
UNIVERSITY OF CALGARY 

Index Calculus in the Infrastructure of Real Quadratic Function Fields 

by 

Jonathan Francis Hammell 

A THESIS 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES• 

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF MASTER OF SCIENCE 

DEPARTMENT OF COMPUTER SCIENCE 

CALGARY, ALBERTA 

July, 2008 

© Jonathan Francis Hammell 2008 



UNIVERSITY OF CALGARY 

FACULTY OF GRADUATE STUDIES 

The undersigned certify that they have read, and recommend to the Faculty of Grad-

uate Studies for acceptance, a thesis entitled "Index Calculus in the Infrastructure of 

Real Quadratic Function Fields" submitted by Jonathan Francis Hammell in partial 

fulfilment of the requirements for the degree of Master of Science. 

Supervisor, Dr. Michael J. Jacobson, Jr. 

Department of Computer Science 

University of Calgary 

Dr. Renate Scheidler 

Department of Computer Science 

University of Calgary 

Dr. Laurent Imbert 

Centre National de la Recherche Scientifique 

Montpellier, France 

Date 

11 



Abstract 

Quadratic function fields were first extensively studied by Artin in 1921. These func-

tion fields have geometric properties related to hyperelliptic curves as well as number-

theoretic properties related to quadratic number fields. In 1972, Shanks introduced 

the infrastructure of a real quadratic number field. In this work we study the infras-

tructure of a real quadratic function field. 

We provide a heuristic analysis of a new, practical method for performing index 

calculus in the infrastructure when the genus of the function field is large. We im-

plemented this method, as well as a sieve-based method, and this thesis provides 

experimental results for computing the regulator that compares the two variants. 

This is the first known implementation of index calculus in the infrastructure. 
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Chapter 1 

Introduction 

The advent of computers gave rise to a new discipline worked on by both mathe-

maticians and computer scientists called computational number theory. It is the 

study of algorithms for solving number theoretic problems. Computers and efficient 

algorithms have greatly increased the range that computational number theorists 

havebeen able to test theoretical conjectures. Interest in these problems grew in the 

mid-1970s when it was discovered that the privacy and authenticity of electronic com-

munications could be secured if based on a computational problem that is sufficiently 

difficult. 

1.1 Public Key Cryptography 

Public key cryptography was introduced independently by Diffie and Heilman 

[DH76] and Merkle [Mer78]. The authors of the former paper described how crypto-

graphic key distribution could be simplified if one used a so-called one-way trapdoor 

1 



1.1. PUBLIC KEY CRYPTOGRAPHY 2 

function.' Such a function is easy to compute, yet computationally difficult to in-

vert without the knowledge of some key piece of information, called the trapdoor 

information. Diffie and Hellman' also claimed that this one-way trapdoor function 

could be used to prove the authenticity of electronic data using a digital signature. 

The security of these cryptographic protocols relies on the computational difficulty 

required to invert the trapdoor function without a priori knowledge of the trapdoor 

information. Public key cryptography is now used to secure government communi-

cations and financial transactions in business, hence there is practical and economic 

importance to computational number theory. 

One of thd most famous computational problems in this area is integer factoriza-

tion. The first example of public key cryptography had a trapdoor function based on 

integer factorization. Introduced in 1,978 by Rivest, Shamir and Adleman [RSA78], 

this scheme became pervasive in cryptographic applications and is generally referred 

to as RSA.2 The fastest known algorithms developed by computational number the-

orists for performing integer factorization are based on a technique called index 

calculus. Although index calculus does not break RSA, it significantly weakens it, 

requiring one to use key sizes of at least 1024 bits versus the 665 bits suggested in 

the original paper. 

In 1984, another public key cryptographic scheme was poposed with a trapdoor 

function based on the computational problem of finding an integer exponent x given 

a group element h = gX for a known group generator g. This problem is called 

'In 1997 it was revealed in a formally classified document [E1187] that James Ellis and Malcolm 
Williamson of the CESG in Great Britain had discovered public key cryptography and the Diffie-
Hellman scheme respectively in 1970 and 1974 [E1170] , [Wil74]. 

was also revealed in 1997 that Clifford Cocks of the CESG had discovered the RSA scheme 
in 1973 [Coc73]. 



1.2. NUMBER FIELDS AND FUNCTION FIELDS 3 

the discrete logarithm problem (DLP) and the cryptographic scheme based on it 

was proposed by ElGamal [E1G85]. For certain groups the DLP is computationally 

difficult if the size of the group is chosen to be large enough. Again, index calculus 

can be applied to solve an instance of the DLP in many groups, thereby requiring the 

group size to be increased for the DLP to remain computationally infeasible. However, 

index calculus is not a so-called generic method for solving the DLP since it cannot 

be applied in every type of group. For instance, computational number theorists have 

not been able to apply index calculus successfully to the group of points on an elliptic 

curve. There have been proposals by Silverman [Sil00] and Semaev [Sem04], but the 

algorithms are less efficient than the generic method of Pollard [Pol78] which runs in 

square-root time with respect to the order of the group.3 Consequently, cryptosystems 

based on the elliptic curve DLP are able to use key sizes that are significantly smaller 

than RSA and ElGamal in other groups. This advantage allows cryptography to be 

deployed in a wider range of devices. Therefore, cryptographers have searched for 

other groups that offer a DLP that is secure against index calculus. Class groups in 

number fields and function fields showed promise. 

1.2 Number Fields and Function Fields 

In 1801 Gauss published a list of imaginary quadratic number fields and con-

jectured that this list was complete for class numbers of one, two and three [Gau86, 

§V, Art. 303]. Computing the class number of a quadratic number field is compu-

tationally difficult—Gauss's technique was fully exponential—and it was not until 

'Index calculus attacks do greatly reduce the security of the elliptic curve DLP over certain types 
of fields, but these are easy to avoid in practice (cf. Gaudry [GauO7] and Diem [DieO8, pp. 157-208]). 
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1985 that Gauss's claim was proven to be correct (cf. Goldfeld [Go185]). Most classi-

cal algorithms for computing the class number were based on the Dirichlet L-series. 

Shanks proposed a method that enables one to compute the class number and class 

group structure much faster than the classical techniques [Sha71]. Shanks's method, 

now known as the baby-step giant-step algorithm, has been adapted to many 

other computation problems; however, it is still only a square-root time algorithm. 

In 1989, Hafner and McCurley described how to adapt index calculus to the class 

group of an imaginary quadratic number field and showed how one could compute 

the class number and the group structure [HM89]. Their method relied upon on the 

unproven, but widely believed, Extended Riemann Hypothesis (ERH). A year earlier, 

Buchmann and Williams had proposed a DLP in the class group of an imaginary 

quadratic number field as the basis for a public key cryptosystem [BW88]. However, it 

was immediately realized by McCurley that their index calculus method also enables 

one to solve instances of the DLP [McC89, §5]. More recently, Vollmer presented 

another technique for index calculus in quadratic number fields that improves on the 

Hafner-McCurley method [VolOO]. 

The case of real quadratic number fields is quite different. Cohen and Lenstra 

developed heuristics that suggest that the ideal class numbers of real quadratic num-

ber fields tend to be small [CL84]. Gauss's conjecture that there are infinitely many 

real quadratic number fields with class number one is still an open problem {Gau86, 

§V, Art 304]. Due to the small class numbers, the DLP defined in the imaginary 

case does not translate directly to real quadratic number fields. However, Shanks 

recognized an internal structure to the ideal classes, which he called the infrastruc-

ture [5ha72b]. Buchmann and Williams realized that the infrastructure allowed one 
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to define a DLP for a real quadratic number field [BW9O]. This was the first time 

the DLP had been extended to a mathematical structure that is not a group. The 

scheme was improved upon by Scheidler, Buchmann and Williams [SBW91, Sch93] 

and, more recently, by Jacobson, Scheidler and Williams [JSWO6]. However, Buch-

mann also showed that index calculus could be adapted to real quadratic number 

fields, where in addition to solving the DLP it could be used to find the class number, 

group structure and the regulator [Buc9O]. It is important to note that the index cal-

culus algorithms of Hafner-McCurley and Buchmann were verified in practice through 

implementations by Buchmann and Düllmann [BD91, BD92] and Cohen, Diaz y Diaz 

and Oliver [CDO93, 0D097]. 

As many algebraic number theorists know, number fields have many similarities 

with another class of global fields called function fields (over finite fields). Quadratic 

function fields can be derived using purely algebraic methods or from algebraic geo-

metric structures called hyperelliptic curves. Class groups in imaginary quadratic 

function fields can be directly represented by the Jacobian of a hyperelliptic curve. 

Schoof [Sch85, Sch95] and Satoh [SatOO] discovered polynomial-time algorithms for 

computing the class number of a genus-one quadratic function field where the class 

number corresponds to the number of points on an elliptic curve. Schoof's algorithm 

has been generalized to t,o higher genus by Pila [Pil9O], Huang and lerardi [H198], 

and Gaudry and Harley [GHOO], but their algorithms are only polynomial-time when 

the genus is fixed, thus only potentially feasible for small genera. Mestre proposed 

an algorithm related to Satoh's method to count points on the Jacobian for arbi-

trary genus, but it is still restricted to small genera and small field characteristics 

[MesOO, MesO2]. A cohomological point counting algorithm introduced by Kedlaya is 



1.. NUMBER FIELDS AND FUNCTION FIELDS 

polynomial-time in the genus, but exponential in the size of the field characteristic, 

even with recent improvements by Harvey [KedOl, KedO4], [HarO7]. 

A DLP in the class group of an imaginary quadratic function field was proposed 

for cryptography by Koblitz [Kob89]. Adleman, DeMarrais and Huang [ADH94] were 

the first to describe how to adapt index calculus to this DLP with generalizations by 

Bauer [Bau99, BauOl] and Enge [EngOO, EngO2]. However, the ADH algorithm was 

predicted to only be efficient when the genus of the function field was large. Gaudry 

presented another index calculus variant for solving the DLP when the class number 

is known in advance [GauOOa]. While this does not help the computational problem 

of finding the class number, it is argued that this value is likely to be known in 

cryptographic situations. Moreover, Gaudry's algorithm also applies to the small 

genus case, reducing the space where the DLP still seems to be immune to index 

calculus to genera less than four. Thériault [TheO3] and Gaudry, Thome', Thériault 

and Diem [GTTDO7] have described further theoretical improvements to Gaudry's 

original algorithm. 

The first implementations of index calculus in imaginary quadratic function fields 

were by Paulus and Flassenberg using practical improvements to the ADH algorithm 

[Pau96, FF99]. Other known implementations targeting the large genus case were 

by Smart [Sma97], Jacobson, Menezes and Stein [JMSO1], and recently by Velichka 

[Ve1O8]. Implementations of index calculus for small genus imaginary quadratic func-

tion fields have been described by Gaudry [GauoOa] and with the latest improvements 

by Gaudry, Thomé, Thériault and Diem [GTTDO7]. 

Real quadratic function fields have similar properties as real quadratic number 

fields. The ideal class number tends to be small, and ideal classes have an internal 
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structure referred to as the infrastructure. Enge described how index calculus could 

be applied in the Jacobian of a real hyperelliptic curve [EngO2]. However, since the 

Jacobian is not isomorphic to the ideal class group of a real quadratic function field, 

Enge's method does not find the ideal class number, regulator, or the ideal class 

group structure. Similarly, tho methods described above based on point counting for 

computing the class number of an imaginary quadratic function field would not give 

the ideal class number of a real quadratic function field without some method for 

computing the regulator. 

Scheidler, Stein and Williams proposed a DLP in the infrastructure of a real 

quadratic function field [SSW96]. Recently, more cryptographic schemes have been 

proposed based on the infrastructure DLP by Jacobson, Scheidler and Stein [JSSO7]. 

Miller, Stein and Thiel described how index calculus could be performed in the 

infrastructure of a real quadratic function field when the genus is large [MST99]. 

They described how their algorithm could be used to solve the infrastructure DLP, as 

well to find the ideal class number, the regulator, and the ideal class group structure. 

However, their algorithm had not been verified in practice since there was no known 

implementation until now. 

One may ask why implementations of these algorithms are necessary. Index cal-

culus is a complex algorithm that is even more complex when working with mathe-

matical objects that are not easily represented by integers. Hence, the validity of a 

theoretical algorithm may be questioned as there are many subtleties that could be 

overlooked. Theoretical expositions often give complexity analyses to estimate the 

efficiency of their algorithm. These may be rigourous or based on heuristics regard-

ing some unproven assumption. However, as computer scientists know, a complexity 
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analysis is often only an upper bound and hides numerical constants that may dra-

matically affect the algorithm's practical runtime. Moreover, an implementation is 

the only sure way to verify heuristic assumptions. Finally, implementations allow 

one to obtain concrete running times based on a variety of parameter choices. Rom 

these results we can extrapolate estimates on the time to complete larger problems. 

This is especially imporantant in the area of cryptography, where one chooses the 

size of their key based on the estimated time to complete the fastest known attack on 

the trapdoor function. This motivated us to study index calculus in the infrastruc-

ture of real quadratic function fields and to attempt the first implementation of this 

algorithm. 

1.3 Contributions 

In this thesis, we present the theory behind real quadratic function fieldsin such a way 

to show the parallels between algebraic geometry and pure algebraic constructions. 

We present algorithms for the infrastructure of real quadratic function fields and 

describe in detail how index calculus can be applied in this setting when the genus 

is large. We extend the algorithm of Muller, Stein and Thiel by describing numerous 

improvements to relation generation such as a baby walk method, self-initialized 

sieving, and the use of large primes. We give a new heuristic complexity analysis 

based on the baby walk method. Additionally, we present practical methods for 

computing the regulator that improve the linear algebra phase. We also descibe how 

to compute the class number, the group structure, and solve instances of the DLP 

in the infrastructure. Finally, we describe an implementation of our algorithms, the 

first time index calculus has been implemented in the infrastructure of real quadratic 



1.4. ORGANIZATION 9 

function fields. We compared timings for two relation generation methods against an 

implementation of the standard baby-step giant-step method. Our results show that, 

as predicted, in high genus function fields index calculus is in fact significantly faster 

than the baby-step giant-step method for computing the regulator. 

1.4 Organization 

One goal of this thesis is to contain a complete introduction to the theory of behind 

the infrastructure of a real quadratic function field. The first chapter contains the 

necessary background on hyperelliptic curves and algebraic function fields. These two 

sections are meant to parallel each other, providing a geometric interpretation as well 

as a purely algebraic introduction. This background chapter maybe skipped as the 

important parts are summarized at the beginning of Chapter 2. 

Chapter 2 introduces the class groups of quadratic function fields and presents 

the theory behind the infrastructure of a real quadratic function field. We present 

algorithms and notation that is necessary for Chapter 3. Index calculus is introduced 

in Chapter 3. The chapter begins with a discussion of computational problems in 

the infrastructure of real quadratic function fields, followed by an overview of index 

calculus in a generic group. The main body of Chapter 3 is the discussion and 

complexity analysis of index calculus in the infrastructure. 

Our C++ implementation of index calculus in the infrastructure of a real quadratic 

function field is described in Chapter 4. We discus special improvements made in 

the implementation, such as sieving and using large primes, followed by details of 

the code and external libraries used. In this chapter we also present computation 

timings from our experiments. The last chapter contains conclusions and suggestions 
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for future work. 

We have tried to present the algorithms in this thesis in a clear and precise manner. 

However, the reader should be aware that these high-level algorithms do not always 

correspond exactly to our C++ implementation due to optimizations and integration 

into a larger algebraic number theory library. 

In this thesis we have attempted to give precise citations and complete references 

to assist readers who are looking for more information. Papers are cited by section, 

books by page number. The theorems we present are without proof, but we give the 

reference where a proof may be found. Otherwise, we have tried to give intuition and 

constructive arguments to support the theory presented. 

We hope that you as a reader will find this thesis useful and easy to understand. 



Chapter 2 

Background 

One can approach quadratic function fields from two different roads: the theory of 

algebraic geometry and the structttres of non-geometric commutative algebra. How-

ever, one discovers that it is not that these roads meet at function fields, but they 

are in fact the same road, just different vehicles. 

This chapter introduces the background theory from both of these vehicles. An 

attempt has been made to develop similar results in both areas, with a sensitivity to 

the theory and notation of each. Our motivation is that this chapter may serve as 

a resource to those familiar in one area to effectively communicate with a researcher 

in the other area regarding the details of what comes later in this thesis. It is our 

belief that this is the only such resource. Alternatively, since the results in each 

section are similar, a reader may choose to just review the one section that he/she 

is more comfortable with. Those not interested in this background theory may skip 

this chapter entirely since the important definitions are summarized at the beginning 

of Chapter 3. 

To avoid starting from scratch, we assume that the reader is familiar with standard 

11 
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commutative algebra, including rings, fields, ideals and valuations; definitions for this 

material can be found in any introductory text on the subject, e.g. Zariski and Samuel 

[ZS75]. 

An effort has been made to keep the number of references for the background 

material to a minimum. However, occasionally we do cite an alternative text if one 

of the following situations arises: 

i) The general text does not contain the specific topic; 

ii) The alternative text contains an exposition that is, in our opinion, more clear; 

or 

iii) The treatment in alternative text is more standard or generalizes easier to other 

areas. 

It is our intention that this will assist the reader who is interested in obtaining a 

more complete understanding of the concepts. Consequently, we ask forgiveness for 

not citing the original sources for this material. 

2.1 Algebraic Geometric Background 

Algebraic geometry has a beautiful theory of which, in this section, we only scratch 

the surface. In fact, we will only use concepts from classical algebraic geometry 

ignoring the powerful, yet cumbersome theory of schemes. We assume that the reader 

is familiar with affine and projective space. These concepts, as well as most of the 

material in this section, can be found in Fulton [Ful89] or Hartshorne [Har77]. 
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2.1.1 Projective Plane Curves 

Let K be a field and let K denote its algebraic closure. Let f be a non-constant 

polynomial in K[x, y]. The affine hypersurface defined by f is a set consisting of 

all the points (a, b) on the affine plane A2(k) such that f(a, b) = 0 [Ful89, pp. 7-

8]. An affine plane curve C over K is a hypersurface defined by an irreducible 

polynomial f E K[x, y]. The polynomial f generates a prime ideal Pc C k[x, y] that 

we associate with the curve C. The coordinate ring of C is the quotient ring 

K[C] = K[x, y]/(pc fl K[x, y]), 

and the field of quotients of K[C], denoted K(C) = Quot(K[C]), is called the func-

tion field of C over K. Similarly, one can define the function field of C over 7 as 

(C) = Quot([x, y]/pc). Elements of K(C) (or (C)) are called rational func-

tions. A rational function f € (C) is regular at a point P E C if there exists a 

pair of polynomials g, h E 7[C] such that f = g/h and h(P) 0 0. For any (finite) 

point P E C, the local ring of C at P is the set Op(C) c 7?(C) of rational functions 
which are regular at the point P [Ful89, pp. 36, 42-43]. 

The set of K-rational points on the curve C is given by 

C(K) = (cnA 2 (K)) u (cnH) 

= {(a,b) E C a,b E K}U (cnH.) , 
(2.1) 

where H is the hyperplane at infinity. The curve C contains a non-empty subset 

of H, elements which are referred to as points at infinity. These points at infinity 

do not exist on the affine plane, but their addition allows us to consider C in the 
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projective plane 1P2 (K). We convert points from affine space to projective space via 

the homogenization map: 

J A(k) 
(x,y) i ,' (x :y:1). 

Points of the form (x : y : z) E 1P2(K) are said to be in homogeneous coordinates. 

The dehomogenization map returns a homogeneous point P = (x : y : z) E IP2() 

for z 0 to qr'(P) = (x/z,y/z) E A2(); if z = 0, the dehomogenization map gives 

a point at infinity cl(P) E H [Ful89, pp. 86-87]. The affine curve C is said to 

be the affine model of the projective plane curve given by the homogenization 

map on C. For any projective plane curve we can find its affine model via the 

dehomogenization map. The function field (C) of a projective plane curve C is 

isomorphic to the function field of its affine model [FLO6, p. 51]. 

Let C be a projective plane curve over K. Let Op(C) be the local ring of a 

point 'P E C. The point P is called smooth if Op(C) is integrally closed in (C); 

otherwise, P is called singular [Har77, pp. 32, 40]. If every finite point on C is 

smooth, then the curve is said to be nonsingular (or smooth); otherwise, if there 

exists a singular finite point on C, the curve is singular. The Jacobi criterion 

assists in determining smooth points on C [Fu189, p. 64]: 

Theorem 2.1 (Jacobi). Let C be the affine model of a projective plane curve over 

a field K. Suppose C has a defining ideal pc generated by the polynomial f E K[x, y]. 

For any point P E C, if either of the partial derivatives 2L ax (P) 0 or ay P1  (P) =h 0, 

then P is smooth in both the projective curve and the affine model. 

It follows from Theorem 2.1 that a point P on a curve is singular if both of the partial 
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derivatives (P) and (P) vanish. 

An example of a projective plane curve is the projective line TP'(K), called the 

rational curve. The rational curve has a unique point at infinity P P' (K) fl H. 

This point is smooth and has a local ring defined as 

0. = {glh E K(TP') deg  deg h}, 

where K(IP') = Quot(K[x]) is the function field of the rational curve [Ful89, p. 47]. 

In general, plane curves may have multiple points at infinity (which are not always 

smooth), but we can relate them to & by considering a "morphism" to the rational 

curve as defined in the next section. 

2.1.2 Morphisms and Ramification Points 

Let C and C' be two nonsingular projective curves over a field K. A non-constant 

map ç, C' - C is a morphism if there is a corresponding homomorphism 

K(C) -+ K(C'). A morphism is either constant or surjective (we will ignore constant 

morphisms). A morphism ço: C' - p C is separable if the function field K(C') is a 

separable field extension of K(C). The degree of ço is defined as .deg W = [K(C') 

K(C)] [Ful89, p. 214]. 

Consider a point P E C'(—K) with local ring Op. The local ring is a discrete 

valuation ring. Let t E Op be a uniformizing parameter, i.e. t generates the maximal 

ideal nip C Op. Then every f e k(C') can be expressed uniquely as f = tu for 

some u E O, and n E Z. The value of n is independent of the choice of t. Then we 

define the (discrete') valuation of Op as vp(f) = n and vp(0) = oo. This valuation 

'"Discrete" implies that the result of the valuation is an integer [ZS75, V. II, p. 42]. 
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can be extended to the function field R(C') by the rule vp(g/h) = vp(g) - vp(h) 

[Ful89, pp. 46-47]. 

Let P E C'(k) and let t be a uniformizing parameter of O, where Q = ço(P). 

The ramification index of ço at P is the positive integer given by 

e(P) = vp(t) 

where Vp is the valuation of the local ring Op. The ramification index is independent 

of the choice of t and satisfies e(P) = 1 for all but a finite number of points P E C'. 

The points P E C' such that W(P) E C and e(P) > 1 are called ramification points 

[Ful89, pp. 214-215]. 

Consider a ramification point P E C' with index e(P). If char K = 0 or if 

char K = p and p'e(P), then P is said to be tamely ramified with respect to çü. 

Otherwise, if char K = p and ple(P), then P is wildly ramified [Har77, p. 299]. 

2.1.3 Divisors 

Let C be a nonsingular projective (plane) curve over K. A divisor on C is a formal 

sum of points, 

L nP 
PeC(K) 

(2.2) 

where flp E Z with finitely many flp non-zero. Points on C are prime divisors 

and we denote the coefficients of the prime divisors of D as ordp(D) = rip. The 

support of D, denoted supp(D), is the set of points P E C with non-zero coefficients 

ordp(D). If ordp(D) ≥ 0 for all P E supp(D), then D is effective, denoted D ≥ 0. 
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The degree of D is defined as 

deg  = ordp(D). 
PEsupp(D) 

The set of divisors on C forms a free Abelian group Div(C) under addition [Har77, 

p. 294]. 

"Recall that for any point P E C(k), the local ring Op is a discret valuation' ring 

with valuation Vp. Let f E k(C) be a non-zero rational function. The divisor of f 

is defined as 

div(f) = vp(f)P, 

PEO(K) 

(2.3) 

where vp(f) is non-zero for a finite number of points P E C(i?). Since the valuation 

Vp is discrete, it is easy to see that (2.3) satisfies the form given in (2.2). Divisors 

that can be written in this form are called principal divisors. Furthermore, we have 

that div(f . g) = div(f) + div(g) and div(f/g) = div(f) - div(g) for any non-zero 

f,g G R(C) [Har77, pp. 130-131]. 

For any principal divisor div(f), we define the divisor of zeroes divo(f) and the 

divisor of poles div(f) given by 

divo(f) = vp(f) P and div(f) = > —vp(f) . P. 

PEC(K) PEC(K) 

VP(f)<0 

Then div(f) can be written as div(f) = divo(f)—div(f). Any point P € supp(divo(f)) 

is a zero of f of multiplicity vp(f). Similarly, any point P E supp(div(f)) is a pole 
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of f of order - VP (f). Every principal divisor has degree zero; therefore, every rational 

function f has an equal number of zeroes and poles when counted with multiplicities 

[Ful89, p. 188]. 

Let C and C' he two nonsingular projective curves over K with a morphism ço 

C' -+ C. The conorm of a divisor with respect to W is the following homomorphism: 

Div(C) - Div(C') 

Conw D i- ordQ(D).e(P).P, 

QESUPP(D) P€C'(i?) 

W(P)=Q 

where e(P) is the ramification index of ço at P. In particular, for any divisor D E 

Div(C), the degree of the divisor Con(D) E Div(C') satisfies 

deg Con(D) = deg ço . deg D, (2.4) 

where deg ço is the degree of the morphism çü [Har77, pp. 137-138]. 

2.1.4 Differentials and Canonical Divisors 

Let F = K(C) be the function field of a nonsingular projective (plane) curve over K. 

Note that F is a field containing the field K and let V be a vector space over F. A 

derivation of F into V is a map d: F -+ V satisfying the following properties for 

every f, g E F and a E K: 

i) d(fg) = f . d(g) + g . d(f) (Leibniz's rule) 

ii) d(f + g) = d(f ) + d(g) 

iii) d(af) = ad(f). 
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For each f E F let [f] denote a formal symbol. We define the free vector space 

= { [f] f F.} over F and a subspace T generated by the following sets: 
i) {[fg]  - f[9] - g[f] I f, g Ei F} 

ii) {If  +91- [fl - [g] f, g E F} 

iii) {[af]_a[f] fEF,aEK}. 

Then the space of differentials of F = K(C) is defined to be the quotient space 

OF/K = SIT. The residue of [f] in SIT is the image of the derivation d(f) in OF/K. 

We will omit the parenthesis and write df for the derivation d(f). Elements of QFIK 

are called differentials on C [Fu189, pp. 203-204]. 

For any (smooth) point P E C(K), consider the local ring Op(C) as a discrete 

valuation ring and subring of F = K(C). Let t E (9p(C), t 0 K, be a uniformizing 

parameter. Then, for every w E OF/K, there is a unique element h E F, depending 

on w and t, such that w = h. dt. Since w = df for some f E F, the value h can be 

written as 

h df 
dt -, 

where h is called the derivative of f with respect to t. The order of w at P is given 

by the valuation on the local ring Op as 

ordp(w) = vp(w/dt). 

As the notation suggests, the order depends only on w and P, not on the choice of 

uniformizer t [Ful89, p. 207]. 
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For any differential w E OF/K, the divisor of w is a formal sum given by 

div(w) = L ordp(w) P. 
PEC 

Note that div(w) E Div(C) and divisors of this form are called canonical divisors 

[Ful89, p. 207]. 

2.1.5 Riemann-Roch and the Genus 

For each divisor D E Div(C), the Riemann-Roch space is .a vector space 2(D) 

over K given by 

2(D) = {f € K(C) N {0} I div(f) + D ≥ o} u {o}. 

The Riemann-Roch space is finite-dimensional, and its dimension is denoted by 

£(D) = dimK2(D) 

[Ful89, p. 192]. The Riemann-Roch space is important as shown in the famous 

Riemann-Roch theorem [Ful89, pp. 209-210]: 

Theorem 2.2 (Riemann, 1857; Roch, 1865). There exists an integer g ≥ 0 sat-

isfying 

i) £(D) - £(W - D) = deg(D) - g + 1 for any divisor. D E Div(C) and canonical 

divisor W E Div(C). 

ii) £(D) = deg(D) - g + 1 for any divisor D E Div(C) with deg D> 2g - 2. 
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The value g is called the genus of the curve C. We call any nonsingular projective 

curve of genus g = 0 a rational curve since it is (birationally2) equivalent to P' (7). 

A nonsingular projective curve of genus g = 1 is called an elliptic curve [Ful89, 

pp. 196-198]. We consider curves of higher genus in Section 2.1.7, .but first we give 

another method for computing the genus. 

2.1.6 The Ramification Divisor and the Hurwitz Formula 

Let C and C' be two nonsingular projective curves over a field K with a separable 

morphism : C' — C. To simplify notation, denote the function fields of C and C' as 

F = K(C) and F' = K(C'), respectively. Since there is an injective homomorphism 

: F —+ F' corresponding to çü, (F) is isomorphic to F and, hence, F is a subfield 

of P. 

Consider the modules 1F/K and Q F11K. There is a module of relative differ-

entials clF/F of F over F defined in a similar way as n .F11K with K C F' replaced 

by F C P. Let Div(F/K) C Div(C) denote the set of canonical divisors of C. Then 

we have the following exact sequence [Har77, pp. 1721,299-300]: 

0 — f Con(DiV(F/K)) . 1F'/K - p 0. (2.5) 

Consider a point P E C' with ço(P) = Q for some point Q E C. Let ( F'/K)p 

denote the free Op-module generated by a differential dt, where t E Op is a uni-

formizing parameter. Similarly, let ( F/K)Q denote the free OQ-module generated by 

du for a uniformizing parameter u E (9Q. Then from the sequence in Equation (2.5), 

curves are "birationally" equivalent if and only if their function fields are isomorphic [Fu189, 
p. 155]. 
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there is a principal Op-module (IlF'/p)p generated by ordp(du/dt) that is isomorphic 

to ( lF'/K)p/ Con(Div( F/K)Q). Let length(M) denote the length of a module M; 

that is, the length of the longest ascending chain of submodules of M. Then we have 

the following result regarding the length of ( F'/F)p [Har77, p. 300]: 

Lemma 2.3. Let C and C' be two nonsingular projective curves over a field K with 

a separable morphism ço: C' - C. Then for any point P E C(k) 

length ( F'/F)P ≥ e(P) - 1. 

If P is tamely ramified with respect to ço, then the inequality is an equality; otherwise, 

P is wildly ramified and the inequality is strict. 

Given the previous result, we define the ramification divisor of cc as 

= length (c1 /) . P. 

PEC' (7?) 

(2.6) 

The points with non-zero coefficients in R. are precisely the ramification points of W. 

This leads to the Hurwitz formula which relates the genera of two curves [Har77, 

p. 301]. 

Theorem 2.4 (Hurwitz, 1891). Let C and C' be two nonsingular projective curves 

over a field K with a separable morphism cc : C' - C. Then if C has genus g, the 

genus g' of C' satisfies 

2g' — 2 = deg ()(2g — 2) + deg R. 

From the definition of the ramification divisor in Equation (2.6) and Lemma 2.3, 
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we get the following corollary to the Hurwitz formula [Si186, p. 41]: 

Corollary 2.5. Let C and C' be two nonsingular projective curves over a field K 

with a separable morphism ço: C' - C. Then if C has genus g, the genus g' of C' 

satisfies 

2g' - 2 ≥ deg ((p)(2g - 2) + (e (P) - i) 

PEC'(i?) 

If all P E C' are tamely ramified, then the inequality is an equality; otherwise, the 

inequality is strict. 

2.1.7 Weierstrass Points 

Let C be a nonsingular projective curve of genus g defined over a field K and let IP' 

be the rational curve also over K. A morphism ir : C -+ IP' is called a cover for C 

and the ramification points with respect to ir are called Weierstrass points of C. 

The fiber of ir over P is the set 7r-'(P) of points Q € C such that ir(Q) = P. For a 

cover ir of degree n, if the fiber contains fewer than n points, then it must contain at 

least one Weierstrass point of C. 

The Weierstrass gap sequence for a point P E C is given by the integers n E N 

satisfying 

£(nP) = iZ((n — 1)P) 

There are exactly g integers in the Weierstrass gap sequence (n,, n2,. .. , n9), satisfying 

0 < fll < fl2 < <n9 < 2g. All but finitely many points P E C(k) have the same 
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Weierstrass gap sequence; those points that differ are precisely the Weierstrass points. 

There are no Weierstrass points on curves of genus g = 0 or g = 1; however, if g ≥ 2, 

then there must exist at least one Weierstrass point [Sti93, p. 32]. 

If g > 1 and 2 is not in the Weierstrass gap sequence for a Weierstrass point P, 

then P is called a hyperelliptic Weierstrass point. A nonsingular projective curve 

C is called a hyperelliptic curve if C has a hyperelliptic Weierstrass point. This is 

satisfied if and only if the genus g ≥ 2 and there exists a double cover for C, i.e. a 

morphism ir : C - IF' of degree 2 [Fu189, p. 216]. 

2.1.8 Hyperelliptic Curves 

Recall from the previous section that a hyperelliptic curve C over a field K is a 

nonsingular projective curve of genus g> 1 with a morphism ir: C - p IF' of degree 

2. Let K[C] be the coordinate ring of C given by K[C] = K[x, y]/po, where pc is 

the prime ideal of the curve C. Let P E C fl H be a point at infinity on C(K) 

(cf. Equation (2.1)). In this section we derive the equation defining the nonsingular 

affine model of a hyperelliptic curve C/K following the technique of Frey and Lange 

[FLO6, pp. 73-74]. 

There exists an element x that is transcendental over K such that the rational 

curve IP'/K has a function field K(IF') = K(x). For such an x, consider the divisor of 

poles D = div(x). Since ir has degree 2, we have [K(C) : K(x)] = 2 and the divisor 

D must have degree 2. For integers 1 ≤ m ≤ g we have deg(mD) = 2m and 2(mD) 

has a basis { 1, x,. . . , X}. But when m = g + 1 we have deg((g + 1)D) = 2(g + 1), 
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and by Riemann-Roch (Theorem 2.2) 

£((g+1)D)=deg((g+1)D)—g+1=g+3. 

This implies that 2((g + 1) D) has a basis consisting of 1, x,. . . , plus some 

additional linearly independent z E 2((g + l)D). We will show that z % K[x] 

by first supposing that z = +2 . Then there would be g + 2 zeroes of z implying 

deg divo(z) ≥ g + 2. In fact, given that ir is a morphism of degree 2, by Equation (2.4) 

we would have that deg divo(z) ≥ 2(g + 2). But deg divc,,(z) = deg divo(z) and 

div(z) = divo(z) - div(z), so with deg((g + 1)D) = 2g + 2 we could not have 

div(z) + (g + l)D be effective. Therefore, 0 2((g+ 1)D) and z 0 K[x] implying 

the basis for 2'((g+ 1)D) is { 1,x,. . . ,x9 ',y}. In a similar vein, the Riemann-Roch 

space . t(2(g + 1)D) has a basis of size 3g + 5 given by the following: 

{l,x,.. . ,x2(9+l),y, xy,. .. ,x9+ly,y2} 

A linear combination of this basis over K gives the following equation (after dividing 

through by the coefficient of y2): 

y2+h(x)y=f(x), (2.7) 

where h, f E K[x] with degrees bounded as deg h ≤ g + 1 and deg f ≤ 2g + 2. 
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Fields of Odd Characteristic 

Now we present more precise requirements on the degrees of h and f that depend 

on the number of finite Weiérstrass points on C. We will start by assuming that 

char K 2. Since ir is a separable morphism of degree 2, Corollary 2.5 of the 

Hurwitz formula simplifies to 

2g+2= (e(P)—l) . (2.8) 

PEC(K) 

where each ramification index e(P) ≤ 2: Therefore, there are at most 2g + 2 rami-

fication points on C with respect to . However, if P E C is a ramification point, 

then there are only 2g + 1 finite ramification points. These ramification points are 

precisely the Weierstrass points of C. 

The transformation y i- y - h(x)/2 allows us to consider h(x) = 0 in Equa-

tion (2.7). Then there exists an involution given by t : y -* —y, called the hyperel-

liptic involution. This involution t sends a point P to the other point in the fiber 

of ir(P) and fixes the ramification points, i.e. the Weierstrass points of C. The image 

t(P) of a point P under the hyperelliptic involution is called the conjugate of P, 

denoted P. 

If there is one point in the fiber of ir(P), then P is the only point at infinity in 

c fl H. If P is a Weierstrass point, then by Equation (2.8) there are 2g + 1 finite 

Weierstrass points and we call C an imaginary hyperelliptic curve. In this case 

f(x) is monic with deg f = 2g + 1. An example of an imaginary hyperelliptic curve 

is shown in Figure 2.6. 

If there are two points in the fiber of ir(P),, then there are two points at infinity, 
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Figure 2.6. The genus-2 imaginary hyperelliptic curve C : y2 = x5-6x3—x2+4x+1 

over 11 plotted in the affine plane A2(R). 

P, P € C fl H, such that P. = P,. Also, since these points are not Weierstrass 10 00 

points, by Equation (2.8) there are 2g + 2 finite Weierstrass points and C is called a 

real hyperelliptic curve. In this case f(x) has deg f = 2g+2 with leading coefficient 

a square in K. An example of a real hyperelliptic curve is shown in Figure 2.7. 

There is a degenerate case when there is only one point in the fiber of ir(P), but 

the point P is not a Weierstrass point. In the degenerate case, C is called unusual 

and f(x) has deg f = 2g + 2 with leading coefficient a non-square in K. 

These cases give the affine equation C = f(x) for ahyperelliptic curve C over 

K (char K 2), where deg f E {2g + 1, 2g + 2}. The requirements on the polynomial 

f for each of the above cases can be found in Jacobson, Scheidler and Stein [JSSO7b, 

§3] or [JSSO7a, § 2]. To satisfy the Jacobi criterion (Theorem 2.1) and ensure C is 
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Figure 2.7. The genus-2 real hyperelliptic curve C: y2 = X'+ x' -  5x' -  2x'+ 3x + 1 

over IR plotted in the affine plane A2(R). 

nonsingular, no finite point P E C() must satisfy 2y = 0 and f'(x) = 0. That is, 

the singular points are (a, 0) E C() satisfying f(a) = 0 and f(a) = 0. Therefore, 

C is nonsingular if and only if f(x) is squarefree in k[x, y]. 

Fields of Even Characteristic 

Now we consider the case when K is of characteristic two. With the degree 2 separable 

morphism ir, the Hurwitz formula (Theorem 2.4) simplifies to 

2g + 2 = deg R. 
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Let F0 = K(C) and F = K(PI) = K(x). Since every ramified point P E C(k) 

is wildly ramified, Lemma 2.3 gives that length ( F/F)p ≥ 2. Therefore, from the 

definition of the ramification divisor in Equation (2.6); the number r of ramified 

points on C with respect to ço must be in the range 1 < r < g + 1. These ramification 

points' are precisely the Weierstrass points of C. 

We cannot use the same transformation y '- y - h(x)/2 when char K = 2. If 

we were to let h(x) = 0, then C would be singular since any Weierstrass point 

(a, b) E C(R) satisfies f'(a) = 0 and 2b = 0. Therefore, we .must have h(x) 0 0 in 

(2.7). The hyperelliptic involution for this case is given by t : y i-* —y - h(x). 

Again, P = t(P) is called the conjugate of F, and the fixed points of t are the 

Weierstrass points of C. 

If there is, one point in the fiber of ir(P), then P is the only point at infinity in 

C fl H. If P is a Weierstrass point and there are at most g finite Weierstrass points 

on C, then we call C an imaginary hyperelliptic curve. In this case deg h ≤ g 

and deg f = 2g + 1. 

If there are two points in the fiber of ir(P), then there are two points at infinity, 

P, P E CflH, such that = P. These points are not Weierstrass points, so if 

there are g+1 finite Weierstrass points, we call C a real hyperelliptic curve. In this 

case we have deg h = g + 1 and f(x) satisfies either deg f ≤ 2g + 1 or deg f = 2g + 2 

with leading coefficient of the form e2 + e for some e E K*. 

We still have the degenerate case where C is called unusual when there is only 

one point in the fiber of ir(P,), but the point P is not a Weierstrass point. In this 

case deg h = g + 1 and deg f = 2g + 2 where f(x) does not have a leading coefficient 

of the form e2 + e for any e E K*. 
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Therefore, when char K = 2, we have an affine equation C: y2 + h(x)y = f(x) for 

a hyperelliptic curve C over K, where h(x) is monic and satisfies deg h < g + 1 and 

f(x) satisfies deg f E {2g + 1, 2g + 2}. It is interesting to note that the irreducible 

factors of h(x) are simple divisors of f(x). The requirements on the polynomials h 

and f for each of the above cases are derived in Enge [EngOl]. To satisfy the Jacobi 

criterion (Theorem 2.1) and ensure C is nonsingular, no finite point P E C(K) can 

satisfy both 2y + h(x) = 0 and f'(x) - h'(x)y = 0. 

In the rest of this thesis we ignore the case where C is unusual. One may note 

that if considering a curve C that is unusual with constant field K, then C over 

where £ is a constant field extension of degree 2 over K, will result in C being a real 

hyperelliptic curve [PR99, § 1]. The focus of this thesis is real hyperelliptic curves and 

their function fields. 

2.2 Algebraic Non-Geometric Background 

Commutative algebra offers mathematical structures that work in similar ways to 

the geometric presentation of the last section. In particular, this section defines and 

examines the construct of an algebraic function field. As a reference for most of the 

results in this section, we refer the reader to Stichtenoth [Sti93]. 

Let K be a field. An algebraic function field (in one variable) over K is a field 

F that is a finite algebraic extension of K(x) for some x € F that is transcendental 

over K. The algebraic function field F = K(x) is called the rational function field 

in x over K. Throughout this section we assume that K is a perfect field.' 

3A field K is "perfect" if every irreducible polynomial f(x) E K[x] is separable over K [ZS75, 
V. I, pp. 64-65]. Finite fields, fields of characteristic zero, and algebraically closed fields are all 

perfect. 
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The field of constants K of an algebraic function field F over K is the set of 

all elements of F that are algebraic over K. We have that K Ck C F and K is a 

finite extension field of K. The field of constants is exact (or full) if K = K [Sti93, 

pp. 1, 6]. We will assume that any function field F has K = K 

The theory of algebraic function fields has many parallels with algebraic number 

fields. In fact, number fields and function fields defined over finite fields are generally 

referred to as global fields. In the work at hand, we focus on algebraic function 

fields. 

2.2.1 Places 

Let F D K be an algebraic function field. A place of F is an embedding 9 of a 

valuation ring 0.9 C F into the residue field 09 /m.9, where mp is the maximal 

ideal of O. The value of P at an element a E 0p is written in infix notation and 

a place .' satisfies the following properties: 

i) For afiya(EFN Op, we have a' EO.9 and a'.9=O. 

ii) There exists an a E 0.9 such that a1-' 0 0. 

The map .9 can be extended to F by introducing a symbol oo such that a.9 = 0° 

for all a E F N (99. The degree of a place .9 is a finite value given by 

deg .9 =[0 .9/m.9:K]≤[F:K]<oo. 

If deg .9 = 1, then 0.9 /rn.9 = K and the place .9 is called rational. We denote the 

set of places of F by E(F) [ZS75, V. II, pp. 3-7], [Sti93, pp. 6,7]. 
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A place 9 E E(F) is finite on K[x] if a oo for all a E K[x]. The centre 

of a finite place 9 is the prime ideal p = mg fl K[x] K[x], consisting of all the 

polynomials f E K[x] that vanish at P. Two places are isomorphic if they have 

the same centre in any integral domain R C F in which they are finite [ZS75, V. II, 

pp. 15-16]. 

Consider a place . E Z(F) with valuation ring O_m and maximal ideal m. 

For any prime element t satisfying m = tQg, there exists a unique representation 

f = tu for every non-zero f E F with u E O and n E Z. Note that the value of n 

is independent of the choice of t. This defines the (discrete) valuation of Og given 

by vg  (f) = n and vg (0) = cc. Then the valuation ring Op for any finite place 9 is 

given as the following [Sti93, pp. 3-5]: 

o={fEFv)≥o}. 

Let K(x) be the rational function field in x over K. There is a unique place 

E(K(x)) not finite on K[x] called the place at infinity. This place has a 

discrete valuation defined by the rule vg. (g/h) = deg h - deg g, for any f = g/h E F. 

Then the valuation ring of is given by 

o={g/hEK(x) I deg g≤ deg h} , 

The transcendental element x 0 O, so we must have x E ° co• Therefore, 

K[x-'] g O and the centre of is the principal (prime) ideal p = x'O. 

The place at infinity satisfies deg = 1. Any algebraic function field that is a 

non-trivial extension of K(x) may actually have multiple places at infinity, but they 
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are all related to .9 [Sti93, pp. 8-9]. 

2.2.2 Extensions and Ramification of Places 

Let F denote an algebraic function field over K that is a finite algebraic extension 

of the rational function field F = K(x). Let .9 E E(F) and .9' E (F) be places, 

and 0.9, OR, their respective valuation rings. The place 9' is an extension of 9, 

or equivalently .9' lies above .9, if 0.9 0.9 '. If .9' lies above .9, this is often 

denoted as .9'.9. Each place .9' E E(F') lies above one unique place .9 E E(F). 

Conversely, each place .9 E E(F) has at least one extension in E(F'). If two places 

are extensions of each other, then the places are isomorphic [Sti93, pp. 60-62]. 

Two places .9, .9 E(F') are said to be conjugate over F if there exists an 

F-automorphism o of F' such that .9 = o.9.' If .9 and .9 both lie above .9, 

then .9 is isomorphic to a conjugate of .9. We write .9 = .9 to denote that .9 

is a conjugate (or isomorphic to a conjugate) of .9 [ZS75, V. II, p. 28]. 

Let .9' E E(F') be a place lying above .9 E E(F). There exists an integer e E N 

such that, for any f E F', 

v.9 1(f) = e v.9 (f). 

This integer e = e(.9'I.9) is called the ramification index of .9' over .9. The 

place 9 is said to be ramified in F' (or 9' is ramified over .9) if e> 1; otherwise, 

.9 (resp. .9') is unramified [Sti93, pp. 61-62]. 

Let .9' E E(F) be a ramified place lying above 9 ,E E(F). Let p = char(K). 

If either p = 0 or p']'e(.9'I.9), then 9 is tamely ramified in F; otherwise, 9 is 
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wildly ramified. The function field F is said to be a tame extension of F if all 

the ramified places are tamely ramified [Sti93, pp. 94-95]. 

2.2.3 Divisors on Function Fields 

Let F be an algebraic function field. A divisor on F is given by the formal sum 

D= fl.9.9, 
9EE(F) 

where np E Z and ng = 0 for all but a finite number of places .9. The places in 

E(F) are called prime divisors and we denote the coefficients of the prime divisors 

of D as ordp(D) = n. The support of D, denoted supp(D), is the set of places 

.9 E E(F) with non-zero coefficients ord(D). If ord,(D) ≥ 0 for all .9 E supp(D), 

then D is effective, denoted D ≥ 0. The degree of a divisor D is defined as 

deg D= Eord.(D). deg .9. 
.Esupp(D) 

The set of divisors on F forms a free Abelian group Div(F) under addition. 

For any place .9 E E(F), let vp denote its valuation. Every non-zero f E F has 

an associated divisor given as follows: 

div(f) = v.9(f)..9. 
.9EE(F) 

The divisors that can be written in the form div(f), for some non-zero f E F, are 

the principal divisors. 

Let f E F and 9 E E(F) with corresponding discrete valuation v9. The place 
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.9 is a zero of order m at f if and only if v.9(f) = m> 0. The place .9 is a pole 

of order m at f if and only if v(f) = -m < 0 [Sti93, p. 7]. 

Let F be an algebraic extension of the function field F, both defined over the same 

constant field K. The conorm of a divisor is given by the following homomorphism: 

Div(F) - p Div(F') 

ConF//F : D 
.9supp(D)  

ord(D)  .9' 

For any divisor D E Div(F), the degree of the divisor under the conorm map is related 

by 

deg ConF//F(D) = [F': F] deg D. 

If D is a principal divisor, then ConF'/F(D) = D, the result is a principal divisor in 

Div(F') [Sti93, pp. 63-66]. 

fi 

2.2.4 Differentials and Canonical Divisors 

 H P91 
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where F.9 denotes the completion of F with respect to " Since'F can be embedded 

in AF, this restricted direct product results in AF being a vector space over K, called 

the adele space of F [Neu99, pp. 357-358]. 

Adèles have addition and multiplication operations defined componentwise over 

the sequence. We say that two adèles a1, a2 E AF are congruent modulo a divisor 

D E Div(F) if 

v.9 (a1) - V-9 (a2) = V-9 (al a2) ≥ ord.9(D), 

for every place 9 E E(F). This congruence is denoted in the natural way: a1 

a2 (mod D). Then for any divisor D E Div(F) we define the following subspace: 

AF(D) = {ce E AF a 0 (mod D)} 

A differential of F is a K-linear map w : AF - K such that w vanishes on AF(— D)+ 

F for some divisor .D E Div(F). Note that AF(— D) + F is the space containing 

elements of the form a + f = (a.9 + f).9EE(F) for f E F and a E AF satisfying 

v.9 (a) ≥ - ord(D) for. every 9 E E(F). The set of all differentials of F, denoted 

OF/K, is called the module of differentials of F [Che51, pp. 25-30]. 

Each non-zero differential w E ≤F/K has a unique divisor W E Div(F) satisfying 

the following properties: 

i) w vanishes on AF(— W) + F. 

ii) For any D E Div(F) if w vanishes on A(—D) + F, then W - D ≥ 0. 

4The "completion of F with respect to ." is the superset P F such that every Cauchy 
sequence in F is convergent in F.9 with respect to the valuation V.9 [Neu99, p. 123]. 
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This divisor W = div(w) is called a canonical divisor of F [Sti93, p. 27]. 

2.2.5 Riemann-Roch and the Genus 

The Riemann-Roch theorem as given earler for curves, also applies to function fields. 

Let P be an algebraic function field over a field K. For each divisor D E Div(F), the 

Riemann-Roch space is the vector space 2(D) over K given by 

2(D) = {f G F N {O} I div(f) + D ≥ o} u {o}. 

The dimension of the Riemann-Roch space is denoted £(D) = dimK 2(D) [Sti93, 

pp. 16-17]. 

The Riemann-Roch theorem is of fundamental importance to algebraic func-

tion fields [Sti93, pp. 28-29]: 

Theorem 2.8 (Riemann, 1857; Roch, 1865). There exists an integer g ≥ 0 sat-

isfying 

i) £(D) - £(W - D) = deg(D) - g + 1 fo.r any divisor D E Div(F) and canonical 

divisor W (=- Div(F). 

ii) £(D) = deg(D) - g + 1 for any divisor D E Div(F) with deg D > 2g - 2. 

The value g is called the genus of the function field F. If F has genus g = 0 and 

there exists a divisor of degree one, then F is precisely the rational function field 

K(x) for some x transcendental over K. If F has genus g = 1 and there exists a 

divisor of degree one, then F is called an elliptic function field. Note that if K is 

algebraically closed or a finite field (the cases in which we are interested), then there 
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always exists a divisor of degree one. We consider function fields of genus g > 1 in 

Section 2.2.7, but first we introduce another formula to compute the genus. 

2.2.6 The Different and the Hurwitz Formula 

Let F' denote an algebraic function field over K that is a finite algebraic extension 

of the rational function field F = K(x). We define a divisor called the different, of 

F'/F as 

Diff(F'/F) = d(.9'.9) ..9', (2.9) 
e2'EE(F) .9'E(F') 

where d(.9'I.9) is called the different exponent of 9' over .9 and is given in the 

Dedekind different theorem as the following [Sti93, pp. 82-83,89]: 

Theorem 2.9 (Dedekind). Let F be an algebraic function field, a finite separable 

extension of F with the same constant field K. Then for any place .9' E E(P) lying 

above a place .9 E E(F) the different exponent satisfies 

≥e(.9'I.9) - 1. 

If F is a tame extension of F, then the above inequality is an equality; otherwise, the 

inequality is strict. 

This leads to the Hurwitz formula which allows one to compute the genus of a 

function field [Sti93, p. 88]. 
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Theorem 2.10 (Hurwitz, 1891). Let F' be an algebraic function field, a finite sep-

arable extension of  with the same constant field K. Then the genus g' of F satisfies 

2g1 - 2 = [F' : F](2g - 2) + deg Diff(F'/F) 

From Dedekind's theorem and the definition of the different in Equation (2.9) we 

get the following corollary to the Hurwitz formula [Sti93, p. 95]: 

Corollary 2.11. Let F' be an algebraic function field, a finite separable extension of 

F with the same constant field K. Then the genus g' of F' satisfies 

2g' — 2 ≥ [F' : F](2g —2) + (e('.9) - 1) deg(') 

PEE(F) 'EE(F') 

If F' is a tame extension of F, then the above inequality is an equality; otherwise, the 

inequality is strict. 

2.2.7 Hyperelliptic Function Fields 

Let K be a perfect field and K(x) the rational function field over K, where x is 

transcendental over K. A hyperelliptic function field F is a separable degree 

2 extension of K(x). Because it is a degree 2 extension, F is sometimes called a 

quadratic function field. Moreover, we have that F = K(x, y) for some y E F 

algebraic over K(x); that is, y is a root of some irreducible, separable, quadratic 

polynomial IF (T) in the polynomial ring K(x)[T] for an arbitrary indeterminate T. 

If char K 2, we can define F = K(x, y) by a polynomial W(T) = T2 - f(x) with 

f E K[x] squarefree [Sti93, pp. 108, 113, 193-194]. 
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We continue to assume char K 0 2. Since we have [F: K(x)] = 2, Corollary 2.11 

of the Hurwitz formula simplifies to 

2g+2= ii I (e(.'9) - 1) deg(.9') 
.9EE(K(x)) 'EE(F) 

where each ramification index e('I.9) ≤ 2. Therefore, there are at most 2g + 2 

ramified places in F over K(x). However, if .9 E E(K(x)) is ramified in F, then 

there are only 2g + 1 ramified finite places. In the case that is ramified in F, we 

say that F is imaginary. Otherwise, if there are two distinct places lying above 

in F, then there are 29 + 2 ramified finite places and we say that F is real. There is 

a degenerate case when remains prime (and unramified) in F and deg 9. = 2 

for in this case F is called unusual [PR99, § 3-4]. 

If char K = 2, we define F = K(x, y) by a polynomial W(') T2 + h(x)T - f(x) 

such that y is a root of W(T) with f, h E K[x] and h non-zero. The function field F 

is no longer tame in this case, so we must use the Hurwitz formula (Theorem 2.10) 

which simplifies to 

2g + 2 = deg Diff(F'/K(x)) 

Since every ramified place is wildly ramified, Dedekind's different theorem (Theo-

rem 2.9)) gives that each different exponent d(9'l.) ≥ 2. Therefore, from the 

definition of the different in Equation (2.9), the number r of ramified places in F over 

K(x) must be in the range 1 ≤, r < g+ 1 [5ti93, p. 194]. Now, if E E(K(x)) is 

ramified in F, then there are at most g ramified finite places and we call F imagi-
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nary. Otherwise, if there are two distinct places lying above in F and there are 

g + 1 ramified finite places, then we say that F is real. We still have the degenerate 

ease where F is unusual in which remains prime (and unramified) in F and 

deg ,9.'  2 for 

In the rest of this thesis we ignore the case that F is unusual. As mentioned 

in Section 2.1.8, an unusual quadratic function field F with constant field K is real 

quadratic when considered over a degree 2 constant field extension L of K [PR99, 

§1]. We focus on real quadratic function fields after briefly describing the relationship 

between real and imaginary quadratic function fields in the beginning of the next 

chapter. 



Chapter 3 

Real Quadratic Function Fields 

As was shown in the previous chapter, the concepts of divisors, the Riemann-Roch 

theorem and the Hurwitz formula apply to both algebraic curves and algebraic func-

tion fields. In fact, there is a one-to-one correspondence between points and places in 

the sense that both are' prime divisors. Therefore, when one considers quadratic func-

tion fields, the theory from algebraic geometry and from purely algebraic structures 

coalesce into a unified theory. An imaginary quadratic function field is the function 

field of an imaginary hyperelliptic curve. Similarly, a real quadratic function field is 

the function field of a real hyperelliptic curve. This is summarized in the following 

section. 

In Section 3.2 we focus on algorithms in the infrastructure of a real quadratic 

function field. Section 3.3 concludes with a discussion of efficient arithmetic for 

operations in the infrastructure. 

42 
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3.1 Coalescence in Quadratic Function Fields 

In this section we summarize results from the previous chapter. Consider a hyper-

elliptic function field F of genus g defined over a finite field K = ]Fq, where F is 

an quadratic extension of the rational function field K(x). Then F is equal to the 

function field K(C) of a hyperelliptic curve C given by 

C:y2+h(x)y=f(x), 

where f, h E K[x]. Also, C must satisfy the condition that no point P = (a, b) E 

C(R) satisfies both 2b + h(a) = 0 and f(a) - h'(a)b = 0. We call F an imaginary 

quadratic function field if we can put Equation (3.1) into a birationally equivalent 

canonical form such that 

i) If char K 2, then h = 0, f is monic and squarefree with deg f = 2g + 1; 

ii) If char  = 2, then h y4 0, deg  < g, f is monic with deg  = 2g + 1. 

We call F a real quadratic function field if we can put Equation (3.1) into a 

birationally equivalent canonical form such that 

i) If char K 0 2, then h = 0, f is squarefree with deg f = 2g + 2 and sgn(f) = 

for some e E K*; 

ii) If char K = 2, then h 0, h is monic, deg h = g + 1 and either 

(a) deg f < 2g + 1, or 

(b) deg f= 2g+2 and sgn(f)=e2+e for some e E K* 
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We can also determine F to be an imaginary quadratic function field if either of 

the following properties are satisfied: 

1) C n H = {P} where P is a Weierstrass point of C; 

ii) E E(K(x)) is ramified in F. 

Similarly, F is a real quadratic function field if the following properties are satisfied: 

i) C n H = {P, P} where P.1 and P are not Weierstrass points of C; 

ii) 9,, E E(K(x)) splits into two distinct places in F. 

We recall from Section 2.1.8 that C has a special map called the hyperelliptic 

involution defined by t : y i- —y - h(x). 

The terms "imaginary quadratic" and "real quadratic" come from the fact that 

imaginary quadratic function fields have similarities with imaginary quadratic number 

fields and likewise real quadratic function fields are similar to real quadratic number 

fields. A quadratic number field is a degree 2 field extension of the rational field 

Q. It turns out that any quadratic number field can be expressed as Q(v'), where d 

is a squarefree integer. In the case that d> 0, we have that Q(v') is a subfield of R 

and consequently we call Q(V) a real quadratic number field. When d < 0 we 

call Q(\/) an imaginary quadratic number field since it is a subfield of C but 

not of JR [HW79, pp. 204, 208]. 

The coalescence in the theory extends further. In this section we will show how di-

visors (in either function fields or on curves) correspond to ideals and that arithmetic 

on one is equivalent to performing arithmetic on the other. This is most straightfor-

ward in the case of imaginary quadratic function fields; however, this correspondence 

includes real quadratic function fields at the cost of some extra work. 
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3.1.1 Divisor Class Group 

Let F be a hyperelliptic function field corresponding to a hyperelliptic curve C over a 

field K. Two divisors D, D' E Div(F) are equivalent, denoted D D', if D - D' is 

a principal divisor. Let Div d(F) denote the set of divisors of degree d and let Prin(F) 

be the set of principal divisors. Then we have the following sequence of subgroups: 

Div(F) D Div°(F) D Prin(F). The divisor class group of F is the quotient group 

C1(F) = Div(F)/Prin(F) 1 

Elements of Cl(F) are called divisor classes. The divisor class group Cl(F) is a 

finite Abelian group, giving us the following exact sequence: 

0 - Prin(F) - p Div(F) - Cl(F) - 0. 

Denote by CIO(F) the kernel of the degree map Cl(F) - Z. The set CIO(F) consists 

of the equivalence classes of degree zero divisors and is a subgroup of Cl(F) [Har77, 

pp. 131, 139-140]. Therefore, we have 

0 - CIO (F) - p Cl(F) - f Z - p 0. 

The degree-zero divisor class group is isomorphic to the Jacobian of the curve C.2 

Therefore, arithmetic with divisor classes in CIO (F) can be said to be performed on 

'The divisor class group Cl(F) is sometimes denoted Pic(C) as there is an isomorphism between 
Cl(F) and the Picard group of C (cf. Hartshorne [Har77, pp. 143-145]). 

'The Jacobian is an Abelian variety that is isomorphic to C1°(F) (cf. Hartshorne [Har77, p. 140]). 
If C is a curve of genus g over the complex field C, then the Jacobian of C is a torus of dimension g. 
An explicit definition of the Jacobian is beyond the scope of this work (cf. Birkenhake and Lange 
[131,04, pp. 316-321]). 
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the Jacobian. 

Let hF denote the cardinality of Cl°(F), called the class number of Cl°(F). An 

upper and lower bound on hF is due Hasse and Weil as a consequence of their proof 

of the Riemann hypothesis in function fields [RosO2, p. 55]. 

Theorem 3.1 (Hasse, 1935; Well, 1948). If  is a hyperelliptic function field of 

genus g over a finite field K = lFq, the class number hF of CIO (F) is bounded by 

Artin gave an upper bound on the class number which differentiates between the cases 

where F is imaginary or real quadratic [Art21, p. 236]. 

Theorem 3.2 (Artin, 1921). If F is a hyperelliptic function field of genus g over 

a finite field K = IF'q, the class number hF of C1°(F) is bounded by 

q9 deg f if F is imaginary quadratic 
hF 

2q°' (deg f - 1)2 if F is real quadratic. 

The next subsection shows how we can find a representative for each divisor class of 

C1°(F). 

3.1.2 Reduced Divisors 

Let F = K(C) be the function field of genus g corresponding to the hyperelliptic 

curve C: y2 + h(x)y = f(x). Recall that F is a quadratic extension of the rational 

function field K(x). Let ? denote a prime divisor (either a point P E C or a place 
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E(F)). We denote the prime divisor at infinity in K(x) as ?, representing 

either the place at infinity of F or the point at infinity P on C. Let S denote 

the set of prime divisors at infinity in F. If F is imaginary quadratic, then S = {P}; 

otherwise, if F is real quadratic, then S = {P,, ?,}. A divisor D E Div(F) is finite 

if its support is disjoint from S. 

For any divisor D E Div0 (F), there exists a divisor D' D such that D' is the 

difference of two divisors D' = D - D, where DS is effective and Dg is balanced at 

infinity as 

gP00, 

('p1 + 7), 
2OO 

2±ipl 
2 00 2 00 

if F is imaginary quadratic 

if F is real quadratic and g is even 

if F is real quadratic and g is odd. 

We call D' semi-reduced if every two non-equal prime divisors P,, Pj E supp(Ds) 

satisfy l'j 54 Pj, where Tj denotes the conjugate of the prime divisor 7' [GRMMO8, 

§2]. 

• If F is imaginary quadratic, a semi-reduced divisor D = Ds -  DS  can be uniquely 

represented as a pair of polynomials a, b E K[x] given by 

a(x)= H 
P=(a,b)€supp(Ds) S 

(x - aj)0 D 

b(a) = bi for every (a, b) E supp(Ds) 

with the additional conditions that a and b satisfy deg b < deg a and al (f - bh - 

V). This polynomial representation of a semi-reduced divisor is called Mumford 
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representation, and we denote such a divisor as div(a, b) [GHMMO8, §2]. 

A semi-reduced divisor D = div(a, b) is called reduced if deg a < g, where g is the 

genus of F. If F is imaginary quadratic, then each class of CIO (F)contaihs exactly one 

reduced divisor. If F is real quadratic, then each class of C1°(F) has a representative 

of the form D5 - D5, where we write Ds = D + ns7' + msP for a finite reduced 

divisor D's and The, ms E Z<0. Then we can uniquely denote each equivalence class 

in the real quadratic case with div(as, bs), the Mumford representation of D5, along 

with ns [GHMMO8, § 2, 4]. 

Algorithms for performing operations on divisors' in Mumford representation are 

provided by Galbraith, Harrison and Mireles Morales [GHMMO8]. However, in this 

thesis we will work with ideals instead of divisors. 

3.1.3 Fractional and Reduced Ideals 

Let F = K(C) be the function field of a hyperelliptic curve C : y2 + h(x)y = f(x) and 

let 0 denote the coordinate ring K[G]. In general, if F K(x, y) is an extension of 

the rational function field K(x), then 0 is the integral closure of K[x] in F.3 In the 

case of hyperelliptic function fields, 0 is called the (maximal) quadratic order of 

F. Note that the field, of quotients Quot(0) = F. Any element a E F can be written 

uniquely as a = (a + by)/d for some a, b, d E K[x], where d 0 and gcd(a, b, d) = 1. 

Note that a E 0 if and only if d E K*. 

A fractional ideal of 0 is an 0-submodule a of F such that there exists a' 

non-zero "denominator" 0 e 0 where a C (1/,0)0. To avoid confusion, sometimes 

ordinary ideals are called integral ideals since they are the special case where /3 E 

'For a subring S of an integral domain R, the "integral closure of S in R" is the set of all elements 
a E R satisfying f(a) = 0 for some monic polynomial f E S[x] [ZS75, V. I, pp. 254-256]. 
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K*. A fractional 0-ideal ct is contained in 0 if and only if it is integral [ZS75, V. I, 

p. 271]. 

Consider a rank-2 free K[x]-submodule of F given by aK[x] +,8K[x] for a, /3 E F. 

We denote this module by its basis {a, /3}. Note that two bases {a,,31 and {'y, 8} 

represent the same module if and only if 

ry a 
I I=XI 
1\c5) 

for some X E GL2(K[x]) (3.1) 

where GL2(K[x]) is the general linear group of degree 2, i.e. the group of all 2 x 2 

matrices with entries in K[x] and determinant in K* [WW87, 3]. 

A fractional ideal a C F can be written as a rank-2 free K[x]-submodule of F in 

the form 

a=s(aK[x]+(b+y)K[x]) , (3.2) 

where s E K(x) with the denominator of s monic, and a, b E K[x] satisfy the con-

ditions that a is monic and al (f + bh - b2). We can represent a with the basis 

{sa, s(b + y)}. If s E K[x], then a is an integral ideal. An integral ideal a c 0 is 
represented in the form of Equation (3.2) where s, a, b E K[x] such that both s and 

a are monic with al (f + bh - b2). If we have deg  < deg  by taking b modulo a, 

then the basis is said to be adapted and is unique for the ideal a. We write an ideal 

with adapted basis {sa, s(b + y)} in standard represention as a polynomial triple 

(s, a, b) [SW99, §3A], [Zuc97a, §6]. 

An integral 0-ideal a is called primitive if it cannot be written as a = mi with 



3.1. COALESCENCE IN QUADRATIC FUNCTION FIELDS 50 

b an integral 0-ideal and a multiplier m E K[x] N K. If a is given in standard 

representation as (s, a, b), then a is primitive if and only if s = 1, in which case we 

drop s from the standard representation and write a = (a, b). 

A principal fractional ideal is a fractional ideal such that a = (a//3)0, where 

/3 0 is the denominator with a,,6 E 0. Then the value y = a//3 = (a + by)/d E 

F N {0} is said to generate a [ZS75, V. I, p. 271]. Given polynomials a, b, d E K[x] 

with d 0 and a, b not both zero, the standard representation of the principal 

fractional ideal generated by -y = (a+by)/d E F can be computed using Algorithm 3.3 

[Sch96, 3]. The opposite operation of finding the generator of an ideal given its 

standard representation is a computationally difficult problem (see Section 4.1). 

Algorithm 3.3 (Principal ideal standard representation). Given -y E F, find 

the standard representation of the principal fractional 0-ideal generated by 'y. 

Input: A non-zero 'y = (a + by) Id E F with a, b, d E K[x], and C : y2 + h(x)y = f(x) 

for F = K(C). 

Output: The 0-ideal a = (Ba, aa, bct) = ('y)O. 

1: sa, u, v - xgcd(b, a + bh) c Compute u, v fi'om extended Euclidean alg. 

2: a, <— (a2—b2f+abh)/s 

3: ba +- (ua + vbf) /sa (mod cia) 

4: Sa s/(sgn(sa)d) > Note that Sa E K(x) 

An ideal in adapted basis is said to be reduced if deg a ≤ g, the genus of F 

[JSSO7b, §4]. In Section 3.2.1 we will introduce an algorithm to perform "reduction" 

on a primitive ideal to obtain a reduced ideal. 
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3.1.4 Multiplying and Inverting Fractional Ideals 

Fractional ideals admit a multiplication operation a b ç (f3/3b)'O for 0-ideals a 

and b with denominators /3a, /3r., E 0, respectively. The identity of this operation is the 

ring 0, itself an ideal, denoted in standard representation as 0 = (1, 0). Algorithm 3.4 

presents the computations necessary for multiplication, following an algorithm of 

Cantor [Can87] (with optimizations discussed therein) and generalizations by Koblitz 

[Kob89]. Note that even if a and i are primitive, the product is not necessarily 

primitive. When a = b, squaring an ideal simplifies as shown in Algorthm 3.5. 

Algorithm 3.4 (Ideal multiplication). Multiply two fractional 0-ideals in stan-

dard representation. All of the operations are performed in the ring K[x]. 

Input: Two 0-ideals a = (Sa, aa, b) and b = (Sb, ab, bb), where 0 = K[C] for the 

hyperelliptic curve C : y2 + h(cc)y = f(x) over K. 

Output: An 0-ideal c = (se, a, b) = ab. 

1: (d1, u1, vi) - xgcd(aa, ab) > Compute u1, v1 from extended Euclidean alg. 

2: Sc 5,5b, a +- aaab 

3: b - ulaabb + vlabba 

4: if d1 0 1 then 

5: (d2, u2, v2) <-- xgcd(di, ba + bb + h) > Extended Euclidean aig. 

6: s - sd2 

7: ac 

8: b - (u2b + v2(babb + f))/d2 

9: b - b (mod a) 
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Algorithm 3.5 (Ideal squaring). Squaring a fractional (9-ideal in standard repre-

sentation. All of the operations are performed in the ring K[x]. 

Input: An 0-ideal a = (Sa, aa, ba), where 0 = K[C] for the hyperelliptic curve C 

y2 + h(x)y = f(x) over K. 

Output: An 0-ideal c = (se, a, b) = a2. 

1: (d, u, v) - xgcd(aa, 2ba + h) > Compute u, v from extended Euclidean aig. 

2: s c <-- sd 

3: a - (a/d)2 

4: b - (uab + v(b 2 + f))/d (mod ac) 

Let L(n) = log n. log log n. Multiplying or dividing degree n polynomials with 

remainder both require O(nL(n)) operations in K [AHU74, pp. 286-292]. We can 

compute the GCD of two degree n polynomials in O(nL(n) log n) operations in K 

[AHU74, pp. 303-310]. Therefore, if a and ab both have degree in 0(n), Algo-

rithms 3.4 and 3.5 each run in 0(nL(n) log n). Furthermore, the ideal c = ab will 

have degree 2n E 0(n). 

We call a fractional 0-ideal a 0 prime if for any a, /3 E 0 such that the 

product a/3 is in a, either a E a or /3 E a [ZS75, V. I, p. 149]. A primitive 0-ideal 

a = (a, b) in standard representation is prime if and only if a is irreducible in K[x]. 

Prime ideals have a similar ramification theory as prime divisors (cf. Sections 2.1.2 

and 2.2.2). We simplify the discussion here for our situation where 0 is a quadratic 

order. Each prime K[x]-ideal p is principal and generated by a monic irreducible 

polynomial p E K[x]. Let 93 denote a prime 0-ideal. If p0 = T93, then T and 3 

are said to lie over p and that p splits in 0. If p0 = 932, then only 93 lies over p 

and it is said that p ramifies in 0. The other case is if p0 = , where p is called 
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Inert [Neu99, pp. 45-49]. 

Let a = {a,/3} be a fractional 0-ideal given by an arbitrary K[x]-basis. The 

norm of a is defined by N(a)2(2y + h)2 = det(X)2, where 

X= 

and denotes the conjugate of a E F under the hyperelliptic involution t. Defined 

in this way, the norm is independent of the choice of basis. If a is given in standard 

representation as a = (s, a, b)—recall this represents a K[x]-basis {sa, s(b+y)}— then 

the norm of a is computed as 

N(a) = as'. 

If a is integral, then N(a) E K[x]; if a is primitive, then N(a) = a. The norm is also 

completely multiplicative, i.e. it satisfies N(a) N(b) = N(ab). Clearly, the norm of 

the identity 0 must be N(0) = 1 [Ste99, §2]. 

A fractional 0-ideal a is invertible if there exists a fractional 0-ideal cc' such 

that acr' = 0. This inverse exists if and only if the ideal product a'p = amp is a 

prime ideal for every non-zero prime divisor? E Div(F) and corresponding maximal 

ideal mp of 0. Since 0 is a Dedekind domain, all fractional 0-ideals are invertible 

4Many sources in the literature specify that the norm should be made monic. However, since we 
are assuming that the polynomials in the standard representation come from an adapted basis, both 
s and a are monic, thus as  is always monic. 
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[Neu99, pp. 74-75]. The inverse of an 0-ideal is given by 

cC1 (3.3) 

where denotes the conjugate of a under the hyperelliptic involution t. If a = (s, a, b) 

in standard representation, then the conjugate is = (s, a, —b - h). Therefore, one 

can derive from Algorithm 3.4 that cra/(as2) = 0. 

3.1.5 Ideal Class Group 

Let 0 be the integral closure of K[x] in the function field F. Let Frac(0) denote 

the set of fractional ideals of 0. Since 0 is a Dedekind domain, recall that all of 

the fractional 0-ideals are invertible. Therefore, the set Frac(0) is a group under 

multiplication. The set Prin(0) of principal fractional ideals is a subgroup of Frac(0). 

The ideal class group is an Abelian group defined to be the quotient group 

01(0) = Frac(0)/ Prin(0). 

Consider the map a i-+ (a)O from (non-zero) function field elements to fractional 

ideals: Then we have the following exact sequence: 

0 —) 0 F* - ac(0) - 01(0) - 0, 

where the class group measures the expansion from F* = F N f 0 to the fractional 

ideals and, similarly, the unit group measures the contraction in the same map 

[Neu99, p. 22]. Elements of Cl(0) are called ideal classes of 0. Two integral ideals 
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a, b c 0 in the same ideal class of Cl(0) are said to be equivalent, denoted a b. 

We have a b if and only if there exist non-zero a, ,3 E F such that (a)a = (3)b. 

Then a = (-y) b, where 'y = 0/a e F is called the relative generator of a with 

respect to b.5 Therefore, all principal ideals a = ('y)O are contained in one ideal class 

of 01(0), called the principal ideal class. The number of ideal classes is the class 

number of 0, denoted h0. 

If F is an imaginary quadratic function field, then each ideal class of 01(0) con-

tains exactly one reduced ideal. Therefore, reduced ideals can be used as representa-

tives of 01(0). Artin proved the following important result [Art21, p. 178]: 

Theorem 3.6 (Artin, 1921). If F is an imaginary quadratic function field, then 

the set of reduced 0-ideals is isomorphic to the degree-zero divisor class group Cl°(F). 

Thus, we have an equality between the class numbers hF = h0. However, if F is real 

quadratic, each ideal class of 01(0) may contain multiple reduced ideals. 

There exists a fundamental unit q E 0 such that every unit e E 0* can be 

written as = crim for some c E K* and M E Z. The degree of 77 is called the 

regulator of 0, denoted R0 [Sch96, § 1]. The regulator appears in the following 

theorem due to Schmidt [Sch31, p. 32], providing a relation between the divisor class 

number and the ideal class number that extends to real quadratic function fields: 

Theorem 3.7 (Schmidt, 1931). Let hF be the class number of the degree-zero divi-

sor class group CIO (F), and let h0 be the class number of the ideal class group 01(0). 

5The relative generator y in a = ('y) i can, equivalently, be interpreted as the generator of a 
principal ideal c = (-y)0 with a equal to the ideal product cti. 
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Then for any imaginary or real quadratic function field F, we have the relation 

hF = h0R0 . 

By Theorem 3.6, the regulator R0 = 1 if F is imaginary quadratic. In real quadratic 

function fields, the ideal class number h0 tends to be very small according to the 

Cohen-Lenstra heuristics [0L84] that were extended to function fields by Friedman 

and Washington [FW89] and recently proven in the latter case by Achter [AchO6]. 

Now we shall show precisely how the reduced ideals in an ideal class of Cl(0) are 

related to the divisor classes of CIO (F) when F is a real quadratic function field. Let 

ct be a reduced 0-ideal and let R denote the set of reduced 0-ideals equivalent to ct. 

Consider the map given by 

{ - Div°(F) 

b = (ab, bb) '-4 div(ab, bb) - deg(ab)P 

Then the following theorem gives the correspondence between 7 and the divisor 

classes of CIO(F) [MMO8, §7]: 

Theorem 3.8 (Mireles Morales, 2008). Let a be a reduced 0-ideal. Then the 

reduced ideals in the set fla are in one-to-one correspondence via I' with reduced, 

pairwise-inequivalent divisors that form a subset W(R'a) C CIO (F). 

In the next section we show how one can perform operations in IZ,, via the reduced 

ideals. The map W respects these operations. 
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3.2 The Infrastructure of a Real Quadratic 

Function Field 

Given a fixed reduced 0-ideal a, one can step through the ideal class of a to find 

equivalent reduced ideals in R.a using an internal structure called the infrastructure. 

This term was introduced by Shanks [5ha72b] in the case of real quadratic number 

fields. The infrastructure of a real quadratic function field refers to the internal 

structure of the set of reduced ideals in an equivalence class of 01(0). 

The infrastructure provides two closed operations called "baby steps" and "giant 

steps," but we will see that these operations do not endow a complete group structure. 

The algorithm for performing the baby step operation uses an approach based on 

continued fraction expansions, while giant steps consist of baby steps along with 

ideal multiplication. We look at these operations next. 

3.2.1 Baby Steps and Ideal Reduction 

Let F = K(x, y) be a real quadratic function field corresponding to a hyperelliptic 

curve C : y2 + h(x)y = f(x). Let 0 be the integral closure of K[x] in F. Consider a 

non-zero primitive 0-ideal a = (a, b), for polynomials a, b E K[x]. Let a = (b+y)/a E 

F and note that a is irrational over K(x). The completion PM. of F with respect to 

the place at infinity 9. is equal to K((1/x)), the field of power series in the variable 

1/x [5ch96, § 1]. Therefore, F C K((1/x)) and we can represent a E F as a formal 

power series of Puiseux type, i.e. a = cx E K((1/x)) with Cm 0 0 for some 

m E No. We define La] = 0cjx. 
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A continued fraction of the form 

1 

1 

1 
a2+  

a3+••• 

will be represented in the compact notation of [ao, a1, a2, a3,...]. We can apply 

Algorithm 3.9 to a E K((1/x)) to get a continued fraction expansion a = [ao, a1,...] 

[BS96, pp. 75-79]. 

Algorithm 3.9 (Continued fraction algorithm). The standard continued frac-

tion algorithm in K((1/x)). 

Input: a E K((1/x)) and n E No. 

Output: A continued fraction expansion a = [ao, a1,... , 

1: to <- a 

2: a0 - Ltoi 

3: i 4- 0 

4: while t, ai A i < n do 

5: i—i+1 

6: tj +- 1/(t_1 - 

7: ai [tj 

Expanding the operations in Algorithm 3.9 when a = (b + y)/a gives 

a= 
I b + [] I 

(i E N0) [ a ] 
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with the polynomials a, bi E K[x] computed using the following recursive formulae: 

b0=b 

bi = - b_1 + h 

a0 = a 

a= f—b+bh 
a_1 

(iEN). 
(3.4) 

Performing the continued fraction algorithm in this way gives, for each step i = 

0, 1, 2,,.., & pair, of polynomials (a, b) that corresponds to the standard representa-

tion of a primitive 0-ideal ai = (a, b), where a0 = a [SW99, §2],[Zuc97a, § 1-2]. 

We now give some proprties of continued fractions that can be found in Williams 

and Wunderlich [WW87, §2] or Hardy and Wright [HW79, pp. 130-141]. In the 

notation of Algorithm 3.9, we call ti = [a, .], the i-th complete quotient. 

Using the polynomials from Equation (3.4), the i-th complete quotient is tj = (b + 

y)/aj for any i E No. Then from Equation (3.4) and the curve equation y2 + hy = 

we have 

1 a - f — b+bh (y—b+h)(y+b) y—b+h (• EIN) (3.5) 

tb+y a_i(b+y) a_1(b+y) a_1 

We define the i-th convergent of the continued fraction expansion as [ao, &i,. . . , a] = 

pj/qj, where pi and qj are given in the following recursive formulae: 

P-2 0 , P-i=', 

q_2 = 1, 

pi = aiPi1+Pi-2 (i ENO), 

q..i=0, qj=ajqj_1+qj 2 (i  No) . 
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It follows that 

a = to = aiPi_i + Pi-2 = tp,_1 + Pi-2 (i E N0) 
ajqj_1 + qj_2 tq_1 + qj_2 

The functions pi and qj also satisfy 

pj_1qj_2 - pj_2qj_1 = (_ 1)i (i E No) 

We will also define the following sequence: 

(3.6) 

(3.7) 

o.= 1, 0i+1 =fl- (iEN) . (3.8) 
j=1 • 

Then from Equation (3.6) and induction on i we have the relation 

= (_1)i(.1 - aqj_1) (i E N0) (3.9) 

Let = t(0) denote the conjugate of 0 F under the hyperelliptic involution t. Then 

we have a norm defined as N(0) = 00 and from Equations (3.8), (3.4) and (3.5) we 

can derive 

N(0 1) = OjiOji = (_ 1)i (i E N0) . (3.10) 
a0 

We will now show that the 0-ideals obtained in the continued fraction expansion 

of a are equivalent to each other. We follow a proof by Williams and Wunderlich given 

in the quadratic number field situation [WW87, §4] Start by rewriting Equation (3.9) 
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in the following matrix format: 

(e + = ( 
9i+2) \\ a) where X = ( 1)i+1 

(_Pi_i qj_1'\ 

pi —qj,, 

Since det(X) = ±1 by Equation (3.7), we have X € GL2(K[x]). Recall that we can 

represent an ideal by its non-unique K[x]-basis. Then applying Equation (3.1) we 

obtain the following' equation of ideal bases: 

(O + ){1,-}'= {Oi+" ti+1fj.} = {Gj+l,Oj+2} = {1,c} = {1,t0} 
2=1 

We continue with this equation, simplifying as follows: 

(O + ){1, = {1,to} 

= i 1L1. a J 11, 
' ao J 

(ao9 1){a, y - b 1 + h} = (a){ao, b0 + y} 

(aoO 1){a, y + b - ca} = (a){ao, b0 + y} 

(aoO +1)(a ) b + ,y) = (a)(ao, bo + ,y) 

(aoOi+i)aj = (a)ao 

(0)aj = () ao 

(Oj+i)a ((- 1)9ai +i9i+i)ao 

= ((_1)i) ao 

by Eqn. (3.5) 

by Eqn. (3.4) 

in standard representation 

by Eqn. (3.10) 

(3.11) 

Therefore, 'y = (— l)O+' is a relative generator of a with respect to a0 = a and we 

have that a -' a for every i E No. 
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Paulus and Stein showed that one could avoid the divisions in the formula for a 

from Equation (3.4) in odd characteristic fields [PS98, §4.2]. Algorithm 3.10 presents 

the optimized version, generalized to both even and odd characteristics, to compute 

equivalent ideals in the infrastructure of an ideal class [SteOl, §4.2],[Zuc97a, §2]. This 

algorithm is called the baby step algorithm and we will it denote by p(aj) = 

for i E N. 

Algorithm 3.10 (Infrastructure baby step p). Baby step algorithm for comput-

ing in the infrastructure. 

Input: A primitive 0-ideal ai = (az, b) for some i E No, where 0 = K[C] for a real 

hyperelliptic curve C : y2 + hy = f; if i> 0, then also the values d, a_1, rj....1. 

Output: A primitive ideal a+i = (a+,,, b+1) -' a. 

1: if i = 0 then 

2: d— y] 

b + d (mod a) 

4: b1<—d—ro+h 

5: a1 - (f - b + bih)/ao 

6: else 

7: (a, r) - divrem(b + d, a) > Division algorithm with remainder 

8: b+i<-- d— r+h 

9: a+i +- a_1 + a(r - 

The following lemma shows that by applying the baby step algorithm on a prim-

itive ideal, we will rapidly obtain an equivalent reduced ideal [JSS07b, §5]. 
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Lemma 3.11 (Jacobson, Scheidler & Stein, 2007). For any primitive 0-ideal 

a0 = (ao, bo), the ideal ak+j = p(ak+j_1) is reduced for all j ≥ 1 and 

k= max {1, (deg(ao)—g)/2} 

Therefore, reducing a primitive ideal ao = (ao, b0) is performed by repeating Algo-

rithm 3.10 until deg ai ≤ g. Moreover, the reduced ideals form a cycle. This is shown 

in Figure 3.12 and motivates our use of the notation p to denote this operation. 

p(ak+j-1) = 

Figure 3.12. Ideals resulting from the baby step algorithm from a0 are represented 

by the dots which form the shape of p, where the equivalent reduced ideals are on the 

circle. The indices k and j are defined in Lemma 3.11. Note that if a0 is reduced, 

then k = 0 and the picture would be a circle. 

Let L(n) = log n log log n. Recall that to multiply or divide degree-n polynomi-

als with remainder either can be performed in O(nL(n)) operations in K [AHU74, 

pp. 286-292]. Therefore, if deg N(a) E 0(n), Algorithm 3.10 can perform a baby step 

on input a in 0(nL(n)) operations in K. Then according to Lemma 3.11, given a 

primitive 0 ideal a, we can obtain an equivalent reduced ideal in O(n2L(n)) opera-

tions in K. 
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3.2.2 Distance and Closest Ideals 

We can define an ordering of elements in the infrastructure using the notion of 

"distance" between ideals due to Shanks [Sha72b]. For reduced ideals a and b 

in the same ideal class of Cl(0), there is some £ E No such that a = (a, b) and 

b = p(a_i) = at = (ae, be). Recall that a = (-y)a for -y giyen in Equation (3.11). 

Then we define the distance between a and b = at as 

ö(b, a) = 5(a, a) = deg-y. (3.12) 

That is, the distance between equivalent ideals is the degree of a relative generator; 

the distance is only defined between equivalent ideals. When considering the distance 

from the trivial ideal 0, we will often simplify the notation of 6(b, 0) by writing just 

6(b) [SW99, §3],[Zuc97a, §8]. 

In Algorithm 3.13 we update the baby step algorithm given in Algorithm 3.10 to 

also return the distance [Ste01, § 4.2-5]. When computing in the principal ideal class 

with e0 = 0, the distance between each baby step is bounded by the following: 

J1≤ 5(el) 

1< ö(e,e 1) ≤ g for i > 2 
(3.13) 

The updated baby step algorithm has the same runtime complexity of O(nL(n)) 

operations in the field K. 

Algorithm 3.13 (Infrastructure baby step p). Baby step algorithm for comput-

ing in the infrastructure that also returns the relative distance. 

Input: A primitive 0-ideal ai = (a, b) for some i E No, where 0 = K[C] for a real 



3.2. INFRASTRUCTURE OF A REAL QUADRATIC FUNCTION FIELD 65 

hyperelliptic curve C: y2 + hy = f; if i> 0, then also the values d, a_1, r_1. 

Output: A primitive ideal ã.1 = (a+1, b+1) 

5(a +,, a). 

1: ifi=Othen 

a and the relative distance Sj+. 

2: d - [y] c> The polynomial part of the root y 

3: ro - b0 + d (mod a) > Compute the remainder of (b0 + d)/a 

4: b1 —d—ro+h 

5: a1 - (f - b 2 + bih)/ao 

6: a - ai/sgn(a1) 

7: ô - max{deg(bo + d) - deg ao, O} 

8: else 

9: (ad) r) - divrem(b + d, a) 

10: b+1 — d— r+h 

11: a+i - a_ + c4(rj - 

12: a+i - aji /sgn(aj i) > Make a+i monic 

13: 6 - deg aj > Compute the distance 5(a+,, a) 

Make a1 monic 

Compute the distance 5(ct1, ao) 

Division algorithm with remainder 

Using Algorithm 3.13 we can compute the closest ideal to a chosen small distance 

from another ideal using baby steps. Given a reduced 0-ideal a, the "closest" equiv-

alent ideal to a distance d means that we find a reduced ideal b a with 5(b, a) ≤ d 

such that there is no reduced ideal c a with 5(b, a) < S(c, a) d. We denote 

this property as 5(b, a) d. Such an ideal can be found using Algorithm 3.14 and 

we denote the operation by p. If we wish to find the ideal closest to a distance d, 

Algorithm 3.14 runs in O(dgL(g)). In Section 3.3.4 we give a more efficient algorithm 

for computing closest ideals that is useful when the distance d is large. 
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Algorithm 3.14 (Infrastructure closest ideal p*). Compute the ideal that is clos-

est to a given distance from an ideal. 

Input: A reduced 0-ideal a and a desired distance d E N. 

Output: A reduced ideal b '-'..' a and the distance 6 = 6(b, a) such that 6 d. 

1: i - 0, 6o - 0, a0 - a 

2: repeat 

3: i*—i+1 

4: (aj, 6) - p(aj_i, ôj_) > Compute a baby step with distance (Alg. 3.13) 

5: until 6,>d 

6: b+— a_1 

7: 66i-1 

The distance can be used to find the regulator, as shown in the following theorem 

[Art2, p. 197]: 

Theorem 3.15 (Artin, 1921). There exists some m e N such that m = p(am _i) 

a0. Then the regulator of 0 is R0 = 6(am) for the smallest m satisfying p(am_i) = a0 

and R00. 

Note that if p(am_i) = a0, then it means the cycle of reduced ideals in Figure 3.12 is of 

length m. Figure 3.16 shows how the distance works in relation to the reduced ideals 

in an ideal class. Due to the cycle, we can reduce distances modulo the regulator R0. 

This is important because distances are unique and well-defined modulo R0. 

While Theorem 3.15 gives a method to compute the regulator by performing many 

baby steps, there is a quicker method to find R0 by making a trade-off between baby 

steps and the "giant steps" that will be defined next. 
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= p(at_i) 

Figure 3.16. We represent the cycle of reduced ideals in the principal ideal class by 

a circle. The squares on the circle denote the reduced ideals. in the ideal class. One 

may perform baby steps from a principal non-reduced ideal a0 to get to the closest 

reduced ideal at. Recall that once one gets to a reduced ideal, subsequent baby steps 

continue on the reduced ideals (e.g. p(at)). Rather than evenly spaced, the distance. 

between each adjacent pair of reduced ideals varies slightly. The distance around the 

total circle is equal to the regulator R0. 

3.2.3 Giant Steps 

Consider the infrastructure of the principal ideal class. Let a and b be two reduced 

principal 0-ideals. We can define an infrastructure operation a * b that jumps over a 

large number of baby steps from b by performing the following two operations: 
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i) Composition: Compute the product ab = (s)c giving a primitive ideal c. 

ii) Reduction: If necessary, use baby steps to find a reduced ideal Cr equivalent 

to c, for some r E No. 

Since a and b are principal, Cr is also a reduced principal 0-ideal and, therefore, 

Cr = pu(b) for some u e N. This operation in the infrastructure is performed via the 

giant step algorithm presented in Algorithm 3.17. We denote this operation by *. 

Algorithm 3.17 (Infrastructure giant step *). Giant step algorithm for comput-

ing in the infrastructure. 

Input: Two reduced principal 0-ideals a = (aa, ba) and b = (ab, bb) with associated 

distances 6(a) and 6(b). 

Output: A reduced principal 0-ideal c cth and the distance 6 = 8(c). 

1: (s)c = (s, a, b) +— ab > Ideal multiplication, Aig. 3.4 or 3.5 

2: 6 — 6(a) + 6(b) — deg(s) Compute the new distance 

3: i — O, co=(ao,bo)—c,6o-- 6 

4: while deg ai > g do > Reduction 

5: i—i+1 

6: (ci, 6) ((aj, b), o) +- p(ci_, 6—i) 

7: C +- Cj, öc + Ji 

Baby steps with the distance 

Let g be the genus of F and L(n) = log n log log n. We can multiply two reduced 

ideals in O(gL(g) log g) operations in K according to Section 3.1.4. The result of 

the multiplication gives c with deg a e 0(g). Reduction on c will cost O(g2L(g)) 

operations in K from Section 3.2.1. Then we can perform Algorithm 3.17 inO(g2L(g)) 

operations in K. 
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Consider the distance resulting from the composition step. In Step 2 of Algo-

rithm 3.17 we add the distance of a to the distance of b (we will consider the term 

deg(s) after). It is easy to see why if we consider a = (a)O and b = (/3)0 with 

5(a) = deg a and 6(b) = deg /3. The result of the composition is ab = (a/3)0 with 

5(ab) = deg(a/3) = deg  + deg/3, 

Now consider the distance after the reduction step. Note that we perform reduc-

tion on the primitive ideal c. That is, if the result of the multiplication ab is not 

primitive, we must correct the distance for the rational coefficient s E Quot (K [x]). 

The resulting distance is given by 

5(ct* b) = 5(a) + 5(b) + 5(c,, c) - deg(s) . (3.14) 

If we let e = 5(C, c) - deg(s), then we always have —2g ≤ e ≤ 0. It is this "error" e 

that prevents the giant step from being associative and the infrastructure from being 

a group [SW99, §4B],[Zuc97a, §8]. Figure 3.18 shows the relationship between the 

distances involved in the giant step. But given that c is bounded to be insignificant in 

comparison to the distances of a and b, we have 5(a * b) 5(a) + 5(b) and one can say 

that the giant step is "almost" assOciative. Therefore, we can use the infrastructure 

as if it is "almost" a group. In the next section we correct this operation to be 

associative. 



3.2. INFRASTRUCTURE OF A REAL QUADRATIC FUNCTION FIELD 70 

Figure 3.18. For reduced principal ideals a and b, the giant step a* b = Cr, where 

Cr is at distance 5(Cr) = 5(a) + 5(b) + e. 

3.2.4 Correcting the Giant Step 

As mentioned in the last section, the giant step has a small error e such that for 

reduced principal 0-ideals a and b, the result c = a* b has distance 8(a) + 8(b) + e 

from the trivial ideal 0. However, after performing the giant step, it is possible that 

e is large enough that there may exist another reduced principal ideal Z such that 

the distance 5(D) > 5(c) yet 5(D) ≤ 5(a) + 5(b). That is, D is closer to the distance 

5(a) + 5(b) (see Figure 3.19). Therefore, we may have to correct the giant step result 

c = a * b to D using baby steps. 
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Figure 3.19. For principal ideals a and b, the giant step c* b = c needs to be 

corrected to ti since the error term jej is too large thus making c not as close to the 

distance 5(a) + 5(b) as D. 

An algorithm to perform the giant step together with the correction step in the 

infrastructure of a real quadratic function field was given by Scheidler, Stein and 

Williams [SSW96]. This corrected giant step is presented in Algorithm 3.20. We 

denote the corrected giant step using the operator ®. 

Algorithm 3.20 (Infrastructure corrected giant step ®). Corrected giant step 

algorithm for computing in the infrastructure. 

Input: Two reduced principal 0-ideals a and b with 5(a) and 5(b). 

Output: A reduced, principal 0-ideal c ab and 8(c) such that c has the greatest 

distance satisfying 5(c) ≤ 5(a) + 5(b). 

1: (c') 5) - a* b > Compute the giant step and distance (Aig. 3.17) 
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2: e+-5-6(a)—ö(b) 

3: (c, S) +-. p* (c', —e) 

4: 6(c)-6+8 

Compute the error term (Eqn. 3.14) 

. Closest ideal to the distance —e from c' (Alg. 3.14) 

Recall that Section 3.2.3 bounded .e as —2g ≤ e < 0. Then Algorithm 3.20 runs 

in O(g2L(g)) operations in K, dominated by the cost of the giant step. 

3.2.5 The Baby-Step Giant-Step Algorithm 

Recall from Schmidt's class number relation (Lemma 3.7) that for a real quadratic 

function field F, the class number hF of the degree-zero divisor class group Cl° (F) 

and the class number h0 of the ideal class group Cl(0) are related via the regulator 

R0 as hF = h0R0. As mentioned earlier, the regulator R0 can be computed by 

performing a combination of baby steps and giant steps. This baby-step giant-

step algorithm computes and stores the result of a number of baby steps, then 

performs giant steps until a match is found. The baby-step giant-step algorithm is 

a time/memory trade-off originally proposed by Shanks [Sha71] in the context of 

real quadratic number fields. It was specified for real quadratic function fields over a 

constant field of odd characteristic by Stein and Williams [SW99, §3C] and in the even 

characteristic case by Zuccherato [Zuc97a, §9]. We present their method generalized 

for both characteristics in Algorithm 3.21. 

Algorithm 3.21 (Regulator baby-step giant-step). Baby-step giant-step algo-

rithm for computing the regulator. 

Input: The genus g of a real quadratic function field F over a field K = lFq, and the 

quadratic order 0 of F. 
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Output: The regulator R0. 

1:t—[ 3q2±21] 

2: co -  (1, 0) = 0 and store (eo, 0) > Store the polynomial pair representing 

3: öj4—O 

4: for i from 1 to t do 

5: (ei, 8) = ((a1, b1), 5) — p(e1_1, S._) > Perform a baby step (Alg. 3.13) 

6: if a1 E K* then 

7: return R0 -  Ji 

8: Store (e1,61) 

9: bo — et, 6,+--6,j+-0 

10: repeat 

11: j — j+ 1 

12: (by, ö) .— (et, ö) * (b_1, o_) 

e0 

Check if a1 is a trivial unit of 0 

Store the polynomial pair representing e1 

' Perform a giant step (Alg. 3.17) 

13: until bi = Ck for some k E {0,.. . , t} > Check if bj is a stored value 

14: return R0 <— Jil — Jk 

The ideal/distance pairs should be stored in a hash table to allow for efficient look-

up. The asymptotic runtime complexity of BSGS given in Algorithm 3.21 is bounded 

by o(q2lg2L(g)) operations in K due to the value of t, which is exponential in 

g log q. The runtime of the algorithm can be improved in practice by using properties 

of symnetry and conjugate ideals, details that can be found Zuccherato [Zuc97a, 

§9]. Further optimizations were provided by Teske and Stein that take advantage of 

the fact that baby steps are significantly faster than giant steps in the infrastructure 

[T505, §2.5]. However, even using these improvements, the runtime of the baby step 

giant step algorithm is still exponential in g log q. 
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Another limiting factor of Algorithm 3.21 is that it requires O(qP) space. Teske 

and Stein discuss how baby step giant step can be implemented in a space-restricted 

environment [TSO5, § 2.4, 2.5.2, 3.2]. A couple of generic algorithms given by Pollard 

can be adapted to regulator computation and have the same asymptotic runtime 

complexity as baby step giant step, but use significantly less memory [Pol78]. One 

of Pollard's methods has been implemented in real quadratic function fields by Stein 

and Teske [STO2b] 

Stein and Williams derived a more efficient method for computing the regulator 

by performing two steps , f BSGS. First, they use BSGS to search for R0 < C for 

an upper bound C. If R0 is not found, then the second step estimates the product 

of the class number and regulator via analytic methods6 giving an interval in which 

to perform a BSGS search for h0R0 [SW99, §4]. In a subsequent paper, Stein and 

Williams pointed out that if one obtains h0R0 from the second step of their method, 

the regulator can be found by factoring the product and using the infrastructure to 

determine the smallest divisor that gives R0.' The total complexity of their algorithm 

for computing the regulator was O(q'g2L(g)) operations in K, where A = (2g - 1)/5 

if'g 3 (mod 5) or A 2g/5 otherwise [5W98, § 5.1]. Improved estimates for h0R0 

to reduce the interval for searching in the second step were provided by Stein and 

Teske [STO2a, § 5]. 

In Chapter 4 we will show how the index calculus algorithm allows one to compute 

the regulator in time and space subexponential in log q when the genus g is large. 

6Similar analytic methods for estimating h0R0 are given in Section 4.3.7. 
7We describe this factoring technique for finding the regulator from a. multiple of R0 in Sec-

tion 4.3.6. 



3.3. EFFICIENT ARITHMETIC IN THE INFRASTRUCTURE 75 

3.3 Efficient Arithmetic in the Infrastructure 

The algorithms presented in the previous section for the baby step and giant step 

in the infrastructure of a real quadratic function field use an approach based on 

continued fraction expansions. Recent work has produced techniques for improving 

the efficiency of both algorithms. 

In cryptographic protocols, it is often required to perform an exponentiation op-

eration consisting of a scalar multiple of giant steps. Many techniques such as the 

"square-and-multiply" algorithm can reduce the total number of giant steps per-

formed, but recent proposals show that these techniques can be combined with a 

reordering of operations to improve the efficiency further. This section examines 

both improvements to the giant step operation and efficient exponentiation. 

3.3.1 NUCOMP 

The NUCOMP algorithm was originally proposed by Shanks [Sha89] for computa-

tions involving binary quadratic forms, or equivalently, ideals in imaginary quadratic 

number fields. NUCOMP was adapted to real quadratic number fields by van der 

Poorten [vdPO3]. Jacobson and van der Poorten [JvdPO2] discovered that NUCOMP 

could be applied to ideal computations in function fields. Further improvements to 

reduce the operands for quadratic forms were proposed by Atkin and adapted to 

function fields by Jacobson, Scheidler and Stein [JSSO7b]. 

The standard algorithm for giant steps in the infrastructure perform composition 

and reduction sequentially. The idea of NUCOMP is to perform reductions before 

the composition, thereby allowing one to work with polynomials of smaller degree. 

The complete algorithm as well as detailed explanations can be found in the work of 
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Jacobson, Scheidler and Stein [JSSO7b, § 8-9]. The algorithms given can be used in 

replacement of Algorithm 3.17 to improve computational efficiency. 

3.3.2 Explicit Formulae 

Whereas the previous algorithms work in general for all hyperelliptic curves, explicit 

formulae focus on hyperelliptic curves of a fixed, small genus to tweak the operations 

for a reduction in complexity. The basic idea is to express operations in terms of 

forumlae for polynomial coefficients, instead of in terms of generic polynomial arith-

metic. Implementations are designed to use the efficient explicit formulae for special 

cases and otherwise use a general algorithm, with the hope that the special cases 

occur often enough to provide a significant performance improvement overall. 

Complexity results for explicit formulae differentiate between types of field op-

erations. Addition in the field K is considered to be negligible and not included in 

most analyses. Multiplications are often separated from squarings as well as field 

inversions, the latter being the most costly. 

Let the hyperelliptic curve C over a field K be given by the equation C : y2 + 

h(x)y = f(x), where fi represents the i-th coefficient of the polynomial 1(x) (e.g. 

the constant term is fo). The first explicit formulae for real quadratic function fields 

were provided very recently by Erickson et al. [EJSO7]. They give formulae for 

genus g = 2 under the assumption that char K> 3. The latter assumption allows a 

transformation x F-+ x - f5/6 that eliminates the x5 term in f(x). 
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3.3.3 Fast Giant Step Exponentiation 

Many techniques have been proposed for improving the efficiency when computing a 

scalar multiple of an operation. They involve representing m in some, sort of digit 

encoding and then performing a square-and-multiply algorithm. Most of these tech-

niques can be applied directly to compute m e N corrected giant steps. If we interpret 

corrected giant steps as multiplications, then our goal is to compute the exponenti-

ation of an ideal a. We denote this as 

M 

The simplest (non-naive) technique for exponentiation uses the binary repre-. 

sentation of m, written as 

with b E {O,l} for 0 ≤ i ≤ £— land bt I. 

Note that the length of the binary representation is £ = [log mJ. Using binary 

representation is easy since computers represent integers in binary by default. The 

square-and-multiply algorithm is the standard method for computing exponen-

tiations and we present it for infrastructure exponention in Algorithm 3.22. 

Algorithm 3.22 (Infrastructure exponentiation *). Square-and-multiply expo-

nentiation algorithm for computing the result of m (corrected) giant steps in the in-

frastructure with m given in binary form. 

Input: A reduced principal 0-ideal a with its distance öa = 8(a) and an exponent 

m = IJ b2 € N given in binary. 
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Output: A reduced principal 0-ideal b r'' a of distance Sr., = 8(b) < m5(a) such that 

8(b) is maximal. 

1: (b,6,) <- (a, J,) 

2: forifrom e—ltoodo 

3: (b, Sb) +- (b, Sb) @ ( b, Sb) > "Square" b (Aig. 3.20) 

4: 1fb2=lthen 

5: (b, Sb) •- (b, Sb) ® (a, 8a) C> "Multiply" b by a (Aig. 3.20) 

We define the Hamming weight of rn as the number of non-zero entries in a 

particular digit representation of m. It should be easy to see that the square/multiply 

algorithm performs fewer "multiplications" when the Hamming weight of m is small. 

If we have knowledge of the regulator R0, then we can take advantage of the fact 

that we can compute the distance of an ideal in the infrastructure in the opposite 

direction. Because of the symmetry of the infrastructure, the conjugate ideal has 

distance 8(a) = R0 - 5(a). Since computing is free, we can use a represention of m 

called signed-binary representation. This corresponds to 

m=c2, with cE{-1,0,1} for 0≤i≤J and ce+i=1. 

In particular, m in signed-binary representation is in non-adjacent form (NAF) 

if no consecutive pair (ci, c+1) are both non-zero. This representation in NAP is 

unique for any m € N.8 Written in NAF, m has at most £ + 1 digits and, due to the 

restriction that no pair of adjacent digits are both non-zero, the Hamming weight of 

m is expected to be V + 1) in NAF, versus ? for binary representation. In fact, the 

8For proofs of the existence and uniqueness bf NAF, see Reitwiesner [Rei6O, pp. 246-248] 
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Hamming weight of an integer in NAF is guaranteed to be minimal among all possible 

signed-binary representations. One can recode m from binary to NAF representation 

using Algorithm 3.23 [Doc06, pp. 150-152]: Then the square-and-multiply algorithm 

is slightly modified as shown in Algorithm 3.24 to work with the scalar exponent in 

NAF. 

Algorithm 3.23 (Binary to NAF recoding). Compute the non-adjacent form 

(NAF) representation of m N. 

Input: The binary representation m = Ef=0 bi2i with b 0. 

Output: The NAF representation m = 

1: ro+- 0,be+1<- 0,be+2 -- 0 

2: for i from oto.e+1 do 

3: r 1 - L(ri + b + b 1)/2J 

4: c+—r+b-2r+i 

Algorithm 3.24 (NAF-based infrastructure exponentiation *). Square-and-

multiply exponentiation algorithm for computing the result of n-i (corrected) giant steps 

in the infrastructure with m given in non-adjacent form (NAF). 

Input: A reduced principal 0-ideal a with its distance öa = 5(a) and an exponent 

M ==0 c2 E N given in NAF. We also assume we have the regulator R0 

Output: A reduced principal 0-ideal b -' a of distance J6 = 5(b) ≤ m5(a) such that 

8(b) is maximal. 

1: (b,5,) - (a, J,,) 

2: for i from .e+lto0do 

3: (b, 85) - (b, 5) & (b, S) > "Square" b using the corrected giant step 

4: ifc=1then 
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5: (b, öb) - (b, Sb) * (a, Sa) > Perform a corrected giant step with a 

6: else if (c = —1) then 

7: (b, 5,) (b, Sb) ® (, R0 - 8) > Corrected giant step with conjugate of a 

In practice, exponentiation in the infrastructure can be improved even more. Note 

that each corrected giant step operation may perform a number of baby steps to ensure 

the intermediate result is valid. Jacobson, Scheidler and Stein [JSS07a] gave heuristics 

that make the distance between consecutive baby steps or giant steps precise. 

Heuristic 3.25 (Jacobson, Scheidler & Stein, 2005-2007). Let C be a real hy-

perelliptic curve of genus g over the finite field K = ]Fq. Let F = K(C) be the function 

field of C, and let 0 = K[C] be its coordinate ring. Then for two reduced principal 

0-ideals a and i and sufficiently large q, the following properties hold with probability 

i) If c = p(a, 0) is the result of a baby step from a, then the distance between a and 

c is always equal to 5(c) - 5(a) = 1; 

ii) If c = a* b is the result of a giant step, then the resulting distance 8(c) has an 

error value always equal to e = - [g/2]. 

These heuristics allow one to avoid using the corrected version of the giant step 

by performing a few baby steps at the beginning of the exponentiation. Therefore, 

one avoids the adjustment baby siieps in each intermediate giant step. We refer the 

reader to Jacobson, Scheidler and Stein [JSS07a, §3.3] for the presentation of these 

heuristic methods. 
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3.3.4 Fast Closest Ideals 

Often we want to compute the closest ideal to a chosen distance from another ideal. 

Recall from Section 3.2.2 that given a reduced 0-ideal a, the "closest" equivalent ideal 

to a distance d means that we find a reduced ideal b a with 5(b, a) ≤ d such that 

there is no reduced ideal c a with S(b, a) < 5(c, a) d. We denote, this property as 

5(b, a) d. 

Algorithm 3.14 computed the closest ideal by performing baby steps from a, keep-

ing track of the distance travelled, and stopping when we reached the desired distance 

d. We can improve upon this naïve method by using giant step exponentiation. Al-

gorithm 3.26 presents this improved method [JSSO7a, §3.2]. 

Algorithm 3.26 (Infrastructure closest ideal p*). Computing the closest equiv-

alent ideal to a given distance from a given ideal. 

Input: A reduced principal 0-ideal a with its distance 5 = 5(a) and a distance d. 

Output: A reduced principal 0-ideal b a and the distance 5 = 5(b, a) such that 

5d. 

1: m  

2: (b,5)4—(a,O)*m 

3: while 5 ≤ d do 

4: (b',5') — p(b,5) 

5: ifS<dthen 

6: 

Similar heuristic techniques to the fast exponentiation algorithm can be applied to 

finding closest ideals. See Jacobson, Scheidler and Stein [JSSO7a, §3.3] for a discussion 
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of these heuristic methods. 



Chapter 4 

Index Calculus in Real Quadratic 

Function Fields 

Cryptographic protocols proposed by Scheidler, Stein and Williams [SSW96] and 

Jacobson, Scheidler and Stein [JSSO7a] are based on a computational problem in 

a real quadratic function field called the infrastructure discrete logarithm problem. 

Discrete logarithms arise in other areas, such as the multiplicative group of integers 

modulo a prime, where the fastest known algorithm to solve an instance is known 

as the index calculus algorithm. There are other computational problems of interest 

in real quadratic function fields, such as finding the regulator and computing the 

ideal class number. When the genus is large, we will show that index calculus is the 

fastest known method for solving these problems, too. In this chapter we discuss how 

the index calculus algorithm can be formulated in the infrastructure and present a 

heuristic analysis of its complexity. 

We begin this chapter by formally stating a number of computational problems 

in the infrastructure in Section 4.1. Section 4.2 introduces the framework of the 

83 
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index calculus algorithm. Details of how the index calculus algorithm is applied in 

the infrastructure are presented in Section 4.3, including explicit algorithms and a 

complexity analysis for each of the main computational problems. 

4.1 Computational Problems in the Infrastructure 

Like any interesting mathematical structure, there are a number of computationally 

difficult problems that are associated with the infrastructure of a real quadratic func-

tion field. The complexity of an algorithm is said to be expected polynomial time 

if its running time is of the form O(logc n) on average, where log m is the number of 

bits required to express the input m and c E R≥0 is a constant.' We define a compu-

tationally difficult problem as a problem for which no expected polynomial-time 

algorithm is known to solve a random instance. 

For the problems we are considering there is no proof to shbw that they cannot be 

solved in polynomial time. The basis for the claim-is that after many years of study, 

mathematicians and computer scientists have been unable to find an algorithm that 

provides a solution in polynomial time. This section provides an overview of the most 

common problems of interest in the infrastructure of a real quadratic function field. 

4.1.1 Properties of the Ideal Class Group 

Let F be a real quadratic function field defined by y2 + hy - f for polynomials 

h, f E K[x]. Let 0 be the quadratic order of F. Recall from Section 3.1.5, the ideal 

class group C1(0) is a set of equivalence classes of ideals. The number of ideal classes, 

'If c= 0, theri the algorithm is said to be constant with respect to the input size. 
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i.e. the order of the ideal class group, is the ideal class number h0. Computing the 

ideal class number is believed to be a computationally difficult problem. 

Problem 4.1 (Class number computation). Given polynomials f and h, corn-

putethe class number of the ideal class group Cl(0). 

In real quadratic function fields, the ideal class number h0 does not immediately 

give us the divisor class number hF (cf. Theorem 3.7). One also requires the regulator 

R0, the degree of the fundamental unit q E Q*• As shown in Section 3.2.2, the 

regulator also gives the length of the cycle of reduced ideals in the infrastructure of 

an ideal class. Since we can reduce distances modulo R0, it is important for efficient 

computations in the infrastructure. However, computing the regulator is also believed 

to be computationally difficult. 

Problem 4.2 (Regulator computation). Given polynomials f and h, compute 

the regulator R0 of 0. 

One of the central theorems in group theory is the following: 

Theorem 4.3 (Fundamental theorem of Abelian groups). Every finitely gen-

erated Abelian group is isomorphic to a unique decomposition of the following form: 

Z/s1Z Z/s2Z ED ... ED  z/Stz, 

where n ≥ 0 and sjlsj+i for 1 <i < t 

The above decomposition is called the structure of the group. Since the ideal class 

group Cl(0) is a finite Abelian group, it has a structure as given in Theorem 4.3 with 

n = 0. It is of interest, and believed to be computationally difficult, to determine 

this group structure. 
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Problem 4.4 (Determine class group structure). Given polynomials f and h, 

compute the group structure of the ideal class group Cl(0). 

4.1.2 Discrete Logarithm Problem 

As mentioned in Chapter 1, the discrete logarithm problem is a computationally 

difficult problem that is used as the basis for many public key cryptosystems. In 

a generic multiplicative group G of large prime order,' the discrete logarithm 

problem (DLP) is defined as follows: 

Problem 4.5 (Generic group DLP). Let g be an element of order n in G. Then 

given an element h = 9b for some unknown positive integer b < n, find b. 

Often, g is chosen to be a generator of the group G, so the order of 9 is equal to 

the size of G. The choice of G affects the difficulty of solving Problem 4.5. For 

cryptographic applications G must be chosen to be sufficiently large so that g can 

have a large order, but how large is determined by the fastest known algorithm to 

solve Problem 4.5 in the type of group. 

Even though the infrastructure of a real quadratic function field does not form a 

group, we can still define a similar discrete logarithm problem in infrastructure. The 

definition and use of the infrastructure DLP ior cryptography was proposed by Schei-

dler, Stein and Williams [55W96] based on a similar proposal for the infrastructure 

of a real quadratic number field by Buchmann and Williams [BW9O]. 

Problem 4.6 (Infrastructure DLP). Given a reduced principal (.9-ideal b, find the 

distance 8(b). 

21.Jsing a multiplicative group G is not a restriction; we only specify that G is multiplicative 
rather than additive in order to have consistent notation. An example of an additive group that 
admits an interesting DL? is the group of points on an elliptic curve. 
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Similar to Problem 4.5, the difficulty of the infrastructure DLP is directly affected by 

the size of the regulator R0. 

In many cryptographic protocols, b is computed as b = c * b for some publically 

agreed-upon principal 0-ideal c 0 and randomly chosen private value b E N 

satisfying 1. < b < R0. In such a situation, one may want to find the integer b. From 

the definition of the giant step exponentiation, b has distance closest to b. So given a 

solution 5 = 5(b) to an instance of the infrastructure DLP, we can compute p*(Q, b') 

for b' = 5, 5 - 1,... until we get b. Note that according to Equation (3.13), there are 

at most g choices for b'. 

4.1.3 Subexponential Algorithms 

An algorithm is called exponential if it is not polynomial time, but has a running 

time in O(cf()) for some constant c E R>.1 and some function f that is polyno-

mial in log n. To better classify algorithms, a distinction is made between a fully-

exponential algorithm and a subexponential algorithm whose running time is of 

the form Q(e0(10)), where e is base of the natural logarithm. To express the running 

time of an algorithm that is subexponential in log n, we use the following convenient 

notation: 

L (a, c) = 6c(1ogn)'(1og1ogn)' 

where c, a E R are constants satisfying c> 0 and 0 < a < 1. For an algorithm with 

running time 0 (L (a, c)), if a = 0, then the algorithm is polynomial in log n; also, if 

a = 1, then the algorithm is fully-exponential in log n. If a = 1/2, as will be common 
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throughout this chapter, we simplify this notation as 

L (c) = cV'Io n log log n 

Note that we have the following simple relations that we will use to simplify 

expressions involving subexponential terms: 

O(i (c1)) O(L (c2)) C O(L (c1 + c2)) and 

O(L (ci)) + O(L (c2)) ç O(L (max{ci,c2})) 

All of the problems we have described in this section can be solved in expected 

subexponential time when the genus of the function field is large. This algorithm will 

be described next. 

4.2 Introduction to Index Calculus 

The technique known as "index calculus" has been applied to many computationally 

difficult problems. In many situations index calculus turns out to have an expected 

subexponential runtime. The original approach has been attibuted to Kraitchik 

[Kra22, pp. 119-123], [Kra24, pp. 69-70, 216-267] with similar ideas used by West-

ern and Miller [WM68]. Index calculus has been successfully used to factor large 

composite integers and to compute discrete logarithms in many types of groups. In 

this section we present a brief overview of index calculus as applied to the discrete 

logarithm problem. Similar surveys are available in Odlyzko [0d185, §4], McCurley 

[McC90, § 5], and Schirokauer, Weber and Denny [SWD96, §3]. 
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4.2.1 Index Calculus in Generic Groups 

Suppose we wish to solve an instance of the discrete logarithm problem in a multi-

plicative, cyclic group C of order n. That is, we are given two elements g, h E C 

such that h = 9b for some b E N, and we wish to find b. In the following description 

we assume that g is a generator of the group C, i.e. the order JgJ = n(3. Similar to 

the framework given by Enge and Gaudry [EGO2, §2], we require that there exists a 

free Abelian monoid M over a countable set?, together with an equivalence relation 

compatible with the operation on C such that G The elements in? are 

called primes and this setup allows the unique decomposition of the elements of C 

into the primes of?. The index calculus algorithm consists of four major steps: 

1) choose a factor base. A factor base is the set .FB consisting of primes ir EP 

satisfying deg ,7r < B for a degree function deg : M - JR>0 and some B E N 

called the smoothness bound. The choice of B is important in the running 

time of the algorithm, but we will discuss this later. Let the cardinality # B = 

An element of C is called B-smooth if it can be expressed as a product of 

primes from the factor base JB. 

ii) Generate relations. Generate a random element ak E C by choosing k E N 

at random satisfying 0 < k < nc and computing ak = 9  E G. Test if ak is 

B-smooth. If it is indeed B-smooth, then we have the following relation: 

nB 

ak=fl 7el. r C- G, where each 7r E FB and ej E Z. 

Then we have a vector e = (el, e2) .. . , eflB) which we store along with k. Note 

that with an appropriately chosen B, the vector e is likely to have only a small 
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number (in comparison to nB) of non-zero entries; such a vector is said to be 

sparse. Repeat this step until we have a set RB of m relations, for some 

m ≥ nB. Generally, m is just slightly larger than n2 in an effort to ensure 

there are ri8 linearly independent relations. This relation generation step can 

be done in parallel on multiple processors. 

iii) Solve a linear system. With the set 7ZB = {(e1, k1), (e2, k2),. . . , (em, km )} of 

relations found in Step 2, let b = (k1,. . . , km) and construct an nB x m matrix 

A7z consisting of column vectors e, e. . . , e, where e denotes the transpose 

of the vector e. Then one solves the following system: 

xA. b (mod nG). (4.1) 

If nB of the relations in A)z are linearly independent, the system is overdeter-

mined and thus solvable. The solution vector x = (x1,... , x) corresponds to 

the discrete logarithms of the form 7r = g E G since the i-th entry of b is 

computed in Equation (4.1) as 

nB 

e1Ee 

g9lrj (mod nc). 

Since the matrix A is a sparse matrix, it can be represented using much less 

memory and there exist efficient methods for computing solutions to the lin-

ear system in Equation (4.1). If nG is not prime, then extra work to solve 

Equation (4.1) is required (cf. Enge and Gaudry [EGO2, §4]). 

iv) Extract a solution. Choose k E N at random satisfying 0 < k < nc and compute 
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h - g' E G, testing if the result is B-smooth. If it is not B-smooth choose a 

different k until it is. Then for a vector d = (d1,... , d,) we have the following 

relation: 

nB 

h 9k = fT ir3, where each 'ir E YB and dj E N0. 

Now we can compute the discrete logarithm b = log9 h as 

nB 

b=dx—k (modnG). 

The choice of the smoothness bound B is important in the runtime of the algo-

rithm. If B is too small, it will take too long to generate enough relations, since 

finding B-smooth elements will be difficult; conversely, if B is too large, the linear 

system will be too big to solve efficiently. 

Suppose the smoothness bound B is chosen such that nB E 0 (LflG (/3)) for some 

constant /3> 0. Let flG/B be the number of B-smooth elements in G. Then, if we test 

elements of C uniformly at random, we expect to find a B-smooth element after 
nGIB 

tries. We assume that no E 0 (L (u)) for some constant CT> 0. We also assume 

one can decompose a B-smooth element of C into its prime factors is in O(nB), and 

one can test an element of C for B-smoothness in O(n) for some constant r. If 

generating m relations for some m E O(rtB) gives a sufficient probability that the 

relation matrix A has full rank, then using efficient linear algebra techniques, Enge 

and Gaudry [EGO2, §6] show that the number of operations in C required for the 

index calculus method to solve an instance of the discrete logarithm problem in G is 
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in 

0 (L,,, (maxf 1, 2, (1+ r) + u I + 0(1))) 

4.3' Index Calculus in the Infrastructure 

Muller, Stein and .Thiel were' the first to describe an index calculus variant in the 

infrastructure for fields of odd characteristic [MST99}. In this section we expand 

upon the MST algorithm, providing a new relation generation method, an updated 

complexity analysis, and a generalization to both even and odd characteristics. 

Let K = F. be a finite field of order q. Let C : y2+h(x)y = f(x) be a hyperelliptic 

curve of genus g, where f, h E K[x]. If char K> 2, then we assume that deg f = 2g+2 

and sgn f is a square in K; otherwise, if char K = 2 (i.e. q = 2m, for some rn E N), 

then we assume that deg h = 9 + 1 and either deg f ≤ 2g + 1 or deg f = 2g + 2 and 

sgnf = e2 + e for some e E K*. Then from Section 3.1 we have that F = K(C) is a 

real quadratic function field. Let 0 denote the coordinate ring K[C] and let R0 be 

the regulator of 0. 

4.3.1 Overview 

We want to apply the framework of the index calculus method in the previous section 

to solve the computational problems given in Section 4.1 in the setting of the infras 

tructure of a real quadratic function field. However, there are a number of changes 

that must be made to the framework in order to apply to our setting. 

Since f and h are polynomials in K[x] of degree 0(g), we can describe the function 



4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 93 

field by giving the equation C in O(g log q) bits. For an instance of the infrastructure 

discrete logarithm problem as given in Problem 4.6, the reduced 0-ideal b given 

in standard representation can also be expressed in O(g log q) bits. Therefore, we 

consider the input size to our index calculus algorithm to be g log q bits. 

Recall that the infrastructure is the cycle of reduced ideals in an ideal class of 

010(0). We will work in the principal ideal class. The infrastructure operation ® is 

based on the notion of distance in the cycle, since the result is the reduced principal 0-

ideal with distance closest to the sum of the distances of the two operands. However, 

because we may need to correct the ideal from the operation * to satisfy our previous 

property, the infrastructure operation * is not associative; hence, the infrastructure 

is not a group under * as was assumed in our index calculus framework. 

We do have a notion of prime ideals in 0, so we are still able to compute a factor 

base. Similar to the previous framework, our relations consist of a vector e indicating 

how a B-smooth element factois over the factor base. In the infrastructure, this B-

smooth element is a reduced 0-ideal a, and e contains the exponents for the prime 

ideals in the factor base to obtain a. However, unlike in the previous section where 

we solved the linear system to obtain the discrete logarithms of the smooth ideals, 

we keep track of the distances of the smooth ideals and include that information in 

the relation. That is, relations consist of the vector e indicating how a factors, along 

with the distance 6(a). 

Similar to our framework, we put each vector from the relation in a column of 

a matrix A. If we are computing an infrastructure DLP, i.e. trying to find 6(i) for 

some principal 0-ideal b, then we first find an equivalent smooth ideal b' with known 

distance 6(b', b). Then we let b be the vector indicating how b' factors over the prime 



4.3. INDEX CALCULUS IN THE INFRASTRUCTURE 94 

ideals in the factor base. We solve the linear system Ax = b. In this case, the solution 

vector x gives a linear combination of the relation vectors that results in b. That 

is, x indicates how to apply the infrastructure operation ® to get Ii' from the ideals 

of the relations. Therefore, we can use the distance property of ® and compute the 

dot product of x with the distances of the relations to get the distance 5(b"), where 

8(b") 5(b') mod R0. 

To compute the regulator Ro, one notes that if we let the vector b = (0, 0,.. . , 0), 

this vector corresponds to a relation for the ideal 0. Therefore, solving for a kernel 

vector of A gives a vector x that is a linear combination of the relations to the 0-

relation. Hence, the dot product of x with the distances of the relations gives the 

distance of some multiple of the regulator R0. We can find the actual regulator by 

taking the smallest divisor d that satisfies p* (0, d) = (0, 5) with 5> 0. 

Alternatively, if we want both the regulator R0 and the class number h0, we can 

form an augmented matrix A' that consists of A with the distances added as a row 

on the bottom. If A' has full rank, this augmented matrix corresponds to basis for 

a sublattice of the lattice of all possible relations. It is known that this lattice has 

determinant h0R0, so the Hermite normal form of A' has a determinant equal to a 

multiple of h0R0. If A' is a basis for the full relation lattice, then the determinant is 

exactly h0R0. 

Finally, to compute the class group structure or just the class number h0, one 

computes the Smith normal form of the HNF of A. The invariant factors of the SNF 

that are greater than one correspond to the group structure. The product of the 

invariant factors gives the ideal class number. 

We explain each of these stages in detail in the following sections. 
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4.3.2 Computing the Factor Base 

Since 0 is a Dedekind domain, every 0-ideal is a unique product of prime 0-ideals. 

Then using the fact that the generalized Riemann hypothesis (GRH) is proven to be 

true in algebraic function fields,' the following result gives a bound on the size of 

elements to be included in the factor base [M5T99, §3]: 

Theorem 4.7 (Muller, Stein & Thiel, 1999). The ideal class group 01(0) is gen-

erated by the prime ideals p with norm satisfying deg N(p) B if the smoothness 

bound satisfies 

B ≥ [21ogq(4g - 2)1 

Given this result, we define the degree of a reduced 0-ideal a to be deg a = deg N(a), 

where the norm is the polynomial a  K[x] from a = (a, b) in standard representation. 

We select our factor base 2B to contain the prime 0-ideals of degree at most B 

that lie above either a splitting or ramified K[x]-ideal. Such prime 0-ideals are of 

the form q3 = (a, b), where a = p is a monic irreducible polynomial in K[x] and b is 

a root of 9f (y) = y2 + hy - f. Note that if K has order q, then there are q' monic 

polynomials of degree d in K[x]. If we determine that a monic polynomial p E K[x] 

with degp < B is irreducible, then we determine the splitting behaviour of p = pK[x] 

based on how W(y) = ,y'+ hy - f factors in (K[x]/p)[y]. We have that p is ramified if 

W(y) is a square. The ideal p splits in 0 if W(y) has two unique roots. Finally, Ii(y) 

is inert if W(y) has no roots. 

3The proof of the GRH in algebraic function fields in the case of genus 1 is due to Hasse [Has36], 
and proven for arbitrary genus by Weil [Wei48]. 
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In the odd characteristic case we have h = 0, so if plf, then 'I'(y) is a square and 

we have that p is ramified below the prime 0-ideal 143 = (j, 0). Otherwise, if pf, 

then p splits if and only if f is a square in K[x]/p. Using an algorithm that finds the 

squarefree decomposition of a polynomial, we can determine whether f is a square 

modulo p (cf. Bach and Shallit [BS96, p. 169]). If we determine that f is a square, 

the square root b = /j mod p can be probabilistically computed using either the 

algorithm of Tonelli-Shanks4 or Cipolla-Lehmer [BS96, pp. 155-159]. Once we have 

computed b, we know that p splits into a product of two conjugate prime 0-ideals 

p= (p, b) and (p,—b). 

In the even characteristic case where IKI = 2', we can determine if '(y) 

Y1 + hy -- f is a square by checking if ph. This works since JLT = 2y + h 0 mod p dy 

if and only if ph. If W is a square, then a square root can be computed as b= 

W 2 gp i n+de-1 mod p and p s ramified below the prime ideal q3 = (p, b) [BS96, p. 155]. 

For a non-square W(y), p splits if and only if W(y) has roots in K[x]/p. If degp = rn, 

then K[x]/p 1Fnrn. The trace of an element a E JF2m is a map defined as 

1-4 i=1 a2. 

Consider the change of variables u = yh' mod p on W(y) and let a = fh 2 mod p, 

giving the Artin-Schreier polynomial t(u) = u2 +u - a. Then it follows from Hubert's 

Theorem 90 that t(u) has a root in K[x]/p if and only if Tr(a) = 0 [Sti93, p. 241]. 

Once we know t(u) has roots, one of them can be found using the McEliece polynomial 

factorization algorithm, a randomized Las Vegas algorithm that uses the trace to find 

4Shanks called this algorithm RESSOL and it is sometimes referred to in the literature as such 

[Sha72a, §5]. 
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a non-trival factor with a failure probability of at most 1/2 [McE69, §11]. If d is a 

root of t(u), then b = hd is a root of W(y).5 Consequently, p will split into the two 

conjugate prime 0-ideals 93 = (p, b) and T = (p) —b - h). 

For each splitting ideal p = pK[x] such that p0 = q33, we include only one of 

in .FB. The complete procedure can be seen in Algorithm 4.8. To have .FB 

satisfy Theorem 4.7, Muller, Stein and Thiel estimate for the number of prime ideals 

that will be in FB is bounded as nB ≤ 4BqB [M5T99, §2.2]. 

Algorithm 4.8 (Factor base generation). Generates the factor base for index cal-

culus in the infrastructure. 

Input: A smoothness bound B for a hyperelliptic curve C : y2 + h(x)y = f(x) over a 

field K = Fq 

Output: A factor base FB that generates the ideal class group 01(0) 

1: .FB {ø}, m - 1 

2: repeat 

3: for each monic polynomial a E K[x] with deg a = m do 

4: if a is irreducible over K[x] then 

5: b—y2+hy—f 

6: if h = 0 )\ alf then t> Odd characteristic cases 

7: b +— 0 > aK[x] is ramified 

8: else if h = 0 A Squarefree(f mod a) = 1 then 

9: b - \/j (mod a) > aK[x] splits 

10: else if h=,40 A ah then c> Even characteristic cases 

2 2 11: b +— (y - f) dcga-1 q (mod a) > aK[x] is ramified 

5Equivalently, we could just as easily use the McEliece algorithm to find a non-trival factor of 
(y) mod p directly. 
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12: else if h 0 A Tr(fh 2) = 0 then 

13: (y - b) - PolyFactor(y2 + hy - f mod a) 

14: if by2+hy-f then 

15: 

16: m+- m+1 

17: until m> B 

aK[x] splits 

> If aK[x] is inert, b = y2 + hy - f 

Let L(n) = lognioglogn. Ben-Or's algorithm for testing a degree-n polynomial 

in K[x] for irreducibility requires 0(n2L(n) log n log q) operations in K in the worst 

case, but only 0(nL(n) log n.log q) operations on average [Beri8l, § 2]. To iterate 

over every monic polynomial a E K[x], we need to perform the irreducibility test 

T = E B qk E Q(qB) times. Dividing a degree-rn polynomial by a degree-n polyno-

mial requires O(rt(m - n + 1)) operations in K [Knu97, pp. 420-421]. Tonelli-Shanks 

runs in expected 0(n log 4 q) bit operations and Cipolla-Lehmer is in O(nlog3 q) bit 

operations, where n = deg a.6 We can find a non-trivial factor of a quadratic poly-

nomial in K[x, y]/aK[x] when char K = 2 using the McEliece algorithm in expected 

0(1og3 q) bit operations with a failure probability of at most 1/2 [BS96, pp. 155-159, 

355]. Since deg  E 0(g) and deg  E 0(B), we have the expected number of field 

operations required to perform Algorithm 4.8 is in 

0(TB . L(B) log B log q + nB (gB + B log' q)) 

0 (qBB L(B) log B logq + qBB2g + q B B 2 log3 q)) . (4.2) 

6Although Cipolla-Lehmer has a faster asymptotic upper bound for its runtime, in practice the 
runtime of Tonelli-Shanks is comparable unless q - 1 is highly divisible by 2 (cf. Bach and Shallit 

[BS96, pp. 158-159]). 
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We continue the analysis following the work of Enge [EngO2]. Suppose we choose 

the smoothness bound B = [logq Lq (c)1 for some constant c e J1 >0 satisfying Theo-

rem 4.7. Since '°gq Lq (c) is rounded up to B, we have q  potentially almost as big 

as q b0gq 1q9 (c)+1 = q - Lq9 (c). Then to remain subexponential we require q to be subex-

ponential in O(g log q). Therefore, the genus g must be large. Suppose g ≥ '0 log q for 

some constant '0 > 0, then 

q = 101, q = exp ( \/o (log q)2) < exp ( \/g log q) ≤ L (*) 

Now we have the following upper bound that is satisfied even if B c logq Lq9 (c) + 1: 

qB Lqg (c) . Lqg () = Lq ( + ' ) (4.3) 

Continuing from Equation (4.2), the expected number of field operations required for 

Algorithm 4.8 to generate the factor base 7B is in 

o (Lqg (+ )log q+ Lqo (+ ) 9+ Lq "c+ --- log 3q 

1 
c0 (Lqg (c++o(1))7 79  

when g log q - co for 0 < i9 < g/ log q. 

Comparison with Previous Work 

(4.4) 

Muller, Stein and Thiel obtained a runtime of 0(BqB (deg f)3 log q) operations in odd 

characteristic fields to compute the factor base [MST99, 5]. This simplifies using our 
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analysis as 

09 3log q - Lq / 1\\ + (Lqg / 1 0  c + + o(1) 

Note that the subexponential term has swallowed a much larger polynomial function 

than in Equation (4.4). 

Enge's asymptotic complexity for computing the factor base in the Jacobian 

[Eng02, §5.3] is 

ö(log 2q.Lgq(2c+)) CQ(L9(2C++O(1))). 

Enge has a larger multiple on the constant c than our result in Equation (4.4), since 

his algorithm uses trial division to determine irreducible polynomials. 

4.3.3 Smoothness Testing 

Suppose we are given a reduced 0-ideal a = (aa, ba) in standard representation, and 

we wish to determine whether a corresponds to a B-smooth ideal. We will see that 

we can perform an efficient test using the norm N(a) = aa. 

Let the prime ideals in the factor base be labelled as follows: FB = {P1, P2,. .. , PnB} . 

Each prime ideal pi =(api, b) in FB has N(p) = api irreducible in K[x]. Suppose 

the norm of a factors over the norms of the pi E FB. Then there exist exponents 

ej E No such that 

N(a) = [J N(p = ei [f a;. 
(ap,bp)E.FB 

(4.5) 
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The factorization the norm of an ideal a may not exactly correspond to the factoriza-

tion of the ideal a. There are two reasons for this. First, we must take into account ba 

from the standard representation a = (aa, be). Therefore, we must correct the sign of 

the exponents to get the ideal a with the correct conjugation. This is done as follows: 

for each i, 1 ≤ i < m, find si E {-1, 1} satisfying ba s (mod This gives 

a vector e = (siei, s2e2,. . . SflB eflB ). The second reason why the factorization of the 

norm of a does not directly result in a being B-smooth is because the negative signs 

in e are ideal inverses and result in a polynomial coefficient for the ideal. According 

to Equation (3.3), we have 

ThB / 1 1 
flp7iCi = a fl = a H - 
i=1 .f leil eEe ..feiEe api 

z. l$i<o 

(4.6) 

Therefore, for each reduced 0-ideal a = (an, ba) whose norm factors as in Equa-

tion (4.5), we have a B-smooth ideal with the standard representation (s, aa, ba), 

where 8 IIEejEe,sj<O and s ,bpi (mod 

To efficiently test whether the norm of a reduced 0-ideal a factors . according 

to Equation (4.5), we use a strategy called distinct degree factorization. This 

is based on the fact that if the field K has order q, then x - x is equal to the 

product of all monic irreducible polynomials in K[x] of degree dividing B. Then 

if N(a) = aa is squarefree, the product of the degree-i factors of a, is given by 

d1 = gcd(x - x, aa). This can be iterated since the product of the degree-2 factors 

of aa is given by d2 = gcd(x 2 - x,aa/di) [BS96, pp. 170-171]. In fact, instead of 

computing the GCDs for degrees 1 to B, using an optimization described by Velichka, 

we can reduce this to only compute the GCDs for degrees LU + 1 to B [Vel08, p. 42]. 
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This is sufficient since degrees of LU and below must divide some degree in the higher 

range. 

To efficiently compute Xqi mod aa for 1 < i < B, we make use of special map 

called the Frobenius endomorphism. Let q = ptm with p prime and m E N. Then 

the Frobenius endomorphism on K = lFq is the automorphism defined by : a '— p a. 

If m = 1, then q is just the identity automorphism due to Fermat's little theorem. 

The Frobenius endomorphism can be iterated as 02(a) = çb((a)) = a2 to get the 

n-th power Frobenius map 0': a -+ a for any n E N. Note that for any a € K 

the result of the m-th power Frobenius map is q5tm(a) = a q [BS96, pp. 133-134]. We 

will refer to the latter simply as the Frobenius map, denoted by (a) = qm(a). 

One nice property of the Frobenius map is that (a) = a if and only if a E JF. 

Another property that I = o V gives us a computational advantage when 

iterating the Frobenius map with m > 1 or in a field extension of K. Consider the 

field extension L D K where £ = K[x]/aaK[x]. We can use the binary expansion of 

n = 2b with £ = [log n] and bk E {0, 1} to compute I(x) = x mod aa using 

the square-and-multiply method in Algorithm 4.9 [vzOG03, pp. 388-390]. 

Algorithm 4.9 (Iterative Frobenius map n). Compute (a) mod t for some 

n and polynomial a E K[x]/tK[x]. 

Input: An integer n E N and its binary representation n 2 bk for £ = [log n]; 

a polynomial a E £, where £ = K[x]/tK[x] for a field K of order q and a monic 

irreducible polynomial t E K of degree m. 

Output: The polynomial c = (a) € L. 

1: (mod t),c-1 

2: for i from 0 to .e do 
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3: ifb=1then 

4: c — c•s (mod t) 

5: s — s(s)modt 

6: if deg c>0 then 

7: c•—c(a) mod t 

> Evaluate the polynomial s(x) at s 

F> Evaluate the polynomial c(x) at a 

Step 1 of Algorithm 4.9 can be computed in 0(rnL(m) log q) operations in K, 

where L(m) = log m log log m, using the square-and-multiply algorithm in the exten-

sion field L. We can evaluate a polynomial in L in 0(m) operations in K. Then the 

entire runtime of Algorithm 4.9 is in 0(mL(m) log q). 

Now we return our focus to the smoothness test. If we have determined that 

there is a B-smooth ideal corresponding to a via distinct degree factorization, we 

complete the factorization of N(a) using a polynomial factoring algorithm and place 

the multiplicities of the factors in the appropriate entries of the vector e. The com-

plete method for smoothness testing and determining the factorization is presented 

in Algorithm 4.10 and we denote it by o. 

Algorithm 4.10 (Smoothness test cr). Test whether a reduced ideal is B-smooth 

with a possible coefficient and return the relation vector if it is. 

Input: A factor base .TB = 1p,= (ap1, b1),. . . , PThB (apflB, bpflB)} and a reduced 

0-ideal a = (an, ba). 

Output: A vector e = (e1,. . . , efl ) such that flB1 p if there is a B-smooth ideal 

(s) a, ba) for some coefficient S E K(x); or the zero vector otherwise. 

1: a - Squarefree(a) 

2: +- IW(x) (mod a) 

F> Compute the squarefree part of aa 

c> Iterative Frobenius map (Alg. 4.9) 
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3: for i from + 1 to B do > Perform distinct degree factorization 

4: <— () (mod a) 

5: d—gcd(—x,a) 

6: a—a/d 

7: if a 1 then 

8: e—(0,...,0) 

9: else 

10: p 1p 2 • p <-- PolyFactor(aa) 

11: e1, e2,.. . ) efl i—  0 

12: for i from 1 to £ do 

Find k such that pi = aPk for Pk E .FB 

14: 

15: if ba $ bp, (mod pi) then 

16: ek<—  — ek 

17: e— (e1,2, ... )eflB) 

Frobenius map 

L' a is not B-smooth 

a must be B-smooth 

Compute the factors of a 

i' Initialize the ej to 0 

Correct the sigri of the exponent 

An algorithm given by Yun [Yun77] for computing the squarefree decomposition 

of a degree n polynomial in K[x], where K has order q, requires O(((i + n) log q)2) 

bit operations [BS96, pp. 170, 356-357]. The distinct degree factorization requires 

O((n + log q)((1 + n) log q)2) bit operations [BS96, p. 171]. Cantor arid Zassenhaus 

[CZ81] gave a Las Vegas algorithm to find a non-trivial factor of a polynomial in an 

expected running time of O((n + log q)((1 + n) log q)2) with a failure probability of 

at most 2'_', where r is the number of irreducible factors [BS96, p. 167]. It can be 

repeated to find the complete factorization of a polynomial. If one does the searching 

for k in a reasonable way, we expect that the polynomial factorization will dominate 
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the running time of the algorithm. Since the ideals we are testing are always reduced, 

we have n € 0(g) giving a total running time for Algorithm 4.10 in 

0((g + log q)((1 + g) log q)') 9 0(g3 log' q + g2 log' q) 

4.3.4 Generating Relations via a Baby Step Walk 

In this section we describe how to generate a set R-B of relation vectors from which we 

will form a relation matrix A. Muller, Stein and Thiel [MST99] generate relations 

in the infrastructure following a method introduced by Hafner and McCurley [HM89] 

and generalized by Buchmann [Buc90]. However, their method is slower and results in 

the relation matrix A7z being dense. To get sparse relations we propose an alternate 

method which we call a baby walk. The baby walk simply performs baby steps from 

an 0-ideal a0 to produce a sequence aj = p(aj....i) for j = 1, 2.....If we obtain a B-

smooth ideal from a, then the vector e containing the factorization of the B-smooth 

ideal and its distance is a relation. As we will see, this not only results in the relation 

matrix A7z being sparse, but can also be made to ensure that A'R, will be nonsingular. 

We use Algorithm 4.10 to test each ideal aj in the baby walk for smoothness. The 

probability that the baby walk efficiently finds B-smooth ideals relies on the following 

heuristic. 

Heuristic 4.11. The B-smooth 0-ideals are evenly distributed within and between 

the ideal classes of Cl(0). 

The experiments in Section 5.4.2 suggest that Heuristic 4.11 is true and we will assume 

it in our analysis. 

Once we have found a B-smooth 0-ideal a = (s, aa, ba) with the exponent 
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vector ej = (e1, e2 ) .. . , efl) (with corrected signs), we have to compute the dis-

tance S(c). If aj = (aa, ba) is the reduced 0-ideal from the baby walk satisfying 

N(a) = flP•Es N(p)IeiI, then we have the distance 8(ctj) from Algorithm 3.13 and it 

follows from Equation (4.6) that the distance of the B-smooth ideal is 

6(cL'1)=6(a)— L le-ij.degN(p). 
.feEe3 
. ei<o 

Now we have a relation of the form: 

flB 

= flp = aO for some a E F satisfying 6(a) = deg a. 
j=1 

Therefore, we store ej along with 6(a) as a relation. 

Suppose we have obtained a set of relations RB = { (el, 51), (e2, J2),. . . , (eflB) 6 -B) } 

corresponding to nB B-smooth ideals. Consider the nB x riB square matrix Ap 

constructed with column vectors e, er,.. . , efl , where e denotes the transpose of 

vector e. We will generate our relations in a similar way as Seysen [Sey87, §4] such 

that A, has entries aij, for 1 ≤ i, ≤ n, satisfying 

nB 

ir/j 

That is, the diagonal entries of A'& are larger than the sum of the other entries in their 

respective columns. Such a matrix is said to be strictly diagonally dominant. It 

follows that any strictly diagonally dominant matrix is nonsingular [BVO7, p. 295]. 

To obtain a strictly diagonally dominant relation matrix, we require each relation 

vector ek = (e1) e2,. .. , e) fl 7 B for 1 ≤ k ≤ nB to have 16k  > Recall 
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that a reduced 0-ideal a = (aa, ba) has deg aa = deg N(a) ≤ g, where g is the genus 

of the function field F = Quot(0). Then if a is B-smooth, the norm N(a) will factor 

with exponents e = (e1, e2, . . . , eflB) such that Bi lei I ≤ g. Therefore, we need each 

relation vector ek to have IekI > g, for 1 < k < nB. 

To generate the k-th relation, k ≤ 1B, with Iekl > g using the baby walk, we 

choose (ao, So) = pn(()29+l, (2g + 1) degN(pk)), where n E No is sufficient to make 

a0 reduced. The baby walk will compute the sequence aj = p(aj_i) for j = 1, 2,... 

until aj = (a, b) gives us a B-smooth ideal a = (s, a, b). While a is not 

necessarily principal, we have some ry E F such that a ('y)p21. After obtaining 

a vector ek = (el ) e2,.. . , e7 ) from Algorithm 4.10 corresponding to the factorization 

of a, we will have a factorization for the principal ideal 'yO as 

nB 

'yo = p'a = p9+l 

• Therefore, the principal ideal 'yO is B-smooth with the relation vector ek = (ei,. . . 

29+1, - . . , efl) whose k-th entry will be larger than g. Note that we do not actually 

compute 'y, but we can compute the distance S('yO) = deg 'y as 

= 5o + 6(a, ao) - > . degN(p) 
•fejEej 
2l e<0 

For any particular B-smooth ideal a', it is expected that only a few of the primes 

in .TI will be factors of a' (supposing that .FB  is large). Hence, we expect the relation 

vector e corresponding to a' to have only O(log n3) 9 0(1) non-zero entries. It 

follows that the matrix Alz will also be sparse with expected O(nB) non-zero entries. 

Note that we, will have to generate more than nB relations. At the very least, 
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when computing R0 we require m = nB ±1 relations to obtain a full rank matrix A, 

augmented from AR with the distances in the bottom row. Therefore, we generate 

the first nB relations as described above, but for subsequent relations we only need a 

sequence of principal 0-ideals, preferably with small distance. Hence, we will use the 

baby walk starting from a0 = 0. This means that for these new relations we must 

remember the position in the baby walk to continue the walk for the next relation. 

The complete relation generation method is presented in Algorithm 4.12. 

Algorithm 4.12 (Relation generation). Generate the a relation for index calcu-

lus in the infrastructure using a baby walk. 

Input: A factor base .FB = {Pi = (ap1, b1),. . . , p, = (aPflB, bpflB)} and a set 7B of 

previously generated relations. If #7Z > mm then we require the 0-ideal a used 

to generate the last relation and its distance 6(a). 

Output: A set of relations l?.B of size one larger than the input. 

1: k—#7.B+1,j--0 

2: if k ≤ nB then r> Choose a0 to get a strictly diagonally dominant matrix 

3: a0 +- ()29+1 ' Start with the primitive part of p291 

4: 8o - (2g + 1) deg aPk r> Distance 6((P)29+' p29_l) 

5: while N(ao) > g do t' Reduce a0 

6: (ao, 6) p(ao, 5) > Perform a reduction step (Aig. 3.10) 

7: else if k = nB + 1 then > Finished the diagonal dominance, start walk at 0 

8: ao <-0,6<--0 

9: else > Continue the baby walk from the previous ideal in the walk 

10: a0 - a, Sj •- 6(a) 

11: (a+1, 6j+1) — p(a,6j) > Next in the baby walk (Alg. 3.10) 
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12: j— j+1 

13: repeat 

14: e - o(JT, a) > Test if a is B-smooth (Aig. 4.10) 

15: ife0then 

16: 6 <- 6j 

17: for each non-zero ei E e do 

18: if ei <0 then > Adjust the distance for inverses 

19: 5 +- S + e degapi Subtract the inverse coefficient degree 

20: if k < nB then ' If we have not completed diagonal dominance 

21: ek <-- 6/ + 2g + 1 t. Correct the k-th entry for p. 2g-1 

22: 7ZB +- 7ZB U {(e, J) > Store the relation 

23: else 

24: (cj+i, 6') +- p(a, 6) t' Next in the baby walk (Aig. 3.10) 

25: j4— j+1 

26: until e =A 0 

To estimate the number of reduced B-smooth ideals in 0, we use the following 

result from Enge and Stein [E502, §5]: 

Theorem 4.13 (Enge & Stein, 2002). If the smoothness bound is chosen such 

that B logq Lq (c)1 for some positive real constant c, then the number of reduced 
0-ideals that are B-smooth is bounded as 

no/B≥ q 

Note that the choice of B in Theorem 4.13 matches the analysis from Section 4.3.2. 
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Since the number of reduced ideals in an ideal class is R0 and there are h0 ideal 

classes, to get the probability that a reduced ideal in the baby walk corresponds to a 

B-smooth ideal we divide no/B by h0R0 based on the assumption of Heuristic 4.11. 

Now, considering Algorithm 4.12, we expect to repeat the loop testing for a B-

smooth ideal h0Ro times. Theorems 3.2 and 3.7 give an upper bound of h0R0 ≤ 
no/B 

2q9-1 (deg f - 1)2. Since the function field is real quadratic, we have deg f ≤ 2g + 2 E 

0(g). Recall that we can test for smoothness using Algorithm 4.10 in 0(g3 log2 q + 

g2 log3 q) and compute steps in the baby walk using Algorithm 3.13 in 0(gL(g)). The 

number of factors of a B-smooth ideal is in 0(g), so adjusting the distance for inverses 

requires 0(g) operations. By Equation 4.3, we have nB E 0 (Lqg (c + 73 times, 

where 0 < t9 < g/ log q. From Section 4.3.2, we have the bound q E 0 (Lqg  
Then the total heuristic, expected running time of Algorithm 4.12 is 

Lqg ( + o(1)) q9 2q' (deg f - 1)2 . 0 (g3 log2 q + g2 log3 q) 

E 0 (Lqg ( + 0(1)) . Lqg () (g5 log2 q + 4 log3 q)) 

0 (Lq' (-L — -L + 0(1))) (g log q—+oo). 

We must generate m E e(flB + 1) relations. So we must repeat Algorithm 4.10 

0 (Lqg ( + times. Then we can express the total heuristic, expected.complex-

ity of the relation generation step as 

0 (Lqg (+)) 0 (Lqg (-1- - +o(i))2c )) I  

90(Lql c+ + 0(1) (4.7) 
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when g log q - oo for 0 <'0 < g/ log q. 

Comparison with Previous Work 

Muller, Stein and Thiel have a runtime of 0 (LIDI (2c + )) for relation generation in 
the infrastructure, where in the odd characterstic case IDI = q deg f = q29+2 [MST99, 

§1.1, 5]. While it is difficult to convert the base of the .subexponential function 

exactly to ours, an indication of how theirs might perform in comparison is shown in 

the following manipulation: 

Lq2g+2 (2c +-L ) = exp ((2c + ) i/log q29+2 log log q29+2) 
4a 4c 

= exp ((2c + J) V '9+' \/log q9log log q29+2) 
4c 9 

>Lq9 _) ((2C+_2) 
- 4c 9 

(4.8) 

If the constant c ≥ 1, then the function in Equation (4.8) will grow faster with g than 

ours. We give a comparison of the complete algorithms at the end of Section 4.3.8. 

Enge's runtime complexity is 0 (Lqg (2c + + + o(1))) for performing rela-

2c tion generation in the Jacobian [Eng02, 5.3]. Enge's method"of obtaining candidates 

to test for smoothness requires computing a linear combination of 0(nB) terms, re-

sulting in another factor of 0 (Lqo (c + _L  Enge alsO obtains an extra factor of 
from the use of the Hasse-Weil bound (Theorem 3.1) as an upper bound for h0R0, 

719 

which is not as tight as Artin's result (Theorem 3.2) in real quadratic function fields. 
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4.3.5 The Lattice of Relations 

Let FB = { i, .. ,p,} be a factor base of prime ideals. Recall from Section 4.3.4 

that we generate relations of the form (es, 8) where ej = (e1, e2,. . . , efl) satisfies 

nB 

flpk = aQ 

k=1 

for some a E F such that 6j = deg a. (4.9) 

Consider the set AB C ZThB consisting of all possible relation vectors e3 satisfying 

Equation 4.9 for .'FB. We can also consider the augmented set A C ZnB+l consisting 

of all possible relation vectors with the corresponding distances that satisfy Equa-

tion 4.9. It is easy to see that AD and A are lattices since adding two relations 

(e, 1) . .. , 5) and (ej,i,. .. , ö) with Jj = deg ai and 5 = deg aj for some 

a, aj E F results in another relation corresponding to 

nB Jpk+eik = 
k=1 

where a' = aiai satisfies 5 + öj = deg a'. 

The following theorem regarding the relation lattices was given in part by Sey-

sen [Sey87, § 1] in the imaginary quadratic number field case, and extended to real 

quadratic number fields by Buchmann [Buc9O, § 2]. It was generalized to quadratic 

function fields by Muller, Stein and Thiel [M5T99, §2.2]: 

Theorem 4.14 (Muller, Stein & Thiel, 1999). Suppose that the prime ideals in 

D generate .the class group Cl(0). Then the lattice AB has determinant h0 and the 

lattice A has determinant h0R0. Furthermore, ZLnB /AB Cl(0). 

Recall that the prime ideals in .FB generate the class group Cl(0) if B is chosen to 
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satisfy Theorem 4.7. Then Theorem 4.14 tells us how the relation lattices correspond 

to the ideal class number, the regulator, and the class group. We will use this result 

as the basis for computing these values in the next few sections. 

4.3.6 Computing the Regulator 

In this section we, describe how one can compute the regulator R0 from the relation 

matrix. Suppose we have a set RB = {(el, ó1),.. . , (e,, Sm)} of m ≥ nB + 1 relations 

and a nB >< m matrix AR constructed with column vectors e, er,. . . , e. Consider 

the (nB + 1) < m matrix A consisting of the distances 51, S2,. . , 5m added as a row to 

the bottom of A. From Theorem 4.14 we know that if the columns of A generate 

the lattice A, then the determinant 'of will be A = h0R0. It follows that the 

regulator will be the smallest divisor d of A such that p*(Q, d) = (0, 5) with 5> 0. 

We know from our method of generating relations in Section 4.3.4 that A' has a 

B X nB submatrix that is strictly diagonally dominant. Therefore, A' has rank at 

least nB. We assume that relations obtained from the baby walk satisfy the following 

heuristic: 

Heuristic 4.15. The B-smooth 0-ideals obtained from the baby walk result in rela-

tions that are randomly sampled from A. 

Based on computations with our implementation we claim that Heuristic 4.15 is 

reasonable. Recall from Theorem 4.14 that the lattice A has determinant h0R0. 

Under the assumption of Heuristic 4.15, we use the results of Enge [Eng02, §5.4] to 

claim that, with high probability, A'?, will have full rank and its columns will generate 

the lattice A if we obtain m = 4OnB relations. 
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The Hermite normal form (HNF) of a n x m matrix A (with m ≥ n) is a square 

n x n matrix H corresponding to the non-zero columns when the matrix is put in the 

following special form: 

/0 0 ••• 0 h1,1 h1,2 •.. 

0 0 ... 0 O h2,2 ... h2, 

0 ... 0 0 . 0 hn,nJ 

with 0 ≤ h,1 for all 1 ≤ i ≤ ri and i <j ≤ n [Coh93, p. 66]. The problem with 

computing the HNF of an integer matrix is that one cannot perform divisions unless 

they are exact, resulting in "coefficient explosion." Storjohann and Labahn showed 

that one can reduce the effect of this coefficient explosion and obtain: a matrix in 

HNF that has coefficients about the same size as those in the input matrix.7 For an 

n x in matrix A we use the following notation: 

IIAII= max {IaiiI 1 1≤i≤n, 1 < i <'Mj, 

where aij denotes the (i, j)-th entry of A. Then we can compute the HNF in 0 (n° 'm. 

M(nlogllAll)) bit operations, where M(t) is the number of bit operations required 

to multiply two [ti-bit integers, and 8 is the exponent for matrix multiplication in Z 

[SL96, § 1]. The best known algorithm for matrix multiplication has 8 = 2.38 due to 

Coppersmith and Winograd [CW9O]. Then, because the augmented relation matrix 

7Hafner and McCurley's method for computing the HNF of an n x n matrix results in entries 
that are a factor of n larger than the input matrix [HM91]. 
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A' has dimension (nB + 1) x m, its HNF can be computed in 

2.38 
+ 1 M Ô (Lqg (2.38c 2.38'\ (flB logIIAII)) c 0 (Lq (2.38c + + 0(1) 

After we compute the determinant A of A'.?,, we have that A = kR0 for a small 

multiple k (with high probability k = h0, but it need not be). Then we can find the 

regulator by factoring the integer A and finding the largest divisor that is the distance 

of a unit. This technique was also used by Stein and Williams [SW98, §5.1]. Muller, 

Stein and Thiel suggested transforming the HNF of A' . into Smith normal form to 

compute the class number h0 (cf. Section 4.3.7) [MST99, §2.4]. This overhead is 

avoided by our technique, presented in Algorithm 4.16. 

Algorithm 4.16 (Finding the regulator from a multiple). Compute the regu-

lator from some multiple by factoring and using the infrastructure to find the largest 

divisor that is the distance of a unit. 

Input: The factor base 1 B = {P1, P2, . . , p,}, and an integer L = kR0 for some 

unknown k E Z. 

Output: The regulator R0. 

1: (a, 8) - p* (0, z) > Compute the closest ideal to the distance A (Alg. 3.26) 

2: if a 0 0 V 8 = 0 then c> Ensure we start with a multiple of R 

3: return failure 

Ti1 4: p1 P2 . pfl - Factor(L) i' Using an efficient factoring algorithm 

5: for i from 1 to £ do 

6: for j from 1 to ni do 

7: d — //p 
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8: 

9: 

10: 

11: 

12: 

13: R0 - 

(a, 6) <- p*(o, d) 

if a=O A 6Othen 

else 

break 

The closest ideal to the distance d (Aig. 3.26) 

c d is still a multiple of R 

t>Exit the inner for-loop 

It is important in Algorithm 4.16 to use an efficient factoring algorithm, such 

as the number field sieve [LLMP9O], since the determinant L is likely to be large. 

NFS runs asymptotically in expected O(L,, (1/3, (64/9)'/3+ o(1))) bit operations 

[BLP93]. The number of prime factors of the determinant A is £ E O(log z). Simi-

larly, we bound the exponents r?j E O(log ). Then we can compute the closest ideal 

to a given distance d in O(dg) field operations. The runtime of Algorithm 4.16 is 

obviously dominated by the factorization. However, since A will be asmall multiple 

of R0 and the factorization is subexponential to the 1/3, the asymptotic runtime 

for computing the determinant and finding the regulator is dominated by the HNF 

calculation. 

Table 4.17 summarizes the complexity of each step involved in computing the 

regulator. 

Table 4.17. Asymptotic complexity of computing the regulator 

1. Factor base generation O(Lqg (c++o(1))) 

2. Relation generation 

(heuristic, expected) 

O(Lqg (c++o(i))) 

3. Computing the regulator 0 (Lql (2.38c + 2-38 + 0(1))) 
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Total 

(heuristic, expected) 

(1q9 (max {2.38c + , c + + o(1))VrV_ ) 

Based on the results in Table 4.17, we can choose the constant c E R>.o to minimize 

the overall complexity. The function f(c) = c + has a unique minimum of at 

c = . Equating f(c) with the function g(c) = 2.38c + , we obtain a constant of 

V'69OO9 + 14161 - 119 

C = 138v' 

For '0 = 1, we take the minimum value for c and obtain an overall heuristic, expected 

runtime in O(Lqg (2.83 + o(1))) to compute the regulator using index calculus in the 

infrastructure. 

4.3.7 Determining the Class Number and Group Structure 

Suppose we have the (nB + 1) x m augmented relation matrix A' described in the 

previous section. If we compute the Hermite normal form of A',?, as in the last section, 

we know that the determinant A of the HNF will likely be h0R0, but could be a 

small multiple of h0R0. The determinant will be exactly h0R0 if the columns of A'1, 

generate the full relation lattice A. To determine with certainty whether we generate 

we must compute an estimate of the product h0R0 that is precise enough that 

we can detect whether A is exactly h0R0 or a multiple. 

Recall from Theorem 3.7 that hp = h0R0, where hF is the divisor class number 

of F. To ensure the determinant L is not a multiple, we must obtain a value h*, 

such that h < h < 2h. Unfortunately, the Hasse-Weil bound (Theorem 3.1) 
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is not sufficient. A more precise bound on hF can be obtained using the analytic 

class number formula. For any monic irredicible polynomial p E K[x], we define a 

character x() based on the splitting behaviour of the prime ideal p = pK[x] in 0 

(cf. Section 4.3.2): 

0 if p is ramified in 0 

+ if p splits in 0 

if p is inert in 0. 

Let L(s) be the L-polynomial associated with the character x in F (cf. Stichtenoth 

[Sti93, pp. 165-166]). The following theorem relates the divisor class number to the 

L-polynomial. 

Theorem 4.18 (Analytic class number formula). For any algebraic function 

field F over -a finite field lFq, the divisor class number hF = L(1). 

The functional equation of the L-polynomial states that L(1) = q9 L(1/q) [Sti93, 

p. 166]. We can write this functional equation as an Euler product to obtain 

q +l 1 
hF = L(1) = q9 L(1/q) = q - 1 rl 1 - (p) q _cIegP 

K[ ]  

(4.10) 

where we are again assuming the p E K[x] are monic irreducible polynomials and F 

is real quadratic [ST02a, §4.1]. An approximation hF(A) for Equation (4.10) can be 

obtained by truncating the Euler product by bounding degp by a parameter A E N. 
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That is, we compute hF(\) E R as 

q +l 1 

q-1 11 pEK[x] 1_(p)q_deP' 

degp\ 

We will set h = .hF7s), for some value to be determined such that < < 1. 

Note that hF = . h' (A) for some D(A) E R, where the value measures the 

error of our class number approximation. Following Düllmann [Dül91, pp. 38-39] and 

Abel [Abe94, pp. 53-57] in quadratic number fields, we can get bounds on the size of 

D(A) required to ensure h < hF < 2h as follows: 

h < hp < 2h7 

< hF < 2.hF (A) 

<hF < 2 

< eD(A) < 2/h 

log p < D) < log(2p). 

Then we have D(A)I <min{— log , log(2ji)}, which has a minimum value of 1 log  

when p= . Therefore, to satisfy our bounds we must choose A sufficiently large to 

satisfy I (A)I < log 2. 

To determine an appropriate parameter A, we use the following result from Stein 

and Teske [STO2a, §4.3]: 
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Theorem 4.19 (Stein & Teske, 2002). For a quadratic function field F, we can 

approximate the divisor class number hF with h1 A) such that hF = e' . A) and 

ID(A)I (2g + (A mod 2))q-7;' (2g + 2)q-(A - i) 

(A+1)(VFq —1) + (A+2)(-1)3 

We have that hF_(A) can be computed in O(q') field operations [STO2a, §5.1]. There-

fore, to remain subexponential in g log q, we require A = 109q(X) for some X subex-

ponential in g log q. We derive from Theorem 4.19 the following rough upper bound: 

D(A)I <qX, for X = 2g + 1 (2g + 2)J 
—1 ([ i)3 

Then to compute hF(A) with sufficient accuracy for hF E (h, 2h) we require 

1 -A 
log2> q 2 

A 1 
q > 2X log—' 2 

A> 2 10g (2X log-' 2) 

Since X E O(g./) L ( + 0(1)), we can compute (A) and h = (A) in 

subexponential time as g —+ 00. 

Now, after computing the determinant A of the HNF of A, we verify that h < 

A < 2h. If not, then we only generate a sublattice A C A and we must add 

more relations to RB and the matrix A' using Algorithm 4.12 until h < L < 2h 

is satisfied, at which point A = A. In order to ensure that we obtain relations in 

N A, we assume Heuristic 4.15. Then we can use the results of Muller, Stein 

and Thiel [MST99, §4] to claim that we can obtain new relations such that A will 
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generate the full lattice A. The total runtime complexity to ensure our relations 

generate the lattice A is 

O(Lqg (max {2.38c+ 8, 1 
c+ -,   

2 V17-9 2c  

Once we have A = h0R0 by verifying that h < L. < 2h, we can separate 

the class number h0 from A by computing the regulator R0 using Algorithm 4.16. 

However, here we give a different method for computing the class number that also 

reveals the class group structure. 

The Smith normal form of an n x m matrix A (with m ≥ n) is the unique 

n x m matrix S = UAV with invertible matricies U E Znxn and V E zzmxm, where S 

is in the following form with non-zero diagonal entries s3,. . , s, for r = rank (A): 

/81 0 

0 82 

U 

The diagonal entries , ? are called the invariant factors of A and they satisfy 

the property that s4sji for 1 < i ≤ r - 1. Giesbrecht [Gie01] gave an algorithm for 
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computing the SNF of a sparse n x m matrix A with m > n in 

+m31og2 A 

Hafner and McCurley [HM89, §2] showed that one can obtain the class number and 

class group structure from the Smith normal form of Al?. in the context of imaginary 

quadratic number fields. This method was proposed for the real quadratic function 

field case by Muller, Stein, and Thiel [MST99, §2.4]. If we have the HNF H' of A' 

such that A' generates A, then we remove distances in the bottom row from H' to 

get H and compute the SNF of H. If B is chosen such that the prime ideals in .F 

generate the class group C1(0), then the class number h0 will be the product of the 

invariant factors of the SNF of H. Moreover, the invariant factors 811• 8B that 

are greater than one will correspond to the structure of the class group: 

Cl((')) 
nB 

7Z/sZ. 

Si>1 

Then using Giesbrecht's algorithm and the fact that H has dimension rtB x nB, we 

can compute the class number and class group structure in 

a ( L,,, (3c + ) log2llHll) ç 0 (Lqg 3c+ + 0(1) 
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Table 4.20. Asymptotic complexity of computing the class number and class group 

structure 

1. Factor base generation 0 (L,,, (c+ + 0(1))) 

2. Relation generation 

(heuristic, expected) 

0 (Lqg (c + + 0(1))) 

S. Ensuring A'7, generates A 

(heuristic, expected) 

0 (Lqg (max { 2.38c + , + , } + 0(1))) 

4. Computing the class 

number and group structure 

0 (L,, (3c + + 0(1))) 

Total 

(heuristic, expected) 

0(Lq9 (max {3c+, c+}+o(i))) 

Using the results in Table 4.20, we choose the constant c E R>o to minimize the 

overall complexity. As in the regulator case, the function f(c) = c + has a unique 

minimum at c = . We equate f(c) = c + with the function g(c) 3c+ to 

obtain a constant of 

\/49 +9-3 
C- - 

4\/ 

For 79 = 1, the minimum value for c gives an overall heuristic, expected runtime in 

0(Lq (3.45 + o(1))) to compute the class number and group structure using index 

calculus in the infrastructure. 
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4.3.8 Computing Discrete Logarithms 

The linear algebra step for the infrastructure DLP is formulated slightly different 

than in the general algorithm described in §4.2. We assume that we already know the 

regulator R0, and we will solve the linear system modulo R0. We will also assume 

that R0 is prime as would likely be desired in cryptosystems. If the regulator R0 is 

composite, we would have to solve the linear system modulo each prime power factor 

of R0 and combine the results using the Chinese remainder theorem. Possible issues 

with this process are discussed by Enge and Gaudry [EGO2, §4]. 

Recall the infrastructure DLP from Problem 4.6: we are given a reduced principal 

0-ideal b and we wish to compute the distance 5(b). We start by finding a B-smooth 

ideal b' equivalent to b and puts its factorization in a vector b. Then, with the relation 

matrix AR., we solve for the vector x in AR.x = b (mod R0). Unlike in the general 

index calculus description in Section 4.2, the solution vector x does not give discrete 

logarithms of the primes in 1B, but rather x will describe how the ideals that factor 

according to the columns of A7z relate to the ideal b' corresponding to b. Since we 

have the infrastructure DLP solutions for our relations, i.e. the distances stored with 

the relation vectors in 7?., we use x to compute the distance 5(b'). From there, the 

distance 5(b', b) gives us the desired solution 5(b). 

We now describe the steps in more detail. We find a B-smooth ideal equivalent 

to b0 = b by performing baby steps bj = p(b-1) for j = 1,... until bj is B-smooth. 

Using the smoothness test given in Algorithm 4.10 we obtain a vector b = (b1,. . . , b) 

such that {J?B1 p b. To bound the size of j, we once again assume Heuristic 4.11, 

giving j   with high probability. Therefore, as in Section 4.3.4, the heuristic, 
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expected number of ideals we have to test before finding one that is B-smooth is 

EOLq +o(1) 

Suppose we have the r8 x m relation matrix An corresponding to a set of relations 

7 -B of size m > nB. In our linear algebra step to compute the infrastructure DLP, 

we solve for x in the following system: 

A'1,x = b (mod R0). (4.11) 

We can solve Equation (4.11) when the relation matrix is sparse using Wiedemann's 

algorithm [Wie86]. A variant due to Kaltofen and Saunders requires O(nB) multi-

plications of A. by vectors and O(n) operations in the field Z/R0Z [KS91, §2]. If 

the number of non-zero entries in An is w E Ô(m), then we can solve the system in 

Equation (4.11) in 

(nB(m + flB)) c 0 (Lqg (2c + + 0(1))) 

We form a vector d = (Si, 52,... , Sm) from the distances stored during relation 

generation and compute the standard dot-product 

5=d•x=5x (modRo). 
i=1 

This value 'J is equal to the distance 5(bj). Then 5(b) = S - 5(b, b), where 5(b, b) is 

computed from the baby steps used to obtain b. 

This method to compute the infrastructure DLP is a Monte Carlo algorithm. We 
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can verify the distance S(b) by computing the ideal closest to ö() from C using 

Algorithm 3.14 and verifying the result is b. If this check is not satisfied, we must 

add new relations to A. until b is in the column-span of A. 

We summarize the complexity of each step involved in solving an instance of the 

infrastructure DLP in Table 4.21. 

Table 4.21. Asymptotic expected complexity of solving the infrastructure DLP 

.1. Factor base generation 0 (L,., (c + + 0(1))) 

2. Relation generation 

(heuristic, expected) 

0 (Lq (c + + 0(1))) 

3. Finding a smooth ideal 

equivalent to b (heuristic, expected) 

0 (Lp ( - 719 + 0(1))) 

4. Solving the linear system and 

computing the infrastructure DLP 

0 (Lql (2c + + o(1))) 

Total 

(heuristic, expected) 

O(Lqg (max {2c+, c+}+o(i))) 

Similar to Section 4.3.6, we choose the constant c E R>o based on the results in 

Table 4.17 to minimize the overall complexity. Again, the function f(c) = c + has 

a unique minimum at c . Equating f(c) with the function g(c) 2c + , we 

obtain a constant of 

c=  
2\/ 

For O = 1, with the minimum value for c we obtain an overall heuristic, expected 
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runtime in O(Lqg (2.45 + o(1))) to solve an instance of the infrastructure discrete 

logarithm problem using index calculus. 

Comparision with Previous Work 

Muller, Stein and Thiel give the asymptotic with a different subexponential base: 

0 (Lq2g+2 (max { 2c+ , 5c} + 0(1))) 

Using this base they were able to calculate a runtime of O(Lq2g+2 (1.44 + o(1))) with 

the 'constant c = [MST99, §5]. Figure 4.22 contains a plot of our runtime 

Lq (2.45) with MST's Lq2o+2 (1.44), showing that ours grows slower with the genus. 

Enge's method for computing the Jacobian DLP has an asymptotic of 

0 (Lq.11 2c+ + (max {5c + ._-_ 1 2 2c 1+0(1))). 
The constant in this case is minimized between c = 1 and 

c= 1(Vl+ -v 3 / 3 

With 9 = 1, Enge's runtime is calculated as O(Lqg (5.73 + o(1))) [EngO2, §5.5]. We 

also plotted log Lq (5.73) in our comparison in Figure 4.22. 

Note that both Enge and Muller, Stein and Thiel are able to obtain rigourous 

(non-heuristic) runtimes based on their methods for relation generation. However, 

our analysis corresponds to an algorithm that is also efficient in implementation. 
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Figure 4.22. A plot of the logarithm of the subexponential runtimes for computing 

discrete logarithms when varying g log q with 9 = Lg/ log qj = 1. Our algorithm and 

the algorithm given by M'iiller, Stein and Thiel are both in the infrastructure with 

asymptotic runtimes of 1q9 (2.45) and Lq2g+2 (1.44), respectively. Enge's result is in 

the Jacobian with an asymptotic runtime of Lq (5.73). 



Chapter 5 

Implementing Index Calculus in 

the Infrastructure 

To our knowledge, we are the first to implement an index calculus algorithm in the 

infrastructure of a real quadratic function field. This is important as it serves as 

a proof-of-concept to the theoretical discussion and gives concrete timings that are 

faster than those previously published for various computational problems in the 

infrastructure. This is especially relevant for estimating the security of cryptosystems 

based on the infrastructure discrete logarithm problem. 

In an attempt to get the most efficient runtimes possible, we have implemented 

variations on the algorithm that was analyzed asymptotically in the last chapter. 

These include self-initialized sieving for relation generation, the use of large primes 

to include partial relations, and changes to the linear algebra step. Each of these 

methods potentially improve the runtime of the algorithm in practice, but are difficult 

to analyze to obtain asymptotic runtimes. Therefore, we present the theory behind 

these variations in Section 5.1, reflecting the goal of this chapter to describe a practical 

129 
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implementation of index calculus in the infrastructure. 

We briefly discuss the specifics of our implementation in Section 5.2. Section 5.3 

outlines how we chose our parameters for generating the numerical results presented 

in Section 5.4. 

5.1 Practical Improvements 

Techniques introduced in the context of integer factorization have been adapted to 

many other problems where index calculus is applied. In this section we present some 

of these variations that we have implemented in the infrastructure setting, as well 

as a few new techniques that apply directly to our setting. The first technique we 

introduce is sieving for relation generation. In Section 5.1.2 we extend our discussion 

of sieving to multiple polynomials and self initialization techniques. We briefly men-

tion low-degree sieving in Section 5.1.3 as another practical improvement. Following, 

in Section 5.1.4, we present another variation to relation generation that allows the 

use of large primes and introduce partial relations. Finally, we discuss techniques to 

improve the performance of the linear algebra step in Section 5.1.5. 

5.1.1 Relation Generation via Sieving 

Sieve methods for relation generation have, been used effectively in factoring algo-

rithms since the late 1970s ( cf. [Pom96]). Jacobson implemented a self-initialized 

sieve in quadratic number fields [Jac99]. Flassenberg and Paulus described how to 

adapt sieving to the Jacobian of a hyperelliptic curve over odd characteristic fields 

[FP99J. This was extended to the characteristic two case in imaginary hyperelliptic 
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curves in the recent work by Velichka [Vel08]. Velichka compared discrete logarithm 

computations using implementations of sieving and random walks and obtained re-

suits that showed that sieving is more efficient in the relation generation phase [Vel08, 

pp. 111-120]. For our purposes, we used Velichka's sieving implementation with minor 

tweaks to adapt it to the infrastructure of a real quadratic function field. We provide 

a brief explanation of the implemented sieving technique here, generalized to both 

even and odd field characteristics. For more detail, see Velichka [Vel08, pp. 49-56, 

76-881. 

Let 0 be the quadratic order of a real quadratic function field F defined by 

y2 + h(x)y = f(x) over a finite field K = ]Fq. Consider a primitive 0-ideal c = (a, b) 

in standard representation. For any element a E ct we have a = au + (b + y)v for 

some u, v E K[x]. Then we can expand the norm of a using the conjugate under the 

hyperelliptic involution t and group it as follows: 

N(a) = 

= (au + (b + y)v) t(au + (b + y)v) 

= (au + (b + y)v)(au + (b — h — y)v) 

=a2u2+a(2b—h)uv+(b2—bh—hy—y2)v2 

=a(au2+(2b_h)uv+ (b2 — bh — f) 2) 

Since N(a) = a and the ideal norm is multiplicative, there must exist an 0-ideal b 

with N(b) = au2 + (2b - h)uv + cv2 and c = (b2 - bh - f)/a such that aO = ab [Vel08, 

p. 50]. Let go(u, v) = N(b) for u, v E K[x]. We will only consider one-dimensional 
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sieving,' so we fix v = 1 and call go (u) = au2+(2b— h)u+c the sieving polynomial. 

Sieving will find values of u E K[x] such that the ideal b with N(i) = g0(u) 

will correspond to ideals that are likely to be B-smooth. We use a fixed-sized array 

indexed by polynomials in K[x]. For each prime ideal p = (ap, b) E FB, the sieving 

process jumps through the array, increasing the entry at index j E K[x] if apgo(j). 

After this process is completed, for each index j E k[x] with an array entry larger 

than some tolerance value, we perform a smoothness test on the primitive ideal with 

norm 90(i). Since the array entry for j is large, we already know that many of the 

norms of the prime ideals in the factor base divide go(j). Thus, it is highly probable 

that we will get a B-smooth ideal from 90(j). 

We require a way to represent polynomials in K[x] as integers to index an array. 

Following Flassenberg and Paulus [FF99, §4.2], let a polynomial k E K[x] with ri = 

deg k be denoted by k = kxTh + .. . + k,x + k0 and define the following map: 

'1: 

K[x] - 

k(x) 1-4 Ie k vo (kj)qi 

where the map v0: K —* No sends a field element to an integer between 0 and q — 1. 

This is a one-to-one map, i.e. each unique polynomial k E K[x] has a unique value 

v(k) E No. Then we can compute polynomials k0, k,,... to iterate through an array 

indexed by ii using Algorithm 5.1, denoted by A. 

'Flassenberg and Paulus [FP99] described two dimensional sieving, but Velichka argued that only 
using one dimension is acceptable in practice [VelO8, p. 52]. 
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Algorithm 5.1 (Next array index A). Iterates through the polynomials k E K[x] 

to compute the next array index according to the map ii. 

Input: The previous polynomial k (initially 0). 

Output: A new value k' such that v(k') = v(k) + 1. 

1: e - 0, k' +- k 

2: repeat 

3: k_kt+xe 

4: ifk'<kthen 

5: 

6: until k' > k 

We choose a sieving interval M and initialize a sieve array D as D[v(k)] = 0 

for 0 ≤ deg(k) ≤ M. Let 7B = •Pl, P2, . . . , Pn} denote the set of prime ideals in 

the factor base. For each p = (ar, b) E .'B, let 8g,p denote the set of roots of go(u) 

modulo N(p) = a. We can find these roots efficiently using the "self-initialization" 

technique described later. For each p E YB and each root r E 890,P we modify the 

sieve array as follows: 

D[v(r + kap)] - D[v(r + kap)] + dega 

for all k E K[x] satisfying 0 ≤ deg(r+1ap) M. We use the algorithm of Flassenberg 

and Paulus for efficiently jumping through the sieve array [FF99, §4.3.3]. Once this 

process has been completed for all p E 1B, each entry D[zí(j)] > T for some chosen 

sieve tolerance value T, corresponds to a candidate ideal bj with N(b) = go(j) 

that should be checked for smoothness. 
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Now we must discuss how to find bb for a candidate primitive ideal bj = (ab,, bb)) 

with N(b) = abj = 90(j). Consider the binary quadratic form F(u, v) = Au' + 

Buy + Cv2 for some A, B, C E K[x]. These forms are useful because there is an map 

from binary quadratic forms to a basis of a primitive 0-ideal given by 

:Au2+Buv+Cv2 1-4 {A,B+y}. 

One can obtain an equivalent form to F under the change of variables 

(u"\ (u'\ 
I I=XI I, 
V) \V) 

(r 
where X = E GL2(K[x]). 

SW 

Thenu=rU+tV andy = sU+wV and 

F(U, V) = A(rU + tV)2 + B(rU + tV)(sU + wV) + C(sU + wV)2 

A(r2U2 + 2rtUV + t2V2) + B(rsU2 + rwUV ± stUV + twV2) 

+ C(s2U2 + 2swUV + w2V2) 

= (Ar2 + Brs + Cs2)U2 + (2 (Art + Csw) + B(rw + st))UV 

+ (At' + Btw + Cw2)V2 

= F(r, s)U2 + (2 (Art + Csw) + B(rw + st))UV + F(t, w)V2. bi 

Therefore, under the map q there is an ideal with norm F(r, s) [Jac99, pp. 25-26]. 

Given that the sieve polynomial go(u) = au2 + (2b - h)u + c is a binary quadratic 

form with the second indeterminant 1, we must have r = j, s = 1, and t, w satisfying 

jw - t = ±1. We choose w = 0 and t = —1. Then we have an ideal = (ab,bb) 
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under the map 0 with norm ab3 = go(j) with bb = —2aj - (2b - h) = —2(aj + b) + h. 

For a candidate bj = be,) with a3 = go(j), suppose the smoothness test 

(Algorithm 4.10) returns a non-zero vector w (wi, w2,. . . , w) satisfying go (j) = 

fl nB a for p = b) E .'FB. Similar to the baby walk method, we have a B-pi 

smooth ideal (sb, abs, bb), where the coefficient sb, E Quot(K[x]) is computed from 

the inverses of the prime ideal factors as 

7 1 \ lwil 

(rp) = 
aPi rwEw . (WEW 

In Section 5.1.2 we describe precisely how we choose the ideal a for the sieve polyno-

mial. For now, suppose a = (ag, ba) is B-smooth, constructed such that N(a) = aa = 

for a vector v = (vi,... , vnB). Then we have a similar calculation for the 

coefficient 8a based on the negative entries of v: 

8a 

.fiJEv 
.-l-vi<o 

f 1 \ IviI 
Ivil 

rvEv 
t.tv<O 

Now we have a relation for the primitive B-smooth ideal (sasba)O consisting of the 

vector v + w and the distance 

5= deg a+ deg s+ deg s,= deg a+degj+ deg sa+ deg sb. 

Note that both deg .sa < 0 and deg 8b ≤ 0. We give the sieving method for generating 

relations in Algorithm 5.2. 
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Algorithm 5.2 (Sieving). Generates relations for index calculus using sieving. 

Input: The factor base FB = {pi,. . . PnB 1,  a sieving polynomial go(u), the ideal 

a = (aa, ba) used to generate go (u), the vector v = (vi,. . . , v) such that a = 

p, and a set of roots S90, for each p J. The sieving interval M, a sieve 

array D, and the tolerance value T. 

Output: A set 'of relations R. 

1: D = {O,.. . , O} > Initialize the sieve array 

2: for each p = (ar, b) E .FB do 

3: for each r E S90,P do > There are at most two roots in 5 ,p 

4: 

5: while deg(j) ≤ M do > Jump through indicies zi(r + kap) for k E K[x] 

6: D[ii(j)] - D[ii(j)] +dega 

7: k' - A(k) c> Compute the next multiplier (Alg. 5.1) 

8: e +- deg (k' - k) 

9: j 4- j + ap xe > Compute r + ka 

a .xe implemented as shifting the coefficients of ap by e places 

10: k4— k' 

11: k4O,da+O, d4-O,7?.B4-{O} 

12: while deg(k) ≤ M do 

13: if D[zi(k)] > T then F Determine candidates from the sieve array 

14:  (go(k), —2(kaa + ba) + h) > Standard repr. of the candidate ideal 

15: w - T(J, bk) c> Test the ideal bk for smoothness (Aig. 4.10) 

16: ifwOthen 

17: for each non-zero wi E w do 
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18: 

19: 

20: 

21: 

22: 

23: 

24: k - 

if vi <0 then 

da <— da— IviI.degap 

if wi <0 then 

d -  db  - IwiI deg api 

54— deg a,+ deg k+d+d 

7B7BU{(V+W, 6)} 

> Compute the degree of .sa 

Compute the degree of s, 

The distance for the relation 

' Store the relation 

Compute the next index (Alg. 5.1) 

Recall that in order to perform the linear algebra step in index calculus we require 

m ≥ nB + 1 relations. One method to obtain enough relations is to choose a large 

sieving inteval M; however, increasing M dramatically increases the running time of 

algorithm and the space it requires. We discuss a more practical alternative next. 

51.2 Multiple Polynomial Sieving and Self-Initialization 

It was first suggested by Montgomery in the context of the quadratic sieve factoring 

algorithm (cf. [Pom85, pp. 176-178]) that one could keep the sieve inteval M small 

by using multiple sieving polynomials. Therefore, if we do not acquire enough 

relations from the initial sieving polynomial, we choose a new sieving polynomial 

and repeat the process. To efficiently construct sieving polynomials of the form 

g(u) = au2 + (2b - h)u + c, we choose a primitive 0-ideal a = (a, b) according 

to a self-initialization technique. Self-initalization was introduced by Alford and 

Pomerance for factoring [AP95, §5]. Adapted from Jacobson in the number field case 

[Jac99, pp. 52-57], Velichka implemented self-initialization in the ideal class group of 

imaginary quadratic function fields [Vel08, pp. 80-84]. This applies directly in real 
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quadratic function fields. We generalize our discussion below from Velichka's to apply 

to both even and odd characteristic fields. 

First we choose a subset of prime ideals Q = {q1, q2,... ,qnQ I C FB and let 

V = (vi) v2,.. . , v). Note that by varying the v, E { 1, —11 we can obtain 2'7Q 

possible sieve ideals that are of the form 

ThQ 

(sa)a=JJq , (5.1) 
i=1 

where we drop the coefficient s (the coefficient s is taken care of for each relation 

as described in the last section). In fact, to have useful relations we do not use a 

vector v if —v has already been chosen. This can be easily accomplished by forc-

ing vnQ = 1, thus giving 2nq-1 possible ideals. There are two advantages to using 

such ideals. One is that we can easily obtain a new sieving polynomial without com-

puting Equation (5.1) each time. The second advantage is that there is an efficient 

way to find the roots Sg,,p for the new sieving polynomial g. This can be seen in 

Algorithm 5.4 after having performed self-initialization as in Algorithm 5.3. These 

algorithms were adapted from Velichka [Ve1O8, pp. 82-84] to support both even and 

odd field characteristics. 

Algorithm 5.3 (Setup for Self-initialization). Chooses an ideal a0 and computes 

an initial sieving polynomial go along with a set of roots Sgo,p for each p E FB accord-

ing to the self-initialization technique. 

Input: The real hyperelliptic curve equation C: y2 + h(x)y = f(x), the factor base 

.FB and a size parameter nQ < flB 

Output: An initial sieving polynomial go, the ideal a0 = (a, b0) used to generate go, 
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and S, for each P E FB. 

1: Q = {q1,... , q} C .B > Select a subset Q C TB of size flQ 

2: v +- (1,... , 1) > Select the initial exponent vector 

flQ 
3: a0 = (a, b0) - IIi=1 Ij ' Compute b0 

4: co - (b 2 - hb0 - f)/a 

5: go - au 2 + (2b0 - h)u + c0 > Compute the initial sieving polynomial 

6: for each qj = (aq, bqj) E Q do 

7: B - (a/aq ) ((a/aq)'bq mod aq) mod a 

8: B - (a/aq)((a/aq)1(-bq - h) mod aq) mod  

9: 

10: for each p = (ap, b) E FBdo > Find the roots of 90 mod ap 

11: if apla A apl(2b0 - h) then > go(u) co (mod ap) 

12: S90, <- {O} > No roots 

13: else if apla A ap.j(2bo - h) then > go(u) (2bo - h)u + c0 (mod ap) 

14: S90,P +- {-co(2b0 - h)' mod ap} > One root 

15: else if ap If then > go(u) au2+ (2b0 - h)u + (b - hbo)a' (mod ap) 

16: S90,P - {-boa-1 mod ap, (h - bo)a' mod ap} 

17: else 

18: Find the two roots r1, r2 of go(u) mod ap > See remarks below 

19:S90,P - {ri, r2} 

In Step 18 of Algorithm 5.3 we are required to find the roots of a quadratic 

polynomial of the form y2 + by + c, with b, c E K[x], modulo an irreducible polynomial 

p E K[x]. Algorithms for performing this are discussed in. Section 4.3.2. 

Once one has performed the setup for self-initializtion using Algorithm 5.3, new 
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sieving polynomials can be found using Algorithm 5.4. 

Algorithm 5.4 (New polynomial from self-initialization). Computes a sieving 

polynomial ge from a new ideal ae along with a set of roots S for each p E FB after 

Algorithm 5.3 has performed self-initialization. 

Input: The real hyperelliptic curve equation C : y2+h(x)y = f(x), the factor base .TB 

and subset Q C JB of size nQ. The number £ of polynomials previously obtained, 

the polynomial be_i from the previous ideal ae_i = (a, be_i), roots Sg,-,,p for each 

p E TB, the previously used vector v, and the three sets of values {B1,... , Bn }, 

1771,. . . WnQ  and { fl, .. . BnQ  

Output: A new sieving polynomial ge, the polynomial be from the new ideal at = (a, be) 

used to generate ge, and Sg for each p E .FB. 

1: £ - £ (mod 2Q') 

2: k - [log2( - 1)] + 1 > Choose which exponent to flip 

3: V '. (Vi )... , Vk_i, — Vk,Vk+i,.. . ,v,) F> Update the exponent vector 

4: bt <- be_i + Bk + Bjg > The new ideal is a = (a, be) 

5: ce+—(b—beh—f)/a 

6: 9e - au  + (2be - h)u + Ce r Compute the new sieving polynomial 

7: for each p = (ap, b) E YB do F> Find the roots of ge mod ap 

8: if aa A apl(2be - h) then r> ge(u) ce (mod ap) 

9: 89e,P +- {O} F> No roots 

10: else if apla A apl'(2be - h) then F> ge(u) (2be - h)u + Ce (mod ap) 

11: Sg,p +- {—ce(2be - h)_i mod ap} F> One root 

12: else 

13: 8g ,p - {r - Bk mod ap r E Sgi ,p} F> Two roots 
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Step 13 of Algorithm 5.4 shows how self-initialization allows one to compute the 

roots of the new sieve polynomial extremely quickly. For each p E JrB , the test 

whether apa remains constant for every sieve polynomial. Therefore, those p for 

which ge_1 has two roots modulo ap remains the same for ge. However, those p for 

which ge.-1 has one root or no roots modulo ap may swap for 9e if the characteristic 

is odd. Thus in Step 13 where we had two roots r1, r2 E S9_1 for gt-1 mod ap, we 

compute the roots for the new polynomial ge mod ap by subtracting Bk = (Bk + k)/a 

from each of r1 and r2. Since be - bt_i = Bk + L from Step 4, we can show that if r 

is a root of ge_1 mod a, then 'r - (Bk + Bk)a' is indeed a root of ge mod ap: 

ge (r - (Bk + Wk) a') 

= a(r —(Bk + Bk)a') 2 + (2be - h)(r - (Bk + 1k)a') + (b - beh - 

= ar2 - 2(Bk + Bk)r + (Bk + 77k)2 a—' 

+ (2(Bk + Bk + be-1) - h) (r - (Bk + Bk)a') 

+ ((Bk +Bk + be_i)2 - (Bk +Bk + be_i)h— f)a_i 

= ar2 - 2(Bk + Bk)r + (Bk + 77k)2 a—' 

+ (2be_i - h)r 2(Bk + Bk) be_ia' + (Bk + Bk)ha' + 2(Bk + Bk)T 2(Bk + Bk)2a 1 

+ (b_, - b4-1h - f)a' + 2(Bk + Bk) bt_,a + (Bk + 77k)2 a—' - (Bk + Bk)ha' 

= ar2 + (2b_i - h)r + (b_, - be-1h - f)a_' 

= ge-i(r) 0 (mod ap). 

Although it is difficult to rigourously analyze, sieving has been shown to be more 

efficient than random walks in practice (cf. Velichka [Ve108, pp. 111-120]). For our 

implementation results we compared sieving with our baby walk strategy. 
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5.1.3 Low-Degree Sieving 

In practice we consider another parameter for sieving by choosing a sieve bound 

S < B. Since an increase in the smoothness bound B typically has a large effect on 

the size of the factor base the idea is that we sieve with a subset .Fs C J, where 

.Fs ={PE-TB I degp≤s}. 

That is, the following lines of the sieve algorithms would have .FB replaced by Fs: 

Algorithm 5.2, Step 2; Algorithm 5.3, Step 10; and Algorithm 5.4, Step 7. We still 

perform the smoothness test on the candidates-with the full factor base Therefore, 

we must reduce the tolerance value T appropriately to still obtain candidates that 

factor over the primes of degree B. 

This technique was previously discussed by Velichka for sieving in imaginary 

quadratic function fields [Ve108, pp. 79-80]. 

5.1.4 Large Primes and Partial Relations 

Another technique for improving the relation generation step of index calculus is to 

allow the use of large primes. This has been used effectively in integer factorization by 

Morrison and Brilihart [MB75, §4] and described in the context of discrete logarithms 

in (Z/qz)* by Odlyzko [0d185, §5.4]. Jacobson extended large primes to quadratic 

number fields [Jac99, pp. 58-61], and it was implemented in characteristic-2 imaginary 

quadratic function fields by Velichka [Vel08, pp. 62-64]. We describe the technique as 

applied to the baby walk method in the infrastructure, but it can be easily adapted 

to sieving in our setting as well. 
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The idea of using large primes is that if an ideal tested for smoothness has one 

prime factor that is larger than those in the factor base, we store the factorization 

along with the large prime separately as a "partial relation." If we find two partial 

relations corresponding to the same prime ideal, we combine the two relations to 

remove the large prim, thus obtaining a regular "full relation" that we can add to 

Let .77B = JP 1) Pg,. . , Pm} be a factor base of prime ideals. Suppose in addition 

to the set of relations R.B, we keep another set PBL consisting of partial relations 

of the form (qj, s, e2 = (ej)... )eThB), o) satisfying 

nB 

• fJ p = aD for some a E F such that 5 = deg a, (5.2) 
k=1 

where qj is some 0-ideal with irreducible norm that is not in the factor base .7B and 

sj = ±1. We call qj a large prime since its norm is irreducible over K[x] and it 

must satisfy deg N(q) > B if it was not included in .FB. A large prime qj included 

in the set of partial relations ? BL will satisfy B < deg N(q) ≤ B, for some bound 

BL > B. We call the ideal aD in Equation (5.2) for which we found the relation 

almost B-smooth. To avoid confusion, we call relations in RB full relations 

[ATO6, pp. 507-508]. 

One can obtain a full relation from partial relations as follows. Suppose we have 

two partial relations in PBL with large primes qj = qj. Then if si = sj we have a full 

relation (e, 5) given by e = e - ej and S = - Sj. Otherwise, if si = — 8j, then the 

full relation is computed as e = e + ej and S = Sj + S. Note that in both cases the 

large prime in Equation (5.2) cancels. 

The remaining question is how to find these partial relations,. Essentially, we 
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perform the smoothness test as in Algorithm 4.10, but we test up to the bound BL. 

If the polynomial factorization results in roots that are all contained in .2, then the 

ideal is B-smooth. If the polynomial roots are all in FB except for one with degree 

d such that B < d ≤ BL, then the ideal is almost B-smooth. Otherwise, we consider 

the tested ideal to be neither smooth nor almost smooth. This change is reflected in 

Algorithm 5.5. 

Algorithm 5.5 (Smoothness test ci). Test whether a reduced ideal is smooth or 

almost smooth with a possible coefficient and returns the relation vector if it is. 

Input: The order q of the field K, a factor base .FB = {Pi = (ap1, bp,).. .. ,p = 

(apfl , b)}, a large prime bound BL, and a primitive 0-ideal a = (an, ba). 

Output: A vector e = (ei,. .. ) e,) and a prime ideal q 0 FB with an exponent 

S E {0, ±1} such that q8 fJ?B1 p = a if a is B-smooth or almost B-smooth; or 

e = 0 with q = 0 and s = 0 otherwise. 

1: a - Squarefree(aa) > Compute the squarefree part of a 

2: <— 14J (x) (mod a) > Iterative Frobenius map (Alg. 4.9) 

3: for i from LJ + 1 to B do c> Perform distinct degree factorization 

4: — () (mod a) t Frobenius map 

5: d+—gcd(—x,a) 

6: a-.-a/d 

7: if a is not irreducible A deg a> BL then > Not B-smooth/almost B-smooth. 

8: e—(0) ... , 0),q=0,s=0 

9: else 

10: p 1p2 . . . p - PoIyFactor(a) t> Compute the factors of a,, 

11: e1, e2,. .. , eflB - 0, S - 0 r> Initialize the ej to 0 



5.1. PRACTICAL IMPROVEMENTS 145 

12: for i from 1 to £ do 

13: Find k such that pi = ak for Pk E FB 

14: if no k found then 

15: S - S U {(p, n)} > Temporarily store the large prime 

16: else 

17: Ck 4 fli 

18: if ba 0 bpk (mod p) then 

19: ek 4-- —ek > Correct the sign of the exponent 

20: if S = 0 then a is B-smooth 

21: e - (el, e2,. . . , e), q = 0, s 1 

22: else if S = {(p, n)} for some p then a is almost B-smooth 

23: Find a root b of y2 + hy - f (mod p) 

24: if b b (mod p) then 

25: s +— —n ' Correct the sign of the exponent 

26: else 

27: s  

28: 

29: else a is not B-smooth or almost B-smooth 

30: e4—(0,...,0),q=0,s=0 

For computing a root of a quadratic polynomial modulo p in Step 23 of Algorithm 5.5, 

we refer to the discussion in Section 4.3.2. The asymptotic complexity is unchanged 

from Algorithm 4. 10, requiring O(g3 log2 q + g2 log3 q) bit operations. 

For a non-empty set of partial relations PBL, we find matches and combine partial 

relations into full relations using Algorithm 5.6. The set PBL is often quite large, 
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thus requiring one to write PBL to a file and sort before searching for matches. By 

estimating the number of partial relations that will become full relations, we can 

perform Algorithm 5.6 just once at the end to reduce the number of times the file is 

read in and sorted [VelO8, p. 64]. We calculate such an estimation in Section 5.3.1. Let 

BL be an estimate of the number of large primes. We will see in Theorem 5.9 that 

we expect to get [#7BL /n'p] full relations from combining the set 2BL of partial 

relations, where flp = 0 2nB,,. Therefore, we call Algorithm 5.6 to combine the 

partial relations once the number of full relations obtained is #7zB ≥ m— L#PsL /nij 

where m is the total number of relations desired. 

Algorithm 5.6 (Partial relation combining). Combine matching partial relations 

into full relations. 

Input: A set 7B of previously generated full relations, and a set 2BL of previously 

generated partial relations. 

Output: A set 7B of full relations and a set PBL of partial relations. 

1: Sort 7BL by the large primes 

2: for each pair (q, si, e1, 8k), 482, e2, 52) E PBL do 

3: if Si = s2 then 

4: e=(el,...,eflB )+— el — e2 

5: 8-81-62 

6: else 

7: 

8: 

9: if s <0 A s2 <0 then 

10: 8-6-2 deg q 

Combine the partials into a full relation 

' Adjust the distance for the large prime 
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11: else if s <0 V 82 <0 then 

12: 6- 6— deg q 

13: RB — RBU{(e, 5)} 

14: PBL .' N {(q, 82, e2, 82)} 

Store the full relation 

Remove one of the matching partials 

We also update the baby walk relation generation from Algorithm 4.12 to be able 

to handle almost-smooth ideals. So that this method is effective with large primes, 

we forego computing a strictly diagonally dominant matrix and just use the baby 

walk starting from 0 ( cf. Section 5.2): This change is reflected in Algorithm 5.7. We 

omib an updated sieving method for relation generation since the modifications from 

Algorithm 5.2 are similar to those presented in Algorithm 5.7. 

Algorithm 5.7 (Relation generation). Generate a relation for index calculus in 

the infrastructure using a baby walk and large primes. 

Input: A factor base FB = { i = (ap1, b1),.. . , PflB = (aflB , bpflB)}, a set l?B of 

previously generated full relations, and a set ? BL of previously generated partial 

relations. If #7tB 5A 0, then we require the 0-ideal a used to generate the last 

relation and its distance 5(a). 

Output: A set 7B of full relations and a set PBL of partial relations. 

1: k - #R-a + 1,  0 

2: if k = 1 then 

3: ao -0,5 0 

4: else 

5: ao <--a,5j ---5(a) 

6: (a 1, 5+i) — p(a,8) i. Next in the baby walk (Alg. 3.10) 
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7: j - j + 1 

8: repeat 

9: (e, q, s) <-- o(J, a) c' Test if aj is smooth or almost-smooth (Aig. 5.5) 

10: ifeOthen 

11: 

12: for each non-zero ei E e do 

13: if e1 <0 then > Adjust the distance for inverses 

14: degapi 

15: if s = 0 then > ai is B-smooth 

16: RB -  R.i U {(e, ô)} > Store the full relation 

17: else c> aj is almost B-smooth 

18: PBL -  PBL U {(q, s, e, ö)} > Store the partial relation 

19:. else > If e = 0, i.e. ctj is not smooth or almost smooth 

20: (a,, ô+,) +-. p(cj, 8j) > Next in the baby walk (Alg. 3.10) 

21: j— j+1 

22: unti1e0 A q=Q 

Partial relations are obviously more plentiful than full relations. Consequently, it 

is expected that using large primes will reduce the number of walk steps required to 

find enough relations. We estimate this improvement in Section 5.3.1. However, a 

full relation resulting from combining partial relations is slightly less sparse, perhaps 

slowing down linear algebra. This is only significant if partial relations with multiple 

large primes are allowed (cf. Holt and Davenport [HDO3]). Implementations of index 

calculus using multiple large primes were done by Holt and Davenport in (/qZ)* and 

by Gaudry, Thomé, Thériault and Diem in low genus imaginary quadratic function 
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fields [GTTDO7]. In the work at hand, we did not investigate multi-large prime 

variations. 

5.1.5 Linear Algebra Improvements 

The linear algebra techniques described in Chapter 4 are the best asymptotic results 

we are aware of. In practice, however, we can significantly improve on some of those 

methods. 

To compute the regulator in Section 4.3.6, we suggested that one compute the 

Hermite normal form of the augmented relation matrix A, whose determinant will 

be the product h0R0. Firstly, the HNF is expensive to compute in practice. Secondly, 

the determinant is exactly equal to h0R0 only if the smoothness bound B is chosen to 

be large enough that the prime ideals in JB generate the class group and the columns 

of A'lz generate the full lattice A. 

If we reduce the smoothness bound B, our relation matrix A' may only generate a 

sublattice of A. Consequently, the determinant of the HNF of A' will be a multiple 

of h0R0. As long as this multiple is not too large, we can still use our factoring 

technique of Algorithm 4.16 to obtain the regulator R0. The disadvantage is that we 

are no longer able to find the class number from this computation. 

For regulator computation we replaced the HNF computation with two different 

methods. The first technique we call the determinant method. Let A be an 

(nB + 1) x (ThB + 1) submatrix of A' with the linearly dependent columns removed. 

Then the determinant of the matrix A will be some multiple of the regulator R0. 

We can use a method based on Wiedemann's algorithm to remove the linearly 

dependent columns from A. Recall that Wiedemann's algorithm works over a field. 
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In practice, we suggest choosing a random word-sized prime p and use the field L = 

Z/pZ. Then to remove linearly dependent columns, we begin by choosing an nB X n 

submatrix A consisting of the first nB columns of A' along with another column in 

A' chosen for b. Wiedemann's algorithm for solving Ax = b (mod p) will compute a 

solution x or determine a column dependency in A. If a solution x is found, then b is 

linearly dependent modulo p in A' since x gives a linear combination of the columns 

of A that result in b. We can continue the process of replacing linearly dependent 

columns in [Alb] with the extra columns of A' until we find a square nonsingular 

matrix or an inconsistent system [Wie86, §111]. Since this method performs operations 

in the field £ and takes advantage of the sparsity of the relation matrix, it is expected 

to be much faster than computing the HNF over the integers. 

Wiedemann also gave a method for computing the determinant of a sparse nB X nB 

matrix in 0 (flB (w + nB log rtB)) field operations, where w denotes the number of non-

zero entries in the input matrix [Wie86, V]. To compute the determinant over the 

integers we suggest performing Wiedemann's determinant algorithm over multiple 

fields of the form £ = Z/p7L for different randomly chosen word-sized primes. We 

combine the determinants using Chinese remainder theorem, repeating the process 

until the CRT result stabilizes. 

The multiple of the regulator may be quite large in the determinant method, 

slowing down the factorization in Algorithm 4.16. One option to reduce this multiple 

is to repeat the determinant method after replacing a column of A' with a different 

linearly independent column and perform Algorithm 4.16 on the greatest common 

divisor of the two determinants. The result of the GOD is likely a small multiple of 

R0 since we expect the two determinants to be different multiples of h0R0. However, 
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we present another method which also results in a small multiple of the regulator, 

but requires fewer linear algebra computations. 

We call our second technique for computing the regulator the kernel method. 

Cohen attributes the ideas of this method in the number field case to Buchmann 

[Coh93, p. 288]. Suppose we compute two kernel vectors u, v of A. From u = 

(u1) U2,.. . , U) and v = (v1) v2,.. . , u) we compute the two distances Ju and 5 

corresponding to 

ou =  

nB 

i=1 

nB 

u.ö(p) and 5=> 'vi .5(p1). 
i=1 

Note that Ju and 5,, must be both multiples of the regulator R0. Then we can get a 

small multiple of R0 (or often R0 itself) by computing kR0 = gcd(ô, 6w). To find 

the actual regulator R0, we again use Algorithm 4.16. 

To compute kernel vectors over Z, we suggest using an algorithm by Eberly et 

al. [EGGO6, EGG+07].. While thoroughly analyzed asymptotically, there is also an 

implementation of the algorithm in the LinBox library [EGG+06, §4]. Specifically, 

this algorithm computes a rational solution x to the system Ax = b. To get a 

random kernel vector, we choose a vector v with random integer entries and compute 

b = Av. Now, using the algorithm to solve Ax = b, we obtain a vector x which we 

correct to a kernel vector by subtracting v. Note that if the entries of x are rational 

and not in Z, then we must add new relations until we get an integer solution. 
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5.2 Implementation Details 

To implement index calculus in the infrastructure of a real quadratic function field, we 

adapted an implementation of index calculus in imaginary quadratic function fields 

by Velichka (cf. [Ve1O8]). This was part of a larger C++ library for algebraic number 

theory called ANTL started by Jacobson (cf. [Jac99]). The library is based on Shoup's 

NTL library [ShoO8]. We compiled NTL to use the GMP library [GraO7] for large integer 

arithmetic. 

Degree Computations 

One issue that arose in our implementation was the precision for computing the degree 

of a function field element c = (a + by)/d, where a, b, d E K[x]. The difficulty lies in 

the fact that the root y of the function field equation W(T) = T2 + h(x)T - f(x) E 

K[x][T] is an element of the Puiseux series K((1/x)) (cf. Section 3.2.1). That is, 

Y. = cx E K((1/x)) with Cm  5h 0 for some m E No. Initially, we used m as 00 

the degree of y, i.e. y Lvi = jxj, and computed 

deg a = deg(a + b [y]) - deg d. 

However, our testing indicated a problem. We discovered that it was necessary to 

consider a sufficient number of negative-degree terms of y. Therefore, we represented 

the root as y x'Ly]/t E Quot(K[x]) with t = >I c_x' for some bound k E N. 

We chose k = 2 ' max{deg a, deg b} and computed the degree as 

deg  = deg (at + bxc[yj) - deg  - degd. 
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Factoring Integers 

ANTL contains a C++ implementation for factoring a composite integer n E Z by 

Hirt based on the algorithms in Crandall and Pomerance [CPO5, pp. 266, 344-345]. 

This algorithm works as follows. First we perform trial division on n to remove 

prime factors up to a bound of 1 000 000. If n is not completely factored by trial 

division, then Lenstra's elliptic curve method is used with an ECM stage-one bound 

of BE = 10000 and stage-two bound of 100BE [Len87]. Note that for the size of 

integers we were factoring (usually < 100 bits), using the number field sieve would 

not have provided an improvement. 

Linear Algebra 

ANTL relies on external libraries to perform linear algebra functions. Our goal was 

to use the LinBox library [Lin08] which contains efficient routines for sparse linear 

algebra. However, most of our attempts to use LinBox in our application failed and 

we were unable to get sufficient support from the developers to correct the problems. 

We resorted to using IML [CSFO7] where LinBox failed. While this package does not 

provide sparse linear algebra, it does contain efficient routines for dense matrices. 

Consequently, due to the memory contraints of using dense matrices, we were unable 

to scale the inputs to our implementation as large as we would have liked. 

One should note that getting a working implementation of index calculus in the 

infrastructure was our focus in this thesis. The fact that we were unable to get a 

sparse linear algebra implementation is unfortunate, but the linear algebra is not 

specific to our application. Our results in Section 5.4 separate the timings for each 

phase of index calculus. However, one should note that we did choose our parameters 
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to optimize the timings with the best linear algebra software we had available. 

Ensuring Full Rank 

We implemented the baby walk strategy described in Section 4.3.4 to compute a 

strictly diagonally dominait relation matrix. However, we discovered that this method 

is slower than just computing a baby walk starting from (9. Moreover, using large 

primes is not as effective when we are trying to get a diagonally dominant matrix. So 

we did the latter in practice, followed by a rank computation to ensure we have full 

rank. 

With sieving and our baby walks in practice, we used IML to compute the row 

rank modulo a random small word-sized prime. This function also returns the row 

rank profile, i. e. a vector indicating which rows are linearly independent. Instead of 

naïvely generating more random relations, we used this row rank profile to generate 

relations that we know will be linearly independent. This prevents the relation matrix 

from getting as large as the naïve approach, thus improving the later linear algebra 

steps. 

There is a small chance that the row rank and the profile will be incorrect given 

that we are not computing it over the integers. This will only happen if the random 

word-sized prime divides the determinant. However unlikely, if this does occur, we 

can detect that the rank is abnormally small and just choose another random prime. 

5.3 Parameter Selection 

To select our parameters for our results we relied on formulae provided by Velichka 

for imaginary quadratic function fields [VelO8, pp. 65-69, 84-88]. We briefly describe 
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those formulae here. 

5.3.1 Smoothness Bound for Baby Walks 

We wish to determine the best smoothness bound B to use when generating relations 

using the baby walk method. But first we must estimate the size of the factor base 

for a given smoothness bound B. The number of irreducible monic polynomials of 

degree n in JFq[x] is 

(d) qfhd , 

where p(.) is the Möbius function [BS96, pp. 23, 134]. The Möbius function is defined 

as 

0 if d is divisible by a square 1 

(-1)' if d = p' p, the product of t distinct irreducible polynomials. 

Note that a prime ideal p0 is ramified if and only if pif or plh ( cf. Section 4.3.2). 

Thus we expect that the number of ramified prime ideals is negligible and we expect 

(y) = y2 + hy - f (mod p) to have a solution for approximately half the monic 

irreducible polynomials p E K[x]. Then the number of ramified and splitting ideals 

of degree n to be put in the factor base is A Therefore, the size of the factor 

base will be nB >I::;Z=1 A. 

Now we can optimize the smoothness bound B based on an estimate of how many 

baby steps are required to compute m relations. For our experiments in Section 5.4.2, 

we started with m = n B + 5. We will first compute the number of baby steps in the 
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simpler case when no large primes are used. We use the following non-asymptotic 

estimate for the number of B-smooth reduced ideals extended from Jacobson, Menezes 

and Stein [JMSO1, §5.1] by Maurer, Menezes and Teske [MMTO2, §4.3]): 

Theorem 5.8 (Maurer, Menezes & Teske (2002)). For a given smoothness 

bound B, the number of B-smooth reduced ideals in the quadratic order 0 of a function 

field of genus g is 

no/B =  [ (l+xTh\'l 
i=1 Ln=1 1_xn) ] ' 

i 

where [ - ]i denotes the coefficient of 

The value of no/B can be found by computing the first g + 1 terms of the Taylor 

expansion of B (1±) about x 0. Then, assuming Heuristic 4.11, we expect 

to find a B-smooth ideal every EB = hoRo baby steps. 

Since we initially find nB + 5 relations before testing the relation matrix for full 

rank, we expect to find these relations in TB = (nB + 5)EB baby steps. By computing 

TB for 1 ≤ B ≤ g, we choose the smoothness bound B with the minimum value of 

TB. 

Consider now the large prime variant of baby walks. Following Velichka's recom-

mendations, we used a large prime bound of BL = B + 1, implying that there are 

nBL = 2AB+1 large primes ideals under the assumption that the number of ramified 

prime ideals is negligible. Since we only test 0-ideals of degree < g (i.e. reduced) 

for (almost-)smoothness, it follows from Theorem 5.8 that the number of almost B-
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smooth ideals is 

O/BL = BL 

g-(B+1) r B 1 +  

H 
J 

X n 

If we assume that Heuristic 4.11 also applies to almost B-smooth ideals, i.e. that 

they are evenly distributed between and within the ideal classes of 01(0), then we 

hoRo  expect to find a partial relation every EL = 1 baby steps. 

Now we need to estimate the number of full relations we expect to obtain from a 

set PBL of partial relations. Suppose at some point in time we have found np partial 

relations. The following result is from Thériault [ThéO3, § 5.6]: 

Theorem 5.9 (Tbériault, 2003). Let n7, be the number of matching pairs found in 

a sample of size np chosen with replacement from rtBL elements. If 3 ≤ np < 

then we have the bound 

c2 2 
__ 

fl - np 
'p. -. 

3 BL 

Therefore, from Theorem 5.9 we expect to get at least one full relation once np = 

\JThBL. 

We have that for every almost B-smooth ideal found, the number of B-smooth 

ideals found is 

EBL - [hoRo no/B 1 - [nO/B 

- I no/BL h0R0 I - I no/BL 

To compute the number of smooth and almost smooth ideal required to find nB + 5 
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full relations, we solve for x in 

2_ x2+ [flblB lx=mB+5. 

3 B,, I I 

Then the number of baby steps required to find these x ideals is 1 L xE L. Again, 

we choose the smoothness bound B such that TL is the minimum for 1 B <— g 

and BL =B+1. 

For a particular bound B', the size of the factor base nB increases dramatically 

from B' = B' to B = B' + 1 (especially for larger q). Therefore, in our implemen-

tation we allowed for fractional smoothness bounds. For example, we would allow a 

smoothness bound of B 3 that includes all the splitting and ramified prime ideals 

of at most degree 3, plus of the prime ideals of degree 4. This was done by only 

adding A4 = prime ideals of degree 4 to the factor base. 

For generating our numerical results, we chose the smoothness bound for a par-

ticular field size q and genus g as follows. Based on tests, we found an estimate Np 

of the maximum n2 such that our linear algebra routines could handle the relation 

matrix in memory. Once we computed B to minimize T L, then we chose the largest 

smoothness bound B' = kB < NF for 0 < k < I. 

5.3.2 Sieve Parameters 

For relation generation using sieving, we typically used the same smoothness bound 

chosen for the baby walk. However, there were occasions when the field size and genus 

were sufficiently small that increasing the smoothness bound gave a better result for 

sieving. 
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Other parameters for sieving include the sieve bound S, sieving interval M, toler-

ance value T, and the number of primes flQ used to generate the ideal for the sieving 

polynomial in self-initialization. We did attempt to tweak these parameters a little 

from the suggestions made by Velichka, but we expect that the sieving runtime could 

be improved in many cases through careful adjustments. 

First, we followed Velichka's suggestion to use a sieving interval of M = B - 2. 

Velichka claimed this choice was based on empirical evidence. Secondly, we wanted 

the sieve polynomial g(u) to have a leading coefficient of degree g - M. Therefore, 

we attempted to generate the ideal a1 such that it had degree g - M. Since nQ is 

the number of factors of a1, we needed each factor to have degree (g - ≤ B. 

Specifically, we used flQ such that (g - B - 1. 

The sieving tolerance T affects how many candidates will be selected in the sieving 

interval to be tested for smoothness. Velichka showed that smooth ideals with linear 

factors will be selected as candidates when T = g + M. Smooth ideals with square 

factors will be chosen as candidates if T = 9. To select candidates with large prime 

factors for a bound BL = B + 1, T should be reduced by B + I. Following Velichka's 

recommendation, we used T = max{g - M + 1 - 2B, 1} as our starting tolerance 

value. 

We started with the sieve bound S = B. In situations where the optimal smooth-

ness bound B increased when increasing the genus g, we tried using a sieve bound of 

S = B - 1 as long as was not too small ( e.g. < 100). In these situations, we 

lowered the tolerance T so that we would still find candidates with factors of degree 

B. 
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5.4 Computations 

In this section we present computational timings for computing the regulator using 

our implementation described previously. First we briefly mention the previous best 

results in the literature for computing the regulator. 

5.4.1 Previous Results 

We are aware of two sources in the literature that have provided timings for computing 

the regulator in real quadratic function fields. In 1998, Stein and Williams used the 

two-phase baby-step giant-step algorithm to compute regulators (cf. Section 3.2.5). 

They were able to compute an 80-bit regulator of a genus-3 function field over JFq 

with q = 10000007 using a 200Mhz Pentium Pro in 10 hours [SW98, §6]. In 2002, 

Stein and Teske used a parallized Pollard's rho method to compute a 94-bit regulator 

of a genus-3 function field with q = 2155000013. They estimated that on a single 

Sun Ultra Enterprise 450 their computations would have taken 55 days and 6 hours 

[ST02b, §4.2]. 

Due to the older machines that these previous results were computed on, it is 

difficult to compare these to our results. Moreover, their techniques adapt better to 

small genus function fields, whereas our index calculus algorithm applies to function 

fields where the genus is large in comparison to the field size q. We provide these 

previous results merely as an estimate of the computational feasibility of computing 

regulators in the past to show that we can now compute larger regulators (with 

updated hardware). 
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5.4.2 Current Results 

We gathered our experimental results on Intel Pentium 4 dual processor machines with 

a 3.0 GHz clock speed, 2048 KB cache, and 1.0 GB of memory. All of our timings 

are presented in the form :ss, mm:ss, or hh:mm:ss (hours, minutes, and seconds). 

We implemented both the determinant and kernel methods for computing the 

regulator (cf. Section 5.1.5). However, using IML for linear algebra, the determinant 

method always proved to be slower in practice, so we only present the kernel method 

timings in the tables below. 

For relation generation we tested both baby walks and self-initialized sieving. All 

of the results are using large primes and partial relations. We started by generating 

B + 5 relations, then computed the rank profile modulo a small prime to generate 

relations specifically for the linearly dependent rows. 

For the odd characteric fields we chose the field size q to be the largest prime less 

than a power of 2. The one exception to this rule was 2 4 where we used 17 since it 

is closer to 16 than 13. Therefore, values of q used for odd characteristic fields were 

3, 7, 17, 31, 61, 127, 251, 509, 1021. 

Tables 5.10 and 5.11 present our best times between baby walk and sieving for 

various genera and field sizes. Timings for both baby walks and sieving are given in 

Tables 5.14 and 5.15, split up for each step of index calculus. The parameters used 

to achieve these timings are given in Tables 5.12 and 5.13. We compare the total 

time for each relation generation method to an unoptimized baby-step giant-step 

implementation by Jacobson in Tables 5.16 and 5.17. 
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Table 5.10. Timings for regulator computation, varying the genus g and field size q 

for even characteristic fields 

9 

q 5 10 15 20 25 30 35 40 

22 :00 :00 :02 :25 1:39 6:34 32:35 7:11:32 

2 3 :00 :02 :21 5:50 57:43 8:52:58 - - 

2 :01 :03 1:43 5:28:04 - - - - 

2 5 :01 :32 58:09 - - - - - 

26 :02 2:24 17:11:07 - - - - - 

2 :10 35:54 - - - - - - 

28 :24 4:45:34 - - - - - 

21 1:02 - - - - - - - 

2'° 3:37 - - - - - - - 

Table 5.11. Timings for regulator computation, varying the genus g and field size q 

for odd characteristic fields 

q 

9 

5 10 15 20 25 30 35 40 

22 :00 :00 :03 :01 :07 :31 4:22 22:00 

2 :00 :01 :07 6:37 28:56 7:16:03 - - 

2 4 :00 :04 3:08 5:07:17 - - - - 

2 5 :03 :13 39:34 - - - - - 

26 :03 2:14 13:31:10 - - - - - 

2 :04 33:26 - - - - - - 

28 :13 5:27:40 - - - - - - 

29 :38 - - - - - - - 

210 2:51 - - - - - 
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The column headings in Tables 5.12 and 5.13 use the following notation. The 

sieve bound is denoted by S; the sieving interval by M; the tolerance value is T; 

and flQ is the number of prime ideals used to generate the sieving polynomial. These 

parameters were initially chosen according to the formulae in Section 5.3, then some of 

them have been tweaked to obtain faster runtimes or to satisfy the constraints of our 

linear algebra. The #7ZB column is not really a parameter that was set beforehand, 

but it gives the number of relations that we generated to obtain a full rank relation 

matrix. Note that in all cases we started by generating #J + 5 relations (except 

when the factor base was very small). 

Table 5.12. Relation generation parameters in even characteristic fields 

q g 

Baby Walk ISieving 

B #B # 7 B B S M T flc? #B # 7 B 

22 5 2 4 7 3 3 1 2 2 15 20 

22 10 3 15 25 3 3 1 4 3 15 20 

22 15 4 42 48 4 4 2 6 4 42 47 

22 20 5 129 139 5 5 3 8 4 129 135 

22 25 6 466 507 6 6 4 10 4 466 483 

22 30 6 459 485 6 6 4 15 5 459 470 

22 35 7 1675 1795 7 7 5 17 5 1675 1730 

22 40 7 2672 2939 7 7 5 22 5 2672 2836 

23 5 2 13 14 2 2 1 1 2 18 24 

23 10 3 104 121 3 3 1 4 3 104 115 

23 15 3 102 107 3 3 2 8 5 102 107 

23 20 4 594 621 4 4 2 11 5 594 604 

23 25 41 3063 3361 4A 41 3 12 6 3226 3363 

23 30 5 3887 3991 5 5 3 13 6 3882 3933 
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Relation generation parameters in even characteristic fields (cont.) 

q g 

Baby Walk Sieving 

B #B #RB B S M T flQ #23 #R-B 

2 4 5 1 12 32 1 1 1 3 4 12 17 

24 10 2 76 84 2 2 2 5 4 76 81 

24 15 3 755 779 3 3 2 8 5 755 762 

24 20 31 2788 3157 3 3 2 8 6 2380 2893 

25 5 1 14 19 2 2 1 1 2 264 294 

2 5 10 2 261 271 2 2 2 6 4 261 267 

25 15 2 2992 3152 21 2 1 8 7 2992 3292 

26 5 1 33 39 1 1 1 5 4 33 38 

26 10 2 1019 1042 2 2 2 5 4 1019 1026 

26 15 2th 1913 2384 2th 2 2 5 7 1476 1771 

27 5 1 64 69 1 1 1 3 4 64 69 

27 10 2 4152 4236 2 2 1 6 5 4152 4173 

28 5 1 122 128 1 1 1 5 4 122 127 

28 10 1 6 3391 3549 1 20 1 1 5 9 2575 2734 

29 5 1 250 256 1 1 1 3 4 250 257 

2'° 5 1 505 513 1 1 1 3 4 505 515 

Table 5.13. Relation generation parameters in odd characteristic fields 

q g 

Baby Walk Sieving 

B #B # 7 B B S M T flQ #B # 7 'B 

22 

22 

22 

2 

5 

10 

15 

20 

3 

4 

5 

5 

7 

7 

31 

44 

8 

12 

46 

55 

4 

4 

5 

5 

4 

4 

5 

5 

2 

2 

3 

3 

2 

5 

9 

8 

1 

2 

3 

4 

15 

7 

31 

44 

20 

12 

36 

55 
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Relation generation parameters in odd characteristic fields (cont.) 

q g 

Baby Walk Sieving 

B #1B #R,B B S M T ThQ #B # 7 'B 

22 25 6 103 113 6 6 3 10 4 103 111 

22 30 7 250 280 7 7 3 11 4 250 271 

22 35 8 668 746 8 8 4 13 4 668 714 

2 2 40 8 678 734 8 8 5 19 5 678 704 

23 5 2 15 17 2 2 1 3 2 15 20 

23 10 3 71 81 3 3 1 6 3 71 79 

2 3 15 3 67 73 4 3 2 7 4 364 399 

23 20 4 358 367 5 4 3 8 4 2044 2166 

-- 21 25 5 2067 2223 5 5 3 19 5 2067 2146 

23 30 5 2044 2100 5 5 2 19 6 2044 2084 

5 1 9 14 2 2 1 3 2 78 89 

24 10 2 63 68 2 2 2 6 4 63 68 

2 4 15 3 894 921 3 3 1 11 5 894 914 

2 4 20 3 1932 2277 3 3 2 7 6 2973 3290 

25 5 1 13 23 2 2 1 1 2 248 270 

25 10 2 242 258 2 2 2 5 4 242 247 

2 15 2 2728 2941 21 21 1 13 7 2728 2829 

26 5 1 30 40 1 1 1 5 4 30 35 

26 10 2 973 995 2 2 1 8 5 973 980 

26 15 2 2080 2666 2 50 2 1 5 7 1701 2063 

27 5 1 69 74 1 1 1 5 4 69 74 

2 7 10 2, 4080 4209 2 2 1 8 5 4080 4121 

28 5 1 117 122 1 1 1 5 4 117 122 

28 10 1 3262 3429 1 1 1 5 9 3262 3301 

29 5 1 262 270 1 1 1 5 4 262 267 
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Relation generation parameters in odd characteristic fields (cont.) 

q g 

Baby Walk Sieving 

B # 1 B //RB B S M T flQ B #R.B 

210 5 1 496 505 1 1 1 5 4 496 502 

The timings for each stage are given in Tables 5.14 and 5.15. The stages are factor 

base generation (.97B gen.), generation for the first nB + 5 relations (7ZB gen.), com-

puting the rank and generating extra relations according to the rank profile (Rank), 

and finally computing a basis for the nullspace and computing the greatest common 

divisor of the distance of the prime ideals raised to the power of two random kernel 

vectors (Linalg.). 

Table 5.14. Timings for each stage of index calculus for computing the regulator in 

even characteristic fields 

q g 

Baby Walk Sieving 

FB gen. fl.B gen. Rank Linalg. F2 gen. RB gen. Rank Linalg. 

22 

22 

22 

22 

22 

22 

22 

22 

5 

10 

15 

20 

25 

30 

35 

40 

:00 

:00 

:00 

:00 

:01 

:01 

:04 

:07 

:00 

:00 

:02 

:28 

2:41 

17:01 

1:17:57 

13:16:19 

:00 

:01 

:00 

:01 

:12 

:50 

5:28 

1:07:20 

:00 

:00 

:00 

:00 

:05 

:04 

1:24 

5:27 

:00 

:00 

:00 

:00 

:01 

:01 

:04 

:07 

:00 

:00 

:02 

:23 

1:18 

5:29 

21:42 

4:30:14 

:00 

:00 

:00 

:02 

:15 

:58 

9:37 

2:34:17 

:00 

:00 

:00 

:00 

:05 

:06 

1:12 

6:54 

2 

2 

2 

5 

10 

15 

:00 

:00 

:00 

:00 

:02 

:23 

:00 

:01 

:00 

:00 

:00 

:00 

:00 

:00 

:00 

:00 

:02 

:21 

:00 

:00 

:00 

:00 

:00 

:00 
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Timings for each stage of index calculus for computing the regulator in even charac-

teristic fields (cont.) 

q g 

Baby Walk Sieving 

'FB gen. 7B gen. Rank Linalg. FB gen. 7ZB gen. Rank Linalg. 

2 3 20 :01 6:42 :14 :06 :00 5:05 :39 :06 

23 25 :03 1:36:36 10:52 7:11 :04 28:26 23:30 5:43 

2 3 30 :05 27:33:19 39:19 9:58 :05 6:24:53 2:18:30 9:30 

24 5 :00 :00 :02 :00 :00 :01 :00 :00 

2 4 10 :00 :03 :00 :00 :00 :04 :00 :00 

2 4 15 :00 3:18 :09 :09 :00 1:30 :04 :09 

2 4 20 :03 4:47:54 32:57 7:10 :03 1:09:33 4:57:34 7:51 

25 5 :00 :01 :00 :00 :00 :02 :02 :02 

21 10 :00 :29 :01 :01 :00 :48 :01 :01 

21 15 :02 1:29:42 4:52 4:51 :02 28:26 22:36 7:05 

26 5 :00 :02 :00 :00 :00 :13 :00 :00 

26 10 :00 3:05 :19 :15 :00 2:05 :05 :14 

26 15 :01 15:48:51 2:46:21 4:36 :01 9:22:53 7:45:58 2:15 

'27 5 :00 :10 :00 :00 :00 :49 :00 :00 

2 7 10 :02 30:08 5:32 10:33 :02 26:09 1:23 8:20 

28 5 :00 :24 :00 :00 :00 19:26 :00 :00 

28 10 :02 4:27:29 11:40 6:23 :01 4:37:29 2:08:18 3:53 

29 5 :00 1:01 :00 :01 :00 11:23 :04 :01 

210 5 :00 3:31 :03 :03 • :00 49:55 :39 :03 
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Table 5.15. Timings for each stage of index calculus for computing the regulator in 

odd characteristic fields 

q g 

Baby Walk Sieving 

.FB gen. RB gen. Rank Linaig. .FB gen. 7ZB gen. Rank Linaig. 

22 5 :00 :00 :00 :00 :00 :00 :00 :00 

2 2 10 :00 :01 :00 :00 :00 :00 :00 :00 

22 15 :00 :01 :02 :00 :00 :02 :00 :01 

22 20 :00 :01 :00 :00 :00 :09 :00 :00 

2 2 25 :00 :06 :01 :00 :00 :27 :00 :00 

22 30 :00 :27 :03 :01 :00 1:30 :02 :01 

22 35 :00 3:46 :23 :13 :00 12:26 :11 :10 

22 40 :00 20:15 1:34 :11 :00 1:42:22 1:05 :08 

2 3 5 :00 :00 :00 :00 :00 :00 :00 :00 

2 3 10 :00 :01 :01 :00 :00 :01 :00 :00 

23 15 :00 :07 :00 :00 :00 :26 :01 :03 

2 20 :00 6:31 :05 :01 :01 24:04 1:03 :01 

2 3 25 :00 24:27 2:07 2:22 :00 2:03:18 1:49 1:47 

23 30 :01 7:05:42 8:47 1:33 :01 45:15:29 33:16 1:57 

2' 5 :00 :01 :00 :00 :00 :00 :00 :00 

2 4 10 :00 :04 :00 :00 :00 1:10 :00 :00 

2' 15 :00 2:46 :08 :14 :00 19:50 :05 :13 

2 4 20 :01 4:24:45 39:00 3:31 :02 34:02:23 2:28:17 7:14 

25 5 :00 :01 :01 :02 :00 :02 :00 :01 

2 10 :00 :10 :02 :01 :00 1:51 :00 :01 

2 15 :00 29:09 5:32 4:53 :00 4:27:48 13:42 3:32 

26 5 :00 :02 :01 :00 :00 :10 :00 :00 

26 10 :00 1:50 :10 :14 :00 16:54 :02 :11 

26 15 :00 10:29:50 2:55:04 6:16 :00 165:58:39 1:33:40 3:08 
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Timings for each stage of index calculus for computing the regulator in odd charac-

teristic fields (cont.) 

q g 

Baby Walk Sieving 

FB gen. RB gen. Rank Linaig. IrE gen. R-B gen. Rank Linaig. 

2 7 5 :00 :04 :00 :00 :00 :16 :00 :00 

2 7 10 :01 17:52 7:15 8:58 :01 1:01:15 :56 7:49 

28 5 :00 :13 :00 :00 :00 1:22 :00 :00 

28 10 :01 4:47:25 34:12 6:02 :01 177:28:16 4:44:01 4:33 

29 5 :00 :35 :02 :01 :00 2:14 :00 :01 

210 5 :00 2:45 :03 :03 :00 8:42 :01 :02 

The total times for baby walk and sieving are given in Tables 5.16 and 5.17. We 

also compare to using the baby step giant step method to compute the regulator. We 

stress that the BSGS implementation used was not optimized and does not use any 

of the improvements described in Section 3.2.5. 

Table 5.16. Comparison of our index calculus methods to baby step giant step for 

computing the regulator in even characteristic fields 

q g log R0 BSGS Baby Walk Sieving 

22 5 9 :00 :00 :00 

22 10 21 :00 :01 :00 

22 15 31 :06 :02 :02 

22 20 39 2:27 :29 :25 

22 25 50 35:47:10 2:59 1:39 

22 30 61 - 17:56 6:34 

22 35 71 - 1:24:53 32:35 

22 40 80 - 14:29:13 7:11:32 
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Comparison of our index calculus methods to baby step giant step for computing the 

regulator in even characteristic fields (cont.) 

q g log R0 BSGS Baby Walk Sieving 

23 5 15 :00 :16 :00 

2 3 10 31 :05 :03 :02 

23 15 42 8:29 :23 :21 

23 20 61 - 7:02 5:50 

2 3 25 74 1:54:42 57:43 

2 30 88 - 28:22:41 8:52:58 

2 4 5 21 :00 :02 :01 

2 4 10 41 9:20 :03 :04 

2 4 15 56 - 3:36 1:43 

2 4 20 80 - 5:28:04 6:15:01 

25 5 24 :00 :01 :06 

25 10 50 14:07:52 :31 :50 

2 15 74 - 1:39:27 58:09 

26 5 31 :03 :02 :13 

26 10 61 - 3:39 2:24 

26 15 91 - 18:39:49 17:11:07 

27 5 36 :19 :10. :49 

2 7 10 70 - 46:15 35:54 

28 5 40 2:05 :24 19:26 

28 10 81 - 4:45:34 6:49:41 

29 5 45 17:04 1:02 11:28 

210 5 47 36:03 3:37 50:37 
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Table 5.17. Comparison of our index calculus methods to baby step giant step for 

computing the regulator in odd characteristic fields 

q g log R0 BSGS Baby Walk Sieving 

22 5 8 :00 :00 :00 

22 10 17 :00 :01 :00 

22 15 20 :00 :03 :03 

22 20 33 :04 :01 :09 

22 25 41 2:41 :07 :27 

22 30 51 18:02:51 :31 1:33 

22 35 58 - 4:22 12:47 

22 40 64 - 22:00 1:43:35 

23 5 15 :00 :07 :00 

2 3 10 29 :01 :03 :01 

23 15 41 :54 :07 :30 

2 3 20 54 - 6:37 25:08 

2 3 25 69 - 28:56 2:06:54 

23 30 85 - 7:16:03 45:50:43 

2' 5 21 :00 :01 :00 

2' 10 44 4:30 :04 1:10 

2" 15 62 - 3:08 20:08 

2' 20 81 - 5:07:17 36:37:56 

25 5 24 :00 :04 :03 

25 10 51 3:49:03 :13 1:52 

2 5 15 75 - 39:34 4:45:02 

26 5 30 :01 :03 :10 

26 10 60 - 2:14 17:07 

26 15 85 - 13:31d0 167:34:27 

27 5 36 :05 :04 :16 
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Comparison of our index calculus methods to baby step giant step for computing the 

regulator in odd characteristic fields (cont.) 

q g log R0 BSGS Baby Walk Sieving 

2 7 10 67 - 33:26 1:10:01 

28 5 39 :14 :13 1:22 

28 10 80 - 5:27:40 182:16:51 

29 5 46 1:53:25 :38 2:15 

2'° 5 50 1:24:56 2:51 8:45 

One will notice from the previous tables that in even characteristic fields sieving 

appears to be faster; however, in odd characteristic fields the baby walk strategy is 

significantly faster. Comparing the sieving results from Table 5.16 to Table 5.17 shows 

that sieving is still often faster in the odd characteristic case; this was expected since 

the odd characteristic fields are generally chosen to be smaller. However, the baby 

walk strategy is dramatically faster in the odd characteristic case versus the even case. 

Since the baby walk code is mostly templated, our hypothesis for this difference is the 

internal representation of field elements used by NTL. In the odd characteristic case 

we used the type zz_pX which is represented in a standard 32-bit integer, whereas in 

the even characteristic case we used the type GF2EX which is represented as a vector 

of binary polynomials GF2X, each also represented by a vector. This extra overhead 

in the even characteristic case could account for the dramatic difference in the baby 

walk strategy between even and odd characteristics. The internal representation may 

not affect sieving as much, since sieving is much more complicated and has its own 

overhead. 

Due to our requirement to represent the matrices in dense format, memory was 
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the biggest issue in generating the previous results. For the larger genera we often 

had to choose the smoothness bound to be non-optimal in order to be able to handle 

the resulting matrices in memory. We ran a slightly larger example on an Intel Xeon 

3.6 GHz machine with 1024KB cache and 6.2 GB of memory. These results are given 

in Table 5.18. 

Table 5.18. A larger regulator computation example 

q 9 log R0 Strategy .FB gen. RB gen. Rank Linaig. Total 

,zzi 25 20 99 Baby Walk 5165 :01 34:24:52 13:13 14:05 34:52:11 



Chapter 6 

Conclusions 

For high genus real quadratic function fields, index calculus in the infrastructure 

provides a practical method for computing invariants like the regulator, class number 

and class group structure, as well as solving instances of the infrastructure DLP. 

For our "baby walk" relation generation method we provided a heuristic analysis, 

summarized in Table 6.1. 

Table 6.1. Heuristic, expected asymptotic runtime complexity for index calculus in 

the infrastructure 

Computing the regulator O(Lqg (2.83 + o(1))) 

Computing the class number and group structure O(Lqg (3.45 + o(1))) 

Solving an instance of the infrastructure DLP O(Lqg (2.45 + o(1))) 

We provided a description of our implementation of index calculus, as well as 

numerical results for computing the regulator. Our implementation was much faster 

than a standard, unoptimized implementation of baby-step giant-step. We were able 

174 
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to compute a 99-bit regulator in a day and a half, whereas the best previous published 

result was a 91-bit regulator in 55 days. 

We compared our baby walk relation generation method against a self-initialized 

sieve. Our results showed that in even characteristic fields sieving often outperformed 

the baby walk, but in odd characteristic fields the baby walk was dramatically faster. 

6.1 Future Work 

In this section we outline some areas for future work to improve or extend the contents 

of this thesis. 

Sparse Linear Algebra 

The numerical results in this thesis have been held back due to the lack of an imple-

mentation of efficient sparse linear algebra. This did not only affect the linear algebra 

step, but in many cases the timings for relation generation were increased due to the 

need to use lower smoothness bounds to allow the linear algebra to complete. 

Implementing this sparse linear algebra was out of the scope of this thesis. We 

look forward to progress in the LinBox project [LinO8] that would allow the use of a 

blackbox library supporting the sparse linear algebra required in this work. 

Sieve Parameters 

We did not spend much time attempting to optimize the sieving parameters for index 

calculus in the infrastructure. We used the parameters as given by Velichka for imagi-

nary quadratic function fields [VelO8, pp. 84-88]. Note that in real quadratic function 

fields one may be able to minimize the degree of the sieve polynomial to g - M + 1 
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rather than g - M as was used for our computations. This would affect the number 

of factors flQ of the sieving ideal as well as the tolerance value T. Consequently, we 

expect that a more thorough investigation would lead to faster sieving runtimes. 

Multi-Large Primes 

Allowing relations with multiple large primes has been used successfully in factoring 

algorithms ( cf. Lenstra and Lenstra [LL93] and Dodson and Lenstra [DL95]). Blake 

et al. described a method to use two large primes to compute discrete logarithms 

[BFHMV84]. Holt and Davenport discussed multi-large prime variants for discrete 

logarithm computations and gave results for an implementation in the group (Z/pZ)* 

for a prime p [HDO3, HolO3]. An implementation and analysis of a double large 

prime variant of index calculus for low genus imaginary quadratic function fields was 

given by Gaudry, Thome', Thériault and Diem [GTTDO7]. It would be interesting to 

see how a multi-large prime variant could be extended to high genus real quadratic 

function fields. 

Parallelization 

Relation generation using sieving can be easily parallelized. Parallelizing the baby 

walks would be possible too if one was careful that the walks did not overlap. We did 

not experiment with parallelization, but it should be possible to obtain a speed-up for 

relation generation roughly inversely proportional to the number of computers used. 

Theoretically, block variants of the sparse linear algebra would allow the linear 

algebra step to also be parallelized. We are not aware of any implementations. 
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Sieving in Low Genus 

Gaudry described how to perform index calculus in low genus imaginary quadratic 

function fields using random walks [GauOOb]. This random walk method was improved 

by Thériault [TheO3] and by Gaudry, Thomé, Thériault and Diem [GTTDO7]. We 

would like to see this low genus method extended to real quadratic function fields and 

investigate how sieving would perform in this situation. 

Explicit Formulae 

The runtime of the baby walk method for generating relations could be significantly 

improved by implementing explicit formulae for the baby step as discussed in Sec-

tion 3.3.2. 

Rigourous Complexity Analysis 

Our complexity results for index calculus in the infrastructure are based on heuristic 

assumptions. Muller, Stein and Thiel had a rigourous analysis for their relation gen-

eration method [MST99, §4]. We are unaware of how to make our analysis rigourous 

when using the baby walk. 

Analysis of Sieving and Large Primes 

Thériault provided a complexity analysis of a large prime variant of index calculus 

in small genus imaginary quadratic function fields [ThéO3, §5]. We were unsuccessful 

at obtaining a complexity for the large prime variant in large genus real quadratic 

function fields that showed an improvement over not using large primes. Due to the 

limited time available for this work, more analysis could prove successful. As far as 
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we know, this problem is also open for the large genus strategies of index calculus in 

imaginary quadratic function fields. 

A complexity analysis of sieving in function fields seems to be more difficult. 



Bibliography 

[Abe94] Christine S. Abel. Ein Algorithmus zur Berechnung der Klassenzahl und 

des Regulators reellquadratischer Ordnungen. PhD thesis, Universität 

des Saarlandes, Saarbrücken, Germany, 1994. Cited on page 119. 

[Ach06] Jeffrey D. Achter. The distribution of class groups of function 

fields. Journal of Pure and Applied Algebra, 204(2):316-333, 2006. 

MR 2006h:11132. Cited on page 56. 

[ADH94] Leonard M. Adleman, Jonathan DeMarrais, and Ming-Deh Huang. A 

subexponential algorithm for discrete logarithms over the rational sub-

group of the Jacobians of large genus hyperelliptic curves over finite 

fields. In Leonard M. Adleman and Ming-Deh Huang, editors, Algo-

rithmic Number Theory—ANTS I (Ithaca, NY), volume 877 of Lec-

ture Notes in Computer Science, pages 28-40. Springer-Verlag, 1994. 

MR 96b:11078. Cited on page 6. 

[AHU74] Alfred V. Aho, John E. Hoperoft, and Jeffrey D. Ullman. The De-

sign and Analysis of Computer Algorithms. Addison-Wesley, 1974. 

MR 54:1706. Cited on pages 52 and 63. 

179 



BIBLIOGRAPHY 180 

[AP95] William R. Alford and Carl Pomerance. Implementing the self-

initializing quadratic sieve on a distributed network. In Alf J. van der 

Poorten, Igor E. ShparlinskiT, and Horst G. Zimmer, editors, Number-

Theoretic and Algebraic Methods in Computer Science (Moscow, 1998), 

pages 163-174. World Scientific Publishing, River Edge, NJ, 1995. 

MR 96k:11152. Cited on page 137. 

[Art21] Emil Artin. Quadratische Körper im Gebiete der höheren Kongruenzen. 

PhD thesis, Universität Leipzig, Germany, 1921. Reprinted in Mathe-

matische Zeitschrift, 19:153-246, 1924. Cited on pages 46, 55, and 66. 

[ATO6] Roberto M. Avanzi and Nicolas Thériault. Index calculus. In Cohen 

and Prey [CFO6], chapter 20, pages 495-509. MR 2007f:14020. Cited on 

page 143. 

[Bau99] Mark L. Bauer. A subexponential algorithm for solving the discrete 

logarithm problem in the Jacobian of high genus hyperelliptic curves 

over arbitrary fields. Preprint available from http: //math. ucalgary. 

ca/mbauer/papers.htm1, 1999. Cited on page 6. 

[Bau01] Mark L. Bauer. Function Field Arithmetic and Related Algorithms. PhD 

thesis, University of Illinois at Urbana-Champaign, 2001. Cited on page 

6. 

[BC185] Thomas Beth, Norbert Cot, and Ingemar Ingemarsson, editors. Ad-

vances in Cryptology—EUROCRYPT '84 (Paris, France), volume 209 

of Lecture Notes in Computer Science. Springer-Verlag, 1985. Cited on 

pages 199 and 200. 



BIBLIOGRAPHY 181 

[BD91] Johannes A. Buchmann and Stephan Düllmann. A probabilistic class 

group and regulator algorithm and its implementation. In Attila Peth6, 

Michael E. Pohst, Hugh C. Williams, and Horst Günter Zimmer, editors, 

Computational number theory (Debrecen, 1989), pages 53-72. Walter de 

Gruyter, Berlin, 1991. MR 92m:11150. Cited on page 5. 

[BD92] Johannes A. Buchmann and Stephan Düllmann. Distributed class group 

computation. Teubner- Texte Informatik, Festschrift aus Anlass des 

sechzigsten Geburtstages von Herrn Prof. Dr. G. Hotz, 1:69-79, 1992. 

MR 93e:11153. Cited on page 5. 

[Ben8l] Michael Ben-Or. Probabilistic algorithms in finite fields. In Proceedings 

of the 22nd Annual Symposium on Foundations of Computer Science— 

FOGS '81 (Nashville, TN), pages 394-398. IEEE Computer Society, 

1981. Cited on page 98. 

[BFHMV84] Ian F. Blake, Ryoh Fuji-Hara, Ronald C. Mullin, and Scott A. Van-

stone. Computing logarithms in finite fields of characteristic two. SIAM 

Journal on Algebraic and Discrete Methods, 5(2):276-285, 1984. Cited 

on page 176. 

[BLO4] Christina Birkenhake and Herbert Lange. Complex AbelianVari-

eties. Number 302 in Grundlehren der mathematischen Wissenschaften. 

Springer-Verlag, 2nd edition, 2004. MR 2005c:14001. First edition pub-

lished in 1992. MR 94j:14001. Cited on page 45. 



BIBLIOGRAPHY 182 

[BLP93] Joe P. Buhier, Hendrik W. Lenstra, Jr., and Carl Pomerance. Factoring 

integers with the number field sieve. In Lenstra and Lenstra [LL93], 

pages 50-94. MR 96m:11116. Cited on page 116. 

[Bri98] Keith Briggs. Quad-precision floating-point arithmetic (doubledouble). 

C library, no longer available, 1998. First released under the GNU Public 

Licence (GPL) in 1996. Cited on page 204. 

[BS96] Eric Bach and Jeffrey Shallit. Algorithmic Number Theory, Volume 

1: Efficient Algorithms. Foundations of Computing Series. MIT Press, 

1996. MR 97e:11157. Cited on pages 58, 96, 98., 101, 102, 104, and 155. 

[Buc90] Johannes A. Buchmann. A subexponential algorithm for the determina-

tion of class groups and regulators of algebraic number fields. In Cather-

ine Goldstein, editor, Séminaire de The'orie des Nombres (Paris, 1988-

1989), number 91 in Progress in Mathematics, pages 27-41. Birkhäusr, 

Boston, 1990. MR 92g:11125. Cited on pages 5, 105, and 112. 

[Buh98] Joe P. Buhler, editor. Algorithmic Number Theory—ANTS III (Port-

land, OR), volume 1423 of Lecture Notes in Computer Science. Springer-

Verlag, 1998. Cited on pages 201 and 206. 

[BVO7] Johannes A. Buchmann and Ulrich Vollmer. Binary Quadratic Forms: 

An Algorithmic Approach. Number 20 in Algorithms and Computation 

in Mathematics. Springer, 2007. Cited on page 106. 



BIBLIOGRAPHY 183 

[BW88] Johannes A. Buchmann and Hugh C. Williams. A key-exchange system 

based on imaginary quadratic fields. Journal of Cryptology, 1(2):107-

118, June 1988. MR 90g:11166. Cited on page 4. 

[BW90] Johannes A. Buchmann and Hugh C. Williams. A key exchange sys-

tem based on real quadratic fields. In Gilles Brassard, editor, Advances 

in Cryptology—CR YPTO '89 (Santa Barbara, CA), volume 435 of Lec-

ture Notes in Computer Science, pages 335-343. Springer-Verlag, 1990. 

MR 91f:94014. Cited on pages 5 and 86. 

[Can87] David G. Cantor. Computing in the Jacobian of a hyperelliptic curve. 

Mathematics of Computation, special issue dedicated to Daniel Shanks 

on the occasion of his 70th birthday, 48(177):95-101, January 1987. 

MR 88f:11118. Cited on page 51. 

[CD093] Henri Cohen, Francisco Diaz y Diaz, and Michel Olivier. Calculs de 

nombres de classes et de régulateurs de corps quadratiques en temps 

sous-exponentiel. In Sinnou David, editor, Séminaire de The'orie des 

Nombres (Paris, 1990-1991), number 108 in Progress in Mathematics,' 

pages 35-46. Birkhuser, Boston, 1993. MR 94m:11151. Cited on page 

5. 

[CD097] Henri Cohen, Francisco Diaz y Diaz, and Michel Olivier. Subexponen-

tial algorithms for class and unit group computations. In John Cannon 

and Derek Holt (eds.), Proceedings the 1st MAGMA Conference (Lon-

don, 1993), Journal of Symbolic Computation, 24(3-4):433-441, 1997. 

MR 98m:11138. Cited on page 5. 



BIBLIOGRAPHY 184 

[CFO6] Henri Cohen and Gerhard Frey, editors. Handbook of Elliptic and Hyper-

elliptic Curve Cryptography. Discrete Mathematics and its Applications. 

Chapman & Hall/CRC, 2006. MR 2007f:14020. Cited on pages 180, 186, 

and 189. 

[Che51] Claude Chevalley. Introduction to the Theory of Algebraic Functions of 

One Variable. Number 7 in Mathematical Surveys. American Mathe-

matical Society, 1951. MR 13:64a. Cited on page 36. 

[CL84] Henri Cohen and Hendrik W. Lenstra, Jr. Heuristics on class groups of 

number fields. In Hendrik Jager, editor, Number Theory (Noordwijker-

hout, The Netherlands), number 1068 in Lecture Notes in Mathematics, 

pages 33-62. Springer-Verlag, 1984. MR 85j:11144. Cited on pages 4 

and 56. 

[Coc73] Clifford C. Cocks. A note on 'Non-secret encryption'. Research report, 

Communications-Electronics Security Group (CESG), Great Britain, 

November 1973. Classified until 1997. Cited on page 2. 

[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory. 

Number 138 in Graduate Texts in Mathematics. Springer-Verlag, 1993. 

MR 94i:11105. Cited on pages 114 and 151. 

[Coh96] Henri Cohen, editor. Algorithmic Number Theory—ANTS II (Bordeaux, 

France), volume 1122 of Lecture Notes in Computer Science. Springer-

Verlag, 1996. Cited on pages 200, 203, and 206. 



BIBLIOGRAPHY 185 

[CPO5] Richard Crandall and Carl Pomerance. Prime Numbers: A Computa-

tional Perspective. Springer-Verlag, 2nd edition, 2005. MR 2006a:11005. 

First edition published in 2001. MR 2002a:11007 Cited on page 153. 

[CSFO7] Zhuliang Chen, Arne Storjohann, and Cory Fletcher. Integer matrix 

library (IML). C library, version 1.0.2, available from http://www. 

cs. uwaterloo. ca/z4chenhiml . html, September 2007. Source freely 

available. Uses [WPO8] for linear algebra routines and [Gra07] for long 

integer arithmetic. First version released in 2004. Cited on page 153. 

[CW87] Don Coppersmith and Shmuel Winograd. Matrix multiplication via 

arithmetic progressions. In Proceedings of the .19th Annual ACM Sym-

posium on Theory of Computing—STOC '87 (New York, NY), pages 

1-6. ACM Press, 1987. Extended in [CW9O]. Cited on page 185. 

[CW9O] Don Coppersmith and Shmuel Winograd. Matrix multiplication via 

arithmetic progressions. Journal of Symbolic Computation, 9(3):251-

280, March 1990. Full version of [CW87]. Cited on pages 114 and 185. 

[CZ81] David G. Cantor and Hans Zassenhaus. A new algorithm for fac-

toring polynomials over finite fields. Mathematics of Computation, 

36(154):587-592, April 1981. MR 82e:12020. Cited on page 104. 

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptog-

raphy. IEEE Transactions on Information Theory, IT-22(6):644-654, 

November 1976. MR 55:10141. Cited on page 1. 



BIBLIOGRAPHY 186 

[Die08] Claus Diem. On arithmetic and the discrete logarithm problem in class 

groups of curves. Habilitationsscrift submitted to the Fakultät für Math-

ematik und Informatik der Universität Leipzig, 5 July 2008. Available 

from http: //www. math . uni-leipzig. de/diem/. Cited on page 3. 

[DL95] Bruce Dodson and Arjen K. Lenstra. NITS with four large primes: 

An explosive experiment. In Don Coppersmith, editor, Advances in 

Cryptology—CRYPTO '95 (Santa Barbara, CA), volume 963 of Lecture 

Notes in Computer Science, pages 372-385. Springer-Verlag, 1995. Cited 

on page 176. 

[Doc06] Christophe Doche. Exponentiation. In Cohen and Frey [CFO6], chap-

ter 9, pages 145-168. MR 2007f:14020. Cited on page 79. 

[Dül91] Stephan Düllmann. Ein Algorithmus zur .Bestimmung der Kiassen-

gruppe positiv definiter binärer quadratischer Formen. PhD thesis, Uni-

versität des Saarlandes, Saarbrücken, Germany, 1991. Cited on page 

119. 

[EGO2] Andreas Enge and Pierrick Gaudry. A general framework for subex-

ponential discrete logarithm algorithms. Acta Arithmetica, 102(1):83-

103, 2002. MR 2002k:11225. Previously released as research report 

LIX/RR/00/04, Laboratoire d'Informatique, l'Ecole Polytechnique, 

2000. Cited on pages 89, 90, 91, and 124. 

[EGG+06] Wayne Eberly, Mark W. Giesbrecht, Pascal Giorgi, Arne Storjohann, 

and Gilles Villard. Solving sparse rational linear systems. In Jean-

Guillaume Dumas, editor, Proceedings of the 2006 International Sym-



BIBLIOGRAPHY 187 

posium on Symbolic and Algebraic Computation—ISSAC 2006 (Genoa, 

Italy), pages 63-70. ACM Press, 2006. Previously available as 

arXiv:cs/0603082v1 in March 2006. Cited on page 151. 

[EGG07] Wayne Eberly, Mark W. Giesbrecht, Pascal Giorgi, Arne Storjohann, 

and Gilles Villard. Faster inversion and other black box matrix com-

putations using efficient block projections. In Christopher W. Brown, 

editor, Proceedings of the 2007 International Symposium on Symbolic 

and Algebraic Computation—ISSAC 2007 (Waterloo, ON), pages 143-

150. ACM Press, 2007. Previously available as arXiv:cs/0701188v1 in 

January 2007. Cited on page 151. 

[EJS*07] Stefan Erickson, Michael J. Jacobson, Jr., Ning Shang, Shu6Shen, and 

Andreas Stein. Explicit formulas for real hyperelliptic curves of genus 

2 in affine representation. In Claude Carlet and Berk Sunar, editors, 

Arithmetic of Finite Fields— WAIFI 2007 (Madrid, Spain), volume 4547 

of Lecture Notes in Computer Science, pages 202-218. Springer-Verlag, 

2007. Cited on page 76. 

[E1G85] Taher ElGamal. A public-key cryptosystem and a signature scheme 

based on discrete logarithms. In George Robert Blakley and David 

Chaum, editors, Advances in Cryptology, Proceedings of CRYPTO '84 

(Santa Barbara, CA), volume 196 of Lecture Notes in Computer Science, 

pages 10-18. Springer-Verlag, 1985. Cited on page 3. 

[E1170] James H. Ellis. The possibility of Non-Secret digital encryption. Re-

search report, Communications-Electronics Security Group (CESG), 



BIBLIOGRAPHY 188 

Great Britain, January 1970. Existence classified until 1997. Cited 

on page 2. 

[E1187] James H. Ellis. The story of non-secret encryption. Historical arti-

cle commissioned by the Communications-Electronics Security Group 

(CESG), Great Britain, 1987. Classified until 1997. Cited on page 2. 

[Eng00] Andreas Enge. Hyperelliptic Cryptosystems: Efficiency and Subexponen-

tial Attack.. PhD thesis, Universität Augsburg, Germany, 2000. Cited 

on page 6. 

[EngOl] Andreas Enge. How to distinguish hyperelliptic curves in even charac-

teristic. In Kazimierz Aister, Jerzy lJrbanowicz, and Hugh C. Williams, 

editors, Public-Key Cryptography and Computational Number Theory 

(Warsaw, Poland), pages 49-58. Walter de Gruyter, Berlin, 2001. 

MR 2002k:11095. Cited on page 30. 

[Eng02] Andreas Enge. Computing discrete logarithms in high-genus hyperel-

liptic Jacobians in provably subexponential time. Mathematics of Com-

putation, 71(238):729-742, April .2002. MR 2003b:68083. Previously 

released as research report CORR 99-04, Department of Combinatorics 

& Optimization, University of Waterloo, 1999. Cited on pages 6, 7, 99, 

100, 111, 113, and 127. 

[ESO2] Andreas Enge and Andreas Stein. Smooth ideals in hyperelliptic func-

tion fields. Mathematics of Computation, 71(239):1219-1230, 2002. 

MR 2003d:11170. Previously released as-research report CORR 2000-08, 



BIBLIOGRAPHY 189 

Department of Combinatorics & Optithization, University of Waterloo, 

2000. Cited on page 109. 

[FL06] Gerhard Frey and Tanja Lange. Background on curves and Jacobians. 

In Cohen and Frey [CFO6], chapter 4, pages 45-85. MR 2007f:14020. 

Cited on pages 14 and 24. 

[FP99J Ralf Flassenberg and Sachar Paulus. Sieving in function fields. Exper-

imental Mathematics, 8(4):339-349, 1999, MR 2000j:11179. Previously 

released as technical report TI-13/97, Cryptography and Computeral-

gebra group, Department of Computer Science, Technische Universität 

Darmstadt, 1997. Cited on pages 6, 130, 132, and 133. 

[Ful89] William Fulton. Algebraic Curves: An introduction to Algebraic Ge-

ometry. Addison-Wesley, 1989. MR 47:1807. Reprint of the original 

published by W.A. Benjamin, 1969. Cited on pages 12, 13, 14, 15, 16, 

18, 19, 20, 21, and 24. 

[FW89] Eduardo Friedman and Lawrence C. Washington. On the distribution of 

divisor class groups of curves over a finite field. In Jean-Marie de ICon-

inck and Claude Levesque, editors, Théorie des Nombres (Quebec, PQ): 

Comptei rendus de la Conference internationale de théorie des nombres 

tenue a l'Université Laval, 5-18 juillet 1987, pages 227-239. Walter de 

Gruyter, Berlin, 1989. MR 91e:11138. Cited on page 56. 

[Gau86] Carl Friedrich Gauss. Disquisitiones arithmeticae. Springer-Verlag, 

1986. (trans.) Arthur A. Clarke. First edition published by Gerh. Fleis-

cher, Lipsiae in 1801. Second edition published in Latin by Konigliche 



BIBLIOGRAPHY 190 

Gesellschaft der Wissenschaften in 1870. Reprint of the English transla-

tion of the second edition originally published by Yale University Press 

in 1966. Cited on pages 3 and 4. 

[Gau00a] Pierrick Gaudry. An algorithm for solving the discrete log problem on 

hyperelliptic curves. In Preneel [Pre00], pages 19-34. Cited on page 6. 

[Gau00b] Pierrick Gaudry. An algorithm for solving the discrete log problem on 

hyperelliptic curves. In Preneel [PreoO], pages 19-34. Cited on page 

177. 

[Gau07] Pierrick Gaudry. Index calculus for abelian varieties and the elliptic 

curve discrete logarithm problem. Preprint available from http: //www. 

loria. fr/gaudry/, 2007. To be published in the Journal of Symbolic 

Computation. An earlier preprint first appeared in 2004. Cited on page 

3. 

[GHOO] Pierrick Gaudry and Robert Harley. Counting points on hyperelliptic 

curves over finite fields. In Stevenhagen and Bosma [SBOO], pages 313-

332. MR 2002f:11072. Cited on page 5. 

[GHMMO8] Steven D. Galbraith, Michael Harrison, and David J. Mireles Morales. 

Efficient hyperelliptic arithmetic using balanced representation for divi-

sors. In van der Poorten and Stein [vdPS08], pages 342-356. Extended 

and corrected version available as Cryptology ePrint Archive Report 

2008/265, June 2008. Cited on pages 47 and 48. 



BIBLIOGRAPHY 191 

[Gie01] Mark W. Giesbrecht. Fast computation of the Smith form of a 

sparse integer matrix. Computational Complexity, 10(1):41-69, 2001. 

MR 2003d:15014. Cited on page 121. 

[Gol85] Dorian Goldfeld. Gauss' class number problem for imaginary quadratic 

fields. Bulletin (New Series) of the American Mathematical Society, 

13(1):23-37, 1985. Cited on page 4. 

[Gra07] Torbjörn Granlund. GNU multiple precision arithmetic library (GMP). 

C/C++ library, version 4.2.2, available from http: //www . gmplib . org, 

September 2007. Open source software contributed to by many authors 

and released under the GNU Lesser General Public License (LGPL). 

First version released in 1991. Cited on pages 152, 185, 191, 197, 

and 204. 

[GRVO8] Thierry Gautier, Jean-Louis Roch, and Gilles Villard. Givaro: C++ 

library for arithmetic and algebraic computations. C++ library, version 

3.2.10, available from http://www-lmc.imag .fr/CASYS/LOGICIELS/ 

givaro/, April 2008. Open source software contributed to by many au-

thors and released under the GNU Public Licence (GPL). Uses [Gra07] 

for long integer arithmetic. First version released in 1994. Cited on page 

197. 

[GTTDO7] Pierrick Gaudry, Emmanuel Thomé, Nicolas Thériault, and Claus 

Diem. A double large prime variation for small genus hyperelliptic 

index calculus. Mathematics of Computation, 76(257):475-492, 2007. 

MR 2007j:11174. Previously released as INRIA research report 5764, 



BIBLIOGRAPHY 192 

Institut National de Recherche en Informatique et en Automatique, 

Lorraine, 2005, and as research report CORR 2004-29, Department of 

Combinatorics & Optimization, University of Waterloo, 2004. Cited on 

pages 6, 149, 176, and 177. 

[Har77] Robin Hartshorne. Algebraic Geometry. Number 52 in Graduate Texts 

in Mathematics. Springer-Verlag, 1977. MR 57:3116. Cited on pages 12, 

14, 16, 17, 18, 21, 22, and 45. 

[Har07] David Harvey. Kedlaya's algorithm in larger characteristic. Inter-

national Mathematics Research Notices, 2007(22), Article ID rnm095, 

2007. Also released as arXiv:math/0610973v2 in August 2007. First 

version appeared in October 2006. Cited on page 6. 

[Has36] Helmut Hasse. Zur Theorie der abstrakten elliptischen Funktio-

nenkorper I, II, III. Journal fur die reine und angewandte Mathematik 

(Crelle 's Journal), 175:55-62, 69-88, 193-208, 1936. Earlier version ap-

peared in Nachrichten der Gesellschaft der Wissenschaften zu Göttingen 

1:119-129, 1935. Cited on page 95. 

[HDO3] Andrew J. Holt and James H. Davenport. Resolving large prime(s) 

variants for discrete logarithm computation. In Kenneth G. Paterson, 

editor, Cryptography and Coding 2003 (Cirencester, UK), volume 2898 

of Lecture Notes in Computer Science, pages 207-222. Springer-Verlag, 

2003. Cited on pages 148 and 176. 



BIBLIOGRAPHY 193 

[H198] Ming-Deh Huang and Doug lerardi. Counting points on curves over fi-

nite fields. Journal of Symbolic Computation, 25(1):1-21, January 1998. 

MR 98i:11040. Cited on page 5. 

[HM89] James L. Hafner and Kevin S. McCurley. A rigorous subexponential 

algorithm for computation of class groups. Journal of the American 

Mathematical Society, 2(4):837-850, October 1989. MR 91f:11090. Cited 

on pages 4, 105, and 122. 

[HM91] James L. Hafner and Kevin S. McCurley. Asymptotically fast triangular-

ization of matrices over rings. SIAM Journal of Computing, 20(6):1068-

1083, December 1991. Cited on page 114. 

[Hol03] Andrew J. Holt. On Computing Discrete Logarithms: Large Prime(s) 

Variants. PhD thesis, University of Bath, UK, 2003. Cited on page 176. 

[HW79] G. H. Hardy and Edward M. Wright. An Introduction to the Theory 

of Numbers. Oxford University Press, 5th edition, 1979. First edition 

published 1938. Cited on pages 44 and 59. 

[Jac99] Michael J. Jacobson, Jr. Subexponential Class Group Computation in 

Quadratic Orders. PhD thesis, Technischen Universität Darmstadt, Ger-

many, 1999. Cited on pages 130, 134, 137, 142, and 152. 

[JMS01] Michael J. Jacobson, Jr., Alfred J. Menezes, and Andreas Stein. Solv-

ing elliptic curve discrete logarithm problems using Weil descent. 

Journal of the Ramanujan Mathematical Society, 16(3):231-260, 2001. 

MR 2002h:14039. Previously released as research report CORR 2001-31, 



BIBLIOGRAPHY 194 

Department of Combinatorics & Optimization, University of Waterloo, 

2001. Cited on pages 6 and 156. 

[JSS07a] Michael J. Jacobson, Jr., Renate Scheidler, and Andreas Stein. Crypto-

graphic protocols on real hyperelliptic curves. Advances in Mathematics 

of Computation, 1(2):197-221, 2007. Extends work from "Faster Crypto-

graphic Key Exchange on Hyperelliptic Curves," Yellow Series preprint 

847, University of Calgary, 2005. Cited on pages 7, 27, 80, 81, and 83. 

[JSS07b] Michael J. Jacobson, Jr., Renate Scheidler, and Andreas Stein. Fast 

arithmetic on hyperelliptic curves via continued fraction expansions. In 

Tony Shaska, William C. Huffman, David Joyner, and Vasyl Ustimenko, 

editors, Advances in Coding Theory and Cryptology, number 2 in Series 

on Coding Theory and Cryptology, pages 201-244. World Scientific Pub-

lishing, Hackensack, NJ, 2007. Cited on pages 27, 50, 62, 75, and 76. 

[JSWO6] Michael J. Jacobson, Jr., Renate Scheidler, and Hugh C. Williams. An 

improved real-quadratic-field-based key exchange procedure. Journal 

of Cryptology, 19(2):211-239, April 2006. MR 2006k:94089. Previously 

released as Yellow Series preprint 845, University of Calgary, 2005. Cited 

on page 5. 

[JvdP02] Michael J. Jacobson, Jr. and Alfred J. van der Poorten. Computa-

tional aspects of NUCOMP. In John Cannon, Claus Fieker, and David 

Kohel, editors, Algorithmic Number Theory—ANTS V (Sydney, Aus-

tralia), volume 2369 of Lecture Notes in Computer Science, pages 120-

133. Springer-Verlag, 2002. MR 2004m:11208. Cited on page 75. 



BIBLIOGRAPHY 195 

[Kal93] Erich Kaltofen. Analysis of Coppersmith's block Wiedemann algorithm 

for the parallel solution of sparse linear systems. In Applied Algebra, Al-

gebraic Algorithms and Error-correcting Codes (San Juan, PR, .1993), 

number 673 in Lecture Notes in Computer Science, pages 195-212. 

Springer-Verlag, 1993. MR 94k:11134. Extended in [Kal95]. Cited on 

page 195. 

[Ka195] Erich Kaltofen. Analysis of Coppersmith's block Wiedemann algorithm 

for the parallel solution of sparse linear systems. Mathematics of Com-

putation, 64(210):777-806, April 1995. MR 95f:65094. Extension of 

[Kal93]. Cited on page 195. 

[KedOl] Kiran S. Kedlaya. Counting points on hyperelliptic curves using 

Monsky-Washnitzer cohomology. Journal of the Ramanujan Mathemat-

ical Society, 16(4):323-338, 2001. MR 2002m:14019. Previously released 

as arXiv:math/0105031. Errata published in Journal of the Ramanujan 

Mathematical Society, 18(4):417-418, 2003. MR 2005c:14027. Cited on 

page 6. 

[Ked04] Kiran S. Kedlaya. Computing zeta functions via p-adic cohomology. In 

Duncan Buell, Jonathan W. Sands, and David S. Dummit, editors, Al-

gorithmic Number Theory—ANTS VI (Burlington, VT), volume 3076 of 

Lecture Notes in Computer Science, pages 1-17. Springer-Verlag, 2004. 

MR 2006a:14033. Cited on page 6. 

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 

2: Seminumerical Algorithms. Addison-Wesley, 3rd edition, 1997. 



BIBLIOGRAPHY 196 

8i:68003 (2nd ed.). First edition published 1969. 44:3531. Cited on 

page 98. 

[Kob89] Neal Koblitz. Hyperelliptic cryptosystems. Journal of Cryptology, 

1(3):139-150, 1989. MR 90k:11165. Cited on pages 6 and 51. 

[Kra22] Maurice B. Kraitchik. Théorie des nombres, volume 1. Gauthier-Villars, 

1922. Cited on page 88. 

[Kra24] Maurice B. Kraitchik. Recherches sur la theories des nombres. Gauthier-

Villars, 1924. Cited on page 88. 

[KS91] Erich Kaltofen and B. David Saunders. On Wiedemann's method of 

solving sparse linear systems. In Applied Algebra, Algebraic Algorithms 

and Error- Correcting Codes (AAECC-9) (New Orleans, LA), number 

539 in Lecture Notes in Computer Science, pages 29-38. Springer-Verlag, 

1991. Cited on page 125. 

[Küc97] Wolfgang W. Küchlin, editor. Proceedings of the .1997 International 

Symposium on Symbolic and Algebraic Computation—ISSAC '97 (Ki-

hei, Maui, HI). ACM Press, 1997. Cited on page 207. 

[Len87] Hendrik W. Lenstra, Jr. Factoring integers with elliptic curves. Annals 

of Mathematics, 2nd series, 126(2):649-673, 1987. MR 89g:11125. Cited 

on page 153. 

[LenOO] Arjen Lenstra. Long integer package (LIP). C library, version 1.1, avail-

able from http://www.win.tue.n1/'k1enstra, 2000. Source freely 

available. First version released in 1989. Cited on page 204. 



BIBLIOGRAPHY 197 

[Lin08] LinBox Team. Project LinBox: Exact computational linear algebra. 

C++ library, version 1.1.5, available from http://www.linaig.org/, 

April 2008. Open source software contributed to by many authors and 

released under the GNU Lesser General Public License (LGPL). Uses 

[Gra07], [Sho08],. [WPO8], and [GRVO8]. First version released in 2002. 

Cited on pages 153 and 175. 

[LL93] Arjen K. Lenstra and Hendrik W. Lenstra, Jr., editors. The development 

of the Number Field Sieve. Number 1554 in Lecture Notes in Mathe-

matics. Springer-Verlag, 1993. MR 96m:11116. Cited on pages 176, 182, 

and 197. 

[LLMP9O] Arjen K. Lenstra, Hendrik W. Lenstra, Jr., Mark S. Manasse, and 

John M. Pollard. The number field sieve. In Proceedings of the 22nd 

Annual ACM Symposium on Theory of Computing—STOC '90 (Balti-

more, MD), pages 564-572. ACM Press, 1990. Also available in [LL93, 

pp. 11-42]. Cited on page 116. 

[MB75] Michael A. Morrison and John Brilihart. A method of factoring and 

the factorization of F7. Mathematics of Computation, special issue ded-

icated to Derrick Henry Lehmer on the occasion of his 70th birthday, 

29(129):183-205, 1975. MR 51:8017. Cited on page 142. 

[McC89] Kevin S. McCurley. Cryptographic key distribution and computation 

in class groups. In Mollin [Mol89], pages 459-479. MR 92e:11149. Pre-

viously released as IBM Research Report RJ 6433 (62551), Almaden 

Research Center, 1988. Cited on page 4. 



BIBLIOGRAPHY 198 

[McC90] Kevin S. McCurley. The discrete logarithm problem. In Carl Pomerance, 

editor, Cryptology and Computational Number Theory (Boulder, CO), 

number 42 in Proceedings of Symposia in Applied Mathematics, pages 

49-74. American Mathematical Society, 1990. MR 92d:11133. Cited on 

page 88. 

[McE69] Robert J. McEliece. Factorization of polynomials over finite fields. Math-

ematics of Computation, 23(108):861-867, October 1969. 41:1694a,. 

Cited on page 97. 

[Mer78] Ralph C. Merkle. Secure communications over insecure channels. Com-

munications of the ACM, 21(4):294-299, April 1978. Cited on page 1. 

[Mes00] Jean-Fancois Mestre. Utilisation de l'AGM pour le calcul de E(1F2 ) 

et courbes de genre 2. Lettre adrssée Gaudry et Harley, December 

2000. Available from http: //www. math. jussieu . fr/'-'mestre/. Cited 

on page 5. 

[Mes02] Jean-François Mestre. Algorithmes pour compter des points de courbes 

en petite caractéristique et un petit genre. Notes of David Lubicz from 

a lecture given in the Séminair. de Cryptographie de l'Université de 

Rennes, March 2002. Available from http://www.math.jussieu.fr/ 

mestre/. Cited on page 5. 

[MMO8] David J. Mireles Morales. An analysis of the infrastructure in real 

function fields. Preprint available as Cryptology ePrint Archive Report 

2008/299, July 2008. Cited on page 56. 



BIBLIOGRAPHY 199 

[MMTO2] Markus Maurer, Alfred J. Menezes, and Edlyn Teske. Analysis of the 

OHS Weil descent attack on the ECDLP over characteristic two finite 

fields of composite degree. LMS Journal of Computation and Mathe-

matics, 5:127-174, 2002. Cited on page 156. 

[Mol89] Richard A. Mollin, editor. Number Theory and Applications (Banff, 

AB), number 265 in NATO Advanced Science Institute Series C: Mathe-

matical and Physical Sciences. Kluwer Academic Press, Dordrecht, 1989. 

Cited on pages 197 and 204. 

[MST99] Volker Muller, Andreas Stein, and Christoph Thiel. Computing dis-

crete logarithms in real quadratic congruence function fields of large 

genus. Mathematics of Computation, 68(226):807-822, April 1999. 

MR 99i:11119. Previously released on Citeseer at http: //citeseer. 

ist . psu. edu/mullerWcomputing . html in 1997. Cited on pages 7, 92, 

95, 97, 99, 105, 111, 112, 115, 120, 122, 127, and 177. 

[Neu99] Jürgen Neukirch. Algebraic Number Theory. Number 322 in 

Orundlehren der mathematischen Wissenschaften. Springer-Verlag, 

1999. (trans.) Norbert Schappacher. MR 2000m:11104. Original pub-

lished as Algebraische Zahientheorie in 1992. Cited on pages 36, 53, 

and 54. 

[0d185] Andrew M. Odlyzko. Discrete logarithms in finite fields and their 

cryptographic significance. In Beth et al. [BC185], pages 224-314. 

MR 87g:11022. Cited on pages 88 and 142. 



BIBLIOGRAPHY 200 

[Pau96] Sachar Paulus. An algorithm of subexponential type computing the 

class group of quadratic orders over pricipal ideal domains. In Cohen 

[Coh96], pages 247-262. MR 98c:11143. Cited on page 6. 

[Pil90] Jonathan Pila. Frobenius maps of abelian varieties and finding roots 

of unity in finite fields. Mathematics of Computation, 55(192):745-763, 

October 1990. MR 91a:11071. Cited on page 5. 

[Pol78] John M. Pollard. Monte Carlo methods for index computation 

mod p. Mathematics of Computation, 32(143):918-924, July 1978. 

MR 58:10684. Cited on pages 3 and 74. 

[Pom85] Carl Pomerance. The quadratic sieve factoring algorithm. In Beth et al. 

[BC185], pages 169-182. MR 87d:11098. Cited on page 137. 

[Pom96] Carl Pomerance. A tale of two sieves. Notices of the American Mathe-

matical Society, 43(12):1473-1485, December 1996. Cited on page 130. 

[PR99] Sachar Paulus and Hans-Georg Rück. Real and imaginary quadratic 

representations of hyperelliptic function fields. Mathematics of Compu-

tation, 68(227):1233-1241, 1999. MR 99i:11107. Previously released as 

technical report TI-14/97, Cryptography and Computeralgebra group, 

Department of Computer Science, Technische Universität Darmstadt, 

1997. Cited on pages 30, 40, and 41. 

[PreOo] Bart Preneel, editor. Advances in Cryptology—E URO CRYPT 2000 

(Bruges, Belgium), volume 1807 of Lecture Notes in Computer Science. 

Springer-Verlag, 2000. Cited on page 190. 



BIBLIOGRAPHY 201 

[PS98] Sachar Paulus and Andreas Stein. Comparing real and imaginary arith-

meticsfor divisor class groups of hyperelliptic curves. In Buhler [Buh98], 

pages 576-591. MR 2000i:11098. Cited on page 62. 

[Rei60] George W. Reitwiesner. Binary arithmetic. In Franz L. Alt, editor, 

Advances in Computers, volume 1, pages 231-308. Academic Press, New 

York, 1960. Cited on page 78. 

[Ros02] Michael Rosen. Number Theory in Function Fields. Num-

ber 210 in Graduate Texts in Mathematics. Springer-Verlag, 2002. 

MR 2003d:11171. Cited on page 46. 

[R5A78] Ronald L. Rivest, Adi Shamir, and Leonard A. Adleman. A method for 

obtaining digital signatures and public-key cryptosystems. Communi-

cations of the ACM, 21(2):120-126, 1978. Cited on page 2. 

[SatOo] Takakazu Satoh. The canonical lift of an ordinary elliptic curve over a 

finite field and its point counting. Journal of the Ramanujan Mathe-

matical Society, 15(4):247-270, 2000. MR 2001j:11049. Cited on page 

5. 

[SBOO] Peter Stevenhagen and Wieb Bosma, editors. Algorithmic Number 

Theory—ANTS IV (Leiden, Netherlands), volume 1838 of Lecture Notes 

in Computer Science. Springer-Verlag, 2000. Cited on pages 190 

and 207. 

[SBW91] Renate Scheidler, Johannes A. Buchmann, and Hugh C. Williams. Im-

plementation of a key exchange protocol using real quadratic fields. In 



BIBLIOGRAPHY 202 

Ivan B. Damgârd, editor, Advances in Cryptology—E URO CRYPT '90 

(Aarhus, Denmark), volume 473 of Lecture Notes in Computer Science, 

pages 98-109. Springer-Verlag, 1991. Shorter version of [SBW94]. Cited 

on page 5. 

[SBW94] Renate Scheidler, Johannes A. Buchmann, and Hugh C. Williams. A 

key-exchange protocol using real quadratic fields. Journal of Cryptology, 

7(3):171-199, September 1994. MR 96e:94015. Results are from [Sch93, 

Part II]. Cited on page 202. 

[Sch31] Friedrich Karl Schmidt. Analytische Zahientheorie in Körpern der 

Charakteristik p. Mathematische Zeitschrift, 33:1-32, 1931. Cited on 

page 55. 

[Sch85] René Schoof. Elliptic curves over finite fields and the computation of 

square roots mod p. Mathematics of Computation, 44(170):483-494, 

April 1985. MR 86e:11122. Cited on page 5. 

[Sch93] Renate Scheidler. Applications of Algebraic Number Theory to Cryptog-

raphy. PhD thesis, University of Manitoba, Winnipeg, Canada, 1993. 

Cited on pages 5 and 202. 

[Sch95] René Schoof. Counting points on elliptic curves over finite fields. Jour-

nal de Théorie des Nombres de Bordeaux, 7(1):219-254, 1995. Les 

Dix-huitièmes Journées Arithmétiques (Bordeaux, 1993). MR 97i:11070. 

Cited on page 5. 



BIBLIOGRAPHY 203 

[Sch96] Renate Scheidler. Compact representation in real quadratic congruence 

function fields. In Cohen [Coh96], pages 323-336. MR 98c:11126. Cited 

on pages 50, 55, and 57. 

[Sem04] Igor Semaev. Summation polynomials and the discrete logarithm prob-

lem on elliptic curves. Preprint available from http: //eprint. iacr. 

org/2004/031, 2004. Cited on page 3. 

[Sey87] Martin Seysen. A probabilistic factorization algorithm with quadratic 

forms of negative discriminant. Mathematics of Computation, 

48(178):757-780, April 1987. MR 88d:11129. Cited on pages 106 

and 112. 

[Sha7l] Daniel Shanks. Class number, a theory of factorization and genera. In 

Donald J. Lewis, editor, 1969 Number Theory Institute (Stony Brook, 

NY), volume 20 of Proceedings of Symposia in Pure Mathematics, pages 

415-440. American Mathematical Society, 1971. MR 47:4932. Cited on 

pages 4 and 72. 

[Sha72a] Daniel Shanks. Five number-theoretic algorithms. In R.S.D. Thomas 

and Hugh C. Williams, editors, Proceedings of the Second Manitoba 

Conference on Numerical Mathematics (Winnipeg, MB), number VII 

in Congressus Numerantium, pages 51-70. Utilitas Mathematica, Win-

nipeg, MB, 1972. MR 51:8072. Cited on page 96. 

[Sha72b] Daniel Shanks. The infrastructure of a real quadratic field and its appli-

cations. In Proceedings of the 1972 Number Theory Conference (Boulder, 

CO), pages 217-224, 1972. MR 52:10672. Cited on pages 4, 57, and 64. 



BIBLIOGRAPHY 204 

[Sha89] Daniel Shanks. On Gauss and composition I, II. In Mollin [Mo189], 

pages 163-204. MR 92e:11150. Cited on page 75. 

[5h008] Victor Shoup. A library for doing number theory (NTL). C++ li-

brary, version 5.4.2, available from http : //www. shoup . net, March 

2008. Source freely available. Uses either [Len00] or [Gra07] for long 

integer arithmetic and includes parts of [Bri98] for floating-point arith-

metic. First version released in 1990. Cited on pages 152 and 197. 

[Si186] Joseph H. Silverman. The Arithmetic of Elliptic Curves. Number 106 in 

Graduate Texts in Mathematics. Springer-Verlag, 1986. MR 87g:11070. 

Cited on page 23. 

[Sil00] Joseph H. Silverman. The Xedni calculus and the elliptic curve discrete 

logarithm problem. Designs, Codes and Cryptography, 20:5-40, 2000. 

Cited on page 3. 

[SL96] Arne Storjohann and George Labahn. Asymptotically fast computation 

of Hermite normal forms of integer matrices. In Yagati N. Lakshman, 

editor, Proceedings of the .1996 International Symposium on Symbolic 

and Algebraic Computation—ISSA C '96 (Zurich, Switzerland), pages 

259-266. ACM Press, 1996. Cited on page 114. 

[Sma97] Nigel Smart. Experiments using an analogue of the number field sieve 

algorithm to solve the discrete logarithm problem in the Jacobians of 

hyperelliptic curves. Technical Report HPL-97- 130, HP Laboratories, 

Bristol, UK, 1997. Cited on page 6. 



BIBLIOGRAPHY 205 

[SSW96] Renate Scheidler, Andreas Stein, and Hugh C. Williams. Key-exchange 

in real quadratic congruence function fields. Designs, Codes and Cryp-

tography, special issue dedicated to Dr. Gustavus J. Simmons, 7:153-

174, 1996. MR 97d:94009. Cited on pages 7, 71, 83, and 86. 

[ST02a] Andreas Stein and Edlyn Teske. Explicit bounds and heuristics on class 

numbers in hyperelliptic function fields. Mathematics of Computation, 

71(238):837-861, April 2002. MR 2002k:,11210. Cited on pages 74, 118, 

119, and 120. 

[STO2b] Andreas Stein and Edlyn Teske. The parallelized Pollard kangaroo 

method in real quadratic function fields. Mathematics of Computation, 

71(238):793-814, April 2002. MR 2002k:11227. Previously released as 

research report CORR 2000-35, Department of Combinatorics & Opti-

mization, University of Waterloo, 2000. Cited on pages 74 and 160. 

[Ste99] Andreas Stein. Infrastructure in real quadratic function fields. Research 

Report CORR 99-17, Department of Combinatorics & Optimization, 

University of Waterloo, May 1999. Cited on page 53. 

[SteOl] Andreas Stein. Sharp upper bounds for arithmetics in hyperelliptic func-

tion fields. Journal of the Ramanujan Mathematical Society, 16(2):1-86, 

2001. MR 2002d:11134. Previously released as research report CORR 

99-23, Department of Combinatorics & Optimization, University of Wa-

terloo, 1999. Cited on pages 62 and 64. 



BIBLIOGRAPHY 206 

[Sti93] Henning Stichtenoth. Algebraic Function Fields and Codes. Universi-

text. Springer-Verlag, 1993. MR 94k:14016. Cited on pages 24, 30, 31, 

32, 33, 34, 35, 37, 38, 39, 40, 96, and 118. 

[SW98] Andreas Stein and Hugh C. Williams. An improved method of comput-

ing the regulator of a real quadratic function field. In Buhier [Buh98], 

pages 607-620. MR 2000j:11201. Cited on pages 74, 115, and 160. 

[5W99] Andreas Stein and Hugh C. Williams. Some methods for evaluating the 

regulator of a real quadratic function field. Experimental Mathematics, 

8(2):119—I33, 1999. MR 2000f:11152. Extends results of an unpublished 

manuscript entitled "Baby Step Giant Step in Real Quadratic Function 

Fields" that appeared in 1995. Cited on pages 49, 59, 64, 69, 72, and 74. 

[SWD96] Oliver Schirokauer, Damian Weber, and Thomas Denny. Discrete log-

arithms: The effectiveness of the index calculus method. In Cohen 

[Coh96], pages 337-361. MR 98i:11109. Cited on page 88. 

[Thé03] Nicolas Thériault. Index calculus attack for hyperelliptic curves of 

small genus. In Chi Sung Laih, editor, Advances in Cryptology— 

ASIA CRYPT 2003 (Taipei, Taiwan), volume 2894 of Lecture Notes in 

Computer Science, pages 75-92. Springer-Verlag, 2003. Cited on pages 

6, 157, and 177. 

[TSOS] Edlyn Teske and Andreas Stein. Optimized baby step-giant step meth-

ods. Journal of the Ramanujan Mathematical Society, 20:1-32, 2005. 

MR 2005m:11238. Previously released as technical report CACR 2005-



BIBLIOGRAPHY 207 

11, Centre for Applied Cryptographic Research, University of Waterloo, 

2005. Cited on pages 73 and 74. 

[vdP03] Alfred J. van der Poorten. A note on NUCOMP. Mathematics of Com-

putation, 72(244):1935-1946, October 2003. MR 2004b:11173. Cited on 

page 75. 

[vdPS08] Alfred J. van der Poorten and Andreas Stein, editors. Algorithmic Num-

ber Theory—ANTS VIII (Banff, AB), volume 5011 of Lecture Notes in 

Computer Science. SpringerVerlag, 2008. Cited on page 190. 

[Vel08] Mark D. Velichka. Improvements to index calculus algorithms for solving 

the hyperelliptic curve discrete logarithm problem over characteristic 

two finite fields. Master's thesis, University of Calgary, Canada, 2008. 

Cited on pages 6, 101, 131, 132, 137, 138, 141, 142, 146, 152, 154, 

and 175. 

[Vil97a] Gilles Villard. Further analysis of Coppersmith's block Wiedemann al-

gorithm for the solution of sparse linear systems. In Küchlin [Küc97], 

pages 32-39. Extended abstract of [Vil97b]. Cited on page 207. 

[Vil97b] Gilles Villard. A study of Coppersmith's block Wiedemann algorithm 

using matrix polynomials. Research Report 975-I-M, IMAG Grenoble 

Rance, 1997. Full version of [Vil97a]. Cited on page 207. 

[Vo100] Ulrich Vollmer. Asymptotically fast discrete logarithms in quadratic 

number fields. In Stevenhagen and Bosma [SBOO], pages 581-594. 

MR 2003b:11135. Cited on page 4. 



BIBLIOGRAPHY 208 

[vzGG03] Joachim von zur Gathen and Jurgen Gerhard. Modern Computer Alge-

bra. Cambridge University Press, 2nd edition, 2003. MR 2004g:68202. 

First edition published in 1999. MR 2000j:68205. Cited on page 102. 

[Wei48] André Weil. Sur les courbes algébriques et les variétès qui s 'en déduisent. 

Number 1041 in Actualités scientifiques et industrielles. Hermann, Paris, 

1948. MR 10:262c. Cited on page 95. 

[Wie86] Douglas H. Wiedemann. Solving sparse linear equations over finite 

fields. IEEE Transactions on Information Theory, IT-32(1):54-62, 1986. 

MR 87g:11166. Cited on pages 125 and 150. 

[Wil74] Malcolm J. Williamson. Non-secret encryption using a finite field. 

Research report, Communications-Electronics Security Group (CESG), 

Great Britain, January 1974. Classified until 1997. Cited on page 2. 

[WM68] Alfred E. Western and J. C. P. Miller. Indices and Primitive Roots. 

Number 9 in Royal Society Mathematical Tables. Cambridge University 

Press, 1968. MR 39:7792. Cited on page 88. 

[WPO8J R. Clint Whaley and Antoine Petitet. Automatically tuned linear 

algebra software (ATLAS). C library, version 3.8.1, available from 

http: //math-atlas. sourcef orge. net, February 2008. Open source 

software contributed to by many authors. First version released in 1997. 

Cited on pages 185 and 197. 

[WW87] Hugh C. Williams and Marvin C. Wunderlich. On the parallel gen-

eration of the residues for the continued fraction factoring algorithm. 



BIBLIOGRAPHY 209 

Mathematics of Computation, special issue dedicated to Daniel Shanks 

on the occasion of his 70th birthday, 48(177):405-442, January 1987. 

MR 881:11099. Cited on pages 49, 59, and 60. 

[Yun77] David Y. Y. Yun. Fast algorithm for rational function integration. In 

Bruce Gilchrist, editor, Information Processing 77 (Toronto, ON), num-

ber 7 in IFIP Congress Series, pages 493-498. North-Holland, Amster-

dam, 1977. Cited on page 104. 

[Z575] Oscar Zariski and Pierre Samuel. Commutative Algebra, volumes I & 

II. Number 28 & 29 in Graduate Texts in Mathematics. Springer-

'Terlag, 1975. Reprint of the originals published in the University Series 

in Higher Mathematics by D. Van Nostrand, Princeton in 1958-1960. 

MR 19:833e, MR 22:11006. Cited on pages 12, 15, 30, 31, 32, 33, 48, 

49, 50, and 52. 

[Zuc97a] Robert J. Zuccherato. The continued fraction algorithm and regula-

tor for quadratic function fields of characteristic 2. Journal of algebra, 

190(2):563-587, 1997. MR 98a:11156. Results also printed in [Zuc97b, 

Ch. 4-5]. Cited on pages 49, 59, 62, 64, 69, 72, and 73. 

[Zuc97b] Robert J. Zuccherato. New Applications of Elliptic Curves and Function 

Fields in Cryptography. PhD thesis, University of Waterloo, Canada, 

1997. Cited on page 209. 


