additionally, these 

predictive models can allow decision makers to develop their plans for the optimum 

sustainable development of the areas under flood hazards. The current study employed 

improved, combined bivaraite and multivariate statistical approaches-based flood predictive 

modeling to predict flood-prone areas at fine watershed spatial details (i.e., 12.5 m). The 

geospatial inputs included thirteen flood triggering factors—namely, geology, soil, altitude 

(m), height above nearest drainage network (HAND) (m), Melton ruggedness number 

(MRN), drainage line density (DLD) km/km2, topographic position index (TPI), aspect (°), 

valley depth (VD), topographic wetness index (TWI), convergence index (CI), flow length 

in the downstream direction (FL_DS), and Global Satellite Mapping of Precipitation-Gauge 

calibrated (GSMaP-G). The flood inventory map was generated through processing Sentinel-

1A images for a specific flood event, with the help of volunteer geographic information 

(VGI). The equal stratified flood and non-flood points were randomly selected for training 

and testing flood susceptibility models. Using different confusion matrix-based evaluation 

measures such as the overall accuracy (OA), producer accuracy (PA), user accuracy (UA), 

F-measure (F), and Kappa index (KI), I found that the integrated statistical index (SI) – 

logistic regression (LR) provided the best predictive ability of flood zones. Utilizing the area 

under curve (AUC) metric through plotting flood probability index against the cumulative 

percentage of flood occurrences, it was found that the SI predictive flood susceptibility 

model scored the highest prediction and success rate curves (i.e., approximately 94%). 

However, paying more attention to the hybrid bivariate and multivariate methods in 

predicting flood-prone areas is required, because these models were trained and tested using 

random and well-spatially distributed flood and non-flood locations.  
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4.1. Introduction 

Natural disasters are deemed to be the principal cause of irrecoverable damages 

worldwide [1]. Schick et al. [2] reported that although flash floods have been considered for 

many decades as an environmental hazard, the exact processes triggering its initiation and 

controlling its attributes remain uncertain or less than adequately documented. The 

combination of the flood event itself, its receptors and pathways (i.e., the channel networks 

that transport the hazard of the flood to the targets), determines the magnitude of the flood 

risk [3]. Many infrastructures, such as towns and roads, are inadequately located and 

unprotected from flood hazards to mitigate the potential damage of future flood events [4]. 

It is mandatory to analyze past flash floods’ events thoroughly [5]. Less attention has given 

to flash floods in arid areas due to the existence of some years with long intervals between 

flood events. This lack of awareness makes the local population have a false sense of security 

from catastrophic flash floods. 

Furthermore, newcomers to flood-prone areas usually settle and develop the land 

without consideration of the expected hazards [2]. Accurate prediction of the vulnerable 

areas to flash floods would help in designing measures to protect such zones from future 

damage and assist in preparing new developments such as roads and housing [2]. The 

hydrological response of the flood-prone basin to rainfall is governed intrinsically by its 

geomorphometric and land cover characteristics. Additionally, the response of the basin is 

very sensitive to the depth, the size, and the location of the rainstorm [4]. Although flash 

flood is one of the main hazards in the arid regions, it is considered a vital natural recharge 

source of groundwater [5]. 

Systems of field-based monitoring that are required to record detailed rainfall and 

runoff datasets are limited or absent [6], especially in many countries in the Arabian 

Peninsula. To date, it is questionable that such field monitoring systems will be installed 

shortly because of the enormous efforts and resources entailed to create and maintain such 

systems. This situation makes it difficult to characterize and to monitor the flood extent. 

Besides, field-based mapping of flooded zones is limited in terms of the spatial and temporal 
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extent and can be labor-intensive and costly [7]. In natural hazards research, massive 

databases are often needed [8]. These data are not easy to collect, and in some cases, the lack 

of appropriate data can impede such research [9]. Most studies related to flash flooding in 

arid and semi-arid areas were mostly performed in the absence of real- and near-real time 

rainfall data (e.g., [10]–[14]). The current advances in remote sensing and GIS methods that 

have introduced valuable contributions in flood modeling and prediction, and have held the 

promise to address the abovementioned inadequacies.  

Many studies have been carried out on flash floods in the arid and semi-arid regions, 

but rainfall data were usually not considered in the different developed models. Taha et al. 

[5] evaluated the geoenvironmental hazards, including flash floods in the Nabq Protectorate, 

Sinai, Egypt. The assessment involved many analyses of geospatial data extracted from 

Landsat Enhanced Thematic Mapper Plus (ETM+) (30 m), topographical, and other ancillary 

geological and geomorphological data. The elevation data were obtained from 30 m SRTM 

DEM as well as from the digitized contour lines from topographic maps (1:50,000 scale). 

Quantitative drainage morphometry and DEM derivatives were statistically investigated to 

determine the zones of low, moderate, and high flood probabilities.  

Ghoneim and Foody [4] used a modeling approach to locate the vulnerable sites to 

flood risks at Marsa Alam, Egypt, through deriving the hydrological properties from surface 

topography of the terrain (e.g., slope, flow path), DEM, and land cover characteristics. The 

Watershed-oriented Hydrological Modeling System (HMS) has been employed to model the 

rainfall-runoff process and to predict basin behaviors through the creation of hydrographs. 

The Soil Conservation Service Curve Number (SCS-CN) method has been employed to 

determine water loss due to infiltration and to determine soil texture effect (e.g., [15]). The 

derived information was classified into four different types based on their runoff potentiality. 

Their results showed that wadi El-Alam required a rainstorm intensity of at least 40 mm to 

initiate surface runoff with a noticeable flood peak at its main outlet. They also showed that 

the location of rainstorms had a major effect on the shape of the basin hydrograph. The 

drawback of this study that it was performed in the absence of rainfall and surface runoff 

datasets. Additionally, Cools et al. [16] matched the corresponding flash flood and rainfall 
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(TRMM) events in a wadi Watir basin, Sinai that has similar topographic and climatic 

conditions to Marsa Alam. They found that were flood events initiated and occurred from 

rainfall intensity of less than 1 mm to 5 mm. The HMS software highly overestimated the 

rainfall intensity required to initiate flood peak. 

During their attempts to detect the potential sites for managing stormwater in Riyadh, 

Saudi Arabia, Mahmoud and Alazba [11] developed a GIS-based decision support system to 

monitor the flash floods. They incorporated spatial data from different sources such as the 

soil map, and land cover and land use, slope maps, and TRMM to calculate the runoff 

coefficient. They also estimated the rainfall surplus from the subtraction of annual rainfall 

data from the evaporation map. With these data, the authors were able to determine the 

highest potential zones for flood risk. However, the drawbacks of this paper were that the 

authors used annual (i.e., generalized model) ground and satellite rainfall data, which ignored 

the rainfall measurements corresponding to the specific flood events and failed to mimic the 

flood dynamics.  

Alhasanat [17] created floodplain zonation maps in wadi Mousa, northeastern 

Jordan. Despite the lack of in-situ runoff flow for wadi Mousa, all the required data (e.g., 

rainfall, topographical maps, and other remote sensing data) were prepared and processed in 

ArcGIS environment to estimate the surface runoff. A hydrological model was developed to 

detect the flood risk according to the runoff in the main channels of wadi Mousa. Alhasanat 

(2014) recognized four levels of the floodplain at 25, 50, 75 and 100 return periods, where 

the highest probability of flooding associated with the 25-year floodplain zone. Still, the 

author depended on yearly climatic data, which could not capture the dynamicity of the flash 

floods. 

In 2016, Yousef et al. [12] studied the two 2009 and 2011 Jaddeh flood events 

employing the bivariate probability (i.e., frequency ratio) and logistic regression models over 

an area covering 219 km2. Seven independent variables (i.e., slope, elevation, curvature, 

geology, land use, soil drain, and distance from streams) were used to generate two flood 

susceptibility maps. These variables were reclassified and weighted based on the bivariate 
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statistics. The normalized variables were involved in multivariate logistic analyses. The 

flood inventory map generated from IKONOS imagery of 1 m resolution to represent 127 

flooded locations in 2009 and 2011. Finally, flood susceptibility maps were developed by 

classifying the probability flood index into five classes: very low, low, medium, high, and 

very high susceptibility. This model did not involve rainfall data, and the flood point was 

collected only along the main valleys. 

Preparing flood inundation maps is a mandatory step to outline the hazardous areas 

and to control the potential flooding risks. In wadi Hali and wadi Yibah, southwestern Saudi 

Arabia, Sen et al. [18] utilized topographic maps and field measurements to create inundation 

maps. A number of cross-sections along the possible flood plain were measured, and the 

average flow velocity in each channel was determined based on the geometric, hydraulic, 

and material characteristics of each area. The obtained information was employed to 

assemble synthetic rating curves in control sections by generating an empirical formula to 

determine both flood depth and width. The authors identified flood levels at various cross-

sections. They found that the middle and downstream parts were more dangerous than the 

upstream portions of the wadis. They reported that empirical field measurements should be 

employed to develop inundation maps. Also, they concluded that flood assessment in arid 

areas should not be performed with the same methods applied to humid areas since further 

modifications are required [18]. This study did not include rainfall and surface runoff 

measurements. 

In the watershed area of Jabal Al-Hajar Mountains (3000 m), northern Oman, Al-

Rawas and Valeo [19] attempted to predict flash flood by investigating the relationship 

between wadi flood peaks discharge and the watershed characteristics. Parameters of 14 sub-

watersheds were extracted from a 40 m DEM. The correlation and multiple regression 

analyses were conducted on the extracted parameters to examine the effect of these physical 

characteristics including land use on wadis’ mean peak flow (QMPF) for various periods of 

recurrence flood peaks at 5, 10, 20, 50, and 100 years. The main network attributes that 

affected flood flows were drainage area, wadi slope, and mean elevation. The developed 

model underestimated the average peak flow in some sub-watersheds. Lack of the required 
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rainfall data indeed affected the results [19]. Also, the derived relationship was not 

applicable to apply in other locations in Oman itself even under a slight difference in the 

climatic conditions as the authors tested their model in Salalah (humid climate) in southern 

Oman. 

Predictive global climate change models indicate that changing precipitation patterns 

and the increasing number of extreme rainfall events will raise the magnitude and frequency 

of future flooding events [20]. Real-time flood extent mapping allows the emergency 

responders to handle extreme flood events, and to direct their limited resources to the highest 

priority areas [21]. Flash floods are very challenging to be predicted as they characterized 

by rapid and intense run-off generation leading to a rapid rise in water levels and high peak 

discharge over a short duration after the onset of the generating storm [22]. Flood 

management can be achieved through four significant steps: prediction, preparation, 

prevention, and damage assessment [23]. 

Earth observation satellites datasets and GIS techniques introduce valuable methods 

to study flash floods (e.g. [10], [22], [24]–[27]) since they (1) provide essential tools for 

observing and investigating the spatial dynamics of floods, (2) have relatively low or no 

acquisition and mapping costs, (3) allow mapping over large, and sometimes, over 

inaccessible regions, in a time repetitive manner, (4) grant a compelling set of tools for 

analyzing and extracting spatial information to support decision making reliably and 

consistently, and (5) present tools to process big digital data volumes since the repeated 

acquisitions offer a wealth of archive data required to detect flash floods changes over time. 

Field-based monitoring of flooded areas requires much time and effort, as well as it 

requires high degrees of safety and multiple precautions [5]. Currently, different satellite 

sensors (i.e., microwave and optical) provide a real contribution to monitoring flash floods 

at real-time and near real-time scales. On the one side, the microwave sensors such as the 

synthetic aperture Radar (SAR) instruments provide their illumination source, record data at 

both day and night, and penetrate cloud cover ([28]–[30]). However, SAR data are mostly 

of high cost and usually have speckled noise [31]. They have coarse spatial and temporal 
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resolutions that affect their applicability in monitoring flooding [32]. Vegetation covers 

increase the roughness of SAR imagery [7]. Moreover, the complex procedures that are 

required to process SAR imagery add more difficulties in mapping flooded areas [7], [33]. 

The recently launched Sentinel-1 mission can help in solving most of the previously-

mentioned issues related to the role of SAR data in monitoring a flood inundation. 

On the other side, though multispectral optical sensors mounted on board of both 

near-polar or geostationary satellites are capable of offering medium to high spatial and 

spectral details, they often restricted by the presence of clouds and long revisit times [34]. 

For example, Enhanced Landsat Thematic Mapper (ETM+) and Moderate Resolution 

Imaging Spectroradiometer (MODIS) have (16 days, 12 bands, 30 m) and (1 day, 36 bands, 

1 km) spatial, spectral, and temporal resolutions, respectively. Therefore, the optical sensors 

are not a practical solution to detect a flood extent.  

 In the case of determining future flash flood extent based on conditioning factors 

(flood susceptibility assessment), the central concept used in most of the research is to 

develop a model to detect flash flood extent and relating it to a set of input factors. Such 

models were developed using either statistical or machine learning or integration between 

both techniques [35]. It is imperative to have a spatial association in all input factors to gain 

accurate results  [36].  

Flood susceptibility (i.e., potential) map can be defined as the likelihood of future 

flash floods’ extent depending on the intrinsic properties of a given area such as rainfall, 

slope angle, geologic units, soil type, and more [37]. It can assess the historical and future 

spatial extent of flood events [38] and classified the hazard degree in the prone areas [39]. It 

can help the policymakers and authorities concerned to prepare the emergency plans and 

extract mitigation measures to reduce life and property losses. Over past years, various 

methods for flood susceptibility mapping such as probabilistic and statistical models [40], 

multi-criteria evaluation [41], fuzzy logic [42], weights-of-evidence (WoE) [43], artificial 

neural network (ANN) [44], and decision tree (DT) [45] have been introduced. Dixon [46] 

and Kia et al. [47] outlined the advantages of applying the ANN in the flash flooding research 
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since it can deal with uncertainties in the input dataset, and can extract information from the 

incomplete or contradictory dataset. It can determine linear as well as non-linear functional 

relationships based on pattern recognition [48]. However, the ANN has some drawbacks 

[46], [47] such as: (i) it represents a black box, (ii) it needs a high computer capacity (i.e., 

time-consuming, especially for the training part), and (iii) it requires extensive data as weak 

predictions can occur when the validation data contain values that are not included in training 

range. The fuzzy logic model has a more transparent structure than the ANN and has 

employed in a variety of hydrological applications [49]. Additionally, the adaptive network-

based fuzzy inference system (ANFIS) represents a combination of ANN and FIS models. It 

was found to be optimal in monitoring and forecasting flash floods, where it needs minimum 

input from experts, and performs fast [50]. However, it entails a large number of parameters, 

which limits its use due to the difficulty of data collection [51]. The decision tree (DT)-based 

models have been proved to applicable for flash flooding susceptibility modeling [45], [52]–

[55] since they (i) have no statistical assumptions, (ii) can handle data from various 

measurement scales, and (iii) facilitate the construction of the rules to build predictions about 

individual cases and for complex relationships. However, they are susceptible to noisy data, 

and multiple output attributes are not allowed. Support vector machines (SVMs) techniques 

are efficient and reliable tools in flood susceptibility assessment and can be beneficial in 

flood mitigation strategies [56]. However, SVM parameterization can be time-consuming 

and requires many trails for selecting the appropriate kernel type [56]. The analytic hierarchy 

process (AHP) mostly applied to regional flood susceptibility studies [57]–[59], but it 

requires expert knowledge and contains many biases due to subjective rules. It is unable to 

determine the uncertainty that may occur during selection, comparison, and ranking of 

multiple criteria. 

Statistical approaches adopted to generate flood susceptibility maps provide reliable, 

rapid, and understandable tools to facilitate flood extent mapping. In general, they require 

the testing of a set of assumptions before initiating the study, which considered as drawbacks 

of such approaches [60]. The statistical-based logistic regression (LR) model can overcome 

some of the disadvantages of the abovementioned machine learning approaches and can be 

combined with other bivariate methods such as frequency ratios (FR) and evidential belief 
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functions approaches to develop efficient flood susceptibility maps [39], [61].  In contrast, 

the LR model itself has some disadvantages to analyze the classes of each flood-influencing 

parameter. Some studies used LR as bivariate to solve this problem, but LR has some 

limitations to perform bivariate statistical analysis as it manipulated the classes as indicators 

and does not consider them in the study [45]. The bivariate statistical methods (e.g., FR) 

analyze the impact of each input factor on flooding [45], but the mutual relationship between 

the variables cannot be determined. Therefore, a combination of bivariate and multivariate 

statistical methods can produce a comprehensive and efficient approach to generate flood 

susceptibility model, which can analyze the influence of each class of every triggering factor 

on flooding. 

The concept of inventory mapping was originally developed for landslide 

susceptibility studies [62]–[64]. The geomorphic inventory map can be defined as a spatial 

distribution of landslides at a predefined cartographic scale and prepared by gathering 

historical information on landslide events [65]. An inventory map shows the locations, the 

date of occurrence, and landslide events that have left discernible traces in an area [65], [66]. 

Development of an inventory map depends on the following principal hypotheses [63]: (1) 

landslide events leave noticeable marks on the land, so visual interpretation of aerial 

photographs, satellite images, or digital elevation data may support the identification 

process, (2) changes in image intensity, texture, and shape, in addition to structural 

lineaments, should be related to the landforms linked with potential slope instability 

processes [67], and (3) “the past and present are keys to the future” [68] (i.e., landslide 

inventory maps are applied to study landslide hazard zonation being probable to happen 

under the same conditions recognized in the past). 

Traditional methods for generating an inventory map were field investigation and 

aerial photographs. The limitations of these conventional methods were described in 

Malamud et al. [65] and Guzzetti et al. [66]. Nowadays, remote sensing techniques constitute 

the primary source of information for the creation of an inventory map, in addition to the 

small contribution from field surveys [62]. Landslides are commonly associated with 

rainstorm-induced flash floods [69]–[71] and the conditioning factors of landslides such as 
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altitude, slope, morphology, and geology of the study area, drainage basin parameters, and 

land use classes are similar to those that control the flash floods. Therefore, in recent years, 

some authors attempted to create flash flood inventory maps to contribute as a reference 

standard to validate their developed flash flood susceptibility maps [12], [72]. 

In the current research, a flash flood inventory map (i.e., information about the 

locations and characteristics of flash floods events) extracted mainly using Sentinel-1A 

images. The generated flood map was verified using Google Earth Pro, volunteered 

geographic data provided by the rainfall hunters in the Sultanate of Oman, and the available 

historical flood information from previous literature in arid areas of similar topography.  

Volunteered geographic information (VGI) is a quickly growing data source for 

natural hazards research [73]. A vast amount of real-time ground data has become available 

as a result of internet spreading. Some authors used volunteered data in their studies about 

such hazardous events, particularly to estimate flood inundation extent [74]–[80]. 

Notwithstanding the non-scientific nature of volunteered datasets, they can provide critical 

and vital information. The integration of these data with conventional ones introduces 

valuable information for mapping the flash flood extent. The proposed inventory map is 

expected to improve the detection of flash flood extent due to the integration of various 

sources of information, especially from remote sensing techniques. 

Additionally, most of the previous authors used different sources to map the flood 

inventory such as in-situ mapping through filed investigation, literature review, historical 

multiple flood records, and remote sensing imagery. Due to the complex topography usually 

covers the upstream watershed and required extensive field survey, most of these authors 

collected only a few points to represent flood locations such as 211 points [39], 112 points 

[81], and 137 points [61]. For the non-flood points, these authors used Google Earth to 

determine non-flood points equal to the pre-collected flood points. However, these non-flood 

points were restricted only to the upstream (i.e., elevated hills and mountains that are not 

affected by the flood). Although this assumption could be valid, the non-flood points can be 

existing everywhere in the mid and low-lying downstream areas.  
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Therefore, the overall goal of the current study is to introduce improved and 

integrated statistical based-susceptibility models to differentiate and refine the flood zones 

susceptible with the highest potential hazards over an arid watershed in the Sultanate of 

Oman. The main objectives consisted of: (i) including a detailed a spatio-temporal flood 

information to the models through using the Radar-based inventory flood map, for a certain 

flood event, to select well-spatially stratified flood and non-flood points among the whole 

area of study, (ii) introducing a new combination of the flood triggering factors such as near-

real-time rainfall data, DEM derivatives (e.g., altitude, aspect, and convergence spatial data), 

lithologic units, soil type, and topographic wetness index, (iii) applying integrated statistical 

bivariate (i.e., FR and SI) and multivariate (LR) approaches to generate the flood 

susceptibility maps, and (iv) comparing the findings of the different flood susceptibility 

models to depict the model with the top performance. 
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4.2. Materials 

4.2.1. Study Area 

The current study was carried out at the foothill of the Al-Jabal Al-Akhdar chain at 

Ad Dakhiliyah Governate, north of the Sultanate of Oman (Figure 4.1).  It includes the 

wilayats (i.e., cities) of El Hamra, Bahla, and Nizwa and located between 57° 0’ 0” to 57° 

54’ 0” Latitude and 22° 23’ 0” to 23° 15’ 0” Longitude (WGS 1984/UTM Zone 40N) (Figure 

4.1). The area of study is approximately 4812 km2 extent and is characterized by sparse 

rainfed and small dense irrigated vegetation zones [82]. Topography varies across the area 

(slope = 0–84◦; altitude = 783–4178 m) and significantly affects the local climate conditions. 

Topography varies widely across the study area (altitude = 249–2955 m), which can 

substantially affect the local climate conditions. The arid climate is associated with hot 

summer and warm winter. It is highly variable and fluctuated yearly with an average annual 

rainfall of more than 300 mm in the northern Oman mountains. The convective liquid 

precipitation storms accompanied by the localized cells of deep atmospheric convection are 

the main responsible mechanism of rainfall over Al-Jabal Al Akhdar [83]. Notwithstanding 

the frequency of flash floods in this part of the Sultanate of Oman, no previous research has 

studied the flood probability in this area. Figure 4.1 demonstrates the study watershed covers 

an area among wilayats of El Hamra, Bahla, and Nizwa at the Dakhiliyah Governate, the 

Sultanate of Oman, and the source of the satellite imagery is ESRI, 2018 [84]. According to 

the Oman Meteorology, the north of Oman received torrential rainfall from December 16-

19, 2017, in many parts [85]. Oman’s Civil Defense department stated that three people have 

died, and many homes have been severely damaged with at least 120 people left homeless 

[85]. Although many people have been rescued from flooded homes and vehicles, dozens of 

people were injured in road accidents, particularly across to cross wadis (i.e., valleys) and 

low areas. 
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Figure 4.1. The area of the study shows the selected watershed extends among the wilayats of El Hamra, Bahla, 

and Nizwa at the Dakhiliyah Governate, the Sultanate of Oman. The source of the satellite imagery is 

ESRI, 2018 [84]. The upper map of the Sultanate of Oman is not an authority on international borders. 
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4.2.2. Data Requirements 

4.2.2.1. Sentinel-1A 

The ESA-Copernicus (European Space Agency-Commission's Earth Observation 

Programme) designed the Sentinel-1 Radar observatory mission to provide a continuous 

mapping of the Earth's surface. The Sentinel-1 mission is a two-satellite constellation (i.e., 

A and B), of sun-synchronous near-polar orbit, that use an active C-SAR sensor for 

introducing medium to high-resolution images in all-weather conditions and time (i.e., day 

and night). Both Sentinel-1A and Sentinel-1B sensors were launched in April 2014 and 2016, 

respectively, at a 693 km altitude and share the same orbit plane with a phase difference 

180°. Therefore, both SAR satellites can image the entire Earth's surface every six days. The 

key parameters of the mission are to provide improved short revisit time, coverage, 

frequency bands, polarization, and resolution. For more details, see Torres et al. [86]. 

Six Sentinel-1A scenes, of a C band frequency (5.405 GHz) and a repeat cycle of 12 

days, were downloaded from the Alaska Satellite Facility hub website [87]. The area of study 

covered mostly by one scene, and about 5% of the area covered by another image. These 

SAR scenes covered the area of study during the flood event of December 16, 2017, and two 

pre-flood days on November 10, 2017, and October 17, 2017. The datasets acquired during 

the same ascending orbits (track-path 30) were selected to have uniform configurations [88]. 

The incidence angle over the area of study ranged from 36° to 42°. The scenes were acquired 

in interferometric wide swath (IW) mode of operation that has a wide swath (250 km) and a 

high spatial resolution (5 m × 20 m) [89]. They delivered as GRDH (Ground Range Detected 

High Resolution) scenes with dual polarizations (i.e., SAR sensor can transmit and receive 

signals in both a horizontal and vertical orientation (VV/HV)). High-spatial resolution 

Sentinel-1 GRD scenes include SAR datasets that have been detected, multi-looked, and 

projected to ground range using an ellipsoid model of the Earth. The terrain height, of a 

varied azimuth and constant range, is used to correct the ellipsoid projection of the level-1 

GRD products. Because of the multi-look processing, the resulting scene had square pixel 

spacing with reduced speckle noise at the cost of reduced geometric resolution [90]. They 
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have spatial details and pixel spacing of about (20 × 22 m) and (10 × 10 m), respectively, in 

the ground range (i.e., range resolution) and azimuth direction [91]. Sentinel-1A SAR images 

used effectively with a spatial resolution of 10 m in different environmental applications 

such as extracting surface water map extents, wetlands, and ecosystem units (e.g., [92]–[94]). 

4.2.2.2. DEM Dataset 

DEM is originally a term reserved for elevation data provided by the United States 

Geological Survey (USGS). Currently, DEM is used to describe any digital elevation data 

and to represent the terrain relief where the elevation values over a topographic surface are 

a regular array of Z-values and referenced to a common world datum [95]. DEM is the 

leading source to derive various geospatial datasets such as slope, aspect, and curvature. 

The ALOS Phased Array type L-band Synthetic Aperture Radar (PALSAR) DEM 

with a spatial resolution of 12.5 m was adopted in the current study to derive the geospatial 

layers. It has higher horizontal and vertical accuracies than other freely available global 

DEMs [96]. It is developed by the Alaska Satellite Facility Distributed Active Archive Data 

Center (ASF DAAC). The ASF processed ALOS PALSAR scenes using the Gamma remote 

sensing software package to produce geometrically and radiometrically terrain corrected 

products. Radiometric Terrain Correction (RTC) overcomes the geometric distortion (e.g., 

foreshortening, and layover) due to the internal side-looking nature of SAR imagery. The 

generated products cover landmasses from 60° northern Lat. to 59° southern Lat. The RTC 

process provides an improved estimation of signal backscattering, which is affected by 

dielectric constant, surface roughness, scattering mechanism, polarization mode, terrain 

slope, Radar look angle, and wavelength. Therefore, the enhanced RTC outputs can be 

utilized for such applications (e.g., flash flood detection, land-cover classification, and 

monitoring of deforestation). RTC products are distributed at two resolutions. High-

resolution RT1 DEM products that are generated with a pixel size of 12.5 m. Layover and 

shadow masks, and incidence angle maps are available for the same product resolution. More 

details about PALSAR DEM are available from Laurencelle et al. [97]. 
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4.2.2.3. GSMaP-G 

The Global Satellite Mapping of Precipitation (GSMaP) is a global rainfall data 

derived from blending different space-borne passive microwave (PMW) and infrared (IR) 

data collected by various satellite platforms such as Global Precipitation Measurement 

(GPM) Microwave Imager (GMI), Tropical Rainfall Measuring Mission (TRMM) 

Microwave Imager (TMI), TRMM Precipitation Radar (PR), Geostationary Infrared 

instruments among others. The GSMaP product is developed and disseminated by the Japan 

Aerospace Exploration Agency (JAXA) through the Earth Observation Research Center 

(EORC). It is an hourly product with a spatial resolution of 10 km and time latency of fewer 

than three days that covers from 60°N–60°S. The GSMaP-Gauge (GSMaP-G) is adjusted 

GSMaP using the Climate Prediction Center (CPC) unified gauge-based analysis of global 

daily precipitation data analysis with a 50 km spatial coverage. Additional details about 

GSMaP V06 algorithms and validation can be obtained from [98]–[100].  
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4.3. Methods 

The workflow of the adopted methodology in the current study is illustrated in Figure 

4.2 as follows: (i) producing the flood inventory (i.e., inundation) map by the use of Sentinel-

1A Radar images, (ii) deriving a set of flood conditioning explanatory factors from ALOS 

PALSAR (12.5 m), (iii) extracting drainage network from AlOS PALSAR (12.5 m) to 

extract the other set of the independent variables, (iv) generating the geologic map utilizing 

Landsat-8 image (30 m) and geologic maps of scales 1:250.000 [101] and 1:1000.000 [102], 

(v)  digitizing and georeferencing the soil map, (vi) performing multicollinearity 

quantification, (vii) using the bivariate and multivariate statistical methods to develop 

predictive modeling of flash flood occurrences; (viii) validating the models, (ix) comparing 

flood susceptibility classes,  and (x) compiling flash flood probability maps. 

4.3.1. Flash Flood Inventory Map 

The SNAP (Sentinel Application Platform) software [103] was used in most of the 

major steps to process Sentinel-1A SAR scenes [104] for extracting a flood inundation map. 

The workflow designed to reduce error propagation associated with the following 

subsequent processing steps ( for more details, see [90]). In the case of utilizing the Sentinel-

1A to detect the flood inundation map, the polarized wavelength VV showed improved 

results over other polarization [105], [106]. The processing steps started by masking the 

mosaic SAR VV (i.e., single co-polarization types, vertical transmit/vertical receive) scenes 

to the exact extent of the study area. 
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                                 Figure 4.2. Methodology flow chart for the improved flood susceptibility models. 

The abstract metadata of Sentinel-1A scenes generally have inaccurate information 

about the orbit state vectors. The precise orbits available in SNAP allowed automatic 

download of updated and accurate orbit vectors that are usually available several days after 

generating the original SAR images. These updated orbits provide precise information about 

the satellite velocity and position.  

The additive thermal noise associated with Sentinel-1A images prevents the 

precision of SAR reflectivity estimates. It is the receiver’s background energy that shifts 

SAR reflectivity towards higher values. The thermal noise removal operator available in the 

SNAP toolkit was used to reduce noise through normalizing the backscatter signals within 

the entire Sentinel-1A scene.  

Level-1 SAR images can have a significant bias because they are not radiometrically-

calibrated. The process of relating the digital pixel values of the SAR scenes directly to the 

true radar backscatter from the reflecting surfaces is called radiometric calibration. It is a 

mandatory process to compare scenes captured by different SAR sensors, or the same sensor 

but at different times and/or beam modes. The Sentinel-1A GRD products contain the 
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required calibration vector, as an annotation, to convert images’ intensity values into sigma 

nought values. 

SAR scenes mostly have granular noise or speckles (i.e., inherent salt and pepper 

texture) that reduce the image quality and cause the features’ interpretation to be more 

difficult. These speckles are due to the random interference (i.e., constructive and 

destructive) of waves caused by multiple scattering sources within each resolution cell 

[107]–[109]. The refined Lee 5 × 5 pixel filter has been applied on during and pre-flood 

images, after some initial trail on the window size [110], to have smooth scenes of high 

quality and free of speckles. The refined Lee filter was found to be superior to other speckle 

filters, for visual interpretation, due to its capability to preserve linear features, point target, 

and texture information [107].  

SAR images are acquired with a varying viewing angle (i.e., side-looking geometry) 

greater than 0°, resulting in distorted scenes. As a result of topographical variations in the 

SAR imagery and tilting of the spaceborne sensors, the distances can be distorted within the 

scenes. Therefore, the range of doppler terrain correction was applied to compensate for the 

distortions (i.e., to be close to the real world). The SAR scenes then re-projected to the UTM 

projection Zone 40 N of the Sultanate of Oman. Range Doppler geometric terrain correction 

is a correction method of geometric SAR distortions as a result of topography (i.e., 

foreshortening and shadows), utilizing a DEM to derive the precise geolocation information 

of each pixel [111]. The range Doppler operator allows selecting the image resampling 

method and the target pixel spacing.   

Flood inundation mapping can be defined as how to identify a highly precise binary 

mask of flood and non-flood water. Multiple SAR-based flood water detection approaches 

have been proposed in the literature such as unsupervised and supervised methods (e.g. 

[112]–[114]), threshold determination (e.g. [110], [115], [116]), and change detection (e.g. 

[117], [118]). The accuracy of different flood inundation algorithms considerably differs 

based on the dominant land cover. For example, detecting Flood in urban areas is challenging 

because of the shadow effect of building due to the side-looking viewing geometry of SAR 
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sensors [119]. Additionally, it is strenuous to sense the water below vegetation cover as a 

result of double bounce signal scattering in such areas [120]. Furthermore, the strong wind 

can roughen water surfaces that can cause misclassification errors. 

The thresholding method is the most commonly used method for SAR images to 

differentiate between flood and non-flood water areas [110]. The thresholding method 

depends mainly on the contrast between low and high Radar returns from water bodies and 

the surrounding terrain [110]. The steep slope filtering (i.e., slope less than or equal to 3°) 

[105], [121] step was implemented to mask any Sentinel-1A’s pixels that might display a 

brightness change due to the angle of the SAR signals’ return from the steep, rugged hills 

and slopes [121]–[123]. Additionally, this filter could help in reducing the areas with Radar 

shadow [105], particularly in the upstream area dominated by rugged and complex mountain 

structures. The chosen slope threshold is considered as a standard conservative slope that 

can include rough and steep hill slopes [121], and the sloped pixels were assigned to class 0. 

For the current area of study, a slope mask of less than or equal to 3° includes mostly the 

upstream mountainous non-flood area; therefore, it was a convenient and reliable threshold. 

In the current study, the backscattering of collocated SAR pixels in and before the 

flood events were compared and generate a single mask object (flood water or non-flood 

water). The Otsu method [124] is utilized to reduce a grayscale image to a binary image. 

This binarization algorithm assumes that the monochrome includes two classes of pixels 

following a bi-modal histogram (i.e., foreground and background pixels). To separate the 

two categories, an optimum threshold is estimated by iterating through all possible threshold 

values to detect the minimum intra-class variance for the pixels that either follow the 

foreground or background class. 

The drawback of the Otsu method that it can be applied only on images that have 

bimodal grey-level histograms [125], which was not available in the current study. 

Therefore, a segmentation algorithm that can threshold the Sentinel-1A images with close to 

unimodal or unimodal grey-level histograms was required to extract flood areas in the 

current study. The neighborhood valley-emphasis (NVE) [125] method (i.e., a technique that 
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uses the neighborhood information of the actual valley point within an unimodal histogram) 

has been applied successfully by Nakmuenwai et al. 2017 [126] to auto-extract the inundated 

areas from RADARSAT-2 images. In the current study, the NVE developed by [125] and 

implemented by [127], [128] was utilized to auto-select the optimal thresholds to 

differentiate between flood and non-flood classes.   

Change detection technique used to compare backscattering signal intensities of pre- 

and during-flood images to detect only significantly changed pixels as inundation candidates 

to reduce false classified flood pixels [129]. It can overcome the over-detection error of 

water-like surfaces (e.g., Giustarini et al. [117]). However. It is sensitive to speckle-related 

noise [130] that can be diminished using an appropriate speckle filter [110], and geometric 

dislocation error that can be reduced through assessing the change from the binary water 

masks [129]. The image difference was carried out through subtracting binary reference 

flood image from the binary pre-flood average image. The final flood inventory map (Figure 

4.3a) had 357971 pixels within the flood class (i.e., assigned the value of 1), and 30413754 

pixels in the non-flood zone (i.e., allocated the value of 0). Additionally, it had 36125 pixels 

with the value of -1, which might be related to the human activities and using of Aflaj 

irrigation system for agricultural purposes, during this time of the season, and seeping of the 

water to the terrain surface in limited locations. These pixels with negative values were 

assigned the value of 0 (i.e., non-flood class). A sample equal to 10% of the number of flood 

pixels was acquired using the equal stratified random sampling technique from flood and 

non-flood classes to ensure the coverage of most classes of the flood causative factors in the 

study area. The selected sample was divided into training (Figure 4.3b) and testing (Figure 

4.3c) datasets with percentages of 70% and 30% to be used in the hybrid flood susceptibility 

modeling, respectively.  

The volunteered geographic information (VGI) was used for the validation purpose 

of the flood generated flood inventory map. Some of the Omani people have the enthusiasm 

for regularly following and tracking the rainfall events, and they published their video, 

images, and description of rainfall and flood events on the online forums and websites. One 

of the major Omani forums called “Sabalet Oman” has a complete division for the weather 
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and climatic events over the Sultanate of Oman. By keep following the different reported 

flood events over the wilayats of El Hamra, Bahla, and Nizwa at the Dakhiliyah Governate 

[131], a complete picture of the flood frequent spatial distribution had gained. Through using 

the acquired information, it was possible to visually validate the developed flood inventory 

map (Figure 4.3a). It is worth mentioning that Martinis et al. 2018 [116] used Sentinel-1A 

images to extract near real-time flood inundated areas over Somalia, Ethiopia, and Iraq [116], 

[132]. They used different frequency classes with thresholds of -10, -15, and -20 db to reduce 

sand interference. Their applied method successfully reduced overestimated flood extents. 

(a) Flood inventory map (b) Training dataset 

  

(c) Testing dataset  

 

Figure 4.3. (a) the flood inventory map, (b) and (c) training and testing datasets, respectively. 
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4.3.2. Flood-Affecting Independent Factors 

Identifying a set of factors that are in control (i.e., can significantly contribute to the 

occurrence) of a flash flood is the main task in the flooding predictive modeling. Despite 

there is no complete agreement on selecting the optimum set of flood-controlling factors 

[72], there were some independent variables frequently used by other researchers (e.g. [72], 

[133], [134]). Most of the latest studies aimed to develop precise susceptibility models with 

the use of the least number of independent parameters [44]. The explanatory factors should 

be measurable and have spatial relations with the dependent reference variable (i.e., flood 

inundation map). The numerical morphometric parameters-derived DEM can provide 

beneficial information about missed observed hydrologic data (e.g., runoff) in the case of the 

ungauged basin, as well as geologic and physiographic information of watersheds [135]–

[137]. 

Thirteen explanatory variables that represent the local physical and climatic 

characteristics of the study area were proposed through the knowledge attained from the 

previous literature (e.g., [5], [12], [39], [133], [138]) and the previous fieldwork experience 

in similar areas. They included geology, soil, altitude (m), height above nearest drainage 

network (HAND) (m), Melton ruggedness number (MRN), drainage line density (DLD) 

km/km2, topographic position index (TPI), aspect (°), valley depth (VD), topographic 

wetness index (TWI), convergence index (CI), flow length in the downstream direction 

(FL_DS), and Global Satellite Mapping of Precipitation-Gauge calibrated (GSMaP-G). The 

flood influencing factors were processed and compiled into a geospatial database utilizing 

ArcGIS and SAGA GIS software. Additionally, SPSS software was used in some analysis 

steps. 

Each parameter was resampled to the spatial resolution of the ALOS PALSAR DEM 

(i.e., 12.5 m), where the study area grid was bounded by 7013 and 7710 columns and rows, 

respectively. Each independent variable was classified using the natural break classification 

method within the ArcGIS environment [139]. This approach automatically determines the 

class breaks and maintains similar values together (i.e., minimizing the variance within 
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classes), while maximizing the differences between different classes. It was used in various 

previous flood susceptibility studies (e.g., [140]) due to its efficiency. 

To extract the lithologic units (i.e., geology) (Figure 4.4a), the Landsat 8 surface 

reflectance scene of zero-cloud, acquitted on April 10, 2017, for path 158 and row 44, was 

downloaded from the United States Geological Survey (USGS) Earth Explorer data portal. 

The maximum likelihood classification (MLC) algorithm was used to perform supervised 

classification of the multiband Landsat 8 image to generate the geologic map for the study 

area with a spatial resolution of 30 m. The signatures of the geologic units were captured by 

overlying the georeferenced resampled geologic maps with scales of 1:250.000 [101] and 

1:1000.000 [102] above the Landsat 8 scene (RGB = 742 [141]) and Google Erath Pro 

imagery. MLC is one of the most frequent and accurate supervised classifiers in remote 

sensing studies [142], [143]. It depends on the hypothesis that the probability density 

function for each class is a multivariate, and the unidentified pixel is assigned to the 

lithologic class with the highest probability of being a member [142], [144].  

The hard copy of the soil map for the under study was georeferenced to Oman local 

reference system and vectorized in the ArcGIS environment to demonstrate the spatial 

distribution of soil units in the study area (Figure 4.4b). The source of the soil map was the 

“Oman Soil Atlas” with a scale of 1:250.000 developed by the Ministry of Agriculture and 

Fisheries (MAF), Oman, in 1992 [145]. The United Nations Food and Agriculture 

Organization (FAO), in partnership with the UN Development Programme (UNDP), 

collaborated with MAF in the project “OMA/87/011-Soil Survey and Land Classification” 

to generate the Oman Soil Atlas.         

The ALOS PALSAR DEM with a spatial resolution of 12.5 m was used to directly 

express the altitude (i.e., digital elevation) (Figure 4.4c). Additionally, it contributed 

significantly in direct and indirect ways to extract most of the following derivatives (i.e., 

flood causative factors).  
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Height above nearest drainage (HAND) (Figure 4.4d) normalizes the elevation of a 

drainage basin with respect to the relative height along with its channel network [146], [147]. 

It is the relative altitude difference between a specific cell on the original DEM and its 

corresponding hydrologically linked cell in the channel network. The outcome is a 

normalized local altitude map in a meter. In other words, HAND is a normalized DEM that 

can provide valuable information about the relative drainage potential, runoff generation 

mechanisms, soil properties of a given area. The high HAND values prevail in regions with 

large draining potential such as a subsurface rapid (i.e., slope zone) and deep percolation 

(i.e., plateau zone) flow. Additionally, low HAND values prevail in the zone with a saturated 

response (i.e., area with saturation excess overland flow), where draining water generates a 

pool and causes waterlogging due to low draining potential and proximity to the groundwater 

table. HAND has been applied in different applications such as hydrological modeling [147], 

[148], spatial distribution of the stationary soil moisture [148], [149], geomorphological 

landscape studies [150], groundwater potential zones [151]–[153], filtration, verification, 

and change detection of flood inundation flood-based SAR images [105], [154], flood 

mapping and monitoring [155], [156], and surface water mapping [157]. Though the 

successful applications of HAND in different environmental models, only one study (i.e., 

Rosim et al. [158]), based on my best knowledge, have adopted the HAND in flood 

susceptibility modeling. More details about the HAND concept, algorithm, implementation 

steps are available in  Rennó et al. [146], Nobre et al. [147], and Rahmati et al. [152]. 

Melton ruggedness number (MNR) (Figure 4.4f) is a morphometric index related to 

the flow accumulation. It computed per each grid cell as the difference between the minimum 

and maximum elevation divided by the square root of the watershed area size [159]–[161].  

Drainage line density (DLD) was derived using the line density toolbox within the 

ArcGIS environment. The drainage network was extracted from PALSAR DEM 12.5 

following the steps illustrated briefly in Figure 4.2. Then, the tool computed the density of 

the linear channel features within the neighborhood of every raster cell in units of length per 

unit of area (i.e., km/km2) [162].  
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The topographic position index (TPI) (Figure 4.4g) measure the difference between 

the altitude of the focused (i.e., central) pixel and the average elevation of the surrounding 

cells, within the range of predetermined radius (i.e., 100 m in the current study) in a DEM 

[163], [164]. If that central cell is located higher than its average neighboring pixels, the TPI 

yielded positive values. Additionally, negative TPI values reveal that the focused pixel has 

a lower elevation than the surroundings and represented by valleys [165]. Large radius values 

identify the major landscape features, while small values reveal the smaller geomorphic 

features (i.e., minor valleys and ridges) [165].  

The aspect (Figure 4.3h) represents the slope direction of the maximum magnitude 

value [95]. It estimates the steepest downslope direction between each cell and its neighbors. 

It is the direction that is perpendicular to the contour lines on the surface [166]. Terrain 

aspect values are calculated clockwise in degrees from 0° (north) to 360°. It can be derived 

directly from a DEM. Areas with no downslope direction assigned an aspect value of −1. 

(a) Geology (b) Soil 

 

(1) Rock Outcrop Torriorthents: strongly dissected 
rocky plateaus and mountains 

(2) Calciorthids–Torriorthents: loamy and sandy-
skeletal, deep soils 

(3) Torriorthents: extremely gravelly sandy, deep soils 

(4) Torriorthents-Torrifluvents: sandy and loamy deep 
soils 

(5) Gypsiorthids: loamy-skeletal and sandy-skeletal 
soils, gypsum pan 

(1) Samail Ophiolite: middle to late 
Cretaceous mantle sequence - harzburgite 

(2) Samail Ophiolite: middle to late 
Cretaceous cumulate and high-level gabbro 

(3) Samail Ophiolite: middle to late 
Cretaceous intrusive peridotite - gabbro 

(4) Sumeini and Hawasina Nappes: Triassic 
to Cretaceous - Umar Group - volcanic 
rocks, basin facies 
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 (6) Torriorthents–Gypsiorthids: sandy-skeletal on a 
young alluvial fan 

 (7) Gypsiorthids: sandy to loamy-skeletal soils on 
moderately dissected high alluvial terraces and fans 

 (8) Calciorthids: loamy, deep soils 

 (9) Calciorthids–Gypsiorthids: loamy to loamy-
skeletal, deep and moderately deep soils 

 

 

(5) Sumeini and Hawasina Nappes: Triassic 
to Cretaceous - Kawr Group - volcanic 
rocks, platform facies 

(6) Arabian platform: middle Cretaceous - 
Wasia Group - shelf facies 

(7) Arabian platform: end Jurassic to middle 
Cretaceous - Kahmah Group - basinal, slope 
and shelf facies 

(8) Arabian platform: Jurassic - Sahtan 
Group - shelf facies 

(9) Sedimentary Basement: lower Huqf 
Group - shelf facies 

(10) Quaternary alluvial deposits 

(11) Sumeini and Hawasina Nappes: late 
Permian to late Cretaceous - Hamrat Duru 
Group - volcanic rocks, basin facies 

(c) Altitude (d) HAND 

 

(e) MRN (f) DLD 

 

(g) TPI (h) Aspect 
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(i) VD (j) TWI 

  

(k) CI (l) FL_DS 

 

(m) GSMaP-G  
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Figure 4.4. Reclassified flash flood triggering factor in the selected area of study: (a) geology, (b) soil, (c) 

altitude (m), (d) height above nearest drainage network (HAND) (m), (e) Melton ruggedness number 

(MRN), (f) drainage line density (DLD) (km/km2), (g) topographic position index (TPI), (h) Aspect 

(°), (i) valley depth (VD), (j) topographic wetness index (TWI), (k) convergence index (CI), (l) flow 

length in the downstream direction (FL_DS), and (m) Global Satellite Mapping of Precipitation-

Gauge calibrated (GSMaP-G). 

Valley depth (VD) (Figure 4.4i) is the difference between interpolated ridges’ levels 

and the original elevation of the terrain [160], [167].  

The topographic wetness index (TWI) (Figure 4.4j) is a morphometric factor that can 

represent the soil moisture and water distribution on soil [168]. It can quantify the effect of 

topography on runoff generation (i.e., zones of surface saturation) and define the spatial 

distribution areas of relative wetness or dryness [169]. It defines the flow accumulation’s 

amount at any given point in a basin and the water ability to move downslope as a result of 

gravity [170]. Areas with similar TWI values, within the same catchment area, are 

considered to have a comparable hydrological response to rainfall when other prevailing 

conditions (e.g., soil, geology) are similar [171]. It can be considered as a function of specific 

catchment area and local slope [168]. 

   Convergence index (CI) (Figure 4.4l) is a terrain morphometric factor [160] 

used to quantify the degree of river network convergence and relief structure [172]. 
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Convergent negative areas denoted the valleys, while positive values characterized 

areas occupied by ridges. 

Flow length in the downstream direction (FL_DS) is the weighted distance 

alongside the flow path in the downstream direction for each cell to an outlet or a 

sink on the boundary of the sub-watershed [173]. 

The hourly GSMaP-G (Figure 4.4m) with a 0.1° × 0.1° spatial resolution was utilized 

in the current study. The hourly GSMaP-G was accumulated to 24 h product directly before 

the capturing date of the Sentinel-1A GRD Radar images. The additive bias correction 

method, while stations represent the dependent variable, was applied to ensure achieving the 

most optimum rainfall measurements.  

4.3.3. Multicollinearity Assessment of the Flood Causative Variables 

Involving highly correlated variables in the bivariate and multivariate statistical 

methods can significantly reduce the accuracy of the developed models [174], [175]. 

Therefore, it was mandatory to exclude the highly intercorrelated explanatory factors before 

developing such models. In the current study, two indicators (i.e., variance inflation factor 

(VIF) and tolerance (TOL)) were used to determine the multicollinearity problem. The VIF 

is the quotient of the variance in a multiple term-based model by the variance of a single 

term model, while TOL is the reciprocal of  VIF. Independent variables with VIF values 

greater than 5 or tolerance values less than 0.2 defined multicollinear variables [176] that 

needed to be removed from the model under development.  

4.3.4. Bivariate and Multivariate Statistical Models 

The future flash floods tend to occur under comparable local conditions that triggered 

them in the past. Flash flood predictive modeling can be compiled in the following steps: (i) 

detecting flood occurrence for a specific event through processing of Sentinel-1A SAR 
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scenes, (ii) investigating a set of flood influencing parameters, (iii) quantifying the 

relationships between the controlling factors and the flash flood extent by adopting different 

bi and multi-variate statistical methods, (iv) computing a spatially-distributed map for the 

flood extent probability, and (v) evaluating the reliability of the probability map and its 

utility for predicting future flash flood locations.  

Flash flood susceptibility map is a binomial classification task where the flood index 

(i.e., inventory map) is categorized into two class classes (i.e., flood and non-flood sets). The 

flood and non-flood pixels denoted 1 and 0 values, respectively, and nodata pixels assigned 

the value of -9999. A random 25.200 and 10.800 pixels were used to create the training and 

testing datasets (Figure 4.3b,c), respectively. 

4.3.4.1. Relative Frequency Ratio (FR) 

The first step was to take a completely random, well-spatially distributed, and 

stratified sample of 18000 points from the flood inventory map in the ArcGIS environment. 

Based on the previous studies (e.g., [72], [134]), the pre-selected random flood sample was 

subdivided into training (70%) and testing (30%) data subsets.  

                                         FR = (FF/CA)/ Σ (TFF/TCA)                                                  (4.1)                                                                                                                   

where (FF) is the flood frequency within a certain class of one covariate divided by 

total occurrences of flood within the whole class (TFF), and (CA) is the area of a particular 

class divided by the total area of all classes (TCA) of one parameter. 

Flood probability index (FBI) measured by summing the FR of all factors triggering 

flash flood in the area under study. 

                                                     FBI = ∑ FR                                                              (4.2)                                                                                                                           

where m is the number of factors affecting flood initiation and spreading in the study 

area. 
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4.3.4.2. Statistical Index (SI) 

The statistical index (SI) is a bivariate analytical method introduced by van Westen 

et al. [177]. It has been successfully used in the susceptibility mapping of landslides’ natural 

hazards [178]. In the SI model, a weight for each variable class is the quotient of the natural 

logarithm of the flood density in that class by the flash flood occurrences in the entire area 

under study. It is formulated  in the following equation [177]: 

                                    SI = ln  =  ln
⁄

⁄
                                     (4.3) 

where SIij denotes the weight given to a particular category “i” of a factor “j,” FOij 

refers to the flood occurrences within class “I” of variable “j,” FOT is the total flood 

occurrences within the entire area of study, FPNij and FPXij are the number of spatial flood 

points and pixels, respectively,  in a specific category “I” of parameter “j,” and FPNT and 

FPXT are the total numbers of flood points and pixels in the entire area of study. 

The SI approach can be computed using the modeling capabilities in a GIS 

environment. It is a fast and reasonable simple technique that can be used efficiently for 

flood hazard modeling [72]. Every conditioning parameter was intersected with the flash 

flood inventory map and the flood density (i.e., occurrences) in each class of the entire 

variables was computed. Then, each factor was reclassified using the derived weights to 

generate the final flood probability map. Positive weights indicated a direct relationship 

between a class of a specific parameter and flood density. The higher positive score 

demonstrated a strong relationship, while negative one showed that the class under 

consideration is not relevant for developing flood. 

4.3.4.3. Logistic Regression (LR) 

Logistic regression (LR) is one of the main multivariate statistical methods that has 

been widely applied to quantify the susceptibility for different natural hazards such as 

landslides, forest fires, and flood [61], [179]–[181]. It supports any possible type of the 
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triggering variables [182], [183] (e.g., continuous, nominal, and categorical). The flash flood 

inventory represented by a binary image that demonstrated the occurrences (i.e., 1) and non-

occurrence (i.e., 0) of the flash flood. Using the binomial LR, a regression association has 

been established among the flood conditioning factors and dichotomous inventory map with 

two possible values (i.e., flood (0) and non-flood (1)). The RapidMiner Studio software [184] 

was utilized to build a statistical regression model in order to predict the logit transformation 

of the probability occurrence of the dependent binary variable (i.e., flash flood).  

LR evaluates a dependent variable of a particular flood event and depicts the spatial 

association with the independent variables (i.e., triggering factors) that can contribute to the 

probability of occurrences of that event. It directed to determine the best fitting model that 

can demonstrate the relationship between the normalized (i.e., in the range of zero to one) 

independent flood-related factors by calculating the likelihood changes of falling in each 

class of the flood inventory map [39]. The quantitative spatial relationships between flood 

occurrence and its related dependent factors can be expressed as: 

                                                       P =
(   )

                                                                    (4.4)                                                                              

where P denotes the flood probability index (i.e., occurrence). It ranges between zero 

and one on an S-shaped curve. z is the linear combination of the explanatory factors and it 

varies from -∞ to +∞. It can be estimated using the following LR equation:  

                            Logit (z) =  β +  β x  +  β x  +  ⋯ +  β x                            (4.5)                                                                    

where β0 refers to the constant or intercept of the LR model, the βi (i - 0, 1,2, ... , n) 

denotes the slope coefficients (i.e.,) of the LR model, and the xi (i = 0, 1, 2, ... , n) are the 

independent covariates.  

4.3.5. Models’ Performance Validation 

In the current study, different metrics were used to evaluate the performance of the 

individual bivariate and integrated bivariate and multivariate-based flood susceptibility 
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models. In the bivariate statistical models, flood points were utilized for training and testing 

such models, while flood and non-flood points were employed for the same purpose in case 

of the ensemble bivariate and multivariate models. 

The confusion matrix is a statistical method to summarize of a classification 

algorithm’s performance [185], [186]. In the 2 by 2 error matrix, the number of correct and 

incorrect flood pixels’ predictions were listed and differentiated into 4 outputs (i.e., true 

positive (TP), true negative (TN), false positive (FP), and false negative (FN)) (Table 4.1).  

Table 4.1. Classification matrix’s outcomes of the comparison between actual flood inundation and predicted 

flood extent datasets. F and NF denote flood and non-flood, respectively. 

Predicted Class 

Actual Class                                     NF                                                                        F 

NF 
NF_NF (TN) = Number of NF pixels 

classified correctly as NF 
NF_F (FP) = Number of NF pixels 

classified incorrectly as F 

F 
F_NF (FN) = Number of F pixels 

classified incorrectly as NF 
F_F (TP) = Number of F pixels classified 

correctly as F 

Overall accuracy (OA), producer accuracy (PA) (i.e., sensitivity, recall, or true 

positive rate), user accuracy (UA) (i.e., precision), F-score (F), specificity (SP) (i.e., 

selectivity or true negative rate), and Cohen’s kappa index (KI) were computed to evaluate 

the performance of the integrated flood susceptibility models (Table 4.2). These metrics have 

been frequently used to assess the accuracy of various remote sensing-based models (e.g., 

[106,108,115,116]). 
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Table 4.2. The metrics for measuring the predictive performance of the flood susceptibility models. 

Metric Formula Definition Reference 
Equation 

No 

OA 
TP +  TN

TP + FP + FN +  TN
 

the ratio of the correct 
predictions to entire predictions 

[186] (4.6) 

PA 
TP

TP + FN
 

the proportion of actual flood 
pixels, which were predicted as 

true positive 
[186] [191] (4.7) 

UA 
TP

TP + FP
 

the proportion of positive flood 
pixels that were correct 

[186] [191] (4.8) 

F 
2 ∗ TP

2 ∗ TP + FP + FN
 

the weighted average of PA and 
UA 

[192] (4.9) 

SP 
TN

TN + FP
 

the proportion of actual non-
flood pixels, that were predicted 

as true negative 
[193] (4.10) 

KI 
N ∑ x − N ∑ (x ∗  x )

N −  ∑ (x ∗  x )
 

difference between observed 
and expected agreements 

[194] 
 

(4.11) 

 

where m is the numbers of rows, Xii is the numbers of channel network/order pixels 

in row i and column i (on the major diagonal), Xi+ is the total number of the channel 

network/order pixels in row I, X+i is the total number of the observations in column I, and N 

is the total number of observations. 

The higher the PA, UA, F, and SP values, the better the performance of ensemble bi 

and multivariate flood susceptibility models. If the chance agreement and strength of the 

agreement increase, the KI provides negative and positive values, respectively.  

Without validation, the identified flood-prone areas (i.e., susceptibility maps) have 

no scientific significance [195], [196]. Therefore, for evaluating the performance of bivariate 

flood susceptibility models (i.e., FR and SI), the area under the receiver operating 

characteristics (AUROC) curves-based cumulative percentages of flood occurrences were 

used.   

ROC is a curve of probability curve, and AUC is a measure of separability between 

classes. It is used frequently in evaluating the performance of the natural hazards 

susceptibility models [133], [197], [198]. AUC shows the capability of a model tells to 
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distinguish between different classes and it ranges between zero and one. The higher the 

AUC, the sharper the differentiation between classes, and the better the model is at the 

prediction. In the current research, the 18.000 flood locations were divided into 70% and 

30%, using the stratified random sampling method, for training and validation of the 

bivariate susceptibility models, respectively. The outputs of the flood susceptibility maps 

were evaluated using the training and testing flood points by means of prediction and success 

rates’ curves, respectively [196]. To gain the relative ranks for the developed flood 

probability maps for the training and validation datasets, the calculated probability index 

values of all pixels, in the area under study, were sorted in descending order [199]. Next, the 

ordered cell values were divided into 100 classes, using an equal interval classification 

method, with accumulated 1% intervals. Then, the AUC can be quantified using the 

trapezoid area mathematical formula.  
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4.4. Results 

4.4.1. Multicollinearity Assessment  

In the current study, a detailed multicollinearity evaluation has been carried out to 

exclude the highly inter-associated variables from the flood susceptibility models under 

development. The VIF and TOL metrics used to select the optimal flood predictive factors, 

where VIF and TOL values greater than 5 and less than 0.2, respectively, indicated a 

multicollinearity problem [39]. The results of multicollinearity assessment among the 13 

independent variables showed that no factor exceeded the critical values of VIF and TOL 

(Figure 4.5). 

 

                                Figure 4.5. Multicollinearity assessment of the flood triggering factors.                             

4.4.1. FR Model-based Flood Susceptibility 

The FR computed by dividing the ratios of flash flood occurrences by the areas 

occupied by each class of every flood causative factors (Table 4.3). The greater the FR’s 

class weight, the stronger the spatial association between that class and the flood occurrence 

is. The surficial alluvial deposits had a higher probability of the flash flood occurrence than 

the other geologic classes (Figure 4.4a). The mountainous and strongly dissected rocky 
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plateaus, and Loamy and sandy-skeletal deep soils had the lowest and highest impacts, 

respectively, on the flood spreading (Figure 4.4b). The part of terrain with an altitude of less 

than 555 m showed a strong association with the flood occurrence (Figure 4.4c). For the 

HAND and MRN factors, the classes with the lowest values had significant effects on the 

flood density probability (Figures 4.4d,e). The classes ranged from 9.69 - 10.59 and 10.59 - 

11.70 km/km2 of DLD (Figure 4.4f) had remarkable influences on the spatial distribution of 

flash flood. The TPI ranged from −2.84 - 0.11 and 0.11 - −3.54 m (Figure 4.4g) had obvious 

effects on the flood occurrence. Due to the complex topography of the study area, most of 

the aspect’s classes showed noticeable connections to the flood probability (Figure 4.4h). 

VD of less than 44 m (Figure 4.4i) provided a favorable condition for flood occurrences. For 

the TWI (Figure 4.4j), the four classes ranged from 6.39 – 10.5 had an apparent impact on 

the flood occurrence rather than the remaining classes. For the CI (Figure 4.4k) and GSMaP-

G (Figure 4.4m) variables, most of the categories had remarkable spatial associations with 

the flood. The class 0 - 10412.25 of the FL_DS (Figure 4.4l) showed a higher connection to 

the flood occurrence than the other entire classes of all other flood causative factors. Each 

FR weight was multiplied by its related class and the sum of the FR-based reclassified 

causative factors were computed to derive the FR-based spatial flood susceptibility index. 

The natural break classification method  [139] used to classify the FR-based flood 

probability index map into five hazard categories of the flood-prone zones (i.e., very low, 

low, moderate, high, and very high) (Figure 4.6a). 
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Table 4.3. The spatial relationships between flood occurrence and each class of the flood causative factors 

based on estimating FR and SI. 

Factor 
Class 
No. 

Class 
Flood 

Hazards 
Class 

Area (m2) 
RF*100 SI*100 

 1 Mantle sequence - harzburgite 51562.5 3894328 21 −157 

 2 Cumulate and high-level gabbro 5781.25 443342 20 −159 

 3 Intrusive peridotite - gabbro 3281.25 797582 6 −274 

 4 Volcanic rocks, basin facies 8281.25 1452062 9 −242 

Geology 5 Volcanic rocks, platform facies 2031.25 1280412 2 −370 

 6 Shelf facies 625 1902484 1 −527 

 7 Basinal, slope and shelf facies 781.25 1938965 1 −507 

 8 Shelf facies 781.25 1226269 1 −461 

 9 Shelf facies 312.5 783120 1 −508 

 10 Surficial alluvial deposits 1733750 13659615 199 69 

 11 Volcanic rocks, basin facies 160781.25 3422212 74 −31 

 1 Mountains and dissected rocks 55625 15076610 6 −285 

 2 Loamy and sandy-skeletal, deep soils 917031.25 4302551 334 120 

 3 Gravelly sandy, deep soils 332656.25 4442940 117 16 

 4 Sandy and loamy deep soils 161250 1121292 225 81 

Soil 5 Loamy- and sand-skeletal soils, gypsum 13593.75 77396 275 101 

 6 Sandy-skeletal 128593.75 2085371 97 −4 

 7 Sandy to loamy-skeletal soils 189062.5 1322504 224 81 

 8 Loamy, deep soils 96562.5 1867315 81 −21 

 9 Loamy to loamy-skeletal deep soils 73593.75 504412 228 83 

 1 249.00 - 386.75 1250781.25 7886252 248 91 

 2 386.75 - 515.44 704687.5 8244396 134 29 

 3 515.44 - 666.25 9375 5382553 3 −360 

 4 666.25 - 868.40 468.75 2587269 0 −587 

Altitude (m) 5 868.40 - 1127.59 781.25 1750194 1 −496 

 6 1127.59 - 1416.00 312.5 1330667 0 −561 

 7 1416.00 - 1728.09 625 1181741 1 −479 
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 8 1728.09 - 2033.19 781.25 1531817 1 −483 

 9 2033.19 - 2372.25 156.25 797401 0 −579 

 10 2372.25 - 2955.00 0 108101 0 — 

 1 0 - 15.33 1966875 21559536 143 36 

 2 15.33 - 45.98 625 4009204 0 −602 

 3 45.98 - 88.14 312.5 2577679 0 −627 

 4 88.14 - 134.12 0 1222669 0 — 

HAND (m) 5 134.12 - 187.77 156.25 661081 0 −560 

 6 187.77 - 249.08 0 379821 0 — 

 7 249.08 - 321.89 0 210375 0 — 

 8 321.89 - 413.86 0 110783 0 — 

 9 413.86 - 547.98 0 52694 0 — 

 10 547.980- 981.00 0 16549 0 — 

 1 0 - 0.69 1963125 21022209 146 38 

 2 0.69 - 2.06 4218.75 3965109 2 −410 

 3 2.06 - 3.78 312.5 2686285 0 −631 

 4 3.78 - 5.67 312.5 1501628 0 −573 

MRN 5 5.67 - 7.91 0 806327 0 — 

 6 7.91 - 10.65 0 429522 0 — 

 7 10.65 - 13.92 0 212824 0 — 

 8 13.92 - 18.04 0 109269 0 — 

 9 18.04 - 23.72 0 49424 0 — 

 10 23.72 - 43.99 0 17794 0 — 

 1 0.94 - 4.07 468.75 346737 2 −386 

 2 4.07 - 5.45 6250 1423873 7 −268 

 3 5.45 - 6.35 15312.5 2485259 10 −234 

 4 6.35 - 7.25 42343.75 3625113 18 −170 

DLD 5 7.25 - 8.09 176250 4570790 60 −51 

km/km2 6 8.09 - 8.89 363593.75 5092869 112 11 

 7 8.89 - 9.69 476406.25 4904429 152 42 

 8 9.69 - 10.59 500312.5 4159527 188 63 
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 9 10.59 - 11.70 337031.25 2880523 183 60 

 10 11.70 - 14.52 50000 1311271 60 −52 

 1 −106.79 - −23.82 0 38707 0 — 

 2 −23.82 - −12.87 312.5 307533 2 −414 

 3 −12.87 - −6.49 1250 1308055 1 −420 

 4 −6.49 - −2.84 5937.5 2618480 4 −334 

TPI 5 −2.84 - 0.11 1115937.5 12323706 142 35 

 6 0.11 - 3.54 808593.75 10554197 120 18 

 7 3.54 - 9.01 35468.75 2560916 22 −153 

 8 9.01 - 16.30 312.5 853568 1 −516 

 9 16.30 - 29.98 156.25 209324 1 −445 

 10 29.98 - 126.63 0 25905 0 — 

 1 -1 328750 1953988 263 97 

 2 0 - 45 211093.75 3252562 102 2 

 3 45 - 90 219687.5 3188856 108 8 

 4 90 - 135 220468.75 3841265 90 −11 

Aspect (°) 5 135 - 180 237343.75 4432081 84 −18 

 6 180 - 225 228437.5 5134570 70 −36 

 7 225 - 270 221875 3606772 96 −4 

 8 270 - 315 211875 3152985 105 5 

 9 315 - 360 88437.5 2237312 62 −48 

 1 0 - 17.60 1682500 13244222 199 69 

 2 17.60 - 44.00 253593.75 8365568 47 −75 

 3 44.00 - 73.33 26875 4809868 9 −244 

 4 73.33 - 108.54 3281.25 2434115 2 −386 

VD (m) 5 108.54 - 152.54 1093.75 1028658 2 −410 

 6 152.54 - 211.22 0 451153 0 — 

 7 211.22 - 284.55 156.25 246578 1 −461 

 8 284.55 - 375.49 468.75 139633 5 −295 

 9 375.49 - 510.43 0 62119 0 — 

 10 510.43 - 750.98 0 18477 0 — 
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 1 0.84 - 4.62 23593.75 3375087 11 −221 

 2 4.62 - 5.55 400000 6450431 97 −3 

 3 5.55 - 6.39 420000 7264398 90 −10 

 4 6.39 - 7.31 403125 5229595 121 19 

TWI 5 7.31 - 8.32 350625 3647198 150 41 

 6 8.32 - 9.33 205000 2327494 138 32 

 7 9.33 - 10.50 112343.75 1363313 129 25 

 8 10.50 - 11.93 41093.75 752221 86 −16 

 9 11.93 - 14.03 12187.5 314517 61 −50 

 10 14.03 - 22.34 0 76137 0 — 

 1 −100 - −3 809062.5 8530288 148 40 

 2 −3 - −2 53281.25 1474208 57 −57 

CI 3 −2 - −1 62812.5 1898749 52 −66 

 4 −1 - 0 88906.25 2407283 58 −55 

 5 0 - 100 953906.25 16489863 91 −10 

 1 0 - 10412.25 767500 3003849 400 139 

 2 10412.25 - 20824.51 585781.25 3864957 237 86 

 3 20824.51 - 31236.76 260937.5 3711271 110 10 

 4 31236.76 - 42082.86 124218.75 3725271 52 −65 

FL_DS 5 42082.86 - 52495.12 169062.5 3225372 82 −20 

 6 52495.12 - 62473.53 39531.25 3288155 19 −167 

 7 62473.53 - 72451.94 19062.5 3401034 9 −243 

 8 72451.94 - 82430.35 312.5 2979188 0 −641 

 9 82430.35 - 93276.45 625 1876719 1 −526 

 10 93276.45 - 111064.05 937.5 1724575 1 −477 

 1 0.88 - 0.90 843281.25 4742178 278 102 

 2 0.90 - 5.47 547343.75 5249323 163 49 

GSMaP-G 3 5.47 - 5.49 353906.25 6814821 81 −21 

(mm) 4 5.49 - 5.51 222031.25 9447062 37 −100 

 5 5.51 - 5.55 1406.25 4547007 0 −533 
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4.4.3. SI-based Flood Susceptibility Model 

The weight of each class of every flood causative parameter had been calculated 

through quantifying the spatial relationship with the flooding inventory map (Table 4.3). The 

SI of each class is directly proportional to the probability of flood occurrence. Negative 

values (i.e., weights) of the SI denote weak relationships between flood probability and the 

class under consideration. On the contrary, the greater the positive value of the SI of a 

particular class, the stronger the possibility of the flash flood within this class is. Classes 

with no flood occurrence do not have any association with the flash flood inventory map. 

Most of the lithologic units had negative relationships with the flood occurrence except for 

the alluvial deposit class. (Figure 4.4a). The loamy and sandy-skeletal deep soils (Figure 

4.4b) had the most significant positive SI value. The different classes of DEM (Figure 4.4c) 

had negative influences on the flood initiation and spreading, except for the low terrain with 

elevation less than 515 m that showed a positive association with the flood possibility. 

HAND’s 0 - 15.33 m (Figure 4.4d) was the only class that had a positive influence on the 

flood probability, while HAND in the ranges of 15.33 - 45.98, 45.98 - 88.14, and 134.12 – 

187.77 m had the highest SI negative values. MRN’s classes (Figure 4.4e) had mostly weak 

or no relationships with the flood occurrence. 

 The first five classes of DLD showed no effect on the flood extent (Figure 4.4f). 

Most of the TPI’s classes (Figure 4.4g) showed no influences on the flood density. The flat 

area class of the aspect parameter (Figure 4.4h) yielded the greatest effect on the flood 

occurrence and followed by classes ranged from 0 − 90°. The entire classes of VD (Figure 

4.4i) had negative influences on the flood probability, except for the classes ranged from 0 

– 17.6 m. The first class of TWI (Figure 4.4j) yielded the greatest negative SI value (i.e., 

−212) with respect to other TWI’s classes. CI’s categories (Figure 4.4k) showed mostly weak 

influences on the flash flood occurrence except for the first class (−100 − −3) that had a 

positive relationship with the flood probability. The FL_DS class (Figure 4.4l) with value 

ranged from 72451.94 - 82430.35 had the lowest minimal effect on the flood probability 

when compared to the other classes of all flood conditioning factors. However, the first three 

units of the FL_DS in the range between 0 and 31236.76 had positive impacts on the 
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probability of flooding. The different classes of the GSMaP-G (Figure 4.4m) showed mixed 

effects on the flood occurrence.  

The SI-based flood susceptibility index was computed using the reclassified 

triggering factors based on the derived SI values. The flash flood susceptibility map (Figure 

4.6b) was developed by differentiating that susceptibility index into five degrees (i.e., very 

low, low, moderate, high, and very high) of flood susceptibility. 

(a) (b) 

  
(c) (d) 

  

Figure 4.6. Flash flood susceptibility maps generated using: (a) FR, (b) SI, (c) FR-LR, and (d) SI-LR models. 
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4.4.4. Integrated Bivariate and Multivariate Derived Flood Susceptibility Models 

The LR analyses were carried out utilizing RapidMiner software [184], and LR 

coefficients were estimated for the normalized explanatory flood parameters. Negative LR 

coefficients (i.e., weights) denoted that the flood causative factors were negatively associated 

with the flood inundation map (i.e., dependent variable) [81]. The multicollinearity among 

the independent variables has been re-assessed after weighting the 13 flood triggering factors 

using FR and SI methods. The results showed that there was no multicollinearity, where no 

factor exceeded the critical values of VIF and TOL. FR- and SI-based LR models were 

trained using the equal stratified random flood and non-flood sample (i.e., 70%), and tested 

utilizing the remaining unseen 30% of the dataset. Table 4.4 shows the flood triggering 

variables and their corresponding LR coefficients and p-values. The geology and TPI 

variables of the integrated FR-LR model, and the TPI factor of the and SI-LR model had 

negative coefficients, and other flood causative parameters received positive weights in both 

hybrid models.  

The p-value is a probability that is used to determine if the spatial association 

between each independent variable and the response variable (i.e., flood inventory map) is 

statistically significant. It is statistical evidence against the null hypothesis (i.e., the feature’s 

coefficient is equal to zero) based on a significance level (i.e., α or alpha) of 0.05. In the 

current study, the p-value is less than α for eleven features (Table 4.4), which indicates 

significant statistical associations between the independent variable and these explanatory 

variables. More details about the p-value can be obtained from [200]. Variables (e.g., 

geology and TPI) with no significant p-values were tested by being removed and added to 

the hybrid LR based susceptibility maps and checking the areas occupied by different flood 

classes in both cases. 
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Table 4.4. The results of fitting the FR-LR and SI-LR models on the flash flood datasets. The parameters 

utilized in both models, their estimated weights and p-values is shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FR-LR Model SI-LR Model 

Attribute β 
p-

Value 
β 

p-
Value 

Geology −0.005 0.936 0.234 0.166 

Soil 2.093 0.000 1.914 0.000 

Altitude 2.119 0.000 2.654 0.000 

HAND 2.808 0.000 2.196 0.000 

MRN 2.423 0.000 3.248 0.000 

DLD 0.950 0.000 1.461 0.000 

TPI −0.187 0.125 −0.127 0.593 

Aspect 0.690 0.000 0.767 0.000 

VD 1.029 0.000 1.675 0.000 

TWI 1.133 0.000 2.741 0.000 

CI 0.407 0.000 0.413 0.000 

FL_DS 1.251 0.000 3.934 0.000 

GSMaP-G 0.188 0.014 1.279 0.000 

Intercept −10.415 0.000 −18.884 0.000 
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The linear combination (i.e., z values) of the constants (i.e., intercepts) of the two 

hybrid LR models and the product of multiplying every coefficient with the corresponding 

flood conditioning factor are given in the following equations: 

z (FR-LR) = −10.415 + (Soil * 2.093) +  (Altitude * 2.119) + (HAND * 2.808) + 

(MRN * 2.423) + (DLD * 0.950) + (Aspect * 0.690) + (VD * 1.029) + (TWI * 1.133) + 

(CI * 0.407) + (FL_DS * 1.251) + (GSMaP-G* 0.188)                                                (4.12)                                                                                                                               

z (SI-LR) = −18.884 + (Soil * 1.914) + (Altitude * 2.654) + (HAND * 2.196) + (MRN 

* 3.248) + (DLD * 1.461) + (Aspect * 0.767) + (VD * 1.675) + (TWI * 2.741) + (CI * 

0.413) + (FL_DS * 3.934) + (GSMaP-G * 1.279)                                                          (4.13)                           

                 Flood susceptibility map (FR-LR) = P =
(    ( ))

                          (4.14) 

                        Flood susceptibility map (SI-LR) = P =
(    ( ))

                          (4.15) 

The FR-LR and SI-LR flood probability maps were generated using equations (4.14 

and 4.15), and subdivided into five classes (i.e., very low, low, moderate, high, and very 

high) to predict potentiality for flash flood occurrence in each zone of the study area (Figures 

4.6c,d). 

4.5.5. Evaluation of the Flash Flood Susceptibility Models 

In the current study, evaluating the performance of the flash flood susceptibility 

models were performed using different statistical metrics such as overall accuracy (OA), 

producer accuracy (PA), user accuracy (UA), specificity (SP), and Kappa index (KI) (Table 

4.5). On the one hand, the bivariate statistical approaches (i.e., FR and SI) were trained and 

tested using only the random stratified flood points (i.e., no use of non-flood locations at this 

step). However, by determining the flood-prone areas, it could be possible to distinguish the 

non-flood zones, which assumed to be matched with low flood susceptibility classes. On the 

other hand, the multivariate statistical methods (i.e., FR-LR and SI-LR) utilized both flood 
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and non-flood points for developing the flood predictive models. Therefore, to have a 

consistent base of models’ evaluations, a similar probability threshold to that used in the 

multivariate techniques (i.e., 0.5) was used to distinguish between flood and non-flood 

events of the bivariate susceptibility models [72]. It was possible at that case to use the equal 

random stratified flood and non-flood points to evaluate the performance of the bivariate 

FR- and SI-based susceptibility models.  

Regarding the OA, all flood susceptibility models achieved high OA of about 85% 

for both training and testing phases except for the SI method. The SI susceptibility model 

scored low OA values of 70.77% and 70.82% for the training and testing datasets, 

respectively, due to reporting deficient records of TN and FN with respect to the other 

predictions (Table 4.5). The SI-LR approach achieved the best score among other models 

and slightly outperformed the FR-LR one with minimally reporting more TP. 

Table 4.5. Evaluation metrics for quantifying the predictive performance of the four flood susceptibility 

models. 

 

 

 Training Testing Training Testing Training Testing Training Testing 

Metrics FR FR FR-LR FR-LR SI SI SI-LR SI-LR 

OA 84.49% 84.83% 86.24% 86.56% 70.77% 70.82% 86.64% 86.83% 

PA 97.51% 97.39% 92.27% 92.31% 99.87% 99.00% 94.30% 94.63% 

UA 77.35% 77.84% 82.34% 82.79% 63.13% 63.15% 81.77% 81.86% 

F 86.27% 86.52% 87.02% 87.30% 77.36% 77.39% 87.59% 87.79% 

SP 71.46% 72.28% 80.21% 80.81% 41.68% 41.72% 78.98% 79.04% 

K 0.690 0.697 0.725 0.731 0.416 0.416 0.733 0.737 

AUC 76.98 77.02 80.89 81.07 94.33 94.38 79.16 79.35 
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 In general, the four susceptibility techniques achieved high PA values over 92%. 

The bivariate statistical models reported higher accuracy than the hybrid susceptibility 

approaches (i.e., FR-LR and SI-LR) with scoring higher values of TP and lower values of 

FN. The great number of TP values that were recorded in case of SI and FR models was 

expected because the bivariate susceptibility models were trained and tested using only flood 

points. However, SI-LR and FR-LR models still reported a close number of TP to those 

recorded by SI and FR techniques and simultaneously reported a better number of TN. 

The FR-LR model achieved the best UA score and followed directly by the SI-LR 

approach. The SI model yielded the lowest value of UA (i.e., 63.13% and 63.15% for the 

training and testing data, respectively), due to reporting the highest number of FP (Table 

4.5). For the F-measure (Table 4.5), the SI-LR model performed the best among others and 

achieved the highest F-score and followed by the FR-LR approach by differences of 0.57 

and 0.49 in the case of the training and testing phases, respectively. It was expected that the 

SI susceptibility model showed the lowest F-score due to its low UA (Table 4.5). 

Regarding the evaluation of predicting the non-flood locations, the FR-LR ranked 

first with SP’s values of 80.21% and 80.81% in case of training and validation data, 

respectively, with reporting the highest number of TN and lowest number of FP among other 

models (Table 4.5). The bivariate-based susceptibility models generally scored low values 

of SP, particularly SI model that reported 41.68% and 41.72% in case of training and testing 

modeling steps, respectively. The very low SP score of the SI model because the lowest 

number of TN was reported in this case. 

The KI value of less than or equal to 0 indicates by or less than chance agreement, 

0.01–0.20 as a slight, 0.21–0.40 as a fair, 0.41– 0.60 as a moderate, 0.61–0.80 as a 

substantial, and 0.81–1.00 as nearly perfect agreement [201]. Three flood susceptibility 

models out of four showed substantial agreements except for SI method that had a moderate 

performance with reporting the lowest number of TN among other models (Table 4.5). The 

SI-LR model slightly outperformed the FR-LR models with KI’s differences of 0.007 and 

0.004 in the case of training and testing steps, respectively. 
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In general, the statistical difference between GSPEs and ground stations were minor, 

especially for the light and moderate rainfall classes (See Chapter 2 for more details). 

Therefore, the GSPEs can be used directly in the flood susceptibility modeling, particularly 

for the bivaraite statistical models that categorized GSPEs into classes instead of using 

separate pixels values. In the trial for developing the individual bivaraite flood susceptibility 

models, the direct GSMaP-G product was tested in these models and it provided close results 

to the corrected GSMaP-G. In addition, it gave close results in the case of integrated bivaraite 

and multivariate statistical methods.  

To have a complementary evaluation of the performance of different statistical-based 

flood susceptibility models, the ROC and AUC described above in section 4.3.5 were used. 

Most of the previous researches for flood susceptibility mapping used these metrics 

successfully to determine the performance of various statistical and machine learning-based 

models (e.g., [39], [45]). The currents study utilized the success and prediction rate curves 

to validate the developed susceptibility models. The success rate curve is comparing the 

predicted flood hazard zones to existing flood hazard locations. The prediction curve 

determines how well the susceptibility model predicts the probability of the flood zones 

[196]. The computed percentages of the success and prediction rates of each flood 

susceptibility model were generated utilizing the random stratified flood training (70%) and 

testing (30%) datasets, respectively. The closer to one and the larger the AUC value, the 

better the predictive capability of the flood model is.  

The values of prediction rates of the four flood susceptibility models slightly 

outperformed the success rate curves (Figure 4.7). In general, the AUC value of 0.9438 of 

the SI flood susceptibility model represented a superior predictive accuracy of 94.38% 

(Figure 4.7). On the one side, although the statistical bivariate FR-based flood susceptibility 

model yielded the lowest prediction accuracy rate (i.e., 77.02%), the integrated FR-LR 

method demonstrated a better flood predictive capability (i.e., 81.07%) (Figure 4.7). On the 

other side, the SI flood susceptibility model showed a better accuracy prediction rate (i.e., 

94.38%) than the SI-LR flood method (i.e., 79.35%) (Figure 4.7). This result was expected 
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because the SI model was tested using only flood locations, but the SI-LR method was 

validated using flood and non-flood points. 

(a) 
 

 
(b) 
 

 

 

Figure 4.7. The success (a) and (b) prediction rate curves for the four statistical models-based flash flood 

susceptibility maps. 
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4.5.6. Comparing Five Classes’ Percentages Derived from Four Flood susceptibility 

Models 

The zones of very low and low occupied the lowest area percentages in the case of 

SI- and FR-based flood susceptibility maps with values of 32.66% and 44.03%, respectively. 

After integration with the multivariate LR, the hybrid SI-LR and FR-LR models increased 

the share percentages of these zones to about 61% (i.e., the major part of the map) (Figure 

4.8).  

The very high and high flash flood susceptibility categories covered an area of 

54.64% in the case of SI model and reduced to be 36.85, 29.79, and 29.03% in the case of 

FR, SI-LR, and FR-LR methods. Therefore, the areas of the very low and low susceptibility 

classes increased at the expense of very high and high categories while transferring from 

individual bivariate to integrated bivariate and multivariate susceptibility models in case of 

including 11 varaibles. The moderate susceptibility class area reduced in the case of the 

hybrid flood models (Figure 4.8).  

The latter results reflected the performance of the four susceptibility models, where 

the hybrid models (i.e., SI-LR and FR-LR) were able to detect very low and low 

susceptibility classes more than the individual bivariate models (i.e., SI and FR). The use of 

non-flood points beside flood points to train the integrated SI-LR and FR-LR provided these 

models with more capabilities to determine non-flood zones (i.e., areas with low flood 

probability) and to refine flood locations. Utilizing the flood points to train and validate the 

bivariate statistical models (i.e., SI and FR) provided the chance for these models to focus 

only on determining the flood locations, particularly in the case of SI technique. However, 

the final results of these models may need to be refined with the outcomes of the hybrid 

models (Figure 4.8).  

Tehrany et al., [81] added all the flood conditioning factors in her study to the LR 

model. In the current study, by including the 13 variables to generate the flood susceptibility 

maps,  it was found that  the areas occupied by very low and low flood classes increased by 
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1.27%, while the high and very high susceptible zones decreased by 1.9% In case of the FR-

LR susceptibility model. In contrast, the predictive high and very high flood classes in the 

SI-LR susceptibility map increased by 0.12 %, and very low and low flood categories 

decreased by 0.26%. 

 

 

Figure 4.8. The area percentage of the flash flood zones located within the five classes of the developed 

susceptibility maps. 
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4.6. Discussion and Conclusions 

In general, the overall effective performance of the four flood susceptibility maps 

was affirmed by the obvious agreement between flood and non-flood locations and 

developed susceptible flood-prone classes (Figure 4.6). However, possible arguments and 

improvements in the current study with respect to other research are discussed in the 

following paragraphs.  

There is no agreement regarding the optimum number of conditioning factors 

required to generate an efficient flood susceptibility map. In the current study, thirteen flood 

causative parameters were selected in the case of the individual bivariate and integrated 

bivariate and multivariate statistical models, respectively. Tehrany et al. [72] employed 

thirteen variables, while Bui et al. [39] and Khosravi et al. [202] utilized ten parameters. 

Mahmoud and Gan [203] recommended to use more than six factors to avoid predicting 

misleading flood-prone areas that could be affected by a single weight of a specific class and 

related over-rating of the probability of certain contributing variables. 

The bivariate flood susceptibility models showed that flood occurrence was mostly 

controlled by soil, rainfall, FL_DS, and DLD factors. The achieved results of the hybrid 

models (i.e., SI-LR and FR-LR) could be interpreted by using both flood and non-flood 

points for the training and testing of these models. The use of non-flood points added more 

spatial details to the ensemble models and allowed them to better distinguish between 

different susceptible flood zones, and to refine between flood and non-flood locations. The 

non-flood areas were mostly associated with low and very low flood vulnerable-zones 

(Figure 4.6c,d).  

Youssef et al. [12] found that FR flood susceptibility modeling over Jeddah, Saudi 

Arabia, slightly outperformed the LR model with reporting AUC values of 0.914 and 0.904, 

respectively. Tehrany et al. [72] stated that the prediction rates of the FR-, SI-, and LR-based 

flood susceptibility models were equal to 67.33, 78.18, and 79.45%, respectively, over 

Brisbane catchment, Australia. Bui et al. [39] concluded that the ensemble evidential belief 
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function (EBF)-LR model was superior to the LR approach in generating the flood 

susceptibility map. Additionally, the EBF-based flood susceptibility model outperformed the 

EBF-LR and LR models, with reporting prediction rates of 94.55, 83.19, and 66.41%, 

respectively.  

On the one hand, in the current study, the SI-LR susceptibility model was slightly 

superior to the FR-LR method. Besides, the FR- and SI-based susceptibility models came in 

the third and last rank, respectively. The latter evaluation was conducted based on 

considering flood and no-flood locations. The multivariate LR method managed to improve 

the performance of the individual bivariate FR- and SI-based flood susceptibility models. 

On the other hand, considering only flood points, the SI flood susceptibility model achieved 

the highest prediction and success rates and followed by FR-LR, SI-LR, and FR methods. 

Although each area of study has its own physical and topographic conditions, my findings 

were similar to the studies conducted by Bui et al. [39] and Tehrany et al. [72]. However, 

there were differences in the fine details of the developed flood susceptibility maps from my 

study and previously mentioned research. It is expected that the current study introduced 

more precise flood susceptibility maps, with respect to the others for the reasons described 

in the following paragraphs. 

 Most of the previous flood susceptibility researchers developed their flood inventory 

maps based on multiple past flood events and limited field surveys. This means that the 

generated flood inundation maps were broad and not specific to a certain event. The field 

survey requires excessive effort and cost and can usually only be carried out after the 

complete retreat and seepage of the flood water to the underlying soil layers. It is worth 

mentioning that there are mapping locations representing more rugged, mountainous terrain 

that are inaccessible by vehicles and very dangerous for researchers to traverse. Therefore, 

the outcome of the field survey is to collect a few flood points, mostly along the main valleys. 

Additionally, the obtained field points can represent few flood locations that cannot represent 

the real and areal spatial distribution of the flash floods’ occurrences. 



213 
 

The selection of the non-flood points is also one of the major limitations of the flood 

susceptibility research. Different authors chose the non-flood points using only the 

topographic maps and Google Earth, and most of the non-flood locations were set on the 

upstream rugged mountains. Although their point of view was acceptable, non-flood points 

could be found anywhere within the stream watershed.  

Another imperative constraint for most of the previous flood susceptibility modelers 

was that they did not include the rainfall data, which is the most essential and key dynamic 

factor related to floods’ triggering. In some cases, the researchers involved the annual 

average rainfall data, which is a general data, bearing no relation to a certain flood event. 

The current study overcame the above-mentioned limitations, whereby it introduced 

an improved flood susceptibility modeling that included both spatial and temporal details. It 

employed corresponding flood inventory mapping and satellite-based rainfall data (i.e., 

GSMaP-G) that contributed to the selected flood event. The achieved enhancement resulted 

in developing more accurate maps that can mimic the susceptible areas to future flood 

hazards over space and time, at a similar rainfall intensity.  

Developing flash flood susceptibility maps is the cornerstone of research to manage 

a sustainable plan for mitigating flood risks in any area under consideration for current and 

future urban planning. Reliable and precise dynamic flood susceptibility maps can efficiently 

help decision makers and planners develop plans to reduce costs, limit infrastructure damage, 

and lessen the threat to human life associated with future flash floods. Although the 

Dakhiliyah Governate at the Sultanate of Oman was frequently exposed to severe flash 

flooding events, this study is the first to determine the vulnerable locations to the flash flood 

hazards. The current research aiming to determine which of the individual and integrated 

statistical techniques (FR, SI, FR-LR, and SI-LR) is more successful in predicting the 

probability of future flash flood occurrences.   

Although flash flooding has, for many decades, been considered an extreme 

environmental hazard, the processes triggering its initiation and spreading remain uncertain 
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or less than adequately documented. The current study introduced a new proper combination 

of flood causative factors such as HAND, TPI, VD, CI, FL_DS, MRN, and GSMaP-G. The 

new factors covered information about the possible processes affecting the stream watershed 

and flash floods such as climatic (i.e., GSMaP-G), geomorphic (i.e., Altitude, TPI, VD, CI, 

MRN,  and Aspect), hydrologic (TWI, FL_DS, HAND, and DLD), and lithologic parameters 

(i.e., soil and geology). The new recipe for the integrated bivariate and multivariate managed 

in providing flood susceptibility maps with high predictive performances over space and 

time. 

In the current study, the flash flood inventory map was generated using high-

resolution and active Sentinel-1A SAR scenes and was verified using detailed volunteer 

geographic information. The radar sensor can effectively penetrate cloud cover to capture 

data, day or night, via any possible weather conditions—making it the most precise method 

to extract a flood inundation. Thresholding, with the help of slope filter, of the during flood 

SAR imagery was able to determine the overall spatial distribution of flood. However, to 

have additional refinement, the change detction technique has been applied with respect to 

other pre-flood scenes. It is recommended to explore more segmentation algorithms of SAR 

images for the auto-extraction of the flood extents in the arid environments to accommodate 

with different characteristics of the arid watersheds. Additionally, searching for possible 

future availability of SAR scenes with frequent coverage of flood events in the arid basins 

is highly recommended for better extraction of flood extents.  

The flash flood is a complex physical process that can be highly variable in space 

and time. Therefore, the findings of the four developed susceptibility models should be 

studied and integrated thoroughly to ascertain a complete picture of the flood dynamics. I 

recommend studying different flood future events with different magnitudes to glean more 

robust information about the spatio-temporal variability of flash floods, in the areas under 

considerations and, particularly, juxtaposed with the rapidly changing climate. 
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5.1. Concluding Remarks 

This section sums up the concluding remarks for every objective. 

Objective 1 (Chapter 2):  

In this component, the performance of five sub-daily and daily global satellite 

precipitation estimates (GSPEs) (i.e., Global Precipitation Mission-Integrated Multi-

satellitE Retrievals for the GPM (GPM-IMERG), and Global Satellite Mapping of 

Precipitation (GSMaP)) was evaluated using the in-situ rain gauge measurements between 

March 2014 and December 2016. A set of continuous difference statistical indices (e.g., 

mean absolute difference, root mean square error, mean difference, and unconditional bias), 

and categorical metrics (e.g., probability of detection, critical success index, false alarm 

ratio, and frequency bias index) were utilized to evaluate recorded precipitation occurrences 

in . To my best knowledge, there were no previous detailed studies concerning evaluating 

different GSPEs, particularly at sub-daily time scales and local spatial details over this 

extremely arid part of the world. The findings showed that the five GSPEs could generally 

capture the spatial and temporal patterns of rainfall of in-situ gauge measurements at 

different precipitation intensities. The overall quality of the GSMaP runs outperformed the 

IMERG products. IMERG-F was slightly superior to the IMERG-E and IMERG-L. In 

addition, the additive and multiplicative error models were used to quantify the uncertainties 

associated with five daily GSPEs. The additive scheme was slightly more effective than the 

multiplicative approach in modeling the erros in the GSPEs at different rainfall intensity 

classes. Based on the achieved findings, and with the difficulties in having continuous 

rainfall records from in-situ gauge networks, it is recommended that researchers focus on the 

arid areas to consider assessing and using the available GSPEs in their hydrological studies 

such as flood susceptibility modeling. 
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Objective 2 (Chapter 3): 

The scope of the second objective was to select the digital terrain model (DTM) and 

its derived channel network/orders with the highest accuracy in order to extract the required 

spatial geomorphic, hydrologic, and topographic layers necessary for flood susceptibility 

modeling. Therefore, a pixel-based method was developed for the quantitative horizontal 

evaluation of the channel networks and Strahler orders derived from global digital elevation 

models (DEMs) utilizing confusion matrices at different flow accumulation area thresholds 

(ATs) and pixel buffer tolerance values (PBTVs). The horizontal displacements between the 

extracted channels were quantified using drainage network/order-derived light detection and 

ranging (LiDAR) datasets. Additionally, the pixel-based vertical elevation accuracies of the 

three global DEMs (i.e., Advanced Land Observing Satellite (ALOS) Phased Array type L-

band Synthetic Aperture Radar (PALSAR) 12.5 and 28.5 m, Shuttle Radar Topography 

Mission (SRTM) 28.5 m, and ALOS Panchromatic Remote-sensing Instrument for Stereo 

Mapping (PRISM) 28.5 m) were assessed using traditional statistical metrics. The outcomes 

demonstrated that PALSAR DTM 12.5 m and its drainage networks had the highest vertical 

and horizontal accuracies. Therefore, these datasets were used in the next objective to derive 

various geospatial layers required for generating flood potential maps. It is recommended 

that other researchers evaluate DEMs and their derived channel networks/orders prior to 

involving them in their geomorphological and hydrological studies. Additionally, it is 

suggested to use the developed method with respect to globally diverse areas comprising 

different land covers, geomorphic units, lithology, and climatic zones. 

Objective 3 (Chapter 4): 

In this part, improved individual bivariate and integrated bivariate and multivariate 

statistical methods-based flood susceptibility models were developed to detect flood-prone 

areas at the watershed scale (12.5 m). The input data of these models were the pre-evaluated 

satellite precipitation from the first objective and other variables extracted from the DEM 

and drainage network of choice in the second objective (i.e., PALSAR DTM), as well as soil 

and geologic maps. This objective had the following sub-tasks: (i) generating flood 
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inundation (i.e., inventory map) from Sentinel-1A SAR images, with the help of the 

volunteer geographic information (VGI), (ii) making a vectorized soil map from original 

data obtained from Ministry of Agriculture, Sultanate of Oman, (iii) preparing a geologic 

map for the area of study using Landsat-8 and geologic maps with a fine spatial resolution 

based on an effective and straightforward technique, (iv) deriving many geospatial flood 

controlling factors (i.e., geomorphic, topographic, and hydrologic features) from PALSAR 

DEM (12.5 m) and its derived channel network, and (v) comparing the findings of the 

different flood susceptibility models to depict the model with the top performance. The 

developed models included applying spatio-temporal flood details through involving a 

rainfall event matched with a specific flood event. Using SAR-based flood inundation 

mapping allowed the selection of spatially distributed and stratified flood and non-flood 

points among the entire area of study for training and testing the models. Furthermore, the 

chosen new combination of the flood triggering factors was proven to be successful in 

detecting flood-prone high- and low-land areas. 
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5.2. Research Outcomes (Contributions) 

In-depth application of actual scientific research related to flash floods in the Arabian 

Peninsula was critical to understanding and mitigating flash floods’ impacts on human life 

and infrastructure in this extremely arid area of the world. Given the complexity and 

challenges involved in studying flash flooding, known to be one of the most complex 

physical systems, listed below are the summarized contributions of the current research: 

1) with the rapidly changing global climate, the developed flood susceptibility models 

can contribute to mitigating negative impacts of flooding by providing accurate 

information about their future extent probabilities at a rainfall intensity similar to that 

prevailed during the past flood event. These developments can help administrators 

and local settlers avoid the negative consequences of flash floods by providing 

reasonable information about flood extent at a fine spatial resolution (12.5 m). The 

introduced susceptibility models demonstrated a significant potential of the 

integrated bivariate and multivariate statistical methods for operational prediction 

and classification of flood hazard levels. 

2) the outcomes of the validation different recent GSPEs’ releases can contribute to 

having continuous and reliable rainfall records that can significantly support studies 

of future flash floods. To the best of my understanding, the current research 

introduced the first detailed assessment of sub-daily and daily GSPEs over the 

watershed scale in the Arabian Peninsula. The achieved findings can overcome the 

limited availability and coverage of the in-situ rain gauges in the arid areas. It will 

improve the time factor in predicting the flood extent. Modeling the errors in the 

GSPEs using the statistical error approaches can help to improve the results of 

different hydrological applications. The satellite precipitation records can contribute 

to many hydrogeologic, climatic, and surface- and ground-water resource 

management in the arid regions. The validation of five continuous sub-daily and daily 

GSPEs with different time latencies will allow incorporating them among various 

hydrological models, depending on the type of application and required temporal 



245 

 

resolution (i.e., real-time or near-real-time). It is possible to use the GSPEs for flood 

studies not only in the selected area of study but also in other remote areas of similar 

climatic and topographic conditions to the current study watershed. 

3) the developed new pixel-based method for quantifying the horizontal accuracies of 

the channels/orders derived from global DEMs, combined with computing vertical 

accuracies of these DEMs, can effectively help in selecting the DEM and its derived 

drainage network with the highest accuracies for extracting various geospatial layers 

required for flood susceptibility models. Additionally, there were other potential 

applications for the introduced method related to remote sensing research, whereby 

it can also be used to (i) determine the optimum AT by comparing the extracted 

drainage network from any remote sensing technology-based DEM with a reference 

network derived from high-quality DEM source, (ii) assess the effectiveness of 

different channel networks’ extraction algorithms, and (iii) quantify the degree of 

horizontal variation between other linear geologic and geomorphological features 

(e.g., structural lineaments, surface geologic contacts, and shorelines) extracted from 

remote sensing-based geospatial datasets of simultaneous or different temporal 

series, after converting them to raster format.  

4) developing flash flood susceptibility maps is the core stage to managing a sustainable 

plan for mitigating flood risks in any area under consideration for any current, or 

future, urban planning. Although the Dakhiliyah Governate at the Sultanate of Oman 

is frequently exposed to severe flash flood events, this study is the first to determine 

the vulnerable locations underlying flash flood hazards. The developed flood 

susceptibility models introduced the following improvements: (i) integrating 

bivariate and multivariate statistical techniques to provide precise susceptibility 

models taking the advantages of both methods, (ii) including spatio-temporal details 

by incorporating the corresponding satellite precipitation data that initiated a certain 

flood event, (iii) introducing a new and proper combination of flood causative factors 

that covered the entirely of information about the possible factors affecting the stream 

watershed and flash floods, such as climatic (i.e., GSMaP-G), geomorphic (i.e., 
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Altitude, TPI, VD, CI, MRN,  and Aspect), hydrologic (TWI, FL_DS, and DLD), 

and lithologic parameters (i.e., soil and geology). The new recipe provided flood 

susceptibility models of high predictive performances, (iv) extracting flood inventory 

map from SAR scenes and verified using VGI, which provided the chance for having 

spatially distributed and stratified random flood and non-flood points for accurate 

training and testing of the susceptibility models, (v) using the PALSAR DTM with a 

fine spatial resolution (12.5 m), and high vertical and horizontal accuracies to derive 

geospatial layers required for susceptibility models, (vi) selecting proper watershed 

that has diverse topography, with the developed hybrid susceptibility models yielding 

high predictive abilities and classification of the flood hazard levels in both 

mountainous and flat zones. Reliable and precise dynamic flood susceptibility maps 

can efficiently help the decision makers and environmental planners to develop their 

strategies to reduce costs and lessen the threats to human life and infrastructure that 

are commonly associated with future flash floods over space and time.  

5) for a potential application, it can be possible to adopt the regionalization approach 

[1]–[4] to apply the trained susceptibility models to other arid watersheds of similar 

topographic and climatic conditions to the current study area, but with limited or no 

in-situ rainfall records (e.g., Kingdom of Saudi Arabia, United Arab Emirates, 

Yemen, and Sinai and the Eastern Desert in Egypt). The latter step could help in 

mitigating flash flood hazards in these areas, particularly with the limitation of in-

situ rainfall data in these countries. 
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5.3. Recommendations for Future Work 

Notwithstanding the reasonable performance of the improved integrated statistical-

based flood susceptibility models to predict flood-prone areas and classify the degrees of 

hazards into five categories in the current research, the following points are to be considered 

for future efforts: 

 using drones for capturing and verifying the flash flood extent, particularly with the 

inability to use the optical space-borne sensors for this task due to dense cloud 

coverage usually associated with flood spreading.  

 including more dynamic factors (e.g., runoff and shallow groundwater level datasets) 

by taking into consideration the need for datasets with fine spatial and temporal 

resolutions. 

 testing additional statistical, machine learning, and multi-criteria decision-making 

algorithms in developing the flood susceptibility models in the arid regions. 

 searching the possible future availability of SAR scenes with frequent coverage of 

the arid basins. Having SAR images that are matched with flood occurrences is not 

an easy task and requires a lot of time. However, as long as there is a possibility to 

have more SAR scenes with fine spatial and temporal resolutions in the near future, 

it is recommended to study multiple future rainfall events of varying intensities, 

along with corresponding flood events with different magnitudes over the same area, 

in order to glean more information about the spatio-temporal variability of flash 

floods’ inundations. 

 exploring more segmentation algorithms of SAR images for the auto-extraction of 

the flood extents in the arid environments to accommodate with different 

characteristics of the arid watersheds. 
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 highlighting and emphasizing the rule of VGI in studying flash floods, particularly 

in remote areas with complex topographic and harsh climatic conditions. Raising 

flood awareness among the local settlers with respect to curated uploading of 

corresponding reports, images, and videos themed around flash events to give the 

researchers additional supports and opportunities to better understand the flash 

floods’ dynamics. 

 further exploring the assumption that the selected area of study is hydrogeologically 

connected (i.e., there is a mutual connection between surface and sub-surface 

processes, and especially those related to water). This type of study might provide 

additional, previously undiscovered insights into the variability of flash floods over 

space and time. 

 exploring the performance of the developed pixel-based method for quantifying the 

horizontal variability of channels/orders derived from global DEMs over areas of 

different land covers, geomorphic units, lithology, and climatic zones throughout the 

world. It is recommended that researchers evaluate the accuracy of the DEMs and 

their channel networks/orders prior to involving them in their geomorphological and 

hydrological studies. 

 Exploring the effectiveness on the integrated bivaraite and multivariate susceptibility 

modeling on other hydrological and water resources management studies such as 

groundwater potentiality. 

Finally, I would like to emphasize on the need to install dense streamflow gauges in 

some selected and representative areas of the arid basins. The extensive cost and labor work 

can hinder such a step; however, this action can improve predictive flood modeling, as well 

as other water resource management studies in the arid areas. 
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Table A.1. Traditional statistical metrics (RMSE and MD) estimated before and after using 

the statistical additive and multiplicative approaches to model the errors in the 

IMERG-F run at rainfall (RF) intensity classes of > 0.00 and 0.00−2.5 mm/day. 

RF > 0.00 
mm/day 

Original Additive Multiplicative 
RF: 0.00−2.5 

mm/day 
Original Additive Multiplicative 

RMSE_1 8.19494 7.58455 8.74509 RMSE_1 4.34449 0.702298 0.762879 

RMSE_2 9.09311 8.46335 10.3472 RMSE_2 3.69271 0.667054 0.743846 

RMSE_3 9.31975 9.09022 11.0913 RMSE_3 3.64557 0.677036 0.721522 

RMSE_4 9.0483 8.39925 9.56666 RMSE_4 4.60482 0.657251 0.711523 

RMSE_5 9.14906 8.36866 9.64368 RMSE_5 4.20075 0.677807 0.736182 

RMSE_6 8.22758 7.76944 9.86142 RMSE_6 4.26653 0.67619 0.755552 

RMSE_7 8.87702 8.28215 10.2272 RMSE_7 5.07164 0.691121 0.720987 

RMSE_8 9.19707 8.53272 9.90838 RMSE_8 4.14935 0.670233 0.705205 

RMSE_9 8.28051 7.45878 9.33244 RMSE_9 3.94966 0.650924 0.68499 

RMSE_10 8.58557 8.03096 9.68381 RMSE_10 3.63098 0.648234 0.655221 

RMSE_All 8.80702 8.21135 9.85885 RMSE_All 4.15565 0.672009 0.720461 

MD_1 -1.9417 0.620368 -3.18447 MD_1 1.59705 -0.0995808 -0.328525 

MD_2 -2.5606 -0.407801 -4.30028 MD_2 1.5857 -0.110453 -0.344136 

MD_3 -2.8086 -0.657388 -4.3337 MD_3 1.25316 -0.0409114 -0.275017 

MD_4 -2.2276 0.206866 -3.47685 MD_4 1.72023 -0.0183294 -0.269306 
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MD_5 -2.4306 
-

0.0916355 
-3.91107 MD_5 1.75324 -0.0617224 -0.299256 

MD_6 -2.1596 0.132678 -3.85395 MD_6 1.41414 -0.124675 -0.371115 

MD_7 -2.5345 -0.288927 -4.1147 MD_7 1.96482 0.034178 -0.213938 

MD_8 -2.1406 0.273915 -3.5654 MD_8 1.76858 0.0030691 -0.237866 

MD_9 -2.3848 
-

0.0875967 
-4.01569 MD_9 1.55721 0.021726 -0.224966 

MD_10 -2.17 0.317059 -3.46721 MD_10 1.4862 0.0924572 -0.154827 

MD_All -2.3359 0.0017537 -3.82233 MD_All 1.61003 -0.0304243 -0.271895 
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Table A.2. Traditional statistical metrics (RMSE and MD) estimated before and after using 

the statistical additive and multiplicative approaches to model the errors in the 

IMERG-F run at rainfall (RF) intensity classes of 2.5−10 and 10−50 mm/ day. 

RF: 2.5−10 
mm/day 

Original Additive Multiplicative 
RF: 10−50 
mm/day 

Original Additive Multiplicative 

RMSE_1 5.23188 2.06858 2.12756 RMSE_1 14.1075 7.53828 8.88468 

RMSE_2 4.87854 2.11046 2.10088 RMSE_2 15.1889 7.57147 9.24109 

RMSE_3 4.80331 2.07953 2.08673 RMSE_3 15.4651 7.70578 9.07135 

RMSE_4 6.88997 2.11378 2.17927 RMSE_4 15.6411 8.40493 9.27696 

RMSE_5 5.31003 2.08001 2.1839 RMSE_5 13.4077 6.80406 7.22492 

RMSE_6 4.82546 1.85581 1.83109 RMSE_6 13.8577 7.21592 7.85292 

RMSE_7 5.00177 2.04321 2.09492 RMSE_7 15.5133 8.36313 8.90278 

RMSE_8 6.0442 2.1459 2.21039 RMSE_8 14.5402 7.87773 9.19168 

RMSE_9 4.62107 2.12893 2.13469 RMSE_9 15.0874 7.93207 8.77768 

RMSE_10 4.98147 2.19449 2.23753 RMSE_10 14.7707 7.51115 8.41898 

RMSE_All 5.30016 2.08384 2.12142 RMSE_All 14.7757 7.70633 8.70763 

MD_1 -2.14402 -0.087944 -0.469139 MD_1 -10.812 -0.560115 -2.29068 

MD_2 -1.79547 0.194883 -0.171694 MD_2 -11.362 -1.08999 -2.6648 

MD_3 -1.88228 0.200305 -0.179327 MD_3 -11.9534 -1.68354 -3.36927 

MD_4 -1.3916 -0.102785 -0.526609 MD_4 -11.5644 -0.793419 -2.24729 
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MD_5 -2.16265 -0.235984 -0.645065 MD_5 -9.62572 2.01708 0.244625 

MD_6 -1.99503 0.341895 -0.069629 MD_6 -9.81106 1.09167 -0.415375 

MD_7 -2.11983 -0.127682 -0.515639 MD_7 -12.0983 -0.695264 -1.83918 

MD_8 -2.01128 -0.089895 -0.478022 MD_8 -11.5679 -0.768374 -2.1104 

MD_9 -2.60512 0.168731 -0.200492 MD_9 -10.4291 0.150952 -1.86471 

MD_10 -2.10667 -0.055512 -0.409761 MD_10 -10.9847 0.094957 -1.47033 

MD_All -2.02139 0.0206011 -0.366538 MD_All -11.0209 -0.223604 -1.80274 
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Table A.3. Traditional statistical metrics (RMSE and MD) estimated before and after using 

the statistical additive and multiplicative approaches to model the errors in the 

GSMaP-S product at rainfall (RF) intensity classes of > 0.00 and 0.00−2.5 mm/day. 

RF > 0.00 
mm/day 

Original Additive Multiplicative 
RF: 0.00−2.5 

mm/day 
Original Additive Multiplicative 

RMSE_1 9.40465 7.96618 9.69162 RMSE_1 5.06112 0.663037 0.686668 

RMSE_2 12.0926 9.28296 10.5742 RMSE_2 4.37254 0.645827 0.675495 

RMSE_3 9.19592 8.02473 9.9008 RMSE_3 4.24058 0.690975 0.735317 

RMSE_4 9.69161 8.65375 10.1718 RMSE_4 4.14466 0.665934 0.702964 

RMSE_5 9.52329 7.7892 10.2062 RMSE_5 4.68967 0.6518 0.663914 

RMSE_6 10.5838 8.02567 8.10248 RMSE_6 4.02414 0.685558 0.728514 

RMSE_7 9.07057 7.51479 9.79286 RMSE_7 5.15865 0.668903 0.706823 

RMSE_8 9.41774 8.09856 9.90795 RMSE_8 4.85241 0.683232 0.740694 

RMSE_9 10.8303 8.04058 8.08768 RMSE_9 4.79336 0.665987 0.68535 

RMSE_10 11.0216 7.89267 8.95027 RMSE_10 4.13338 0.672139 0.736503 

RMSE_All 10.1273 8.14251 9.57411 RMSE_All 4.56399 0.669478 0.70672 

MD_1 -1.71157 
-

0.116454 
-3.7769 MD_1 2.10754 0.0599775 -0.195062 

MD_2 -1.49033 
-

0.345035 
-4.28862 MD_2 1.73802 0.0517978 -0.210962 

MD_3 -1.43211 0.085911 -3.66871 MD_3 1.62052 -0.0065173 -0.256952 

MD_4 -1.98683 
-

0.428307 
-3.86512 MD_4 1.51963 0.025202 -0.232987 
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MD_5 -1.4124 -0.42809 -4.29788 MD_5 1.52795 0.0982697 -0.165741 

MD_6 -1.68421 0.356043 -2.95653 MD_6 1.49597 0.0011869 -0.249867 

MD_7 -1.51725 -0.2616 -4.16248 MD_7 1.72093 0.0174148 -0.242256 

MD_8 -1.46313 -0.16691 -3.89783 MD_8 1.72149 -0.0250895 -0.275877 

MD_9 -0.84526 1.13039 -2.5705 MD_9 1.89899 0.073386 -0.185996 

MD_10 -1.10424 0.497095 -3.4385 MD_10 1.46765 -0.0513285 -0.305876 

MD_All -1.46473 0.032303 -3.69231 MD_All 1.68187 0.02443 -0.232158 
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Table A.4. Traditional statistical metrics (RMSE and MD) estimated before and after using 

the statistical additive and multiplicative approaches to model the errors in the 

GSMaP-S product at rainfall (RF) intensity classes of 2.5−10 and 10−50 mm/ day. 

RF: 2.5−10 
mm/day 

Original Additive Multiplicative 
RF: 10−50 

mm/day 
Original Additive Multiplicative 

RMSE_1 5.68049 2.06686 2.08995 RMSE_1 15.4429 7.20637 7.89165 

RMSE_2 5.8724 2.07071 2.05529 RMSE_2 16.6304 7.55031 8.54653 

RMSE_3 5.38183 2.06411 2.08423 RMSE_3 17.228 8.06739 8.92401 

RMSE_4 5.61602 2.03621 2.08086 RMSE_4 18.9159 8.82278 9.39542 

RMSE_5 5.14934 2.1206 2.12707 RMSE_5 17.006 7.33655 7.93568 

RMSE_6 5.74702 2.261 2.33021 RMSE_6 17.0953 8.13362 9.14803 

RMSE_7 6.39771 2.0925 2.11932 RMSE_7 21.8281 8.44388 6.79206 

RMSE_8 5.56253 2.14947 2.19042 RMSE_8 18.231 9.00443 9.90524 

RMSE_9 5.3839 1.99262 2.02521 RMSE_9 23.0849 10.0822 9.56863 

RMSE_10 6.32902 2.17334 2.19222 RMSE_10 22.3618 9.14485 7.29892 

RMSE_All 5.72465 2.104 2.13113 RMSE_All 18.955 8.42319 8.59636 

MD_1 -2.18018 0.0507466 -0.347591 MD_1 -8.80279 1.42379 -0.140546 

MD_2 -1.91387 0.30936 -0.105419 MD_2 -6.83595 0.218244 -1.63259 

MD_3 -2.06708 0.0086633 -0.357177 MD_3 -6.43559 0.691662 -1.12098 

MD_4 -1.89464 0.0914719 -0.270328 MD_4 -11.5957 -1.87707 -3.03484 
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MD_5 -2.4028 0.146668 -0.24135 MD_5 -8.41288 0.53205 -1.17886 

MD_6 -1.87125 -0.272902 -0.644116 MD_6 -8.03892 -1.27842 -2.92725 

MD_7 -1.56869 0.125797 -0.262164 MD_7 -8.50802 0.893403 -0.625024 

MD_8 -2.40173 0.0711913 -0.304381 MD_8 -8.49811 -1.21242 -2.64442 

MD_9 -1.9569 0.0166328 -0.372464 MD_9 -9.45811 -1.58259 -3.24367 

MD_10 -1.60238 0.0548565 -0.31082 MD_10 -6.81 1.72255 -0.260294 

MD_All -1.98595 0.0602486 -0.321581 MD_All -8.3396 -0.04688 -1.68085 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



260 

 

Table A.5. Traditional statistical metrics (RMSE and MD) estimated before and after using 

the statistical additive and multiplicative approaches to model the errors in the 

GSMaP-G at rainfall (RF) intensity classes of > 0.00 and 0.00−2.5 mm/day. 

RF > 0.00 
mm/day 

Original Additive Multiplicative 
RF: 0.00−2.5 

mm/day 
Original Additive Multiplicative 

RMSE_1 8.76415 8.29818 9.87831 RMSE_1 3.47401 0.642517 0.674242 

RMSE_2 9.20133 8.74592 10.2117 RMSE_2 3.94027 0.67529 0.730407 

RMSE_3 9.58939 9.11235 10.9444 RMSE_3 3.80893 0.66784 0.721882 

RMSE_4 8.72093 8.35891 9.77021 RMSE_4 3.92266 0.653395 0.698969 

RMSE_5 12.58470 12.4569 12.9424 RMSE_5 3.54275 0.677931 0.7003 

RMSE_6 8.54834 8.09268 9.8831 RMSE_6 3.58692 0.680321 0.723018 

RMSE_7 9.03263 8.56311 10.3096 RMSE_7 3.74093 0.642221 0.674433 

RMSE_8 8.77107 8.32042 9.46801 RMSE_8 3.44284 0.647114 0.688751 

RMSE_9 13.29100 12.8745 14.1131 RMSE_9 3.48938 0.664531 0.704718 

RMSE_10 8.22586 7.77766 9.35505 RMSE_10 3.7626 0.648433 0.70826 

RMSE_All 9.81717 9.42192 10.7931 RMSE_All 3.67542 0.660112 0.70274 

MD_1 -2.86396 -0.1482 -3.88542 MD_1 1.5816 0.0370762 -0.218083 

MD_2 -2.84839 -0.146282 -3.99121 MD_2 1.80619 -0.0430076 -0.290379 

MD_3 -3.26203 -0.715161 -4.34997 MD_3 1.6991 -0.0388932 -0.289812 

MD_4 -2.56953 0.273689 -3.52452 MD_4 1.6859 0.000361147 -0.255126 
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MD_5 -2.24345 0.73822 -3.33157 MD_5 1.59821 0.0422155 -0.202401 

MD_6 -2.77742 -0.0532836 -4.0075 MD_6 1.60854 -0.016978 -0.260589 

MD_7 -2.96712 -0.303259 -4.12578 MD_7 1.70608 0.0474019 -0.201289 

MD_8 -2.72994 0.0357547 -3.64507 MD_8 1.55201 0.000105997 -0.249899 

MD_9 -3.42451 -0.960899 -4.5419 MD_9 1.63295 -0.00010314 -0.247379 

MD_10 -2.74074 0.0427212 -3.69103 MD_10 1.72205 -0.0359255 -0.292469 

MD_All -2.84271 -0.12367 -3.9094 MD_All 1.65926 -0.00077467 -0.250743 
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Table A.6. Traditional statistical metrics (RMSE MD) estimated before and after using the 

statistical additive and multiplicative approaches to model the errors in the GSMaP-

G product at rainfall (RF) intensity classes of 2.5−10 and 10−50 mm/ day. 

RF: 2.5−10 
mm/day 

Original Additive Multiplicative 
RF: 10−50 
mm/day 

Original Additive Multiplicative 

RMSE_1 4.72093 2.0511 2.09669 RMSE_1 15.9161 8.09711 8.2097 

RMSE_2 4.7203 1.99279 2.04004 RMSE_2 15.6209 8.2343 8.83605 

RMSE_3 4.93557 2.20368 2.2245 RMSE_3 16.3363 8.77816 9.14802 

RMSE_4 4.47495 2.14631 2.19962 RMSE_4 15.782 8.01936 8.02776 

RMSE_5 4.09138 2.045 2.04127 RMSE_5 15.8593 7.80983 8.32069 

RMSE_6 4.71779 2.13642 2.15551 RMSE_6 15.5447 8.45848 8.90926 

RMSE_7 4.82204 2.21973 2.31631 RMSE_7 14.0617 7.92791 8.22217 

RMSE_8 4.84831 2.02878 2.05589 RMSE_8 15.3238 8.32805 8.32759 

RMSE_9 4.69678 2.06416 2.1264 RMSE_9 15.8094 8.43746 8.31814 

RMSE_10 4.46085 2.07531 2.14687 RMSE_10 15.6709 8.54586 8.80024 

RMSE_All 4.65476 2.09758 2.14197 RMSE_All 15.6029 8.26863 8.51941 

MD_1 -1.86052 -0.136475 -0.549683 MD_1 -13.1698 -0.132996 -1.57085 

MD_2 -2.14569 -0.0495723 -0.446943 MD_2 -13.015 -0.341421 -1.90636 

MD_3 -1.78752 -0.156341 -0.55898 MD_3 -13.3417 -0.902824 -2.12055 

MD_4 -2.23248 -0.137975 -0.495847 MD_4 -13.0327 -0.092548 -1.32057 
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MD_5 -2.22248 0.201438 -0.185525 MD_5 -13.4869 -0.531436 -2.0256 

MD_6 -2.17438 -0.112934 -0.501045 MD_6 -12.6152 0.292268 -1.27369 

MD_7 -2.28961 -0.420812 -0.798839 MD_7 -11.3592 1.33666 -0.608964 

MD_8 -1.98686 0.0807252 -0.323066 MD_8 -12.3813 0.671414 -0.82924 

MD_9 -2.33725 -0.0791826 -0.463464 MD_9 -12.7155 0.225884 -1.30138 

MD_10 -2.02157 -0.154126 -0.529908 MD_10 -12.6438 0.0280978 -1.58171 

MD_All -2.10584 -0.0965255 -0.48533 MD_All -12.7761 0.0553093 -1.45389 
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Figure B.1. New developed ArcGIS’s Python toolbox for the geometric comparison 

between drainage networks/orders. 
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