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ABSTRACT 

A method is introduced for the design of 3D linear trajectory (LT) recursive digi-

tal filters which ideally have bowl-shaped passbands in the frequency domain. The 

passband approximation is obtained by adding the transfer functions of two 3D filters 

having elementary wedge-shaped passbands. The 3D elementary wedge filters are in 

turn obtained by applying a transformation to a highly selective 2D analog prototype 

fan filter. The design method is straightforward, computationally nonintensive, and 

leads to a guaranteed stable LT filter having a directional selectivity that is ideally 

independent of the spatial area occupied by the LT object. This property presents an 

advantage over a previously reported LT filter which suffered from a directional selec-

tivity that was dependent upon the spatial area occupied by the object. This advantage 

is demonstrated by means of a set of typical 3D LT filtering examples. 

The spectral characteristics of LT signals are described. It is shown that it is pos-

sible to use physically meaningful and observable parameters such as orientation, tra-

jectory, and speed of the 2D object to determine its spectral characteristics. 

It is shown that object orientation can also play a significant role in determining 

the signal attenuation, regardless of the directional selectivity of the filter. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview of Three Dimensional Recursive Filtering 

Over the past few decades, reductions in digital hardware cost and processing 

time have been closely followed by new applications of digital signal processing. 

Recently, many of these new applications have been found in the area of three 

dimensional (3D) digital signal processing. This development reflects the enor-

mous amounts of computation time and storage that 3D signal processing requires, 

which are now only marginally being met by today's computers. 

A signal is a means of conveying information. A three dimensional signal 

simply conveys information that is best described by three independent variables. 

For example, a 3D signal obtained using computed tomography, conveys informa-

tion about the human anatomy described in terms of three independent spatial vari-

ables. In other fields, such 'as moving image processing, the brightness function of 

the video signal is a function of two independent spatial variables and a temporal 

variable. 

3D signals are encountered in such diverse disciplines as geophysics [1], 

medicine [2], and computer vision [3] where frequently the cost of obtaining a 3D 

1 
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image or signal is extremely high. For example, radar, medical imaging and geo-

physical data acquisition systems can cost several million dollars. As a result, the 

study of relatively inexpensive methods for improving the quality of such costly 

signals has begun to receive attention. 

One such method is 3D recursive digital filtering. This technique has success-

fully been used in noise removal [4], smoothing [2], and tracking applications [5]. 

Recursive filtering can generally perform the required spectral shaping with less 

computation than non-recursive convolution methods and with lower memory 

requirements than 1FT methods. However, three outstanding problems that 

researchers have encountered in the course of designing recursive filters have been 

approximation, realization and stability. 

The approximation problem often consists in determining the coefficients of 

the transfer function so that the desired frequency response is achieved. Usually 

this problem is solved using a numerical optimization routine which can be very 

time consuming because of the large number of variables of optimization. 

The realization problem consists of determining the filter network from the 

transfer function. 

For bounded-input bounded-output (BIBO) stability, it is required that the out-

put signal not become unbounded for any bounded input signal. Multidimensional 

stability is much more difficult to understand and test than one dimensional stabil-
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ity. The stability of a 1D recursive filter can be determined from the locations of 

its poles using the fundamental theorem of algebra. In the multidimensional case, 

no such fundamental theorem exists so the task of determining stability is much 

more complex. 

Much progress has been made towards the understanding and solving of these 

problems. For example, in [6], a test for the stability of 3D recursive filters has 

explicitly been presented. In [7], a computer-aided multidimensional filter design 

program has been developed and can (in theory) be used to design all possible 

stable 2D filter transfer functions, except for special cases involving non-essential 

singularities of the second kind; and in [8], the potential for a significant reduction 

in design computation time, by taking advantage of multidimensional symmetries, 

is demonstrated. A more detailed discussion of the problems and progress in mul-

tidimensional systems theory is presented in [9]. 

Recently, it has been shown [4,10] that useful 3D recursive digital filters can 

be obtained, by applying rotational transformations to one and two dimensional 

continuous domain filters followed by an application of the triple bilinear 

transform. This method reduces the design complexity of the 3D filter by avoiding 

the time consuming task of numerical optimization over a 3D grid. In fact, using 

this method design computational requirements for one class of 3D digital filters 

are reduced significantly enough that adaptive filter control systems working in 

near real time are possible [5]. 
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In summary, the future of 3D recursive filtering appears to be bright. 

Through continued research, the mathematics of multidimensional filter theory 

should become more complete. Combined with further advances in digital 

hardware capabilities, the applications of 3D recursive filtering will continue to 

grow. 

In order to discuss the branch of 3D ifitering presented in this thesis, a review 

of a few fundamental concepts is required and is given in the next section. 

1.2 Fundamental Concepts 

1.2.1 Three Dimensional Signals 

A 3D signal may be continuous, discrete or mixed. A 3D continuous or ana-

log signal (from this point onward it shall be assumed that all signals are 3D unless 

otherwise stated) is a function of three continuous independent variables. For 

example, the continuous signal x (t1 , t2, t3) is a function of the three continuous 

independent variables t1, t2 and t3. A discrete signal or sequence is a function 

usually obtained by sampling a continuous signal. For example, the discrete signal 

x (1 , m , n) is defined over the set of integers 1, m, n and is obtained by rectangu-

lar sampling of the continuous signal x (t1 , t2, t3) according to 

x(l ,m ,n) =x(t1,t2,t3) I t1 = iT1, t2 = mT2, t3 = nT3 

where T1, T2, T3 are the sample intervals in the t1, t2, t3 directions, respectively. 
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A mixed signal contains at least one discrete and one continuous independent vari-

able. As an example, the ensemble of time waveforms from a 2D array of trans-

ducers is discrete in two variables and continuous in the third. 

A digital signal is a discrete signal in which elements of the sequence are 

quantized in amplitude. For example, any signal represented by a sequence of 

binary numbers (for storage or manipulation by a computer) is a digital signal. 

An important signal used in signal processing is the impulse function 

S(t 1,t2,t3) defined as 

100 t1=t2 =t3=O 

ö(t1,t2,t3) = lo otherwise 

00 CO CO 

5 $ 5 6(t1,t,t3) dt1dt2dt3 = 1 
-00 -00 -00 

in the continuous case, or the unit impulse 6(1 , m , n) sequence defined as 

f1 l=m=n=0 
0 otherwise 

in the discrete case. Another important signal is the complex sinusoid 

x(t1,t2,t3) = exp(j colt 1 + ja 2t2 + j03t3) 

= cos(01t1 + o2t2 + co3t3) + j sin(0 1t1 + w2t2 + OYD 

(1.2a) 

(l.2b) 

(1.3a) 
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in the continuous case, or 

x(l, m, n) = exp(jo 11 + j()2m + j0 3n) 3b) 

= cos(o 11 +02m +o)3n)+jsin(o)11 + 2m +03n) 

in the discrete case, where o, 02, co3 are angular frequencies in radians per 

second (rad/s). 

1.2.2 Three Dimensional Linear Shift-Invariant (LSI) Filters 

1.2.2.1 Definition of a 3D LSI Filter 

Linear shift-invariant filters are the most frequently employed class of filters 

because they are easy to design and analyze while being powerful enough to solve 

many practical problems. 

Let a continuous domain filtering operation L[-] map a set of input signals 

t2, t3)} to a set of output signals {y1(t1 , t2, t3)} according to 

L[{x(t1,t2,t3)}] = &(t1,t2,t3)}. (1.4) 

A filtering operation L [] is said to be linear if and only if 

(1.5) 

for any input x1 (t1 , t2, t3) and any scalar constants c, and shift-invariant if and 

only if 
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L [{x1(t1-T'1 , t-T'2, t3-T'3)}] = {y (t1-T'1 , t2-T'2, t3-T'3)} (1.6) 

where T'1, T'2, T'3 are constants. Simply stated, the shift-invariance condition 

means that a shift in the input results in a corresponding shift in the output, and the 

linearity condition means that the sum of the scaled responses is the same as the 

response to the sum of the scaled inputs. A similar set of conditions hold for 

discrete signals. A filter satisfying both the linearity condition and the shift-

invariant condition is said to be linear shift-invariant (LSI). 

A fundamental property of LSI filters is that the output y (t 1 , t2, t3) 

[y (I ,m ,n) for the discrete case ] is related to the input x(t1,t2,t3) [x(1 ,m ,n)J 

via the convolution integral [summation] defined as 

00 00 00 

y(t1,t2,t3)= f f f h(t1,r2,'c3) 
tj=— oo '00 30O 

(1.7a) 

x(t 1-'v1 , t2-t2, t3-t3)dt1 d'c2dr3 

00 00 00 

y(l,m,n)= Y, F, Z h(i,j,k)x(l-i,m-j,n-k) 
i=-oo j=—oo k— 

where h (t 1 , t2, t3) [h (i f , k)] is the impulse response of the filter given by 

and 

(1.7b) 

h(t1,t2,t3) =L[(t1,t2,t3)] (1.8a) 



8 

h(l,m,n)=L[(1,m,n)] (L8b) 

for the continuous and discrete cases, respectively. 

1.2.2.2 Frequency Response of a 3D LSI Filter 

The frequency response [T (CO, , ()2, o) for the continuous domain LSI filter 

and H (0i , (02, (03) for the discrete domain LSI filter] is defined as the Fourier 

transform of the filter's impulse response. That is, 

00 00 00 

T(o)1,o,(3)= 5 5 5 h(t1,t2,t3) 
tl=-00 t2=_0O t3=-00 

exp(—j 1t1—j02t2—j0)3t3) dt1 dt2dt3 

00 00 00 

(l.9a) 

H(o1,o2,(o)= Z Y, Y, h(l,m,n)exp(—j0)11—j(02m—jco3n) (l.9b) 
p — oo q =—oo r 

The frequency response of a LSI filter also relates the Fourier transforms 

X (Col ,0)2,o3) and Y(0)1,o2,o 3) of the input x(t1,t2,t3) and output y(t 1,t2,t3) 

signal waveforms according to (shown for the continuous case) 

Y(o1 ,U')2 (03) = T(01 ,()2,0)3) X((01 z' 0')) (1.10) 

The significance of (1.10) is that a LSI filter shapes the overall spectrum of the 

input signal by scaling the magnitude and shifting the phase (but not frequency) of 

each individual frequency component. Thus if the input is a pure sinusoid as given 
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by (1.3), then the output will also be a pure sinusoid of the same frequency, 

differing only in magnitude and phase. 

1.2.2.3 Transfer Function of a 3D LSI Filter 

A transfer function T(s 1,s2,s 3) [H(z 1,z2,z3)] illustrated by the block 

diagram in Fig. 1.1, relates the input and output signal waveforms X (s 1 , S2 , s 

[X(z 1,z2,z3)J and Y(s 1,s2,s3) [Y(z 1,z2,z3)] of  filter according to 

and 

T(sj,s2,s3) - Y(s1,s2,s3) 
X(s1,s2,s3) 

H(z 1,z2,z3) = Y(z1,z2,z3) 
X(z 1,z2,z3) 

(1.1 1a) 

(1.11b) 

for the continuous and discrete cases, respectively. 

A property of LSI filters is that the transfer function can also be represented 

by the ratio of two polynomials. That is, in the continuous case 
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T(s 1,s2,s3) = 
P(s 1,s2,s3) 

Q(s 1 ,s2,s3) 

MI m2 m3 
.p(i,j,k)s s 4 

i=01=Ok=0 (1.12a) 
nl n2 n3 

q(i ,j,k)s s 4 
1=0 j=O k=0 

si = a + coi i = 1, 2, 3, (complex frequency variable) 

and in the discrete case 

H(z1,z2,z3) = N(z1,z2,z3) 
D(z 1,z2,z3) 

where 

and 

m1 m2 m3 

n(i ,j ,k)z z 4 
1=0 j=O k=O 

a1 n2 a3 
d(i ,j k) z' z 

1=0 j=0 k=O 

(sjT,) z1=e , i=1,2,3, 

m1≤n 1, m2 ≤n2, m3 ≤n3. 

k Z3 
(l.12b) 

The complex variable zi represents the unit advance operator in the 1tJZ direction. 

One of the desirable properties of LSI filters is that they can be added or mul-

tiplied together and the resulting filter will still be LSI [11]. Fig. 1.2(a) illustrates 



11 

two continuous domain filters Ti(i s , 53) and T2(s 1 s , s3) connected in cas-

cade. (i.e. The output of one filter is simply the input to the other.) In this case the 

overall transfer function T0 (i '2 , s) is given by 

T0(s 1,s2,s3) = T1(s 1,s2,s3) T2(s 1,s2,s3). (1.13) 

Fig. 1.2(b) illustrates the same two filters connected in parallel where they have a 

common input and the outputs are summed together. In this case the overall 

transfer function To (i s2 ,53) is given by 

T0(s1,s2,s3)=T1(s1,s2,s3)+T2(s 1,52,53). (1.14) 

By exploiting these properties, sophisticated LSI filtering operations can be per-

formed using several simple LSI filters. 

It is interesting to note that the continuous and discrete domain frequency 

responses T(0)1 (03) and H (co, , 0)2, o) can be obtained from the transfer func-

tions T (s1 '2,3) and H (z i , z , z3) according to 

and 

T(0)j,0)2,03)=T(s1,s2,s3) I SjJ0), i =1,2,3 (1.15a) 

H(0 1,(02,0 3) H(z 1,z2,z3) I z=e' 7 ,i = 1,2,3. (1.15b) 

From (1.15), the continuous domain frequency response T(o 1 , (), ()3) corresponds 
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to the transfer function T (s1 s 2,53) evaluated along the si j c0i i = 1, 2, 3 sur-

faces in 3D complex s-space, and the discrete domain frequency response 

H (o)' , 2, ce) corresponds to the transfer function H (z 1 , z2, z3) evaluated on the 

surface zi = ej0)1'i in the 3D complex z-space. It should be noted that 

H (w 2, o) is periodic in all three (o , (02, (03) directions and is often expressed 

in an alternate form as H (e14:01T1 , ej 0 Tz , eJ(03T3). 

1.2.2.4 Realization of the Filter Network 

Realization is the process by which a filter network is obtained from a transfer 

function. In one dimensional signal processing, stable continuous domain transfer 

functions can be realized using analog circuits containing resistors, capacitors, 

operational amplifiers, etc. Discrete domain transfer functions are realized using 

adders, multipliers and delay elements. In multidimensional signal processing, con-

tinuous domain stable transfer functions correspond only to conceptual passive ana-

log networks. They cannot be physically realized because the elementary com-

ponents such as resistors, capacitors and inductors are inherently one dimensional. 

In contrast, addition, multiplication and delay can be performed upon any of the 

digital signal variables. Hence, all multidimensional filters are realized in digital 

form. 

There are several methods for realizing recursive digital filters [12], the most 

common is the direct form method. Using this method the output is calculated 
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from the input signal and previous output signals using a difference equation of the 

form 

m1 m2 m3 

y(1 ,m ,n) = Y, Z Z n(i ,j ,k)x(1—i ,m—j ,n—k) - 

i=O j=O k=O 
(1.16) 

nl n2 

d(i ,j ,k) y(l—i ,m—j ,n—k) 
i=O j=O k=O 

i-i-f-i-k * 0 

where the multiplier values n (i J , k) and d (i J ,k) are the transfer function poly-

nomial coefficients given in (1.12b). This method of realization is employed in 

this thesis. 

1.2.2.5 Stability and Causality of 3D LSI Filters 

An LSI filter is said to be BIBO (bounded input, bounded output) stable if 

and only if, for any given bounded input sequence, the output sequence remains 

bounded. A necessary and sufficient condition for an LSI filter to be BIBO stable 

is that its impulse response h (t 1 , , t3) [h (1 , m , n) ] be absolutely integrable 

[summable], that is 

$ f f I h(t1,t,t3)I dt1dt2dt3 S <oo (1.17a) 
00 00 00 

and 
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00 00 00 

h(l,m,n) = S <00 

m=-° n=—øo 
(l.17b) 

for the continuous and discrete cases, respectively. 

Although (1.17b) is fundamental, it is not a practically useful means for deter-

mining stability.. First, it is an infinite sum, so an attempt to calculate it usually 

will be an approximation. Second, many 3D filters are designed using an iterative 

optimization routine where stability is tested at each iteration. To calculate and 

evaluate the absolute summabiity of the impulse response at each iteration would 

result in a prohibitively large design time. 

A better method for determining stability is to calculate it directly from the 

values of the filter coefficients. In 1D signal processing this is possible. Let the 

1D analog and discrete transfer functions be given by 

and 

T(s)=  Q(s) 

H(z)=, 

(1.18a) 

(l.18b) 

respectively, where P (s), Q (s), and N (z), D (z) are relatively prime polynomials. 

According to the fundamental theorem of algebra, the single variable polynomial 

Q (s) [D (z)] can be factored into distinct complex roots. If this polynomial is 
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strictly Hurwitz; that is, the roots are such that 

Q(s)#O forRe{s}≥O (1.19) 

or 

D(z)#O for Izi ≥1 (1.20) 

then the corresponding filter is stable. A straightforward extension of this theorem 

to the 3D case is that a filter is stable if 

Q(s 1,s2,s3)#O, forRe{sj}≥O,Re{s2}≥0,Re.[s3}≥O (1.21) 

or 

D(z 1,z2,z3) #O, Izil ≥ 1, 1 Z2 ≥ 1, 1 z3f ≥ 1. (1.22) 

However, there is no fundamental theorem of algebra for multivariable polynomi-

als, and so a stability criterion based upon root locations is difficult to implement. 

In addition, the roots of the numerator polynomial can influence stability [13]. 

This can occur in the presence of non-essential singularities of the second kind, 

defined as 

P(s 1,s2,s3)=O, and Q(s 1,s2,s3)=0, 

(1.23) 

for s =jw 1= 1,2,3 
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or 

N(z 1,z2,z3)=O, and D(z 1,z2,z3)=O, 

for Izil=1 i=1,2,3. 

Numerous methods for determining the stability of a 3D recursive filters have been 

proposed as documented in [14]. However, an in depth study of these methods is 

beyond the scope of this thesis. 

The impulse response h (t) [h (n)] of a 1D LSI filter is said to be causal if it 

is zero for t <0 [n <0]. In 3D signal processing the concept of causality is gen-

eralized by requiring the impulse response to be zero outside some region of sup-

port. The filters in this thesis are all causal in the sense that their impulse 

responses are zero for t1,t2, or t3 [1, m, or n] less than zero. 

1.2.2.6 Recursive versus Non-Recursive Methods of Filtering 

LSI filters can be broken down into two classifications; finite impulse 

response (FIR) or non-recursive, and infinite impulse response (IIR) or recursive 

filters. In this thesis, the required filtering operation is realized using recursive 

digital filters. However, FiR methods (including VFT methods) can also be used to 

perform the same filtering operations while offering some important advantages 

over hR methods. Therefore, for the sake of completeness, it is important to 

examine the potential for using non-recursive methods. 
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The first advantage FIR filters offer over hR filters is that they are always 

BIBO stable, because a finite length impulse response (bounded in amplitude) is 

always absolutely summable according to equation (1.17b). Second, the design 

process is much less complicated because stability constraints do not have to be 

imposed upon the filter coefficients during optimization. Finally, FIR filters can be 

designed to have a purely real (zero phase) frequency response. This is very 

important in 3D image processing because a non-zero phase response tends to des-

troy lines and edges. 

One of the methods for implementing an FIR filter is to use spatial convolu-

tion, where the output y (1 , m , n) is determined from 

m1 m2 m3 

y(1,m ,n)= n(i ,j ,k)x(1—i ,m—j ,n—k). 
iO jO k=O 

(1.24) 

It is noted that (1.24) is a special case of recursive implementation (1.16) where 

the d(i ,j ,k) (1 +j +k :0 0) coefficients are zero. Comparing (1.24) with (1.7b) it 

is also noted that there is a one to one correspondence between the n (1,1, k) 

coefficients in (1.24) and the impulse response h (i J, k) of the digital filter. 

In order to obtain high selectivity in the frequency domain (i.e. narrow 

passband to stopband transition regions), a long impulse response is usually 

required, hence if the filtering operation is realized using FIR methods a 

corresponding high order filter is needed. For an FIR filter of order m1 m2m3, the 
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number of real multiplications required to process a signal of size L , M , N in the 

I , m , n directions, respectively, via spatial convolution, is proportional to 

L MN m1 m2m3. Hence, computational requirements can become excessive 

because the number of multiplications increases in proportion to the filter order. 

An alternate means of implementing a non-recursive filtering operation is via 

the three dimensional discrete fast Fourier transform (3D-FFT) according to 

Y(n 1,n2,n3) =X(n 1,n2,n3) H(n 1,n2,n3) (1.25) 

where X (n 1,n2, n3), and H (n 1, n2, n3) are the 3D discrete Fourier transforms of 

x (I , m , n) and h (I , m , n), respectively, defined as 

L-1 M-1 N-i 
x(l,m,n) 

1=0 m=0 n=0 

12t 2ir 2it 
exp - j-JF -mn2 - T7m3J 

L-1 M-1 N-i 
h(I,m,n) 

1=0 m=0 n=0 

2E 2ir 2it 
exp zIn 1 - fjmn2 - i 7 nnsj 

for O≤l≤L-1,O≤m≤M-1,O≤n≤N-1 

(1,26) 

(1.27) 

where L, M, and N are each integer powers of two and represent the length of the 
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signal in each of the variables 1, m, and n, respectively. The desired output sig-

nal, y (1 , m , n), is then obtained via the inverse 3D-FFI of Y (n 1, n2, n3) according 

to 

1  L-1M-1N--1 
y(1,m,n)= Y(n 1,n2,n3) 

LMN l=Om=on=O 

(1.28) 

.2ir .2ir .2ir 
exp J—jj-lni + j—-mn2 + J—fi-flfl3 

for O≤l≤L-1,O≤m≤M-1,O≤n≤N—l. 

The number of real multiplications for the 3D-FF'T method, is 

2L M N 1092  M N + 2L M N which is independent of the order of the filter. 

Thus for long impulse responses, 3D-FF1 methods are significantly faster. The 

main drawback of the 3D-FFJ' method is the necessity for storing large arrays. In 

order for the output signal y (1 , m , n) to be recovered via the inverse 3D-FFI it is 

necessary to store (L +m2+m3 - 1)x (M +m 1+m3 - 1)x (N +m 1+m2— 1) 

data points for both X (n 1, n2, n ) and H (n 1, n2, n ). For a modest 3D image of 

size 256 by 256 by 256 and a 16 bit word length, the 3D-FFT method would 

require access to over 64 megabytes of data. This represents a significant fraction 

of memory for a typical mini-computer system. 

Recursive filtering (I) techniques represent an attractive alternative to the 

above methods both in terms of computational time and storage requirements. For 
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a similar filtering operation, the order for the required hR filter is generally much 

less than that required for an FIR filter. This is because long impulse responses, 

required for selectivity can be generated by the use of recursion. The additional 

computational and storage required to implement the recursive segment of the 

difference equation are small compared to the overall savings obtained by using a 

lower order of filter. 

There are also several problems associated with using multidimensional recur-

sive digital filters. As mentioned in Section 1.1, three of the most challenging 

problems are approximation, realization and stability. A fourth problem is that hR 

filters usually have a non-linear phase response which can distort edges and lines. 

The easiest and most common method for correcting this problem is to create a 

zero phase hR filter by cascading two HR filters having frequency responses 

H (z 1 , , z3) and H (z f , , z3 1). The overall frequency response is then the 

real nonnegative function I H (e1 , 02, 0)3)1 2• 

1.3 Scope and Objective of Thesis 

The primary objective of this thesis is to introduce a high quality 3D LSI 

recursive digital filter for the enhancement of a class of 3D signals, known as 

linear trajectory (LT) signals. It is intended to demonstrate that the enhancement 

capabilities of the proposed filter, referred to as a linear trajectory bowl (LTB) 

filter, exceed those of a previously reported LT filter for the practically important 



21 

class of highly sampled LT signals. It is also intended to show that the approxima-

tion procedure guarantees stability, is straightforward, and not computationally 

intensive. 

A secondary objective is to describe in more detail the spectral characteristics 

of LT signals. This objective supports the primary objective because an under-

standing of the signal spectrum aids in the design of the most appropriate filter. 

In Chapter Two, an introduction and discussion of the concepts of LT signals 

and filters is presented. The spectral characteristics of LT signals are discussed. 

The concept of directional selectivity is then introduced and is used as the basis for 

comparing the previously reported filter [referred to as a uniform bandwidth linear 

trajectory (UBLT) filter] and the proposed ideal LTB filter. 

In Chapter Three, the procedure for obtaining a stable approximation to the 

ideal LTB filter is described. 

In Chapter Four, the concepts presented are computationally verified. The 

validity of the design method is verified by means of an actual design example. It 

is also demonstrated, by means of a typical 3D filtering application, that the pro-

posed LTB filter has better enhancement capabilities (in terms of directional selec-

tivity) than the UBLT filter for the case of highly sampled LT signals. 

Conclusions and recommendations for future work are presented in Chapter 

Five. 
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X(s 1 ,s2,s3) 

T(s 1 ,s2,s3) 

Y(s 1 ,s2,s3) 

(a) 

H(z 1 ,z2,z3) 

Y(z 1,z2,z3) 

(b) 

Fig. 1.1. Block diagrams representing the transfer functions of a (a) continuous 
domain filter (b) discrete domain filter. 
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X , S2 

X(s 1 ,s2,s3 

 am T1(s 1 ,s2,s3) 

(a) 

T2(s 1 
Y(s 1,s2,s3) 

T1(s1,s2,s3) 

T2(s1 ,S2'3) 

Y(s 1,s2,s3) 

(b) 

Fig. 1.2. Two LSI continuous domain systems connected in (a) cascade (b) parallel. 



CHAPTER 2 

LINEAR TRAJECTORY SIGNAL PROCESSING 

2.1 Introduction 

A linear trajectory (LT) signal is a three dimensional signal characterized by 

the fact that there exists a direction in 3D (usually two spatial and one temporal 

dimension) space along whichD the signal is constant [4]. In the field of moving 

image processing this corresponds to a dynamic (i.e. time-varying) signal that 

ideally moves in a straight line with uniform speed in a 2D image. In the fre-

quency domain, these signals have the property that their spectrum lies entirely on 

a plane containing the frequency domain origin. This plane is referred to as the 

signal plane [15]. 

Linear trajectory signal processing is concerned with the enhancement of LT 

signals. For example, it may be required to enhance the image of an aircraft mov-

ing at a given speed and trajectory across a radar screen, while attenuating contain-

mating signals such as noise and other aircrafts having different speeds and/or tra-

jectories. 

A type of filter used for the enhancement or rejection of LT signals is the LT 

filter. A LT filter is defined in this thesis as any nD filter having a plane of 

24 
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resonance which passes through the frequency domain origin. For example, the 

filters having magnitude frequency responses shown in Figs. 2.1 - 2.3 are all LT 

filters because, despite having differently shaped passbands, they each have a plane 

of resonance. 

The usefulness of LT filters was first demonstrated in [4], where it was shown 

that by aligning the resonant plane of the digital filter with the signal plane, an 

input object may be filtered with zero attenuation, whereas another identical 2D 

input object in a non-aligned signal plane may be significantly attenuated. That is, 

LT signals could be enhanced on the basis of their trajectory and speed in the 2D 

image. In another application [5], first order adaptive LT filters were employed in 

the tracking and enhancement of objects that move with time on an arbitrary, but 

smooth, trajectory in a dynamic digital image. This was accomplished by model-

ing such signals as a series of LT signals. 

The design of LT filters has typically been accomplished by either applying a 

transformation to a normalized 1D prototype lowpass function, such as the Butter-

worth or Chebychev [12], or equivalently, using the concepts of network resonance 

[4]. In this chapter, it is shown that because LT filters designed using the existing 

techniques have passbands that are of uniform width, they suffer from low direc-

tional selectivity at frequencies near the origin in COi, (02, (03, and excessive direc-

tional selectivity for frequencies well away from the origin. The practical 

significance of this is that the filter may be unable to adequately reject non-
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resonant LT signals that occupy a large spatial area, regardless of their 3D trajec-

tory. (In this respect this problem is analogous to that encountered when utilizing 

3D beam filters [4].) 

As a solution to this problem, a LT filter having a directional selectivity that 

is ideally independent of the spatial area of the object is proposed. This is 

achieved by choosing JT (jco1JCO2J (03)1 to have a bandwidth around the 

resonant plane of the required ideal filter that increases in proportion to the dis-

tance from the origin in o, (O, (03, thus creating a circularly symmetric fan 

shaped passband , as illustrated by the perspective diagram in Fig. 2.4(a), and by 

the contour plot shown in Fig. 2.4(b). In the following, filters that have this shape 

of passband are referred to as linear trajectory bowl (LTB) filters. It should be 

noted that the stopband of the LTB filter is the interior of an ideal 3D cone-shape 

where the angle of the cone is close to 1800. The complement of the 3D solid 

cone is referred to as a bowl. 

In Section 2.2 a LT signal is described in terms of its continuous domain spa-

tial and spectral properties. Some new terminology is presented which enables the 

designer to describe a LT signal in terms of physically meaningful and observable 

parameters. It is also shown how the 2D transform of the static 2D object can be 

used in conjunction with these parameters to obtain the spectrum within the signal 

plane. This is an important result because it can be used to obtain an estimate of 
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the signal attenuation as described in [15]. 

In Section 2.3 the concept of a LT filter is explained in more detail. Exam-

ples of one, two and three dimensional LT filters are presented. The previously 

reported LT ifiter, referred to as a uniform bandwidth linear trajectory (UBLT) 

filter is then described in detail. This is followed by a description of the proposed 

LTB filter. 

In Section 2.4 the problems associated with describing the attenuation charac-

teristics of a LT filter are discussed and the concept of directional selectivity is 

introduced. 

In Section 2.5 a method is proposed for measuring directional selectivity and 

the ideal UBLT and LTB filters are compared accordingly. 

2.2 Linear Trajectory Signals 

The continuous domain LT signals x (t1 , t2, t3) are defined in [4] as the class 

of 3D signals for which there exists a direction in continuous 3D space along 

which x (t1 , t2, t3) is constant. For example, the signal shown in Fig. 2,5 is a LT 

signal having constant intensity in a direction defined by the vector 

d = d1e1 + d2e2 + d3e3 (2.1) 

where e1, e2, e3 are orthogonal unit basis vectors in the t1, t2, t3 directions, 

respectively. The signal x (t1 , t2, t3) is represented as a static 3D signal in Fig. 



28 

2.5(a) and as an equivalent dynamic 2D signal in Fig. 2.5(b), where the t3 axis is 

considered as the time axis. The terms signal trajectory O, and signal speed s are 

now introduced and defined as 

and 

tan 1— d1 
d2 

ss  d3 =tanW 

(2.2) 

(2.3) 

where O, and qi are shown in Fig. 2,5(a). If a rotation is performed upon 

x (t1 , t2 , t3) to a u1 , u2, u3 coordinate system such that the u3 axis coincides with 

the constant intensity direction vector d, then the rotated signal is independent of 

u3 and can be written as Xstat (u 1 , u 2). The signal Xstat (u1 , u 2) is referred to as the 

static representation of the LT signal x (t1 , t2, t3). Thus 

uRt (2.4) 

where R is the 3D rotation matrix given by 

1 0 0 cose5 —sines 0 
R = R1R3 = 0 cosNr5 —sinllf5 s1n05 cos05 0 

0 sinlv5 coslJ5 0 0 1 
(2.5) 
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and R3 represents an initial rotation about the t3 axis by an angle e and R1 

represents a subsequent rotation about the t1 axis by an angle 'qc5. 

Let the complex 3D Fourier Transform of x (t 1, t2, t3) be written 

X (o1,o,o). It may be shown [4] that X (w , 0)2, (03) lies totally in a plane given 

by 

SIGNAL (sinlV3 sine5 )Oi + (sinV5 cos83 )o + (cosqf5)0)3 = 0 PLANE (2.6) 

which passes through the origin in 0)1,O)2,03. It is also shown in [4] that the signal 

plane in the rotated frequency domain ≤≥i K22, C23, corresponding to the rotated 

spatial domain u1 , u2, u3, is given by 

- (1 SIGNAL 
9" PLANE 

and the rotated and unrotated frequency variables are related by 

(2.7) 

Q.= Rw. (2.8) 

It is now shown that the complex 2D Fourier transform Xstat (Q1 2), of the 

static representation can be calculated from the usually known complex 2D Fourier 

transform X (col , 0)2)of the static 2D object x (t 1 , t2) (shown in Fig. 2.5b) and the 

known signal parameters e5 and Nfs. It follows from (2.4) that the static represen-

tation is given by 
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Xstat(Ui ,u2) = x(c0s05 t1—sinO t2, cosc5 (sin03 t1+cos8 t2) — sin1p t3).(2.9) 

With t' = [t '1 2'" , 3]T (0' 

w [i 0)1T and the transformation R3 such that 

and 

t' = R3 t and a( = R3 Co (2.10) 

the result, from (2.9) and (2.10) is 

(u 1 U2) = x (t 1', cosp (t2'-  tanlIc t3)). (2.11) 

The complex 2D Fourier transform of (2.11) is given by 

F [Xstag (u 1 , u2)] Xstat (i , ≤2) = cos'1f X((01' , (0 seclV )exp[—j (02' t3 ta11w8 1. (2.12) 

Equation (2.12) relates the complex 2D Fourier Transform Xstat (i ≤2) of the 

static representation x (u 1 , u 2) of the dynamic 3D signal to the usually known 

2D transform of the static signal X (Cot , oh). The implicit dependence upon 0) and 

direction 8 is via (2.10). A physical interpretation of (2.12) is that the complex 

2D Fourier transform Xstat which is in the signal plane 923 = 0, is 

obtained from the corresponding complex 2D Fourier transform of the static object 

X (COI (02) by means of the following four geometric operations on X (0i 02): 

(i) scale the magnitude of X (i 0)2) by cosllf5, where s = tamys is the 
signal speed; 



31 

(ii) rotate the frequency axes (Ol, o clockwise by the angle 8, 
where O, is the signal trajectory; 

(iii) elongate the spectrum in the direction of the O2' axis by the factor secllf5; 

and (iv) multiply by the delay operator exp[—j o)2't3tan 5 1. 

2.3 Linear Trajectory Filters 

A LT filter has been defined as any nD filter having a plane of resonance 

which passes through the origin. A very simple LT filter is the 1D lowpass filter. 

Consider the 3D representation of the passband region for the magnitude frequency 

response of a typical 1D LT filter as shown in Fig. 2.1(a). The response is a func-

tion of only one frequency variable, hence the resonant plane must have a normal 

corresponding to one of the coordinate axes. By definition, the resonant plane 

must also pass through the origin, thus the frequency response plotted as a one 

dimensional function must have a point of resonance at the origin; that is, it must 

have a lowpass type response as shown in the more familiar form in Fig. 2.1(b). 

Similarly, -3dB points in the 1D representation are -3dB planes in the 3D represen-

tation. 

Linear trajectory filters can also be a function of two frequency variables (i.e. 

two dimensional). The resonant plane of a 2D LT filter, can have an orientation 

described by a normal N, that is a function of two frequency variables as shown in 

Fig. 2.2(a). 2D LT filters correspond to any class of two dimensional filters that 
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have a line of resonance passing through the origin, such as occurs in the familiar 

fan or velocity filter shown in Fig. 2.2(b). 

A significant restriction upon one and two dimensional LT filters is that the 

resonant plane cannot be oriented in an arbitrary direction in 3D space. In most 

practical applications however, the LT filter is employed to enhance a LT signal, 

where the signal plane has an arbitrary orientation in 3D space. In order to 

enhance these signals a LT filter capable of having a resonant plane at any desired 

orientation in 3D space is required. Clearly this can only be achieved by using a 

3D LT filter. 

In the literature [4], such 3D LT filters have been designed by applying a 

rotational transformation to a 1D LT filter so that the resonant plane is rotated to 

the desired orientation as shown in Fig. 2.3. This design method avoids the need 

for numerical optimization over a 3D grid and is well suited for adaptive filtering 

required in such applications as tracking [5]. LT filters designed using this tech-

nique are referred to as UBLT filters and are described next. This is followed by a 

description of the proposed LTB filter. 

2.3.1 The Uniform Bandwidth Linear Trajectory Filter 

The magnitude frequency response I TUB (1 cot f(02 f co3) I of the UBLT filter 

is obtained by applying the transformation 
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TUB (/oi,f(o2,fo)I = IT(jo))I, 0) = a0)+ a2o2 + a3c03 (2.13) 

to a normalized 1D lowpass function T (i w) such as the Butterworth or Chebychev 

[12]. The point of resonance at 0) = 0 radians per second where IT(Jco) I = 1 in 

the 1D prototype is therefore transformed to a plane of resonance given by 

- RESONANT 
cL'10)120)2+a3c03 - PLANE (2.14a) 

where the orientation of the plane is determined from the 

aj coefficients, i = 1, 2, 3.  It is noted that by simply adjusting these coefficients 

the normal to the resonant plane N, given by 

Nr =alei+ae+a3eco3 (2.14b) 

where e 1,e,,2, e are orthogonal unit basis vectors in the 0)1' (02, (03 directions, 

respectively, can be placed in adjusted to the desired orientation. The resonant 

plane can also be expressed in terms of physically meaningful parameters such as 

the resonant trajectory and resonant speed. The resonant trajectory 8r of the filter 

is defined as the angle 

tan(-1) 

shown in Fig. 2.3, and the resonant speed 5r of the filter as 

(2.15) 
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\j(cz?+a) 
Sr  a3 

The resonant speed sr can also be considered in terms of the angle 

(2.16) 

Nfr = MCI (sr ) (2.17) 

as shown in Fig. 2.3. Using (2.15), (2.16) and (2.17), the equation for the resonant 

plane (2.11) may be rewritten in terms of Or and Vr as 

(SiflNfr SflOr)O)i + (sinMJr cosOr )z+ (CO5Vr)O)3 = 0. RESONANT 
PLANE (2.18) 

Similarly, the -3dB points of IT (j a) I at the normalized cutoff frequency of 

coo = ±1 radians per second are transformed into two -3dB planes given by 

—3dB x1o1+ cx2(o2+ a3o)3 = ±1. PLANES (2.19) 

The 3D bandwidth B3 is defined [5] as the perpendicular distance between the two 

-3dB planes in (2.19) so that 

B3— 
2  

I lal 12 

where I I a 112 is the Euclidean norm of a and is given by 

I Jai I2=(a?+a+a) h/2 . 

(2.20) 

(2.21) 
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In summary, the passband is centered along the resonant plane (2.18); it is 

bounded by the two -3dB planes (2.19), and has a uniform (i.e. frequency-

independent) width given by (2.20) as shown in Fig. 2.3. It is therefore referred to 

as a uniform bandwidth linear trajectory (UBLT) filter. 

2.3.2 The Proposed Ideal Linear Trajectory Bowl Filter 

Consider Fig. 2.4(a), which illustrates the ideal passband region of the pro-

posed ideal LTB, filter. As in the UBLT filter, the resonant plane given by (2.14) 

or (2.18), is at the center of the passband. If the filter did not have a plane of 

resonance it would not be a LT filter, However, the -3dB surfaces are defined to 

be on the faces of a pair of cones as opposed, to a pair of planes in the UBLT 

filter. The ideal passband is circularly symmetric about the normal Nr to the 

resonant plane, and has a fan shaped cross section with a total angular width of 

20,. A contour plot representing the passband width as viewed along this normal 

is shown in Fig. 2.4(b). 

2.4 Directional Selectivity of a Linear Trajectory Filter 

In moving image processing applications, LT filters are usually designed to 

enhance a signal having a given speed and 2D trajectory, while attenuating all 

other signals with different speeds and trajectories. Thus an important measure-

ment of a LT filter performance is its directional selectivity. Directional selectivity 
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is defined in this thesis as, the ability of a LTfilter to reject or enhance LT signals 

on the basis of their 3D trajectory. (i.e. the combination of their speed and 2D tra-

jectory). Whether the directional selectivity of a LT filter is good or poor depends 

upon the application at hand. For example, if it were desired to enhance a signal 

having a precisely known 3D trajectory, then a relatively high directional selec-

tivity would be desirable so as to eliminate any other signals having a similar 3D 

trajectory. In contrast, if the 3D trajectory is not precisely known, then it would be 

desirable to have a wider range of trajectories fall within the passband of the filter. 

(i.e. a lower directional selectivity). 

Unfortunately signal attenuation can also depend upon the spatial characteris-

tics of the 2D object such as size, shape and orientation. That is, the attenuation of 

a signal cannot be determined solely on the basis of its 3D trajectory with respect 

to the resonant 3D trajectory. 

2.5 Comparison of UBLT and LTB Filter Attenuation Characteristics 

Comparing Figs. 2.3 and 2.4, it is observed that both passbands are centered 

about a plane of resonance with an orientation described by the angles 8 and Wr• 

As a result, both filters ideally pass, with zero attenuation, LT signals when the 

signal plane is aligned with the resonant plane of the filter. 

Now, assume that it is required to reject a non-resonant LT signal; that is, a 

LT signal having a 3D signal plane that does not coincide with the 3D resonant 
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plane of the filter, or equivalently, having a spatial-temporal 3D trajectory that does 

not coincide with the 3D resonant trajectory. In this case, according to elementary 

planar geometry the signal and resonant planes intersect along a line I which 

passes through the origin with a direction determined from the cross product of the 

normals to each plane [16]. Consider Fig. 2.6, which illustrates the signal plane 

and each passband when viewed along this line of intersection and Fig. 2.7 which 

illustrates the intersection of the respective passbands with the signal plane. As 

derived in the Appendix, the fractions of the signal plane within the UBLT and 

LTB filter passbands for a given circular region of interest (ROT) having radius r 

centered about the origin in the signal plane are 

RUB (r)= 1 for r≤ 
2 smO.,. 

11 3 

( 

B3 1r2 - B / (2 sinOsr)2 1/2 J 2 sin 1(B 3 /2rsin83 ) 
  +  

ir2sinO 

otherwise 

as indicated by the shaded region of Fig. 2.7(a) for the UBLT filter, and 

Rb(r)= 20 
Ic 

(2.22) 

(2.23) 

as shown in Fig. 2.7(b) for the LTB filter. The variable °sr is the angle between 

the resonant and signal planes given by equation (A2) found in the Appendix, and 
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4) is the angular width of the LTB filter that intersects the signal plane as shown in 

Fig. 2.7. 

It is now proposed that a measure [DS (r )] of the directional selectivity be 

obtained by considering the fraction of the signal plane outside the passband of the 

filter for a region of interest (ROI) of fixed size. That is, 

DSUB (r) = 1 —RUB (r), (2.24) 

DSb(r) = 1 - R, (r). (2.25) 

From Fig. 2.7(a) and (2,22), it is noted that the signal plane lies entirely 

within the passband of the UBLT filter at frequencies within a radius 

r = B3 / (2 sinOsr) from the origin. This radius r is a maximum of infinity when 

the signal and resonant planes are coplanar, (esy = 0), and a minimum of B 3/2 

when the planes are aligned in quadrature (0,. = -). This is significant, because 

all spectral energy within a distance B3 /.2 from the origin will reside within the 

passband of the filter, regardless of the orientation of the signal plane. That is, the 

directional selectivity as measured using (2.24) is zero for any signal plane energy 

within a radius B3 / 2 from the origin. 

The region of zero directional selectivity could be decreased by decreasing the 

bandwidth B3 of the filter. However, this may cause unacceptably high selectivity 

at frequencies well away from the origin and require a prohibitively high-order 
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filter. 

In contrast, the only fraction of the signal plane within the passband of the 

proposed LTB filter is that within the fan shaped shaded area shown in Fig. 2.7(b) 

and given by (2.23). This fraction varies from a maximum of unity when the sig-

nal and resonant planes are coplanar, ( = --), to a minimum when the planes are 

in quadrature (4 = °b). Compared to the UBLT filter, for small regions of interest 

centered about the origin the fraction of frequencies within the passband of the 

LTB filter is significantly smaller as indicated by the relative sizes of the shaded 

areas in Fig. 2.7. As a result, low frequency energy of non-resonant LT signals is 

largely outside the passband, resulting in a higher attenuation and directional selec-

tivity than the UBLT filter. Furthermore, the fraction of the signal plane within the 

passband of the LTB filter is independent of the radius of the circular ROI as indi-

cated by (2.23). Thus, for the LTB filter, 2D LT objects of a similar shape and 3D 

trajectory, but of different sizes, are attenuated by equal amounts. In this sense, 

the attenuation characteristics of LTB filters are superior to those of UBLT filters. 

These results are summarized in Fig, 2.8 where (2.24) and (2.25) are plotted 

as a function of r for the case where Os,. = 900, 4 = 50, and B3 = 0.12 rad/s. 

To avoid misunderstanding, it should be noted that directional selectivity, as 

measured by (2.23) and (2.24), is not a direct measurement of signal attenuation; 

that is, a high directional selectivity does not always correspond to a high signal 



40 

attenuation for non-resonant LT signals. For example, if the shape of a 2D object 

is such that its frequency spectrum is approximately along the line of intersection I, 

then the object would be passed regardless of the directional selectivity. Further-

more, although a high correlation between directional selectivity and signal attenua-

tion clearly exists for non-resonant LT signals, other factors such as the orientation 

of the object within the 2D spatial plane t1 , t2 can also influence the signal 

attenuation. 

For example, several important classes of dynamic objects (such as subma-

rines, aircraft, and missiles) have a spatially elongated static spectrum X ()i 0)2) 

where the direction of elongation is determined from the spatial orientation of the 

object. In addition, recalling from Section 2.2, the spectrum of a (dynamic) LT 

object is elongated by the factor (seclJ) in a second direction determined by their 

2D spatial trajectory as described by (2.12). For such elongated objects, the direc-

tion of elongation and the speed dependent elongation factor secW may be in the 

same direction resulting in a highly elongated spectrum X ()i 2) within the 

signal plane g23 =  0, as shown in Fig. 2.9. This is significant because if the object 

is oriented such that the signal spectrum is elongated in the direction of I, then 

most of the signal energy will fall in or near the passband of the filter and a rela-

tively low attenuation will occur. If, however, the direction of elongation is 

approximately perpendicular to I, as illustrated in Fig. 2.9, then more signal energy 

will be located further away from the passband of the filter resulting in a higher 
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attenuation. Therefore, in addition to velocity (i.e. 3D trajectory), orientation can 

have a significant effect upon the attenuation of non-resonant LT objects, especially 

if they are spatially elongated. The example in Section 4.4 illustrates the effect of 

object orientation upon signal attenuation. 

2.6 Summary 

This chapter introduces and describes LT signals and filters. The terms signal 

trajectory, resonant trajectory, signal speed, and resonant speed are introduced and 

are shown to be useful in describing the characteristics of LT signals and filters. A 

method for determining the two dimensional signal plane containing the spectrum 

XItat (i 2) of the object is given by equation (2.12). This equation may be 

interpreted in terms of four geometric operations on the known 2D Fourier 

transform X (col ) of the static version of the input object. 

The concept of a LT filter is introduced. One, two and three dimensional LT 

filters are described. Three dimensional LT filters are shown to be the most useful 

because their resonant planes can be placed in any desired orientation in 3D space. 

The concept of directional selectivity is defined as, the ability to reject a LT 

signal that has a 3D trajectory (i.e. direction) other than the resonant trajectory. It 

is proposed to measure directional selectivity by considering the fraction of the sig-

nal plane outside the passband of the filter for a circular ROT centered about the 

origin of the signal plane. 
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Two types of LT filters with different shaped passbands are then examined 

and compared on the basis of directional selectivity. 

The first type referred to as a UBLT filter, is designed by transforming a 1D 

normalized lowpass Butterworth prototype filter, which results in a passband hav-

ing a uniform width. This typically results in low or zero directional selectivity at 

frequencies near the origin in (Oi 02, o, and excessive directional selectivity at 

frequencies well away from the origin. 

The second type is the proposed LTB filter which has a bowl shaped passband 

with a directional selectivity that is ideally independent of the size of the defined 

ROI. Practically, this means that attenuation is independent of the size (in terms of 

its spatial area) of the object and that spatially large objects can be selectively 

enhanced or attenuated on the basis of their 3D trajectory. 

Finally, it is shown that in addition to 3D trajectory, the shape and orientation 

of the object can significantly influence its attenuation. For spatially elongated 

objects, the importance of the orientation of the object is even higher. 

In the next chapter a method for designing a 3D digital recursive filter that 

approximates the ideal LTB filter is presented. 
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M(0)) resonant point 
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(b) 

Fig. 2.1. Passband of a 1D linear trajectory filter, (a) 3D representation (b) 
equivalent representation as a 1D lowpass filter. 
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Fig. 2.2. Passband of a 2D linear trajectory filter, (a) 3D representation (b) 
equiv1ent representation as a 2D fan filter. 
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Fig. 2.3. Passband of a 3D uniform bandwidth linear trajectory filter. 
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-3dB surface 
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resonant plane 

Fig. 2.4. Ideal passband region of proposed LTB filter, (a) perspective plot, (b) 
contour plot as viewed along the normal to the resonant plane. Each 
contour represents a surface of constant passband width, the passband 

width is lowest at the center of the plot. 
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t3 

equi-intensity contour 

(a) 

Fig. 2.5. (a) 3D representation of a linear trajectory signal x(t1 , t2, t3). Image is 
static when viewed in direction of d, (b) representation as a moving 21? 
object. 
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signal plane 

(sini!, s1n93) co + (sinW cos9) o + (cosNf) CO3 = 

resonant plane 

('4r Slfler) th1 + ( 1 V, COS8r) C2 + (COSJr) CO3 = 

-3dB surface 

(UBLT filter) 

-3dB surface 

(LTB filter) 

Fig. 2.6. Signal plane and passbands of ideal LTB and UBLT filters when viewed 
down line of intersection I. 
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Fig. 2.7. Region of signal plane within (a) UBLT and (b) LTB filter passbands for 
circular regions of interest of various sizes. 
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University of Calgary. Department of Electrical Engineering. 

Fig. 2.8. Directional selectivity DS(r) versus radius r of a circular region of interest 
centered about the origin in the signal plane. (B 3 = 0.12 radls, 4 = 50) 
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Fig. 2.9. Line of intersection I and elongated spectrum Xsiat (i ≥) within signal 
plane. 



CHAPTER 3 

DESIGN OF THE PROPOSED HIGH QUALITY 

LINEAR TRAJECTORY BOWL FILTER 

3.1 Introduction 

In the previous chapter the ideal linear trajectory bowl (LTB) filter was intro-

duced and compared to an existing uniform bandwidth linear trajectory (UBLT) 

filter, The proposed filter had a bowl shaped passband which resulted in a direc-

tional selectivity than was ideally independent of the spatial area occupied by the 

linear trajectory (LT) object. 

In this chapter, the design method for obtaining a 3D LSI recursive digital 

filter having a magnitude frequency response that approximates that of the ideal 

LTB filter is outlined. The design procedure is shown to be straightforward, com-

putationally nonintensive and capable of producing the required guaranteed BIBO 

stable filter. The fundamental step, as described in Section 3.2, is to approximate 

the bowl shaped passband by adding the transfer functions of two 3D LT filters 

having wedge shaped passbands. In Section 3.3 it is shown how each wedge-

shaped 3D filter is obtained by performing a continuous frequency domain rotation 

transformation using a technique similar to that proposed in [10] on a suitable 

55 
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highly selective narrow band 2D stable analog fan filter. In Section 3.4 the 

approximation procedure for the 2D fan filter is briefly described. 

3.2 Approximation of the Bowl Shaped Passband 

The passband shape of the ideal LTB filter is illustrated in Figs. 2.4(a) and 

2.4(b). Each contour shown in Fig. 2.4(b) represents the passband width at a given 

distance from the resonant plane. As expected the contours are evenly spaced and 

circular when viewed along the normal to the resonant plane. 

It is now proposed to add, according to Fig. 3.1, two LTfilter transfer func-

tions Tw i(s 2, s 3)  and Tz(si , s2 , s) having 3D wedge shaped passbands, to 

produce an approximation to the ideal bowl filter. The transfer function 

Tb 2 53) of the resultant approximate linear trajectory bowl (ALTB) filter is 

therefore determined from 

Tb(sl,52,53) = 1/2 ITW 1(S1 ,S2 ,s3) .+ T2(s1s2s3)]. (3.1) 

If these wedge filters have ideal wedge shaped passbands, then the passband of the 

ALTB filter will have the passband shape shown in Fig. 3.2. The ideal 3D wedge 

filters are defined below. 

Let the magnitude frequency response of the first ideal 3D wedge filter be 

given by M1(col , (0, () = I T1 Cl CO1 f CO2, f (03)1. It is defined, for this wedge 

filter, a plane at the center of the passband region on which Mw i(0i , (O, (03) = 1 
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as shown in Fig. 3.3. This plane is referred to as the passband center-plane and it 

is given by 

a11(j)1+ a0) + a133 = 0- CPI center plane (3.2) 

The -3dB planes of this first 3D wedge filter M i(0i , O), (03) are defined as those 

planes obtained by rotation about a line having direction passing through the 

origin of the passband center-plane CP1. The -3dB planes may be written in the 

form 

b I 1co, + b 122 + b 133 = 0 P1_ —3dB plane (3.3a) 

c11 C01 + c120)2 + c130)3 = 0 P1+ —3dB plane (3.3b) 

where P1_ and P1+ correspond to rotations about d1 by amounts ±81, respectively. 

Similarly, the magnitude frequency response M2(o1 , (0, () of the second wedge 

filter is defined to have a passband center-plane denoted by 

a0)1 + a 2(0 + a 30)3 = 0 CP2 center plane (3.4) 

and -3dB planes that are obtained by rotation about a line having direction i2 pass-

ing through the origin of CP2. These two -3dB planes are denoted by 

b210)1 + b222 + b233 = 0 P2_ —3dB plane (3.5a) 



58 

c21 0)1 + c220)2 + c3w3 = 0 P2. —3dB plane (3.5b) 

where P2_ and P2+ correspond to rotations about d2 by amounts ±02, respectively. 

The required LTB filter is now approximated by adding the above-defined 

ideal 3D wedge filters Mw i(0)i , 0), ()3) and M2(w1 , 0),O) so that 

(i) the center planes of each wedge filter are coplanar 
(i.e. CP1 = CP2 ); 

the axes of rotation, d1 and (12' are in quadrature; 

and each wedge filter has the same angular width 
(i.e. ±81 = ±82 = ±0) The subscripts are removed 
because it is assumed that 01 = 02 throughout the 
remainder of this thesis. 

The above three constraints ensure that the resultant ALTB filter has only one 

resonant plane and that the passbands of the ideal wedges add to form a good 

approximation to a circular symmetric fan-shaped passband, as illustrated in Fig. 

3.2. 

It should be noted that, even though ideal wedge filters are employed, the 

resultant passband will not be ideal; that is, it will not be circularly symmetric but 

will have the shape indicated in Fig. 3.2(b). The angular bandwidth 8b is not con-

stant but instead varies from a maximum Ob,. given by 
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°bmax = tan' [tane j 
to a minimum of zero as shown in Fig. 3.2(a). 

(3.6) 

3.3 Design of the Required 3D Wedge Filters 

This section describes a method for approximating the ideal 3D wedge filters 

that have been defined and are required for implementing the ALTB filter. The 

first step of the method proceeds from an ideal prototype fan filter T (i ,2) hav-

ing magnitude frequency r'esponse M (w1, 02) as shown in Fig. 3.4. The second 

step is to realize the required passband shape around the intermediate resonant 

plane 03 = 0. This plane is chosen because the required passbarid shape can be 

realized around 03 = 0 by using wedge filters T i(i ,8 3) and T 2(s2 ,5 3) that are 

functions of only two variables (i.e. 2D fan filters), thus reducing the overall com-

plexity of the design problem. The third step is to rotate each of the wedge (fan) 

filters (i.e. their passbands ) to the desired orientation as prescribed by the angles 

or and ii shown in Fig. 2.4(a). The transfer functions of the two rotated 3D 

wedge filters are given by T 1(s1 , 2 ,53) and T2(si s , s 3), respectively. The 

fourth and final step is to obtain the z-domain transfer function using the modified 

bilinear transform. The last three steps are described in detail below. 

Let the Laplace transform transfer function of the first unrotated wedge filter 

7 i( 1 s3), having magnitude frequency response M i(i , (03), be a function of 0i 
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and (03 with the center-plane CP1 corresponding to the plane Co3 = 0 and the axis 

of rotation d1 aligned with the 2 axis. The second prototype 2D fan filter 

T 2(2 , s 3), having a magnitude frequency response M 2(0)2, (03), is then selected 

to be a function of 02 and w3 with the center-plane CP2 also corresponding to the 

plane co3 = 0 and d2 aligned with the (01 axis. It is noted that, because d1 and d2 

are aligned with the 2 and co, axis, respectively, they must be in quadrature as 

required. By adding M i(coi , 3) and M 2(0)2, o) according to 

= '/z IMP 1 (COI , (03) + M2(o)2 ,()3)] (3.7) 

the required intermediate magnitude frequency response M1,,(Co1 , (02, (03) surround-

ing the intermediate resonant plane co3 = 0 is achieved, as shown in Fig. 3.2(a). It 

is observed that since ±01 = ±02 = ±O  both M i(i ,0)3) and M 2((02,0)3) can be 

realized from the same prototype 2D fan filter M (col, 2) according to 

and 

= M  (COI ,co3) 

M 2((o2,o 3) =M((,Co3). 

(3.8) 

(3.9) 

The third step, which is to rotate the passband to the desired orientation in 3D, is 

now described. 
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The transfer functions Ti(si,s2,s3) and T2(si,s2,s3) of the rotated 3D 

wedge filters, required for (3.1) are determined from their unrotated counterparts 

T 1(s 1,s3) and T 2(s2,s3) according to 

Twl(s l,s2,83)=Tpi(sA1,.f2,sA3), (3.10) 

where 

A AT s=[s i,52,s31T 

and 

RmS (3.11) 

with Rm defined as the modified rotation 

'1 0 0 1 0 0 
= 0 1 0 siner COSOr 0 (3.12) 

0 S1flVr COS4Jr 0 0 1 

required to rotate the passband about the (03 axis by the amount Or and about the 

axis by the amount 'sf,.. 

It should be noted that the conventional rotation matrix R used in [4] is given 

by 
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1 0 0 COSOr S1fl0r 0 
o COSIJJr Slflhlfr SIflOr COSOr 0 
o Sff4fr COS't 1r 0 0 1 

(3.13) 

However, this rotation is not employed because the resulting transfer function will 

be BIBO unstable [10]. 

From Fig. 3.2(a), the intermediate resonant plane is given by 

and the four -3dB planes are 

(03 = 0 (3.14a) 

—o 1sin0 + ocos0 = 0 

o1sin9 + o3cos8 = 0 

—o2sin0 + Co3 cosO = 0 

i sinO + o cosO = 0. 

(3.14b) 

After the rotational transformation (3.7), the resonant plane and four -3dB planes 

are given by 

i SlflNfr sinO,. + o)2 sin-V,. COSOr + (03 COS4)r = 0 (3.15a) 

(01 (SiflWr sinO,. cosO—sinO) + co2 sin\Ifr cosOr cosO + O)3COSWr cosO = 0 (3.15b) 

'°i (Siff4fr sinOr cosO+sin0) + (02 silfljf,. COSOr cosO + (03 COSVr cosO = 0 (3.15c) 

0)i Siff4frSiflOrcosO + (02(sin4f  cosO, cos0sin0) + (03 COSWrCOSO = 0 (3.15d) 

i Siflhlfr sin0 cosO + Co2 (sinV,. CosO,. cosO+sin8) + W3 COSlVr cosO = 0. (3.15e) 
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Comparing (2.6) with (3.15a), it is observed that the modified rotation R. per-

forms the desired rotation of the intermediate resonant plane to the required loca-

tion. However, the shape of the passband is only preserved for low values of 8r' 

(O r<<900) and Vr' ('i',. 9Øo)• This problem can solved by frequency scaling 

T i(i ,53) and Ti,, 2(s2 , 53) prior to rotation, and then by suitably adjusting Or and 

1Vr, as proposed in [lO]. 

The fourth and final step is to obtain the z.-domain discrete 3D transfer func-

tions Hw 1(z i , z2, z3) and H2(zi , Z  2, z3) for each wedge filter from their s-domain 

counterparts Ti(sj,s2,s3) and T2(si,s2,s3), respectively. The coefficients for 

these transfer functions have been obtained using the triple bilinear transform. 

However, the spatial domain performance of the corresponding discrete 3D filter 

was found to be unsatisfactory due to large amplitude oscillations in the output 

image caused by high frequency spikes in I Twi (i (ol ,10)2, i CO3)1 I = 1, 2. These 

spikes are eliminated by employing the modified bilinear transform 

si= 
l+a Zi — l 

2 z+a 

where 

as proposed in [17]. 

I = 1,2,3 

(3.16) 
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The transfer function H, (z i, z2, z3) of the discrete ALTB filter is therefore 

given by 

Hb(zl,z2,zs) = '/z[Hi(zi,z2,z3) +H 2(zi,z2,z3)]. 

3.4 Design of the Required 2D Fan Filter 

(3.17) 

The transfer function T , s) of the required analog prototype 2D fan filter 

is given by 

T(s 1,s2) = 
P(. 1,s2) 

Q (Si , S 2) 

MI m2 

z p(i,j)s Si 
i=O j=O 
nl z q(i j) si s 
i=O j=O 

(3.18) 

This function is obtained using the doubly terminated variation of the 

Ramamoorthy-Bruton frequency domain numeriôal optimization algorithm. This 

algorithm differs from conventional optimization techniques in that the numerator 

and denominator coefficients p (1 ,j) and q(i ,j) are not optimized directly; but 

rather, another set of coefficients 9 (i J) are optimized. The coefficients 9 (i f) 

correspond to the parameters of the driving point admittance matrix of a doubly 

terminated passive multiport network. If the transfer function 7', (s 1 , s2), expressed 
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in terms of the 9 (i f) parameters, is considered as the input-output voltage 

transfer function of the network, then according to two-variable network theory, for 

all real values of 9(1 , j), the denominator polynomial is strictly Hurwitz and 

T (s 1,2) is BIB  stable according to (1.21). Two important advantages derived 

from using this method are as follows. 

(i) A conventional unconstrained optimization routine can be employed. 
because the optimization variables 9 (i ))' can have any value from 
-00 to oo. 

The often time consuming task of testing stability at each iteration is 
eliminated because T (i , 2) is guaranteed stable for all real 9(1,)) 
parameters. 

Numerical optimization is performed using the Fletcher-Powell method with a 

weighted least squares error criterion as the objective function. Using the notation 

found in [7], the optimization is carried out in the discrete - 2 plane over a 

grid determined from the intersection of a set of radial lines and a set of concentric 

rectangles as shown in Fig. 5 of [7]. Each optimization point 921 - 02 in the ana-

log grid is then obtained by prewarping each point o - 02 of the discrete domain 

grid using the double bilinear transform according to 

= tan(co /2) 1 = 1, 2. (3.19) 
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A more detailed description of the Ramamoorthy-Bruton algorithm is beyond 

the scope of this thesis and the interested reader is referred to references [7] and 

[18]. 

3.5 Summary 

This chapter has outlined the design methodology for obtaining a 3D LSI 

recursive digital filter having a magnitude frequency response that approximates 

that of the ideal proposed LTB filter. Table 3.1 summarizes the main stages of this 

method and outlines the reasons for stability at the conclusion of each step. 

The most computationally intensive stage of the design process is the numeri-

cal optimization required to obtain the 2D prototype fan filter. However, once this 

task is completed ALTB filters having any given resonant trajectory can be quickly 

designed by following steps 2 - 5. In many adaptive filtering applications such as 

tracking [5], the resonant trajectory is the only parameter to be regularly adjusted. 

Clearly, this parameter is controlled by proper selection of the coefficients for the 

modified rotation matrix R. as summarized in stage 3. As a result, numerical 

optimization need only be performed once to obtain the desired angular bandwidth. 

If the application requires that the filter bandwidth be adjusted, this design method 

is still relatively computationally unintensive because numerical optimization is 

performed over a 2D grid as opposed to a 3D grid in the general case. 
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In the next chapter a numerical design example shall be provided. 
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Table 3.1 Summary of ALTB Filter Design Algorithm 

Stage Operation Stability 

Obtain 2D analog prototype fan filter 
T (i 2) using design method pub- 
lished in [7]. 

Guaranteed, T (s 1,s 2) 
equivalent to input-output 
voltage transfer function of 
doubly terminated passive 
two-variable network. 

2 Construct passband surrounding inter- 
mediate resonant plane (03 = 0 by ad- 
ding transfer functions T i(i , s3) and 
T 2(s2,s3) derived from T(s i,s3) ac-
cording to (3.8), (3.9). 

Guaranteed, output of each 
filter is bounded, therefore 
their sum is bounded. 

3 Rotate intermediate passband to desired 
orientation using (3.11). Resultant 
transfer functions are T i( i sz ,53) 
and T2(s1,s2,s3). 

Guaranteed, modified rota-
tion preserves sign of all 
coefficients [10]. 

4 Obtain H 1(z 1 , z2, z ) and 

H2(zi,z2,z3) from Ti(si,s2,s3) 
and T2(si , s2 ,S) using modified In- 
pie bilinear transform (3.16). 

Guaranteed, all singularities 
mapped inside unit hyper-
sphere in complex z-domain. 

5 Obtain transfer function Hb(z1 z2 , z3) 
of discrete ALTB filter from 
Hi(zi,z2,z3) and H2(zi,z2,z3) ac- 
cording to (3.17). 

Guaranteed, output of each 
filter is bounded, therefore 
their sum is bounded. 
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X(s 1 ,s 2,s3) 

½T i(s i,s 2,s3) 

Y(sj ,2,53) 
 mob 

½T 2(s i ,s2,s 3) 

Fig. 3.1. Realization of ALTB filter by adding transfer functions T1(si ,s2,s 3) and 
T2(s1,s2,s3) of the two 3D wedge filters. 
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(J)3 

-3dB surface of resultant passband 

(a) 

(02 

intermediate resonant plane 

Fig, 3.2. Passband region of ALTB filter surrounding intermediate resonant plane 
(1)3 = 0, obtained by adding transfer functions T 1(s 1 , s3) and T 2(s2 , 
(a) perspective plot, (b) contour plot. 
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(J)3 

.cP1 

wedge-shaped 

passband 

Fig. 3.3. Passband of a 3D wedge filter 
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Fig. 3.4. Passband of the required ideal 2D prototype fan filter. 



CHAPTER 4 

EXPERIMENTAL VERIFICATION 

AND DISCUSSION OF THE MAIN RESULTS 

4.1 Introduction 

In Chapter Two, the concepts of LT signals and filters were introduced and 

discussed. It was shown that the proposed LTB filter had a directional selectivity 

that was ideally independent of the spatial size of the object and that object orien-

tation could affect attenuation especially for spatially elongated signals. These 

results are experimentally verified in Sections 4.3 and 4.4. 

In Chapter Three the design procedure for the LTB filter was described. In 

Section 4.2 of this chapter, a specific design example is provided. The filter is 

then employed in Sections 4.3 and 4.4. 

4.2 A 3D LTB Filter Design Example 

In this section, the design of a 3D filter having a passband approximating that 

of the LTB filter is outlined. The approximate LTB filter (ALTB) has a resonant 

trajectory (Or) of 300 and a resonant speed Sr of unity (Vr = 45°). The filter 

passband should be as close as possible to the ideal passband, shown by the per-

74 
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spective diagram of Fig. 2.4(a) and by the evenly spaced circular contours of Fig. 

2.4(b). 

As described in Chapter Three, the first step in the design of the ALTB filter 

is to obtain the transfer function T (s 1 , s 2) of a highly selective 2D prototype ana-

log fan filter using the Ramamoorthy-Bruton numerical optimization algorithm. 

For this example the transfer function of such a fan filter implemented and 

described in [10] is employed. It has an angular width (0) of 5° and is fifth order 

in one frequency variable and second order in the other. The p (i J) and q (1 , j) 

coefficients of the transfer function are presented in Table 4.1. The magnitude fre-

quency response M(o1 , o) has a fan-stop type response (i.e. the stopband is 5° 

wide), This does not pose a serious practical problem because the desired proto-

type fan-pass response M (0i, o) as shown in Fig. 4. 1, can be achieved from 

M  (CO 1,)= 1—M(a 1,o 2). (4.1) 

Using M (Co1 , o)2), the magnitude frequency responses M i(C0i , o) and 

M 2((02, (03) for each of the unrotated wedge filters are obtained from (3.8) and 

(3.9). A contour plot of the -3dB surface of the intermediate magnitude frequency 

response M,(w1 o, 0)3) obtained using (3.7) is shown in Fig. 4.2(a). It can be 

seen that the passband of the ALTB filter is nearly circular around the origin as 

required. 
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The required 3D wedge filters are now obtained by rotating M 1(0)1 , (og) and 

M 2(°2, (03) using the modified rotation matrix Rm. Recall that this transformation 

preserves the BIBO stability of the filter and also rotates the resonant plane to the 

correct position, although, the passband shape becomes distorted for large values of 

or and Vr. In this example, the values of Or and Nfr are 300 and 45° respectively, 

hence some distortion is observed as shown in Fig. 4.2(b) where the nearly circular 

passband has been distorted into an approximately elliptical shaped passband. By 

rotating the resonant plane to an arbitrary 3D orientation, the 3D rotated wedge 

filters will generally be of higher order than the unrotated 2D fan filters. In this 

case, each of the 2D fan filters are of order (5, 2), whereas the two 3D wedge 

filters are of order (5, 5, 7) and (5, 7, 5) in s1, S 2, 53 respectively. 

In the fourth and final step, the z-domain transfer functions Hw i(zi , z2, z 

and H2(zi , , z3), for each wedge filter, are obtained from their s-domain coun-

terparts T 2 s3) and T 2( 1 2 53) respectively, via the modified triple bil-

inear transform (3.16) with "a" chosen empirically to be 0.8. This value is close 

enough to unity so that the filter remains selective at low frequency and low 

enough to sufficiently increase the stability margin as demonstrated in [l7]. A 3D 

recursive difference equation is then obtained from (z 1 , , z3), i = 1, 2 and 

the magnitude frequency response for the ALTB filter is determined from 
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IHb(c01,w2,()3)I = ½ 11HW1(CO1 1CO2'(03)1 + IHw2(0)i 0)2 0)3)I]. (4.2) 

A contour plot of the passband width of I H, ((01 o, 0)3)1 is given in Fig. 4.2(c). 

It can be seen that a good approximation to the ideal LTB shaped passband shown 

in Fig. 2.4 (b) has been achieved. 

It is interesting to observe the effectiveness of (3.16) in removing the spikes 

in the 3D magnitude frequency response of the discrete ALTB filter. The 3D mag-

nitude frequency response is shown in Fig. 4.3(a) for the plane (03 = 0, of the 

above discrete ALTB filter when obtained by the (non-modified) triple bilinear 

transform given by 

- 1 
Si- , i=1,2,3. 

Zj+1 
(4.3) 

The frequency response has spikes which occur well removed from the origin. The 

spikes are eliminated by using (3.16) with "a" = 0.8, as verified in Fig. 4.3(b). It 

should be noted that the resulting filter has reduced selectivity at high frequency. 

This does not pose a significant problem because for a typical filtering application, 

the majority of the signal energy is located near the origin in col,02, 0. 

4.3 Comparison of Directional Selectivity of UBLT and ALTB Filters 

In this section, two methods are used to compare the directional selectivity of 

the ALTB filter and the UBLT filter. In the first method the energy contained 
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within each frame of the output signal is used as a direct measurement of the selec-

tivity. In the second method the area of the signal plane outside the ALTB and 

UBLT filter passbands as given by (2,24) and (2.25) is used as a measure of direc-

tional selectivity. 

In the first numerical example, a digital signal x (1 , rn , n) containing an 

approximately circular solid object having a spatial area of 689 pixels (representing 

a highly sampled signal) and a constant amplitude of 127, as shown in the center 

of Fig. 4.4, is constructed. The object is traveling in a horizontal direction 

(O = 900) with a speed s of 0.5 ('i' = 26.6°) within an image that is 100 by 100 

pixels by 100 temporal frames in size. Using the ALTB filter designed in Section 

4.2 the input image is zero-phase filtered in the manner depicted in Fig. 4.5. The 

operation H1 (z 1 , z2, z3), 1 = 1, 2, represents filtering in the forward spatial-

temporal direction (1 , rn , n), while H1 (Z_'1 , z12, z_13), I = 1, 2, represents filter-

ing in the opposite direction (-1,—rn , —n). The frequency response at points A 

and B, therefore, has zero phase and a magnitude given by 

I H.,1 (i () 12, i = 1, 2. As described above, it is necessary to subtract each 

zero phase signal from the input signal to create the desired fan-pass response, 

because the continuous domain 2D prototype fan filter has a fan-stop characteristic. 

The same signal x (l , m , n), is also filtered with a UBLT filter, derived from 

a 7th order Butterworth lowpass prototype [19]. The parameters of the UBLT filter 
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are 

Or = 300 , 'I'r =45°,B 3 =0.12rad/s. 

A bandwidth of B3 = 0.12 rad/s is empirically selected so as to represent a typical 

value such as employed in [4]. A 7th order filter is chosen so that approximately 

the same amount of computation is required to implement both the ALTB and 

UBLT filters. The discrete domain transfer function HUB (z 1 , z  2, z3) of the UBLT 

filter is also obtained via the modified triple bilinear transform (3.16) (a==0.8) so as 

to avoid the low stability margin problem described in Chapter Three. 

The outputs y (1 , m , n) of the discrete ALTB and UBLT filters are shown in 

Fig. 4.4 for frame n = 70. The input object is included in the center for com-

parison purposes. It is observed that the output of the proposed ALTB filter, as 

indicated by the upper object, has a substantially lower amplitude than that of the 

the UBLT filter, given by the lower object. From Fig. 4.6 it is clear that, in the 

steady state, the ALTB filter transmits about one quarter of the signal energy E (n) 

per frame of what the UBLT filter passes, given by 

99 99 

E(n)= Z ; Iy(l,m,n)I 2. 
l=Om=O 

(4.4) 

This experimentally confirms the higher directional selectivity of the ALTB filter 

for highly sampled non-resonant input signals. In the second, third and fourth 
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examples the spatial area of the roughly circular object is decreased from 689 pix-

els (radius r0 z 15 pixels) to 345 (r0 = 10), 89 (r0 = 5) and 5 (r0 z 1) pixels, respec-

tively. All other signal and filter parameters remain constant. In each case as indi-

cated by Figs. 4.7, 4.8, and 4.9 the output energy per frame relative to the input 

remains approximately constant for the ALTB filter. However, for the UBLT filter 

the relative output energy per frame decreases as the input object area decreases. 

For the object occupying an area of 5 pixels, the selectivity of the UBLT filter is 

actually higher than that of the ALTB filter. This confirms that directional selec-

tivity is relatively independent of the object size for the ALTB filter and highly 

dependent upon object size for the UBLT filter. The output of each filter at frame 

n = 70 for r0 = 10 and r0 = 5 pixels are also shown in Figs. 4.10 and 4.11, 

respectively. Again the output amplitude of the proposed ALTB filter is less than 

that of the UBLT filter, indicating a higher directional selectivity. 

A measure of the directional selectivity can also be obtained from the fraction 

of the signal plane outside the filter passband for a circular region of interest (ROI) 

centered about the origin of the signal plane as proposed in Section 2.5. 

Using the same signal plane and resonant plane parameters as above this frac-

tion is determined experimentally over forty circular regions of interest having radii 

r given by 
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0.05 ≤ r ≤ 3.14 radls, \ r = 0.07725 rad/s, 

centered about the origin of the signal plane in the discrete frequency domain. The 

magnitude frequency responses IHUB (oi , 0, ()3)1 and IHb (i ()2, (03)1 are then 

evaluated over a grid of 7668 points for each ROT. The fraction of points at which 

the signal plane is outside the passband is then recorded for each filter and plotted 

as a function of r as shown in Fig. 4.12. From Fig. 4.12 it is confirmed that direc-

tional selectivity is relatively constant for the ALTB filter and highly dependent on 

the radius of the ROT for the UBLT filter, as suggested by (2.24) and (2.25). Note 

the small drop in selectivity of the bowl near the origin caused by the non-ideal 

passband shape of the prototype 2D fan filter. 

4.4 Effect of Object Orientation Upon Signal Attenuation 

In this section the effect of object orientation upon signal attenuation is exam-

med. 

Consider Fig. 2.7 which illustrates the line of intersection I between the signal 

and resonant planes within the signal plane. It can readily be shown that this line 

makes an angle with the L22 axis where expressed in terms of the signal plane 

and resonant plane parameters V, O, 'v 0, is given by 

= taif1 (sinV cosVr - cosv5 SflVr cos(O - 

SillWr5ifl(Or - O) I. (4.5) 
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This is significant because if the signal spectrum is elongated so that it resides in 

an area along the direction of I, then most of the signal energy will fall in or near 

the passband of the filter and a relatively low attenuation will occur. If, however, 

the object is rotated so that the signal spectrum is approximately perpendicular to I, 

then more signal energy will be located further away from the passband of the 

filter resulting in a higher attenuation. For a spatially elongated signal such as an 

aircraft or submarine, the amount of elongation can be quite high, hence attenua-

tion is highly dependent upon the orientation of the object as demonstrated in the 

following example. 

In this example, a non-resonant signal consisting of a rectangle 7 pixels wide 

in the horizontal I direction and 17 pixels high in the vertical m direction, having 

signal parameters 

Nfs = 26.7°, Os = 900 

(same as signal parameters for previous circular objects) is constructed and shown 

in Fig. 4.13(a). The signal is then filtered with the ALTB filter having parameters 

111r45 , 1.1r = - fl° 0=50 " "-' 

as designed in Section 4.2. The output of the filter at frame n = 70 is shown in 

Fig. 4.14(a) and the output energy per frame E (n) is plotted in Fig. 4.15. 
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The object is then spatially rotated by 900 so that is has the orientation shown 

in Fig. 4.13(b). The signal is then filtered with the same ALTB filter. The output 

of the filter at frame n = 70 is shown in Fig 4.14(b) and the output energy per 

frame E(n) is plotted in Fig. 4.15. 

The energy of the input object remains constant under this rotation because 

the area of the object is unchanged. All other object and filter parameters are also 

the same, yet it is found that the new orientation leads to a lower output energy 

from the previous rotation as indicated by curve (c) in Fig. 4.15. 

This can be explained by noting that in the first example the object is spatially 

elongated along the m axis, hence its static spectrum X (o)l , 02) is elongated along 

the co, axis. According to geometric operation (ii) listed in Section 2.2 the co1 axis 

is rotated by the amount 9 = 90° so that after rotation it corresponds to the 922 

axis in the signal plane. In addition, according to operation (iii) the spectrum is 

elongated along this axis by an amount given by the speed dependent factor secv5. 

This results in the signal plane spectrum becoming further elongated along the ≤2 

axis. Using the parameters O = 90', jc5 = 26.7°, Or = 30°, and I'r = 45° in (4.5) 

gives an angle of = 0° between the line of intersection I and the ≤2 axis in the 

signal plane. Therefore, the direction of elongation in the signal plane and I are 

both along the ≤2 axis for the unrotated case. This results in the higher observed 

output energy. In the second case the object is rotated by 90°, therefore its spec-
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trum lies along a direction perpendicular to I so the output energy is lower as 

observed in Fig. 4.14(b). 

4.5 Summary 

In this chapter experimental verification of the concepts presented in the pre-

vious two chapters is presented. In Section 4.2 a numerical design example of a 

3D ALTB filter is provided and it is shown that a good approximation to the ideal 

LTB shaped passband is obtained. 

Experimental results in Section 4.3 confirm that the directional selectivity of 

the proposed filter is relatively constant for similarly shaped input objects of 

different sizes. The findings also verify that the UBLT filter suffers from low 

directional selectivity for large area objects. 

In Section 4.4 it is found that, for a spatially-elongated input object, the spa-

tial orientation of the object can influence its attenuation. 
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Table 4.1 

Coefficients of the Analog Prototype 2D Fan Filter 

(e = 5°) 

Numerator coefficients p (i j) 

o 1 2 

0 -.174157146890e-09 .853549513222e-07 .115902344515e-07 
1 .776339893224e-05 -.743856342078e-06 .186991133453e-04 
2 -.207394608332e-03 -.106994119118e-03 -.149381907933e-03 
3 -.556275165421e-02 .545558025867e-02 .144066300375e-01 
4 -.788482822850e-01 .138291750578 -.811467317762e-01 
5 .144345562703 -1.85083611844 1.86570695213 

Denominator coefficients q (i f) 

0 1 2 

0 .149524418173e-06 .153761519575e-05 .267610667505e-05 
1 .186972767843e-04 .111735751696e-03 .169984206593e-03 
2 .717939451267e-03 .354305961108e-02 .433846688591e-02 
3 .126592555346e-01 .595432117725e-01 .593618136517e-01 
4 .106678534095 .502490657018 .428638542476 
5 .148386705866 1.87678294881 1.87021560780 
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Fig. 4.1. Magnitude frequency response M (oi O)) of 2D prototype fan filter, 
obtained using Ramamoorthy-Bruton algorithm. 
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—O.11t,—O.17t 

Fig. 4.2. 

contour interval = 1.226e-3 rad/s. O.lit, O.1 2t 

(a) 

Passband of ALTB filter obtained by adding the two analog prototype 3D 
filter functions M 1(co1, cog) and M 2(co2, o3), (a) before modified rotation 

Rm, (b) after modified rotation Rm, (c) after modified bilinear 
transformation (3.16). Each contour represents a surface of constant 
passband width. Passband width is lowest at the center of the plot. 
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Fig. 4.3. 3D magnitude frequency response in plane, (03 = 0, for discrete ALTB 
filter obtained using, (a) the (unmodified) bilinear transform (4.3), and (b) 
the modified bilinear transform (3.16) with a = 0.8. 
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Fig. 4.4. Frame n = 70 for (a) input signal consisting of an approximately circular 
solid object of radius r0 = 15 pixels, (b) output of ALTB filter with 
Or = 300, jr = 45 0 , 9 = 5 0 , and (c) output of UBLT filter with °r = 3Q0 

Vr = 45° and B3 = 0.12 radls. 
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Fig. 4.5. Signal flow graph for the realization of an ALTB filter. 
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Fig. 4.6. Energy E (n) (4.4) versus frame number (n) for (a) input signal (r,,= 15 
pixels), (b) output y (1 , m , n) of ALTB filter, and (c) output y (1 , m , n) 
of UBLT filter. 
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Fig. 4.7. Energy E(n) (4.4) versus frame number (n) for (a) input signal (r0 lO 
pixels), (b) output y (1 , m , n) of ALTB filter, and (c) output y (1 , m , n) 

of UBLT filter. 
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Fig. 4.8. Energy E (n) (4.4) versus frame number (n) for (a) input signal (r,,=5 
pixels), (b) output y (1 , m , n) of ALTB filter, and (c) output y (1 , m , n) 
of UBLT filter. 
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Fig. 4.9. Energy E(n) (4.4) versus frame number (n) for (a) input signal (r0 1 
pixel), (b) output y (1 , m , n) of ALTB filter, and (c) output y (1 , m , n) of 
UBLT filter. 



96 

1 

Fig. 4. 10. 

(b) 

M (a) 

(c) 

movement 
with time 

Frame n = 70 for (a) input signal consisting of an approximately circular 
solid object of radius r0 = 10, (b) output of ALTB filter with Or = 30°, 
4r = 45°, 0 = 5°, and (c) output of UBLT filter with 0,. = 30°, w = 45° 
and B3 = 0.12 radls. 
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Fig. 4.11. 
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(c) 

Frame n = 70 for (a) input signal consisting of an approximately circular 
solid object of radius r0 = 5, (b) output of ALTB filter with er = 30°, 
'Vr = 450, 0 = 50, and (c) output of UBLT filter with Or = 30°, Wr = 45° 

and B3 = 0.12 radls. 
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Fig. 4.12. Directional selectivity DS(r) versus radius r of a circular region of 
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Fig. 4.13. Linear trajectory object (a) unrotated, (b) rotated. (O = 90°, Nfs = 26.7°) 
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Fig. 4.14. Output frame n = 70 of the ALTB filter with 0,. = 30°, 4r = 45°, 
and 0 = 5°, for (a) unrotated, (b) rotated input object. 
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Fig. 4.15. Energy E (n) (4.4) of output signal y (1 , m , n) versus frame number (n) 
for, (a) input,' (b) unrotated, (c) rotated spatially elongated 2D object. 



CHAPTER 5 

CONCLUSIONS AND 

RECOMMENDATIONS FOR FUTURE WORK 

5.1 Conclusions 

This thesis has presented some new and useful results in the field of linear 

trajectory (LT) signal processing. In Chapter Two, a better understanding of the 

spectral characteristics of LT signals was obtained. For example, an equation for 

determining the spectrum of the LT object within the 2D signal plane was 

presented and interpreted in terms of four geometric operations on the known 2D 

Fourier transform X (a 1 (02) of the static version of the input object. The physi-

cally meaningful and observable parameters signal trajectory and signal speed were 

introduced and shown to be a straightforward means of describing a LT signal. 

New results were also presented in the field of LT filtering. The terms 

resonant trajectory and resonant speed were introduced and shown to be helpful in 

simplifying the description of a LT filter. Two categories of LT filters were 

defined on the basis of passband shape; those filters having a passband of uniform 

width which included all previously reported LT filters and those having a bowl 

shaped passband which included the proposed LTB filter. The two types were 

102 
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compared on the basis of directional selectivity. That is, the ability to reject a 

linear trajectory object that has a 3D trajectory other than the 3D resonant trajec-

tory. Uniform bandwidth linear trajectory (UBLT) filters were shown to suffer 

from low directional selectivity at frequencies near the origin in o, 2, 03. 

The proposed LTB filter class, was shown to have a directional selectivity that 

was ideally independent of the distance from the origin. The practical significance 

of this property was experimentally demonstrated when a non-resonant linear tra-

jectory object occupying a large spatial area was significantly attenuated using a 

LTB filter and only marginally attenuated using existing UBLT filtering techniques. 

In Chapter Three, a method for approximating the proposed ideal LTB filter 

was presented. The fundamental step was to approximate the bowl shaped 

passband by adding the transfer functions of two 3D wedge filters. Each of the 

wedge filters was obtained by performing a frequency domain modified rotational 

transformation upon a highly selective 21) analog prototype fan filter. The 

modification was required to guarantee the BIBO stability of the rotated filter. 

However, even though the wedge filters were B1BO stable an unsatisfactory spatial 

domain performance was observed when the corresponding discrete filter was 

obtained by conventional triple bilinear transformation. This was a result of spikes, 

well removed from the origin in the 3D magnitude response, caused by a very low 

stability margin. To obtain a satisfactory spatial domain performance, a modified 

bilinear transform was shown to eliminate these spikes by increasing the stability 
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margin in the neighborhood of the spikes. 

The design method for the proposed LTB filter consisted of several straight-

forward steps, so as to reduce the design computation time. The frequency domain 

design algorithm rather than being a time consuming numerical optimization pro-

cess over a 3D grid, was reduced to a 2D optimization process followed by a pair 

of rotational type transformations. Furthermore, it was suggested that numerical 

optimization could be completely eliminated for such applications as tracking 

where only the resonant trajectory has to be consistently updated. 

Finally, it was observed that attenuation was not simply a function of the 

orientation of the resonant plane with respect to the signal plane. (i.e. directional 

selectivity) Object orientation and shape were also shown to play a role in deter-

mining the signal attenuation as experimentally verifyed using a spatially elongated 

input signal. 

5.2 Recommendations for Future Work 

The major problem encountered in the course of this work was a low stability 

margin in both the UBLT and LTB filters. As a result, a modified bilinear 

transform was required to increase the stability margin at high frequency. The 

exact cause of the low stability margin as manifested by the presence of high fre-

quency spikes is unclear and would make an excellent topic for future research. 
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A comparison of the design savings obtained over using conventional 3D 

optimization techniques could be made. The use of symmetries in both the 2D and 

3D optimization algorithms could be explored to determine if the circular sym-

metry of the LTB filter could be taken advantage of so as to reduce the number of 

optimization variables. 
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APPENDIX 

In this section, it is shown that the fraction of the signal plane within the 

UBLT and LTB filter passbands for a given circular ROT with radius r, is given by 

RUB(r)=l for r ≤ B3  
2 sin91,. 

11/2 

= B3 [r2 - B 1(2 519sr)2 J  + 2silf'(B3/2rsin03r) (Al) 

tr2sinesr It 

otherwise 

for the UBLT filter and 

Rb(r)= -- (A2) 

for the LTB filter, where (Al) and (A2) correspond to (2.22) and (2.23) respec-

tively. 

The intersection of the UBLT filter passband with the signal plane will occur 

along an infinitely long strip of finite width B 31sin831. as shown in Fig. 2.7. 

Referring to Fig. 2.7(a), it is observed that the area of this strip within a given 

ROT is determined by integrating over the shaded region according to 
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B3! (2 sinO.) 

4 5 \Ir2 _x2dx x ≤r (A3) 

where x is a variable of integration in a direction perpendicular to I. Integrating 

(A3) and dividing by the overall area of the region of interest (1tr2) gives the frac-

tion of the ROT within the passband (Al) as required. Clearly, once the width of 

the strip exceeds the diameter of the ROI then the entire ROT is within the filter 

passband. To determine the angle 0, between the two planes, it is first noted that 

it is equivalent to the angle between the normals Nr and N5 to the resonant and 

signal planes respectively, and thus may be determined from the inner product of 

Nr and N5 according to 

COS' [Nr N5] 
O -sr   

ININI 

where N5 and Nr are given by 

(A4) 

N5 = sinjc5 sin05 e 1 + sinIf5 cos05 e02  + cosij!5 e (A5) 

Nr = sinyr siner ec01 + sinvr coser e02 + cosif ec3 (A6) 

and e 1, e, and e 3 are orthogonal unit vectors along the CO3 0)2, and (03 axis 

respectively. By combining (A4), (AS), and (A6), Osr can be determined in terms 

of the signal parameters i5 and O, and the filter parameters I1r and Or so that 
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0sr = cos 1 Isiny, sin9 Sfl'(1Jr Sifler + Slfl4f3 cos08 sinNf, COSOr + cos'4f COSNJr]. (A7) 

The passband of the LTB filter will intersect the signal plane within the fan 

shaped region of total angular width 24), as shown in Fig. 2.7(b). Clearly, for a 

given ROT with radius r, this region will be a constant given by (A2). To deter-

mine the value of 4), in terms of the signal and resonant plane parameters, define an 

O)'i, (0'2, (0 3, coordinate system such that (03 is aligned with the normal Nr to the 

resonant plane and the signal plane aligned such that it is independent of (O'2 as 

shown in Fig. Al. The equation for the signal plane is then given by 

COSOSr O)i' + sinO,. o' = 0. (A8) 

The equation for the -3dB surface of the LTB filter is given by 

C0'3 

I t2 0) 1+ CO' 

 ½ =tanOb (A9) 

which is that of a cone having a centerline along the (03' coordinate axis and an 

angular width of angle - - 0, ' as shown in Fig. Al. Combining (A8) and (A9) 

gives the lines of intersection I and '2 where 

11 = —e + ((tanOsr )2 (tanOb )_2 - l)½ e02 + tanOsr e 3 (A1O) 

and 
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12 = - ((tanOsr )2 (taneb )_2 - 1)1/2 e 2 + tanOsr e 3 (All) 

between the signal plane and the -3dB surface of the LTB filter. The angle 2 1 

between these lines, required for (A2), is then found from their inner product 

according to 

cos_l [i ..i] 

I'll 1121 

2 (tan9 )_2 - (9 )2 +1 

(taneb )_2 + i 

.7': 
= - otherwise. 

for sr (Al2) 

It should be noted that equations (AlO), (All), and (Al2) are only valid if the 

angle of intersection between the signal and resonant plane Osr is greater than the 

cross sectional angular width 0b of the LTB filter. If O <Oh, then 1,, I, do not 

exist and = --, because the signal plane lies entirely within the passband of the 

LTB filter. 
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cone-shaped 

(0 It 3 

C0'i 

10)'? + Cd2 ) 

'2 

½ 

Sr 

(0 3 

a 

Nr signal plane 

shiO. CO'I + cosO (03 = 0 

'2 

Pig. Al. Intersection of signal plane with passband of ideal LTB filter. 


