
UNIVERSITY OF CALGARY

Index Calculus in the Infrastructure of Real Quadratic Function Fields

by

Jonathan Francis Hammell

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES•

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

July, 2008

© Jonathan Francis Hammell 2008

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Grad-

uate Studies for acceptance, a thesis entitled "Index Calculus in the Infrastructure of

Real Quadratic Function Fields" submitted by Jonathan Francis Hammell in partial

fulfilment of the requirements for the degree of Master of Science.

Supervisor, Dr. Michael J. Jacobson, Jr.

Department of Computer Science

University of Calgary

Dr. Renate Scheidler

Department of Computer Science

University of Calgary

Dr. Laurent Imbert

Centre National de la Recherche Scientifique

Montpellier, France

Date

11

Abstract

Quadratic function fields were first extensively studied by Artin in 1921. These func-

tion fields have geometric properties related to hyperelliptic curves as well as number-

theoretic properties related to quadratic number fields. In 1972, Shanks introduced

the infrastructure of a real quadratic number field. In this work we study the infras-

tructure of a real quadratic function field.

We provide a heuristic analysis of a new, practical method for performing index

calculus in the infrastructure when the genus of the function field is large. We im-

plemented this method, as well as a sieve-based method, and this thesis provides

experimental results for computing the regulator that compares the two variants.

This is the first known implementation of index calculus in the infrastructure.

111

Acknowledgements

First and foremost, I would like to thank my supervisor Dr. Michael Jacobson for

giving me this project and his guidance throughout its progress. He was always

available for questions which was particularly appreciated. I would also like to thank

my committee, members, Dr. Renate Scheidler and Dr. Laurent Imbert, for their

careful reading and critique of my thesis. Thank you to Prof. Hugh Williams for his

generous financial assistance under the iCORE Chair for Algorithmic Number Theory

and Cryptography. For additional financial support I also thank the Natural Sciences

and Engineering Research Council of Canada (NSERC), Alberta's Informatics Circle

of Research Excellence (iCORE), Alberta Scholarship Programs, and the Department

of Computer Science at the University of Calgary.

I would like to thank my officemates, in particular Karel Bergmann, Mark Velichka

and Ryan Vogt, for great discussions and their help and interest in my work. I espe-

cially thank Mark Velichka for answering my numerous questions and his assistance

with the codebase. Of course, many others provided helpful discussions during my

thesis work and for tht I would like to thank all of those from the math department

in the Centre for Information Security and Cryptography (CISaC) at the University

of Calgary.

Thank you to my family and friends for their support and encouragement. Finally,

a very special thank you goes to Melissa for her understanding and utmost patience.

iv

Table of Contents

Approval Page

Abstract

Acknowledgements iv

Table of Contents v

List of Theorems ix

List'of Algorithms xi

List of Tables xiii

List of Figures xv

List of Symbols xvi

Epigraph xxiii

1 Introduction 1

1.1 Public Key Cryptography 1

1.2 Number Fields and Function Fields 3

1.3 Contributions 8

1.4 Organization 9

2 Background 11

2.1 Algebraic Geometric Background 12

V

2.1.1 Projective Plane Curves 13

2.1.2 Morphisms and Ramification Points 15

2.1.3 Divisors 16

2.1.4 Differentials and Canonical Divisors 18

2.1.5 Riemann-Roch and the Genus 20

2.1.6 The Ramification Divisor and the Hurwitz Formula 21

2.1.7 Weierstrass Points 23

2.1.8 Hyperelliptic Curves . 24

2.2 Algebraic Non-Geometric Background 30

2.2.1 Places 31

2.2.2 Extensions and Ramification of Places 33

2.2.3 Divisors on Function Fields 34

2.2.4 Differentials and Canonical Divisors 35

2.2.5 Riemann-Roch and the Genus 37

2.2.6 The Different and the Hurwitz Formula .. 38

2.2.7 Hyperelliptic Function Fields 39

3 Real Quadratic Function Fields 42

3.1 Coalescence in Quadratic Function Fields 43

3.1.1 Divisor Class Group 45

3.1.2 Reduced Divisors 46

3.1.3 Fractional and Reduced Ideals 48

3.1.4 Multiplying and Inverting Fractional Ideals 51

3.1.5 Ideal Class Group 54

3.2 The Infrastructure of a Real Quadratic Function Field 57

vi

3.2.1 Baby Steps and Ideal Reduction 57

3.2.2 Distance and Closest Ideals 64

3.2.3 Giant Steps 67

3.2.4 Correcting the Giant Step 70

3.2.5 The Baby-Step Giant-Step Algorithm 72

3.3 Efficient Arithmetic in the Infrastructure 75

3.3.1 NUCOMP 75

3.3.2 Explicit Formulae 76

3.3.3 Fast Giant Step Exponentiation 77

3.3.4 Fast Closest Ideals 81

4 Index Calculus in Real Quadratic Function Fields 83

4.1 Computational Problems in the Infrastructure 84

4.1.1 Properties of the Ideal Class Group 84

4.1.2 Discrete Logarithm Problem 86

4.1.3 Subexponential Algorithms 87

4.2 Introduction to Index Calculus 88

4.2.1 Index Calculus in Generic Groups 89

4.3 Index Calculus in the Infrastructure 92

4.3.1 Overview 92

4.3.2 Computing the Factor Base 95

4.3.3 Smoothness Testing 100

4.3.4 Generating Relations via a Baby Step Walk 105

4.3.5 The Lattice of Relations 112

4.3.6 Computing the Regulator 113

vii

4.3.7 Determining the Class Number and Group Structure 117

4.3.8 Computing Discrete Logarithms 124

5 Implementing Index Calculus in the Infrastructure 129

5.1 Practical Improvements 130

5.1.1 Relation Generation via Sieving 130

5.1.2 Multiple Polynomial Sieving and Self-Initialization 137

5.1.3 Low-Degree Sieving 142

5.1.4 Large Primes and Partial Relations 142

5.1.5 Linear Algebra Improvements 149

5.2 Implementation Details 152

5.3 Parameter Selection 154

5.3.1 Smoothness Bound for Baby Walks 155

5.3.2 Sieve Parameters 158

5.4 Computations 160

5.4.1 Previous Results 160

5.4.2 Current Results 161

6 Conclusions 174

6.1 Future Work 175

Bibliography 179

viii

List of Theorems

2.1 Jacobi criterion 14

2.2 Riemann-Roch theorem for curves 20

2.4 Hurwitz formula for curves 22

2.5 Hurwitz formula with inequality for curves 23

2.8 Riemann-Roch theorem for function fields 37

2.9 Dedekind different theorem 38

2.10 Hurwitz formula for function fields 38

2.11 Hurwitz formula with inequality for function fields 39

3.1 Hasse-Weil bound on the divisor class number 46

3.2 Artin bound on the divisor class number 46

3.6 Artin class group theorem for imaginary quadratic function fields 55

3.7 Schmidt class number relation 55

3.8 Mireles Morales class group theorem for real quadratic function fields 56

3.11 Jacobson-Scheidler-Stein lemma on baby steps and reduction 63

3.15 Artin theorem for computing the regulator 66

ix

4.3 Fundamental theorem of Abelian groups 85

4.7 Müller-Stein-Thiel bound on the generators of Cl(0) 95

4.13 Enge-Stein lower bound on the number of smooth reduced ideals . . 109

4.14 Müller-Stein-Thiel theorem on the determinants of the relation

lattices 112

4.18 Analytic class number formula 118

4.19 Stein-Teske upper bound on the error in class number approximation 120

5.8 Mauer-Menezes-Teske estimate for the number of smooth reduced

ideals 156

5.9 Thériault bound on number of full relations in a set of partial

relations 157

x

List of Algorithms

3.3 Finding the standard representation of a principal ideal 50

3.4 Multiplication of two fractional ideals 51

3.5 Squaring a fractional ideal 52

3.9 Continued fraction algorithm 58

3.10 Baby step algorithm for computing in the infrastructure 62

3.13 Baby step algorithm with associated distance 64

3.14 Closest ideal to a given distance 66

3. 1 . 7 Giant step algorithm for computing in the infrastructure 68

3.20 Corrected giant step algorithm for computing in the infrastructure 71

3.21 Baby-step giant-step algorithm for computing the regulator 72

3.22 Square-and-multiply algorithm for giant step exponentiation 77

3.23 Computing the NAF representation of an integer 79

3.24 Square-and-multiply algorithm for giant step exponentiation using

NAF 79

3.26 Improved method for computing the closest ideal to a given distance 81

xi

4.8 Factor base generation for index calculus in the infrastructure . 97

4.9 Iteratively computing the Frobenius' map 102

4.10 Testing a reduced ideal for smoothness 103

4.12 Relation generation for index calculus in the infrastructure 108

4.16 Finding the regulator from a multiple using factoring and the infras-

tructure 115

5.1 Computing the net sieve array index 133

5.2 Relation generation for index calculus in the infrastructure using

sieving 136

5.3 Obtaining the first sieving polynomial using self-initialization 138

5.4 Obtaining a new sieving polynomial using self-initi1ization

5.5 Testing a reduced ideal for smoothness or almost-smoothness

5.6 Combining partial relations for index calculus in the infrastructure with

large primes

5.7 Relation generation for index calcuhis in the infrastructure with large

primes

140

144

146

147

xii

List of Tables

4.17 Asymptotic complexity of computing the regulator 116

4.20 Asymptotic complexity of computing the class number and class group

structure. 123

4.21 Asymptotic expected complexity of, solving the infrastructure DLP. . 126

5.10 Timings for regulator computation, varying the genus g and field size

q 'for even characteristic fields 162

5.11 Timings for regulator computation, varying the genus g and field size

q for odd characteristic fields 162

.5.12 Relation generation parameters in even characteristic fields 163

5.13 Relation generation parameters in odd characteristic fields . 164

5.14 Timings for each stage of index calculus for computing the regulator

in even characteristic fields 166

5.15 Timings for each stage of index calculus for computing the regulator

in odd characteristic fields 168

5.16 Comparison of our index calculus methods to baby step giant step for

computing the regulator in even characteristic fields 169

5.17 Comparison of our index calculus methods to baby step giant step for

computing the regulator in odd characteristic fields 171

5.18 A larger regulator computation example 173

6.1 Heuristic, expected asymptotic runtime complexity for index calculus

in the infrastructure 174

xiy

List of Figures

2.6 Plot of an imaginary hyperelliptic curve 27

2.7 Plot of a real hyperelliptic curve 28

3.12 p pattern of ideals resulting from the baby step algorithm 63

3.16 Distances in the principal ideal class 67

3.18 Distances involved in the giant step 70

3.19 Distances involved when the giant step requires correction 71

4.22 Plot of our discrete log runtime with previous results 128

xv

List Of Symbols

(X) Y)

(x : y: z)

(a, b)

(s,a,b)

[L:K]

[OO, i,

Point in A2

Point in homogeneous coordinates in IF"2

Standard representation of a primitive 0-ideal (p. 49)

Standard representation of a fractional 0-ideal (p. 49)

Degree of a field extension L/K

Continued fraction expansion (p. 58)

Ceiling operation, i.e. the smallest integer greater than or equal to a

Floor operation, i.e. the largest integer less than or equal to a

Logicial AND

Logical OR

Approximately equal

Less than, but almost equal

Equivalence relation

Isomorphic

Assignment

Algorithm comment

Direct sum operator

xvi

BL

C

C(K)

char (K)

Cl(F)

Cl(0)

CIO(F)

Con (D)

CoflF'/F (D)

d('9)

Giant step operation on ideals in the infrastructure (p. 68)

'Corrected' giant step operation on ideals in the infrastructure (p. 71)

Perform a scalar multiple corrected giant step operations (p. 77)

Matrix of relations from the set 7?. (p. 105)

Matrix of relations augmented with the distances from the set 7?. (p. 113)

n-dimensional affine space

Adele space of a function field F (p. 36)

Conjugate of an element a E F (p. 53)

Conjugate of an ideal a (p. 54)

Smoothness bound for a factor base (p. 89)

Large prime bound for almost B-smooth ideals (p. 143)

Field of complex numbers

Set of K-rational points on the curve C (p. 13)

Characteristic of the field K

Divisor class group of a function field F (p. 45)

Ideal class group of a quadratic order 0 (p. 54)

Degree-zero divisor class group of a function field F (p. 45)

Conorm of a divisor D with respect to a morphism q (p. 18)

Conorm of a divisor D with respect to a function field extension F'/F

(p. 35)

Distance of principal 0-ideal a from 0 (p. 64)

Distance of b from an equivalent ideal a (p. 64)

Different exponent of a place 9' lying over 9 (p. 38)

xvii

deg

deg a

det(X)

Diff(F'/F)

Div(C)

Div(F)

Div' (F)

div(f)

div(w)

div[a, b]

e(P)

e(e9)

exp(n)

f

lFq

F'rac(0)

g

g(u)

gcd(a, b)

GLTh (R)

h

Degree of a polynomial f, i.e. the highest power of the indeterminant with

non-zero coefficient

Degree of a reduced ideal a (p. 95)

Determinant of a matrix X

Different of a function field extension F'/F (p. 38)

Set of divisors on a curve C (p. 17)

Set of divisors of a function field F (p. 34)

Group of divisors of degree d of a function field F (p. 45)

Divisor of a function f (pp. 17, 34)

Canonical divisor for a differential w (pp. 20, 37)

Mumford representation of a divisor (p. 48)

Ramification index of a morphism at a point P (p. 16)

Ramification index of a place .9' lying over . (p. 33)

Exponential function, i.e. exp(n) = e for the natural constant e

Polynomial in K[x] from the curve equation C: y2 + h = f (pp. 25, 43)

Finite field of order q

Factor base with smoothness bound B (p. 89)

Group of fractional 0-ideals (p. 54)

Genus of a curve or function field (pp. 21, 37)

Sieve polynomial (p. 132)

Greatest common divisor of a and b

General linear group of degree n for a ring R (p. 49)

Hyperplane at infinity (p. 13)

Polynomial in K[x] from the curve equation C y2 + h = f (pp. 25, 43)

xviii

hF Divisor class number of a function field F (p. 46)

h0 Ideal class number of a quadratic order 0 (p. 55)

Hyperelliptic involution (pp. 26, 29,44)

Algebraic closure of the field K

K Field of constants of an algebraic function field F/K (p. 31)

K* Set of units in the field K

K[C] Coordinate ring of an algebraic curve C (p. 13)

K(C) Function field of an algebraic curve C (p. 13)

K[x] Ring of polynomials in the indeterminant x with coefficients in K

K(x) Rational function field in x over K (p. 30)

K((1/x)) Field of power series in the variable 1/x (pp. 57, 57)

AB Lattice of relations correponding to a smoothness bound B (p. 112)

A Lattice of relations augmented with distances correponding to a smooth-

ness bound B (p. 112)

A Function to determine the next index in the sieve array (p. 133)

L(n) Short form for log n log log n (p. 52)

2(D) Riemann-Roch space of a divisor D (pp. 20, 37)

Ln (c) Subexponential function with a = 1/2 (p. 88)

L (a, c) Subexponential function (p. 87)

£(D) Dimension of the Riemann-Roch space 2(D) (pp. 20, 37)

log(a) Logarithm of a (to the base 2, unless otherwise specified)

Maximal ideal of the valuation ring 0 (p. 31)

mp Maximal ideal of Op

max S Maximum element of a set S

xix

min S Minimum element of a set S

mod Modulo reduction (i.e. remainder after division)

Map into the sieving array (p. 132)

N Set of natural numbers (not including zero)

No Set of natural numbers including zero

N(a) Norm of a function field element a (p. 60)

N(a) Norm of an ideal a (p. 53)

nB Cardinality of a factor base with smoothness bound B (p. 89)

nG Order of a group G (p. 89)

nGIB Number of B-smooth elements in G (p. 91)

QFIK Module of differentials of a function field F/K (pp. 19, 36)

W Differential (pp. 19, 36)

O Quadratic order of a function field (p. 48)

Op Local ring of a point P (p. 13)

OR Valuation ring of a place 9 (p. 31)

Local ring/valuation ring of a prime divisor P

0(n) Big-0 notation

Ô(n) "Soft" big-O notation, i.e. ignoring factors logarithmic with respect to

the input size

o(n) Little-o notation

Frobenius endomorphism or the Frobenius map (p. 102)

P Point on a curve

Place of a function field (p. 31)

P Prime divisor (p. 46)

P.

9.

P00

PBL

'Ptm

Point at infinity (p. 13)

Place at infinity (p. 32)

Prime divisor at infinity (p. 47)

Set of partial relations corresponding to the large prime bound Bj, (p. 143)

n-dimensional projective space

Prin(F) Group of principal divisors of the function field F (p. 45)

Prin(0) Group of principal fractional 0-ideals (p. 54)

q Order of the underlying field

Q Field of rational numbers

Quot(R) Field of quotients of a ring R

p(a) Baby step algorithm performed on ideal a (p. 62)

p(a, 5(a)) Baby step algorithm performed on ideal a returning the updated distance

(p. 64)

p* (a, d) Find the ideal with distance from a closest to d (p. 66)

R, Ramification divisor of a morphism ço (p. 22)

R0 Regulator of a quadratic order 0 (p. 55)

R Field of real numbers

Subset of R consisting of elements greater or equal to 0

Set of relations corresponding to a factor base with smoothness bound B

(p. 105)

(F) Set of places of the function field F (p. 31)

Smoothness test algorithm (pp. 103, 144)

Sg,p Roots of the sieve polynomial g(u) modulo N(p) (p. 133)

sgn(f) Leading coefficient of a polynomial f

Qci

supp(D) Support of a divisor D (pp. 16, 34)

e(n) Big-Theta notation

79 A constant used to ensure subexponentiality of the factor base (p. 99)

Oi The inverse product of complete quotents of a continued fraction expansion

(p. 60)

X Vector

xt. Transpose of a vector v

xgcd(a, b) Extended Euclidean algorithm for computing d = gcd(a, b) and u, v such

that d='aa+vb

Set of integers (an integral domain)

The magic words are squeamish ossifrage

(Cryptanalytic result of a ciphertext challenge encoded with RSA-129)

Encoded by Ron Rivest, Adi Shamir and Leonard Adleman, in

"Mathematical Games," Scientific American, August 1977;

Plaintext found by Derek Atkins, Michael Graff, Arjen Lenstra and Paul

Leyland, in Advances in Cryptology—ASIA CRYPT'94, 263-277,

Springer-Verlag, 1995

Chapter 1

Introduction

The advent of computers gave rise to a new discipline worked on by both mathe-

maticians and computer scientists called computational number theory. It is the

study of algorithms for solving number theoretic problems. Computers and efficient

algorithms have greatly increased the range that computational number theorists

havebeen able to test theoretical conjectures. Interest in these problems grew in the

mid-1970s when it was discovered that the privacy and authenticity of electronic com-

munications could be secured if based on a computational problem that is sufficiently

difficult.

1.1 Public Key Cryptography

Public key cryptography was introduced independently by Diffie and Heilman

[DH76] and Merkle [Mer78]. The authors of the former paper described how crypto-

graphic key distribution could be simplified if one used a so-called one-way trapdoor

1

1.1. PUBLIC KEY CRYPTOGRAPHY 2

function.' Such a function is easy to compute, yet computationally difficult to in-

vert without the knowledge of some key piece of information, called the trapdoor

information. Diffie and Hellman' also claimed that this one-way trapdoor function

could be used to prove the authenticity of electronic data using a digital signature.

The security of these cryptographic protocols relies on the computational difficulty

required to invert the trapdoor function without a priori knowledge of the trapdoor

information. Public key cryptography is now used to secure government communi-

cations and financial transactions in business, hence there is practical and economic

importance to computational number theory.

One of thd most famous computational problems in this area is integer factoriza-

tion. The first example of public key cryptography had a trapdoor function based on

integer factorization. Introduced in 1,978 by Rivest, Shamir and Adleman [RSA78],

this scheme became pervasive in cryptographic applications and is generally referred

to as RSA.2 The fastest known algorithms developed by computational number the-

orists for performing integer factorization are based on a technique called index

calculus. Although index calculus does not break RSA, it significantly weakens it,

requiring one to use key sizes of at least 1024 bits versus the 665 bits suggested in

the original paper.

In 1984, another public key cryptographic scheme was poposed with a trapdoor

function based on the computational problem of finding an integer exponent x given

a group element h = gX for a known group generator g. This problem is called

'In 1997 it was revealed in a formally classified document [E1187] that James Ellis and Malcolm
Williamson of the CESG in Great Britain had discovered public key cryptography and the Diffie-
Hellman scheme respectively in 1970 and 1974 [E1170] , [Wil74].

was also revealed in 1997 that Clifford Cocks of the CESG had discovered the RSA scheme
in 1973 [Coc73].

1.2. NUMBER FIELDS AND FUNCTION FIELDS 3

the discrete logarithm problem (DLP) and the cryptographic scheme based on it

was proposed by ElGamal [E1G85]. For certain groups the DLP is computationally

difficult if the size of the group is chosen to be large enough. Again, index calculus

can be applied to solve an instance of the DLP in many groups, thereby requiring the

group size to be increased for the DLP to remain computationally infeasible. However,

index calculus is not a so-called generic method for solving the DLP since it cannot

be applied in every type of group. For instance, computational number theorists have

not been able to apply index calculus successfully to the group of points on an elliptic

curve. There have been proposals by Silverman [Sil00] and Semaev [Sem04], but the

algorithms are less efficient than the generic method of Pollard [Pol78] which runs in

square-root time with respect to the order of the group.3 Consequently, cryptosystems

based on the elliptic curve DLP are able to use key sizes that are significantly smaller

than RSA and ElGamal in other groups. This advantage allows cryptography to be

deployed in a wider range of devices. Therefore, cryptographers have searched for

other groups that offer a DLP that is secure against index calculus. Class groups in

number fields and function fields showed promise.

1.2 Number Fields and Function Fields

In 1801 Gauss published a list of imaginary quadratic number fields and con-

jectured that this list was complete for class numbers of one, two and three [Gau86,

§V, Art. 303]. Computing the class number of a quadratic number field is compu-

tationally difficult—Gauss's technique was fully exponential—and it was not until

'Index calculus attacks do greatly reduce the security of the elliptic curve DLP over certain types
of fields, but these are easy to avoid in practice (cf. Gaudry [GauO7] and Diem [DieO8, pp. 157-208]).

1.2. NUMBER FIELDS AND FUNCTION FIELDS 4

1985 that Gauss's claim was proven to be correct (cf. Goldfeld [Go185]). Most classi-

cal algorithms for computing the class number were based on the Dirichlet L-series.

Shanks proposed a method that enables one to compute the class number and class

group structure much faster than the classical techniques [Sha71]. Shanks's method,

now known as the baby-step giant-step algorithm, has been adapted to many

other computation problems; however, it is still only a square-root time algorithm.

In 1989, Hafner and McCurley described how to adapt index calculus to the class

group of an imaginary quadratic number field and showed how one could compute

the class number and the group structure [HM89]. Their method relied upon on the

unproven, but widely believed, Extended Riemann Hypothesis (ERH). A year earlier,

Buchmann and Williams had proposed a DLP in the class group of an imaginary

quadratic number field as the basis for a public key cryptosystem [BW88]. However, it

was immediately realized by McCurley that their index calculus method also enables

one to solve instances of the DLP [McC89, §5]. More recently, Vollmer presented

another technique for index calculus in quadratic number fields that improves on the

Hafner-McCurley method [VolOO].

The case of real quadratic number fields is quite different. Cohen and Lenstra

developed heuristics that suggest that the ideal class numbers of real quadratic num-

ber fields tend to be small [CL84]. Gauss's conjecture that there are infinitely many

real quadratic number fields with class number one is still an open problem {Gau86,

§V, Art 304]. Due to the small class numbers, the DLP defined in the imaginary

case does not translate directly to real quadratic number fields. However, Shanks

recognized an internal structure to the ideal classes, which he called the infrastruc-

ture [5ha72b]. Buchmann and Williams realized that the infrastructure allowed one

1.2. NUMBER FIELDS AND FUNCTION FIELDS 5

to define a DLP for a real quadratic number field [BW9O]. This was the first time

the DLP had been extended to a mathematical structure that is not a group. The

scheme was improved upon by Scheidler, Buchmann and Williams [SBW91, Sch93]

and, more recently, by Jacobson, Scheidler and Williams [JSWO6]. However, Buch-

mann also showed that index calculus could be adapted to real quadratic number

fields, where in addition to solving the DLP it could be used to find the class number,

group structure and the regulator [Buc9O]. It is important to note that the index cal-

culus algorithms of Hafner-McCurley and Buchmann were verified in practice through

implementations by Buchmann and Düllmann [BD91, BD92] and Cohen, Diaz y Diaz

and Oliver [CDO93, 0D097].

As many algebraic number theorists know, number fields have many similarities

with another class of global fields called function fields (over finite fields). Quadratic

function fields can be derived using purely algebraic methods or from algebraic geo-

metric structures called hyperelliptic curves. Class groups in imaginary quadratic

function fields can be directly represented by the Jacobian of a hyperelliptic curve.

Schoof [Sch85, Sch95] and Satoh [SatOO] discovered polynomial-time algorithms for

computing the class number of a genus-one quadratic function field where the class

number corresponds to the number of points on an elliptic curve. Schoof's algorithm

has been generalized to t,o higher genus by Pila [Pil9O], Huang and lerardi [H198],

and Gaudry and Harley [GHOO], but their algorithms are only polynomial-time when

the genus is fixed, thus only potentially feasible for small genera. Mestre proposed

an algorithm related to Satoh's method to count points on the Jacobian for arbi-

trary genus, but it is still restricted to small genera and small field characteristics

[MesOO, MesO2]. A cohomological point counting algorithm introduced by Kedlaya is

1.. NUMBER FIELDS AND FUNCTION FIELDS

polynomial-time in the genus, but exponential in the size of the field characteristic,

even with recent improvements by Harvey [KedOl, KedO4], [HarO7].

A DLP in the class group of an imaginary quadratic function field was proposed

for cryptography by Koblitz [Kob89]. Adleman, DeMarrais and Huang [ADH94] were

the first to describe how to adapt index calculus to this DLP with generalizations by

Bauer [Bau99, BauOl] and Enge [EngOO, EngO2]. However, the ADH algorithm was

predicted to only be efficient when the genus of the function field was large. Gaudry

presented another index calculus variant for solving the DLP when the class number

is known in advance [GauOOa]. While this does not help the computational problem

of finding the class number, it is argued that this value is likely to be known in

cryptographic situations. Moreover, Gaudry's algorithm also applies to the small

genus case, reducing the space where the DLP still seems to be immune to index

calculus to genera less than four. Thériault [TheO3] and Gaudry, Thome', Thériault

and Diem [GTTDO7] have described further theoretical improvements to Gaudry's

original algorithm.

The first implementations of index calculus in imaginary quadratic function fields

were by Paulus and Flassenberg using practical improvements to the ADH algorithm

[Pau96, FF99]. Other known implementations targeting the large genus case were

by Smart [Sma97], Jacobson, Menezes and Stein [JMSO1], and recently by Velichka

[Ve1O8]. Implementations of index calculus for small genus imaginary quadratic func-

tion fields have been described by Gaudry [GauoOa] and with the latest improvements

by Gaudry, Thomé, Thériault and Diem [GTTDO7].

Real quadratic function fields have similar properties as real quadratic number

fields. The ideal class number tends to be small, and ideal classes have an internal

1.2. NUMBER FIELDS AND FUNCTION FIELDS 7

structure referred to as the infrastructure. Enge described how index calculus could

be applied in the Jacobian of a real hyperelliptic curve [EngO2]. However, since the

Jacobian is not isomorphic to the ideal class group of a real quadratic function field,

Enge's method does not find the ideal class number, regulator, or the ideal class

group structure. Similarly, tho methods described above based on point counting for

computing the class number of an imaginary quadratic function field would not give

the ideal class number of a real quadratic function field without some method for

computing the regulator.

Scheidler, Stein and Williams proposed a DLP in the infrastructure of a real

quadratic function field [SSW96]. Recently, more cryptographic schemes have been

proposed based on the infrastructure DLP by Jacobson, Scheidler and Stein [JSSO7].

Miller, Stein and Thiel described how index calculus could be performed in the

infrastructure of a real quadratic function field when the genus is large [MST99].

They described how their algorithm could be used to solve the infrastructure DLP, as

well to find the ideal class number, the regulator, and the ideal class group structure.

However, their algorithm had not been verified in practice since there was no known

implementation until now.

One may ask why implementations of these algorithms are necessary. Index cal-

culus is a complex algorithm that is even more complex when working with mathe-

matical objects that are not easily represented by integers. Hence, the validity of a

theoretical algorithm may be questioned as there are many subtleties that could be

overlooked. Theoretical expositions often give complexity analyses to estimate the

efficiency of their algorithm. These may be rigourous or based on heuristics regard-

ing some unproven assumption. However, as computer scientists know, a complexity

1. 3. CONTRIBUTIONS 8

analysis is often only an upper bound and hides numerical constants that may dra-

matically affect the algorithm's practical runtime. Moreover, an implementation is

the only sure way to verify heuristic assumptions. Finally, implementations allow

one to obtain concrete running times based on a variety of parameter choices. Rom

these results we can extrapolate estimates on the time to complete larger problems.

This is especially imporantant in the area of cryptography, where one chooses the

size of their key based on the estimated time to complete the fastest known attack on

the trapdoor function. This motivated us to study index calculus in the infrastruc-

ture of real quadratic function fields and to attempt the first implementation of this

algorithm.

1.3 Contributions

In this thesis, we present the theory behind real quadratic function fieldsin such a way

to show the parallels between algebraic geometry and pure algebraic constructions.

We present algorithms for the infrastructure of real quadratic function fields and

describe in detail how index calculus can be applied in this setting when the genus

is large. We extend the algorithm of Muller, Stein and Thiel by describing numerous

improvements to relation generation such as a baby walk method, self-initialized

sieving, and the use of large primes. We give a new heuristic complexity analysis

based on the baby walk method. Additionally, we present practical methods for

computing the regulator that improve the linear algebra phase. We also descibe how

to compute the class number, the group structure, and solve instances of the DLP

in the infrastructure. Finally, we describe an implementation of our algorithms, the

first time index calculus has been implemented in the infrastructure of real quadratic

1.4. ORGANIZATION 9

function fields. We compared timings for two relation generation methods against an

implementation of the standard baby-step giant-step method. Our results show that,

as predicted, in high genus function fields index calculus is in fact significantly faster

than the baby-step giant-step method for computing the regulator.

1.4 Organization

One goal of this thesis is to contain a complete introduction to the theory of behind

the infrastructure of a real quadratic function field. The first chapter contains the

necessary background on hyperelliptic curves and algebraic function fields. These two

sections are meant to parallel each other, providing a geometric interpretation as well

as a purely algebraic introduction. This background chapter maybe skipped as the

important parts are summarized at the beginning of Chapter 2.

Chapter 2 introduces the class groups of quadratic function fields and presents

the theory behind the infrastructure of a real quadratic function field. We present

algorithms and notation that is necessary for Chapter 3. Index calculus is introduced

in Chapter 3. The chapter begins with a discussion of computational problems in

the infrastructure of real quadratic function fields, followed by an overview of index

calculus in a generic group. The main body of Chapter 3 is the discussion and

complexity analysis of index calculus in the infrastructure.

Our C++ implementation of index calculus in the infrastructure of a real quadratic

function field is described in Chapter 4. We discus special improvements made in

the implementation, such as sieving and using large primes, followed by details of

the code and external libraries used. In this chapter we also present computation

timings from our experiments. The last chapter contains conclusions and suggestions

1.4. ORGANIZATION 10

for future work.

We have tried to present the algorithms in this thesis in a clear and precise manner.

However, the reader should be aware that these high-level algorithms do not always

correspond exactly to our C++ implementation due to optimizations and integration

into a larger algebraic number theory library.

In this thesis we have attempted to give precise citations and complete references

to assist readers who are looking for more information. Papers are cited by section,

books by page number. The theorems we present are without proof, but we give the

reference where a proof may be found. Otherwise, we have tried to give intuition and

constructive arguments to support the theory presented.

We hope that you as a reader will find this thesis useful and easy to understand.

Chapter 2

Background

One can approach quadratic function fields from two different roads: the theory of

algebraic geometry and the structttres of non-geometric commutative algebra. How-

ever, one discovers that it is not that these roads meet at function fields, but they

are in fact the same road, just different vehicles.

This chapter introduces the background theory from both of these vehicles. An

attempt has been made to develop similar results in both areas, with a sensitivity to

the theory and notation of each. Our motivation is that this chapter may serve as

a resource to those familiar in one area to effectively communicate with a researcher

in the other area regarding the details of what comes later in this thesis. It is our

belief that this is the only such resource. Alternatively, since the results in each

section are similar, a reader may choose to just review the one section that he/she

is more comfortable with. Those not interested in this background theory may skip

this chapter entirely since the important definitions are summarized at the beginning

of Chapter 3.

To avoid starting from scratch, we assume that the reader is familiar with standard

11

2.1. ALGEBRAIC GEOMETRIC BACKGROUND 12

commutative algebra, including rings, fields, ideals and valuations; definitions for this

material can be found in any introductory text on the subject, e.g. Zariski and Samuel

[ZS75].

An effort has been made to keep the number of references for the background

material to a minimum. However, occasionally we do cite an alternative text if one

of the following situations arises:

i) The general text does not contain the specific topic;

ii) The alternative text contains an exposition that is, in our opinion, more clear;

or

iii) The treatment in alternative text is more standard or generalizes easier to other

areas.

It is our intention that this will assist the reader who is interested in obtaining a

more complete understanding of the concepts. Consequently, we ask forgiveness for

not citing the original sources for this material.

2.1 Algebraic Geometric Background

Algebraic geometry has a beautiful theory of which, in this section, we only scratch

the surface. In fact, we will only use concepts from classical algebraic geometry

ignoring the powerful, yet cumbersome theory of schemes. We assume that the reader

is familiar with affine and projective space. These concepts, as well as most of the

material in this section, can be found in Fulton [Ful89] or Hartshorne [Har77].

2. 1. ALGEBRAIC GEOMETRIC BACKGROUND 13

2.1.1 Projective Plane Curves

Let K be a field and let K denote its algebraic closure. Let f be a non-constant

polynomial in K[x, y]. The affine hypersurface defined by f is a set consisting of

all the points (a, b) on the affine plane A2(k) such that f(a, b) = 0 [Ful89, pp. 7-

8]. An affine plane curve C over K is a hypersurface defined by an irreducible

polynomial f E K[x, y]. The polynomial f generates a prime ideal Pc C k[x, y] that

we associate with the curve C. The coordinate ring of C is the quotient ring

K[C] = K[x, y]/(pc fl K[x, y]),

and the field of quotients of K[C], denoted K(C) = Quot(K[C]), is called the func-

tion field of C over K. Similarly, one can define the function field of C over 7 as

(C) = Quot([x, y]/pc). Elements of K(C) (or (C)) are called rational func-

tions. A rational function f € (C) is regular at a point P E C if there exists a

pair of polynomials g, h E 7[C] such that f = g/h and h(P) 0 0. For any (finite)

point P E C, the local ring of C at P is the set Op(C) c 7?(C) of rational functions
which are regular at the point P [Ful89, pp. 36, 42-43].

The set of K-rational points on the curve C is given by

C(K) = (cnA 2 (K)) u (cnH)

= {(a,b) E C a,b E K}U (cnH.) ,
(2.1)

where H is the hyperplane at infinity. The curve C contains a non-empty subset

of H, elements which are referred to as points at infinity. These points at infinity

do not exist on the affine plane, but their addition allows us to consider C in the

2.1. ALGEBRAIC GEOMETRIC BACKGROUND 14

projective plane 1P2 (K). We convert points from affine space to projective space via

the homogenization map:

J A(k)
(x,y) i ,' (x :y:1).

Points of the form (x : y : z) E 1P2(K) are said to be in homogeneous coordinates.

The dehomogenization map returns a homogeneous point P = (x : y : z) E IP2()

for z 0 to qr'(P) = (x/z,y/z) E A2(); if z = 0, the dehomogenization map gives

a point at infinity cl(P) E H [Ful89, pp. 86-87]. The affine curve C is said to

be the affine model of the projective plane curve given by the homogenization

map on C. For any projective plane curve we can find its affine model via the

dehomogenization map. The function field (C) of a projective plane curve C is

isomorphic to the function field of its affine model [FLO6, p. 51].

Let C be a projective plane curve over K. Let Op(C) be the local ring of a

point 'P E C. The point P is called smooth if Op(C) is integrally closed in (C);

otherwise, P is called singular [Har77, pp. 32, 40]. If every finite point on C is

smooth, then the curve is said to be nonsingular (or smooth); otherwise, if there

exists a singular finite point on C, the curve is singular. The Jacobi criterion

assists in determining smooth points on C [Fu189, p. 64]:

Theorem 2.1 (Jacobi). Let C be the affine model of a projective plane curve over

a field K. Suppose C has a defining ideal pc generated by the polynomial f E K[x, y].

For any point P E C, if either of the partial derivatives 2L ax (P) 0 or ay P1 (P) =h 0,

then P is smooth in both the projective curve and the affine model.

It follows from Theorem 2.1 that a point P on a curve is singular if both of the partial

2.1. ALGEBRAIC GEOMETRIC BACKGROUND 15

derivatives (P) and (P) vanish.

An example of a projective plane curve is the projective line TP'(K), called the

rational curve. The rational curve has a unique point at infinity P P' (K) fl H.

This point is smooth and has a local ring defined as

0. = {glh E K(TP') deg deg h},

where K(IP') = Quot(K[x]) is the function field of the rational curve [Ful89, p. 47].

In general, plane curves may have multiple points at infinity (which are not always

smooth), but we can relate them to & by considering a "morphism" to the rational

curve as defined in the next section.

2.1.2 Morphisms and Ramification Points

Let C and C' be two nonsingular projective curves over a field K. A non-constant

map ç, C' - C is a morphism if there is a corresponding homomorphism

K(C) -+ K(C'). A morphism is either constant or surjective (we will ignore constant

morphisms). A morphism ço: C' - p C is separable if the function field K(C') is a

separable field extension of K(C). The degree of ço is defined as .deg W = [K(C')

K(C)] [Ful89, p. 214].

Consider a point P E C'(—K) with local ring Op. The local ring is a discrete

valuation ring. Let t E Op be a uniformizing parameter, i.e. t generates the maximal

ideal nip C Op. Then every f e k(C') can be expressed uniquely as f = tu for

some u E O, and n E Z. The value of n is independent of the choice of t. Then we

define the (discrete') valuation of Op as vp(f) = n and vp(0) = oo. This valuation

'"Discrete" implies that the result of the valuation is an integer [ZS75, V. II, p. 42].

2.1. ALGEBRAIC GEOMETRIC BACKGROUND 16

can be extended to the function field R(C') by the rule vp(g/h) = vp(g) - vp(h)

[Ful89, pp. 46-47].

Let P E C'(k) and let t be a uniformizing parameter of O, where Q = ço(P).

The ramification index of ço at P is the positive integer given by

e(P) = vp(t)

where Vp is the valuation of the local ring Op. The ramification index is independent

of the choice of t and satisfies e(P) = 1 for all but a finite number of points P E C'.

The points P E C' such that W(P) E C and e(P) > 1 are called ramification points

[Ful89, pp. 214-215].

Consider a ramification point P E C' with index e(P). If char K = 0 or if

char K = p and p'e(P), then P is said to be tamely ramified with respect to çü.

Otherwise, if char K = p and ple(P), then P is wildly ramified [Har77, p. 299].

2.1.3 Divisors

Let C be a nonsingular projective (plane) curve over K. A divisor on C is a formal

sum of points,

L nP
PeC(K)

(2.2)

where flp E Z with finitely many flp non-zero. Points on C are prime divisors

and we denote the coefficients of the prime divisors of D as ordp(D) = rip. The

support of D, denoted supp(D), is the set of points P E C with non-zero coefficients

ordp(D). If ordp(D) ≥ 0 for all P E supp(D), then D is effective, denoted D ≥ 0.

2.1. ALGEBRAIC GEOMETRIC BACKGROUND 17

The degree of D is defined as

deg = ordp(D).
PEsupp(D)

The set of divisors on C forms a free Abelian group Div(C) under addition [Har77,

p. 294].

"Recall that for any point P E C(k), the local ring Op is a discret valuation' ring

with valuation Vp. Let f E k(C) be a non-zero rational function. The divisor of f

is defined as

div(f) = vp(f)P,

PEO(K)

(2.3)

where vp(f) is non-zero for a finite number of points P E C(i?). Since the valuation

Vp is discrete, it is easy to see that (2.3) satisfies the form given in (2.2). Divisors

that can be written in this form are called principal divisors. Furthermore, we have

that div(f . g) = div(f) + div(g) and div(f/g) = div(f) - div(g) for any non-zero

f,g G R(C) [Har77, pp. 130-131].

For any principal divisor div(f), we define the divisor of zeroes divo(f) and the

divisor of poles div(f) given by

divo(f) = vp(f) P and div(f) = > —vp(f) . P.

PEC(K) PEC(K)

VP(f)<0

Then div(f) can be written as div(f) = divo(f)—div(f). Any point P € supp(divo(f))

is a zero of f of multiplicity vp(f). Similarly, any point P E supp(div(f)) is a pole

2.1. ALGEBRAIC GEOMETRIC BACKGROUND 18

of f of order - VP (f). Every principal divisor has degree zero; therefore, every rational

function f has an equal number of zeroes and poles when counted with multiplicities

[Ful89, p. 188].

Let C and C' he two nonsingular projective curves over K with a morphism ço

C' -+ C. The conorm of a divisor with respect to W is the following homomorphism:

Div(C) - Div(C')

Conw D i- ordQ(D).e(P).P,

QESUPP(D) P€C'(i?)

W(P)=Q

where e(P) is the ramification index of ço at P. In particular, for any divisor D E

Div(C), the degree of the divisor Con(D) E Div(C') satisfies

deg Con(D) = deg ço . deg D, (2.4)

where deg ço is the degree of the morphism çü [Har77, pp. 137-138].

2.1.4 Differentials and Canonical Divisors

Let F = K(C) be the function field of a nonsingular projective (plane) curve over K.

Note that F is a field containing the field K and let V be a vector space over F. A

derivation of F into V is a map d: F -+ V satisfying the following properties for

every f, g E F and a E K:

i) d(fg) = f . d(g) + g . d(f) (Leibniz's rule)

ii) d(f + g) = d(f) + d(g)

iii) d(af) = ad(f).

2. 1. ALGEBRAIC GEOMETRIC BACKGROUND 19

For each f E F let [f] denote a formal symbol. We define the free vector space

= { [f] f F.} over F and a subspace T generated by the following sets:
i) {[fg] - f[9] - g[f] I f, g Ei F}

ii) {If +91- [fl - [g] f, g E F}

iii) {[af]_a[f] fEF,aEK}.

Then the space of differentials of F = K(C) is defined to be the quotient space

OF/K = SIT. The residue of [f] in SIT is the image of the derivation d(f) in OF/K.

We will omit the parenthesis and write df for the derivation d(f). Elements of QFIK

are called differentials on C [Fu189, pp. 203-204].

For any (smooth) point P E C(K), consider the local ring Op(C) as a discrete

valuation ring and subring of F = K(C). Let t E (9p(C), t 0 K, be a uniformizing

parameter. Then, for every w E OF/K, there is a unique element h E F, depending

on w and t, such that w = h. dt. Since w = df for some f E F, the value h can be

written as

h df
dt -,

where h is called the derivative of f with respect to t. The order of w at P is given

by the valuation on the local ring Op as

ordp(w) = vp(w/dt).

As the notation suggests, the order depends only on w and P, not on the choice of

uniformizer t [Ful89, p. 207].

2.1. ALGEBRAIC GEOMETRIC BACKGROUND 20

For any differential w E OF/K, the divisor of w is a formal sum given by

div(w) = L ordp(w) P.
PEC

Note that div(w) E Div(C) and divisors of this form are called canonical divisors

[Ful89, p. 207].

2.1.5 Riemann-Roch and the Genus

For each divisor D E Div(C), the Riemann-Roch space is .a vector space 2(D)

over K given by

2(D) = {f € K(C) N {0} I div(f) + D ≥ o} u {o}.

The Riemann-Roch space is finite-dimensional, and its dimension is denoted by

£(D) = dimK2(D)

[Ful89, p. 192]. The Riemann-Roch space is important as shown in the famous

Riemann-Roch theorem [Ful89, pp. 209-210]:

Theorem 2.2 (Riemann, 1857; Roch, 1865). There exists an integer g ≥ 0 sat-

isfying

i) £(D) - £(W - D) = deg(D) - g + 1 for any divisor. D E Div(C) and canonical

divisor W E Div(C).

ii) £(D) = deg(D) - g + 1 for any divisor D E Div(C) with deg D> 2g - 2.

2.1. ALGEBRAIC GEOMETRIC BACKGROUND 21

The value g is called the genus of the curve C. We call any nonsingular projective

curve of genus g = 0 a rational curve since it is (birationally2) equivalent to P' (7).

A nonsingular projective curve of genus g = 1 is called an elliptic curve [Ful89,

pp. 196-198]. We consider curves of higher genus in Section 2.1.7, .but first we give

another method for computing the genus.

2.1.6 The Ramification Divisor and the Hurwitz Formula

Let C and C' be two nonsingular projective curves over a field K with a separable

morphism : C' — C. To simplify notation, denote the function fields of C and C' as

F = K(C) and F' = K(C'), respectively. Since there is an injective homomorphism

: F —+ F' corresponding to çü, (F) is isomorphic to F and, hence, F is a subfield

of P.

Consider the modules 1F/K and Q F11K. There is a module of relative differ-

entials clF/F of F over F defined in a similar way as n .F11K with K C F' replaced

by F C P. Let Div(F/K) C Div(C) denote the set of canonical divisors of C. Then

we have the following exact sequence [Har77, pp. 1721,299-300]:

0 — f Con(DiV(F/K)) . 1F'/K - p 0. (2.5)

Consider a point P E C' with ço(P) = Q for some point Q E C. Let (F'/K)p

denote the free Op-module generated by a differential dt, where t E Op is a uni-

formizing parameter. Similarly, let (F/K)Q denote the free OQ-module generated by

du for a uniformizing parameter u E (9Q. Then from the sequence in Equation (2.5),

curves are "birationally" equivalent if and only if their function fields are isomorphic [Fu189,
p. 155].

2. 1. ALGEBRAIC GEOMETRIC BACKGROUND 22

there is a principal Op-module (IlF'/p)p generated by ordp(du/dt) that is isomorphic

to (lF'/K)p/ Con(Div(F/K)Q). Let length(M) denote the length of a module M;

that is, the length of the longest ascending chain of submodules of M. Then we have

the following result regarding the length of (F'/F)p [Har77, p. 300]:

Lemma 2.3. Let C and C' be two nonsingular projective curves over a field K with

a separable morphism ço: C' - C. Then for any point P E C(k)

length (F'/F)P ≥ e(P) - 1.

If P is tamely ramified with respect to ço, then the inequality is an equality; otherwise,

P is wildly ramified and the inequality is strict.

Given the previous result, we define the ramification divisor of cc as

= length (c1 /) . P.

PEC' (7?)

(2.6)

The points with non-zero coefficients in R. are precisely the ramification points of W.

This leads to the Hurwitz formula which relates the genera of two curves [Har77,

p. 301].

Theorem 2.4 (Hurwitz, 1891). Let C and C' be two nonsingular projective curves

over a field K with a separable morphism cc : C' - C. Then if C has genus g, the

genus g' of C' satisfies

2g' — 2 = deg ()(2g — 2) + deg R.

From the definition of the ramification divisor in Equation (2.6) and Lemma 2.3,

2. 1. ALGEBRAIC GEOMETRIC BACKGROUND 23

we get the following corollary to the Hurwitz formula [Si186, p. 41]:

Corollary 2.5. Let C and C' be two nonsingular projective curves over a field K

with a separable morphism ço: C' - C. Then if C has genus g, the genus g' of C'

satisfies

2g' - 2 ≥ deg ((p)(2g - 2) + (e (P) - i)

PEC'(i?)

If all P E C' are tamely ramified, then the inequality is an equality; otherwise, the

inequality is strict.

2.1.7 Weierstrass Points

Let C be a nonsingular projective curve of genus g defined over a field K and let IP'

be the rational curve also over K. A morphism ir : C -+ IP' is called a cover for C

and the ramification points with respect to ir are called Weierstrass points of C.

The fiber of ir over P is the set 7r-'(P) of points Q € C such that ir(Q) = P. For a

cover ir of degree n, if the fiber contains fewer than n points, then it must contain at

least one Weierstrass point of C.

The Weierstrass gap sequence for a point P E C is given by the integers n E N

satisfying

£(nP) = iZ((n — 1)P)

There are exactly g integers in the Weierstrass gap sequence (n,, n2,. .. , n9), satisfying

0 < fll < fl2 < <n9 < 2g. All but finitely many points P E C(k) have the same

2. 1. ALGEBRAIC GEOMETRIC BACKGROUND 24

Weierstrass gap sequence; those points that differ are precisely the Weierstrass points.

There are no Weierstrass points on curves of genus g = 0 or g = 1; however, if g ≥ 2,

then there must exist at least one Weierstrass point [Sti93, p. 32].

If g > 1 and 2 is not in the Weierstrass gap sequence for a Weierstrass point P,

then P is called a hyperelliptic Weierstrass point. A nonsingular projective curve

C is called a hyperelliptic curve if C has a hyperelliptic Weierstrass point. This is

satisfied if and only if the genus g ≥ 2 and there exists a double cover for C, i.e. a

morphism ir : C - IF' of degree 2 [Fu189, p. 216].

2.1.8 Hyperelliptic Curves

Recall from the previous section that a hyperelliptic curve C over a field K is a

nonsingular projective curve of genus g> 1 with a morphism ir: C - p IF' of degree

2. Let K[C] be the coordinate ring of C given by K[C] = K[x, y]/po, where pc is

the prime ideal of the curve C. Let P E C fl H be a point at infinity on C(K)

(cf. Equation (2.1)). In this section we derive the equation defining the nonsingular

affine model of a hyperelliptic curve C/K following the technique of Frey and Lange

[FLO6, pp. 73-74].

There exists an element x that is transcendental over K such that the rational

curve IP'/K has a function field K(IF') = K(x). For such an x, consider the divisor of

poles D = div(x). Since ir has degree 2, we have [K(C) : K(x)] = 2 and the divisor

D must have degree 2. For integers 1 ≤ m ≤ g we have deg(mD) = 2m and 2(mD)

has a basis { 1, x,. . . , X}. But when m = g + 1 we have deg((g + 1)D) = 2(g + 1),

2.1. ALGEBRAIC GEOMETRIC BACKGROUND 25

and by Riemann-Roch (Theorem 2.2)

£((g+1)D)=deg((g+1)D)—g+1=g+3.

This implies that 2((g + 1) D) has a basis consisting of 1, x,. . . , plus some

additional linearly independent z E 2((g + l)D). We will show that z % K[x]

by first supposing that z = +2 . Then there would be g + 2 zeroes of z implying

deg divo(z) ≥ g + 2. In fact, given that ir is a morphism of degree 2, by Equation (2.4)

we would have that deg divo(z) ≥ 2(g + 2). But deg divc,,(z) = deg divo(z) and

div(z) = divo(z) - div(z), so with deg((g + 1)D) = 2g + 2 we could not have

div(z) + (g + l)D be effective. Therefore, 0 2((g+ 1)D) and z 0 K[x] implying

the basis for 2'((g+ 1)D) is { 1,x,. . . ,x9 ',y}. In a similar vein, the Riemann-Roch

space . t(2(g + 1)D) has a basis of size 3g + 5 given by the following:

{l,x,.. . ,x2(9+l),y, xy,. .. ,x9+ly,y2}

A linear combination of this basis over K gives the following equation (after dividing

through by the coefficient of y2):

y2+h(x)y=f(x), (2.7)

where h, f E K[x] with degrees bounded as deg h ≤ g + 1 and deg f ≤ 2g + 2.

2.1. ALGEBRAIC GEOMETRIC BACKGROUND 26

Fields of Odd Characteristic

Now we present more precise requirements on the degrees of h and f that depend

on the number of finite Weiérstrass points on C. We will start by assuming that

char K 2. Since ir is a separable morphism of degree 2, Corollary 2.5 of the

Hurwitz formula simplifies to

2g+2= (e(P)—l) . (2.8)

PEC(K)

where each ramification index e(P) ≤ 2: Therefore, there are at most 2g + 2 rami-

fication points on C with respect to . However, if P E C is a ramification point,

then there are only 2g + 1 finite ramification points. These ramification points are

precisely the Weierstrass points of C.

The transformation y i- y - h(x)/2 allows us to consider h(x) = 0 in Equa-

tion (2.7). Then there exists an involution given by t : y -* —y, called the hyperel-

liptic involution. This involution t sends a point P to the other point in the fiber

of ir(P) and fixes the ramification points, i.e. the Weierstrass points of C. The image

t(P) of a point P under the hyperelliptic involution is called the conjugate of P,

denoted P.

If there is one point in the fiber of ir(P), then P is the only point at infinity in

c fl H. If P is a Weierstrass point, then by Equation (2.8) there are 2g + 1 finite

Weierstrass points and we call C an imaginary hyperelliptic curve. In this case

f(x) is monic with deg f = 2g + 1. An example of an imaginary hyperelliptic curve

is shown in Figure 2.6.

If there are two points in the fiber of ir(P),, then there are two points at infinity,

2.1. ALGEBRAIC GEOMETRIC BACKGROUND 27

Figure 2.6. The genus-2 imaginary hyperelliptic curve C : y2 = x5-6x3—x2+4x+1

over 11 plotted in the affine plane A2(R).

P, P € C fl H, such that P. = P,. Also, since these points are not Weierstrass 10 00

points, by Equation (2.8) there are 2g + 2 finite Weierstrass points and C is called a

real hyperelliptic curve. In this case f(x) has deg f = 2g+2 with leading coefficient

a square in K. An example of a real hyperelliptic curve is shown in Figure 2.7.

There is a degenerate case when there is only one point in the fiber of ir(P), but

the point P is not a Weierstrass point. In the degenerate case, C is called unusual

and f(x) has deg f = 2g + 2 with leading coefficient a non-square in K.

These cases give the affine equation C = f(x) for ahyperelliptic curve C over

K (char K 2), where deg f E {2g + 1, 2g + 2}. The requirements on the polynomial

f for each of the above cases can be found in Jacobson, Scheidler and Stein [JSSO7b,

§3] or [JSSO7a, § 2]. To satisfy the Jacobi criterion (Theorem 2.1) and ensure C is

2. 1. ALGEBRAIC GEOMETRIC BACKGROUND 28

Figure 2.7. The genus-2 real hyperelliptic curve C: y2 = X'+ x' - 5x' - 2x'+ 3x + 1

over IR plotted in the affine plane A2(R).

nonsingular, no finite point P E C() must satisfy 2y = 0 and f'(x) = 0. That is,

the singular points are (a, 0) E C() satisfying f(a) = 0 and f(a) = 0. Therefore,

C is nonsingular if and only if f(x) is squarefree in k[x, y].

Fields of Even Characteristic

Now we consider the case when K is of characteristic two. With the degree 2 separable

morphism ir, the Hurwitz formula (Theorem 2.4) simplifies to

2g + 2 = deg R.

2.1. ALGEBRAIC GEOMETRIC BACKGROUND 29

Let F0 = K(C) and F = K(PI) = K(x). Since every ramified point P E C(k)

is wildly ramified, Lemma 2.3 gives that length (F/F)p ≥ 2. Therefore, from the

definition of the ramification divisor in Equation (2.6); the number r of ramified

points on C with respect to ço must be in the range 1 < r < g + 1. These ramification

points' are precisely the Weierstrass points of C.

We cannot use the same transformation y '- y - h(x)/2 when char K = 2. If

we were to let h(x) = 0, then C would be singular since any Weierstrass point

(a, b) E C(R) satisfies f'(a) = 0 and 2b = 0. Therefore, we .must have h(x) 0 0 in

(2.7). The hyperelliptic involution for this case is given by t : y i-* —y - h(x).

Again, P = t(P) is called the conjugate of F, and the fixed points of t are the

Weierstrass points of C.

If there is, one point in the fiber of ir(P), then P is the only point at infinity in

C fl H. If P is a Weierstrass point and there are at most g finite Weierstrass points

on C, then we call C an imaginary hyperelliptic curve. In this case deg h ≤ g

and deg f = 2g + 1.

If there are two points in the fiber of ir(P), then there are two points at infinity,

P, P E CflH, such that = P. These points are not Weierstrass points, so if

there are g+1 finite Weierstrass points, we call C a real hyperelliptic curve. In this

case we have deg h = g + 1 and f(x) satisfies either deg f ≤ 2g + 1 or deg f = 2g + 2

with leading coefficient of the form e2 + e for some e E K*.

We still have the degenerate case where C is called unusual when there is only

one point in the fiber of ir(P,), but the point P is not a Weierstrass point. In this

case deg h = g + 1 and deg f = 2g + 2 where f(x) does not have a leading coefficient

of the form e2 + e for any e E K*.

2.2. ALGEBRAIC NON-GEOMETRIC BACKGROUND 30

Therefore, when char K = 2, we have an affine equation C: y2 + h(x)y = f(x) for

a hyperelliptic curve C over K, where h(x) is monic and satisfies deg h < g + 1 and

f(x) satisfies deg f E {2g + 1, 2g + 2}. It is interesting to note that the irreducible

factors of h(x) are simple divisors of f(x). The requirements on the polynomials h

and f for each of the above cases are derived in Enge [EngOl]. To satisfy the Jacobi

criterion (Theorem 2.1) and ensure C is nonsingular, no finite point P E C(K) can

satisfy both 2y + h(x) = 0 and f'(x) - h'(x)y = 0.

In the rest of this thesis we ignore the case where C is unusual. One may note

that if considering a curve C that is unusual with constant field K, then C over

where £ is a constant field extension of degree 2 over K, will result in C being a real

hyperelliptic curve [PR99, § 1]. The focus of this thesis is real hyperelliptic curves and

their function fields.

2.2 Algebraic Non-Geometric Background

Commutative algebra offers mathematical structures that work in similar ways to

the geometric presentation of the last section. In particular, this section defines and

examines the construct of an algebraic function field. As a reference for most of the

results in this section, we refer the reader to Stichtenoth [Sti93].

Let K be a field. An algebraic function field (in one variable) over K is a field

F that is a finite algebraic extension of K(x) for some x € F that is transcendental

over K. The algebraic function field F = K(x) is called the rational function field

in x over K. Throughout this section we assume that K is a perfect field.'

3A field K is "perfect" if every irreducible polynomial f(x) E K[x] is separable over K [ZS75,
V. I, pp. 64-65]. Finite fields, fields of characteristic zero, and algebraically closed fields are all

perfect.

2.2. ALGEBRAIC NON-GEOMETRIC BACKGROUND 31

The field of constants K of an algebraic function field F over K is the set of

all elements of F that are algebraic over K. We have that K Ck C F and K is a

finite extension field of K. The field of constants is exact (or full) if K = K [Sti93,

pp. 1, 6]. We will assume that any function field F has K = K

The theory of algebraic function fields has many parallels with algebraic number

fields. In fact, number fields and function fields defined over finite fields are generally

referred to as global fields. In the work at hand, we focus on algebraic function

fields.

2.2.1 Places

Let F D K be an algebraic function field. A place of F is an embedding 9 of a

valuation ring 0.9 C F into the residue field 09 /m.9, where mp is the maximal

ideal of O. The value of P at an element a E 0p is written in infix notation and

a place .' satisfies the following properties:

i) For afiya(EFN Op, we have a' EO.9 and a'.9=O.

ii) There exists an a E 0.9 such that a1-' 0 0.

The map .9 can be extended to F by introducing a symbol oo such that a.9 = 0°

for all a E F N (99. The degree of a place .9 is a finite value given by

deg .9 =[0 .9/m.9:K]≤[F:K]<oo.

If deg .9 = 1, then 0.9 /rn.9 = K and the place .9 is called rational. We denote the

set of places of F by E(F) [ZS75, V. II, pp. 3-7], [Sti93, pp. 6,7].

2.2. ALGEBRAIC NON-GEOMETRIC BACKGROUND 32

A place 9 E E(F) is finite on K[x] if a oo for all a E K[x]. The centre

of a finite place 9 is the prime ideal p = mg fl K[x] K[x], consisting of all the

polynomials f E K[x] that vanish at P. Two places are isomorphic if they have

the same centre in any integral domain R C F in which they are finite [ZS75, V. II,

pp. 15-16].

Consider a place . E Z(F) with valuation ring O_m and maximal ideal m.

For any prime element t satisfying m = tQg, there exists a unique representation

f = tu for every non-zero f E F with u E O and n E Z. Note that the value of n

is independent of the choice of t. This defines the (discrete) valuation of Og given

by vg (f) = n and vg (0) = cc. Then the valuation ring Op for any finite place 9 is

given as the following [Sti93, pp. 3-5]:

o={fEFv)≥o}.

Let K(x) be the rational function field in x over K. There is a unique place

E(K(x)) not finite on K[x] called the place at infinity. This place has a

discrete valuation defined by the rule vg. (g/h) = deg h - deg g, for any f = g/h E F.

Then the valuation ring of is given by

o={g/hEK(x) I deg g≤ deg h} ,

The transcendental element x 0 O, so we must have x E ° co• Therefore,

K[x-'] g O and the centre of is the principal (prime) ideal p = x'O.

The place at infinity satisfies deg = 1. Any algebraic function field that is a

non-trivial extension of K(x) may actually have multiple places at infinity, but they

2.2. ALGEBRAIC NON-GEOMETRIC BACKGROUND 33

are all related to .9 [Sti93, pp. 8-9].

2.2.2 Extensions and Ramification of Places

Let F denote an algebraic function field over K that is a finite algebraic extension

of the rational function field F = K(x). Let .9 E E(F) and .9' E (F) be places,

and 0.9, OR, their respective valuation rings. The place 9' is an extension of 9,

or equivalently .9' lies above .9, if 0.9 0.9 '. If .9' lies above .9, this is often

denoted as .9'.9. Each place .9' E E(F') lies above one unique place .9 E E(F).

Conversely, each place .9 E E(F) has at least one extension in E(F'). If two places

are extensions of each other, then the places are isomorphic [Sti93, pp. 60-62].

Two places .9, .9 E(F') are said to be conjugate over F if there exists an

F-automorphism o of F' such that .9 = o.9.' If .9 and .9 both lie above .9,

then .9 is isomorphic to a conjugate of .9. We write .9 = .9 to denote that .9

is a conjugate (or isomorphic to a conjugate) of .9 [ZS75, V. II, p. 28].

Let .9' E E(F') be a place lying above .9 E E(F). There exists an integer e E N

such that, for any f E F',

v.9 1(f) = e v.9 (f).

This integer e = e(.9'I.9) is called the ramification index of .9' over .9. The

place 9 is said to be ramified in F' (or 9' is ramified over .9) if e> 1; otherwise,

.9 (resp. .9') is unramified [Sti93, pp. 61-62].

Let .9' E E(F) be a ramified place lying above 9 ,E E(F). Let p = char(K).

If either p = 0 or p']'e(.9'I.9), then 9 is tamely ramified in F; otherwise, 9 is

2.2. ALGEBRAIC NON-GEOMETRIC BACKGROUND 34

wildly ramified. The function field F is said to be a tame extension of F if all

the ramified places are tamely ramified [Sti93, pp. 94-95].

2.2.3 Divisors on Function Fields

Let F be an algebraic function field. A divisor on F is given by the formal sum

D= fl.9.9,
9EE(F)

where np E Z and ng = 0 for all but a finite number of places .9. The places in

E(F) are called prime divisors and we denote the coefficients of the prime divisors

of D as ordp(D) = n. The support of D, denoted supp(D), is the set of places

.9 E E(F) with non-zero coefficients ord(D). If ord,(D) ≥ 0 for all .9 E supp(D),

then D is effective, denoted D ≥ 0. The degree of a divisor D is defined as

deg D= Eord.(D). deg .9.
.Esupp(D)

The set of divisors on F forms a free Abelian group Div(F) under addition.

For any place .9 E E(F), let vp denote its valuation. Every non-zero f E F has

an associated divisor given as follows:

div(f) = v.9(f)..9.
.9EE(F)

The divisors that can be written in the form div(f), for some non-zero f E F, are

the principal divisors.

Let f E F and 9 E E(F) with corresponding discrete valuation v9. The place

2.2. ALGEBRAIC NON-GEOMETRIC BACKGROUND 35

.9 is a zero of order m at f if and only if v.9(f) = m> 0. The place .9 is a pole

of order m at f if and only if v(f) = -m < 0 [Sti93, p. 7].

Let F be an algebraic extension of the function field F, both defined over the same

constant field K. The conorm of a divisor is given by the following homomorphism:

Div(F) - p Div(F')

ConF//F : D
.9supp(D)

ord(D) .9'

For any divisor D E Div(F), the degree of the divisor under the conorm map is related

by

deg ConF//F(D) = [F': F] deg D.

If D is a principal divisor, then ConF'/F(D) = D, the result is a principal divisor in

Div(F') [Sti93, pp. 63-66].

fi

2.2.4 Differentials and Canonical Divisors

 H P91

2.2. ALGEBRAIC NON-GEOMETRIC BACKGROUND 36

where F.9 denotes the completion of F with respect to " Since'F can be embedded

in AF, this restricted direct product results in AF being a vector space over K, called

the adele space of F [Neu99, pp. 357-358].

Adèles have addition and multiplication operations defined componentwise over

the sequence. We say that two adèles a1, a2 E AF are congruent modulo a divisor

D E Div(F) if

v.9 (a1) - V-9 (a2) = V-9 (al a2) ≥ ord.9(D),

for every place 9 E E(F). This congruence is denoted in the natural way: a1

a2 (mod D). Then for any divisor D E Div(F) we define the following subspace:

AF(D) = {ce E AF a 0 (mod D)}

A differential of F is a K-linear map w : AF - K such that w vanishes on AF(— D)+

F for some divisor .D E Div(F). Note that AF(— D) + F is the space containing

elements of the form a + f = (a.9 + f).9EE(F) for f E F and a E AF satisfying

v.9 (a) ≥ - ord(D) for. every 9 E E(F). The set of all differentials of F, denoted

OF/K, is called the module of differentials of F [Che51, pp. 25-30].

Each non-zero differential w E ≤F/K has a unique divisor W E Div(F) satisfying

the following properties:

i) w vanishes on AF(— W) + F.

ii) For any D E Div(F) if w vanishes on A(—D) + F, then W - D ≥ 0.

4The "completion of F with respect to ." is the superset P F such that every Cauchy
sequence in F is convergent in F.9 with respect to the valuation V.9 [Neu99, p. 123].

2.2. ALGEBRAIC NON-GEOMETRIC BACKGROUND 37

This divisor W = div(w) is called a canonical divisor of F [Sti93, p. 27].

2.2.5 Riemann-Roch and the Genus

The Riemann-Roch theorem as given earler for curves, also applies to function fields.

Let P be an algebraic function field over a field K. For each divisor D E Div(F), the

Riemann-Roch space is the vector space 2(D) over K given by

2(D) = {f G F N {O} I div(f) + D ≥ o} u {o}.

The dimension of the Riemann-Roch space is denoted £(D) = dimK 2(D) [Sti93,

pp. 16-17].

The Riemann-Roch theorem is of fundamental importance to algebraic func-

tion fields [Sti93, pp. 28-29]:

Theorem 2.8 (Riemann, 1857; Roch, 1865). There exists an integer g ≥ 0 sat-

isfying

i) £(D) - £(W - D) = deg(D) - g + 1 fo.r any divisor D E Div(F) and canonical

divisor W (=- Div(F).

ii) £(D) = deg(D) - g + 1 for any divisor D E Div(F) with deg D > 2g - 2.

The value g is called the genus of the function field F. If F has genus g = 0 and

there exists a divisor of degree one, then F is precisely the rational function field

K(x) for some x transcendental over K. If F has genus g = 1 and there exists a

divisor of degree one, then F is called an elliptic function field. Note that if K is

algebraically closed or a finite field (the cases in which we are interested), then there

2.2. ALGEBRAIC NON-GEOMETRIC BACKGROUND 38

always exists a divisor of degree one. We consider function fields of genus g > 1 in

Section 2.2.7, but first we introduce another formula to compute the genus.

2.2.6 The Different and the Hurwitz Formula

Let F' denote an algebraic function field over K that is a finite algebraic extension

of the rational function field F = K(x). We define a divisor called the different, of

F'/F as

Diff(F'/F) = d(.9'.9) ..9', (2.9)
e2'EE(F) .9'E(F')

where d(.9'I.9) is called the different exponent of 9' over .9 and is given in the

Dedekind different theorem as the following [Sti93, pp. 82-83,89]:

Theorem 2.9 (Dedekind). Let F be an algebraic function field, a finite separable

extension of F with the same constant field K. Then for any place .9' E E(P) lying

above a place .9 E E(F) the different exponent satisfies

≥e(.9'I.9) - 1.

If F is a tame extension of F, then the above inequality is an equality; otherwise, the

inequality is strict.

This leads to the Hurwitz formula which allows one to compute the genus of a

function field [Sti93, p. 88].

2.2. ALGEBRAIC NON-GEOMETRIC BACKGROUND 39

Theorem 2.10 (Hurwitz, 1891). Let F' be an algebraic function field, a finite sep-

arable extension of with the same constant field K. Then the genus g' of F satisfies

2g1 - 2 = [F' : F](2g - 2) + deg Diff(F'/F)

From Dedekind's theorem and the definition of the different in Equation (2.9) we

get the following corollary to the Hurwitz formula [Sti93, p. 95]:

Corollary 2.11. Let F' be an algebraic function field, a finite separable extension of

F with the same constant field K. Then the genus g' of F' satisfies

2g' — 2 ≥ [F' : F](2g —2) + (e('.9) - 1) deg(')

PEE(F) 'EE(F')

If F' is a tame extension of F, then the above inequality is an equality; otherwise, the

inequality is strict.

2.2.7 Hyperelliptic Function Fields

Let K be a perfect field and K(x) the rational function field over K, where x is

transcendental over K. A hyperelliptic function field F is a separable degree

2 extension of K(x). Because it is a degree 2 extension, F is sometimes called a

quadratic function field. Moreover, we have that F = K(x, y) for some y E F

algebraic over K(x); that is, y is a root of some irreducible, separable, quadratic

polynomial IF (T) in the polynomial ring K(x)[T] for an arbitrary indeterminate T.

If char K 2, we can define F = K(x, y) by a polynomial W(T) = T2 - f(x) with

f E K[x] squarefree [Sti93, pp. 108, 113, 193-194].

2.2. ALGEBRAIC NON-GEOMETRIC BACKGROUND 40

We continue to assume char K 0 2. Since we have [F: K(x)] = 2, Corollary 2.11

of the Hurwitz formula simplifies to

2g+2= ii I (e(.'9) - 1) deg(.9')
.9EE(K(x)) 'EE(F)

where each ramification index e('I.9) ≤ 2. Therefore, there are at most 2g + 2

ramified places in F over K(x). However, if .9 E E(K(x)) is ramified in F, then

there are only 2g + 1 ramified finite places. In the case that is ramified in F, we

say that F is imaginary. Otherwise, if there are two distinct places lying above

in F, then there are 29 + 2 ramified finite places and we say that F is real. There is

a degenerate case when remains prime (and unramified) in F and deg 9. = 2

for in this case F is called unusual [PR99, § 3-4].

If char K = 2, we define F = K(x, y) by a polynomial W(') T2 + h(x)T - f(x)

such that y is a root of W(T) with f, h E K[x] and h non-zero. The function field F

is no longer tame in this case, so we must use the Hurwitz formula (Theorem 2.10)

which simplifies to

2g + 2 = deg Diff(F'/K(x))

Since every ramified place is wildly ramified, Dedekind's different theorem (Theo-

rem 2.9)) gives that each different exponent d(9'l.) ≥ 2. Therefore, from the

definition of the different in Equation (2.9), the number r of ramified places in F over

K(x) must be in the range 1 ≤, r < g+ 1 [5ti93, p. 194]. Now, if E E(K(x)) is

ramified in F, then there are at most g ramified finite places and we call F imagi-

2.2. ALGEBRAIC NON-GEOMETRIC BACKGROUND 41

nary. Otherwise, if there are two distinct places lying above in F and there are

g + 1 ramified finite places, then we say that F is real. We still have the degenerate

ease where F is unusual in which remains prime (and unramified) in F and

deg ,9.' 2 for

In the rest of this thesis we ignore the case that F is unusual. As mentioned

in Section 2.1.8, an unusual quadratic function field F with constant field K is real

quadratic when considered over a degree 2 constant field extension L of K [PR99,

§1]. We focus on real quadratic function fields after briefly describing the relationship

between real and imaginary quadratic function fields in the beginning of the next

chapter.

Chapter 3

Real Quadratic Function Fields

As was shown in the previous chapter, the concepts of divisors, the Riemann-Roch

theorem and the Hurwitz formula apply to both algebraic curves and algebraic func-

tion fields. In fact, there is a one-to-one correspondence between points and places in

the sense that both are' prime divisors. Therefore, when one considers quadratic func-

tion fields, the theory from algebraic geometry and from purely algebraic structures

coalesce into a unified theory. An imaginary quadratic function field is the function

field of an imaginary hyperelliptic curve. Similarly, a real quadratic function field is

the function field of a real hyperelliptic curve. This is summarized in the following

section.

In Section 3.2 we focus on algorithms in the infrastructure of a real quadratic

function field. Section 3.3 concludes with a discussion of efficient arithmetic for

operations in the infrastructure.

42

3.1. COALESCENCE IN QUADRATIC FUNCTION FIELDS 43

3.1 Coalescence in Quadratic Function Fields

In this section we summarize results from the previous chapter. Consider a hyper-

elliptic function field F of genus g defined over a finite field K =]Fq, where F is

an quadratic extension of the rational function field K(x). Then F is equal to the

function field K(C) of a hyperelliptic curve C given by

C:y2+h(x)y=f(x),

where f, h E K[x]. Also, C must satisfy the condition that no point P = (a, b) E

C(R) satisfies both 2b + h(a) = 0 and f(a) - h'(a)b = 0. We call F an imaginary

quadratic function field if we can put Equation (3.1) into a birationally equivalent

canonical form such that

i) If char K 2, then h = 0, f is monic and squarefree with deg f = 2g + 1;

ii) If char = 2, then h y4 0, deg < g, f is monic with deg = 2g + 1.

We call F a real quadratic function field if we can put Equation (3.1) into a

birationally equivalent canonical form such that

i) If char K 0 2, then h = 0, f is squarefree with deg f = 2g + 2 and sgn(f) =

for some e E K*;

ii) If char K = 2, then h 0, h is monic, deg h = g + 1 and either

(a) deg f < 2g + 1, or

(b) deg f= 2g+2 and sgn(f)=e2+e for some e E K*

3.1. COALESCENCE IN QUADRATIC FUNCTION FIELDS 44

We can also determine F to be an imaginary quadratic function field if either of

the following properties are satisfied:

1) C n H = {P} where P is a Weierstrass point of C;

ii) E E(K(x)) is ramified in F.

Similarly, F is a real quadratic function field if the following properties are satisfied:

i) C n H = {P, P} where P.1 and P are not Weierstrass points of C;

ii) 9,, E E(K(x)) splits into two distinct places in F.

We recall from Section 2.1.8 that C has a special map called the hyperelliptic

involution defined by t : y i- —y - h(x).

The terms "imaginary quadratic" and "real quadratic" come from the fact that

imaginary quadratic function fields have similarities with imaginary quadratic number

fields and likewise real quadratic function fields are similar to real quadratic number

fields. A quadratic number field is a degree 2 field extension of the rational field

Q. It turns out that any quadratic number field can be expressed as Q(v'), where d

is a squarefree integer. In the case that d> 0, we have that Q(v') is a subfield of R

and consequently we call Q(V) a real quadratic number field. When d < 0 we

call Q(\/) an imaginary quadratic number field since it is a subfield of C but

not of JR [HW79, pp. 204, 208].

The coalescence in the theory extends further. In this section we will show how di-

visors (in either function fields or on curves) correspond to ideals and that arithmetic

on one is equivalent to performing arithmetic on the other. This is most straightfor-

ward in the case of imaginary quadratic function fields; however, this correspondence

includes real quadratic function fields at the cost of some extra work.

3.1. COALESCENCE IN QUADRATIC FUNCTION FIELDS 45

3.1.1 Divisor Class Group

Let F be a hyperelliptic function field corresponding to a hyperelliptic curve C over a

field K. Two divisors D, D' E Div(F) are equivalent, denoted D D', if D - D' is

a principal divisor. Let Div d(F) denote the set of divisors of degree d and let Prin(F)

be the set of principal divisors. Then we have the following sequence of subgroups:

Div(F) D Div°(F) D Prin(F). The divisor class group of F is the quotient group

C1(F) = Div(F)/Prin(F) 1

Elements of Cl(F) are called divisor classes. The divisor class group Cl(F) is a

finite Abelian group, giving us the following exact sequence:

0 - Prin(F) - p Div(F) - Cl(F) - 0.

Denote by CIO(F) the kernel of the degree map Cl(F) - Z. The set CIO(F) consists

of the equivalence classes of degree zero divisors and is a subgroup of Cl(F) [Har77,

pp. 131, 139-140]. Therefore, we have

0 - CIO (F) - p Cl(F) - f Z - p 0.

The degree-zero divisor class group is isomorphic to the Jacobian of the curve C.2

Therefore, arithmetic with divisor classes in CIO (F) can be said to be performed on

'The divisor class group Cl(F) is sometimes denoted Pic(C) as there is an isomorphism between
Cl(F) and the Picard group of C (cf. Hartshorne [Har77, pp. 143-145]).

'The Jacobian is an Abelian variety that is isomorphic to C1°(F) (cf. Hartshorne [Har77, p. 140]).
If C is a curve of genus g over the complex field C, then the Jacobian of C is a torus of dimension g.
An explicit definition of the Jacobian is beyond the scope of this work (cf. Birkenhake and Lange
[131,04, pp. 316-321]).

3.1. COALESCENCE IN QUADRATIC FUNCTION FIELDS 46

the Jacobian.

Let hF denote the cardinality of Cl°(F), called the class number of Cl°(F). An

upper and lower bound on hF is due Hasse and Weil as a consequence of their proof

of the Riemann hypothesis in function fields [RosO2, p. 55].

Theorem 3.1 (Hasse, 1935; Well, 1948). If is a hyperelliptic function field of

genus g over a finite field K = lFq, the class number hF of CIO (F) is bounded by

Artin gave an upper bound on the class number which differentiates between the cases

where F is imaginary or real quadratic [Art21, p. 236].

Theorem 3.2 (Artin, 1921). If F is a hyperelliptic function field of genus g over

a finite field K = IF'q, the class number hF of C1°(F) is bounded by

q9 deg f if F is imaginary quadratic
hF

2q°' (deg f - 1)2 if F is real quadratic.

The next subsection shows how we can find a representative for each divisor class of

C1°(F).

3.1.2 Reduced Divisors

Let F = K(C) be the function field of genus g corresponding to the hyperelliptic

curve C: y2 + h(x)y = f(x). Recall that F is a quadratic extension of the rational

function field K(x). Let ? denote a prime divisor (either a point P E C or a place

3.1. COALESCENCE IN QUADRATIC FUNCTION FIELDS 47

E(F)). We denote the prime divisor at infinity in K(x) as ?, representing

either the place at infinity of F or the point at infinity P on C. Let S denote

the set of prime divisors at infinity in F. If F is imaginary quadratic, then S = {P};

otherwise, if F is real quadratic, then S = {P,, ?,}. A divisor D E Div(F) is finite

if its support is disjoint from S.

For any divisor D E Div0 (F), there exists a divisor D' D such that D' is the

difference of two divisors D' = D - D, where DS is effective and Dg is balanced at

infinity as

gP00,

('p1 + 7),
2OO

2±ipl
2 00 2 00

if F is imaginary quadratic

if F is real quadratic and g is even

if F is real quadratic and g is odd.

We call D' semi-reduced if every two non-equal prime divisors P,, Pj E supp(Ds)

satisfy l'j 54 Pj, where Tj denotes the conjugate of the prime divisor 7' [GRMMO8,

§2].

• If F is imaginary quadratic, a semi-reduced divisor D = Ds - DS can be uniquely

represented as a pair of polynomials a, b E K[x] given by

a(x)= H
P=(a,b)€supp(Ds) S

(x - aj)0 D

b(a) = bi for every (a, b) E supp(Ds)

with the additional conditions that a and b satisfy deg b < deg a and al (f - bh -

V). This polynomial representation of a semi-reduced divisor is called Mumford

3.1. COALESCENCE IN QUADRATIC FUNCTION FIELDS 48

representation, and we denote such a divisor as div(a, b) [GHMMO8, §2].

A semi-reduced divisor D = div(a, b) is called reduced if deg a < g, where g is the

genus of F. If F is imaginary quadratic, then each class of CIO (F)contaihs exactly one

reduced divisor. If F is real quadratic, then each class of C1°(F) has a representative

of the form D5 - D5, where we write Ds = D + ns7' + msP for a finite reduced

divisor D's and The, ms E Z<0. Then we can uniquely denote each equivalence class

in the real quadratic case with div(as, bs), the Mumford representation of D5, along

with ns [GHMMO8, § 2, 4].

Algorithms for performing operations on divisors' in Mumford representation are

provided by Galbraith, Harrison and Mireles Morales [GHMMO8]. However, in this

thesis we will work with ideals instead of divisors.

3.1.3 Fractional and Reduced Ideals

Let F = K(C) be the function field of a hyperelliptic curve C : y2 + h(x)y = f(x) and

let 0 denote the coordinate ring K[G]. In general, if F K(x, y) is an extension of

the rational function field K(x), then 0 is the integral closure of K[x] in F.3 In the

case of hyperelliptic function fields, 0 is called the (maximal) quadratic order of

F. Note that the field, of quotients Quot(0) = F. Any element a E F can be written

uniquely as a = (a + by)/d for some a, b, d E K[x], where d 0 and gcd(a, b, d) = 1.

Note that a E 0 if and only if d E K*.

A fractional ideal of 0 is an 0-submodule a of F such that there exists a'

non-zero "denominator" 0 e 0 where a C (1/,0)0. To avoid confusion, sometimes

ordinary ideals are called integral ideals since they are the special case where /3 E

'For a subring S of an integral domain R, the "integral closure of S in R" is the set of all elements
a E R satisfying f(a) = 0 for some monic polynomial f E S[x] [ZS75, V. I, pp. 254-256].

3.1. COALESCENCE IN QUADRATIC FUNCTION FIELDS 49

K*. A fractional 0-ideal ct is contained in 0 if and only if it is integral [ZS75, V. I,

p. 271].

Consider a rank-2 free K[x]-submodule of F given by aK[x] +,8K[x] for a, /3 E F.

We denote this module by its basis {a, /3}. Note that two bases {a,,31 and {'y, 8}

represent the same module if and only if

ry a
I I=XI
1\c5)

for some X E GL2(K[x]) (3.1)

where GL2(K[x]) is the general linear group of degree 2, i.e. the group of all 2 x 2

matrices with entries in K[x] and determinant in K* [WW87, 3].

A fractional ideal a C F can be written as a rank-2 free K[x]-submodule of F in

the form

a=s(aK[x]+(b+y)K[x]) , (3.2)

where s E K(x) with the denominator of s monic, and a, b E K[x] satisfy the con-

ditions that a is monic and al (f + bh - b2). We can represent a with the basis

{sa, s(b + y)}. If s E K[x], then a is an integral ideal. An integral ideal a c 0 is
represented in the form of Equation (3.2) where s, a, b E K[x] such that both s and

a are monic with al (f + bh - b2). If we have deg < deg by taking b modulo a,

then the basis is said to be adapted and is unique for the ideal a. We write an ideal

with adapted basis {sa, s(b + y)} in standard represention as a polynomial triple

(s, a, b) [SW99, §3A], [Zuc97a, §6].

An integral 0-ideal a is called primitive if it cannot be written as a = mi with

3.1. COALESCENCE IN QUADRATIC FUNCTION FIELDS 50

b an integral 0-ideal and a multiplier m E K[x] N K. If a is given in standard

representation as (s, a, b), then a is primitive if and only if s = 1, in which case we

drop s from the standard representation and write a = (a, b).

A principal fractional ideal is a fractional ideal such that a = (a//3)0, where

/3 0 is the denominator with a,,6 E 0. Then the value y = a//3 = (a + by)/d E

F N {0} is said to generate a [ZS75, V. I, p. 271]. Given polynomials a, b, d E K[x]

with d 0 and a, b not both zero, the standard representation of the principal

fractional ideal generated by -y = (a+by)/d E F can be computed using Algorithm 3.3

[Sch96, 3]. The opposite operation of finding the generator of an ideal given its

standard representation is a computationally difficult problem (see Section 4.1).

Algorithm 3.3 (Principal ideal standard representation). Given -y E F, find

the standard representation of the principal fractional 0-ideal generated by 'y.

Input: A non-zero 'y = (a + by) Id E F with a, b, d E K[x], and C : y2 + h(x)y = f(x)

for F = K(C).

Output: The 0-ideal a = (Ba, aa, bct) = ('y)O.

1: sa, u, v - xgcd(b, a + bh) c Compute u, v fi'om extended Euclidean alg.

2: a, <— (a2—b2f+abh)/s

3: ba +- (ua + vbf) /sa (mod cia)

4: Sa s/(sgn(sa)d) > Note that Sa E K(x)

An ideal in adapted basis is said to be reduced if deg a ≤ g, the genus of F

[JSSO7b, §4]. In Section 3.2.1 we will introduce an algorithm to perform "reduction"

on a primitive ideal to obtain a reduced ideal.

3.1. COALESCENCE IN QUADRATIC FUNCTION FIELDS 51

3.1.4 Multiplying and Inverting Fractional Ideals

Fractional ideals admit a multiplication operation a b ç (f3/3b)'O for 0-ideals a

and b with denominators /3a, /3r., E 0, respectively. The identity of this operation is the

ring 0, itself an ideal, denoted in standard representation as 0 = (1, 0). Algorithm 3.4

presents the computations necessary for multiplication, following an algorithm of

Cantor [Can87] (with optimizations discussed therein) and generalizations by Koblitz

[Kob89]. Note that even if a and i are primitive, the product is not necessarily

primitive. When a = b, squaring an ideal simplifies as shown in Algorthm 3.5.

Algorithm 3.4 (Ideal multiplication). Multiply two fractional 0-ideals in stan-

dard representation. All of the operations are performed in the ring K[x].

Input: Two 0-ideals a = (Sa, aa, b) and b = (Sb, ab, bb), where 0 = K[C] for the

hyperelliptic curve C : y2 + h(cc)y = f(x) over K.

Output: An 0-ideal c = (se, a, b) = ab.

1: (d1, u1, vi) - xgcd(aa, ab) > Compute u1, v1 from extended Euclidean alg.

2: Sc 5,5b, a +- aaab

3: b - ulaabb + vlabba

4: if d1 0 1 then

5: (d2, u2, v2) <-- xgcd(di, ba + bb + h) > Extended Euclidean aig.

6: s - sd2

7: ac

8: b - (u2b + v2(babb + f))/d2

9: b - b (mod a)

3.1. COALESCENCE IN QUADRATIC FUNCTION FIELDS 52

Algorithm 3.5 (Ideal squaring). Squaring a fractional (9-ideal in standard repre-

sentation. All of the operations are performed in the ring K[x].

Input: An 0-ideal a = (Sa, aa, ba), where 0 = K[C] for the hyperelliptic curve C

y2 + h(x)y = f(x) over K.

Output: An 0-ideal c = (se, a, b) = a2.

1: (d, u, v) - xgcd(aa, 2ba + h) > Compute u, v from extended Euclidean aig.

2: s c <-- sd

3: a - (a/d)2

4: b - (uab + v(b 2 + f))/d (mod ac)

Let L(n) = log n. log log n. Multiplying or dividing degree n polynomials with

remainder both require O(nL(n)) operations in K [AHU74, pp. 286-292]. We can

compute the GCD of two degree n polynomials in O(nL(n) log n) operations in K

[AHU74, pp. 303-310]. Therefore, if a and ab both have degree in 0(n), Algo-

rithms 3.4 and 3.5 each run in 0(nL(n) log n). Furthermore, the ideal c = ab will

have degree 2n E 0(n).

We call a fractional 0-ideal a 0 prime if for any a, /3 E 0 such that the

product a/3 is in a, either a E a or /3 E a [ZS75, V. I, p. 149]. A primitive 0-ideal

a = (a, b) in standard representation is prime if and only if a is irreducible in K[x].

Prime ideals have a similar ramification theory as prime divisors (cf. Sections 2.1.2

and 2.2.2). We simplify the discussion here for our situation where 0 is a quadratic

order. Each prime K[x]-ideal p is principal and generated by a monic irreducible

polynomial p E K[x]. Let 93 denote a prime 0-ideal. If p0 = T93, then T and 3

are said to lie over p and that p splits in 0. If p0 = 932, then only 93 lies over p

and it is said that p ramifies in 0. The other case is if p0 = , where p is called

3.1. COALESCENCE IN QUADRATIC FUNCTION FIELDS 53

Inert [Neu99, pp. 45-49].

Let a = {a,/3} be a fractional 0-ideal given by an arbitrary K[x]-basis. The

norm of a is defined by N(a)2(2y + h)2 = det(X)2, where

X=

and denotes the conjugate of a E F under the hyperelliptic involution t. Defined

in this way, the norm is independent of the choice of basis. If a is given in standard

representation as a = (s, a, b)—recall this represents a K[x]-basis {sa, s(b+y)}— then

the norm of a is computed as

N(a) = as'.

If a is integral, then N(a) E K[x]; if a is primitive, then N(a) = a. The norm is also

completely multiplicative, i.e. it satisfies N(a) N(b) = N(ab). Clearly, the norm of

the identity 0 must be N(0) = 1 [Ste99, §2].

A fractional 0-ideal a is invertible if there exists a fractional 0-ideal cc' such

that acr' = 0. This inverse exists if and only if the ideal product a'p = amp is a

prime ideal for every non-zero prime divisor? E Div(F) and corresponding maximal

ideal mp of 0. Since 0 is a Dedekind domain, all fractional 0-ideals are invertible

4Many sources in the literature specify that the norm should be made monic. However, since we
are assuming that the polynomials in the standard representation come from an adapted basis, both
s and a are monic, thus as is always monic.

3.1. COALESCENCE IN QUADRATIC FUNCTION FIELDS 54

[Neu99, pp. 74-75]. The inverse of an 0-ideal is given by

cC1 (3.3)

where denotes the conjugate of a under the hyperelliptic involution t. If a = (s, a, b)

in standard representation, then the conjugate is = (s, a, —b - h). Therefore, one

can derive from Algorithm 3.4 that cra/(as2) = 0.

3.1.5 Ideal Class Group

Let 0 be the integral closure of K[x] in the function field F. Let Frac(0) denote

the set of fractional ideals of 0. Since 0 is a Dedekind domain, recall that all of

the fractional 0-ideals are invertible. Therefore, the set Frac(0) is a group under

multiplication. The set Prin(0) of principal fractional ideals is a subgroup of Frac(0).

The ideal class group is an Abelian group defined to be the quotient group

01(0) = Frac(0)/ Prin(0).

Consider the map a i-+ (a)O from (non-zero) function field elements to fractional

ideals: Then we have the following exact sequence:

0 —) 0 F* - ac(0) - 01(0) - 0,

where the class group measures the expansion from F* = F N f 0 to the fractional

ideals and, similarly, the unit group measures the contraction in the same map

[Neu99, p. 22]. Elements of Cl(0) are called ideal classes of 0. Two integral ideals

3.1. COALESCENCE IN QUADRATIC FUNCTION FIELDS 55

a, b c 0 in the same ideal class of Cl(0) are said to be equivalent, denoted a b.

We have a b if and only if there exist non-zero a, ,3 E F such that (a)a = (3)b.

Then a = (-y) b, where 'y = 0/a e F is called the relative generator of a with

respect to b.5 Therefore, all principal ideals a = ('y)O are contained in one ideal class

of 01(0), called the principal ideal class. The number of ideal classes is the class

number of 0, denoted h0.

If F is an imaginary quadratic function field, then each ideal class of 01(0) con-

tains exactly one reduced ideal. Therefore, reduced ideals can be used as representa-

tives of 01(0). Artin proved the following important result [Art21, p. 178]:

Theorem 3.6 (Artin, 1921). If F is an imaginary quadratic function field, then

the set of reduced 0-ideals is isomorphic to the degree-zero divisor class group Cl°(F).

Thus, we have an equality between the class numbers hF = h0. However, if F is real

quadratic, each ideal class of 01(0) may contain multiple reduced ideals.

There exists a fundamental unit q E 0 such that every unit e E 0* can be

written as = crim for some c E K* and M E Z. The degree of 77 is called the

regulator of 0, denoted R0 [Sch96, § 1]. The regulator appears in the following

theorem due to Schmidt [Sch31, p. 32], providing a relation between the divisor class

number and the ideal class number that extends to real quadratic function fields:

Theorem 3.7 (Schmidt, 1931). Let hF be the class number of the degree-zero divi-

sor class group CIO (F), and let h0 be the class number of the ideal class group 01(0).

5The relative generator y in a = ('y) i can, equivalently, be interpreted as the generator of a
principal ideal c = (-y)0 with a equal to the ideal product cti.

3.2. INFRASTRUCTURE OF A REAL QUADRATIC FUNCTION FIELD 56

Then for any imaginary or real quadratic function field F, we have the relation

hF = h0R0 .

By Theorem 3.6, the regulator R0 = 1 if F is imaginary quadratic. In real quadratic

function fields, the ideal class number h0 tends to be very small according to the

Cohen-Lenstra heuristics [0L84] that were extended to function fields by Friedman

and Washington [FW89] and recently proven in the latter case by Achter [AchO6].

Now we shall show precisely how the reduced ideals in an ideal class of Cl(0) are

related to the divisor classes of CIO (F) when F is a real quadratic function field. Let

ct be a reduced 0-ideal and let R denote the set of reduced 0-ideals equivalent to ct.

Consider the map given by

{ - Div°(F)

b = (ab, bb) '-4 div(ab, bb) - deg(ab)P

Then the following theorem gives the correspondence between 7 and the divisor

classes of CIO(F) [MMO8, §7]:

Theorem 3.8 (Mireles Morales, 2008). Let a be a reduced 0-ideal. Then the

reduced ideals in the set fla are in one-to-one correspondence via I' with reduced,

pairwise-inequivalent divisors that form a subset W(R'a) C CIO (F).

In the next section we show how one can perform operations in IZ,, via the reduced

ideals. The map W respects these operations.

3.2. THE INFRASTRUCTURE OF AREAL QUADRATIC FUNCTION FIELTh7

3.2 The Infrastructure of a Real Quadratic

Function Field

Given a fixed reduced 0-ideal a, one can step through the ideal class of a to find

equivalent reduced ideals in R.a using an internal structure called the infrastructure.

This term was introduced by Shanks [5ha72b] in the case of real quadratic number

fields. The infrastructure of a real quadratic function field refers to the internal

structure of the set of reduced ideals in an equivalence class of 01(0).

The infrastructure provides two closed operations called "baby steps" and "giant

steps," but we will see that these operations do not endow a complete group structure.

The algorithm for performing the baby step operation uses an approach based on

continued fraction expansions, while giant steps consist of baby steps along with

ideal multiplication. We look at these operations next.

3.2.1 Baby Steps and Ideal Reduction

Let F = K(x, y) be a real quadratic function field corresponding to a hyperelliptic

curve C : y2 + h(x)y = f(x). Let 0 be the integral closure of K[x] in F. Consider a

non-zero primitive 0-ideal a = (a, b), for polynomials a, b E K[x]. Let a = (b+y)/a E

F and note that a is irrational over K(x). The completion PM. of F with respect to

the place at infinity 9. is equal to K((1/x)), the field of power series in the variable

1/x [5ch96, § 1]. Therefore, F C K((1/x)) and we can represent a E F as a formal

power series of Puiseux type, i.e. a = cx E K((1/x)) with Cm 0 0 for some

m E No. We define La] = 0cjx.

3.2. INFRASTRUCTURE OF A REAL QUADRATIC FUNCTION FIELD 58

A continued fraction of the form

1

1

1
a2+

a3+•••

will be represented in the compact notation of [ao, a1, a2, a3,...]. We can apply

Algorithm 3.9 to a E K((1/x)) to get a continued fraction expansion a = [ao, a1,...]

[BS96, pp. 75-79].

Algorithm 3.9 (Continued fraction algorithm). The standard continued frac-

tion algorithm in K((1/x)).

Input: a E K((1/x)) and n E No.

Output: A continued fraction expansion a = [ao, a1,... ,

1: to <- a

2: a0 - Ltoi

3: i 4- 0

4: while t, ai A i < n do

5: i—i+1

6: tj +- 1/(t_1 -

7: ai [tj

Expanding the operations in Algorithm 3.9 when a = (b + y)/a gives

a=
I b + [] I

(i E N0) [a]

3.2. INFRASTRUCTURE OF A REAL QUADRATIC FUNCTION FIELD 59

with the polynomials a, bi E K[x] computed using the following recursive formulae:

b0=b

bi = - b_1 + h

a0 = a

a= f—b+bh
a_1

(iEN).
(3.4)

Performing the continued fraction algorithm in this way gives, for each step i =

0, 1, 2,,.., & pair, of polynomials (a, b) that corresponds to the standard representa-

tion of a primitive 0-ideal ai = (a, b), where a0 = a [SW99, §2],[Zuc97a, § 1-2].

We now give some proprties of continued fractions that can be found in Williams

and Wunderlich [WW87, §2] or Hardy and Wright [HW79, pp. 130-141]. In the

notation of Algorithm 3.9, we call ti = [a, .], the i-th complete quotient.

Using the polynomials from Equation (3.4), the i-th complete quotient is tj = (b +

y)/aj for any i E No. Then from Equation (3.4) and the curve equation y2 + hy =

we have

1 a - f — b+bh (y—b+h)(y+b) y—b+h (• EIN) (3.5)

tb+y a_i(b+y) a_1(b+y) a_1

We define the i-th convergent of the continued fraction expansion as [ao, &i,. . . , a] =

pj/qj, where pi and qj are given in the following recursive formulae:

P-2 0 , P-i=',

q_2 = 1,

pi = aiPi1+Pi-2 (i ENO),

q..i=0, qj=ajqj_1+qj 2 (i No) .

3.2. INFRASTRUCTURE OF A REAL QUADRATIC FUNCTION FIELD 60

It follows that

a = to = aiPi_i + Pi-2 = tp,_1 + Pi-2 (i E N0)
ajqj_1 + qj_2 tq_1 + qj_2

The functions pi and qj also satisfy

pj_1qj_2 - pj_2qj_1 = (_ 1)i (i E No)

We will also define the following sequence:

(3.6)

(3.7)

o.= 1, 0i+1 =fl- (iEN) . (3.8)
j=1 •

Then from Equation (3.6) and induction on i we have the relation

= (_1)i(.1 - aqj_1) (i E N0) (3.9)

Let = t(0) denote the conjugate of 0 F under the hyperelliptic involution t. Then

we have a norm defined as N(0) = 00 and from Equations (3.8), (3.4) and (3.5) we

can derive

N(0 1) = OjiOji = (_ 1)i (i E N0) . (3.10)
a0

We will now show that the 0-ideals obtained in the continued fraction expansion

of a are equivalent to each other. We follow a proof by Williams and Wunderlich given

in the quadratic number field situation [WW87, §4] Start by rewriting Equation (3.9)

3.2. INFRASTRUCTURE OF A REAL QUADRATIC FUNCTION FIELD 61

in the following matrix format:

(e + = (
9i+2) \\ a) where X = (1)i+1

(_Pi_i qj_1'\

pi —qj,,

Since det(X) = ±1 by Equation (3.7), we have X € GL2(K[x]). Recall that we can

represent an ideal by its non-unique K[x]-basis. Then applying Equation (3.1) we

obtain the following' equation of ideal bases:

(O +){1,-}'= {Oi+" ti+1fj.} = {Gj+l,Oj+2} = {1,c} = {1,t0}
2=1

We continue with this equation, simplifying as follows:

(O +){1, = {1,to}

= i 1L1. a J 11,
' ao J

(ao9 1){a, y - b 1 + h} = (a){ao, b0 + y}

(aoO 1){a, y + b - ca} = (a){ao, b0 + y}

(aoO +1)(a) b + ,y) = (a)(ao, bo + ,y)

(aoOi+i)aj = (a)ao

(0)aj = () ao

(Oj+i)a ((- 1)9ai +i9i+i)ao

= ((_1)i) ao

by Eqn. (3.5)

by Eqn. (3.4)

in standard representation

by Eqn. (3.10)

(3.11)

Therefore, 'y = (— l)O+' is a relative generator of a with respect to a0 = a and we

have that a -' a for every i E No.

3.2. INFRASTRUCTURE OF A REAL QUADRATIC FUNCTION FIELD 62

Paulus and Stein showed that one could avoid the divisions in the formula for a

from Equation (3.4) in odd characteristic fields [PS98, §4.2]. Algorithm 3.10 presents

the optimized version, generalized to both even and odd characteristics, to compute

equivalent ideals in the infrastructure of an ideal class [SteOl, §4.2],[Zuc97a, §2]. This

algorithm is called the baby step algorithm and we will it denote by p(aj) =

for i E N.

Algorithm 3.10 (Infrastructure baby step p). Baby step algorithm for comput-

ing in the infrastructure.

Input: A primitive 0-ideal ai = (az, b) for some i E No, where 0 = K[C] for a real

hyperelliptic curve C : y2 + hy = f; if i> 0, then also the values d, a_1, rj....1.

Output: A primitive ideal a+i = (a+,,, b+1) -' a.

1: if i = 0 then

2: d— y]

b + d (mod a)

4: b1<—d—ro+h

5: a1 - (f - b + bih)/ao

6: else

7: (a, r) - divrem(b + d, a) > Division algorithm with remainder

8: b+i<-- d— r+h

9: a+i +- a_1 + a(r -

The following lemma shows that by applying the baby step algorithm on a prim-

itive ideal, we will rapidly obtain an equivalent reduced ideal [JSS07b, §5].

3.2. INFRASTRUCTURE OF A REAL QUADRATIC FUNCTION FIELD 63

Lemma 3.11 (Jacobson, Scheidler & Stein, 2007). For any primitive 0-ideal

a0 = (ao, bo), the ideal ak+j = p(ak+j_1) is reduced for all j ≥ 1 and

k= max {1, (deg(ao)—g)/2}

Therefore, reducing a primitive ideal ao = (ao, b0) is performed by repeating Algo-

rithm 3.10 until deg ai ≤ g. Moreover, the reduced ideals form a cycle. This is shown

in Figure 3.12 and motivates our use of the notation p to denote this operation.

p(ak+j-1) =

Figure 3.12. Ideals resulting from the baby step algorithm from a0 are represented

by the dots which form the shape of p, where the equivalent reduced ideals are on the

circle. The indices k and j are defined in Lemma 3.11. Note that if a0 is reduced,

then k = 0 and the picture would be a circle.

Let L(n) = log n log log n. Recall that to multiply or divide degree-n polynomi-

als with remainder either can be performed in O(nL(n)) operations in K [AHU74,

pp. 286-292]. Therefore, if deg N(a) E 0(n), Algorithm 3.10 can perform a baby step

on input a in 0(nL(n)) operations in K. Then according to Lemma 3.11, given a

primitive 0 ideal a, we can obtain an equivalent reduced ideal in O(n2L(n)) opera-

tions in K.

3.2. INFRASTRUCTURE OF A REAL QUADRATIC FUNCTION FIELD 64

3.2.2 Distance and Closest Ideals

We can define an ordering of elements in the infrastructure using the notion of

"distance" between ideals due to Shanks [Sha72b]. For reduced ideals a and b

in the same ideal class of Cl(0), there is some £ E No such that a = (a, b) and

b = p(a_i) = at = (ae, be). Recall that a = (-y)a for -y giyen in Equation (3.11).

Then we define the distance between a and b = at as

ö(b, a) = 5(a, a) = deg-y. (3.12)

That is, the distance between equivalent ideals is the degree of a relative generator;

the distance is only defined between equivalent ideals. When considering the distance

from the trivial ideal 0, we will often simplify the notation of 6(b, 0) by writing just

6(b) [SW99, §3],[Zuc97a, §8].

In Algorithm 3.13 we update the baby step algorithm given in Algorithm 3.10 to

also return the distance [Ste01, § 4.2-5]. When computing in the principal ideal class

with e0 = 0, the distance between each baby step is bounded by the following:

J1≤ 5(el)

1< ö(e,e 1) ≤ g for i > 2
(3.13)

The updated baby step algorithm has the same runtime complexity of O(nL(n))

operations in the field K.

Algorithm 3.13 (Infrastructure baby step p). Baby step algorithm for comput-

ing in the infrastructure that also returns the relative distance.

Input: A primitive 0-ideal ai = (a, b) for some i E No, where 0 = K[C] for a real

3.2. INFRASTRUCTURE OF A REAL QUADRATIC FUNCTION FIELD 65

hyperelliptic curve C: y2 + hy = f; if i> 0, then also the values d, a_1, r_1.

Output: A primitive ideal ã.1 = (a+1, b+1)

5(a +,, a).

1: ifi=Othen

a and the relative distance Sj+.

2: d - [y] c> The polynomial part of the root y

3: ro - b0 + d (mod a) > Compute the remainder of (b0 + d)/a

4: b1 —d—ro+h

5: a1 - (f - b 2 + bih)/ao

6: a - ai/sgn(a1)

7: ô - max{deg(bo + d) - deg ao, O}

8: else

9: (ad) r) - divrem(b + d, a)

10: b+1 — d— r+h

11: a+i - a_ + c4(rj -

12: a+i - aji /sgn(aj i) > Make a+i monic

13: 6 - deg aj > Compute the distance 5(a+,, a)

Make a1 monic

Compute the distance 5(ct1, ao)

Division algorithm with remainder

Using Algorithm 3.13 we can compute the closest ideal to a chosen small distance

from another ideal using baby steps. Given a reduced 0-ideal a, the "closest" equiv-

alent ideal to a distance d means that we find a reduced ideal b a with 5(b, a) ≤ d

such that there is no reduced ideal c a with 5(b, a) < S(c, a) d. We denote

this property as 5(b, a) d. Such an ideal can be found using Algorithm 3.14 and

we denote the operation by p. If we wish to find the ideal closest to a distance d,

Algorithm 3.14 runs in O(dgL(g)). In Section 3.3.4 we give a more efficient algorithm

for computing closest ideals that is useful when the distance d is large.

3.2. INFRASTRUCTURE OF A REAL QUADRATIC FUNCTION FIELD 66

Algorithm 3.14 (Infrastructure closest ideal p*). Compute the ideal that is clos-

est to a given distance from an ideal.

Input: A reduced 0-ideal a and a desired distance d E N.

Output: A reduced ideal b '-'..' a and the distance 6 = 6(b, a) such that 6 d.

1: i - 0, 6o - 0, a0 - a

2: repeat

3: i*—i+1

4: (aj, 6) - p(aj_i, ôj_) > Compute a baby step with distance (Alg. 3.13)

5: until 6,>d

6: b+— a_1

7: 66i-1

The distance can be used to find the regulator, as shown in the following theorem

[Art2, p. 197]:

Theorem 3.15 (Artin, 1921). There exists some m e N such that m = p(am _i)

a0. Then the regulator of 0 is R0 = 6(am) for the smallest m satisfying p(am_i) = a0

and R00.

Note that if p(am_i) = a0, then it means the cycle of reduced ideals in Figure 3.12 is of

length m. Figure 3.16 shows how the distance works in relation to the reduced ideals

in an ideal class. Due to the cycle, we can reduce distances modulo the regulator R0.

This is important because distances are unique and well-defined modulo R0.

While Theorem 3.15 gives a method to compute the regulator by performing many

baby steps, there is a quicker method to find R0 by making a trade-off between baby

steps and the "giant steps" that will be defined next.

3.2. INFRASTRUCTURE OF REAL QUADRATIC FUNCTION FIELD 67

= p(at_i)

Figure 3.16. We represent the cycle of reduced ideals in the principal ideal class by

a circle. The squares on the circle denote the reduced ideals. in the ideal class. One

may perform baby steps from a principal non-reduced ideal a0 to get to the closest

reduced ideal at. Recall that once one gets to a reduced ideal, subsequent baby steps

continue on the reduced ideals (e.g. p(at)). Rather than evenly spaced, the distance.

between each adjacent pair of reduced ideals varies slightly. The distance around the

total circle is equal to the regulator R0.

3.2.3 Giant Steps

Consider the infrastructure of the principal ideal class. Let a and b be two reduced

principal 0-ideals. We can define an infrastructure operation a * b that jumps over a

large number of baby steps from b by performing the following two operations:

3.2. INFRASTRUCTURE OF A REAL QUADRATIC FUNCTION FIELD 68

i) Composition: Compute the product ab = (s)c giving a primitive ideal c.

ii) Reduction: If necessary, use baby steps to find a reduced ideal Cr equivalent

to c, for some r E No.

Since a and b are principal, Cr is also a reduced principal 0-ideal and, therefore,

Cr = pu(b) for some u e N. This operation in the infrastructure is performed via the

giant step algorithm presented in Algorithm 3.17. We denote this operation by *.

Algorithm 3.17 (Infrastructure giant step *). Giant step algorithm for comput-

ing in the infrastructure.

Input: Two reduced principal 0-ideals a = (aa, ba) and b = (ab, bb) with associated

distances 6(a) and 6(b).

Output: A reduced principal 0-ideal c cth and the distance 6 = 8(c).

1: (s)c = (s, a, b) +— ab > Ideal multiplication, Aig. 3.4 or 3.5

2: 6 — 6(a) + 6(b) — deg(s) Compute the new distance

3: i — O, co=(ao,bo)—c,6o-- 6

4: while deg ai > g do > Reduction

5: i—i+1

6: (ci, 6) ((aj, b), o) +- p(ci_, 6—i)

7: C +- Cj, öc + Ji

Baby steps with the distance

Let g be the genus of F and L(n) = log n log log n. We can multiply two reduced

ideals in O(gL(g) log g) operations in K according to Section 3.1.4. The result of

the multiplication gives c with deg a e 0(g). Reduction on c will cost O(g2L(g))

operations in K from Section 3.2.1. Then we can perform Algorithm 3.17 inO(g2L(g))

operations in K.

3.2. INFRASTRUCTURE OF A REAL QUADRATIC FUNCTION FIELD 69

Consider the distance resulting from the composition step. In Step 2 of Algo-

rithm 3.17 we add the distance of a to the distance of b (we will consider the term

deg(s) after). It is easy to see why if we consider a = (a)O and b = (/3)0 with

5(a) = deg a and 6(b) = deg /3. The result of the composition is ab = (a/3)0 with

5(ab) = deg(a/3) = deg + deg/3,

Now consider the distance after the reduction step. Note that we perform reduc-

tion on the primitive ideal c. That is, if the result of the multiplication ab is not

primitive, we must correct the distance for the rational coefficient s E Quot (K [x]).

The resulting distance is given by

5(ct* b) = 5(a) + 5(b) + 5(c,, c) - deg(s) . (3.14)

If we let e = 5(C, c) - deg(s), then we always have —2g ≤ e ≤ 0. It is this "error" e

that prevents the giant step from being associative and the infrastructure from being

a group [SW99, §4B],[Zuc97a, §8]. Figure 3.18 shows the relationship between the

distances involved in the giant step. But given that c is bounded to be insignificant in

comparison to the distances of a and b, we have 5(a * b) 5(a) + 5(b) and one can say

that the giant step is "almost" assOciative. Therefore, we can use the infrastructure

as if it is "almost" a group. In the next section we correct this operation to be

associative.

3.2. INFRASTRUCTURE OF A REAL QUADRATIC FUNCTION FIELD 70

Figure 3.18. For reduced principal ideals a and b, the giant step a* b = Cr, where

Cr is at distance 5(Cr) = 5(a) + 5(b) + e.

3.2.4 Correcting the Giant Step

As mentioned in the last section, the giant step has a small error e such that for

reduced principal 0-ideals a and b, the result c = a* b has distance 8(a) + 8(b) + e

from the trivial ideal 0. However, after performing the giant step, it is possible that

e is large enough that there may exist another reduced principal ideal Z such that

the distance 5(D) > 5(c) yet 5(D) ≤ 5(a) + 5(b). That is, D is closer to the distance

5(a) + 5(b) (see Figure 3.19). Therefore, we may have to correct the giant step result

c = a * b to D using baby steps.

3.2. INFRASTRUCTURE OF A REAL QUADRATIC FUNCTION FIELD 71

Figure 3.19. For principal ideals a and b, the giant step c* b = c needs to be

corrected to ti since the error term jej is too large thus making c not as close to the

distance 5(a) + 5(b) as D.

An algorithm to perform the giant step together with the correction step in the

infrastructure of a real quadratic function field was given by Scheidler, Stein and

Williams [SSW96]. This corrected giant step is presented in Algorithm 3.20. We

denote the corrected giant step using the operator ®.

Algorithm 3.20 (Infrastructure corrected giant step ®). Corrected giant step

algorithm for computing in the infrastructure.

Input: Two reduced principal 0-ideals a and b with 5(a) and 5(b).

Output: A reduced, principal 0-ideal c ab and 8(c) such that c has the greatest

distance satisfying 5(c) ≤ 5(a) + 5(b).

1: (c') 5) - a* b > Compute the giant step and distance (Aig. 3.17)

3.2. INFRASTRUCTURE OF A REAL QUADRATIC FUNCTION FIELD 72

2: e+-5-6(a)—ö(b)

3: (c, S) +-. p* (c', —e)

4: 6(c)-6+8

Compute the error term (Eqn. 3.14)

. Closest ideal to the distance —e from c' (Alg. 3.14)

Recall that Section 3.2.3 bounded .e as —2g ≤ e < 0. Then Algorithm 3.20 runs

in O(g2L(g)) operations in K, dominated by the cost of the giant step.

3.2.5 The Baby-Step Giant-Step Algorithm

Recall from Schmidt's class number relation (Lemma 3.7) that for a real quadratic

function field F, the class number hF of the degree-zero divisor class group Cl° (F)

and the class number h0 of the ideal class group Cl(0) are related via the regulator

R0 as hF = h0R0. As mentioned earlier, the regulator R0 can be computed by

performing a combination of baby steps and giant steps. This baby-step giant-

step algorithm computes and stores the result of a number of baby steps, then

performs giant steps until a match is found. The baby-step giant-step algorithm is

a time/memory trade-off originally proposed by Shanks [Sha71] in the context of

real quadratic number fields. It was specified for real quadratic function fields over a

constant field of odd characteristic by Stein and Williams [SW99, §3C] and in the even

characteristic case by Zuccherato [Zuc97a, §9]. We present their method generalized

for both characteristics in Algorithm 3.21.

Algorithm 3.21 (Regulator baby-step giant-step). Baby-step giant-step algo-

rithm for computing the regulator.

Input: The genus g of a real quadratic function field F over a field K = lFq, and the

quadratic order 0 of F.

3.2. INFRASTRUCTURE OF A REAL QUADRATIC FUNCTION FIELD 73

Output: The regulator R0.

1:t—[3q2±21]

2: co - (1, 0) = 0 and store (eo, 0) > Store the polynomial pair representing

3: öj4—O

4: for i from 1 to t do

5: (ei, 8) = ((a1, b1), 5) — p(e1_1, S._) > Perform a baby step (Alg. 3.13)

6: if a1 E K* then

7: return R0 - Ji

8: Store (e1,61)

9: bo — et, 6,+--6,j+-0

10: repeat

11: j — j+ 1

12: (by, ö) .— (et, ö) * (b_1, o_)

e0

Check if a1 is a trivial unit of 0

Store the polynomial pair representing e1

' Perform a giant step (Alg. 3.17)

13: until bi = Ck for some k E {0,.. . , t} > Check if bj is a stored value

14: return R0 <— Jil — Jk

The ideal/distance pairs should be stored in a hash table to allow for efficient look-

up. The asymptotic runtime complexity of BSGS given in Algorithm 3.21 is bounded

by o(q2lg2L(g)) operations in K due to the value of t, which is exponential in

g log q. The runtime of the algorithm can be improved in practice by using properties

of symnetry and conjugate ideals, details that can be found Zuccherato [Zuc97a,

§9]. Further optimizations were provided by Teske and Stein that take advantage of

the fact that baby steps are significantly faster than giant steps in the infrastructure

[T505, §2.5]. However, even using these improvements, the runtime of the baby step

giant step algorithm is still exponential in g log q.

3.2. INFRASTRUCTURE OF A REAL QUADRATIC FUNCTION FIELD 74.

Another limiting factor of Algorithm 3.21 is that it requires O(qP) space. Teske

and Stein discuss how baby step giant step can be implemented in a space-restricted

environment [TSO5, § 2.4, 2.5.2, 3.2]. A couple of generic algorithms given by Pollard

can be adapted to regulator computation and have the same asymptotic runtime

complexity as baby step giant step, but use significantly less memory [Pol78]. One

of Pollard's methods has been implemented in real quadratic function fields by Stein

and Teske [STO2b]

Stein and Williams derived a more efficient method for computing the regulator

by performing two steps , f BSGS. First, they use BSGS to search for R0 < C for

an upper bound C. If R0 is not found, then the second step estimates the product

of the class number and regulator via analytic methods6 giving an interval in which

to perform a BSGS search for h0R0 [SW99, §4]. In a subsequent paper, Stein and

Williams pointed out that if one obtains h0R0 from the second step of their method,

the regulator can be found by factoring the product and using the infrastructure to

determine the smallest divisor that gives R0.' The total complexity of their algorithm

for computing the regulator was O(q'g2L(g)) operations in K, where A = (2g - 1)/5

if'g 3 (mod 5) or A 2g/5 otherwise [5W98, § 5.1]. Improved estimates for h0R0

to reduce the interval for searching in the second step were provided by Stein and

Teske [STO2a, § 5].

In Chapter 4 we will show how the index calculus algorithm allows one to compute

the regulator in time and space subexponential in log q when the genus g is large.

6Similar analytic methods for estimating h0R0 are given in Section 4.3.7.
7We describe this factoring technique for finding the regulator from a. multiple of R0 in Sec-

tion 4.3.6.

3.3. EFFICIENT ARITHMETIC IN THE INFRASTRUCTURE 75

3.3 Efficient Arithmetic in the Infrastructure

The algorithms presented in the previous section for the baby step and giant step

in the infrastructure of a real quadratic function field use an approach based on

continued fraction expansions. Recent work has produced techniques for improving

the efficiency of both algorithms.

In cryptographic protocols, it is often required to perform an exponentiation op-

eration consisting of a scalar multiple of giant steps. Many techniques such as the

"square-and-multiply" algorithm can reduce the total number of giant steps per-

formed, but recent proposals show that these techniques can be combined with a

reordering of operations to improve the efficiency further. This section examines

both improvements to the giant step operation and efficient exponentiation.

3.3.1 NUCOMP

The NUCOMP algorithm was originally proposed by Shanks [Sha89] for computa-

tions involving binary quadratic forms, or equivalently, ideals in imaginary quadratic

number fields. NUCOMP was adapted to real quadratic number fields by van der

Poorten [vdPO3]. Jacobson and van der Poorten [JvdPO2] discovered that NUCOMP

could be applied to ideal computations in function fields. Further improvements to

reduce the operands for quadratic forms were proposed by Atkin and adapted to

function fields by Jacobson, Scheidler and Stein [JSSO7b].

The standard algorithm for giant steps in the infrastructure perform composition

and reduction sequentially. The idea of NUCOMP is to perform reductions before

the composition, thereby allowing one to work with polynomials of smaller degree.

The complete algorithm as well as detailed explanations can be found in the work of

3.3. EFFICIENT ARITHMETIC IN THE INFRASTRUCTURE 76

Jacobson, Scheidler and Stein [JSSO7b, § 8-9]. The algorithms given can be used in

replacement of Algorithm 3.17 to improve computational efficiency.

3.3.2 Explicit Formulae

Whereas the previous algorithms work in general for all hyperelliptic curves, explicit

formulae focus on hyperelliptic curves of a fixed, small genus to tweak the operations

for a reduction in complexity. The basic idea is to express operations in terms of

forumlae for polynomial coefficients, instead of in terms of generic polynomial arith-

metic. Implementations are designed to use the efficient explicit formulae for special

cases and otherwise use a general algorithm, with the hope that the special cases

occur often enough to provide a significant performance improvement overall.

Complexity results for explicit formulae differentiate between types of field op-

erations. Addition in the field K is considered to be negligible and not included in

most analyses. Multiplications are often separated from squarings as well as field

inversions, the latter being the most costly.

Let the hyperelliptic curve C over a field K be given by the equation C : y2 +

h(x)y = f(x), where fi represents the i-th coefficient of the polynomial 1(x) (e.g.

the constant term is fo). The first explicit formulae for real quadratic function fields

were provided very recently by Erickson et al. [EJSO7]. They give formulae for

genus g = 2 under the assumption that char K> 3. The latter assumption allows a

transformation x F-+ x - f5/6 that eliminates the x5 term in f(x).

3.3. EFFICIENT ARITHMETIC IN THE INFRASTRUCTURE 77

3.3.3 Fast Giant Step Exponentiation

Many techniques have been proposed for improving the efficiency when computing a

scalar multiple of an operation. They involve representing m in some, sort of digit

encoding and then performing a square-and-multiply algorithm. Most of these tech-

niques can be applied directly to compute m e N corrected giant steps. If we interpret

corrected giant steps as multiplications, then our goal is to compute the exponenti-

ation of an ideal a. We denote this as

M

The simplest (non-naive) technique for exponentiation uses the binary repre-.

sentation of m, written as

with b E {O,l} for 0 ≤ i ≤ £— land bt I.

Note that the length of the binary representation is £ = [log mJ. Using binary

representation is easy since computers represent integers in binary by default. The

square-and-multiply algorithm is the standard method for computing exponen-

tiations and we present it for infrastructure exponention in Algorithm 3.22.

Algorithm 3.22 (Infrastructure exponentiation *). Square-and-multiply expo-

nentiation algorithm for computing the result of m (corrected) giant steps in the in-

frastructure with m given in binary form.

Input: A reduced principal 0-ideal a with its distance öa = 8(a) and an exponent

m = IJ b2 € N given in binary.

3.3. EFFICIENT ARITHMETIC IN THE INFRASTRUCTURE 78

Output: A reduced principal 0-ideal b r'' a of distance Sr., = 8(b) < m5(a) such that

8(b) is maximal.

1: (b,6,) <- (a, J,)

2: forifrom e—ltoodo

3: (b, Sb) +- (b, Sb) @ (b, Sb) > "Square" b (Aig. 3.20)

4: 1fb2=lthen

5: (b, Sb) •- (b, Sb) ® (a, 8a) C> "Multiply" b by a (Aig. 3.20)

We define the Hamming weight of rn as the number of non-zero entries in a

particular digit representation of m. It should be easy to see that the square/multiply

algorithm performs fewer "multiplications" when the Hamming weight of m is small.

If we have knowledge of the regulator R0, then we can take advantage of the fact

that we can compute the distance of an ideal in the infrastructure in the opposite

direction. Because of the symmetry of the infrastructure, the conjugate ideal has

distance 8(a) = R0 - 5(a). Since computing is free, we can use a represention of m

called signed-binary representation. This corresponds to

m=c2, with cE{-1,0,1} for 0≤i≤J and ce+i=1.

In particular, m in signed-binary representation is in non-adjacent form (NAF)

if no consecutive pair (ci, c+1) are both non-zero. This representation in NAP is

unique for any m € N.8 Written in NAF, m has at most £ + 1 digits and, due to the

restriction that no pair of adjacent digits are both non-zero, the Hamming weight of

m is expected to be V + 1) in NAF, versus ? for binary representation. In fact, the

8For proofs of the existence and uniqueness bf NAF, see Reitwiesner [Rei6O, pp. 246-248]

3.3. EFFICIENT ARITHMETIC IN THE INFRASTRUCTURE 79

Hamming weight of an integer in NAF is guaranteed to be minimal among all possible

signed-binary representations. One can recode m from binary to NAF representation

using Algorithm 3.23 [Doc06, pp. 150-152]: Then the square-and-multiply algorithm

is slightly modified as shown in Algorithm 3.24 to work with the scalar exponent in

NAF.

Algorithm 3.23 (Binary to NAF recoding). Compute the non-adjacent form

(NAF) representation of m N.

Input: The binary representation m = Ef=0 bi2i with b 0.

Output: The NAF representation m =

1: ro+- 0,be+1<- 0,be+2 -- 0

2: for i from oto.e+1 do

3: r 1 - L(ri + b + b 1)/2J

4: c+—r+b-2r+i

Algorithm 3.24 (NAF-based infrastructure exponentiation *). Square-and-

multiply exponentiation algorithm for computing the result of n-i (corrected) giant steps

in the infrastructure with m given in non-adjacent form (NAF).

Input: A reduced principal 0-ideal a with its distance öa = 5(a) and an exponent

M ==0 c2 E N given in NAF. We also assume we have the regulator R0

Output: A reduced principal 0-ideal b -' a of distance J6 = 5(b) ≤ m5(a) such that

8(b) is maximal.

1: (b,5,) - (a, J,,)

2: for i from .e+lto0do

3: (b, 85) - (b, 5) & (b, S) > "Square" b using the corrected giant step

4: ifc=1then

3.3. EFFICIENT ARITHMETIC IN THE INFRASTRUCTURE 80

5: (b, öb) - (b, Sb) * (a, Sa) > Perform a corrected giant step with a

6: else if (c = —1) then

7: (b, 5,) (b, Sb) ® (, R0 - 8) > Corrected giant step with conjugate of a

In practice, exponentiation in the infrastructure can be improved even more. Note

that each corrected giant step operation may perform a number of baby steps to ensure

the intermediate result is valid. Jacobson, Scheidler and Stein [JSS07a] gave heuristics

that make the distance between consecutive baby steps or giant steps precise.

Heuristic 3.25 (Jacobson, Scheidler & Stein, 2005-2007). Let C be a real hy-

perelliptic curve of genus g over the finite field K =]Fq. Let F = K(C) be the function

field of C, and let 0 = K[C] be its coordinate ring. Then for two reduced principal

0-ideals a and i and sufficiently large q, the following properties hold with probability

i) If c = p(a, 0) is the result of a baby step from a, then the distance between a and

c is always equal to 5(c) - 5(a) = 1;

ii) If c = a* b is the result of a giant step, then the resulting distance 8(c) has an

error value always equal to e = - [g/2].

These heuristics allow one to avoid using the corrected version of the giant step

by performing a few baby steps at the beginning of the exponentiation. Therefore,

one avoids the adjustment baby siieps in each intermediate giant step. We refer the

reader to Jacobson, Scheidler and Stein [JSS07a, §3.3] for the presentation of these

heuristic methods.

3.3. EFFICIENT ARITHMETIC IN THE INFRASTRUCTURE 81

3.3.4 Fast Closest Ideals

Often we want to compute the closest ideal to a chosen distance from another ideal.

Recall from Section 3.2.2 that given a reduced 0-ideal a, the "closest" equivalent ideal

to a distance d means that we find a reduced ideal b a with 5(b, a) ≤ d such that

there is no reduced ideal c a with S(b, a) < 5(c, a) d. We denote, this property as

5(b, a) d.

Algorithm 3.14 computed the closest ideal by performing baby steps from a, keep-

ing track of the distance travelled, and stopping when we reached the desired distance

d. We can improve upon this naïve method by using giant step exponentiation. Al-

gorithm 3.26 presents this improved method [JSSO7a, §3.2].

Algorithm 3.26 (Infrastructure closest ideal p*). Computing the closest equiv-

alent ideal to a given distance from a given ideal.

Input: A reduced principal 0-ideal a with its distance 5 = 5(a) and a distance d.

Output: A reduced principal 0-ideal b a and the distance 5 = 5(b, a) such that

5d.

1: m

2: (b,5)4—(a,O)*m

3: while 5 ≤ d do

4: (b',5') — p(b,5)

5: ifS<dthen

6:

Similar heuristic techniques to the fast exponentiation algorithm can be applied to

finding closest ideals. See Jacobson, Scheidler and Stein [JSSO7a, §3.3] for a discussion

3.3. EFFICIENT ARITHMETIC IN THE INFRASTRUCTURE 82

of these heuristic methods.

Chapter 4

Index Calculus in Real Quadratic

Function Fields

Cryptographic protocols proposed by Scheidler, Stein and Williams [SSW96] and

Jacobson, Scheidler and Stein [JSSO7a] are based on a computational problem in

a real quadratic function field called the infrastructure discrete logarithm problem.

Discrete logarithms arise in other areas, such as the multiplicative group of integers

modulo a prime, where the fastest known algorithm to solve an instance is known

as the index calculus algorithm. There are other computational problems of interest

in real quadratic function fields, such as finding the regulator and computing the

ideal class number. When the genus is large, we will show that index calculus is the

fastest known method for solving these problems, too. In this chapter we discuss how

the index calculus algorithm can be formulated in the infrastructure and present a

heuristic analysis of its complexity.

We begin this chapter by formally stating a number of computational problems

in the infrastructure in Section 4.1. Section 4.2 introduces the framework of the

83

4.1. COMPUTATIONAL PROBLEMS IN THE INFRASTRUCTURE 84

index calculus algorithm. Details of how the index calculus algorithm is applied in

the infrastructure are presented in Section 4.3, including explicit algorithms and a

complexity analysis for each of the main computational problems.

4.1 Computational Problems in the Infrastructure

Like any interesting mathematical structure, there are a number of computationally

difficult problems that are associated with the infrastructure of a real quadratic func-

tion field. The complexity of an algorithm is said to be expected polynomial time

if its running time is of the form O(logc n) on average, where log m is the number of

bits required to express the input m and c E R≥0 is a constant.' We define a compu-

tationally difficult problem as a problem for which no expected polynomial-time

algorithm is known to solve a random instance.

For the problems we are considering there is no proof to shbw that they cannot be

solved in polynomial time. The basis for the claim-is that after many years of study,

mathematicians and computer scientists have been unable to find an algorithm that

provides a solution in polynomial time. This section provides an overview of the most

common problems of interest in the infrastructure of a real quadratic function field.

4.1.1 Properties of the Ideal Class Group

Let F be a real quadratic function field defined by y2 + hy - f for polynomials

h, f E K[x]. Let 0 be the quadratic order of F. Recall from Section 3.1.5, the ideal

class group C1(0) is a set of equivalence classes of ideals. The number of ideal classes,

'If c= 0, theri the algorithm is said to be constant with respect to the input size.

4.1. COMPUTATIONAL PROBLEMS IN THE INFRASTRUCTURE 85

i.e. the order of the ideal class group, is the ideal class number h0. Computing the

ideal class number is believed to be a computationally difficult problem.

Problem 4.1 (Class number computation). Given polynomials f and h, corn-

putethe class number of the ideal class group Cl(0).

In real quadratic function fields, the ideal class number h0 does not immediately

give us the divisor class number hF (cf. Theorem 3.7). One also requires the regulator

R0, the degree of the fundamental unit q E Q*• As shown in Section 3.2.2, the

regulator also gives the length of the cycle of reduced ideals in the infrastructure of

an ideal class. Since we can reduce distances modulo R0, it is important for efficient

computations in the infrastructure. However, computing the regulator is also believed

to be computationally difficult.

Problem 4.2 (Regulator computation). Given polynomials f and h, compute

the regulator R0 of 0.

One of the central theorems in group theory is the following:

Theorem 4.3 (Fundamental theorem of Abelian groups). Every finitely gen-

erated Abelian group is isomorphic to a unique decomposition of the following form:

Z/s1Z Z/s2Z ED ... ED z/Stz,

where n ≥ 0 and sjlsj+i for 1 <i < t

The above decomposition is called the structure of the group. Since the ideal class

group Cl(0) is a finite Abelian group, it has a structure as given in Theorem 4.3 with

n = 0. It is of interest, and believed to be computationally difficult, to determine

this group structure.

4.1. COMPUTATIONAL PROBLEMS IN THE INFRASTRUCTURE 86

Problem 4.4 (Determine class group structure). Given polynomials f and h,

compute the group structure of the ideal class group Cl(0).

4.1.2 Discrete Logarithm Problem

As mentioned in Chapter 1, the discrete logarithm problem is a computationally

difficult problem that is used as the basis for many public key cryptosystems. In

a generic multiplicative group G of large prime order,' the discrete logarithm

problem (DLP) is defined as follows:

Problem 4.5 (Generic group DLP). Let g be an element of order n in G. Then

given an element h = 9b for some unknown positive integer b < n, find b.

Often, g is chosen to be a generator of the group G, so the order of 9 is equal to

the size of G. The choice of G affects the difficulty of solving Problem 4.5. For

cryptographic applications G must be chosen to be sufficiently large so that g can

have a large order, but how large is determined by the fastest known algorithm to

solve Problem 4.5 in the type of group.

Even though the infrastructure of a real quadratic function field does not form a

group, we can still define a similar discrete logarithm problem in infrastructure. The

definition and use of the infrastructure DLP ior cryptography was proposed by Schei-

dler, Stein and Williams [55W96] based on a similar proposal for the infrastructure

of a real quadratic number field by Buchmann and Williams [BW9O].

Problem 4.6 (Infrastructure DLP). Given a reduced principal (.9-ideal b, find the

distance 8(b).

21.Jsing a multiplicative group G is not a restriction; we only specify that G is multiplicative
rather than additive in order to have consistent notation. An example of an additive group that
admits an interesting DL? is the group of points on an elliptic curve.

4.1. COMPUTATIONAL PROBLEMS IN THE INFRASTRUCTURE 87

Similar to Problem 4.5, the difficulty of the infrastructure DLP is directly affected by

the size of the regulator R0.

In many cryptographic protocols, b is computed as b = c * b for some publically

agreed-upon principal 0-ideal c 0 and randomly chosen private value b E N

satisfying 1. < b < R0. In such a situation, one may want to find the integer b. From

the definition of the giant step exponentiation, b has distance closest to b. So given a

solution 5 = 5(b) to an instance of the infrastructure DLP, we can compute p*(Q, b')

for b' = 5, 5 - 1,... until we get b. Note that according to Equation (3.13), there are

at most g choices for b'.

4.1.3 Subexponential Algorithms

An algorithm is called exponential if it is not polynomial time, but has a running

time in O(cf()) for some constant c E R>.1 and some function f that is polyno-

mial in log n. To better classify algorithms, a distinction is made between a fully-

exponential algorithm and a subexponential algorithm whose running time is of

the form Q(e0(10)), where e is base of the natural logarithm. To express the running

time of an algorithm that is subexponential in log n, we use the following convenient

notation:

L (a, c) = 6c(1ogn)'(1og1ogn)'

where c, a E R are constants satisfying c> 0 and 0 < a < 1. For an algorithm with

running time 0 (L (a, c)), if a = 0, then the algorithm is polynomial in log n; also, if

a = 1, then the algorithm is fully-exponential in log n. If a = 1/2, as will be common

4.2. INTRODUCTION TO INDEX CALCULUS 88

throughout this chapter, we simplify this notation as

L (c) = cV'Io n log log n

Note that we have the following simple relations that we will use to simplify

expressions involving subexponential terms:

O(i (c1)) O(L (c2)) C O(L (c1 + c2)) and

O(L (ci)) + O(L (c2)) ç O(L (max{ci,c2}))

All of the problems we have described in this section can be solved in expected

subexponential time when the genus of the function field is large. This algorithm will

be described next.

4.2 Introduction to Index Calculus

The technique known as "index calculus" has been applied to many computationally

difficult problems. In many situations index calculus turns out to have an expected

subexponential runtime. The original approach has been attibuted to Kraitchik

[Kra22, pp. 119-123], [Kra24, pp. 69-70, 216-267] with similar ideas used by West-

ern and Miller [WM68]. Index calculus has been successfully used to factor large

composite integers and to compute discrete logarithms in many types of groups. In

this section we present a brief overview of index calculus as applied to the discrete

logarithm problem. Similar surveys are available in Odlyzko [0d185, §4], McCurley

[McC90, § 5], and Schirokauer, Weber and Denny [SWD96, §3].

4.2. INTRODUCTION TO INDEX CALCULUS 89

4.2.1 Index Calculus in Generic Groups

Suppose we wish to solve an instance of the discrete logarithm problem in a multi-

plicative, cyclic group C of order n. That is, we are given two elements g, h E C

such that h = 9b for some b E N, and we wish to find b. In the following description

we assume that g is a generator of the group C, i.e. the order JgJ = n(3. Similar to

the framework given by Enge and Gaudry [EGO2, §2], we require that there exists a

free Abelian monoid M over a countable set?, together with an equivalence relation

compatible with the operation on C such that G The elements in? are

called primes and this setup allows the unique decomposition of the elements of C

into the primes of?. The index calculus algorithm consists of four major steps:

1) choose a factor base. A factor base is the set .FB consisting of primes ir EP

satisfying deg ,7r < B for a degree function deg : M - JR>0 and some B E N

called the smoothness bound. The choice of B is important in the running

time of the algorithm, but we will discuss this later. Let the cardinality # B =

An element of C is called B-smooth if it can be expressed as a product of

primes from the factor base JB.

ii) Generate relations. Generate a random element ak E C by choosing k E N

at random satisfying 0 < k < nc and computing ak = 9 E G. Test if ak is

B-smooth. If it is indeed B-smooth, then we have the following relation:

nB

ak=fl 7el. r C- G, where each 7r E FB and ej E Z.

Then we have a vector e = (el, e2) .. . , eflB) which we store along with k. Note

that with an appropriately chosen B, the vector e is likely to have only a small

4.2. INTRODUCTION TO INDEX CALCULUS. 90

number (in comparison to nB) of non-zero entries; such a vector is said to be

sparse. Repeat this step until we have a set RB of m relations, for some

m ≥ nB. Generally, m is just slightly larger than n2 in an effort to ensure

there are ri8 linearly independent relations. This relation generation step can

be done in parallel on multiple processors.

iii) Solve a linear system. With the set 7ZB = {(e1, k1), (e2, k2),. . . , (em, km)} of

relations found in Step 2, let b = (k1,. . . , km) and construct an nB x m matrix

A7z consisting of column vectors e, e. . . , e, where e denotes the transpose

of the vector e. Then one solves the following system:

xA. b (mod nG). (4.1)

If nB of the relations in A)z are linearly independent, the system is overdeter-

mined and thus solvable. The solution vector x = (x1,... , x) corresponds to

the discrete logarithms of the form 7r = g E G since the i-th entry of b is

computed in Equation (4.1) as

nB

e1Ee

g9lrj (mod nc).

Since the matrix A is a sparse matrix, it can be represented using much less

memory and there exist efficient methods for computing solutions to the lin-

ear system in Equation (4.1). If nG is not prime, then extra work to solve

Equation (4.1) is required (cf. Enge and Gaudry [EGO2, §4]).

iv) Extract a solution. Choose k E N at random satisfying 0 < k < nc and compute

4.2. INTRODUCTION TO INDEX CALCULUS 91

h - g' E G, testing if the result is B-smooth. If it is not B-smooth choose a

different k until it is. Then for a vector d = (d1,... , d,) we have the following

relation:

nB

h 9k = fT ir3, where each 'ir E YB and dj E N0.

Now we can compute the discrete logarithm b = log9 h as

nB

b=dx—k (modnG).

The choice of the smoothness bound B is important in the runtime of the algo-

rithm. If B is too small, it will take too long to generate enough relations, since

finding B-smooth elements will be difficult; conversely, if B is too large, the linear

system will be too big to solve efficiently.

Suppose the smoothness bound B is chosen such that nB E 0 (LflG (/3)) for some

constant /3> 0. Let flG/B be the number of B-smooth elements in G. Then, if we test

elements of C uniformly at random, we expect to find a B-smooth element after
nGIB

tries. We assume that no E 0 (L (u)) for some constant CT> 0. We also assume

one can decompose a B-smooth element of C into its prime factors is in O(nB), and

one can test an element of C for B-smoothness in O(n) for some constant r. If

generating m relations for some m E O(rtB) gives a sufficient probability that the

relation matrix A has full rank, then using efficient linear algebra techniques, Enge

and Gaudry [EGO2, §6] show that the number of operations in C required for the

index calculus method to solve an instance of the discrete logarithm problem in G is

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 92

in

0 (L,,, (maxf 1, 2, (1+ r) + u I + 0(1)))

4.3' Index Calculus in the Infrastructure

Muller, Stein and .Thiel were' the first to describe an index calculus variant in the

infrastructure for fields of odd characteristic [MST99}. In this section we expand

upon the MST algorithm, providing a new relation generation method, an updated

complexity analysis, and a generalization to both even and odd characteristics.

Let K = F. be a finite field of order q. Let C : y2+h(x)y = f(x) be a hyperelliptic

curve of genus g, where f, h E K[x]. If char K> 2, then we assume that deg f = 2g+2

and sgn f is a square in K; otherwise, if char K = 2 (i.e. q = 2m, for some rn E N),

then we assume that deg h = 9 + 1 and either deg f ≤ 2g + 1 or deg f = 2g + 2 and

sgnf = e2 + e for some e E K*. Then from Section 3.1 we have that F = K(C) is a

real quadratic function field. Let 0 denote the coordinate ring K[C] and let R0 be

the regulator of 0.

4.3.1 Overview

We want to apply the framework of the index calculus method in the previous section

to solve the computational problems given in Section 4.1 in the setting of the infras

tructure of a real quadratic function field. However, there are a number of changes

that must be made to the framework in order to apply to our setting.

Since f and h are polynomials in K[x] of degree 0(g), we can describe the function

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 93

field by giving the equation C in O(g log q) bits. For an instance of the infrastructure

discrete logarithm problem as given in Problem 4.6, the reduced 0-ideal b given

in standard representation can also be expressed in O(g log q) bits. Therefore, we

consider the input size to our index calculus algorithm to be g log q bits.

Recall that the infrastructure is the cycle of reduced ideals in an ideal class of

010(0). We will work in the principal ideal class. The infrastructure operation ® is

based on the notion of distance in the cycle, since the result is the reduced principal 0-

ideal with distance closest to the sum of the distances of the two operands. However,

because we may need to correct the ideal from the operation * to satisfy our previous

property, the infrastructure operation * is not associative; hence, the infrastructure

is not a group under * as was assumed in our index calculus framework.

We do have a notion of prime ideals in 0, so we are still able to compute a factor

base. Similar to the previous framework, our relations consist of a vector e indicating

how a B-smooth element factois over the factor base. In the infrastructure, this B-

smooth element is a reduced 0-ideal a, and e contains the exponents for the prime

ideals in the factor base to obtain a. However, unlike in the previous section where

we solved the linear system to obtain the discrete logarithms of the smooth ideals,

we keep track of the distances of the smooth ideals and include that information in

the relation. That is, relations consist of the vector e indicating how a factors, along

with the distance 6(a).

Similar to our framework, we put each vector from the relation in a column of

a matrix A. If we are computing an infrastructure DLP, i.e. trying to find 6(i) for

some principal 0-ideal b, then we first find an equivalent smooth ideal b' with known

distance 6(b', b). Then we let b be the vector indicating how b' factors over the prime

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 94

ideals in the factor base. We solve the linear system Ax = b. In this case, the solution

vector x gives a linear combination of the relation vectors that results in b. That

is, x indicates how to apply the infrastructure operation ® to get Ii' from the ideals

of the relations. Therefore, we can use the distance property of ® and compute the

dot product of x with the distances of the relations to get the distance 5(b"), where

8(b") 5(b') mod R0.

To compute the regulator Ro, one notes that if we let the vector b = (0, 0,.. . , 0),

this vector corresponds to a relation for the ideal 0. Therefore, solving for a kernel

vector of A gives a vector x that is a linear combination of the relations to the 0-

relation. Hence, the dot product of x with the distances of the relations gives the

distance of some multiple of the regulator R0. We can find the actual regulator by

taking the smallest divisor d that satisfies p* (0, d) = (0, 5) with 5> 0.

Alternatively, if we want both the regulator R0 and the class number h0, we can

form an augmented matrix A' that consists of A with the distances added as a row

on the bottom. If A' has full rank, this augmented matrix corresponds to basis for

a sublattice of the lattice of all possible relations. It is known that this lattice has

determinant h0R0, so the Hermite normal form of A' has a determinant equal to a

multiple of h0R0. If A' is a basis for the full relation lattice, then the determinant is

exactly h0R0.

Finally, to compute the class group structure or just the class number h0, one

computes the Smith normal form of the HNF of A. The invariant factors of the SNF

that are greater than one correspond to the group structure. The product of the

invariant factors gives the ideal class number.

We explain each of these stages in detail in the following sections.

4.3. INDEX CALCULUS. IN THE INFRASTRUCTURE 95

4.3.2 Computing the Factor Base

Since 0 is a Dedekind domain, every 0-ideal is a unique product of prime 0-ideals.

Then using the fact that the generalized Riemann hypothesis (GRH) is proven to be

true in algebraic function fields,' the following result gives a bound on the size of

elements to be included in the factor base [M5T99, §3]:

Theorem 4.7 (Muller, Stein & Thiel, 1999). The ideal class group 01(0) is gen-

erated by the prime ideals p with norm satisfying deg N(p) B if the smoothness

bound satisfies

B ≥ [21ogq(4g - 2)1

Given this result, we define the degree of a reduced 0-ideal a to be deg a = deg N(a),

where the norm is the polynomial a K[x] from a = (a, b) in standard representation.

We select our factor base 2B to contain the prime 0-ideals of degree at most B

that lie above either a splitting or ramified K[x]-ideal. Such prime 0-ideals are of

the form q3 = (a, b), where a = p is a monic irreducible polynomial in K[x] and b is

a root of 9f (y) = y2 + hy - f. Note that if K has order q, then there are q' monic

polynomials of degree d in K[x]. If we determine that a monic polynomial p E K[x]

with degp < B is irreducible, then we determine the splitting behaviour of p = pK[x]

based on how W(y) = ,y'+ hy - f factors in (K[x]/p)[y]. We have that p is ramified if

W(y) is a square. The ideal p splits in 0 if W(y) has two unique roots. Finally, Ii(y)

is inert if W(y) has no roots.

3The proof of the GRH in algebraic function fields in the case of genus 1 is due to Hasse [Has36],
and proven for arbitrary genus by Weil [Wei48].

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 96

In the odd characteristic case we have h = 0, so if plf, then 'I'(y) is a square and

we have that p is ramified below the prime 0-ideal 143 = (j, 0). Otherwise, if pf,

then p splits if and only if f is a square in K[x]/p. Using an algorithm that finds the

squarefree decomposition of a polynomial, we can determine whether f is a square

modulo p (cf. Bach and Shallit [BS96, p. 169]). If we determine that f is a square,

the square root b = /j mod p can be probabilistically computed using either the

algorithm of Tonelli-Shanks4 or Cipolla-Lehmer [BS96, pp. 155-159]. Once we have

computed b, we know that p splits into a product of two conjugate prime 0-ideals

p= (p, b) and (p,—b).

In the even characteristic case where IKI = 2', we can determine if '(y)

Y1 + hy -- f is a square by checking if ph. This works since JLT = 2y + h 0 mod p dy

if and only if ph. If W is a square, then a square root can be computed as b=

W 2 gp i n+de-1 mod p and p s ramified below the prime ideal q3 = (p, b) [BS96, p. 155].

For a non-square W(y), p splits if and only if W(y) has roots in K[x]/p. If degp = rn,

then K[x]/p 1Fnrn. The trace of an element a E JF2m is a map defined as

1-4 i=1 a2.

Consider the change of variables u = yh' mod p on W(y) and let a = fh 2 mod p,

giving the Artin-Schreier polynomial t(u) = u2 +u - a. Then it follows from Hubert's

Theorem 90 that t(u) has a root in K[x]/p if and only if Tr(a) = 0 [Sti93, p. 241].

Once we know t(u) has roots, one of them can be found using the McEliece polynomial

factorization algorithm, a randomized Las Vegas algorithm that uses the trace to find

4Shanks called this algorithm RESSOL and it is sometimes referred to in the literature as such

[Sha72a, §5].

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 97

a non-trival factor with a failure probability of at most 1/2 [McE69, §11]. If d is a

root of t(u), then b = hd is a root of W(y).5 Consequently, p will split into the two

conjugate prime 0-ideals 93 = (p, b) and T = (p) —b - h).

For each splitting ideal p = pK[x] such that p0 = q33, we include only one of

in .FB. The complete procedure can be seen in Algorithm 4.8. To have .FB

satisfy Theorem 4.7, Muller, Stein and Thiel estimate for the number of prime ideals

that will be in FB is bounded as nB ≤ 4BqB [M5T99, §2.2].

Algorithm 4.8 (Factor base generation). Generates the factor base for index cal-

culus in the infrastructure.

Input: A smoothness bound B for a hyperelliptic curve C : y2 + h(x)y = f(x) over a

field K = Fq

Output: A factor base FB that generates the ideal class group 01(0)

1: .FB {ø}, m - 1

2: repeat

3: for each monic polynomial a E K[x] with deg a = m do

4: if a is irreducible over K[x] then

5: b—y2+hy—f

6: if h = 0)\ alf then t> Odd characteristic cases

7: b +— 0 > aK[x] is ramified

8: else if h = 0 A Squarefree(f mod a) = 1 then

9: b - \/j (mod a) > aK[x] splits

10: else if h=,40 A ah then c> Even characteristic cases

2 2 11: b +— (y - f) dcga-1 q (mod a) > aK[x] is ramified

5Equivalently, we could just as easily use the McEliece algorithm to find a non-trival factor of
(y) mod p directly.

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 98

12: else if h 0 A Tr(fh 2) = 0 then

13: (y - b) - PolyFactor(y2 + hy - f mod a)

14: if by2+hy-f then

15:

16: m+- m+1

17: until m> B

aK[x] splits

> If aK[x] is inert, b = y2 + hy - f

Let L(n) = lognioglogn. Ben-Or's algorithm for testing a degree-n polynomial

in K[x] for irreducibility requires 0(n2L(n) log n log q) operations in K in the worst

case, but only 0(nL(n) log n.log q) operations on average [Beri8l, § 2]. To iterate

over every monic polynomial a E K[x], we need to perform the irreducibility test

T = E B qk E Q(qB) times. Dividing a degree-rn polynomial by a degree-n polyno-

mial requires O(rt(m - n + 1)) operations in K [Knu97, pp. 420-421]. Tonelli-Shanks

runs in expected 0(n log 4 q) bit operations and Cipolla-Lehmer is in O(nlog3 q) bit

operations, where n = deg a.6 We can find a non-trivial factor of a quadratic poly-

nomial in K[x, y]/aK[x] when char K = 2 using the McEliece algorithm in expected

0(1og3 q) bit operations with a failure probability of at most 1/2 [BS96, pp. 155-159,

355]. Since deg E 0(g) and deg E 0(B), we have the expected number of field

operations required to perform Algorithm 4.8 is in

0(TB . L(B) log B log q + nB (gB + B log' q))

0 (qBB L(B) log B logq + qBB2g + q B B 2 log3 q)) . (4.2)

6Although Cipolla-Lehmer has a faster asymptotic upper bound for its runtime, in practice the
runtime of Tonelli-Shanks is comparable unless q - 1 is highly divisible by 2 (cf. Bach and Shallit

[BS96, pp. 158-159]).

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 99

We continue the analysis following the work of Enge [EngO2]. Suppose we choose

the smoothness bound B = [logq Lq (c)1 for some constant c e J1 >0 satisfying Theo-

rem 4.7. Since '°gq Lq (c) is rounded up to B, we have q potentially almost as big

as q b0gq 1q9 (c)+1 = q - Lq9 (c). Then to remain subexponential we require q to be subex-

ponential in O(g log q). Therefore, the genus g must be large. Suppose g ≥ '0 log q for

some constant '0 > 0, then

q = 101, q = exp (\/o (log q)2) < exp (\/g log q) ≤ L (*)

Now we have the following upper bound that is satisfied even if B c logq Lq9 (c) + 1:

qB Lqg (c) . Lqg () = Lq (+ ') (4.3)

Continuing from Equation (4.2), the expected number of field operations required for

Algorithm 4.8 to generate the factor base 7B is in

o (Lqg (+)log q+ Lqo (+) 9+ Lq "c+ --- log 3q

1
c0 (Lqg (c++o(1))7 79

when g log q - co for 0 < i9 < g/ log q.

Comparison with Previous Work

(4.4)

Muller, Stein and Thiel obtained a runtime of 0(BqB (deg f)3 log q) operations in odd

characteristic fields to compute the factor base [MST99, 5]. This simplifies using our

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 100

analysis as

09 3log q - Lq / 1\\ + (Lqg / 1 0 c + + o(1)

Note that the subexponential term has swallowed a much larger polynomial function

than in Equation (4.4).

Enge's asymptotic complexity for computing the factor base in the Jacobian

[Eng02, §5.3] is

ö(log 2q.Lgq(2c+)) CQ(L9(2C++O(1))).

Enge has a larger multiple on the constant c than our result in Equation (4.4), since

his algorithm uses trial division to determine irreducible polynomials.

4.3.3 Smoothness Testing

Suppose we are given a reduced 0-ideal a = (aa, ba) in standard representation, and

we wish to determine whether a corresponds to a B-smooth ideal. We will see that

we can perform an efficient test using the norm N(a) = aa.

Let the prime ideals in the factor base be labelled as follows: FB = {P1, P2,. .. , PnB} .

Each prime ideal pi =(api, b) in FB has N(p) = api irreducible in K[x]. Suppose

the norm of a factors over the norms of the pi E FB. Then there exist exponents

ej E No such that

N(a) = [J N(p = ei [f a;.
(ap,bp)E.FB

(4.5)

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 101

The factorization the norm of an ideal a may not exactly correspond to the factoriza-

tion of the ideal a. There are two reasons for this. First, we must take into account ba

from the standard representation a = (aa, be). Therefore, we must correct the sign of

the exponents to get the ideal a with the correct conjugation. This is done as follows:

for each i, 1 ≤ i < m, find si E {-1, 1} satisfying ba s (mod This gives

a vector e = (siei, s2e2,. . . SflB eflB). The second reason why the factorization of the

norm of a does not directly result in a being B-smooth is because the negative signs

in e are ideal inverses and result in a polynomial coefficient for the ideal. According

to Equation (3.3), we have

ThB / 1 1
flp7iCi = a fl = a H -
i=1 .f leil eEe ..feiEe api

z. l$i<o

(4.6)

Therefore, for each reduced 0-ideal a = (an, ba) whose norm factors as in Equa-

tion (4.5), we have a B-smooth ideal with the standard representation (s, aa, ba),

where 8 IIEejEe,sj<O and s ,bpi (mod

To efficiently test whether the norm of a reduced 0-ideal a factors . according

to Equation (4.5), we use a strategy called distinct degree factorization. This

is based on the fact that if the field K has order q, then x - x is equal to the

product of all monic irreducible polynomials in K[x] of degree dividing B. Then

if N(a) = aa is squarefree, the product of the degree-i factors of a, is given by

d1 = gcd(x - x, aa). This can be iterated since the product of the degree-2 factors

of aa is given by d2 = gcd(x 2 - x,aa/di) [BS96, pp. 170-171]. In fact, instead of

computing the GCDs for degrees 1 to B, using an optimization described by Velichka,

we can reduce this to only compute the GCDs for degrees LU + 1 to B [Vel08, p. 42].

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 102

This is sufficient since degrees of LU and below must divide some degree in the higher

range.

To efficiently compute Xqi mod aa for 1 < i < B, we make use of special map

called the Frobenius endomorphism. Let q = ptm with p prime and m E N. Then

the Frobenius endomorphism on K = lFq is the automorphism defined by : a '— p a.

If m = 1, then q is just the identity automorphism due to Fermat's little theorem.

The Frobenius endomorphism can be iterated as 02(a) = çb((a)) = a2 to get the

n-th power Frobenius map 0': a -+ a for any n E N. Note that for any a € K

the result of the m-th power Frobenius map is q5tm(a) = a q [BS96, pp. 133-134]. We

will refer to the latter simply as the Frobenius map, denoted by (a) = qm(a).

One nice property of the Frobenius map is that (a) = a if and only if a E JF.

Another property that I = o V gives us a computational advantage when

iterating the Frobenius map with m > 1 or in a field extension of K. Consider the

field extension L D K where £ = K[x]/aaK[x]. We can use the binary expansion of

n = 2b with £ = [log n] and bk E {0, 1} to compute I(x) = x mod aa using

the square-and-multiply method in Algorithm 4.9 [vzOG03, pp. 388-390].

Algorithm 4.9 (Iterative Frobenius map n). Compute (a) mod t for some

n and polynomial a E K[x]/tK[x].

Input: An integer n E N and its binary representation n 2 bk for £ = [log n];

a polynomial a E £, where £ = K[x]/tK[x] for a field K of order q and a monic

irreducible polynomial t E K of degree m.

Output: The polynomial c = (a) € L.

1: (mod t),c-1

2: for i from 0 to .e do

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 103

3: ifb=1then

4: c — c•s (mod t)

5: s — s(s)modt

6: if deg c>0 then

7: c•—c(a) mod t

> Evaluate the polynomial s(x) at s

F> Evaluate the polynomial c(x) at a

Step 1 of Algorithm 4.9 can be computed in 0(rnL(m) log q) operations in K,

where L(m) = log m log log m, using the square-and-multiply algorithm in the exten-

sion field L. We can evaluate a polynomial in L in 0(m) operations in K. Then the

entire runtime of Algorithm 4.9 is in 0(mL(m) log q).

Now we return our focus to the smoothness test. If we have determined that

there is a B-smooth ideal corresponding to a via distinct degree factorization, we

complete the factorization of N(a) using a polynomial factoring algorithm and place

the multiplicities of the factors in the appropriate entries of the vector e. The com-

plete method for smoothness testing and determining the factorization is presented

in Algorithm 4.10 and we denote it by o.

Algorithm 4.10 (Smoothness test cr). Test whether a reduced ideal is B-smooth

with a possible coefficient and return the relation vector if it is.

Input: A factor base .TB = 1p,= (ap1, b1),. . . , PThB (apflB, bpflB)} and a reduced

0-ideal a = (an, ba).

Output: A vector e = (e1,. . . , efl) such that flB1 p if there is a B-smooth ideal

(s) a, ba) for some coefficient S E K(x); or the zero vector otherwise.

1: a - Squarefree(a)

2: +- IW(x) (mod a)

F> Compute the squarefree part of aa

c> Iterative Frobenius map (Alg. 4.9)

4:3. INDEX CALCULUS IN THE INFRASTRUCTURE 104

3: for i from + 1 to B do > Perform distinct degree factorization

4: <— () (mod a)

5: d—gcd(—x,a)

6: a—a/d

7: if a 1 then

8: e—(0,...,0)

9: else

10: p 1p 2 • p <-- PolyFactor(aa)

11: e1, e2,.. .) efl i— 0

12: for i from 1 to £ do

Find k such that pi = aPk for Pk E .FB

14:

15: if ba $ bp, (mod pi) then

16: ek<— — ek

17: e— (e1,2, ...)eflB)

Frobenius map

L' a is not B-smooth

a must be B-smooth

Compute the factors of a

i' Initialize the ej to 0

Correct the sigri of the exponent

An algorithm given by Yun [Yun77] for computing the squarefree decomposition

of a degree n polynomial in K[x], where K has order q, requires O(((i + n) log q)2)

bit operations [BS96, pp. 170, 356-357]. The distinct degree factorization requires

O((n + log q)((1 + n) log q)2) bit operations [BS96, p. 171]. Cantor arid Zassenhaus

[CZ81] gave a Las Vegas algorithm to find a non-trivial factor of a polynomial in an

expected running time of O((n + log q)((1 + n) log q)2) with a failure probability of

at most 2'_', where r is the number of irreducible factors [BS96, p. 167]. It can be

repeated to find the complete factorization of a polynomial. If one does the searching

for k in a reasonable way, we expect that the polynomial factorization will dominate

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 105

the running time of the algorithm. Since the ideals we are testing are always reduced,

we have n € 0(g) giving a total running time for Algorithm 4.10 in

0((g + log q)((1 + g) log q)') 9 0(g3 log' q + g2 log' q)

4.3.4 Generating Relations via a Baby Step Walk

In this section we describe how to generate a set R-B of relation vectors from which we

will form a relation matrix A. Muller, Stein and Thiel [MST99] generate relations

in the infrastructure following a method introduced by Hafner and McCurley [HM89]

and generalized by Buchmann [Buc90]. However, their method is slower and results in

the relation matrix A7z being dense. To get sparse relations we propose an alternate

method which we call a baby walk. The baby walk simply performs baby steps from

an 0-ideal a0 to produce a sequence aj = p(aj....i) for j = 1, 2.....If we obtain a B-

smooth ideal from a, then the vector e containing the factorization of the B-smooth

ideal and its distance is a relation. As we will see, this not only results in the relation

matrix A7z being sparse, but can also be made to ensure that A'R, will be nonsingular.

We use Algorithm 4.10 to test each ideal aj in the baby walk for smoothness. The

probability that the baby walk efficiently finds B-smooth ideals relies on the following

heuristic.

Heuristic 4.11. The B-smooth 0-ideals are evenly distributed within and between

the ideal classes of Cl(0).

The experiments in Section 5.4.2 suggest that Heuristic 4.11 is true and we will assume

it in our analysis.

Once we have found a B-smooth 0-ideal a = (s, aa, ba) with the exponent

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 106

vector ej = (e1, e2) .. . , efl) (with corrected signs), we have to compute the dis-

tance S(c). If aj = (aa, ba) is the reduced 0-ideal from the baby walk satisfying

N(a) = flP•Es N(p)IeiI, then we have the distance 8(ctj) from Algorithm 3.13 and it

follows from Equation (4.6) that the distance of the B-smooth ideal is

6(cL'1)=6(a)— L le-ij.degN(p).
.feEe3
. ei<o

Now we have a relation of the form:

flB

= flp = aO for some a E F satisfying 6(a) = deg a.
j=1

Therefore, we store ej along with 6(a) as a relation.

Suppose we have obtained a set of relations RB = { (el, 51), (e2, J2),. . . , (eflB) 6 -B) }

corresponding to nB B-smooth ideals. Consider the nB x riB square matrix Ap

constructed with column vectors e, er,.. . , efl , where e denotes the transpose of

vector e. We will generate our relations in a similar way as Seysen [Sey87, §4] such

that A, has entries aij, for 1 ≤ i, ≤ n, satisfying

nB

ir/j

That is, the diagonal entries of A'& are larger than the sum of the other entries in their

respective columns. Such a matrix is said to be strictly diagonally dominant. It

follows that any strictly diagonally dominant matrix is nonsingular [BVO7, p. 295].

To obtain a strictly diagonally dominant relation matrix, we require each relation

vector ek = (e1) e2,. .. , e) fl 7 B for 1 ≤ k ≤ nB to have 16k > Recall

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 107

that a reduced 0-ideal a = (aa, ba) has deg aa = deg N(a) ≤ g, where g is the genus

of the function field F = Quot(0). Then if a is B-smooth, the norm N(a) will factor

with exponents e = (e1, e2, . . . , eflB) such that Bi lei I ≤ g. Therefore, we need each

relation vector ek to have IekI > g, for 1 < k < nB.

To generate the k-th relation, k ≤ 1B, with Iekl > g using the baby walk, we

choose (ao, So) = pn(()29+l, (2g + 1) degN(pk)), where n E No is sufficient to make

a0 reduced. The baby walk will compute the sequence aj = p(aj_i) for j = 1, 2,...

until aj = (a, b) gives us a B-smooth ideal a = (s, a, b). While a is not

necessarily principal, we have some ry E F such that a ('y)p21. After obtaining

a vector ek = (el) e2,.. . , e7) from Algorithm 4.10 corresponding to the factorization

of a, we will have a factorization for the principal ideal 'yO as

nB

'yo = p'a = p9+l

• Therefore, the principal ideal 'yO is B-smooth with the relation vector ek = (ei,. . .

29+1, - . . , efl) whose k-th entry will be larger than g. Note that we do not actually

compute 'y, but we can compute the distance S('yO) = deg 'y as

= 5o + 6(a, ao) - > . degN(p)
•fejEej
2l e<0

For any particular B-smooth ideal a', it is expected that only a few of the primes

in .TI will be factors of a' (supposing that .FB is large). Hence, we expect the relation

vector e corresponding to a' to have only O(log n3) 9 0(1) non-zero entries. It

follows that the matrix Alz will also be sparse with expected O(nB) non-zero entries.

Note that we, will have to generate more than nB relations. At the very least,

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 108.

when computing R0 we require m = nB ±1 relations to obtain a full rank matrix A,

augmented from AR with the distances in the bottom row. Therefore, we generate

the first nB relations as described above, but for subsequent relations we only need a

sequence of principal 0-ideals, preferably with small distance. Hence, we will use the

baby walk starting from a0 = 0. This means that for these new relations we must

remember the position in the baby walk to continue the walk for the next relation.

The complete relation generation method is presented in Algorithm 4.12.

Algorithm 4.12 (Relation generation). Generate the a relation for index calcu-

lus in the infrastructure using a baby walk.

Input: A factor base .FB = {Pi = (ap1, b1),. . . , p, = (aPflB, bpflB)} and a set 7B of

previously generated relations. If #7Z > mm then we require the 0-ideal a used

to generate the last relation and its distance 6(a).

Output: A set of relations l?.B of size one larger than the input.

1: k—#7.B+1,j--0

2: if k ≤ nB then r> Choose a0 to get a strictly diagonally dominant matrix

3: a0 +- ()29+1 ' Start with the primitive part of p291

4: 8o - (2g + 1) deg aPk r> Distance 6((P)29+' p29_l)

5: while N(ao) > g do t' Reduce a0

6: (ao, 6) p(ao, 5) > Perform a reduction step (Aig. 3.10)

7: else if k = nB + 1 then > Finished the diagonal dominance, start walk at 0

8: ao <-0,6<--0

9: else > Continue the baby walk from the previous ideal in the walk

10: a0 - a, Sj •- 6(a)

11: (a+1, 6j+1) — p(a,6j) > Next in the baby walk (Alg. 3.10)

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 109

12: j— j+1

13: repeat

14: e - o(JT, a) > Test if a is B-smooth (Aig. 4.10)

15: ife0then

16: 6 <- 6j

17: for each non-zero ei E e do

18: if ei <0 then > Adjust the distance for inverses

19: 5 +- S + e degapi Subtract the inverse coefficient degree

20: if k < nB then ' If we have not completed diagonal dominance

21: ek <-- 6/ + 2g + 1 t. Correct the k-th entry for p. 2g-1

22: 7ZB +- 7ZB U {(e, J) > Store the relation

23: else

24: (cj+i, 6') +- p(a, 6) t' Next in the baby walk (Aig. 3.10)

25: j4— j+1

26: until e =A 0

To estimate the number of reduced B-smooth ideals in 0, we use the following

result from Enge and Stein [E502, §5]:

Theorem 4.13 (Enge & Stein, 2002). If the smoothness bound is chosen such

that B logq Lq (c)1 for some positive real constant c, then the number of reduced
0-ideals that are B-smooth is bounded as

no/B≥ q

Note that the choice of B in Theorem 4.13 matches the analysis from Section 4.3.2.

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 110

Since the number of reduced ideals in an ideal class is R0 and there are h0 ideal

classes, to get the probability that a reduced ideal in the baby walk corresponds to a

B-smooth ideal we divide no/B by h0R0 based on the assumption of Heuristic 4.11.

Now, considering Algorithm 4.12, we expect to repeat the loop testing for a B-

smooth ideal h0Ro times. Theorems 3.2 and 3.7 give an upper bound of h0R0 ≤
no/B

2q9-1 (deg f - 1)2. Since the function field is real quadratic, we have deg f ≤ 2g + 2 E

0(g). Recall that we can test for smoothness using Algorithm 4.10 in 0(g3 log2 q +

g2 log3 q) and compute steps in the baby walk using Algorithm 3.13 in 0(gL(g)). The

number of factors of a B-smooth ideal is in 0(g), so adjusting the distance for inverses

requires 0(g) operations. By Equation 4.3, we have nB E 0 (Lqg (c + 73 times,

where 0 < t9 < g/ log q. From Section 4.3.2, we have the bound q E 0 (Lqg
Then the total heuristic, expected running time of Algorithm 4.12 is

Lqg (+ o(1)) q9 2q' (deg f - 1)2 . 0 (g3 log2 q + g2 log3 q)

E 0 (Lqg (+ 0(1)) . Lqg () (g5 log2 q + 4 log3 q))

0 (Lq' (-L — -L + 0(1))) (g log q—+oo).

We must generate m E e(flB + 1) relations. So we must repeat Algorithm 4.10

0 (Lqg (+ times. Then we can express the total heuristic, expected.complex-

ity of the relation generation step as

0 (Lqg (+)) 0 (Lqg (-1- - +o(i))2c)) I

90(Lql c+ + 0(1) (4.7)

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 111

when g log q - oo for 0 <'0 < g/ log q.

Comparison with Previous Work

Muller, Stein and Thiel have a runtime of 0 (LIDI (2c +)) for relation generation in
the infrastructure, where in the odd characterstic case IDI = q deg f = q29+2 [MST99,

§1.1, 5]. While it is difficult to convert the base of the .subexponential function

exactly to ours, an indication of how theirs might perform in comparison is shown in

the following manipulation:

Lq2g+2 (2c +-L) = exp ((2c +) i/log q29+2 log log q29+2)
4a 4c

= exp ((2c + J) V '9+' \/log q9log log q29+2)
4c 9

>Lq9 _) ((2C+_2)
- 4c 9

(4.8)

If the constant c ≥ 1, then the function in Equation (4.8) will grow faster with g than

ours. We give a comparison of the complete algorithms at the end of Section 4.3.8.

Enge's runtime complexity is 0 (Lqg (2c + + + o(1))) for performing rela-

2c tion generation in the Jacobian [Eng02, 5.3]. Enge's method"of obtaining candidates

to test for smoothness requires computing a linear combination of 0(nB) terms, re-

sulting in another factor of 0 (Lqo (c + _L Enge alsO obtains an extra factor of
from the use of the Hasse-Weil bound (Theorem 3.1) as an upper bound for h0R0,

719

which is not as tight as Artin's result (Theorem 3.2) in real quadratic function fields.

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 112

4.3.5 The Lattice of Relations

Let FB = { i, .. ,p,} be a factor base of prime ideals. Recall from Section 4.3.4

that we generate relations of the form (es, 8) where ej = (e1, e2,. . . , efl) satisfies

nB

flpk = aQ

k=1

for some a E F such that 6j = deg a. (4.9)

Consider the set AB C ZThB consisting of all possible relation vectors e3 satisfying

Equation 4.9 for .'FB. We can also consider the augmented set A C ZnB+l consisting

of all possible relation vectors with the corresponding distances that satisfy Equa-

tion 4.9. It is easy to see that AD and A are lattices since adding two relations

(e, 1) . .. , 5) and (ej,i,. .. , ö) with Jj = deg ai and 5 = deg aj for some

a, aj E F results in another relation corresponding to

nB Jpk+eik =
k=1

where a' = aiai satisfies 5 + öj = deg a'.

The following theorem regarding the relation lattices was given in part by Sey-

sen [Sey87, § 1] in the imaginary quadratic number field case, and extended to real

quadratic number fields by Buchmann [Buc9O, § 2]. It was generalized to quadratic

function fields by Muller, Stein and Thiel [M5T99, §2.2]:

Theorem 4.14 (Muller, Stein & Thiel, 1999). Suppose that the prime ideals in

D generate .the class group Cl(0). Then the lattice AB has determinant h0 and the

lattice A has determinant h0R0. Furthermore, ZLnB /AB Cl(0).

Recall that the prime ideals in .FB generate the class group Cl(0) if B is chosen to

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 113

satisfy Theorem 4.7. Then Theorem 4.14 tells us how the relation lattices correspond

to the ideal class number, the regulator, and the class group. We will use this result

as the basis for computing these values in the next few sections.

4.3.6 Computing the Regulator

In this section we, describe how one can compute the regulator R0 from the relation

matrix. Suppose we have a set RB = {(el, ó1),.. . , (e,, Sm)} of m ≥ nB + 1 relations

and a nB >< m matrix AR constructed with column vectors e, er,. . . , e. Consider

the (nB + 1) < m matrix A consisting of the distances 51, S2,. . , 5m added as a row to

the bottom of A. From Theorem 4.14 we know that if the columns of A generate

the lattice A, then the determinant 'of will be A = h0R0. It follows that the

regulator will be the smallest divisor d of A such that p*(Q, d) = (0, 5) with 5> 0.

We know from our method of generating relations in Section 4.3.4 that A' has a

B X nB submatrix that is strictly diagonally dominant. Therefore, A' has rank at

least nB. We assume that relations obtained from the baby walk satisfy the following

heuristic:

Heuristic 4.15. The B-smooth 0-ideals obtained from the baby walk result in rela-

tions that are randomly sampled from A.

Based on computations with our implementation we claim that Heuristic 4.15 is

reasonable. Recall from Theorem 4.14 that the lattice A has determinant h0R0.

Under the assumption of Heuristic 4.15, we use the results of Enge [Eng02, §5.4] to

claim that, with high probability, A'?, will have full rank and its columns will generate

the lattice A if we obtain m = 4OnB relations.

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 114

The Hermite normal form (HNF) of a n x m matrix A (with m ≥ n) is a square

n x n matrix H corresponding to the non-zero columns when the matrix is put in the

following special form:

/0 0 ••• 0 h1,1 h1,2 •..

0 0 ... 0 O h2,2 ... h2,

0 ... 0 0 . 0 hn,nJ

with 0 ≤ h,1 for all 1 ≤ i ≤ ri and i <j ≤ n [Coh93, p. 66]. The problem with

computing the HNF of an integer matrix is that one cannot perform divisions unless

they are exact, resulting in "coefficient explosion." Storjohann and Labahn showed

that one can reduce the effect of this coefficient explosion and obtain: a matrix in

HNF that has coefficients about the same size as those in the input matrix.7 For an

n x in matrix A we use the following notation:

IIAII= max {IaiiI 1 1≤i≤n, 1 < i <'Mj,

where aij denotes the (i, j)-th entry of A. Then we can compute the HNF in 0 (n° 'm.

M(nlogllAll)) bit operations, where M(t) is the number of bit operations required

to multiply two [ti-bit integers, and 8 is the exponent for matrix multiplication in Z

[SL96, § 1]. The best known algorithm for matrix multiplication has 8 = 2.38 due to

Coppersmith and Winograd [CW9O]. Then, because the augmented relation matrix

7Hafner and McCurley's method for computing the HNF of an n x n matrix results in entries
that are a factor of n larger than the input matrix [HM91].

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 115

A' has dimension (nB + 1) x m, its HNF can be computed in

2.38
+ 1 M Ô (Lqg (2.38c 2.38'\ (flB logIIAII)) c 0 (Lq (2.38c + + 0(1)

After we compute the determinant A of A'.?,, we have that A = kR0 for a small

multiple k (with high probability k = h0, but it need not be). Then we can find the

regulator by factoring the integer A and finding the largest divisor that is the distance

of a unit. This technique was also used by Stein and Williams [SW98, §5.1]. Muller,

Stein and Thiel suggested transforming the HNF of A' . into Smith normal form to

compute the class number h0 (cf. Section 4.3.7) [MST99, §2.4]. This overhead is

avoided by our technique, presented in Algorithm 4.16.

Algorithm 4.16 (Finding the regulator from a multiple). Compute the regu-

lator from some multiple by factoring and using the infrastructure to find the largest

divisor that is the distance of a unit.

Input: The factor base 1 B = {P1, P2, . . , p,}, and an integer L = kR0 for some

unknown k E Z.

Output: The regulator R0.

1: (a, 8) - p* (0, z) > Compute the closest ideal to the distance A (Alg. 3.26)

2: if a 0 0 V 8 = 0 then c> Ensure we start with a multiple of R

3: return failure

Ti1 4: p1 P2 . pfl - Factor(L) i' Using an efficient factoring algorithm

5: for i from 1 to £ do

6: for j from 1 to ni do

7: d — //p

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 116

8:

9:

10:

11:

12:

13: R0 -

(a, 6) <- p*(o, d)

if a=O A 6Othen

else

break

The closest ideal to the distance d (Aig. 3.26)

c d is still a multiple of R

t>Exit the inner for-loop

It is important in Algorithm 4.16 to use an efficient factoring algorithm, such

as the number field sieve [LLMP9O], since the determinant L is likely to be large.

NFS runs asymptotically in expected O(L,, (1/3, (64/9)'/3+ o(1))) bit operations

[BLP93]. The number of prime factors of the determinant A is £ E O(log z). Simi-

larly, we bound the exponents r?j E O(log). Then we can compute the closest ideal

to a given distance d in O(dg) field operations. The runtime of Algorithm 4.16 is

obviously dominated by the factorization. However, since A will be asmall multiple

of R0 and the factorization is subexponential to the 1/3, the asymptotic runtime

for computing the determinant and finding the regulator is dominated by the HNF

calculation.

Table 4.17 summarizes the complexity of each step involved in computing the

regulator.

Table 4.17. Asymptotic complexity of computing the regulator

1. Factor base generation O(Lqg (c++o(1)))

2. Relation generation

(heuristic, expected)

O(Lqg (c++o(i)))

3. Computing the regulator 0 (Lql (2.38c + 2-38 + 0(1)))

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 117

Total

(heuristic, expected)

(1q9 (max {2.38c + , c + + o(1))VrV_)

Based on the results in Table 4.17, we can choose the constant c E R>.o to minimize

the overall complexity. The function f(c) = c + has a unique minimum of at

c = . Equating f(c) with the function g(c) = 2.38c + , we obtain a constant of

V'69OO9 + 14161 - 119

C = 138v'

For '0 = 1, we take the minimum value for c and obtain an overall heuristic, expected

runtime in O(Lqg (2.83 + o(1))) to compute the regulator using index calculus in the

infrastructure.

4.3.7 Determining the Class Number and Group Structure

Suppose we have the (nB + 1) x m augmented relation matrix A' described in the

previous section. If we compute the Hermite normal form of A',?, as in the last section,

we know that the determinant A of the HNF will likely be h0R0, but could be a

small multiple of h0R0. The determinant will be exactly h0R0 if the columns of A'1,

generate the full relation lattice A. To determine with certainty whether we generate

we must compute an estimate of the product h0R0 that is precise enough that

we can detect whether A is exactly h0R0 or a multiple.

Recall from Theorem 3.7 that hp = h0R0, where hF is the divisor class number

of F. To ensure the determinant L is not a multiple, we must obtain a value h*,

such that h < h < 2h. Unfortunately, the Hasse-Weil bound (Theorem 3.1)

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 118

is not sufficient. A more precise bound on hF can be obtained using the analytic

class number formula. For any monic irredicible polynomial p E K[x], we define a

character x() based on the splitting behaviour of the prime ideal p = pK[x] in 0

(cf. Section 4.3.2):

0 if p is ramified in 0

+ if p splits in 0

if p is inert in 0.

Let L(s) be the L-polynomial associated with the character x in F (cf. Stichtenoth

[Sti93, pp. 165-166]). The following theorem relates the divisor class number to the

L-polynomial.

Theorem 4.18 (Analytic class number formula). For any algebraic function

field F over -a finite field lFq, the divisor class number hF = L(1).

The functional equation of the L-polynomial states that L(1) = q9 L(1/q) [Sti93,

p. 166]. We can write this functional equation as an Euler product to obtain

q +l 1
hF = L(1) = q9 L(1/q) = q - 1 rl 1 - (p) q _cIegP

K[]

(4.10)

where we are again assuming the p E K[x] are monic irreducible polynomials and F

is real quadratic [ST02a, §4.1]. An approximation hF(A) for Equation (4.10) can be

obtained by truncating the Euler product by bounding degp by a parameter A E N.

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 119

That is, we compute hF(\) E R as

q +l 1

q-1 11 pEK[x] 1_(p)q_deP'

degp\

We will set h = .hF7s), for some value to be determined such that < < 1.

Note that hF = . h' (A) for some D(A) E R, where the value measures the

error of our class number approximation. Following Düllmann [Dül91, pp. 38-39] and

Abel [Abe94, pp. 53-57] in quadratic number fields, we can get bounds on the size of

D(A) required to ensure h < hF < 2h as follows:

h < hp < 2h7

< hF < 2.hF (A)

<hF < 2

< eD(A) < 2/h

log p < D) < log(2p).

Then we have D(A)I <min{— log , log(2ji)}, which has a minimum value of 1 log

when p= . Therefore, to satisfy our bounds we must choose A sufficiently large to

satisfy I (A)I < log 2.

To determine an appropriate parameter A, we use the following result from Stein

and Teske [STO2a, §4.3]:

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 120

Theorem 4.19 (Stein & Teske, 2002). For a quadratic function field F, we can

approximate the divisor class number hF with h1 A) such that hF = e' . A) and

ID(A)I (2g + (A mod 2))q-7;' (2g + 2)q-(A - i)

(A+1)(VFq —1) + (A+2)(-1)3

We have that hF_(A) can be computed in O(q') field operations [STO2a, §5.1]. There-

fore, to remain subexponential in g log q, we require A = 109q(X) for some X subex-

ponential in g log q. We derive from Theorem 4.19 the following rough upper bound:

D(A)I <qX, for X = 2g + 1 (2g + 2)J
—1 ([i)3

Then to compute hF(A) with sufficient accuracy for hF E (h, 2h) we require

1 -A
log2> q 2

A 1
q > 2X log—' 2

A> 2 10g (2X log-' 2)

Since X E O(g./) L (+ 0(1)), we can compute (A) and h = (A) in

subexponential time as g —+ 00.

Now, after computing the determinant A of the HNF of A, we verify that h <

A < 2h. If not, then we only generate a sublattice A C A and we must add

more relations to RB and the matrix A' using Algorithm 4.12 until h < L < 2h

is satisfied, at which point A = A. In order to ensure that we obtain relations in

N A, we assume Heuristic 4.15. Then we can use the results of Muller, Stein

and Thiel [MST99, §4] to claim that we can obtain new relations such that A will

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 121

generate the full lattice A. The total runtime complexity to ensure our relations

generate the lattice A is

O(Lqg (max {2.38c+ 8, 1
c+ -,

2 V17-9 2c

Once we have A = h0R0 by verifying that h < L. < 2h, we can separate

the class number h0 from A by computing the regulator R0 using Algorithm 4.16.

However, here we give a different method for computing the class number that also

reveals the class group structure.

The Smith normal form of an n x m matrix A (with m ≥ n) is the unique

n x m matrix S = UAV with invertible matricies U E Znxn and V E zzmxm, where S

is in the following form with non-zero diagonal entries s3,. . , s, for r = rank (A):

/81 0

0 82

U

The diagonal entries , ? are called the invariant factors of A and they satisfy

the property that s4sji for 1 < i ≤ r - 1. Giesbrecht [Gie01] gave an algorithm for

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 122

computing the SNF of a sparse n x m matrix A with m > n in

+m31og2 A

Hafner and McCurley [HM89, §2] showed that one can obtain the class number and

class group structure from the Smith normal form of Al?. in the context of imaginary

quadratic number fields. This method was proposed for the real quadratic function

field case by Muller, Stein, and Thiel [MST99, §2.4]. If we have the HNF H' of A'

such that A' generates A, then we remove distances in the bottom row from H' to

get H and compute the SNF of H. If B is chosen such that the prime ideals in .F

generate the class group C1(0), then the class number h0 will be the product of the

invariant factors of the SNF of H. Moreover, the invariant factors 811• 8B that

are greater than one will correspond to the structure of the class group:

Cl(('))
nB

7Z/sZ.

Si>1

Then using Giesbrecht's algorithm and the fact that H has dimension rtB x nB, we

can compute the class number and class group structure in

a (L,,, (3c +) log2llHll) ç 0 (Lqg 3c+ + 0(1)

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 123

Table 4.20. Asymptotic complexity of computing the class number and class group

structure

1. Factor base generation 0 (L,,, (c+ + 0(1)))

2. Relation generation

(heuristic, expected)

0 (Lqg (c + + 0(1)))

S. Ensuring A'7, generates A

(heuristic, expected)

0 (Lqg (max { 2.38c + , + , } + 0(1)))

4. Computing the class

number and group structure

0 (L,, (3c + + 0(1)))

Total

(heuristic, expected)

0(Lq9 (max {3c+, c+}+o(i)))

Using the results in Table 4.20, we choose the constant c E R>o to minimize the

overall complexity. As in the regulator case, the function f(c) = c + has a unique

minimum at c = . We equate f(c) = c + with the function g(c) 3c+ to

obtain a constant of

\/49 +9-3
C- -

4\/

For 79 = 1, the minimum value for c gives an overall heuristic, expected runtime in

0(Lq (3.45 + o(1))) to compute the class number and group structure using index

calculus in the infrastructure.

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 124

4.3.8 Computing Discrete Logarithms

The linear algebra step for the infrastructure DLP is formulated slightly different

than in the general algorithm described in §4.2. We assume that we already know the

regulator R0, and we will solve the linear system modulo R0. We will also assume

that R0 is prime as would likely be desired in cryptosystems. If the regulator R0 is

composite, we would have to solve the linear system modulo each prime power factor

of R0 and combine the results using the Chinese remainder theorem. Possible issues

with this process are discussed by Enge and Gaudry [EGO2, §4].

Recall the infrastructure DLP from Problem 4.6: we are given a reduced principal

0-ideal b and we wish to compute the distance 5(b). We start by finding a B-smooth

ideal b' equivalent to b and puts its factorization in a vector b. Then, with the relation

matrix AR., we solve for the vector x in AR.x = b (mod R0). Unlike in the general

index calculus description in Section 4.2, the solution vector x does not give discrete

logarithms of the primes in 1B, but rather x will describe how the ideals that factor

according to the columns of A7z relate to the ideal b' corresponding to b. Since we

have the infrastructure DLP solutions for our relations, i.e. the distances stored with

the relation vectors in 7?., we use x to compute the distance 5(b'). From there, the

distance 5(b', b) gives us the desired solution 5(b).

We now describe the steps in more detail. We find a B-smooth ideal equivalent

to b0 = b by performing baby steps bj = p(b-1) for j = 1,... until bj is B-smooth.

Using the smoothness test given in Algorithm 4.10 we obtain a vector b = (b1,. . . , b)

such that {J?B1 p b. To bound the size of j, we once again assume Heuristic 4.11,

giving j with high probability. Therefore, as in Section 4.3.4, the heuristic,

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 125

expected number of ideals we have to test before finding one that is B-smooth is

EOLq +o(1)

Suppose we have the r8 x m relation matrix An corresponding to a set of relations

7 -B of size m > nB. In our linear algebra step to compute the infrastructure DLP,

we solve for x in the following system:

A'1,x = b (mod R0). (4.11)

We can solve Equation (4.11) when the relation matrix is sparse using Wiedemann's

algorithm [Wie86]. A variant due to Kaltofen and Saunders requires O(nB) multi-

plications of A. by vectors and O(n) operations in the field Z/R0Z [KS91, §2]. If

the number of non-zero entries in An is w E Ô(m), then we can solve the system in

Equation (4.11) in

(nB(m + flB)) c 0 (Lqg (2c + + 0(1)))

We form a vector d = (Si, 52,... , Sm) from the distances stored during relation

generation and compute the standard dot-product

5=d•x=5x (modRo).
i=1

This value 'J is equal to the distance 5(bj). Then 5(b) = S - 5(b, b), where 5(b, b) is

computed from the baby steps used to obtain b.

This method to compute the infrastructure DLP is a Monte Carlo algorithm. We

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 126

can verify the distance S(b) by computing the ideal closest to ö() from C using

Algorithm 3.14 and verifying the result is b. If this check is not satisfied, we must

add new relations to A. until b is in the column-span of A.

We summarize the complexity of each step involved in solving an instance of the

infrastructure DLP in Table 4.21.

Table 4.21. Asymptotic expected complexity of solving the infrastructure DLP

.1. Factor base generation 0 (L,., (c + + 0(1)))

2. Relation generation

(heuristic, expected)

0 (Lq (c + + 0(1)))

3. Finding a smooth ideal

equivalent to b (heuristic, expected)

0 (Lp (- 719 + 0(1)))

4. Solving the linear system and

computing the infrastructure DLP

0 (Lql (2c + + o(1)))

Total

(heuristic, expected)

O(Lqg (max {2c+, c+}+o(i)))

Similar to Section 4.3.6, we choose the constant c E R>o based on the results in

Table 4.17 to minimize the overall complexity. Again, the function f(c) = c + has

a unique minimum at c . Equating f(c) with the function g(c) 2c + , we

obtain a constant of

c=
2\/

For O = 1, with the minimum value for c we obtain an overall heuristic, expected

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 127

runtime in O(Lqg (2.45 + o(1))) to solve an instance of the infrastructure discrete

logarithm problem using index calculus.

Comparision with Previous Work

Muller, Stein and Thiel give the asymptotic with a different subexponential base:

0 (Lq2g+2 (max { 2c+ , 5c} + 0(1)))

Using this base they were able to calculate a runtime of O(Lq2g+2 (1.44 + o(1))) with

the 'constant c = [MST99, §5]. Figure 4.22 contains a plot of our runtime

Lq (2.45) with MST's Lq2o+2 (1.44), showing that ours grows slower with the genus.

Enge's method for computing the Jacobian DLP has an asymptotic of

0 (Lq.11 2c+ + (max {5c + ._-_ 1 2 2c 1+0(1))).
The constant in this case is minimized between c = 1 and

c= 1(Vl+ -v 3 / 3

With 9 = 1, Enge's runtime is calculated as O(Lqg (5.73 + o(1))) [EngO2, §5.5]. We

also plotted log Lq (5.73) in our comparison in Figure 4.22.

Note that both Enge and Muller, Stein and Thiel are able to obtain rigourous

(non-heuristic) runtimes based on their methods for relation generation. However,

our analysis corresponds to an algorithm that is also efficient in implementation.

4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 128

2000

1500

1000
0

500

Ours
MST
Enge

0 10 20 30 40 50 60 70

g log(q)

I I
80 90 100

Figure 4.22. A plot of the logarithm of the subexponential runtimes for computing

discrete logarithms when varying g log q with 9 = Lg/ log qj = 1. Our algorithm and

the algorithm given by M'iiller, Stein and Thiel are both in the infrastructure with

asymptotic runtimes of 1q9 (2.45) and Lq2g+2 (1.44), respectively. Enge's result is in

the Jacobian with an asymptotic runtime of Lq (5.73).

Chapter 5

Implementing Index Calculus in

the Infrastructure

To our knowledge, we are the first to implement an index calculus algorithm in the

infrastructure of a real quadratic function field. This is important as it serves as

a proof-of-concept to the theoretical discussion and gives concrete timings that are

faster than those previously published for various computational problems in the

infrastructure. This is especially relevant for estimating the security of cryptosystems

based on the infrastructure discrete logarithm problem.

In an attempt to get the most efficient runtimes possible, we have implemented

variations on the algorithm that was analyzed asymptotically in the last chapter.

These include self-initialized sieving for relation generation, the use of large primes

to include partial relations, and changes to the linear algebra step. Each of these

methods potentially improve the runtime of the algorithm in practice, but are difficult

to analyze to obtain asymptotic runtimes. Therefore, we present the theory behind

these variations in Section 5.1, reflecting the goal of this chapter to describe a practical

129

5.1. PRACTICAL IMPROVEMENTS 130

implementation of index calculus in the infrastructure.

We briefly discuss the specifics of our implementation in Section 5.2. Section 5.3

outlines how we chose our parameters for generating the numerical results presented

in Section 5.4.

5.1 Practical Improvements

Techniques introduced in the context of integer factorization have been adapted to

many other problems where index calculus is applied. In this section we present some

of these variations that we have implemented in the infrastructure setting, as well

as a few new techniques that apply directly to our setting. The first technique we

introduce is sieving for relation generation. In Section 5.1.2 we extend our discussion

of sieving to multiple polynomials and self initialization techniques. We briefly men-

tion low-degree sieving in Section 5.1.3 as another practical improvement. Following,

in Section 5.1.4, we present another variation to relation generation that allows the

use of large primes and introduce partial relations. Finally, we discuss techniques to

improve the performance of the linear algebra step in Section 5.1.5.

5.1.1 Relation Generation via Sieving

Sieve methods for relation generation have, been used effectively in factoring algo-

rithms since the late 1970s (cf. [Pom96]). Jacobson implemented a self-initialized

sieve in quadratic number fields [Jac99]. Flassenberg and Paulus described how to

adapt sieving to the Jacobian of a hyperelliptic curve over odd characteristic fields

[FP99J. This was extended to the characteristic two case in imaginary hyperelliptic

5.1. PRACTICAL IMPROVEMENTS 131

curves in the recent work by Velichka [Vel08]. Velichka compared discrete logarithm

computations using implementations of sieving and random walks and obtained re-

suits that showed that sieving is more efficient in the relation generation phase [Vel08,

pp. 111-120]. For our purposes, we used Velichka's sieving implementation with minor

tweaks to adapt it to the infrastructure of a real quadratic function field. We provide

a brief explanation of the implemented sieving technique here, generalized to both

even and odd field characteristics. For more detail, see Velichka [Vel08, pp. 49-56,

76-881.

Let 0 be the quadratic order of a real quadratic function field F defined by

y2 + h(x)y = f(x) over a finite field K =]Fq. Consider a primitive 0-ideal c = (a, b)

in standard representation. For any element a E ct we have a = au + (b + y)v for

some u, v E K[x]. Then we can expand the norm of a using the conjugate under the

hyperelliptic involution t and group it as follows:

N(a) =

= (au + (b + y)v) t(au + (b + y)v)

= (au + (b + y)v)(au + (b — h — y)v)

=a2u2+a(2b—h)uv+(b2—bh—hy—y2)v2

=a(au2+(2b_h)uv+ (b2 — bh — f) 2)

Since N(a) = a and the ideal norm is multiplicative, there must exist an 0-ideal b

with N(b) = au2 + (2b - h)uv + cv2 and c = (b2 - bh - f)/a such that aO = ab [Vel08,

p. 50]. Let go(u, v) = N(b) for u, v E K[x]. We will only consider one-dimensional

5.1. PRACTICAL IMPROVEMENTS 132

sieving,' so we fix v = 1 and call go (u) = au2+(2b— h)u+c the sieving polynomial.

Sieving will find values of u E K[x] such that the ideal b with N(i) = g0(u)

will correspond to ideals that are likely to be B-smooth. We use a fixed-sized array

indexed by polynomials in K[x]. For each prime ideal p = (ap, b) E FB, the sieving

process jumps through the array, increasing the entry at index j E K[x] if apgo(j).

After this process is completed, for each index j E k[x] with an array entry larger

than some tolerance value, we perform a smoothness test on the primitive ideal with

norm 90(i). Since the array entry for j is large, we already know that many of the

norms of the prime ideals in the factor base divide go(j). Thus, it is highly probable

that we will get a B-smooth ideal from 90(j).

We require a way to represent polynomials in K[x] as integers to index an array.

Following Flassenberg and Paulus [FF99, §4.2], let a polynomial k E K[x] with ri =

deg k be denoted by k = kxTh + .. . + k,x + k0 and define the following map:

'1:

K[x] -

k(x) 1-4 Ie k vo (kj)qi

where the map v0: K —* No sends a field element to an integer between 0 and q — 1.

This is a one-to-one map, i.e. each unique polynomial k E K[x] has a unique value

v(k) E No. Then we can compute polynomials k0, k,,... to iterate through an array

indexed by ii using Algorithm 5.1, denoted by A.

'Flassenberg and Paulus [FP99] described two dimensional sieving, but Velichka argued that only
using one dimension is acceptable in practice [VelO8, p. 52].

5.1. PRACTICAL IMPROVEMENTS 133

Algorithm 5.1 (Next array index A). Iterates through the polynomials k E K[x]

to compute the next array index according to the map ii.

Input: The previous polynomial k (initially 0).

Output: A new value k' such that v(k') = v(k) + 1.

1: e - 0, k' +- k

2: repeat

3: k_kt+xe

4: ifk'<kthen

5:

6: until k' > k

We choose a sieving interval M and initialize a sieve array D as D[v(k)] = 0

for 0 ≤ deg(k) ≤ M. Let 7B = •Pl, P2, . . . , Pn} denote the set of prime ideals in

the factor base. For each p = (ar, b) E .'B, let 8g,p denote the set of roots of go(u)

modulo N(p) = a. We can find these roots efficiently using the "self-initialization"

technique described later. For each p E YB and each root r E 890,P we modify the

sieve array as follows:

D[v(r + kap)] - D[v(r + kap)] + dega

for all k E K[x] satisfying 0 ≤ deg(r+1ap) M. We use the algorithm of Flassenberg

and Paulus for efficiently jumping through the sieve array [FF99, §4.3.3]. Once this

process has been completed for all p E 1B, each entry D[zí(j)] > T for some chosen

sieve tolerance value T, corresponds to a candidate ideal bj with N(b) = go(j)

that should be checked for smoothness.

5.1. PRACTICAL IMPROVEMENTS 134

Now we must discuss how to find bb for a candidate primitive ideal bj = (ab,, bb))

with N(b) = abj = 90(j). Consider the binary quadratic form F(u, v) = Au' +

Buy + Cv2 for some A, B, C E K[x]. These forms are useful because there is an map

from binary quadratic forms to a basis of a primitive 0-ideal given by

:Au2+Buv+Cv2 1-4 {A,B+y}.

One can obtain an equivalent form to F under the change of variables

(u"\ (u'\
I I=XI I,
V) \V)

(r
where X = E GL2(K[x]).

SW

Thenu=rU+tV andy = sU+wV and

F(U, V) = A(rU + tV)2 + B(rU + tV)(sU + wV) + C(sU + wV)2

A(r2U2 + 2rtUV + t2V2) + B(rsU2 + rwUV ± stUV + twV2)

+ C(s2U2 + 2swUV + w2V2)

= (Ar2 + Brs + Cs2)U2 + (2 (Art + Csw) + B(rw + st))UV

+ (At' + Btw + Cw2)V2

= F(r, s)U2 + (2 (Art + Csw) + B(rw + st))UV + F(t, w)V2. bi

Therefore, under the map q there is an ideal with norm F(r, s) [Jac99, pp. 25-26].

Given that the sieve polynomial go(u) = au2 + (2b - h)u + c is a binary quadratic

form with the second indeterminant 1, we must have r = j, s = 1, and t, w satisfying

jw - t = ±1. We choose w = 0 and t = —1. Then we have an ideal = (ab,bb)

5.1. PRACTICAL IMPROVEMENTS 135

under the map 0 with norm ab3 = go(j) with bb = —2aj - (2b - h) = —2(aj + b) + h.

For a candidate bj = be,) with a3 = go(j), suppose the smoothness test

(Algorithm 4.10) returns a non-zero vector w (wi, w2,. . . , w) satisfying go (j) =

fl nB a for p = b) E .'FB. Similar to the baby walk method, we have a B-pi

smooth ideal (sb, abs, bb), where the coefficient sb, E Quot(K[x]) is computed from

the inverses of the prime ideal factors as

7 1 \ lwil

(rp) =
aPi rwEw . (WEW

In Section 5.1.2 we describe precisely how we choose the ideal a for the sieve polyno-

mial. For now, suppose a = (ag, ba) is B-smooth, constructed such that N(a) = aa =

for a vector v = (vi,... , vnB). Then we have a similar calculation for the

coefficient 8a based on the negative entries of v:

8a

.fiJEv
.-l-vi<o

f 1 \ IviI
Ivil

rvEv
t.tv<O

Now we have a relation for the primitive B-smooth ideal (sasba)O consisting of the

vector v + w and the distance

5= deg a+ deg s+ deg s,= deg a+degj+ deg sa+ deg sb.

Note that both deg .sa < 0 and deg 8b ≤ 0. We give the sieving method for generating

relations in Algorithm 5.2.

5.1. PRACTICAL IMPROVEMENTS 136

Algorithm 5.2 (Sieving). Generates relations for index calculus using sieving.

Input: The factor base FB = {pi,. . . PnB 1, a sieving polynomial go(u), the ideal

a = (aa, ba) used to generate go (u), the vector v = (vi,. . . , v) such that a =

p, and a set of roots S90, for each p J. The sieving interval M, a sieve

array D, and the tolerance value T.

Output: A set 'of relations R.

1: D = {O,.. . , O} > Initialize the sieve array

2: for each p = (ar, b) E .FB do

3: for each r E S90,P do > There are at most two roots in 5 ,p

4:

5: while deg(j) ≤ M do > Jump through indicies zi(r + kap) for k E K[x]

6: D[ii(j)] - D[ii(j)] +dega

7: k' - A(k) c> Compute the next multiplier (Alg. 5.1)

8: e +- deg (k' - k)

9: j 4- j + ap xe > Compute r + ka

a .xe implemented as shifting the coefficients of ap by e places

10: k4— k'

11: k4O,da+O, d4-O,7?.B4-{O}

12: while deg(k) ≤ M do

13: if D[zi(k)] > T then F Determine candidates from the sieve array

14: (go(k), —2(kaa + ba) + h) > Standard repr. of the candidate ideal

15: w - T(J, bk) c> Test the ideal bk for smoothness (Aig. 4.10)

16: ifwOthen

17: for each non-zero wi E w do

5.1. PRACTICAL IMPROVEMENTS 137

18:

19:

20:

21:

22:

23:

24: k -

if vi <0 then

da <— da— IviI.degap

if wi <0 then

d - db - IwiI deg api

54— deg a,+ deg k+d+d

7B7BU{(V+W, 6)}

> Compute the degree of .sa

Compute the degree of s,

The distance for the relation

' Store the relation

Compute the next index (Alg. 5.1)

Recall that in order to perform the linear algebra step in index calculus we require

m ≥ nB + 1 relations. One method to obtain enough relations is to choose a large

sieving inteval M; however, increasing M dramatically increases the running time of

algorithm and the space it requires. We discuss a more practical alternative next.

51.2 Multiple Polynomial Sieving and Self-Initialization

It was first suggested by Montgomery in the context of the quadratic sieve factoring

algorithm (cf. [Pom85, pp. 176-178]) that one could keep the sieve inteval M small

by using multiple sieving polynomials. Therefore, if we do not acquire enough

relations from the initial sieving polynomial, we choose a new sieving polynomial

and repeat the process. To efficiently construct sieving polynomials of the form

g(u) = au2 + (2b - h)u + c, we choose a primitive 0-ideal a = (a, b) according

to a self-initialization technique. Self-initalization was introduced by Alford and

Pomerance for factoring [AP95, §5]. Adapted from Jacobson in the number field case

[Jac99, pp. 52-57], Velichka implemented self-initialization in the ideal class group of

imaginary quadratic function fields [Vel08, pp. 80-84]. This applies directly in real

5.1. PRACTICAL IMPROVEMENTS 138

quadratic function fields. We generalize our discussion below from Velichka's to apply

to both even and odd characteristic fields.

First we choose a subset of prime ideals Q = {q1, q2,... ,qnQ I C FB and let

V = (vi) v2,.. . , v). Note that by varying the v, E { 1, —11 we can obtain 2'7Q

possible sieve ideals that are of the form

ThQ

(sa)a=JJq , (5.1)
i=1

where we drop the coefficient s (the coefficient s is taken care of for each relation

as described in the last section). In fact, to have useful relations we do not use a

vector v if —v has already been chosen. This can be easily accomplished by forc-

ing vnQ = 1, thus giving 2nq-1 possible ideals. There are two advantages to using

such ideals. One is that we can easily obtain a new sieving polynomial without com-

puting Equation (5.1) each time. The second advantage is that there is an efficient

way to find the roots Sg,,p for the new sieving polynomial g. This can be seen in

Algorithm 5.4 after having performed self-initialization as in Algorithm 5.3. These

algorithms were adapted from Velichka [Ve1O8, pp. 82-84] to support both even and

odd field characteristics.

Algorithm 5.3 (Setup for Self-initialization). Chooses an ideal a0 and computes

an initial sieving polynomial go along with a set of roots Sgo,p for each p E FB accord-

ing to the self-initialization technique.

Input: The real hyperelliptic curve equation C: y2 + h(x)y = f(x), the factor base

.FB and a size parameter nQ < flB

Output: An initial sieving polynomial go, the ideal a0 = (a, b0) used to generate go,

5.1. PRACTICAL IMPROVEMENTS 139

and S, for each P E FB.

1: Q = {q1,... , q} C .B > Select a subset Q C TB of size flQ

2: v +- (1,... , 1) > Select the initial exponent vector

flQ
3: a0 = (a, b0) - IIi=1 Ij ' Compute b0

4: co - (b 2 - hb0 - f)/a

5: go - au 2 + (2b0 - h)u + c0 > Compute the initial sieving polynomial

6: for each qj = (aq, bqj) E Q do

7: B - (a/aq) ((a/aq)'bq mod aq) mod a

8: B - (a/aq)((a/aq)1(-bq - h) mod aq) mod

9:

10: for each p = (ap, b) E FBdo > Find the roots of 90 mod ap

11: if apla A apl(2b0 - h) then > go(u) co (mod ap)

12: S90, <- {O} > No roots

13: else if apla A ap.j(2bo - h) then > go(u) (2bo - h)u + c0 (mod ap)

14: S90,P +- {-co(2b0 - h)' mod ap} > One root

15: else if ap If then > go(u) au2+ (2b0 - h)u + (b - hbo)a' (mod ap)

16: S90,P - {-boa-1 mod ap, (h - bo)a' mod ap}

17: else

18: Find the two roots r1, r2 of go(u) mod ap > See remarks below

19:S90,P - {ri, r2}

In Step 18 of Algorithm 5.3 we are required to find the roots of a quadratic

polynomial of the form y2 + by + c, with b, c E K[x], modulo an irreducible polynomial

p E K[x]. Algorithms for performing this are discussed in. Section 4.3.2.

Once one has performed the setup for self-initializtion using Algorithm 5.3, new

5.1. PRACTICAL IMPROVEMENTS 140

sieving polynomials can be found using Algorithm 5.4.

Algorithm 5.4 (New polynomial from self-initialization). Computes a sieving

polynomial ge from a new ideal ae along with a set of roots S for each p E FB after

Algorithm 5.3 has performed self-initialization.

Input: The real hyperelliptic curve equation C : y2+h(x)y = f(x), the factor base .TB

and subset Q C JB of size nQ. The number £ of polynomials previously obtained,

the polynomial be_i from the previous ideal ae_i = (a, be_i), roots Sg,-,,p for each

p E TB, the previously used vector v, and the three sets of values {B1,... , Bn },

1771,. . . WnQ and { fl, .. . BnQ

Output: A new sieving polynomial ge, the polynomial be from the new ideal at = (a, be)

used to generate ge, and Sg for each p E .FB.

1: £ - £ (mod 2Q')

2: k - [log2(- 1)] + 1 > Choose which exponent to flip

3: V '. (Vi)... , Vk_i, — Vk,Vk+i,.. . ,v,) F> Update the exponent vector

4: bt <- be_i + Bk + Bjg > The new ideal is a = (a, be)

5: ce+—(b—beh—f)/a

6: 9e - au + (2be - h)u + Ce r Compute the new sieving polynomial

7: for each p = (ap, b) E YB do F> Find the roots of ge mod ap

8: if aa A apl(2be - h) then r> ge(u) ce (mod ap)

9: 89e,P +- {O} F> No roots

10: else if apla A apl'(2be - h) then F> ge(u) (2be - h)u + Ce (mod ap)

11: Sg,p +- {—ce(2be - h)_i mod ap} F> One root

12: else

13: 8g ,p - {r - Bk mod ap r E Sgi ,p} F> Two roots

5.1. PRACTICAL IMPROVEMENTS 141

Step 13 of Algorithm 5.4 shows how self-initialization allows one to compute the

roots of the new sieve polynomial extremely quickly. For each p E JrB , the test

whether apa remains constant for every sieve polynomial. Therefore, those p for

which ge_1 has two roots modulo ap remains the same for ge. However, those p for

which ge.-1 has one root or no roots modulo ap may swap for 9e if the characteristic

is odd. Thus in Step 13 where we had two roots r1, r2 E S9_1 for gt-1 mod ap, we

compute the roots for the new polynomial ge mod ap by subtracting Bk = (Bk + k)/a

from each of r1 and r2. Since be - bt_i = Bk + L from Step 4, we can show that if r

is a root of ge_1 mod a, then 'r - (Bk + Bk)a' is indeed a root of ge mod ap:

ge (r - (Bk + Wk) a')

= a(r —(Bk + Bk)a') 2 + (2be - h)(r - (Bk + 1k)a') + (b - beh -

= ar2 - 2(Bk + Bk)r + (Bk + 77k)2 a—'

+ (2(Bk + Bk + be-1) - h) (r - (Bk + Bk)a')

+ ((Bk +Bk + be_i)2 - (Bk +Bk + be_i)h— f)a_i

= ar2 - 2(Bk + Bk)r + (Bk + 77k)2 a—'

+ (2be_i - h)r 2(Bk + Bk) be_ia' + (Bk + Bk)ha' + 2(Bk + Bk)T 2(Bk + Bk)2a 1

+ (b_, - b4-1h - f)a' + 2(Bk + Bk) bt_,a + (Bk + 77k)2 a—' - (Bk + Bk)ha'

= ar2 + (2b_i - h)r + (b_, - be-1h - f)a_'

= ge-i(r) 0 (mod ap).

Although it is difficult to rigourously analyze, sieving has been shown to be more

efficient than random walks in practice (cf. Velichka [Ve108, pp. 111-120]). For our

implementation results we compared sieving with our baby walk strategy.

5.1. PRACTICAL IMPROVEMENTS 142

5.1.3 Low-Degree Sieving

In practice we consider another parameter for sieving by choosing a sieve bound

S < B. Since an increase in the smoothness bound B typically has a large effect on

the size of the factor base the idea is that we sieve with a subset .Fs C J, where

.Fs ={PE-TB I degp≤s}.

That is, the following lines of the sieve algorithms would have .FB replaced by Fs:

Algorithm 5.2, Step 2; Algorithm 5.3, Step 10; and Algorithm 5.4, Step 7. We still

perform the smoothness test on the candidates-with the full factor base Therefore,

we must reduce the tolerance value T appropriately to still obtain candidates that

factor over the primes of degree B.

This technique was previously discussed by Velichka for sieving in imaginary

quadratic function fields [Ve108, pp. 79-80].

5.1.4 Large Primes and Partial Relations

Another technique for improving the relation generation step of index calculus is to

allow the use of large primes. This has been used effectively in integer factorization by

Morrison and Brilihart [MB75, §4] and described in the context of discrete logarithms

in (Z/qz)* by Odlyzko [0d185, §5.4]. Jacobson extended large primes to quadratic

number fields [Jac99, pp. 58-61], and it was implemented in characteristic-2 imaginary

quadratic function fields by Velichka [Vel08, pp. 62-64]. We describe the technique as

applied to the baby walk method in the infrastructure, but it can be easily adapted

to sieving in our setting as well.

5.1. PRACTICAL IMPROVEMENTS 143

The idea of using large primes is that if an ideal tested for smoothness has one

prime factor that is larger than those in the factor base, we store the factorization

along with the large prime separately as a "partial relation." If we find two partial

relations corresponding to the same prime ideal, we combine the two relations to

remove the large prim, thus obtaining a regular "full relation" that we can add to

Let .77B = JP 1) Pg,. . , Pm} be a factor base of prime ideals. Suppose in addition

to the set of relations R.B, we keep another set PBL consisting of partial relations

of the form (qj, s, e2 = (ej)...)eThB), o) satisfying

nB

• fJ p = aD for some a E F such that 5 = deg a, (5.2)
k=1

where qj is some 0-ideal with irreducible norm that is not in the factor base .7B and

sj = ±1. We call qj a large prime since its norm is irreducible over K[x] and it

must satisfy deg N(q) > B if it was not included in .FB. A large prime qj included

in the set of partial relations ? BL will satisfy B < deg N(q) ≤ B, for some bound

BL > B. We call the ideal aD in Equation (5.2) for which we found the relation

almost B-smooth. To avoid confusion, we call relations in RB full relations

[ATO6, pp. 507-508].

One can obtain a full relation from partial relations as follows. Suppose we have

two partial relations in PBL with large primes qj = qj. Then if si = sj we have a full

relation (e, 5) given by e = e - ej and S = - Sj. Otherwise, if si = — 8j, then the

full relation is computed as e = e + ej and S = Sj + S. Note that in both cases the

large prime in Equation (5.2) cancels.

The remaining question is how to find these partial relations,. Essentially, we

5.1. PRACTICAL IMPROVEMENTS 144

perform the smoothness test as in Algorithm 4.10, but we test up to the bound BL.

If the polynomial factorization results in roots that are all contained in .2, then the

ideal is B-smooth. If the polynomial roots are all in FB except for one with degree

d such that B < d ≤ BL, then the ideal is almost B-smooth. Otherwise, we consider

the tested ideal to be neither smooth nor almost smooth. This change is reflected in

Algorithm 5.5.

Algorithm 5.5 (Smoothness test ci). Test whether a reduced ideal is smooth or

almost smooth with a possible coefficient and returns the relation vector if it is.

Input: The order q of the field K, a factor base .FB = {Pi = (ap1, bp,).. .. ,p =

(apfl , b)}, a large prime bound BL, and a primitive 0-ideal a = (an, ba).

Output: A vector e = (ei,. ..) e,) and a prime ideal q 0 FB with an exponent

S E {0, ±1} such that q8 fJ?B1 p = a if a is B-smooth or almost B-smooth; or

e = 0 with q = 0 and s = 0 otherwise.

1: a - Squarefree(aa) > Compute the squarefree part of a

2: <— 14J (x) (mod a) > Iterative Frobenius map (Alg. 4.9)

3: for i from LJ + 1 to B do c> Perform distinct degree factorization

4: — () (mod a) t Frobenius map

5: d+—gcd(—x,a)

6: a-.-a/d

7: if a is not irreducible A deg a> BL then > Not B-smooth/almost B-smooth.

8: e—(0) ... , 0),q=0,s=0

9: else

10: p 1p2 . . . p - PoIyFactor(a) t> Compute the factors of a,,

11: e1, e2,. .. , eflB - 0, S - 0 r> Initialize the ej to 0

5.1. PRACTICAL IMPROVEMENTS 145

12: for i from 1 to £ do

13: Find k such that pi = ak for Pk E FB

14: if no k found then

15: S - S U {(p, n)} > Temporarily store the large prime

16: else

17: Ck 4 fli

18: if ba 0 bpk (mod p) then

19: ek 4-- —ek > Correct the sign of the exponent

20: if S = 0 then a is B-smooth

21: e - (el, e2,. . . , e), q = 0, s 1

22: else if S = {(p, n)} for some p then a is almost B-smooth

23: Find a root b of y2 + hy - f (mod p)

24: if b b (mod p) then

25: s +— —n ' Correct the sign of the exponent

26: else

27: s

28:

29: else a is not B-smooth or almost B-smooth

30: e4—(0,...,0),q=0,s=0

For computing a root of a quadratic polynomial modulo p in Step 23 of Algorithm 5.5,

we refer to the discussion in Section 4.3.2. The asymptotic complexity is unchanged

from Algorithm 4. 10, requiring O(g3 log2 q + g2 log3 q) bit operations.

For a non-empty set of partial relations PBL, we find matches and combine partial

relations into full relations using Algorithm 5.6. The set PBL is often quite large,

5.1. PRACTICAL IMPROVEMENTS 146

thus requiring one to write PBL to a file and sort before searching for matches. By

estimating the number of partial relations that will become full relations, we can

perform Algorithm 5.6 just once at the end to reduce the number of times the file is

read in and sorted [VelO8, p. 64]. We calculate such an estimation in Section 5.3.1. Let

BL be an estimate of the number of large primes. We will see in Theorem 5.9 that

we expect to get [#7BL /n'p] full relations from combining the set 2BL of partial

relations, where flp = 0 2nB,,. Therefore, we call Algorithm 5.6 to combine the

partial relations once the number of full relations obtained is #7zB ≥ m— L#PsL /nij

where m is the total number of relations desired.

Algorithm 5.6 (Partial relation combining). Combine matching partial relations

into full relations.

Input: A set 7B of previously generated full relations, and a set 2BL of previously

generated partial relations.

Output: A set 7B of full relations and a set PBL of partial relations.

1: Sort 7BL by the large primes

2: for each pair (q, si, e1, 8k), 482, e2, 52) E PBL do

3: if Si = s2 then

4: e=(el,...,eflB)+— el — e2

5: 8-81-62

6: else

7:

8:

9: if s <0 A s2 <0 then

10: 8-6-2 deg q

Combine the partials into a full relation

' Adjust the distance for the large prime

5.1. PRACTICAL IMPROVEMENTS 147

11: else if s <0 V 82 <0 then

12: 6- 6— deg q

13: RB — RBU{(e, 5)}

14: PBL .' N {(q, 82, e2, 82)}

Store the full relation

Remove one of the matching partials

We also update the baby walk relation generation from Algorithm 4.12 to be able

to handle almost-smooth ideals. So that this method is effective with large primes,

we forego computing a strictly diagonally dominant matrix and just use the baby

walk starting from 0 (cf. Section 5.2): This change is reflected in Algorithm 5.7. We

omib an updated sieving method for relation generation since the modifications from

Algorithm 5.2 are similar to those presented in Algorithm 5.7.

Algorithm 5.7 (Relation generation). Generate a relation for index calculus in

the infrastructure using a baby walk and large primes.

Input: A factor base FB = { i = (ap1, b1),.. . , PflB = (aflB , bpflB)}, a set l?B of

previously generated full relations, and a set ? BL of previously generated partial

relations. If #7tB 5A 0, then we require the 0-ideal a used to generate the last

relation and its distance 5(a).

Output: A set 7B of full relations and a set PBL of partial relations.

1: k - #R-a + 1, 0

2: if k = 1 then

3: ao -0,5 0

4: else

5: ao <--a,5j ---5(a)

6: (a 1, 5+i) — p(a,8) i. Next in the baby walk (Alg. 3.10)

5.1. PRACTICAL IMPROVEMENTS 148

7: j - j + 1

8: repeat

9: (e, q, s) <-- o(J, a) c' Test if aj is smooth or almost-smooth (Aig. 5.5)

10: ifeOthen

11:

12: for each non-zero ei E e do

13: if e1 <0 then > Adjust the distance for inverses

14: degapi

15: if s = 0 then > ai is B-smooth

16: RB - R.i U {(e, ô)} > Store the full relation

17: else c> aj is almost B-smooth

18: PBL - PBL U {(q, s, e, ö)} > Store the partial relation

19:. else > If e = 0, i.e. ctj is not smooth or almost smooth

20: (a,, ô+,) +-. p(cj, 8j) > Next in the baby walk (Alg. 3.10)

21: j— j+1

22: unti1e0 A q=Q

Partial relations are obviously more plentiful than full relations. Consequently, it

is expected that using large primes will reduce the number of walk steps required to

find enough relations. We estimate this improvement in Section 5.3.1. However, a

full relation resulting from combining partial relations is slightly less sparse, perhaps

slowing down linear algebra. This is only significant if partial relations with multiple

large primes are allowed (cf. Holt and Davenport [HDO3]). Implementations of index

calculus using multiple large primes were done by Holt and Davenport in (/qZ)* and

by Gaudry, Thomé, Thériault and Diem in low genus imaginary quadratic function

5.1. PRACTICAL IMPROVEMENTS 149

fields [GTTDO7]. In the work at hand, we did not investigate multi-large prime

variations.

5.1.5 Linear Algebra Improvements

The linear algebra techniques described in Chapter 4 are the best asymptotic results

we are aware of. In practice, however, we can significantly improve on some of those

methods.

To compute the regulator in Section 4.3.6, we suggested that one compute the

Hermite normal form of the augmented relation matrix A, whose determinant will

be the product h0R0. Firstly, the HNF is expensive to compute in practice. Secondly,

the determinant is exactly equal to h0R0 only if the smoothness bound B is chosen to

be large enough that the prime ideals in JB generate the class group and the columns

of A'lz generate the full lattice A.

If we reduce the smoothness bound B, our relation matrix A' may only generate a

sublattice of A. Consequently, the determinant of the HNF of A' will be a multiple

of h0R0. As long as this multiple is not too large, we can still use our factoring

technique of Algorithm 4.16 to obtain the regulator R0. The disadvantage is that we

are no longer able to find the class number from this computation.

For regulator computation we replaced the HNF computation with two different

methods. The first technique we call the determinant method. Let A be an

(nB + 1) x (ThB + 1) submatrix of A' with the linearly dependent columns removed.

Then the determinant of the matrix A will be some multiple of the regulator R0.

We can use a method based on Wiedemann's algorithm to remove the linearly

dependent columns from A. Recall that Wiedemann's algorithm works over a field.

5.1. PRACTICAL IMPROVEMENTS 150

In practice, we suggest choosing a random word-sized prime p and use the field L =

Z/pZ. Then to remove linearly dependent columns, we begin by choosing an nB X n

submatrix A consisting of the first nB columns of A' along with another column in

A' chosen for b. Wiedemann's algorithm for solving Ax = b (mod p) will compute a

solution x or determine a column dependency in A. If a solution x is found, then b is

linearly dependent modulo p in A' since x gives a linear combination of the columns

of A that result in b. We can continue the process of replacing linearly dependent

columns in [Alb] with the extra columns of A' until we find a square nonsingular

matrix or an inconsistent system [Wie86, §111]. Since this method performs operations

in the field £ and takes advantage of the sparsity of the relation matrix, it is expected

to be much faster than computing the HNF over the integers.

Wiedemann also gave a method for computing the determinant of a sparse nB X nB

matrix in 0 (flB (w + nB log rtB)) field operations, where w denotes the number of non-

zero entries in the input matrix [Wie86, V]. To compute the determinant over the

integers we suggest performing Wiedemann's determinant algorithm over multiple

fields of the form £ = Z/p7L for different randomly chosen word-sized primes. We

combine the determinants using Chinese remainder theorem, repeating the process

until the CRT result stabilizes.

The multiple of the regulator may be quite large in the determinant method,

slowing down the factorization in Algorithm 4.16. One option to reduce this multiple

is to repeat the determinant method after replacing a column of A' with a different

linearly independent column and perform Algorithm 4.16 on the greatest common

divisor of the two determinants. The result of the GOD is likely a small multiple of

R0 since we expect the two determinants to be different multiples of h0R0. However,

5.1. PRACTICAL IMPROVEMENTS 151

we present another method which also results in a small multiple of the regulator,

but requires fewer linear algebra computations.

We call our second technique for computing the regulator the kernel method.

Cohen attributes the ideas of this method in the number field case to Buchmann

[Coh93, p. 288]. Suppose we compute two kernel vectors u, v of A. From u =

(u1) U2,.. . , U) and v = (v1) v2,.. . , u) we compute the two distances Ju and 5

corresponding to

ou =

nB

i=1

nB

u.ö(p) and 5=> 'vi .5(p1).
i=1

Note that Ju and 5,, must be both multiples of the regulator R0. Then we can get a

small multiple of R0 (or often R0 itself) by computing kR0 = gcd(ô, 6w). To find

the actual regulator R0, we again use Algorithm 4.16.

To compute kernel vectors over Z, we suggest using an algorithm by Eberly et

al. [EGGO6, EGG+07].. While thoroughly analyzed asymptotically, there is also an

implementation of the algorithm in the LinBox library [EGG+06, §4]. Specifically,

this algorithm computes a rational solution x to the system Ax = b. To get a

random kernel vector, we choose a vector v with random integer entries and compute

b = Av. Now, using the algorithm to solve Ax = b, we obtain a vector x which we

correct to a kernel vector by subtracting v. Note that if the entries of x are rational

and not in Z, then we must add new relations until we get an integer solution.

5.2. IMPLEMENTATION DETAILS 152

5.2 Implementation Details

To implement index calculus in the infrastructure of a real quadratic function field, we

adapted an implementation of index calculus in imaginary quadratic function fields

by Velichka (cf. [Ve1O8]). This was part of a larger C++ library for algebraic number

theory called ANTL started by Jacobson (cf. [Jac99]). The library is based on Shoup's

NTL library [ShoO8]. We compiled NTL to use the GMP library [GraO7] for large integer

arithmetic.

Degree Computations

One issue that arose in our implementation was the precision for computing the degree

of a function field element c = (a + by)/d, where a, b, d E K[x]. The difficulty lies in

the fact that the root y of the function field equation W(T) = T2 + h(x)T - f(x) E

K[x][T] is an element of the Puiseux series K((1/x)) (cf. Section 3.2.1). That is,

Y. = cx E K((1/x)) with Cm 5h 0 for some m E No. Initially, we used m as 00

the degree of y, i.e. y Lvi = jxj, and computed

deg a = deg(a + b [y]) - deg d.

However, our testing indicated a problem. We discovered that it was necessary to

consider a sufficient number of negative-degree terms of y. Therefore, we represented

the root as y x'Ly]/t E Quot(K[x]) with t = >I c_x' for some bound k E N.

We chose k = 2 ' max{deg a, deg b} and computed the degree as

deg = deg (at + bxc[yj) - deg - degd.

5.2. IMPLEMENTATION DETAILS 153

Factoring Integers

ANTL contains a C++ implementation for factoring a composite integer n E Z by

Hirt based on the algorithms in Crandall and Pomerance [CPO5, pp. 266, 344-345].

This algorithm works as follows. First we perform trial division on n to remove

prime factors up to a bound of 1 000 000. If n is not completely factored by trial

division, then Lenstra's elliptic curve method is used with an ECM stage-one bound

of BE = 10000 and stage-two bound of 100BE [Len87]. Note that for the size of

integers we were factoring (usually < 100 bits), using the number field sieve would

not have provided an improvement.

Linear Algebra

ANTL relies on external libraries to perform linear algebra functions. Our goal was

to use the LinBox library [Lin08] which contains efficient routines for sparse linear

algebra. However, most of our attempts to use LinBox in our application failed and

we were unable to get sufficient support from the developers to correct the problems.

We resorted to using IML [CSFO7] where LinBox failed. While this package does not

provide sparse linear algebra, it does contain efficient routines for dense matrices.

Consequently, due to the memory contraints of using dense matrices, we were unable

to scale the inputs to our implementation as large as we would have liked.

One should note that getting a working implementation of index calculus in the

infrastructure was our focus in this thesis. The fact that we were unable to get a

sparse linear algebra implementation is unfortunate, but the linear algebra is not

specific to our application. Our results in Section 5.4 separate the timings for each

phase of index calculus. However, one should note that we did choose our parameters

5.3. PARAMETER SELECTION 154

to optimize the timings with the best linear algebra software we had available.

Ensuring Full Rank

We implemented the baby walk strategy described in Section 4.3.4 to compute a

strictly diagonally dominait relation matrix. However, we discovered that this method

is slower than just computing a baby walk starting from (9. Moreover, using large

primes is not as effective when we are trying to get a diagonally dominant matrix. So

we did the latter in practice, followed by a rank computation to ensure we have full

rank.

With sieving and our baby walks in practice, we used IML to compute the row

rank modulo a random small word-sized prime. This function also returns the row

rank profile, i. e. a vector indicating which rows are linearly independent. Instead of

naïvely generating more random relations, we used this row rank profile to generate

relations that we know will be linearly independent. This prevents the relation matrix

from getting as large as the naïve approach, thus improving the later linear algebra

steps.

There is a small chance that the row rank and the profile will be incorrect given

that we are not computing it over the integers. This will only happen if the random

word-sized prime divides the determinant. However unlikely, if this does occur, we

can detect that the rank is abnormally small and just choose another random prime.

5.3 Parameter Selection

To select our parameters for our results we relied on formulae provided by Velichka

for imaginary quadratic function fields [VelO8, pp. 65-69, 84-88]. We briefly describe

5.3. PARAMETER SELECTION 155

those formulae here.

5.3.1 Smoothness Bound for Baby Walks

We wish to determine the best smoothness bound B to use when generating relations

using the baby walk method. But first we must estimate the size of the factor base

for a given smoothness bound B. The number of irreducible monic polynomials of

degree n in JFq[x] is

(d) qfhd ,

where p(.) is the Möbius function [BS96, pp. 23, 134]. The Möbius function is defined

as

0 if d is divisible by a square 1

(-1)' if d = p' p, the product of t distinct irreducible polynomials.

Note that a prime ideal p0 is ramified if and only if pif or plh (cf. Section 4.3.2).

Thus we expect that the number of ramified prime ideals is negligible and we expect

(y) = y2 + hy - f (mod p) to have a solution for approximately half the monic

irreducible polynomials p E K[x]. Then the number of ramified and splitting ideals

of degree n to be put in the factor base is A Therefore, the size of the factor

base will be nB >I::;Z=1 A.

Now we can optimize the smoothness bound B based on an estimate of how many

baby steps are required to compute m relations. For our experiments in Section 5.4.2,

we started with m = n B + 5. We will first compute the number of baby steps in the

5.3. PARAMETER SELECTION 156

simpler case when no large primes are used. We use the following non-asymptotic

estimate for the number of B-smooth reduced ideals extended from Jacobson, Menezes

and Stein [JMSO1, §5.1] by Maurer, Menezes and Teske [MMTO2, §4.3]):

Theorem 5.8 (Maurer, Menezes & Teske (2002)). For a given smoothness

bound B, the number of B-smooth reduced ideals in the quadratic order 0 of a function

field of genus g is

no/B = [(l+xTh\'l
i=1 Ln=1 1_xn)] '

i

where [-]i denotes the coefficient of

The value of no/B can be found by computing the first g + 1 terms of the Taylor

expansion of B (1±) about x 0. Then, assuming Heuristic 4.11, we expect

to find a B-smooth ideal every EB = hoRo baby steps.

Since we initially find nB + 5 relations before testing the relation matrix for full

rank, we expect to find these relations in TB = (nB + 5)EB baby steps. By computing

TB for 1 ≤ B ≤ g, we choose the smoothness bound B with the minimum value of

TB.

Consider now the large prime variant of baby walks. Following Velichka's recom-

mendations, we used a large prime bound of BL = B + 1, implying that there are

nBL = 2AB+1 large primes ideals under the assumption that the number of ramified

prime ideals is negligible. Since we only test 0-ideals of degree < g (i.e. reduced)

for (almost-)smoothness, it follows from Theorem 5.8 that the number of almost B-

5.3. PARAMETER SELECTION 157

smooth ideals is

O/BL = BL

g-(B+1) r B 1 +

H
J

X n

If we assume that Heuristic 4.11 also applies to almost B-smooth ideals, i.e. that

they are evenly distributed between and within the ideal classes of 01(0), then we

hoRo expect to find a partial relation every EL = 1 baby steps.

Now we need to estimate the number of full relations we expect to obtain from a

set PBL of partial relations. Suppose at some point in time we have found np partial

relations. The following result is from Thériault [ThéO3, § 5.6]:

Theorem 5.9 (Tbériault, 2003). Let n7, be the number of matching pairs found in

a sample of size np chosen with replacement from rtBL elements. If 3 ≤ np <

then we have the bound

c2 2
__

fl - np
'p. -.

3 BL

Therefore, from Theorem 5.9 we expect to get at least one full relation once np =

\JThBL.

We have that for every almost B-smooth ideal found, the number of B-smooth

ideals found is

EBL - [hoRo no/B 1 - [nO/B

- I no/BL h0R0 I - I no/BL

To compute the number of smooth and almost smooth ideal required to find nB + 5

5.3. PARAMETER SELECTION 158

full relations, we solve for x in

2_ x2+ [flblB lx=mB+5.

3 B,, I I

Then the number of baby steps required to find these x ideals is 1 L xE L. Again,

we choose the smoothness bound B such that TL is the minimum for 1 B <— g

and BL =B+1.

For a particular bound B', the size of the factor base nB increases dramatically

from B' = B' to B = B' + 1 (especially for larger q). Therefore, in our implemen-

tation we allowed for fractional smoothness bounds. For example, we would allow a

smoothness bound of B 3 that includes all the splitting and ramified prime ideals

of at most degree 3, plus of the prime ideals of degree 4. This was done by only

adding A4 = prime ideals of degree 4 to the factor base.

For generating our numerical results, we chose the smoothness bound for a par-

ticular field size q and genus g as follows. Based on tests, we found an estimate Np

of the maximum n2 such that our linear algebra routines could handle the relation

matrix in memory. Once we computed B to minimize T L, then we chose the largest

smoothness bound B' = kB < NF for 0 < k < I.

5.3.2 Sieve Parameters

For relation generation using sieving, we typically used the same smoothness bound

chosen for the baby walk. However, there were occasions when the field size and genus

were sufficiently small that increasing the smoothness bound gave a better result for

sieving.

5.3. PARAMETER SELECTION 159

Other parameters for sieving include the sieve bound S, sieving interval M, toler-

ance value T, and the number of primes flQ used to generate the ideal for the sieving

polynomial in self-initialization. We did attempt to tweak these parameters a little

from the suggestions made by Velichka, but we expect that the sieving runtime could

be improved in many cases through careful adjustments.

First, we followed Velichka's suggestion to use a sieving interval of M = B - 2.

Velichka claimed this choice was based on empirical evidence. Secondly, we wanted

the sieve polynomial g(u) to have a leading coefficient of degree g - M. Therefore,

we attempted to generate the ideal a1 such that it had degree g - M. Since nQ is

the number of factors of a1, we needed each factor to have degree (g - ≤ B.

Specifically, we used flQ such that (g - B - 1.

The sieving tolerance T affects how many candidates will be selected in the sieving

interval to be tested for smoothness. Velichka showed that smooth ideals with linear

factors will be selected as candidates when T = g + M. Smooth ideals with square

factors will be chosen as candidates if T = 9. To select candidates with large prime

factors for a bound BL = B + 1, T should be reduced by B + I. Following Velichka's

recommendation, we used T = max{g - M + 1 - 2B, 1} as our starting tolerance

value.

We started with the sieve bound S = B. In situations where the optimal smooth-

ness bound B increased when increasing the genus g, we tried using a sieve bound of

S = B - 1 as long as was not too small (e.g. < 100). In these situations, we

lowered the tolerance T so that we would still find candidates with factors of degree

B.

5.4. COMPUTATIONS 160

5.4 Computations

In this section we present computational timings for computing the regulator using

our implementation described previously. First we briefly mention the previous best

results in the literature for computing the regulator.

5.4.1 Previous Results

We are aware of two sources in the literature that have provided timings for computing

the regulator in real quadratic function fields. In 1998, Stein and Williams used the

two-phase baby-step giant-step algorithm to compute regulators (cf. Section 3.2.5).

They were able to compute an 80-bit regulator of a genus-3 function field over JFq

with q = 10000007 using a 200Mhz Pentium Pro in 10 hours [SW98, §6]. In 2002,

Stein and Teske used a parallized Pollard's rho method to compute a 94-bit regulator

of a genus-3 function field with q = 2155000013. They estimated that on a single

Sun Ultra Enterprise 450 their computations would have taken 55 days and 6 hours

[ST02b, §4.2].

Due to the older machines that these previous results were computed on, it is

difficult to compare these to our results. Moreover, their techniques adapt better to

small genus function fields, whereas our index calculus algorithm applies to function

fields where the genus is large in comparison to the field size q. We provide these

previous results merely as an estimate of the computational feasibility of computing

regulators in the past to show that we can now compute larger regulators (with

updated hardware).

5.4. COMPUTATIONS 161

5.4.2 Current Results

We gathered our experimental results on Intel Pentium 4 dual processor machines with

a 3.0 GHz clock speed, 2048 KB cache, and 1.0 GB of memory. All of our timings

are presented in the form :ss, mm:ss, or hh:mm:ss (hours, minutes, and seconds).

We implemented both the determinant and kernel methods for computing the

regulator (cf. Section 5.1.5). However, using IML for linear algebra, the determinant

method always proved to be slower in practice, so we only present the kernel method

timings in the tables below.

For relation generation we tested both baby walks and self-initialized sieving. All

of the results are using large primes and partial relations. We started by generating

B + 5 relations, then computed the rank profile modulo a small prime to generate

relations specifically for the linearly dependent rows.

For the odd characteric fields we chose the field size q to be the largest prime less

than a power of 2. The one exception to this rule was 2 4 where we used 17 since it

is closer to 16 than 13. Therefore, values of q used for odd characteristic fields were

3, 7, 17, 31, 61, 127, 251, 509, 1021.

Tables 5.10 and 5.11 present our best times between baby walk and sieving for

various genera and field sizes. Timings for both baby walks and sieving are given in

Tables 5.14 and 5.15, split up for each step of index calculus. The parameters used

to achieve these timings are given in Tables 5.12 and 5.13. We compare the total

time for each relation generation method to an unoptimized baby-step giant-step

implementation by Jacobson in Tables 5.16 and 5.17.

5.4. COMPUTATIONS 162

Table 5.10. Timings for regulator computation, varying the genus g and field size q

for even characteristic fields

9

q 5 10 15 20 25 30 35 40

22 :00 :00 :02 :25 1:39 6:34 32:35 7:11:32

2 3 :00 :02 :21 5:50 57:43 8:52:58 - -

2 :01 :03 1:43 5:28:04 - - - -

2 5 :01 :32 58:09 - - - - -

26 :02 2:24 17:11:07 - - - - -

2 :10 35:54 - - - - - -

28 :24 4:45:34 - - - - -

21 1:02 - - - - - - -

2'° 3:37 - - - - - - -

Table 5.11. Timings for regulator computation, varying the genus g and field size q

for odd characteristic fields

q

9

5 10 15 20 25 30 35 40

22 :00 :00 :03 :01 :07 :31 4:22 22:00

2 :00 :01 :07 6:37 28:56 7:16:03 - -

2 4 :00 :04 3:08 5:07:17 - - - -

2 5 :03 :13 39:34 - - - - -

26 :03 2:14 13:31:10 - - - - -

2 :04 33:26 - - - - - -

28 :13 5:27:40 - - - - - -

29 :38 - - - - - - -

210 2:51 - - - - -

5.4. COMPUTATIONS 163

The column headings in Tables 5.12 and 5.13 use the following notation. The

sieve bound is denoted by S; the sieving interval by M; the tolerance value is T;

and flQ is the number of prime ideals used to generate the sieving polynomial. These

parameters were initially chosen according to the formulae in Section 5.3, then some of

them have been tweaked to obtain faster runtimes or to satisfy the constraints of our

linear algebra. The #7ZB column is not really a parameter that was set beforehand,

but it gives the number of relations that we generated to obtain a full rank relation

matrix. Note that in all cases we started by generating #J + 5 relations (except

when the factor base was very small).

Table 5.12. Relation generation parameters in even characteristic fields

q g

Baby Walk ISieving

B #B # 7 B B S M T flc? #B # 7 B

22 5 2 4 7 3 3 1 2 2 15 20

22 10 3 15 25 3 3 1 4 3 15 20

22 15 4 42 48 4 4 2 6 4 42 47

22 20 5 129 139 5 5 3 8 4 129 135

22 25 6 466 507 6 6 4 10 4 466 483

22 30 6 459 485 6 6 4 15 5 459 470

22 35 7 1675 1795 7 7 5 17 5 1675 1730

22 40 7 2672 2939 7 7 5 22 5 2672 2836

23 5 2 13 14 2 2 1 1 2 18 24

23 10 3 104 121 3 3 1 4 3 104 115

23 15 3 102 107 3 3 2 8 5 102 107

23 20 4 594 621 4 4 2 11 5 594 604

23 25 41 3063 3361 4A 41 3 12 6 3226 3363

23 30 5 3887 3991 5 5 3 13 6 3882 3933

5.4. COMPUTATIONS 164

Relation generation parameters in even characteristic fields (cont.)

q g

Baby Walk Sieving

B #B #RB B S M T flQ #23 #R-B

2 4 5 1 12 32 1 1 1 3 4 12 17

24 10 2 76 84 2 2 2 5 4 76 81

24 15 3 755 779 3 3 2 8 5 755 762

24 20 31 2788 3157 3 3 2 8 6 2380 2893

25 5 1 14 19 2 2 1 1 2 264 294

2 5 10 2 261 271 2 2 2 6 4 261 267

25 15 2 2992 3152 21 2 1 8 7 2992 3292

26 5 1 33 39 1 1 1 5 4 33 38

26 10 2 1019 1042 2 2 2 5 4 1019 1026

26 15 2th 1913 2384 2th 2 2 5 7 1476 1771

27 5 1 64 69 1 1 1 3 4 64 69

27 10 2 4152 4236 2 2 1 6 5 4152 4173

28 5 1 122 128 1 1 1 5 4 122 127

28 10 1 6 3391 3549 1 20 1 1 5 9 2575 2734

29 5 1 250 256 1 1 1 3 4 250 257

2'° 5 1 505 513 1 1 1 3 4 505 515

Table 5.13. Relation generation parameters in odd characteristic fields

q g

Baby Walk Sieving

B #B # 7 B B S M T flQ #B # 7 'B

22

22

22

2

5

10

15

20

3

4

5

5

7

7

31

44

8

12

46

55

4

4

5

5

4

4

5

5

2

2

3

3

2

5

9

8

1

2

3

4

15

7

31

44

20

12

36

55

5.4. COMPUTATIONS 165

Relation generation parameters in odd characteristic fields (cont.)

q g

Baby Walk Sieving

B #1B #R,B B S M T ThQ #B # 7 'B

22 25 6 103 113 6 6 3 10 4 103 111

22 30 7 250 280 7 7 3 11 4 250 271

22 35 8 668 746 8 8 4 13 4 668 714

2 2 40 8 678 734 8 8 5 19 5 678 704

23 5 2 15 17 2 2 1 3 2 15 20

23 10 3 71 81 3 3 1 6 3 71 79

2 3 15 3 67 73 4 3 2 7 4 364 399

23 20 4 358 367 5 4 3 8 4 2044 2166

-- 21 25 5 2067 2223 5 5 3 19 5 2067 2146

23 30 5 2044 2100 5 5 2 19 6 2044 2084

5 1 9 14 2 2 1 3 2 78 89

24 10 2 63 68 2 2 2 6 4 63 68

2 4 15 3 894 921 3 3 1 11 5 894 914

2 4 20 3 1932 2277 3 3 2 7 6 2973 3290

25 5 1 13 23 2 2 1 1 2 248 270

25 10 2 242 258 2 2 2 5 4 242 247

2 15 2 2728 2941 21 21 1 13 7 2728 2829

26 5 1 30 40 1 1 1 5 4 30 35

26 10 2 973 995 2 2 1 8 5 973 980

26 15 2 2080 2666 2 50 2 1 5 7 1701 2063

27 5 1 69 74 1 1 1 5 4 69 74

2 7 10 2, 4080 4209 2 2 1 8 5 4080 4121

28 5 1 117 122 1 1 1 5 4 117 122

28 10 1 3262 3429 1 1 1 5 9 3262 3301

29 5 1 262 270 1 1 1 5 4 262 267

5.4. COMPUTATIONS 166

Relation generation parameters in odd characteristic fields (cont.)

q g

Baby Walk Sieving

B # 1 B //RB B S M T flQ B #R.B

210 5 1 496 505 1 1 1 5 4 496 502

The timings for each stage are given in Tables 5.14 and 5.15. The stages are factor

base generation (.97B gen.), generation for the first nB + 5 relations (7ZB gen.), com-

puting the rank and generating extra relations according to the rank profile (Rank),

and finally computing a basis for the nullspace and computing the greatest common

divisor of the distance of the prime ideals raised to the power of two random kernel

vectors (Linalg.).

Table 5.14. Timings for each stage of index calculus for computing the regulator in

even characteristic fields

q g

Baby Walk Sieving

FB gen. fl.B gen. Rank Linalg. F2 gen. RB gen. Rank Linalg.

22

22

22

22

22

22

22

22

5

10

15

20

25

30

35

40

:00

:00

:00

:00

:01

:01

:04

:07

:00

:00

:02

:28

2:41

17:01

1:17:57

13:16:19

:00

:01

:00

:01

:12

:50

5:28

1:07:20

:00

:00

:00

:00

:05

:04

1:24

5:27

:00

:00

:00

:00

:01

:01

:04

:07

:00

:00

:02

:23

1:18

5:29

21:42

4:30:14

:00

:00

:00

:02

:15

:58

9:37

2:34:17

:00

:00

:00

:00

:05

:06

1:12

6:54

2

2

2

5

10

15

:00

:00

:00

:00

:02

:23

:00

:01

:00

:00

:00

:00

:00

:00

:00

:00

:02

:21

:00

:00

:00

:00

:00

:00

5.4. COMPUTATIONS 167

Timings for each stage of index calculus for computing the regulator in even charac-

teristic fields (cont.)

q g

Baby Walk Sieving

'FB gen. 7B gen. Rank Linalg. FB gen. 7ZB gen. Rank Linalg.

2 3 20 :01 6:42 :14 :06 :00 5:05 :39 :06

23 25 :03 1:36:36 10:52 7:11 :04 28:26 23:30 5:43

2 3 30 :05 27:33:19 39:19 9:58 :05 6:24:53 2:18:30 9:30

24 5 :00 :00 :02 :00 :00 :01 :00 :00

2 4 10 :00 :03 :00 :00 :00 :04 :00 :00

2 4 15 :00 3:18 :09 :09 :00 1:30 :04 :09

2 4 20 :03 4:47:54 32:57 7:10 :03 1:09:33 4:57:34 7:51

25 5 :00 :01 :00 :00 :00 :02 :02 :02

21 10 :00 :29 :01 :01 :00 :48 :01 :01

21 15 :02 1:29:42 4:52 4:51 :02 28:26 22:36 7:05

26 5 :00 :02 :00 :00 :00 :13 :00 :00

26 10 :00 3:05 :19 :15 :00 2:05 :05 :14

26 15 :01 15:48:51 2:46:21 4:36 :01 9:22:53 7:45:58 2:15

'27 5 :00 :10 :00 :00 :00 :49 :00 :00

2 7 10 :02 30:08 5:32 10:33 :02 26:09 1:23 8:20

28 5 :00 :24 :00 :00 :00 19:26 :00 :00

28 10 :02 4:27:29 11:40 6:23 :01 4:37:29 2:08:18 3:53

29 5 :00 1:01 :00 :01 :00 11:23 :04 :01

210 5 :00 3:31 :03 :03 • :00 49:55 :39 :03

5.4. COMPUTATIONS 168

Table 5.15. Timings for each stage of index calculus for computing the regulator in

odd characteristic fields

q g

Baby Walk Sieving

.FB gen. RB gen. Rank Linaig. .FB gen. 7ZB gen. Rank Linaig.

22 5 :00 :00 :00 :00 :00 :00 :00 :00

2 2 10 :00 :01 :00 :00 :00 :00 :00 :00

22 15 :00 :01 :02 :00 :00 :02 :00 :01

22 20 :00 :01 :00 :00 :00 :09 :00 :00

2 2 25 :00 :06 :01 :00 :00 :27 :00 :00

22 30 :00 :27 :03 :01 :00 1:30 :02 :01

22 35 :00 3:46 :23 :13 :00 12:26 :11 :10

22 40 :00 20:15 1:34 :11 :00 1:42:22 1:05 :08

2 3 5 :00 :00 :00 :00 :00 :00 :00 :00

2 3 10 :00 :01 :01 :00 :00 :01 :00 :00

23 15 :00 :07 :00 :00 :00 :26 :01 :03

2 20 :00 6:31 :05 :01 :01 24:04 1:03 :01

2 3 25 :00 24:27 2:07 2:22 :00 2:03:18 1:49 1:47

23 30 :01 7:05:42 8:47 1:33 :01 45:15:29 33:16 1:57

2' 5 :00 :01 :00 :00 :00 :00 :00 :00

2 4 10 :00 :04 :00 :00 :00 1:10 :00 :00

2' 15 :00 2:46 :08 :14 :00 19:50 :05 :13

2 4 20 :01 4:24:45 39:00 3:31 :02 34:02:23 2:28:17 7:14

25 5 :00 :01 :01 :02 :00 :02 :00 :01

2 10 :00 :10 :02 :01 :00 1:51 :00 :01

2 15 :00 29:09 5:32 4:53 :00 4:27:48 13:42 3:32

26 5 :00 :02 :01 :00 :00 :10 :00 :00

26 10 :00 1:50 :10 :14 :00 16:54 :02 :11

26 15 :00 10:29:50 2:55:04 6:16 :00 165:58:39 1:33:40 3:08

5.4. COMPUTATIONS 169

Timings for each stage of index calculus for computing the regulator in odd charac-

teristic fields (cont.)

q g

Baby Walk Sieving

FB gen. RB gen. Rank Linaig. IrE gen. R-B gen. Rank Linaig.

2 7 5 :00 :04 :00 :00 :00 :16 :00 :00

2 7 10 :01 17:52 7:15 8:58 :01 1:01:15 :56 7:49

28 5 :00 :13 :00 :00 :00 1:22 :00 :00

28 10 :01 4:47:25 34:12 6:02 :01 177:28:16 4:44:01 4:33

29 5 :00 :35 :02 :01 :00 2:14 :00 :01

210 5 :00 2:45 :03 :03 :00 8:42 :01 :02

The total times for baby walk and sieving are given in Tables 5.16 and 5.17. We

also compare to using the baby step giant step method to compute the regulator. We

stress that the BSGS implementation used was not optimized and does not use any

of the improvements described in Section 3.2.5.

Table 5.16. Comparison of our index calculus methods to baby step giant step for

computing the regulator in even characteristic fields

q g log R0 BSGS Baby Walk Sieving

22 5 9 :00 :00 :00

22 10 21 :00 :01 :00

22 15 31 :06 :02 :02

22 20 39 2:27 :29 :25

22 25 50 35:47:10 2:59 1:39

22 30 61 - 17:56 6:34

22 35 71 - 1:24:53 32:35

22 40 80 - 14:29:13 7:11:32

5.4. COMPUTATIONS 170

Comparison of our index calculus methods to baby step giant step for computing the

regulator in even characteristic fields (cont.)

q g log R0 BSGS Baby Walk Sieving

23 5 15 :00 :16 :00

2 3 10 31 :05 :03 :02

23 15 42 8:29 :23 :21

23 20 61 - 7:02 5:50

2 3 25 74 1:54:42 57:43

2 30 88 - 28:22:41 8:52:58

2 4 5 21 :00 :02 :01

2 4 10 41 9:20 :03 :04

2 4 15 56 - 3:36 1:43

2 4 20 80 - 5:28:04 6:15:01

25 5 24 :00 :01 :06

25 10 50 14:07:52 :31 :50

2 15 74 - 1:39:27 58:09

26 5 31 :03 :02 :13

26 10 61 - 3:39 2:24

26 15 91 - 18:39:49 17:11:07

27 5 36 :19 :10. :49

2 7 10 70 - 46:15 35:54

28 5 40 2:05 :24 19:26

28 10 81 - 4:45:34 6:49:41

29 5 45 17:04 1:02 11:28

210 5 47 36:03 3:37 50:37

5.4. COMPUTATIONS 171

Table 5.17. Comparison of our index calculus methods to baby step giant step for

computing the regulator in odd characteristic fields

q g log R0 BSGS Baby Walk Sieving

22 5 8 :00 :00 :00

22 10 17 :00 :01 :00

22 15 20 :00 :03 :03

22 20 33 :04 :01 :09

22 25 41 2:41 :07 :27

22 30 51 18:02:51 :31 1:33

22 35 58 - 4:22 12:47

22 40 64 - 22:00 1:43:35

23 5 15 :00 :07 :00

2 3 10 29 :01 :03 :01

23 15 41 :54 :07 :30

2 3 20 54 - 6:37 25:08

2 3 25 69 - 28:56 2:06:54

23 30 85 - 7:16:03 45:50:43

2' 5 21 :00 :01 :00

2' 10 44 4:30 :04 1:10

2" 15 62 - 3:08 20:08

2' 20 81 - 5:07:17 36:37:56

25 5 24 :00 :04 :03

25 10 51 3:49:03 :13 1:52

2 5 15 75 - 39:34 4:45:02

26 5 30 :01 :03 :10

26 10 60 - 2:14 17:07

26 15 85 - 13:31d0 167:34:27

27 5 36 :05 :04 :16

5.4., COMPUTATIONS 172

Comparison of our index calculus methods to baby step giant step for computing the

regulator in odd characteristic fields (cont.)

q g log R0 BSGS Baby Walk Sieving

2 7 10 67 - 33:26 1:10:01

28 5 39 :14 :13 1:22

28 10 80 - 5:27:40 182:16:51

29 5 46 1:53:25 :38 2:15

2'° 5 50 1:24:56 2:51 8:45

One will notice from the previous tables that in even characteristic fields sieving

appears to be faster; however, in odd characteristic fields the baby walk strategy is

significantly faster. Comparing the sieving results from Table 5.16 to Table 5.17 shows

that sieving is still often faster in the odd characteristic case; this was expected since

the odd characteristic fields are generally chosen to be smaller. However, the baby

walk strategy is dramatically faster in the odd characteristic case versus the even case.

Since the baby walk code is mostly templated, our hypothesis for this difference is the

internal representation of field elements used by NTL. In the odd characteristic case

we used the type zz_pX which is represented in a standard 32-bit integer, whereas in

the even characteristic case we used the type GF2EX which is represented as a vector

of binary polynomials GF2X, each also represented by a vector. This extra overhead

in the even characteristic case could account for the dramatic difference in the baby

walk strategy between even and odd characteristics. The internal representation may

not affect sieving as much, since sieving is much more complicated and has its own

overhead.

Due to our requirement to represent the matrices in dense format, memory was

5.4. COMPUTATIONS 173

the biggest issue in generating the previous results. For the larger genera we often

had to choose the smoothness bound to be non-optimal in order to be able to handle

the resulting matrices in memory. We ran a slightly larger example on an Intel Xeon

3.6 GHz machine with 1024KB cache and 6.2 GB of memory. These results are given

in Table 5.18.

Table 5.18. A larger regulator computation example

q 9 log R0 Strategy .FB gen. RB gen. Rank Linaig. Total

,zzi 25 20 99 Baby Walk 5165 :01 34:24:52 13:13 14:05 34:52:11

Chapter 6

Conclusions

For high genus real quadratic function fields, index calculus in the infrastructure

provides a practical method for computing invariants like the regulator, class number

and class group structure, as well as solving instances of the infrastructure DLP.

For our "baby walk" relation generation method we provided a heuristic analysis,

summarized in Table 6.1.

Table 6.1. Heuristic, expected asymptotic runtime complexity for index calculus in

the infrastructure

Computing the regulator O(Lqg (2.83 + o(1)))

Computing the class number and group structure O(Lqg (3.45 + o(1)))

Solving an instance of the infrastructure DLP O(Lqg (2.45 + o(1)))

We provided a description of our implementation of index calculus, as well as

numerical results for computing the regulator. Our implementation was much faster

than a standard, unoptimized implementation of baby-step giant-step. We were able

174

6.1. FUTURE WORK 175

to compute a 99-bit regulator in a day and a half, whereas the best previous published

result was a 91-bit regulator in 55 days.

We compared our baby walk relation generation method against a self-initialized

sieve. Our results showed that in even characteristic fields sieving often outperformed

the baby walk, but in odd characteristic fields the baby walk was dramatically faster.

6.1 Future Work

In this section we outline some areas for future work to improve or extend the contents

of this thesis.

Sparse Linear Algebra

The numerical results in this thesis have been held back due to the lack of an imple-

mentation of efficient sparse linear algebra. This did not only affect the linear algebra

step, but in many cases the timings for relation generation were increased due to the

need to use lower smoothness bounds to allow the linear algebra to complete.

Implementing this sparse linear algebra was out of the scope of this thesis. We

look forward to progress in the LinBox project [LinO8] that would allow the use of a

blackbox library supporting the sparse linear algebra required in this work.

Sieve Parameters

We did not spend much time attempting to optimize the sieving parameters for index

calculus in the infrastructure. We used the parameters as given by Velichka for imagi-

nary quadratic function fields [VelO8, pp. 84-88]. Note that in real quadratic function

fields one may be able to minimize the degree of the sieve polynomial to g - M + 1

6.1. FUTURE WORK 176

rather than g - M as was used for our computations. This would affect the number

of factors flQ of the sieving ideal as well as the tolerance value T. Consequently, we

expect that a more thorough investigation would lead to faster sieving runtimes.

Multi-Large Primes

Allowing relations with multiple large primes has been used successfully in factoring

algorithms (cf. Lenstra and Lenstra [LL93] and Dodson and Lenstra [DL95]). Blake

et al. described a method to use two large primes to compute discrete logarithms

[BFHMV84]. Holt and Davenport discussed multi-large prime variants for discrete

logarithm computations and gave results for an implementation in the group (Z/pZ)*

for a prime p [HDO3, HolO3]. An implementation and analysis of a double large

prime variant of index calculus for low genus imaginary quadratic function fields was

given by Gaudry, Thome', Thériault and Diem [GTTDO7]. It would be interesting to

see how a multi-large prime variant could be extended to high genus real quadratic

function fields.

Parallelization

Relation generation using sieving can be easily parallelized. Parallelizing the baby

walks would be possible too if one was careful that the walks did not overlap. We did

not experiment with parallelization, but it should be possible to obtain a speed-up for

relation generation roughly inversely proportional to the number of computers used.

Theoretically, block variants of the sparse linear algebra would allow the linear

algebra step to also be parallelized. We are not aware of any implementations.

6.1. FUTURE WORK 177

Sieving in Low Genus

Gaudry described how to perform index calculus in low genus imaginary quadratic

function fields using random walks [GauOOb]. This random walk method was improved

by Thériault [TheO3] and by Gaudry, Thomé, Thériault and Diem [GTTDO7]. We

would like to see this low genus method extended to real quadratic function fields and

investigate how sieving would perform in this situation.

Explicit Formulae

The runtime of the baby walk method for generating relations could be significantly

improved by implementing explicit formulae for the baby step as discussed in Sec-

tion 3.3.2.

Rigourous Complexity Analysis

Our complexity results for index calculus in the infrastructure are based on heuristic

assumptions. Muller, Stein and Thiel had a rigourous analysis for their relation gen-

eration method [MST99, §4]. We are unaware of how to make our analysis rigourous

when using the baby walk.

Analysis of Sieving and Large Primes

Thériault provided a complexity analysis of a large prime variant of index calculus

in small genus imaginary quadratic function fields [ThéO3, §5]. We were unsuccessful

at obtaining a complexity for the large prime variant in large genus real quadratic

function fields that showed an improvement over not using large primes. Due to the

limited time available for this work, more analysis could prove successful. As far as

6.1. FUTURE WORK 178

we know, this problem is also open for the large genus strategies of index calculus in

imaginary quadratic function fields.

A complexity analysis of sieving in function fields seems to be more difficult.

Bibliography

[Abe94] Christine S. Abel. Ein Algorithmus zur Berechnung der Klassenzahl und

des Regulators reellquadratischer Ordnungen. PhD thesis, Universität

des Saarlandes, Saarbrücken, Germany, 1994. Cited on page 119.

[Ach06] Jeffrey D. Achter. The distribution of class groups of function

fields. Journal of Pure and Applied Algebra, 204(2):316-333, 2006.

MR 2006h:11132. Cited on page 56.

[ADH94] Leonard M. Adleman, Jonathan DeMarrais, and Ming-Deh Huang. A

subexponential algorithm for discrete logarithms over the rational sub-

group of the Jacobians of large genus hyperelliptic curves over finite

fields. In Leonard M. Adleman and Ming-Deh Huang, editors, Algo-

rithmic Number Theory—ANTS I (Ithaca, NY), volume 877 of Lec-

ture Notes in Computer Science, pages 28-40. Springer-Verlag, 1994.

MR 96b:11078. Cited on page 6.

[AHU74] Alfred V. Aho, John E. Hoperoft, and Jeffrey D. Ullman. The De-

sign and Analysis of Computer Algorithms. Addison-Wesley, 1974.

MR 54:1706. Cited on pages 52 and 63.

179

BIBLIOGRAPHY 180

[AP95] William R. Alford and Carl Pomerance. Implementing the self-

initializing quadratic sieve on a distributed network. In Alf J. van der

Poorten, Igor E. ShparlinskiT, and Horst G. Zimmer, editors, Number-

Theoretic and Algebraic Methods in Computer Science (Moscow, 1998),

pages 163-174. World Scientific Publishing, River Edge, NJ, 1995.

MR 96k:11152. Cited on page 137.

[Art21] Emil Artin. Quadratische Körper im Gebiete der höheren Kongruenzen.

PhD thesis, Universität Leipzig, Germany, 1921. Reprinted in Mathe-

matische Zeitschrift, 19:153-246, 1924. Cited on pages 46, 55, and 66.

[ATO6] Roberto M. Avanzi and Nicolas Thériault. Index calculus. In Cohen

and Prey [CFO6], chapter 20, pages 495-509. MR 2007f:14020. Cited on

page 143.

[Bau99] Mark L. Bauer. A subexponential algorithm for solving the discrete

logarithm problem in the Jacobian of high genus hyperelliptic curves

over arbitrary fields. Preprint available from http: //math. ucalgary.

ca/mbauer/papers.htm1, 1999. Cited on page 6.

[Bau01] Mark L. Bauer. Function Field Arithmetic and Related Algorithms. PhD

thesis, University of Illinois at Urbana-Champaign, 2001. Cited on page

6.

[BC185] Thomas Beth, Norbert Cot, and Ingemar Ingemarsson, editors. Ad-

vances in Cryptology—EUROCRYPT '84 (Paris, France), volume 209

of Lecture Notes in Computer Science. Springer-Verlag, 1985. Cited on

pages 199 and 200.

BIBLIOGRAPHY 181

[BD91] Johannes A. Buchmann and Stephan Düllmann. A probabilistic class

group and regulator algorithm and its implementation. In Attila Peth6,

Michael E. Pohst, Hugh C. Williams, and Horst Günter Zimmer, editors,

Computational number theory (Debrecen, 1989), pages 53-72. Walter de

Gruyter, Berlin, 1991. MR 92m:11150. Cited on page 5.

[BD92] Johannes A. Buchmann and Stephan Düllmann. Distributed class group

computation. Teubner- Texte Informatik, Festschrift aus Anlass des

sechzigsten Geburtstages von Herrn Prof. Dr. G. Hotz, 1:69-79, 1992.

MR 93e:11153. Cited on page 5.

[Ben8l] Michael Ben-Or. Probabilistic algorithms in finite fields. In Proceedings

of the 22nd Annual Symposium on Foundations of Computer Science—

FOGS '81 (Nashville, TN), pages 394-398. IEEE Computer Society,

1981. Cited on page 98.

[BFHMV84] Ian F. Blake, Ryoh Fuji-Hara, Ronald C. Mullin, and Scott A. Van-

stone. Computing logarithms in finite fields of characteristic two. SIAM

Journal on Algebraic and Discrete Methods, 5(2):276-285, 1984. Cited

on page 176.

[BLO4] Christina Birkenhake and Herbert Lange. Complex AbelianVari-

eties. Number 302 in Grundlehren der mathematischen Wissenschaften.

Springer-Verlag, 2nd edition, 2004. MR 2005c:14001. First edition pub-

lished in 1992. MR 94j:14001. Cited on page 45.

BIBLIOGRAPHY 182

[BLP93] Joe P. Buhier, Hendrik W. Lenstra, Jr., and Carl Pomerance. Factoring

integers with the number field sieve. In Lenstra and Lenstra [LL93],

pages 50-94. MR 96m:11116. Cited on page 116.

[Bri98] Keith Briggs. Quad-precision floating-point arithmetic (doubledouble).

C library, no longer available, 1998. First released under the GNU Public

Licence (GPL) in 1996. Cited on page 204.

[BS96] Eric Bach and Jeffrey Shallit. Algorithmic Number Theory, Volume

1: Efficient Algorithms. Foundations of Computing Series. MIT Press,

1996. MR 97e:11157. Cited on pages 58, 96, 98., 101, 102, 104, and 155.

[Buc90] Johannes A. Buchmann. A subexponential algorithm for the determina-

tion of class groups and regulators of algebraic number fields. In Cather-

ine Goldstein, editor, Séminaire de The'orie des Nombres (Paris, 1988-

1989), number 91 in Progress in Mathematics, pages 27-41. Birkhäusr,

Boston, 1990. MR 92g:11125. Cited on pages 5, 105, and 112.

[Buh98] Joe P. Buhler, editor. Algorithmic Number Theory—ANTS III (Port-

land, OR), volume 1423 of Lecture Notes in Computer Science. Springer-

Verlag, 1998. Cited on pages 201 and 206.

[BVO7] Johannes A. Buchmann and Ulrich Vollmer. Binary Quadratic Forms:

An Algorithmic Approach. Number 20 in Algorithms and Computation

in Mathematics. Springer, 2007. Cited on page 106.

BIBLIOGRAPHY 183

[BW88] Johannes A. Buchmann and Hugh C. Williams. A key-exchange system

based on imaginary quadratic fields. Journal of Cryptology, 1(2):107-

118, June 1988. MR 90g:11166. Cited on page 4.

[BW90] Johannes A. Buchmann and Hugh C. Williams. A key exchange sys-

tem based on real quadratic fields. In Gilles Brassard, editor, Advances

in Cryptology—CR YPTO '89 (Santa Barbara, CA), volume 435 of Lec-

ture Notes in Computer Science, pages 335-343. Springer-Verlag, 1990.

MR 91f:94014. Cited on pages 5 and 86.

[Can87] David G. Cantor. Computing in the Jacobian of a hyperelliptic curve.

Mathematics of Computation, special issue dedicated to Daniel Shanks

on the occasion of his 70th birthday, 48(177):95-101, January 1987.

MR 88f:11118. Cited on page 51.

[CD093] Henri Cohen, Francisco Diaz y Diaz, and Michel Olivier. Calculs de

nombres de classes et de régulateurs de corps quadratiques en temps

sous-exponentiel. In Sinnou David, editor, Séminaire de The'orie des

Nombres (Paris, 1990-1991), number 108 in Progress in Mathematics,'

pages 35-46. Birkhuser, Boston, 1993. MR 94m:11151. Cited on page

5.

[CD097] Henri Cohen, Francisco Diaz y Diaz, and Michel Olivier. Subexponen-

tial algorithms for class and unit group computations. In John Cannon

and Derek Holt (eds.), Proceedings the 1st MAGMA Conference (Lon-

don, 1993), Journal of Symbolic Computation, 24(3-4):433-441, 1997.

MR 98m:11138. Cited on page 5.

BIBLIOGRAPHY 184

[CFO6] Henri Cohen and Gerhard Frey, editors. Handbook of Elliptic and Hyper-

elliptic Curve Cryptography. Discrete Mathematics and its Applications.

Chapman & Hall/CRC, 2006. MR 2007f:14020. Cited on pages 180, 186,

and 189.

[Che51] Claude Chevalley. Introduction to the Theory of Algebraic Functions of

One Variable. Number 7 in Mathematical Surveys. American Mathe-

matical Society, 1951. MR 13:64a. Cited on page 36.

[CL84] Henri Cohen and Hendrik W. Lenstra, Jr. Heuristics on class groups of

number fields. In Hendrik Jager, editor, Number Theory (Noordwijker-

hout, The Netherlands), number 1068 in Lecture Notes in Mathematics,

pages 33-62. Springer-Verlag, 1984. MR 85j:11144. Cited on pages 4

and 56.

[Coc73] Clifford C. Cocks. A note on 'Non-secret encryption'. Research report,

Communications-Electronics Security Group (CESG), Great Britain,

November 1973. Classified until 1997. Cited on page 2.

[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory.

Number 138 in Graduate Texts in Mathematics. Springer-Verlag, 1993.

MR 94i:11105. Cited on pages 114 and 151.

[Coh96] Henri Cohen, editor. Algorithmic Number Theory—ANTS II (Bordeaux,

France), volume 1122 of Lecture Notes in Computer Science. Springer-

Verlag, 1996. Cited on pages 200, 203, and 206.

BIBLIOGRAPHY 185

[CPO5] Richard Crandall and Carl Pomerance. Prime Numbers: A Computa-

tional Perspective. Springer-Verlag, 2nd edition, 2005. MR 2006a:11005.

First edition published in 2001. MR 2002a:11007 Cited on page 153.

[CSFO7] Zhuliang Chen, Arne Storjohann, and Cory Fletcher. Integer matrix

library (IML). C library, version 1.0.2, available from http://www.

cs. uwaterloo. ca/z4chenhiml . html, September 2007. Source freely

available. Uses [WPO8] for linear algebra routines and [Gra07] for long

integer arithmetic. First version released in 2004. Cited on page 153.

[CW87] Don Coppersmith and Shmuel Winograd. Matrix multiplication via

arithmetic progressions. In Proceedings of the .19th Annual ACM Sym-

posium on Theory of Computing—STOC '87 (New York, NY), pages

1-6. ACM Press, 1987. Extended in [CW9O]. Cited on page 185.

[CW9O] Don Coppersmith and Shmuel Winograd. Matrix multiplication via

arithmetic progressions. Journal of Symbolic Computation, 9(3):251-

280, March 1990. Full version of [CW87]. Cited on pages 114 and 185.

[CZ81] David G. Cantor and Hans Zassenhaus. A new algorithm for fac-

toring polynomials over finite fields. Mathematics of Computation,

36(154):587-592, April 1981. MR 82e:12020. Cited on page 104.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptog-

raphy. IEEE Transactions on Information Theory, IT-22(6):644-654,

November 1976. MR 55:10141. Cited on page 1.

BIBLIOGRAPHY 186

[Die08] Claus Diem. On arithmetic and the discrete logarithm problem in class

groups of curves. Habilitationsscrift submitted to the Fakultät für Math-

ematik und Informatik der Universität Leipzig, 5 July 2008. Available

from http: //www. math . uni-leipzig. de/diem/. Cited on page 3.

[DL95] Bruce Dodson and Arjen K. Lenstra. NITS with four large primes:

An explosive experiment. In Don Coppersmith, editor, Advances in

Cryptology—CRYPTO '95 (Santa Barbara, CA), volume 963 of Lecture

Notes in Computer Science, pages 372-385. Springer-Verlag, 1995. Cited

on page 176.

[Doc06] Christophe Doche. Exponentiation. In Cohen and Frey [CFO6], chap-

ter 9, pages 145-168. MR 2007f:14020. Cited on page 79.

[Dül91] Stephan Düllmann. Ein Algorithmus zur .Bestimmung der Kiassen-

gruppe positiv definiter binärer quadratischer Formen. PhD thesis, Uni-

versität des Saarlandes, Saarbrücken, Germany, 1991. Cited on page

119.

[EGO2] Andreas Enge and Pierrick Gaudry. A general framework for subex-

ponential discrete logarithm algorithms. Acta Arithmetica, 102(1):83-

103, 2002. MR 2002k:11225. Previously released as research report

LIX/RR/00/04, Laboratoire d'Informatique, l'Ecole Polytechnique,

2000. Cited on pages 89, 90, 91, and 124.

[EGG+06] Wayne Eberly, Mark W. Giesbrecht, Pascal Giorgi, Arne Storjohann,

and Gilles Villard. Solving sparse rational linear systems. In Jean-

Guillaume Dumas, editor, Proceedings of the 2006 International Sym-

BIBLIOGRAPHY 187

posium on Symbolic and Algebraic Computation—ISSAC 2006 (Genoa,

Italy), pages 63-70. ACM Press, 2006. Previously available as

arXiv:cs/0603082v1 in March 2006. Cited on page 151.

[EGG07] Wayne Eberly, Mark W. Giesbrecht, Pascal Giorgi, Arne Storjohann,

and Gilles Villard. Faster inversion and other black box matrix com-

putations using efficient block projections. In Christopher W. Brown,

editor, Proceedings of the 2007 International Symposium on Symbolic

and Algebraic Computation—ISSAC 2007 (Waterloo, ON), pages 143-

150. ACM Press, 2007. Previously available as arXiv:cs/0701188v1 in

January 2007. Cited on page 151.

[EJS*07] Stefan Erickson, Michael J. Jacobson, Jr., Ning Shang, Shu6Shen, and

Andreas Stein. Explicit formulas for real hyperelliptic curves of genus

2 in affine representation. In Claude Carlet and Berk Sunar, editors,

Arithmetic of Finite Fields— WAIFI 2007 (Madrid, Spain), volume 4547

of Lecture Notes in Computer Science, pages 202-218. Springer-Verlag,

2007. Cited on page 76.

[E1G85] Taher ElGamal. A public-key cryptosystem and a signature scheme

based on discrete logarithms. In George Robert Blakley and David

Chaum, editors, Advances in Cryptology, Proceedings of CRYPTO '84

(Santa Barbara, CA), volume 196 of Lecture Notes in Computer Science,

pages 10-18. Springer-Verlag, 1985. Cited on page 3.

[E1170] James H. Ellis. The possibility of Non-Secret digital encryption. Re-

search report, Communications-Electronics Security Group (CESG),

BIBLIOGRAPHY 188

Great Britain, January 1970. Existence classified until 1997. Cited

on page 2.

[E1187] James H. Ellis. The story of non-secret encryption. Historical arti-

cle commissioned by the Communications-Electronics Security Group

(CESG), Great Britain, 1987. Classified until 1997. Cited on page 2.

[Eng00] Andreas Enge. Hyperelliptic Cryptosystems: Efficiency and Subexponen-

tial Attack.. PhD thesis, Universität Augsburg, Germany, 2000. Cited

on page 6.

[EngOl] Andreas Enge. How to distinguish hyperelliptic curves in even charac-

teristic. In Kazimierz Aister, Jerzy lJrbanowicz, and Hugh C. Williams,

editors, Public-Key Cryptography and Computational Number Theory

(Warsaw, Poland), pages 49-58. Walter de Gruyter, Berlin, 2001.

MR 2002k:11095. Cited on page 30.

[Eng02] Andreas Enge. Computing discrete logarithms in high-genus hyperel-

liptic Jacobians in provably subexponential time. Mathematics of Com-

putation, 71(238):729-742, April .2002. MR 2003b:68083. Previously

released as research report CORR 99-04, Department of Combinatorics

& Optimization, University of Waterloo, 1999. Cited on pages 6, 7, 99,

100, 111, 113, and 127.

[ESO2] Andreas Enge and Andreas Stein. Smooth ideals in hyperelliptic func-

tion fields. Mathematics of Computation, 71(239):1219-1230, 2002.

MR 2003d:11170. Previously released as-research report CORR 2000-08,

BIBLIOGRAPHY 189

Department of Combinatorics & Optithization, University of Waterloo,

2000. Cited on page 109.

[FL06] Gerhard Frey and Tanja Lange. Background on curves and Jacobians.

In Cohen and Frey [CFO6], chapter 4, pages 45-85. MR 2007f:14020.

Cited on pages 14 and 24.

[FP99J Ralf Flassenberg and Sachar Paulus. Sieving in function fields. Exper-

imental Mathematics, 8(4):339-349, 1999, MR 2000j:11179. Previously

released as technical report TI-13/97, Cryptography and Computeral-

gebra group, Department of Computer Science, Technische Universität

Darmstadt, 1997. Cited on pages 6, 130, 132, and 133.

[Ful89] William Fulton. Algebraic Curves: An introduction to Algebraic Ge-

ometry. Addison-Wesley, 1989. MR 47:1807. Reprint of the original

published by W.A. Benjamin, 1969. Cited on pages 12, 13, 14, 15, 16,

18, 19, 20, 21, and 24.

[FW89] Eduardo Friedman and Lawrence C. Washington. On the distribution of

divisor class groups of curves over a finite field. In Jean-Marie de ICon-

inck and Claude Levesque, editors, Théorie des Nombres (Quebec, PQ):

Comptei rendus de la Conference internationale de théorie des nombres

tenue a l'Université Laval, 5-18 juillet 1987, pages 227-239. Walter de

Gruyter, Berlin, 1989. MR 91e:11138. Cited on page 56.

[Gau86] Carl Friedrich Gauss. Disquisitiones arithmeticae. Springer-Verlag,

1986. (trans.) Arthur A. Clarke. First edition published by Gerh. Fleis-

cher, Lipsiae in 1801. Second edition published in Latin by Konigliche

BIBLIOGRAPHY 190

Gesellschaft der Wissenschaften in 1870. Reprint of the English transla-

tion of the second edition originally published by Yale University Press

in 1966. Cited on pages 3 and 4.

[Gau00a] Pierrick Gaudry. An algorithm for solving the discrete log problem on

hyperelliptic curves. In Preneel [Pre00], pages 19-34. Cited on page 6.

[Gau00b] Pierrick Gaudry. An algorithm for solving the discrete log problem on

hyperelliptic curves. In Preneel [PreoO], pages 19-34. Cited on page

177.

[Gau07] Pierrick Gaudry. Index calculus for abelian varieties and the elliptic

curve discrete logarithm problem. Preprint available from http: //www.

loria. fr/gaudry/, 2007. To be published in the Journal of Symbolic

Computation. An earlier preprint first appeared in 2004. Cited on page

3.

[GHOO] Pierrick Gaudry and Robert Harley. Counting points on hyperelliptic

curves over finite fields. In Stevenhagen and Bosma [SBOO], pages 313-

332. MR 2002f:11072. Cited on page 5.

[GHMMO8] Steven D. Galbraith, Michael Harrison, and David J. Mireles Morales.

Efficient hyperelliptic arithmetic using balanced representation for divi-

sors. In van der Poorten and Stein [vdPS08], pages 342-356. Extended

and corrected version available as Cryptology ePrint Archive Report

2008/265, June 2008. Cited on pages 47 and 48.

BIBLIOGRAPHY 191

[Gie01] Mark W. Giesbrecht. Fast computation of the Smith form of a

sparse integer matrix. Computational Complexity, 10(1):41-69, 2001.

MR 2003d:15014. Cited on page 121.

[Gol85] Dorian Goldfeld. Gauss' class number problem for imaginary quadratic

fields. Bulletin (New Series) of the American Mathematical Society,

13(1):23-37, 1985. Cited on page 4.

[Gra07] Torbjörn Granlund. GNU multiple precision arithmetic library (GMP).

C/C++ library, version 4.2.2, available from http: //www . gmplib . org,

September 2007. Open source software contributed to by many authors

and released under the GNU Lesser General Public License (LGPL).

First version released in 1991. Cited on pages 152, 185, 191, 197,

and 204.

[GRVO8] Thierry Gautier, Jean-Louis Roch, and Gilles Villard. Givaro: C++

library for arithmetic and algebraic computations. C++ library, version

3.2.10, available from http://www-lmc.imag .fr/CASYS/LOGICIELS/

givaro/, April 2008. Open source software contributed to by many au-

thors and released under the GNU Public Licence (GPL). Uses [Gra07]

for long integer arithmetic. First version released in 1994. Cited on page

197.

[GTTDO7] Pierrick Gaudry, Emmanuel Thomé, Nicolas Thériault, and Claus

Diem. A double large prime variation for small genus hyperelliptic

index calculus. Mathematics of Computation, 76(257):475-492, 2007.

MR 2007j:11174. Previously released as INRIA research report 5764,

BIBLIOGRAPHY 192

Institut National de Recherche en Informatique et en Automatique,

Lorraine, 2005, and as research report CORR 2004-29, Department of

Combinatorics & Optimization, University of Waterloo, 2004. Cited on

pages 6, 149, 176, and 177.

[Har77] Robin Hartshorne. Algebraic Geometry. Number 52 in Graduate Texts

in Mathematics. Springer-Verlag, 1977. MR 57:3116. Cited on pages 12,

14, 16, 17, 18, 21, 22, and 45.

[Har07] David Harvey. Kedlaya's algorithm in larger characteristic. Inter-

national Mathematics Research Notices, 2007(22), Article ID rnm095,

2007. Also released as arXiv:math/0610973v2 in August 2007. First

version appeared in October 2006. Cited on page 6.

[Has36] Helmut Hasse. Zur Theorie der abstrakten elliptischen Funktio-

nenkorper I, II, III. Journal fur die reine und angewandte Mathematik

(Crelle 's Journal), 175:55-62, 69-88, 193-208, 1936. Earlier version ap-

peared in Nachrichten der Gesellschaft der Wissenschaften zu Göttingen

1:119-129, 1935. Cited on page 95.

[HDO3] Andrew J. Holt and James H. Davenport. Resolving large prime(s)

variants for discrete logarithm computation. In Kenneth G. Paterson,

editor, Cryptography and Coding 2003 (Cirencester, UK), volume 2898

of Lecture Notes in Computer Science, pages 207-222. Springer-Verlag,

2003. Cited on pages 148 and 176.

BIBLIOGRAPHY 193

[H198] Ming-Deh Huang and Doug lerardi. Counting points on curves over fi-

nite fields. Journal of Symbolic Computation, 25(1):1-21, January 1998.

MR 98i:11040. Cited on page 5.

[HM89] James L. Hafner and Kevin S. McCurley. A rigorous subexponential

algorithm for computation of class groups. Journal of the American

Mathematical Society, 2(4):837-850, October 1989. MR 91f:11090. Cited

on pages 4, 105, and 122.

[HM91] James L. Hafner and Kevin S. McCurley. Asymptotically fast triangular-

ization of matrices over rings. SIAM Journal of Computing, 20(6):1068-

1083, December 1991. Cited on page 114.

[Hol03] Andrew J. Holt. On Computing Discrete Logarithms: Large Prime(s)

Variants. PhD thesis, University of Bath, UK, 2003. Cited on page 176.

[HW79] G. H. Hardy and Edward M. Wright. An Introduction to the Theory

of Numbers. Oxford University Press, 5th edition, 1979. First edition

published 1938. Cited on pages 44 and 59.

[Jac99] Michael J. Jacobson, Jr. Subexponential Class Group Computation in

Quadratic Orders. PhD thesis, Technischen Universität Darmstadt, Ger-

many, 1999. Cited on pages 130, 134, 137, 142, and 152.

[JMS01] Michael J. Jacobson, Jr., Alfred J. Menezes, and Andreas Stein. Solv-

ing elliptic curve discrete logarithm problems using Weil descent.

Journal of the Ramanujan Mathematical Society, 16(3):231-260, 2001.

MR 2002h:14039. Previously released as research report CORR 2001-31,

BIBLIOGRAPHY 194

Department of Combinatorics & Optimization, University of Waterloo,

2001. Cited on pages 6 and 156.

[JSS07a] Michael J. Jacobson, Jr., Renate Scheidler, and Andreas Stein. Crypto-

graphic protocols on real hyperelliptic curves. Advances in Mathematics

of Computation, 1(2):197-221, 2007. Extends work from "Faster Crypto-

graphic Key Exchange on Hyperelliptic Curves," Yellow Series preprint

847, University of Calgary, 2005. Cited on pages 7, 27, 80, 81, and 83.

[JSS07b] Michael J. Jacobson, Jr., Renate Scheidler, and Andreas Stein. Fast

arithmetic on hyperelliptic curves via continued fraction expansions. In

Tony Shaska, William C. Huffman, David Joyner, and Vasyl Ustimenko,

editors, Advances in Coding Theory and Cryptology, number 2 in Series

on Coding Theory and Cryptology, pages 201-244. World Scientific Pub-

lishing, Hackensack, NJ, 2007. Cited on pages 27, 50, 62, 75, and 76.

[JSWO6] Michael J. Jacobson, Jr., Renate Scheidler, and Hugh C. Williams. An

improved real-quadratic-field-based key exchange procedure. Journal

of Cryptology, 19(2):211-239, April 2006. MR 2006k:94089. Previously

released as Yellow Series preprint 845, University of Calgary, 2005. Cited

on page 5.

[JvdP02] Michael J. Jacobson, Jr. and Alfred J. van der Poorten. Computa-

tional aspects of NUCOMP. In John Cannon, Claus Fieker, and David

Kohel, editors, Algorithmic Number Theory—ANTS V (Sydney, Aus-

tralia), volume 2369 of Lecture Notes in Computer Science, pages 120-

133. Springer-Verlag, 2002. MR 2004m:11208. Cited on page 75.

BIBLIOGRAPHY 195

[Kal93] Erich Kaltofen. Analysis of Coppersmith's block Wiedemann algorithm

for the parallel solution of sparse linear systems. In Applied Algebra, Al-

gebraic Algorithms and Error-correcting Codes (San Juan, PR, .1993),

number 673 in Lecture Notes in Computer Science, pages 195-212.

Springer-Verlag, 1993. MR 94k:11134. Extended in [Kal95]. Cited on

page 195.

[Ka195] Erich Kaltofen. Analysis of Coppersmith's block Wiedemann algorithm

for the parallel solution of sparse linear systems. Mathematics of Com-

putation, 64(210):777-806, April 1995. MR 95f:65094. Extension of

[Kal93]. Cited on page 195.

[KedOl] Kiran S. Kedlaya. Counting points on hyperelliptic curves using

Monsky-Washnitzer cohomology. Journal of the Ramanujan Mathemat-

ical Society, 16(4):323-338, 2001. MR 2002m:14019. Previously released

as arXiv:math/0105031. Errata published in Journal of the Ramanujan

Mathematical Society, 18(4):417-418, 2003. MR 2005c:14027. Cited on

page 6.

[Ked04] Kiran S. Kedlaya. Computing zeta functions via p-adic cohomology. In

Duncan Buell, Jonathan W. Sands, and David S. Dummit, editors, Al-

gorithmic Number Theory—ANTS VI (Burlington, VT), volume 3076 of

Lecture Notes in Computer Science, pages 1-17. Springer-Verlag, 2004.

MR 2006a:14033. Cited on page 6.

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume

2: Seminumerical Algorithms. Addison-Wesley, 3rd edition, 1997.

BIBLIOGRAPHY 196

8i:68003 (2nd ed.). First edition published 1969. 44:3531. Cited on

page 98.

[Kob89] Neal Koblitz. Hyperelliptic cryptosystems. Journal of Cryptology,

1(3):139-150, 1989. MR 90k:11165. Cited on pages 6 and 51.

[Kra22] Maurice B. Kraitchik. Théorie des nombres, volume 1. Gauthier-Villars,

1922. Cited on page 88.

[Kra24] Maurice B. Kraitchik. Recherches sur la theories des nombres. Gauthier-

Villars, 1924. Cited on page 88.

[KS91] Erich Kaltofen and B. David Saunders. On Wiedemann's method of

solving sparse linear systems. In Applied Algebra, Algebraic Algorithms

and Error- Correcting Codes (AAECC-9) (New Orleans, LA), number

539 in Lecture Notes in Computer Science, pages 29-38. Springer-Verlag,

1991. Cited on page 125.

[Küc97] Wolfgang W. Küchlin, editor. Proceedings of the .1997 International

Symposium on Symbolic and Algebraic Computation—ISSAC '97 (Ki-

hei, Maui, HI). ACM Press, 1997. Cited on page 207.

[Len87] Hendrik W. Lenstra, Jr. Factoring integers with elliptic curves. Annals

of Mathematics, 2nd series, 126(2):649-673, 1987. MR 89g:11125. Cited

on page 153.

[LenOO] Arjen Lenstra. Long integer package (LIP). C library, version 1.1, avail-

able from http://www.win.tue.n1/'k1enstra, 2000. Source freely

available. First version released in 1989. Cited on page 204.

BIBLIOGRAPHY 197

[Lin08] LinBox Team. Project LinBox: Exact computational linear algebra.

C++ library, version 1.1.5, available from http://www.linaig.org/,

April 2008. Open source software contributed to by many authors and

released under the GNU Lesser General Public License (LGPL). Uses

[Gra07], [Sho08],. [WPO8], and [GRVO8]. First version released in 2002.

Cited on pages 153 and 175.

[LL93] Arjen K. Lenstra and Hendrik W. Lenstra, Jr., editors. The development

of the Number Field Sieve. Number 1554 in Lecture Notes in Mathe-

matics. Springer-Verlag, 1993. MR 96m:11116. Cited on pages 176, 182,

and 197.

[LLMP9O] Arjen K. Lenstra, Hendrik W. Lenstra, Jr., Mark S. Manasse, and

John M. Pollard. The number field sieve. In Proceedings of the 22nd

Annual ACM Symposium on Theory of Computing—STOC '90 (Balti-

more, MD), pages 564-572. ACM Press, 1990. Also available in [LL93,

pp. 11-42]. Cited on page 116.

[MB75] Michael A. Morrison and John Brilihart. A method of factoring and

the factorization of F7. Mathematics of Computation, special issue ded-

icated to Derrick Henry Lehmer on the occasion of his 70th birthday,

29(129):183-205, 1975. MR 51:8017. Cited on page 142.

[McC89] Kevin S. McCurley. Cryptographic key distribution and computation

in class groups. In Mollin [Mol89], pages 459-479. MR 92e:11149. Pre-

viously released as IBM Research Report RJ 6433 (62551), Almaden

Research Center, 1988. Cited on page 4.

BIBLIOGRAPHY 198

[McC90] Kevin S. McCurley. The discrete logarithm problem. In Carl Pomerance,

editor, Cryptology and Computational Number Theory (Boulder, CO),

number 42 in Proceedings of Symposia in Applied Mathematics, pages

49-74. American Mathematical Society, 1990. MR 92d:11133. Cited on

page 88.

[McE69] Robert J. McEliece. Factorization of polynomials over finite fields. Math-

ematics of Computation, 23(108):861-867, October 1969. 41:1694a,.

Cited on page 97.

[Mer78] Ralph C. Merkle. Secure communications over insecure channels. Com-

munications of the ACM, 21(4):294-299, April 1978. Cited on page 1.

[Mes00] Jean-Fancois Mestre. Utilisation de l'AGM pour le calcul de E(1F2)

et courbes de genre 2. Lettre adrssée Gaudry et Harley, December

2000. Available from http: //www. math. jussieu . fr/'-'mestre/. Cited

on page 5.

[Mes02] Jean-François Mestre. Algorithmes pour compter des points de courbes

en petite caractéristique et un petit genre. Notes of David Lubicz from

a lecture given in the Séminair. de Cryptographie de l'Université de

Rennes, March 2002. Available from http://www.math.jussieu.fr/

mestre/. Cited on page 5.

[MMO8] David J. Mireles Morales. An analysis of the infrastructure in real

function fields. Preprint available as Cryptology ePrint Archive Report

2008/299, July 2008. Cited on page 56.

BIBLIOGRAPHY 199

[MMTO2] Markus Maurer, Alfred J. Menezes, and Edlyn Teske. Analysis of the

OHS Weil descent attack on the ECDLP over characteristic two finite

fields of composite degree. LMS Journal of Computation and Mathe-

matics, 5:127-174, 2002. Cited on page 156.

[Mol89] Richard A. Mollin, editor. Number Theory and Applications (Banff,

AB), number 265 in NATO Advanced Science Institute Series C: Mathe-

matical and Physical Sciences. Kluwer Academic Press, Dordrecht, 1989.

Cited on pages 197 and 204.

[MST99] Volker Muller, Andreas Stein, and Christoph Thiel. Computing dis-

crete logarithms in real quadratic congruence function fields of large

genus. Mathematics of Computation, 68(226):807-822, April 1999.

MR 99i:11119. Previously released on Citeseer at http: //citeseer.

ist . psu. edu/mullerWcomputing . html in 1997. Cited on pages 7, 92,

95, 97, 99, 105, 111, 112, 115, 120, 122, 127, and 177.

[Neu99] Jürgen Neukirch. Algebraic Number Theory. Number 322 in

Orundlehren der mathematischen Wissenschaften. Springer-Verlag,

1999. (trans.) Norbert Schappacher. MR 2000m:11104. Original pub-

lished as Algebraische Zahientheorie in 1992. Cited on pages 36, 53,

and 54.

[0d185] Andrew M. Odlyzko. Discrete logarithms in finite fields and their

cryptographic significance. In Beth et al. [BC185], pages 224-314.

MR 87g:11022. Cited on pages 88 and 142.

BIBLIOGRAPHY 200

[Pau96] Sachar Paulus. An algorithm of subexponential type computing the

class group of quadratic orders over pricipal ideal domains. In Cohen

[Coh96], pages 247-262. MR 98c:11143. Cited on page 6.

[Pil90] Jonathan Pila. Frobenius maps of abelian varieties and finding roots

of unity in finite fields. Mathematics of Computation, 55(192):745-763,

October 1990. MR 91a:11071. Cited on page 5.

[Pol78] John M. Pollard. Monte Carlo methods for index computation

mod p. Mathematics of Computation, 32(143):918-924, July 1978.

MR 58:10684. Cited on pages 3 and 74.

[Pom85] Carl Pomerance. The quadratic sieve factoring algorithm. In Beth et al.

[BC185], pages 169-182. MR 87d:11098. Cited on page 137.

[Pom96] Carl Pomerance. A tale of two sieves. Notices of the American Mathe-

matical Society, 43(12):1473-1485, December 1996. Cited on page 130.

[PR99] Sachar Paulus and Hans-Georg Rück. Real and imaginary quadratic

representations of hyperelliptic function fields. Mathematics of Compu-

tation, 68(227):1233-1241, 1999. MR 99i:11107. Previously released as

technical report TI-14/97, Cryptography and Computeralgebra group,

Department of Computer Science, Technische Universität Darmstadt,

1997. Cited on pages 30, 40, and 41.

[PreOo] Bart Preneel, editor. Advances in Cryptology—E URO CRYPT 2000

(Bruges, Belgium), volume 1807 of Lecture Notes in Computer Science.

Springer-Verlag, 2000. Cited on page 190.

BIBLIOGRAPHY 201

[PS98] Sachar Paulus and Andreas Stein. Comparing real and imaginary arith-

meticsfor divisor class groups of hyperelliptic curves. In Buhler [Buh98],

pages 576-591. MR 2000i:11098. Cited on page 62.

[Rei60] George W. Reitwiesner. Binary arithmetic. In Franz L. Alt, editor,

Advances in Computers, volume 1, pages 231-308. Academic Press, New

York, 1960. Cited on page 78.

[Ros02] Michael Rosen. Number Theory in Function Fields. Num-

ber 210 in Graduate Texts in Mathematics. Springer-Verlag, 2002.

MR 2003d:11171. Cited on page 46.

[R5A78] Ronald L. Rivest, Adi Shamir, and Leonard A. Adleman. A method for

obtaining digital signatures and public-key cryptosystems. Communi-

cations of the ACM, 21(2):120-126, 1978. Cited on page 2.

[SatOo] Takakazu Satoh. The canonical lift of an ordinary elliptic curve over a

finite field and its point counting. Journal of the Ramanujan Mathe-

matical Society, 15(4):247-270, 2000. MR 2001j:11049. Cited on page

5.

[SBOO] Peter Stevenhagen and Wieb Bosma, editors. Algorithmic Number

Theory—ANTS IV (Leiden, Netherlands), volume 1838 of Lecture Notes

in Computer Science. Springer-Verlag, 2000. Cited on pages 190

and 207.

[SBW91] Renate Scheidler, Johannes A. Buchmann, and Hugh C. Williams. Im-

plementation of a key exchange protocol using real quadratic fields. In

BIBLIOGRAPHY 202

Ivan B. Damgârd, editor, Advances in Cryptology—E URO CRYPT '90

(Aarhus, Denmark), volume 473 of Lecture Notes in Computer Science,

pages 98-109. Springer-Verlag, 1991. Shorter version of [SBW94]. Cited

on page 5.

[SBW94] Renate Scheidler, Johannes A. Buchmann, and Hugh C. Williams. A

key-exchange protocol using real quadratic fields. Journal of Cryptology,

7(3):171-199, September 1994. MR 96e:94015. Results are from [Sch93,

Part II]. Cited on page 202.

[Sch31] Friedrich Karl Schmidt. Analytische Zahientheorie in Körpern der

Charakteristik p. Mathematische Zeitschrift, 33:1-32, 1931. Cited on

page 55.

[Sch85] René Schoof. Elliptic curves over finite fields and the computation of

square roots mod p. Mathematics of Computation, 44(170):483-494,

April 1985. MR 86e:11122. Cited on page 5.

[Sch93] Renate Scheidler. Applications of Algebraic Number Theory to Cryptog-

raphy. PhD thesis, University of Manitoba, Winnipeg, Canada, 1993.

Cited on pages 5 and 202.

[Sch95] René Schoof. Counting points on elliptic curves over finite fields. Jour-

nal de Théorie des Nombres de Bordeaux, 7(1):219-254, 1995. Les

Dix-huitièmes Journées Arithmétiques (Bordeaux, 1993). MR 97i:11070.

Cited on page 5.

BIBLIOGRAPHY 203

[Sch96] Renate Scheidler. Compact representation in real quadratic congruence

function fields. In Cohen [Coh96], pages 323-336. MR 98c:11126. Cited

on pages 50, 55, and 57.

[Sem04] Igor Semaev. Summation polynomials and the discrete logarithm prob-

lem on elliptic curves. Preprint available from http: //eprint. iacr.

org/2004/031, 2004. Cited on page 3.

[Sey87] Martin Seysen. A probabilistic factorization algorithm with quadratic

forms of negative discriminant. Mathematics of Computation,

48(178):757-780, April 1987. MR 88d:11129. Cited on pages 106

and 112.

[Sha7l] Daniel Shanks. Class number, a theory of factorization and genera. In

Donald J. Lewis, editor, 1969 Number Theory Institute (Stony Brook,

NY), volume 20 of Proceedings of Symposia in Pure Mathematics, pages

415-440. American Mathematical Society, 1971. MR 47:4932. Cited on

pages 4 and 72.

[Sha72a] Daniel Shanks. Five number-theoretic algorithms. In R.S.D. Thomas

and Hugh C. Williams, editors, Proceedings of the Second Manitoba

Conference on Numerical Mathematics (Winnipeg, MB), number VII

in Congressus Numerantium, pages 51-70. Utilitas Mathematica, Win-

nipeg, MB, 1972. MR 51:8072. Cited on page 96.

[Sha72b] Daniel Shanks. The infrastructure of a real quadratic field and its appli-

cations. In Proceedings of the 1972 Number Theory Conference (Boulder,

CO), pages 217-224, 1972. MR 52:10672. Cited on pages 4, 57, and 64.

BIBLIOGRAPHY 204

[Sha89] Daniel Shanks. On Gauss and composition I, II. In Mollin [Mo189],

pages 163-204. MR 92e:11150. Cited on page 75.

[5h008] Victor Shoup. A library for doing number theory (NTL). C++ li-

brary, version 5.4.2, available from http : //www. shoup . net, March

2008. Source freely available. Uses either [Len00] or [Gra07] for long

integer arithmetic and includes parts of [Bri98] for floating-point arith-

metic. First version released in 1990. Cited on pages 152 and 197.

[Si186] Joseph H. Silverman. The Arithmetic of Elliptic Curves. Number 106 in

Graduate Texts in Mathematics. Springer-Verlag, 1986. MR 87g:11070.

Cited on page 23.

[Sil00] Joseph H. Silverman. The Xedni calculus and the elliptic curve discrete

logarithm problem. Designs, Codes and Cryptography, 20:5-40, 2000.

Cited on page 3.

[SL96] Arne Storjohann and George Labahn. Asymptotically fast computation

of Hermite normal forms of integer matrices. In Yagati N. Lakshman,

editor, Proceedings of the .1996 International Symposium on Symbolic

and Algebraic Computation—ISSA C '96 (Zurich, Switzerland), pages

259-266. ACM Press, 1996. Cited on page 114.

[Sma97] Nigel Smart. Experiments using an analogue of the number field sieve

algorithm to solve the discrete logarithm problem in the Jacobians of

hyperelliptic curves. Technical Report HPL-97- 130, HP Laboratories,

Bristol, UK, 1997. Cited on page 6.

BIBLIOGRAPHY 205

[SSW96] Renate Scheidler, Andreas Stein, and Hugh C. Williams. Key-exchange

in real quadratic congruence function fields. Designs, Codes and Cryp-

tography, special issue dedicated to Dr. Gustavus J. Simmons, 7:153-

174, 1996. MR 97d:94009. Cited on pages 7, 71, 83, and 86.

[ST02a] Andreas Stein and Edlyn Teske. Explicit bounds and heuristics on class

numbers in hyperelliptic function fields. Mathematics of Computation,

71(238):837-861, April 2002. MR 2002k:,11210. Cited on pages 74, 118,

119, and 120.

[STO2b] Andreas Stein and Edlyn Teske. The parallelized Pollard kangaroo

method in real quadratic function fields. Mathematics of Computation,

71(238):793-814, April 2002. MR 2002k:11227. Previously released as

research report CORR 2000-35, Department of Combinatorics & Opti-

mization, University of Waterloo, 2000. Cited on pages 74 and 160.

[Ste99] Andreas Stein. Infrastructure in real quadratic function fields. Research

Report CORR 99-17, Department of Combinatorics & Optimization,

University of Waterloo, May 1999. Cited on page 53.

[SteOl] Andreas Stein. Sharp upper bounds for arithmetics in hyperelliptic func-

tion fields. Journal of the Ramanujan Mathematical Society, 16(2):1-86,

2001. MR 2002d:11134. Previously released as research report CORR

99-23, Department of Combinatorics & Optimization, University of Wa-

terloo, 1999. Cited on pages 62 and 64.

BIBLIOGRAPHY 206

[Sti93] Henning Stichtenoth. Algebraic Function Fields and Codes. Universi-

text. Springer-Verlag, 1993. MR 94k:14016. Cited on pages 24, 30, 31,

32, 33, 34, 35, 37, 38, 39, 40, 96, and 118.

[SW98] Andreas Stein and Hugh C. Williams. An improved method of comput-

ing the regulator of a real quadratic function field. In Buhier [Buh98],

pages 607-620. MR 2000j:11201. Cited on pages 74, 115, and 160.

[5W99] Andreas Stein and Hugh C. Williams. Some methods for evaluating the

regulator of a real quadratic function field. Experimental Mathematics,

8(2):119—I33, 1999. MR 2000f:11152. Extends results of an unpublished

manuscript entitled "Baby Step Giant Step in Real Quadratic Function

Fields" that appeared in 1995. Cited on pages 49, 59, 64, 69, 72, and 74.

[SWD96] Oliver Schirokauer, Damian Weber, and Thomas Denny. Discrete log-

arithms: The effectiveness of the index calculus method. In Cohen

[Coh96], pages 337-361. MR 98i:11109. Cited on page 88.

[Thé03] Nicolas Thériault. Index calculus attack for hyperelliptic curves of

small genus. In Chi Sung Laih, editor, Advances in Cryptology—

ASIA CRYPT 2003 (Taipei, Taiwan), volume 2894 of Lecture Notes in

Computer Science, pages 75-92. Springer-Verlag, 2003. Cited on pages

6, 157, and 177.

[TSOS] Edlyn Teske and Andreas Stein. Optimized baby step-giant step meth-

ods. Journal of the Ramanujan Mathematical Society, 20:1-32, 2005.

MR 2005m:11238. Previously released as technical report CACR 2005-

BIBLIOGRAPHY 207

11, Centre for Applied Cryptographic Research, University of Waterloo,

2005. Cited on pages 73 and 74.

[vdP03] Alfred J. van der Poorten. A note on NUCOMP. Mathematics of Com-

putation, 72(244):1935-1946, October 2003. MR 2004b:11173. Cited on

page 75.

[vdPS08] Alfred J. van der Poorten and Andreas Stein, editors. Algorithmic Num-

ber Theory—ANTS VIII (Banff, AB), volume 5011 of Lecture Notes in

Computer Science. SpringerVerlag, 2008. Cited on page 190.

[Vel08] Mark D. Velichka. Improvements to index calculus algorithms for solving

the hyperelliptic curve discrete logarithm problem over characteristic

two finite fields. Master's thesis, University of Calgary, Canada, 2008.

Cited on pages 6, 101, 131, 132, 137, 138, 141, 142, 146, 152, 154,

and 175.

[Vil97a] Gilles Villard. Further analysis of Coppersmith's block Wiedemann al-

gorithm for the solution of sparse linear systems. In Küchlin [Küc97],

pages 32-39. Extended abstract of [Vil97b]. Cited on page 207.

[Vil97b] Gilles Villard. A study of Coppersmith's block Wiedemann algorithm

using matrix polynomials. Research Report 975-I-M, IMAG Grenoble

Rance, 1997. Full version of [Vil97a]. Cited on page 207.

[Vo100] Ulrich Vollmer. Asymptotically fast discrete logarithms in quadratic

number fields. In Stevenhagen and Bosma [SBOO], pages 581-594.

MR 2003b:11135. Cited on page 4.

BIBLIOGRAPHY 208

[vzGG03] Joachim von zur Gathen and Jurgen Gerhard. Modern Computer Alge-

bra. Cambridge University Press, 2nd edition, 2003. MR 2004g:68202.

First edition published in 1999. MR 2000j:68205. Cited on page 102.

[Wei48] André Weil. Sur les courbes algébriques et les variétès qui s 'en déduisent.

Number 1041 in Actualités scientifiques et industrielles. Hermann, Paris,

1948. MR 10:262c. Cited on page 95.

[Wie86] Douglas H. Wiedemann. Solving sparse linear equations over finite

fields. IEEE Transactions on Information Theory, IT-32(1):54-62, 1986.

MR 87g:11166. Cited on pages 125 and 150.

[Wil74] Malcolm J. Williamson. Non-secret encryption using a finite field.

Research report, Communications-Electronics Security Group (CESG),

Great Britain, January 1974. Classified until 1997. Cited on page 2.

[WM68] Alfred E. Western and J. C. P. Miller. Indices and Primitive Roots.

Number 9 in Royal Society Mathematical Tables. Cambridge University

Press, 1968. MR 39:7792. Cited on page 88.

[WPO8J R. Clint Whaley and Antoine Petitet. Automatically tuned linear

algebra software (ATLAS). C library, version 3.8.1, available from

http: //math-atlas. sourcef orge. net, February 2008. Open source

software contributed to by many authors. First version released in 1997.

Cited on pages 185 and 197.

[WW87] Hugh C. Williams and Marvin C. Wunderlich. On the parallel gen-

eration of the residues for the continued fraction factoring algorithm.

BIBLIOGRAPHY 209

Mathematics of Computation, special issue dedicated to Daniel Shanks

on the occasion of his 70th birthday, 48(177):405-442, January 1987.

MR 881:11099. Cited on pages 49, 59, and 60.

[Yun77] David Y. Y. Yun. Fast algorithm for rational function integration. In

Bruce Gilchrist, editor, Information Processing 77 (Toronto, ON), num-

ber 7 in IFIP Congress Series, pages 493-498. North-Holland, Amster-

dam, 1977. Cited on page 104.

[Z575] Oscar Zariski and Pierre Samuel. Commutative Algebra, volumes I &

II. Number 28 & 29 in Graduate Texts in Mathematics. Springer-

'Terlag, 1975. Reprint of the originals published in the University Series

in Higher Mathematics by D. Van Nostrand, Princeton in 1958-1960.

MR 19:833e, MR 22:11006. Cited on pages 12, 15, 30, 31, 32, 33, 48,

49, 50, and 52.

[Zuc97a] Robert J. Zuccherato. The continued fraction algorithm and regula-

tor for quadratic function fields of characteristic 2. Journal of algebra,

190(2):563-587, 1997. MR 98a:11156. Results also printed in [Zuc97b,

Ch. 4-5]. Cited on pages 49, 59, 62, 64, 69, 72, and 73.

[Zuc97b] Robert J. Zuccherato. New Applications of Elliptic Curves and Function

Fields in Cryptography. PhD thesis, University of Waterloo, Canada,

1997. Cited on page 209.

