THE UNIVERSITY OF CALGARY

A NOVEL TEST GENERATION SYSTEM FOR
SEQUENTIAL CIRCUITS

by

Bin Du

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE
DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA
JUNE, 1994

© Bin Du 1994

National Library Bibliotheque nationale
of Canada du Canada

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa, Ontario Ottawa (Ontario)

K1A ON4 K1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER

- THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

Your file Voire rélérence

Qur file Notre référence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CINE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-315-99344-8

Canadi

.

* Name B in (DV\

Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

Cleckranics amd Eleckvical Engingoring oS4y UMI

SUBJECT TERM SUBJECT CODE

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES
COMMUNICATIONS AND THEARTS ' Peychology 0525 PHILOSOPHY, RELIGION AND

Architecture . .- Reading .. 0535
Art History ... Re!igiogs 0527 ;ﬂfg)ﬁof Y
Cinema Sciences 0714 phil iore Y cernreisesssesssssessisseonss
nce : Secondary 0533 %eneral

Fine ArlS ..oocoorscscrnmnssssnnsosersecnes Social Sciences 0534 Biblical Studias oo
Information Science. Sociology of ...euevrreeecnsencernrnrens 0340 Cler . 3
Journalism.......... Special 0529 Histc?y o European...... ..0335
Library Science Teacher Training ..c.eessesssesesns 0530 Philoz by o Latin American ..0336
Mass Communications Technology0710 eol phy oF .. Middle Eastern ..0333
gdusich & o3 Lesrs and | easurements . 8;39 OGY rerereresmmmrssss s W Unitefi SS::tates gggg

’ ommunication 0cational....ccveeerisevnerinrenninaenn SOCIAL SCIENCES istory of Sciencecovcncnee.
lﬁeater 0465 : : N Law 0398

LANGUAGE, LITERATURE AND Americai SHudies v 0323 polificel Scignce

EDUCATION LINGUISTICS A,gz;;ggogy L I 0615
L 0515 Lanauage Culture! International Law and
Administration0514 %engercll 0679 Physica RelGtONS ..vcvveresseserenesersnnes 0616
Adult and Confinuing0516 Ancient 0289 Busine)sls Ad Public Administration0617
Agricultural ..cvecsverrecnenseneenneanes 0517 Linguist 0290 General .. 0310 Recreafioneeeeueess ..0814
Ar‘l . ’ 0273 Modern .. 0291 Accountin 0272 SOC!G' WOrk .vcvircreerereveneereenens 0452
Bilingual and Multicultural 0282 Literature Banking .. 0770 Sociology
BUSINESS .uovevvvrivresersssrens0688 Genera0401 Management . 0454 Generaloverievrvenisceenrnnns 0626
Community College0275 Classical 0294 Markefin 0338 Criminology and Penology ...0627
Curriculum and Instruction0727 Comparaiive 70295 Canadian Slgdles 0385 Demograp '{ S— S 0938
Early Childhood ...0518 Med:%val " 0297 Economics Ethnic and Raciol Studies0631
E!emenfary Modern 0298 Generalcuvcrneeneenerariernns 0501 lngl’wgyal and Fomily 0628

inance ; ; i udies: freeenesssianes
Guidance and Counseling 0519 ﬁfrlr.\l:ﬁ::‘on 823?? : ég;fxg:’g: IBusmess 8282 Industrial and Labo
Hedl 0680 Asian o 0305 Finance 0508 Re]uhons sonthessenssesnanes 0629
HIGEr vcereecsrrssessseresmssrsesens 0745 Canadian (ERGHSR -, 0352 HISHOTY oo 0509 Public and Social Welfare 0630
History of - 0520 Canadian (French}0355 Labor0510 Social Structure and
Home Economics0278 Englis 0593 Theo 0511 Developmentcoceeuenee 0700
Industrial ...cvieeecnieenn ...052] G e U031 Folklore O vt 0358 Theory and Methods ..0344
I.un%uuge and Literature0279 Latin American 0312 Geography 0346 Transportation0709
Mathematics .iveieimamseesennes 0280 Middle Eastern .. 0315 GerOMOIOGY mooerreseersssere 0351 Urban and Regional P ..0999

usic 0522 ROMANGCE. oo osiser e 0313 History Women's Sudiesourcmsrsrireenes 0453
(DA R——— 0998 Slavic and East European.....0314 Generdlccverenererioreeresnenes 0578
Physical 0523)

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES GeOdESsy orevrerrairererrcrerneersens 0370 Speech Pathologyc.cccun... 0460 Engineerin
Agriculture Geology0372 Toxicology «........ ...0383 Generalcocecepeeeeremrennene 0537
General ..cvcveeerereeescrernenies 0473 Geophysics0373 Home Economics Aerospace0538
AGronomy uueieseseressssersenee 0285 Hydrology0388 .Agricultural0539
Animal Culture and IV(neralogy 0411 PHYSICAL SCIENCES Automotive0540
NUIHON cvecvvvrerassesescrnienss 0475 Paleobotany0345 Pure Sciences ' Biomedical... ..0541
?‘:;'E%l [’athologzi' 0476 ga eoefo||ogy 8:11%3 © Chemistry Ehglmical . ggﬁ
cience an aleontology ... IVl ceoevereneenngensianes -
Technologyec..cverereneens 0359 Pa eozoologgyy... ...0985 Ee".e“i"' S 8;%3 Electronics and Electrical0544
Foresiry and Wildlife .0478 Palynologyc..un0427" gricultural . Heat and Thermodynamics ... 0348
Plant Culture0479 Physico?geogrcphy 0368 ¢ g«_naLyhcglf """ 8389 Hydraulicovuveereereenerirennns 0545
II;}cnr Fﬁthol?gy gg?g Physical Oceanography 0415 . Ir:g;: gmg‘ Y 0488 lhr;\dusiriol . 822?
ant Physiol [T arine
 Rangs Managament .- 0777 HEALTH AND ENVIRONMENTAL Rucloa - 0738 Materials § 0794
Bit-’IWood Technologyccecene.. 0746 S(|FN(ES ' Phomaeonieai™ 0491 m::c“ﬁjr;lccl 8;2%
Y | 0306 Environmental Sciences 0768 Physical0494 Mint g 0551
nera’ - : Health Sciences Polymer0495 'nng
Anctomy .. .0287 General 0566 Redial 0754 Nuclear ... 0552
Biostatistics - 0308 iology oo ! aciarion Packaging 0549
Botany 0309 Aﬁ Iology vaee 8ggg Mgﬂ']emohcs esrivarasaranesseranereenene 0405 Petroleum 0765
Cell 0379 Saoneropy . A 0605 Sanitary and 0554
ECOIOgY i 0329 Educqi:.(y)n. ------ 0350 Aener;; 0982 sys,em Science 0790
Entomolog 0353 A i | Manaaement ' 0769 COUSHCS .ivvenriiiccininninniai Geotechnology0428
Genetics* 0369 Osplial Vianagement.......... Astronomy and Operations Research 0796
il 0793 :—iumcn Development. 0758 AAstro hysncg 828485 Plistics Technology ~07%¢
¥ IGY crervrennneicciiniinienn. mmunol tm i i .. e . e e
MICIFO i — 831(1)9 Medicoe Surgery Alomie erte SCIENC e orers g Textile Technologyerereserenn 0994
Ngu?g;g; o 0317 Mental Health Electronics and Electricity 0607 PSYCHOLOGY
Oceanography .ooeveeeererereorr 0416 Nursing - Elementary Particles an neral 0621
Physilogy . "0433 Nutrition 0. H|dgh ENErgy eemceresenersenns 0798 Behavioral " 0384
Radiation 0821 Gbstetrcs and Gynecolagy .. 0380 Fluic and Plasma 0759 Clinical 0622
Velerinary Scionce a778 Ogeupatioril Health and” 1354 Moleatlar v 08 Developmenii 0620
(o161 (o e 2) rotali rimental . .
Biophysiggy 9‘?}}:“}'0 mol OPJ'.CS."" 0752 Industrial0624
General ..cvueeserersenseescrecanes 0786 Phorndyes ggl'cliqgto? 82?16 Personglity0625
Medicalcorinenrirnnarirnianes 0760 Pmrmu? o9 Stalisﬁc!s a 0463 l;hys:olggliccl . 8383
; T gy ST RS e sychobiology034
EARTH SCIENCES . Physical Ther g Applied Sciences Poychomelrics .. 0632
Blogeﬁchgmlstry 0425 : Applied Mechanicseivne.. 0346 S0GIal vt 0451

Geochemistryocovererercscnvanane 0996 ﬁgc;gc?i%);l _________________________ 0575 Computer SCieNcecccueeseeens 0984 . @

Nom

Dissertation Abstracts Infernational est organisé en catégories de sujets. Veuillez s.v.p. choisir le sujet qui décrit le mieux votre

thése et inscrivez le code numérique approprié dans I'espace réservé ci-dessous.

[ILI1]UMI

Catégories par sujets

SUJET

HUMANITES ET SCIENCES SOCIALES

COMMUNICATIONS ET LES ARTS
Architechureu.uvvveeesecerrirnernacs 0729
‘Beaux-arls .

Bibliothéconomie
Cinéma .z

0900
Communication verbale 0459
Communicalionscceveeeessrenss 0708

EDUCATION

Généralités ...

Administration

Art

Colléges communautaires 0275
COMMErCe ...ovveersricsenns ..0688

Economie domestique ...
Educatien permanente ..
Education préscolaire ...

Education sanitaire0680
Enseignement agricole................ 0517
Enseignement bilingue et

- muliculturel ... 0282
Enseignement industriel 0521
Enseigr 1t primaire. 0524
Enseignement professionnel 0747
Enseignement religieux0527
Enseignement secondaire0533
Enseignement spécial0529

Enseignement supérieur
Evaluation

Finances.......cceuue. ..0277
Forination des enseignants..........0530
Histoire de 'éducation...... ..0520
Langues et littérature 0279

Lecture 0535
Mathémohquesccererruenscrnres 0280
Musiquecoucveneinsenenne ..0522

Orientation et consultot_ion

Philosophie de I'éducation0998
PhYSIQUE «.evesseeerasrerersenesersresecns 0523
Programmes d'éfudes et
b en}s‘ei nement ..0727
sychologie
Sc{ence(s)g..... 714
Sciences soc 534
Sociologie de |'éd .0340
Technologie 0710
LANGUE, LITTERATURE ET
LINGUISTIQUE
Langues
Enéralitésoeevverererenes 0679
Anciennes..... .
Linguistique .. .
EINES .vvveverrereemiranssenens
Littérature
Généralités .
Anciennes. 0294
Comparée 295
Mediévale 297
Moderne 298
Africaine 316
Américaine 591
Anglaise ... 593
Asiatique .. .0305
Canadienne sAnglaise) 0352
Canadienne {Frangaise) 0355
Germaniqueoeeunne .031
Latino-américaine .0312
Moyen-orientale .. .0315
ROMANE ..cveeerricvevecaireninnen 0313

Slave et est-européenne 0314

SCIENCES ET INGENIERIE

SCIENCES BIOLOGIQUES

Agriculture :
Généralités ..eveverevveererinanenas 0473
Agronomie.eeeeserearenas 0285
Alimentation et fechnologie .

dlimentairecreevocenee 0359

Culture ..cveceeereroresrcniecanas 0479
Elevage et alimentation 0475
Explojtation des péturages ...0777
Pathologie animdle 0476
Pathologie végétale

Physiologie végétale ...
Sylviculture et faune..............
Technologie du bois..............
Biologie

énéralitdsocovrecereuecnns
Angtomie........c....... .-
Biologie (Statistiques) ..
Biologie moléculaire ...
Bolaniquecouvees
Cellule......
Ecologie ..
Entomologie .
Génétique
Limnologie ...
Microbiologie

B Zhoo_ogie .

iophysique

pGan'alités .
Medicaleccooeerererrrerenene

SCIENCES DE LA TERRE
Biogéochimieecvvecerrecerecnnns 0425
Geéochimie...... .

Géodésie.
Géographie physique.......cccoven.. 0368

GE0logie ovveererersererersresrerenesiase 0372
Géophysique .. .0373
Hydrologie . .0388
oiv]éralogie e 8?};
céanographie physique
Pa éobgg:m%ue qu .0345
Paléoécologie .0426
Paléontologie .0418
Paléozoologie .0985
Palynologiec.ecrererermrencerenne 0427
SCIENCES DE LA SANTE ET DE
L’ENVIRONNEMENT
Economie domestiquecuuv... 0386
Sciences de |'environnement0768
Sciences de la santé
Généralitésvoeeererrrenrneeens 0566
Administration des hipitaux .. 0769
Alimentation et nutrition 0570
Audiologiec...... 0300
Chimiothérapie .
Dentisterieovsrerissererersens
Développement humain
Enseignement
Immunologie .
LOISIFS vevveninrenineasasinirsisasanans
Médecine du travail et
thérapieoverenneercsunnen
Médecine et chirurgie
Obstélrique et gynécologie ... 0380
Ophtalmologiec.ccereen.. 0381
Orthophoniecoceevevenens 0460
Pathologieueeemreermreecmenes 0571
Pharmagiec...ccvsmecesunanas 0572
Pharmacologieccuvverenene 0419
Physiothérapieccocerecene 0382
Radiologieeuvreererrvearenes 0574
Santé mentalecoceereeneen 0347
Santé publigue0573

Soins infirmiers .
Toxicologie v.uuerrarrrererserens 0383

'PHILOSOPHIE, RELIGION ET
H 00%%“

Théologievcresimses peees

SCIENCES SOCIALES
Anth i

Commerce-Affaires ...
Economie agricole ...
Economie du travail ..

Gestion des affaires

Administration ..

Histoire générale

SCIENCES PHYSIQUES

Sciences Pures

Chimie analytiqu
Chimie minérale

Elecironique et électricité
Fluides et plasma
Météorologie

Poﬁiici{le.f. (F;hysique

hysique atomique
hysique de 'état solide
hysique moléculaire
hysique nucléaire

havRa iyl

Sciences Appliqués Et

CODE DE SUJET
ANCIENNE ..oovevreeirnerreeennenan 0579
Médiévale0581]
..0582

Etats-Unis ..
Européenne ...
Moyen-orienta
Latino-américaine ..
Asie, Australie et O
Histoire des sciences

Loisirscocvvene. 0814
Planificatio
régionaleccoreeercercuicenes 0999
Science politique
Généralitéscoeveenee. 0615
Administration publique 0617
Droit et relations
internationalescouene 0616
Sociologie
GEnéralitéscouvivurnverenne 0626
Aide et bien-atre social 0630
Criminologie et
établissements
pénitentigirescccoveeve.s 0627
Demographiec.ocueuens 0938
Etudes de I individu et
de la famillevoceeneee.. 0628

Etudes des relations

interethniques et

des relations raciales 0631
Structure et développement

SOCIAl ..evrrerenrr e 0700
Théorie et méthodes. 0344
Travail et relations .

industriellescvuerernene. 0629

Transports

Travail social ...

Biomédicaleeocvrrerine
Chaleur et ther
modynamique ...
Conditionnement
(Emballage)ccovrveeernne.
Geénie aérospatial ..
Génie chimique ..
Génie civil .
Génie électronique et
électrique ...coovcrinicrininnnnns
Génie industriel
Génie mécanique ..
Génie nucléaire..........
Ingénierie des systimes .
Mécanique navale
Métallurgie w
Science des matériaux ..
Technique du pétrole
Technique miniére
Techniques sanitaires et
municipales..........co.coonenie
Technologie hydraulique0545
Mécanique appliquéecocou... 0346
Géotechnologiec.evecervivarens 0428
Matiéres plastiques
{Technolegie)
Recherche opérationnelle .
Textiles et fissus (Technolog

PSYCHOLOGIE
Généralités ...
Personnalité
PD’L 10 J;UK)S;
PS)'t. 10! ug;e cliniqu

. Psychologie du comportement 0384
Psychologie du développement ..0620
Psychologie expérimentale
PS)’(. ologie industrielle
PSyL. 10 usit: physwloglque
PSyL. ologie sociale
Psychometrie ...

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled, “A NOVEL TEST GENERA-

TION SYSTEM FOR SEQUENTIAL CIRCUITS”, submitted by Bin Du in partial

fulfillment of the requirements for the degree of Master of Science.

Py

AR

Dr. Jun Gu, Superviser & Chairman
Dept. of Electrical & Computer Engineering

A Dlper

Dr. E. P. Nowicki
Dept. of Electrical & Computer Engineering

e

’/\)(,’-’.’WL /(- P

Dr. Paul Kwok
Department of Computer Science

ii

ABSTRACT

This thesis presents a new approach for test generation of sequential circuits. The
problem of test generation for sequential circuits is decomposed into three subprob-
lems, i.e., excitation vector generation, state justification, and state differentiation.
By disabling all flip-flops in a sequential circuit, the sequential circuit is transformed
into a pseudo-combinational circuit. Then an extended transitive closure algorithm
extracts the implication graph and the SAT formula from the model of the circuit
incorporating necessary conditions for fault activation and path sensitization. To
enhance the efficiency of state differentiation in the existing three-phase ATPG, a
novel backward deterministic method for state differentiation is proposed. The new
test generation algorithm has been tested using the ISCAS’89 benchmarks. The al-
gorithm yielded a high fault coverage and is shown to be very efficient in generating
tests for large size sequential circuits. The experimental results on large sequential
circuits indicate that, our approach is much faster than the existing deterministic test

generation algorithms.

iii

Acknowledgement

I do not know how to express my sincere thanks to my supervisor, Jun Gu. It
is my greatest fortune to have Jun as my advisor. I appreciate so much for Jun’s
insight, inspiration, and constant encouragement throughout my graduate research
work. He is not only the best advisor I ever have, he is also the best friend for me
and my family. The friendship between us is what has been keeping me going for
these years, and it will keep me going for the rest of my life. Jun’s deep insight into
the difficult problems is always a precious resource for me. Without him, my stay
at Calgary would not have been meaningful. I have been convinced that Jun is a
dedicated educator and first class researcher, a role model which I found very difficult
to follow. He has provided me tremendous support whenever I run into a difficult

situation. There is no way for me to express my gratitude to him in any words.

I am grateful to Ruchir Puri who gave me many constructive discussion during
this research work. I would also like to thank Abdel Yousif who was kind enough to
read the contents of this thesis during its preparation and provided me with helpful
comments. I thank many friends at the University of Calgary, for those enjoyable
moments which they have been so generous to share with me. I would also like to
gratefully acknowledge the financial support provided by NSERC and the Department

of Electrical and Computer Engineering at the University of Calgary.

Finally and most of all, I am grateful to my wife, Xiaoying. As a husband who is

engaged in work most of the time, I thank her for supporting me for these years.

iv

To

my family

TABLE OF CONTENTS

APPROVAL PAGE e e e ii
ABS T RACT . .. e i1l
ACKNOWLEDGEMENT i iv
DEDICATION . .. e e v
TABLE OF CONTEN TSttt e e vi
LIST OF TABLES ittt e e e e e ix
LIST OF FIGURES i it e e e e e e e x
CHAPTERS
1. INTRODUCGTION ... e e e e e 1
1.1 Background L 1
1.2 Problems Addressed in this Thesis
1.3 Organization of this Thesis 4
2. FAULT MODELS AND TESTING PROBLEMS............... 6
2.1 Faultsin VLSISystems. 6
21,1 FaultModels, 8
2.1.2 Fault Equivalence and Dominance 8
2.2 Testing Terminologies and Definitions 9
2.3 Test Generation and Its Problems 18
2.3.1 NP-Completeness of Combinational Test Generation 18
2.3.2 Test Problems in Sequential Circuits 19
24 SUMINATY o e e e e e e e e e e e e e e e e 19
3. PREVIOUS WORK0 i, 21
3.1 Test Generation for Combinational Circuits 21

V1

3.2 Test Generation for Sequential Circuits 24

3.3 Summary e e e 26

4. A NOVEL TEST GENERATION SYSTEM FOR SEQUENTIAL
CIRCUILTS . .. e e e e e e i 28
41 Observations. i i i it it e e e 28
4.2 A Novel Test Generation System for Sequential Circuits. 29
42.1 Cover Extraction 30
4.2.2 Pseudo-Combinational Circuit Test Generation 32
4.2.3 State Justification. o oL, 34
4.2.4 State Differentiation 35
4.2.5 Fault Simulation 39
4.2.6 Determination of Redundant Faults 40
4.2.7 An Efficient Test Generation Algorithm for Sequential Circuits 42
4.3 SUmMmMAaIY . . v v v v v e e e e e e e e e e e e e e e e 45
5. COVER EXTRACTION i, 47
5.1 Backward Assignment Rules (B-rules) 47
5.2 Consistency and Algorithm Constraints 49
5.3 The Backward Assignment Procedure 50
5.4 Summary e e e e e 52

6. PSEUDO-COMBINATIONAL CIRCUIT TEST GENERATION . 54

6.1 Circuit Representation 54
6.1.1 Boolean Difference 54
6.1.2 Transferring Circuitinto CNF 55
6.1.3 Transitive Closure Method 59

6.2 Efficient Transitive Closure Computation 63
6.2.1 Signal Dependencies 63
6.2.2 Pruning the Search Tree 65

6.3 Combinational Circuit Test Generation Algorithm 67

6.4 SUummary e e 71

7. STATE JUSTIFICATION AND STATE DIFFERENTIATION... 72
7.1 State Justification 72

7.2 State Differentiation i i e 76

73 Summaryo e e e 87
8. EXPERIMENTAL RESULTS 88
81 IEEE Benchmarks 88
8.2 Evaluation of the Proposed Test Pattern Generator 88
83 Summary e e 95
9. CONCLUSIONS AND FUTURE WORK 97
REFERENCES e et e 100

viii

2.1

2.2

6.1

6.2

6.3

7.1

7.2

7.3

7.4

8.1

8.2

8.3

8.4

LIST OF TABLES

Cube intersection operation., 16
Sharp product operation. L L 17
Transitive closure of the simplecircuit S1. 62
SAT repreéentation of ternary for the simple circuit S1. 62
Condensed transitive closure of the simple circuit S1. 68
Initial state justification process. 76
Final state justification process. 76
The ON and OFF sets of primary output G17.. 86
The process of exciting the fault G2 s-a-0 to primary output G17. 87
ISCAS’89 sequential benchmark circuit characteristics. 89
Real execution performance of our algorithm with the ISCAS’89 sequential

benchmark circuits. e e e 91

Statistics analysis of our algorithm with the ISCAS’89 sequential bench-
mark circuits. L e 92

Test generation comparison with STEED and VERITAS on ISCAS’89
benchmark circuits.o L L 94

ix

2.1

2.2

2.3

2.4

2.5

2.6

2.7

4.1

4.2

- 4.3

4.4

4.5

4.6

4.7

5.1

5.2

5.3

LIST OF FIGURES

Three input AND gate with its truth table. 7
A sequential circuit. L o o 10

An equivalent pseudo-combinational iterative array to the sequential cir-

cuitin Fig. 2.1, o o e 10
A general pseudo-combinational circuit. oL L L. 13
Example circuit s27 from ISCAS’89 benchmarks. 14
The output cone of G17 in circuit s27. 15
The next state cone of G11 in circuit s27. 15
General iterative array model for state justification. 34
State transition graph for state justification. 35
Iterative array model for state differentiation. 36

State transition graph for state justification and state differentiation. .. 36
Fault simulation algorithm. 41

The flow chart of the test generation algorithm for sequential circuits. . . 43

The algorithm of sequential circuit test generation. 44
The backward assignment rules (B-rules). 48
The consistency constraint. 49
Cover extraction algorithm. 50

- 5.4

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

7.1

7.2

7.3

7.4

7.5

7.6

8.1

The next state cone of G11 in circuit S27 shows how the backward assign-

ment procedure assigns logic values to the circuit nodes. 53
The ONF formulae of basicgates. 56
The CNF formula of 3-input NAND gate. 57
Formula extraction of a simple circuit S1. 58
Formula extraction of the simple circuit S1 with a fault. 58
The XOR of the unfaulted and faulted circuits should be 1.. 60
Implication graph of an AND gate. D 60
Implication graph of the example circuit S1. 61
The algo;'ithm of signal dependency computation. 64

(a). If A is sensitized, X must be sensitized: (EX4 + EXx). (b). If A is
sensitized, either X or Y must be sensitized: (EX4 + EXx + EXy). 66

The flow chart of the combinational test generation algorithm. 70
State justification algorithm. 74
The algorithm of obtaining fan-in states of present state. 75
Three kinds of faults defined in our algorithm. 78
The algorithm of single-vector state differentiation. 80
The algorithm of multi-vector state differentiation. 82

The backward deterministic algorithm for single-vector state differentiation. 84

CPU time distribution. v o i e 93

xi

CHAPTER 1

INTRODUCTION

Very large-scale integration (VLSI) is the process of fabricating thousands of semi-
conductor components and interconnections at once by a common set of manufac-
turing steps. With the rapid advances in VLSI technology, a major problem, one
which is growing in importance, is testing. The problems associated with testing of
VLSI circuits have been exacerbated by the growing number of circuits placed on an
individual chip. With little or no increase in the number of input/output (I/0) pins,
more logic must be accessed with almost the same number of I/O pins, making it

much more difficult to test a VLSI chip.

As a result of growing circuit complexity, testing is taking an increasingly larger
proportion of total product cost. Ironically, the very software design tools that make
it possible to put more circuits on a chip at a reduced cost are effectively increasing
the cost of circuit testing. The advantages of VLSI are reduced system cost, bet-
ter performance, and gfeafc reliability. These advantages would be lost unless VLSI

devices can be tested economically.

1.1 Background

Manufacturing a chip consists of fabrication and testing. Testing is required in
order to discover defects in a digital system. Design and test development precede
manufacture. Test activities are interwoven with the VLSI design process. Architec-

tural design consists of the partitioning of a VLSI chip into realizable blocks. Either

the logic should be synthesized in a testable form or the synthesized logic should be

analyzed and improved for testability.

Tests for a VLSI circuit are developed in two phases. In the first phase, known as
design verification, tests are generated to verify logic correctness and timing behavior
of the circuit through simulation. For any reason'ably large sequential circuit it would
be impossible to enumerate all possible input sequences during testing. As a practical
compromise, a subset of inputs, considered to be critical by the designer, is ushed for

verification.

The second phase of test generation consists of generating manufacturing tests.
Manufacturing tests are used to determine if components and interconnections on
the chip are fabricated correctly. These tests thoroughly check every node in the
circuit and the effect of every fault is propagated to the circuit outputs. Ideally,
manufacturing tests must cover all faults that can possibly occur during fabrication.

In this thesis, we concentrate only on the second phase of test generation.

In VLSI circuit design, the testing process is referred to as test generation and fault
simulation. The goal of test generation is to obtain test vectors of high quality at an
affordable cost. The quality of the test vectors is measured by fa;dt coverage which is
the fraction of the modeled faults detected by the test vectors. Given a set of faults
and a set of test vectors, the goal of fault simulation is to determine which faults are
detected by the test vectors. Both test generation and fault simulation rank equally
in importance and complement one another. Test vectors capable of distinguis};ing
between good circuits and faulted circuits do not become effective until these vectors
are simulated so that their effects can be determined. Conversely, e;ctremely accurate
simulation with very precise models, and poor test vectors, will not effectively uncover

many defects.

There are various factors that contribute to testing and its cost. Testing cost is
determined mainly by the cost of real time test pattern generation and test applica-
tion. Test pattern generation cost depends on the computer time required to run the
test pattern generation program. Test application cost is determined by the cost of
equipment plus the testing time required to apply the test. This time may be assumed
to be directly proportional to the number of tests. For combinational circuits, a test

is a test vector. For sequential circuits, a test is a sequence of test vectors.

A straightforward method for determining the testability of a circﬁit is to use an
Automatic Test Pattern Generation (ATPG) program. It generates test vectors and
determine the fault coverage. The running time of the program, the number of test
patterns generated, and the fault coverage provide a measure of the testability of the

circuit.
1.2 Problems Addressed in this Thesis

This thesis presents a new approach for test generation of sequential circuits. First,
cover extraction is performed as a preprocess. A new backward assignment method
is presented to extract the ON/OFF sets of the primary outputs and next state lines.
Then a novel ATPG system is presented to generate test sequences. By disabling all
flip-flops in a sequential circuit, the sequential circuit is transformed into a pseudo-
combinational circuit. Then an extended transitive closure algorithm extracts the
implication graph and the SAT formula from the model of the circuit incorporating
necessary conditions for fault activation and path sensitization. State justification and
state differentiation are efficiently performed using the ON/OFF sets of the primary
outputs and next state lines. To enhance the efficiency of state differentiation in
the existing three-phase ATPG, a novel backward deterministic method for state

differentiation is proposed. This method generates a compact testing sequence for a

given fault.

1.3 Organization of this Thesis

The thesis is organized as follows. In Chapter 2, the test generation terminologies
and the fault models are introduced. The testing problems caused by combinational

circuits and sequential circuits are addressed.

The previous work in test generation for combinational circuits and sequential

circuits is described in Chapter 3.

In Chapter 4, first, observations that initiated this research work in test gen-
eration for sequential circuits are given. Then after the steps of cover extraction,
combinational circuit test generation, state justification, and state differentiation are
briefly introduced, a novel test generation system for sequential circuits is presented.

The algorithms used in these steps are described in Chapters 5 - 7 in detail.

A new backward assignment algorithm for cover extraction is described in detail
in Chapter 5. It can efficiently extract the ON/OFF sets of the primary outputs and

next state lines.

Chapter 6 describes in detail a transitive closure method for pseudo-combinational
circuit test generation. A Boolean difference equation is derived from the circuit
model incorporating necessary conditions for fault activation and path sensitization.

Efficient transitive closure computations are presented.

In Chapter 7, state justification and state differentiation are described. To enhance
the efficiency of state differentiation in the existing ATPG system, a new backward

deterministic algorithm for state differentiation is developed.

Experimental results with ISCAS’89 benchmarks are presented in Chapter 8.

These results are compared to the existing test generation systems. Chapter 9

concludes this thesis.

CHAPTER 2

FAULT MODELS AND TESTING PROBLEMS

In this chapter, the test generation problems are presented. The test fault models
are identified and formulated in Section 2.1. Section 2.2 introduces the test gen-
eration terminologies used through this work. In Section 2.3, the problems of test

generation for combinational circuits and sequential circuits are presented.

2.1 Faults in VLSI Systems

The testing of a digital logic circuit involves the appiica,tion of stimuli to the circuit
and the evaluation of the response to determine whether the circuit is functionally
correct. An important part of testing is the creation of effective stimuli. In, practice,
the most commonly occurring faults are modeled. The fault model is a computer
model of the circuit that has been modified to conform to some premise or conjecture
about real physical defects. Then, input stimuli are created which can distinguish
between the fault-free and the faulted models. There are a number of advantages of

this approach [24]:

o It is effective to create specific tests for faults most likely to occur.

o The effectiveness of the test set can be measured by determining how many faults

can be covered by the set of test vectors.

¢ Specific defects can be associated with specific test patterns. If a circuit under
test responds to a test pattern incorrectly, there is information indicating the

faulty component or a set of components.

This method has become a standard approach to developing tests for digital logic

failures.

It is desirable to describe faults at various levels of abstraction in VLSI systems. A
fault which is described at a very low level, e.g., the transistor level, may accurately
describe the physical phenomena causing the fault. One of the difficulties with this
level is the tedious task of analyzing each individual component in the circuit. Further
complicating the task is the fact that there are several technologies in use:a,nd each

has its own unique way to perform digital logic operations.

Designers have long used logic symbols to represent their designs. These symbols
reduce the complexity of the logic circuit drawings and have the advantage of being
technology-independent. Figure 2.1 shows the logic diagram of an AND gate and its

truth table.

A —|
B — D
C——-—

Figure 2.1. Three input AND gate with its truth table.

BPREPRERROCOOO|W
PROoOORRPRPOO|B
RoRrororo|lO
rooooocooily

With these symbols, the circuits ¢an be logically represented at a higher level,

i.e., the gate level. The faults can be described at the gate level and it would be

simpler for the purpose of analysis to consider the faults at that level. An important
advantage of this representation is the fact that a computer algorithm can be defined
upon these logic operators, which are, for most part, independent of the particular

technology chosen to implement the circuits.
2.1.1 Fault Models

Fault models are descriptions of the effect of a defect or failure in a circuit. One
of the earliest and still widely used fault models at the gate level of abstraction is
the stuck-at model. In this model, it is assumed that physical defects and faults will
result in the lines at the logic gate level of the circuit being permanently stuck at
logic value 0 or 1. This model is popular since many defects at the transistor level

can be modeled at the gate level.

It is impractical to test for the combinations of all the stuck-at faults in a circuit.
This has led to the adoption of the single-fault assumption. When attempting to

create a test, it is assumed that a single fault exists.

Consider a circuit containing nets which interconnect various components in the

circuit. At one time, each net may have only one of the following results:

o Fault-free
o Stuck-at-1, i.e., s-a-1

e Stuck-at-0, i.e., s-a-0
2.1.2 Fault Equivalence and Dominance

In building fault lists, it is often observed that some faults are indistinguishable

from others. In Figure 2.1, faults A, B, or C stuck-at 0 would result in the output D

being permanently 0 and, therefore, it is impossible to distinguish between an input
stuck-at 0 from the output stuck-at 0. These faults are said to be equivalent. There
is no logic test that can distinguish between them. More precisely, if T, is the set
of tests which detect fault ¢ and T} is the set of tests which detect fault b, and if

T, = Ty, then it is not possible to distinguish a from b.

When we test for inputs, e.g., A, B or C s-a-1, we simultaneously test for the
output D s-a-1. A s-a-1 fault on the output, however, prevents one from testing any
of the input s-a-1 faults. We say that the output D s-a-1 fault dominates the input
s-a-1 fault. In general, fault a dominates fault b if T, is included in T,,. Fruom this
definition it follows that if fault @ dominates fault b, then any test which detects fault

b will detect fault a.

Since computer time for circuit testing is affected by the size of the fault list, the
reduction of the fault list, a process called fault collapsing, can reduce test generation
and simulation time. Therefore, fault equivalence and dominance relations are used

to reduce the size of fault lists.

2.2 Testing Terminologies and Definitions

A sequential circuit is shown in Figure 2.2. The circuit consists of a combinational
logic block and some feedback flip-flops. The inputs and outputs ‘of flip-flops are the
next state and present state lines, respectively. There are p primary inputs, n present
state lines, n next state lines, and ¢ primary outputs. Here it is assumed that the
present state and next state lines are neither controllable nor observable. The task
of test generation for sequential circuits is to find primary input sequences which can

propagate the faults in the sequential circuit to the primary outputs.

Figure 2.3 shows a conventional iterative array model [5] used in the test genera-

10

. p q
Primary : " Primar
Inputs (PI) 7 . \ . 7 Outputz (PO)
, Combinational Logic ,
n7 71 n
Present ’ Next
States (PS) FE’s N States (NS)

Figure 2.2. A sequential circuit.

tion of sequential circuits. Assume there is a fault, F', in the combinational logic block
of the sequential circuit shown in Figure 2.2, we duplicate the block in terms of each
clock cycle, i.e., time-frame. The iterative array in Figure 2.3 is logically equivalent
to the sequential circuit shown in Figure 2.2. If an input sequence PI, PI?,..., PI* is
applied to the sequential circuit in initial state PS?, i.e., a reset state, it generates an
output sequence PO, PO?, ..., POF and the next state sequence NS, st, .o, NSk

(PSH=NS 1<i<k).

. p1t pol, p12 PO? , . PIK pok
¢ —> bt | — tmp . —» —b
' F 1 F . t F '
[E— T » f—d 3 . —» W —
[}]

. pst nst, ps? Ns2 , . psk Nsk |
[} 1 H L T
11 14] 1]]

clock cycle 1 clock cycle 2 clock cycle k
cell 1 cell 2 cell k

Figure 2.3. An equivalent pseudo-combinational iterative array to the sequential
circuit in Fig. 2.1.

Definition 2.2.1 Beginning with the present state in clock cycle 1, PS!, we set the
reset state values and wish to produce an input sequence, PI*, PI?,. - . PI* which,
when applied to clock cycles 1,2, - - k, propagates the effect of the fault F to the

primary outputs, PO*, during the kth clock cycle. This input sequence is called a

11

test sequence for the fault.

Unlike combinational circuits, which only needs an input test vector to test a fault,
a sequential circuit may require a test sequence of up to 2"*! input test vectors, where

n is the number of memory elements (flip-flops) in the sequential circuits - [5].

In sequential circuit testing, a state is a bit vector. Its length is equal to the
number of memory elements in the sequential circuit. In general, a state is a cube,
i.e., the values at the different bit positions may be 0, 1 or X (don’t care). A minterm
state is a state with only 0’s or 1’s as bit values. A cube state is a group of minterm

states. A universal cube is a cube with all X entries.

Definition 2.2.2 State 57 implicates state Sy, if and only if, every state contained

in S is also contained in S,. That is, state S, covers state S;.

For example, state (0, 1, 0) is a minterm state, and state (0, 1, X) is a cube state.
There are two minterm states (0, 1, 0) and (0, 1, 1) in the state (0, 1, X), so state

(0, 1, 0) implicates state (0, 1, X). (X, X, X) is a universal cube.

The sequential circuits discussed here are assumed to have a reset state. All test
sequences are applied to the sequential circuit with the reset state as the starting state.
Some faults in the circuits may be redundant, i.e., their existence does not change
the behavior of the circuit. There are two kinds of redundant faults, combinational

redundant and sequential redundant.

Definition 2.2.3 A combinational redundant fault cannot be propagated to the pri-

mary outputs or the next state lines, beginning from any state, with any input vector.

Definition 2.2.4 A sequential redundant fault cannot be excited or whose effect can-

not be propagated to the primary outputs using any sequence of input vectors starting

12

from the reset state.

Definition 2.2.5 An excitation vector for a fault is an assignment that propagates
the fault to either the primary outputs or the next state lines. This assignment
consists of two parts, the primary input and the present state. The present state of
an excitation vector is called an excitation state. The primary input of an excita,ti;)n

vector is an ezcitation input.

Definition 2.2.6 The process of finding an input sequence which takes a circuit from
the reset state into the excitation state is called state justification. The corresponding

input sequence is a justification sequence.

There are two kinds of state justification, forward state justification and backward
state justification. In the forward state justification, the search is done from the reset
state to the excitation state; and vice versa for the backward state justification. If
the excitation vector propagates the fault to the next state lines, state differentiation

is required.

Definition 2.2.7 State differentiation is the process of propagating the effect of the
fault on the next state lines to the primary outputs. A differentiation sequence for a
pair of states, true state ST and faulty state ST, which are different in at least one
bit, is an input sequence such that, if the circuit is initially in S7, the last vector in
the sequence produces a different logic value in at least one primary output than if

the circuit were initially in SF.

In circuit testing, the complete test sequence is obtained by combining the justifi-

cation sequence, the excitation vector, and the differentiation sequence.

13

When all flip-flops in a sequential circuit are disabled, the sequential circuit be-
comes a pseudo-combinational circuit as shown in Figure 2.4. The primary inputs and
present state lines are considered as the inputs of the pseudo-combinational circuit.
The primary outputs and next state lines are the outputs of the pseudo-combinational

circuit.

Primary P q Primary
Inputs (PI B . . . ™™ (PO By Outputs
Combinational Logic
Present iy E. Next
s s >
States (PS E) n - n (NS7) States

Figure 2.4. A general pseudo-combinational circuit.

Definition 2.2.8 The output cone of a primary output is a portion of circuit which
includes the primary output and its subtree from the primary output to the primary
inputs and present state lines. Any fault site in this subtree is a node in the output
cone. The next state cone of a next state line is a portion of circuit which includes
the next state line and its subtree from the next state line to the primary inputs and

present state lines.

Consider the sequential circuit, shown in Figure 2.2. Assuming a fault site in
the circuit is a node in the output cones of r primary outputs, then we refer to the
output cones of these r primary outputs as the primary output fault region for the
fault under test. Similarly, if a fault site in the logic circuit is a node in the next state
cones of s next state lines, the next state cones of these s next state lines compose

the next state fault region for the fault under test.

To illustrate the idea of a circuit cone, we use a simple sequential circuit s27 from

the ISCAS’89 benchmarks. The circuit is shown in Figure 2.5. There is only one

14

primary output G17, and its output cone is shown in Figure 2.6. There are three
next s;cate lines G10, G11, and G13. The next state cone of G11 is shown in Figure
2.7. Considering a fault on G15, as G15 is a node in the oﬁtputa cone of the primary
output G17, its primary output fault region is the output cone of G17 shown in Figure
~ 2.6. Though G15 is a node in the next state cones of the next state lines G11 and
G10, if the fault is to propagate to G10, it mﬁst propagate-to G11 first. One need
only consider the next state line G11. The next state fault region for the fault at

node G15 is the next state cone of G11, as shown in Figure 2.7.

614
50 i 610
6l —;—Dm 12
617

G2

D!
G16

G3

G5

— Dff

G6

Dff

G7

DEf

Figure 2.5. Example circuit s27 from ISCAS’89 benchmarks.

Definition 2.2.9 The ON set of an output is the complete set of the input values
which produce the output logic value 1. The OFF set is the complete set of the input

values such that the corresponding output is at logic value 0.

G14
GO
Gl -j) G12
G615 G9

G11 {>(>G17

G8

G16

G3

Figure 2.6. The output cone of G17 in circuit s27.

Gl4
GO
1 j) 12
¢ © G1l5 G9
Gl1
G8
G16
G3
G5
G6
G7 -

Figure 2.7. The next state cone of G11 in circuit s27.

15

16

The process of extracting the ON/OFF sets of the primary outputs and next state

lines is called cover extraction.

Definition 2.2.10 If a sequential circuit can reach a state Fy,; during the next clock
cycle from a state F;,, state F;, is said to be a fan-in state of state F,,;, and state

Foy: is a fanout state of state Fy,.

All fan-in states of a state can be easily obtained by cube intersection on the ON

and OFF sets of the next state lines.

Definition 2.2.11 The intersection of two cubes ¢ and d, denoted cNd, is the set of

states that belong to both ¢ and d.

cnd= ¢, if there exists one k, ¢y N dy = ¢, otherwise
T {andi)(eandg) -+ (caNdn)}

The intersection of the three value tuple is defined in Table 2.1, where ¢ is the

empty set.

Table 2.1. Cube intersection operation.

— == &
P O]

H
= olD
OB OO

Definition 2.2.12 The sharp product of two cubes, i.e., c#d, is the set of states that

belong to ¢ but not to d.

17

@, if cp#td, = €, for all k; else

¢, if there exists one k, cy#dr = ¢;
cHtd =
Uk{clcz...Ck_lOéka+1...Cn}

where ¢;#dr = ar € 0,1, k=1,2,...,n.

The sharp product of the three value tuple is obtained in Table 2.2, where ¢ means

implication.

Table 2.2. Sharp product operation.

> ofFk
S M D=
o oo o

i s O Ko

Definition 2.2.13 A graph G = (V, E) consists of a finite, nonempty set of vertices
V and a set of edges E. If the edges are ordered pairs (v, w) of vertices, then the graph

is said to be directed; v is called the tail and w the head of the edge (v, w).

Definition 2.2.14 A path is a sequence of edges of the form (vq, vs), (v2, v3), ...,

(Un—1, vn). We say that the path is from vy to v, and is of length n-1. A cycle is a

simple path of length at least 1 which begins and ends at the same vertex.

If a graph contains a cycle, it is cyclic; otherwise it is acyclic. A Directed Acyclic

Graph (DAG) can be used to describe a circuit.

18

Definition 2.2.15 The transitive closure of G is defined as a graph G which has
the same vertex set as G, but has an edge from v to w if and only if there is a path

from v to w in G.

Definition 2.2.16 The edges V can be partitioned into equivalence classes V;, 1 <
¢ < r, such that vertices v and w are equivalent if and only if there is a path from v to
w and a path from w to v. The graphs G; = (V;, E;) are called the strongly connected

components of G.

The goal of the satisfiability (SAT) problem [9] is to determine whether there
exists an assignment of truth values to a set of variables (z1,zs, ...,) that makes

the following Boolean formula satisfiable:

€L CQ e Cp (2.1)

where - is a logic and connector and ¢y, ¢y, ..., ¢, are n distinct clauses. Each clause
consists of only literals combined by just logic or (+) connector (a literal is a variable

or a single negation of a variable).

2.3 Test Generation and Its Problems

With the progress of the VLSI technology, the problem of fault detection for logic

circuits is becoming increasingly difficult.

2.3.1 NP-Completeness of Combinational Test Generation

A significant theoretical study by Ibarra and Sahni [17] shows that test generation
for combinational circuits belongs to the class of NP-complete problems. This strongly

suggests that no test generation algorithm with a polynomial time complexity is likely

19

to exist. The problem of combinational circuit test generation can be viewed as a
finite space search problem [12]. For a combinational circuit with m primary inputs,

there exists 2™ combinations of input assignments.

In practice, test generation algorithms for combinational circuits appear to be
able to achieve lower average time growth by using heuristic search techniques. Up
to now, some well-known test generation algorithms for combinational circuits, such
as D-algorithm [26], PODEM [12], FAN [10], NEMESIS [19], and TRAN [7], have

been developed. Some of them perform well for certain circuit structures.

2.3.2 Test Problems in Sequential Circuits

Test generation for sequential circuits has long been recognized as a difficult task
[5, 23]. It remains to be a challenge in spite of a history of attempts dating back
to the late 1960s. One new factor which complicates the task of creating tests for

sequential circuits is the presence of memory elements.

For combinational circuits, it is possible, but not necessarily reasonable, to.create
a complete test for logic faults by applying all possible binary combinations to the
inputs. This is not true for sequential circuits with memory elements. Not only may
they requires more than 2™ tests, they are also sensitive to the orderin which stimuli
are applied. It has been shown [5] that a fault in a general synchronous sequential
circuit may require é, test sequence of up to 2”*! input test vectors, where n is the
number of memory elements in the sequential circuits. This shows that the search

space for sequential circuit test generation is very large.

2.4 Summary

The cost of manufacturing a VLSI chip is very much affected by the testing cost

for the chip. The large number and complex nature of potential physical failures

20

suggests that a practical approach to testing should avoid working directly with the
physical failure. One approach for solving the problem is to describe the effects of
physical failures at some higher levels of abstraction. The stuck-at fault model at the

gate level is the most popular model describing present VLSI testing methodology.

It ha;s been recognized that test generation for sequential circuits is an extremely
difficult problem. Different approaches have been used to tackle the test generation
problem for sequential circuits, either by randomly generating test sequences or by
using other deterministic test generation methods. It is a challenging topic to develop

an efficient test generation system for VLSI sequential circuits.

CHAPTER 3

PREVIOUS WORK

In this chapter, the previous work in test generation for combinational circuits and

sequential circuits is presented.

3.1 Test Generation for Combinational Circuits

Existing ATPG systems for combinational circuits fall into two classes: structural
methods, such as PODEM [12], and algebraic methods. Structural search methods
use a data structure representing the circuit to be tested. To generate a test pattern,
they assign values that cause a discrepancy at the faulted line (fault site) and then
search for consistent values for all circuit lines such that the discrepancy is visible at

a circuit output.

Among structural search methods, the D-algorithm, developed by Roth [26], is
probabiy the most known test generation algorithm. This algorithm adopts a five-
valued 0, 1, X, D, D calculus to be able to carry out the sensitization and the line
justification procedures in a very formal manner. The faulty line is assigned a D, or D
depending on the fault on the line. The calculus and the circuit structure information
are used to determine values on the other lines so that the D or D can be sensitized
to the primary outputs. A line justification step is then carried out to justify the
values assigned in the preceding step. Both the sensitization and the line justification

steps may have to be carried out many times before a test vectors is obtained.

22

A class of circuits for which the D-algorithm performs particularly poorly are
those containing exclusive-or trees. The degradation in performance arises due to
excessive amount of backtracking. This observation motivated Goel [12] to devise
a new test generation algorithm called path oriented decision making (PODEM). He
used a branch and bound technique. The algorithm starts by assigning a value of 0
or 1 to a selected primary input (PI) line, and then determines its implication on the
propagation of D or D to a primary output. If no inconsistency is found, it again
somehow selects another PI line and, assigns a 0 or 1 to it, and then repeats the
process, which is referred to as branching. If an inconsistency is determined in the
branching, the branching stops and bounding starts. The PI line which was most
recently assigned a binary value is assigned the complimentary value, and branching
starts again. The complete process stops when either a test vector is found or when
the fault is determined to be undetectable. PODEM implementations are known to

run an order of magnitude faster than the D-algorithm on most circuits.

Fujiwara and Shimono [10] described techniques to further accelerate a path-
sensitization algorithm like PODEM. Their algorithm, called FAN, does extensive
analysis of the circuit connectivity in a preprocessing step to minimize backtracking.
FAN bas employed a better heuristic in the bounding-and-branching steps to speedup

the test generation process.

In these structural methods, backtracking, which is a branch procedure terminated
by a bound step, is the most computationally expensive step in the process of search-
i:qg for a test vector. The branching step goes as deep in the binary search tree as
possible, while the bound step backs up in the binary search tree to the most recent

node with an unused alternative assignment.

Instead of performing a search on a data structure representing a circuit, algebraic

23

methods produce an equation describing all possible tests for a particular fault and
then simplify the resulting equation. A typical algebraic method is the Boolean
difference method, proposed by Sellers et al. [27]. Once the Boolean difference

formula for the testing problem is 6btained, it is simplified by using the basic laws

of Boolean algebra or using identities specific to the Boolean difference. The tedious

nature of the algebraic manipulations involved in solving formulae using the Boolean -

difference led to its disfavor as a practical tool for test pattern generation [24].

Recently, Larrabee [19] proposed a Boolean satisfiability (SAT) method for gen-
erating test vectors for single stuck-at faults in combinational circuits. This new
method generates test vectors in two steps. First, it constructs a formula express-
ing the Boolean difference between the unfault and faulted circuits. Second, instead
of performing symbol manipulation, it applies a SAT algorithm to satisfy the for-
mula. This new method has, in practice, produced excellent results for the problem

of combinational circuit test generation.

Later, Chakradhar, Agrawal, and Rothweiler [7] developed a transitive closure
algorithm for combinational circuit test generation. A test is obtained by determin-
ing signal values that satisfy a Boolean difference equation derived from the model
of the circuit incorporating necessary conditions for fault activation and path sensi-
tization. The method is a sequence of two main steps that are repeatedly executed:
transitive closure computation and decision-making. The transitive closure contains
global pairwise (or binary) logical relationships among all signals. Higher-order sig-
nal relationships are represented as additional ternary relations. A key feature of
the algorithm is that signal dependencies derived from the transitive closure are used
to reduce ternary relations to binary relations that in turn dynamically update the

transitive closure. The signals are either determined from the transitive closure or are

24

enumerated until the Boolean equation is satisfied. The transitive closure algorithm

has produced excellent results on popular test pattern generation benchmarks.
3.2 Test Generation for Sequential Circuits

The Earlier algorithms represented sequential circuits as iterative combinational
circuits. Some test generation algorithms for combinational circuits were extended‘
to test sequential circuits [18, 25]. An algorithm that implements this method has
been programmed into a commercial package called LASAR [29]. Several approaches
[22, 28] based on the extensions of the classical D-algorithm were presented to solve
the problem of test generation for sequential circuits. Shteingart et al. [28] gave
an efficient technique for modeling sequential components. Although some progress
was made in these attempts, an effective solution for circuits with more than a few

hundred gates and large sequential depths was not available at that time.

Due to the relative ineffectiveness of these ATPG systems, many large digital sys-
tems are being designed in compliance with design-for-testability rules which attempt
to reduce the complexity of the test problem. The object of design-for-test is to pro-
vide guidelines which insure the creation of testable designs. A popular approach is
to make the memory elements controllable and observable, i.e., a scan design [1]. The
flip-flops and/or latches are designed to be able to operate in either parallel load or
serial shift mode. In the normal mode of operation, flip-flops and latches are config-
ured for parallel load. For testing purposes the flip-flops are switched to a serial shift
mode. In serial mode, any needed test values ca,nr be loaded by serially clocking in the
desired values. In similar fashion, any values present in the flip-flops can be observed
by clocking out their contents while in the serial shift mode. Scan design approaches
have been successfully used to reduce the complexity of the problem of sequential

circuit test generation by transforming the problem into that of combinational circuit

25

test generation. However, in some cases, the cost in terms of area and/or performance

and/or extra numbers of I/O pins is unaffordable.

Recently, considerable progress has been made in test generation for sequential
circuits. A heuristic, simulation-based test generation algorithm was presented by
Agrawal et al. [2]. Ma, Devadas, Newton, and Sangiovanni-Vincentelli [21] described
a PODEM-based deterministic approach to sequential circuit test generation, called
STALLION. It first extracts a partial state transition graph (STG) of a sequential
circuit. The construction of the partial STG is based on an efficient state-enumeration
algorithm that aims at finding paths from the reset state to different valid states
(states reachable from the reset state) in the STG. Then test sequences for line stuck-
at faults can be generated using the two-phase ATPG system: fault excitation and

propagation, and state justification.

Later, a new system, STEED, was proposed by Ghosh, Devadas, and Newton
[11] to improve STALLION. STEED decomposes the problem of sequential circuit
test generation into three subproblems, i.e., excitation vector generation, state jus-
tification, and state differentiation. Given a fault under test, it first generates a
combinational excitation vector that propagates the effect of the fault to the primary
outputs or the next state lines. Combinational circuit test generation is based on
a PODEM-based algorithm. A justification step is then performed, which involves
finding a justification sequence for the excitation state. This step is carried out using
a sequence of cube intersections on the complete or partial ON/OFF-sets of the next
state lines. Thus a justification sequence is found. If the effect of the fault has been
propagated to the next state lines alone, the true-faulty state pair is produced by the
excitation vector. A differentiation sequence for this true-faulty state pair is obtained

using another sequence of cube intersections, this time using the ON/OFF-sets of the

26

primary outputs. It is shown that this three-phase ATPG for sequential circuits is an
efficient method. STEED significantly improved STALLION in terms of computing

time for the same fault coverage.

Cho, Hachtel, and Somenzi [8] have recently given an efficient algorithm, VER-
ITAS, for sequential circuit test generation. VERITAS is based on implicit state
enumeration and a three-phase ATPG. The approach identifies sequential redundan-
cies through reachability analysis of sequential circuits. It constructs the product
machine of two sequential circuits to be compared. The reachability analysis is per-
formed by traversing the finite state machine to find any difference in I/O behavior.
When an output difference is detected, the information obtained by reachability anal-
ysis is used to generate a test sequence. As the product machine traversal (PMT) is
quite resource-demanding, a three-phase ATPG system is used first to deal with most
of the faults. PMT is used only for the faults for which the three-phase ATPG fails
to generate test sequences. VERITAS further improved STEED in terms of running
time, test vector length, and fault coverage. It is difficult, however, for VERITAS to

handle large size sequential circuits.

These approaches are capable of generating tests for sequential circuits with 1000-
3000 gates. Due to the difficulty of test generation for sequential circuits, significant

improvements are needed for the testing of larger sequential circuits.

3.3 Summary

Up to now, some well-known test generation algorithms for combinational cir-
cuits have been developed and perform well for certain circuit structures. Existing

ATPG systems for combinational circuits fall into two classes: structural and al-

gebraic methods. Both Boolean satisfiability and transitive closure methods have

27

produced excellent results on popular test pattern generation benchmarks.
For sequential circuit test generation, some progress has been made in the past
several years. The three-phase ATPG system is shown to be an efficient method. Due

to the difficulty of test generation for sequential circuits, significant improvements are

needed for very large scale sequential circuits.

CHAPTER 4

A NOVEL TEST GENERATION SYSTEM FOR
SEQUENTIAL CIRCUITS

In this chapter, we present an efficient test generation algorithm for sequential
circuits. A transitive closure algorithm has been developed for combinational circuit
test generation. We extend the transitive closure algorithm to test generation of se-
quential circuits. To make the previous three-phase ATPG system more efficient, a
new backward deterministic method for state differentiation is developed. This algo-
rithm offers significant efficiency improvements for test generation of large sequential

circuits.

At first, observations that initiated this research work in sequential circuit test
generation are given. Then after briefly introducing the steps of cover extraction,
pseudo-combinational circuit test generation, state justification, state differentiation,
fault simulation, and determination of redundant faults, a novel test generation sys-
tem for sequential circuits is presented. The algorithms used in cover extraction,
pseudo-combinational circuit test generation, state justification, and state differenti-

ation will be described in Chapters 5 - 7 in detail.

4.1 Observations

Up to now, the most popular ATPG systems for sequential circuits use the three-
phase ATPG method: excitation vector generation, state justification, and state dif-

ferentiation. The first phase, in the most cases, uses a PODEM-based combinational

29

ATPG, such as STALLION [21] or STEED [11]. This phase usually takes a large
fraction of the total test generation time. As indicated in Section 3.1, Boolean satis-
fiability (SAT) method [19] and transitive closure method [7] have been developed to
perform test generation for combinational circuits. Both SAT approach and transitive
closure algorithm have obtained superior results over the PODEM-based algorithms.
In our approach, we use the transitive closure algorithm to perform the first phase,

i.e., excitation vector generation, in sequential circuit test generation.

The second and third phases are state justification and state differentiation. They
usually take a small fraction of the total test generation time. State differentiation in
the existing three-phase ATPG systems lacks efficiency in dealing with the unspecified
inputs in excitation vector and justification sequence. So STEED has to apply all
possible assignments to the unspecified inputs before it concludes that a test for the
fault under consideration does not exist. There exists 2" possible minterm states
for n unspecified inputs. Considering that each possible minterm state may need to

perform state justification, the real search space is much larger than 2".

In this thesis, we propose a new backward deterministic method for state differ-
entiation. In our approach, cubes, rather than minterm states, are used to represent
states. Instead of using minterm state differentiation, our method searchs backward
to specify the cubes into real excitation states. This has considerably reduced the

running time for sequential circuit test generation.

4.2 A Novel Test Generation System for Sequential Circuits

The system starts by extracting the ON/OFF sets of the primary outputs and
next state lines. A new backward assignment method is proposed to perform cover

extraction. We employ the three-phase ATPG approach to generate test sequences.

30

The transitive closure algorithm is extended to test generation for sequential cir- A
cuits. The problem of test generation for sequential circuits is decomposed into three

subproblems: _

¢ pseudo-combinational circuit test generation: All flip-flops in the sequential cir-
cuit are disabled, and sequential circuit test generation becomes combinational
circuit test generation. The transitive closure algorithm is used to find the exci-

tation vector for the pseudo-combinational logic circuit.

e state justification: An input sequence is found to take a circuit from the reset

state into the excitation state.

e state differentiation: An input sequence is found to propagate the effect of the

fault on the next state lines to the primary outputs.

In the following discussion, we will describe briefly cover extraction, transitive
closure based pseudo-combinational circuit test generation, state justification, state
differentiation, fault simulation, and determination of redundant faults. Then the

new test generation system for sequential circuits is presented.

4.2.1 Cover Extraction

The objective of cover extraction is to extract the ON/OFF sets of the primary
outputs and next state lines. At first, all flip-flops in a sequential circuit are disabled.
The sequential circuit becomes a pseudo-combinational circuit. The inputs of all
flip-flops ‘(next state lines) and the primary outputs are considered as outputs of
the combinational circuit. The outputs of all flip-flops (present state lines) and the

primary inputs are considered as inputs of the combinational circuit.

31

For each output of the pseudo-combinational circuit, the ON/OFF sets are ex-
tracted by assigning the corresponding output line to logic value 1 or 0 and using
a new and efficient backward assignment method to implicitly enumerate the input
combinations that can set the output line to 1 or 0. A similar backward assignment

method has been successfully used in test generation for combinational circuits [30].

At first, the combinational circuit is represented as separate output cone for each
output. For each circuit cone, we assign the output of the cone to 1 or 0. Then
we propagate the assignment backward to the inputs of the cone. Finally, the com-
bination of the assignments at the inputs of the cone is the ON or OFF set of the

output.

Due to the connectivity of the logic circuit, some nodes in the circuit may be
assigned more than once. Therefore with the increase of the circuit’s depth, the
number of assignments for each node per level may increase dramatically. So the
CPU time for generating the ON/OFF sets may grow dramatically. A simple method
is to set a limit for the maximum number -of the assignments at each node [30].
Limiting the maximum number of assignments per node can dramatically decrease
the extraction time. But after setting the limit, the ON/OFF sets obtained may be

incomplete.

We use a different and efficient method. After the number of assignments reaches
the limit, we use logic minimization to compress the assignments. The method is
based on the fact that each ON/OFF set usually requires less than a few hundred
vectors for most of ISCAS’89 benchmark sequential circuits after logic minimization.
This method assures that we obtain complete ON/OFF sets of the primary outputs
and next state lines. Also it makes the storage of ON/OFF sets memory efficient.

For some large circuits, it might not be possible to generate the complete cover. This

32

method would extract as many vectors in the cover as possible. The ON/OFF sets

are saved in bit vectors, which are similar to those used in ESPRESSO [4].
Three methods can be used to extract the ON/OFF sets.

1) The output of the circuit is set to 1 or 0, and the backward assignment method

is used to generate the ON or OFF set separately.

2) Because the ON set and OFF set for a same output are complementary, which
means that the union of the ON set and OFF set for the same output should corre-
spond to the universal cube, when we generate the ON set, the OFF set can be easily

obtained by disjointing the ON set from the corresponding universal cube.

3) The output of the circuit can be set to the logic value D or D. The backward
assignment method is used to generate the D set. When D is equal to 1, the ON set
is obtained. When D is 0, the OFF set is obtained. A part of backward assignment

rules of value D can be found in [30].

We use the first method to generate the ON/OFF sets of the primary outputs and
next state lines. The backward assignment method will be discussed in Chapter 5

in detail.

4.2.2 Pseudo-Combinational Circuit Test Generation

Our current method considers one fault at a time. Given a fault for which that a
test sequence is to be generated, the first step in test generation for sequential circuits
is to generate a combinational test vector in the pseudo-combinational circuit for the
fault. Figure 2.4 shows a pseudo-combinational circuit obtained from a general
sequential circuit by disabling all flip-flops. The goal of test generation for a pseudo-

combinational circuit is to find an excitation vector (PIZ, PSF) which excites the

33

fault to POF or NSE.

Our test generation algorithm for combinational circuits, which will be described
in Chapter 6 in detail, is based on a transitive closure method [7]. At first, the
algorithm tries to propagate the effect of the fault to the primary outputs. If failed,
the algorithm tries to propagate the effect of the fault to the next state lines. When
the fault is combinational redundant, the effect of the fault cannot propagate to either

the primary outputs or the next state lines.

To make state justification easier, the excitation vector is generated with as many
don’t care entries as possible — some lines may be left unknown. If the excitation state
can not be justified, a new excitation vector should be generated. The new vector
should be disjointed from all the previous states. This assures that all new generated

excitation states are not used previously.

We notice that each fault may only be a node in circuit cones of some primary
outputs and/or next state lines. To generate excitation vector efficiently, we only need
to consider the related part of the circuit with the fault. When the algorithm tries to
propagate the effect of the fault to the primary outputs, we search the circuit forward
from the fault site to the primary outputs and find all related iprimary outputs. The
output cones of these primary outputs compose the primary output fault region for
the fault. Similarly, when the algorithm tries to propagate the effect of the fault to
the next state lines, we should search for an excitation vector in the next sta;te fault
region for the fault. Because the fault region is smaller than the original circuit, the

search effort and time are decreased.

34

4.2.3 State Justification

Once a combinational excitation vector is found for a fault in the pseudo-
combinational circuit with as many don’t care entries as possible, state justification
is used to justify if the excitation state is reachable from the reset state. Usually the
excitation state is a cube. If the reset state implicates the excitation state, the fault
can be excited from the reset state. If not, the excitation state should be justified by

using state justification.

The iterative array model in Figure 4.1 is used to illustrate state justification.
The excitation input PIZ and excitation state PS¥ excite the effect of a fault under
test to PO? or NSE. As the sequential circuit discussed here is assumed to have a
reset state, all valid states begin from this reset state. The goal of state justification
is to find an input sequence PI’!, PI72,. .. PI’* which places the sequential circuit
into the excitation state PS® from the reset sta!te. If PS7! is the reset state, the
justification sequence PI’*, PI'2,... PI’F is found. The set of states traversed

during state justification, PS’, PS72,. .., PS7* constitute the justification path.

Justification 1 Justification k Excitation
p1Jl poJl p1Jk po’k pIE PoE
—] e — > — -
F i F F
— n |—p — = » = —p
pgJl ngJl pglk ngJk pgE NsE

(Reset state)

Figure 4.1. General iterative array model for state justification.

State justification can also be illustrated by the state transition graph (STG) shown
in Figure 4.2. PSP is the excitation state, and we need to find a justification path

from the reset state to the state PSE.

35

S S

Reset state Excitation state

Figure 4.2. State transition graph for state justification.

There are two methods to perform state justification, forward and backward, de-
pending on whether the search is conducted from the reset state to the excitation
state or vice verse. Here we use backward state justification. All fan-in states of the
excitation state are obtained by performing cube intersection on the corresponding
ON/OFF sets of the next state lines. If the reset state implicates the fan-in states,
a single vector justification sequence is found. Otherwise, the process is repeated
for the fan-in states being currently justified to try to find multi-vector justification

sequence.

It is noted that all fan-in states obtained in state justification are cubes. Because
a cube state is a group of minterm states, using cubes is helpful to find a shorter
justification sequence. Thus the justification time is reduced and the quality of the test
pattern generator increases. Once the justification sequence is found, fault simulation
is used to check if the excitation state is justified. The algorithm of state justification

is given in Section 7.1.

. 4.2.4 State Differentiation

If the combinational excitation vector propagates the fault to the primary outputs,
and the excitation state is justified, a test sequence for the fault is successfully gen-
erated. However, if the combinational excitation vector propagates the fault to the

next state lines, state differentiation is required to continually propagate the effect of

36

Justification 1 Justification k Excitation Differentiation 1 Differentiation r
p1Jl podl prdk poIk prE poE p1Pl poP! pIPr poPr
— et — l—p — l—»> — l—> — S

F T F F F T F
— ® S —_— [l » = l—»> — |—»
psJt nsIl pgIk nsIk psE nsE pgPl nsPl psPr nsPr

(Reset state)

Figure 4.3. Iterative array model for state differentiation.

@ PIJl @ PIJk @ PIDl

Reset Excitation
state state

Figure 4.4. State transition graph for state justification and state differentiation.

the fault to the primary outputs.

The iterative array model in Figure 4.3 is used to illustrate state differentia-
tion. The excitation input PIZ and excitation state PSF excite the effect of a
fault under test to the next state lines NSE, and a justification path frorln pPSa
(reset state) to PS'F is found. The goal of state differentiation is to find an in-
put sequence PIP!, PIP?,... PIP" which propagates the effect of the fault on the
next state lines of the excitation state clock cycle to the primary outputs of the
rth differentiation clock cycle. The primary input sequence PIPY, PIP? ... PIPr is
the differentiation sequence. The set of states traversed during state differentiation,
PSP PSPz ... PSPr constitutes the differentiation path. The test sequence is
obtained by concatenating the justification sequence, the excitation vector, and the
differentiation sequence. The state transition graph shown in Figure 4.4 is used to

illustrate the test sequence.

To reduce the time of state differentiation, random state differentiation is per-

formed first. If random state differentiation fails, a deterministic state differentiation

37

algorithm is used.

At first, fault simulation is used to create the true and faulty states (S7, ST)
with the combinational excitation vector. By employing cube intersection on the
ON and OFF sets of each primary output, we try to find an input vector which
produces a different output on the corresponding primary output, beginning from
the true and faulty states separately. Such an input vector constitutes a single-
vector differentiation sequence. If a single-vector differentiation sequence cannot be
found, all the fan-out states of the true and faulty states are found via repeated cube
intersection. This is performed by finding an input vector that produces a different
output on at least one next state line for the true and faulty states with the ON/OFF
sets of each next state line. If the input vector is found, a new pair of true and faulty
states (ST, ST) are obtained. For the ﬁew true and faulty states, a single-vector
differentiation sequence is sought again. If found, a two-vector differentiation sequence
is constructed. Otherwise, a pair of states fanning out from some fan-out state pair
is picked and differentiation between this pair is attempted. The process continues
until a differentiation sequence is found or there does not exist any differentiation
sequence for 57 and S¥. Once the differentiation sequence is found, the entire test

sequence is fault simulated to check if the fault can be detected.

As with state justification, in the general case, state differentiation is attempted
between disjoint groups of states (cube states) rather than a minterm state pair. This
means that some bits in the true and faulty states are unknown. The existence of
a differentiation sequence between two groups of states means that if any state A
from the true group is chosen, along with a corresponding state A’ from the faulty
group, then the differentiation sequence will be able to differentiate between the

state A and A’. Since this is a strong requirement, it is often impossible to find a

38

differentiation sequence between the state groups [11]. This does not means that a
test for the fault does not exist. In order to find a test, usually it is necessary to set
some unspecified bits in the primary inputs or the present states of the justification
sequence and excitation vector to eithelj O or 1. A simple method can be applied where
the excitation state is separated into a group of minterm states, and state justification
and differentiation are performed on the minterm states. The disadvantage of this

method is the long running time.

A novel and efficient backward deterministic method is developed in this thesis to
solve this problem. After the combinational excitation state is found to propagate
the fault to the next state lines with as many don’t care entries as possible ;Lnd is
justified successfully, the backward deterministic method for state differentiation is
used. When we search forward to perform state differentiation, if some unspecified
bits in the present states and the primary inputs of the whole sequence are needed to
be set to either 0 or 1, the backward deterministic method is used to determine the

logic values of these unspecified bits and justify the new specific states.

Cube intersection on the ON and OFF sets of the primary outputs or the next
state lines is used if some unspecified bits are to be set to some specific logic values
1 or 0. The fault can then be propagated to the primary outputs or the next state
lines. If this setting causes conflict in the unspecified bits betx;veen the true and faulty
states, the differentiation sequence doesn’t exist. Otherwise, when the unspecified
bits are on the primary inputs, we just set them to the required values. When the
unspecified bits are on the present state lines, we check if the present state is justified
from the next state of the last clock cycle. If the justification step needs to set some
unspecified bits in the present state lines of the last clock cycle to specific logic value

1 or 0, the same process is repeated on the last clock cycle. The new method will be

39

discussed in detail in Section 7.2.

4.2.5 Fault Simulation

The quality of a test is measured or quantified by means of fault simulation. When
a potential test sequence for a fault in sequential circuits is found, we fault simulate
the sequence to check if it detects this fault and other faults. The sequence is first fault
simulated by applying it to circuit models which have been altered slightly to imitate
the effects of faults. If the circuit output response, as determined by simulation,
differs from the response of the circuit model without the fault, then the fault is
detectable by the sequence. After the process has been performed for a sufficient

number of faults, an estimate

T = (no. of faults detected)/(no. of faults simulated)

is obtained which reflects the quality of the test sequence.

The fault simulation serves other purposes besides evaluating the test sequence

[24]; in this thesis it:

o confirms detection of a fault for which an automatic test pattern generator

(ATPG) claims that a successful test was found.

o computes fault coverage for a given test sequence.

Fault simulation is an important step in any ATPG system for both combinational
and sequential circuits. Up to now, some efficient fault simulation algorithms have
been developed. In general, there are three kinds of fault simulation methods, i.e.,

parallel fault simulation, deductive fault simulation, and concurrent simulation. In

40

sequential circuits, the fault appears in every clock cycle. Hence, the single fault

model becomes a multi-fault model.

In our system, we use a simple event-driven fault simulation. The algorithm of

fault simulation is shown in Figure 4.5.

4.2.6 Determination of Redundant Faults

The difficulty in test generation for sequential circuits lies not only in testing
difficult but testable faults, but also in the determination of redundant faults. Low
fault coverage on certain circuits does not mean that a test generation system for
sequential circuits is not suitable for the sequential circuit if we can show that the
detected faults are close to the maximum possible number of detectable faults. In
general, the determination of a redundant fault may need an astronomical amount
of CPU time, because we should exhaust all the search space before the fault is

considered as redundant.

There are two kinds of redundant faults in sequential circuits — combinational
redundant and sequential redundant. For combinational redundant faults, it is rela-
tively easy to detect them by using test generation for combinational circuits. The
sequential redundant fa,ult;s can be divided into two kinds: unjustifiable faults and
undifferentiable faults [11]. If none of the excitation states are justifiable for a fault,
the fault is said to be unjustifiably redundant. If there is at least a justifiable exci-
tation state, but none of the excitation states have a differentiation sequence for a

fault, the fault is said to be undifferentiably redundant.

The sequentially redundant faults can be found using theorem 1 in [21]. The
theorem states that if all excitation states are not reachable from the reset state in

the fault-free machine, the fault is sequentially redundant. We use the theorem for the

Input : A sequence of test vectors and a fault under test.
Output : The fault is detected by the sequence or not.

Procedure Multi_fault_simulator(a fault under test) {
for each clock cycle of test vector {
deduct signals values at the unfaulted circuit;
deduct signals values at the faulted circuit;
for each primary output {
if the unfaulted value is different from the faulted value
return that the fault is detected by the test sequence;

}
}

return that the fault can not be detected by the test sequence;

}

Figure 4.5. Fault simulation algorithm.

41

42

detection of sequentially-redundant faults as in [11]. We generate all combinational
excitation states for a fault. If all excitation states are unjustifiable, the fault under
test is redundant. A state is said to be unjustifiable if the number of fan-in cubes
determined in state justification is zero or if all the fan-in states of the state are

unjustifiable.

4.2.7 An Efficient Test Generation Algorithm for Sequential Circuits

The flow chart of the sequential circuit test generation algorithm based on the
ideas presented above is given in Figures 4.6. As a preprocess, the algorithm starts
with the extraction of the ON/OFF sets of the primary outputs and next state lines.
For each fault under test, the sequential circuit test generation algorithm is given in

Figures 4.7. The algorithm consists of:

Step 1. If the fault site is a node in the output cones of some primary outputs, the
corresponding output cones of these primary outputs are extracted, and go to step 2.

Otherwise, go to step 4.

Step 2. The transitive closure based test generation algorithm for pseudo-
combinational circuits is used to find a (new) combinational excitation vector. If
the combinational excitation vector has the present state part disjointed from the
present state part of all the previously generated test vectors, go to step 3 to do state
justification. If no such a new vector is found, the fault can’t be prépa,ga,ted to the

primary outputs directly, and go to step 4.

Step 3. State justification is used to find if the excitation state is reachable from
the reset state. If the justification sequence is not found, return to step 2. If found,

go forward to step 7.

Cover extraction

Choose a fault from fault list

43

Fault site in
Qutput cone of BQ

Transitive closure method

Fault site in next
tate cone of N

Transitive closure method

State justification

Justification
sequence found

Fault simulation
succeeds

ind a new
xcitation vector

State justification

Justification
sequence found

State differentiation

Differentiation
sequence found

Fault simulation
succeeds

A 4

Redun. fault

N //,/’///
All faults

tried

Figure 4.6. The flow chart of the test generation algorithm for sequential circuits.

44

Input : The sequential circuit and a faults to be tested.
Output : A test sequence for the fault if found.

Procedure Sequential_test_generator(a fault under test) {
/* try to propagate the fault to primary outputs */
if the fault site is a node in output cones of some primary outputs {
extract the output cones of these primary outputs;
while a new combinational excitation vector is found {
if justification sequence is found {
/* the fault is detected by the test sequence */
use the test sequence to fault simulate the fault;
if fault simulation succeeds
return the test sequence;

-}
}
}
/* try to propagate the fault to next state lines as it can’t be
propagated to primary outputs directly */
if the fault site is a node in next state cones of some next state lines {
extract the next state cones of these next state lines;
while a new combinational excitation vector is found {
if justification sequence is found {
if differentiation sequence is found {
/* the fault is detected by the test sequence */
use the test sequence to fault simulate the fault;
if fault simulation succeeds
return the test sequence;
}

}
}
}

redundant_fault_detect();
if the fault is redundant

return the fault is redundant;
else return the fault is aborted;

Figure 4.7. The algorithm of sequential circuit test generation.

45

Step 4. If the fault site is a node in the next state cones of some next state lines,
the corresponding next state cones of these next state lines are extracted, and go to

step 5. Otherwise, the fault is redundant and exit.

Step 5. The test generation algorithm for pseudo-combinational circuits is used to
find a (new) combinational excitation vector. If the combinational excitation vector
has the present state part disjointed from the present state part of all the previously
generated test vectors, go to step 6 to do state justification and state differentiation.

If no such a new vector is found, exit without a test.

Step 6. State justification is used to determine if the excitation state is reachable
from the reset state. If a justification sequence is not found, return to step 5. If
found, state differentiation is performed to propagate the effect of the fault to the
primary outputs. If a differentiation sequence is found, go to step 7. Otherwise, go

back to step 5.

Step 7. Fault simulate the test sequence. If it detects the fault, return with the

test sequence. Otherwise, go back to the previous step.

When a test sequence is found, the test sequence is used in simulating all undecided
faults in the fault list. All the faults that can be detected by the test sequence are

removed from the fault list.

4.3 Summary

Observations that initiated our research work in test generation for sequential
circuits have been introduced in this chapter. .A new approach which extends the
transitive closure algorithm to test generation f(;r sequential circuits has been de-
veloped. The eficiency of our method stems largely from the integration of several

new algorithms. Our approach involves extracting the ON/OFF sets of the primary

46

outputs and next state lines by adopting a new backward assignment method. The
transitive closure algorithm has been extended to perform fault excitation by dis-
abling all flip-flops in the sequential circuits. A novel backward deterministic method

for state differentiation is developed to make our approach more efficient.

CHAPTER 5

COVER EXTRACTION

In state justification, we find a justification sequence from the reset state to the
excitation state that propagates a fault to the outputs of the pseudo-combinational
circuit. In state differentiation, we also need to find a differentiation sequence from
the excitation state to the final state that propaga,teé the effect of the fault to the
primary outputs of the sequential circuit. In order to perform these two operations,
we adopt cube intersections on the complete or partial ON/OFF sets of the primary
outputs and next state lines. This process of extracting the ON/OFF sets of the
primary outputs and next state lines is called cover extraction. In this chapter, we
present in detail a néw and efficient backward assignment method to perform cover
extraction. This method has been successfully used by Yousif [30] to perform test

generation for combinational circuits.

First, we present the backward assignment rules (referred to as B-rules). Then
consistency and algorithm constraints are presented. Finally the new backward as-
signment procedure is presented. An example is used to illustrate the idea of the

backward assignment algorithm.

5.1 Backward Assignment Rules (B-rules)

The objective of the B-rules is to propagate the assignment of a logic value at the

output of a circuit to each node in the corresponding circuit cone during the backward

48

assignment procedure. Figure 5.1 defines the B-rules used in the algorithm. A logic
value is supposed to exist on a gate’s output node, and the logic value assignments

are carried out at the gate’s input nodes.

0 X X — 1 —
X 0 X — 0 1 — 1
X X 0 — 1 —
0 X X — 1 —]
X 0 X — 1 1 - 0
X X 0 — 1 —
0 ——V\\ 1 X X
0 0 X 1 X 1
0 _—_Z/ X X 1
1 X X 0
X 1 X 0 0 1
X X 1 0
0 1 0 1
0 1 0 1
1 ' 0
0 0 0 !

Pigure 5.1. The backward assignment rules (B-rules).

For example, consider the 3-input AND gate shown in Figure 5.1. First, we want
to find the OFF set of the output. From the K-map, we know that if any input of the
AND gate is 0, the output is 0. So when the output is set to 0, one of the inputs must

be 0. Three groups of inputs for the AND gate are obtained: (0, X, X), (X,0,X), and

49

(X, X,0). Similarly, we can obtain the ON set of the 3-input AND gate, as shown in
Figure 5.1, and one group of inputs is obtained: (1, 1, 1). If the output of the AND
gate is X (don’t care), all inputs are don’t care. In this case, we just skip the output

and leave the inputs to keep the original values.

5.2 Consistency and Algorithm Constraints

We use this backward assignment method to propagate loéic values at the primary
outputs and next state lines to the inputs of the circuit. As some nodes may have
multi-fanout nodes, these nodes may be assigned logic values more than once by their
multi-fanout nodes. Since different paths are not equal in length, some primary inputs
or nodes may be assigned earlier than others. Therefore, it is necessary to check at
each level of assignments for the primary inputs or nodes that have been assigned

new values.

The consistency constraint is proposed to ensure that the assignments are correct,
as shown in Figure 5.2. If these logic values are in conflict with each other, for
example, one fanout requires the node to be logic value 0, ana another fanout requires
the node to be logic value 1, the assignment should be discarded. If logic value v,
assigned by one fanout implies logic value v, assigned by another fanout, we should

choose the consistent logic value v;.

0 1 — conflict —

(a) (b) (c)

Figure 5.2. The consistency constraint.

50

The combination of the inputs may exceed one, for example, in the OFF set of the
3-input AND gate, three groups of inputs are obtained. In this case, every time, one
group of assignments is used as the outputs of backward stage gates. Therefore, with
the increase of the circuit’s depth, the number of assignments for each node per level
may increase dramatically. We use logic minimization to compress the assignments
after the number of assignments reach a limit. This method assures that we obtain

complete ON/OFF sets. Also it makes the storage of ON/OFF sets memory efficient.

5.3 The Backward Assignment Procedure

A high level description of the cover extraction algorithm is shown in Figure 5.3.
For each output, the B-rules described earlier are used to extract the ON/OFF sets

of the primary outputs and next state lines.

Input : A sequential circuit’s netlist. _
Output : The ON/OFF sets of the primary outputs and next state lines.

Procedure cover_extract() {
for each primary output and next state line {

arrange the primary output or next state line in the list of
node assignments;

assign logic value 0 or 1 to it;

while the list of node assignments is not empty {
for each node in the list of node assignments {

execute the backward-assignment function;

}

refresh the list of node assignments;
}
}
return the ON/OFF sets of the primary outputs and next state lines;

}

Figure 5.3. Cover extraction algorithm.

51

To illustrate the idea of cover extraction, we use a simple sequential circuit s27
from the ISCAS’89 benchmarks shown in Figure 2.5. The algorithm cover-eztract
first selects an output node and assigns it logic value 0 or 1. Assume that cover_extract
arbitrarily selects the next state line G11 and extracts the ON set (assign logic value
1). We need only consider the next state cone of G11, as shown in Figure 2.7. Node
(11 now represents the only currently assigned node in the node list of the assignment
and is assigned to logic value 1. According to the B-rules, both inputs of gate G11 are
assigned logic value 0. At this point, a new level of assignment list includes two nodes
G9 and G5. As node G5 is an input, its value is left unchanged and removed from the
node list. From node G9, the algorithm assigns values (1, X) and (X, 1) to nodes G15
and G16. Nodes G15 and G16 are the two elements in the node list at this level of
assignment. Starting at node G15 then node G16, cover_extract assigns logic values
to nodes G12, G8 and G3. As node GS8 is assigned twice, the consistency constraint
is used. First, the first assignment (1, X)) for nodes G15 and G16 is considered. Node
G15 requires nodes G12 and G8 to have the assignments (1, X) and (X,1). As node
(316 has logic value X, we can omit it and nodes G3 and G8 keep the logic value X.
When these assignments are combined, nodes G12, G8 and G3 will have two groups
of assignments (1,X — X, X) and (X,1 — X, X). Here, 1 — X means that node G15
requires node G8 to be 1 and node G16 requires node G8 to be X, etc. According to
the consistency constraint, we should set node G8 to logic value 1. The assignments
for nodes G12, G8, and G3 are (1,X,X) and (X,1,X). Similarly, from the second
assignment (X,1) for nodes G15 and G16, the assignments for nodes G12, G8 and
G3 are (X,1,X) and (X, X,1). So there are four assignments for node G12, G8
and G3: (1, X,X), (X,1,X), (X,1,X), and (X, X,1). It is obvious that the second

and the third assignments are the same. After logic minimization, only three groups

52

of assignments (1,X,X), (X,1,X), and (X,X,1) remains for nodes G12, G8 and
G3. The process repeats until all values at the intermediate nodes are propagated to
the inputs by using the B-rules. The final ON sets of G11 are (X,0, X, X, 0, X,0),
(0,X,X,X,0,1,X), and (X, X, X,1,0, X, X) for the inputs G0, G1, G2, G3, G5, G6
and G7. Figure 5.4 shows how the backward assignment procedure assigns logic

values to the circuit nodes.

The obtained ON/OFF sets of the primary outputs and next state lines may
be redundant. So after obtaining the ON/OFF sets, logic minimization is used to
minimize the ON/OFF sets. The ON/OFF sets are represented as bit vectors which

are similar to those used in ESPRESSO [4].

5.4 Summary

In this chapter, the backward assignment rules (B-rules) are presented. They
propagate the assignment of logic value at the output of a pseudo-combinational
circuit to each node in the corresponding circuit cone. The consistency constraint is

proposed to ensure that the assignments are correct. Logic minimization is used to

compress the ON/OFF sets.

53

Gl
G7

>

Lo
@
=

G7

G6

(c)

Figure 5.4. The next state cone of Gl1 in circuit S27 shows how the backward
assignment procedure assigns logic values to the circuit nodes.

CHAPTER 6

PSEUDO-COMBINATIONAL CIRCUIT TEST
GENERATION

To generate a test sequence for a fault in sequential circuits, we first generate
a combinational test vector that propagates the effect of the fault to the primary
outputs or the next state lines. In this chapter, we extract a formula that defines the
structure of the related circuit and then use a transitive closure algorithm to satisfy

the formula.

6.1 Circuit Representatioh

When all flip-flops in a sequential circuit are disabled, the sequential circuit be-
comes a pseudo-combinational circuit. The digital combinational circuit can be rep-

resented as a set of unary, binary, ternary, and M-ary (M > 3) felations.

6.1.1 Boolean Difference

In the 1960s and early 1970s, an algebraic or symbolic manipulation method called
Boolean difference, differing from structural methods, appeared. This method did not
achieve the popularity of the structural methods because of its complexity of compu-
tation. Since the test pattern generation using Boolean satisfiability was introduced
in [19], this method has receiveci more and more attention. First, the method of

Boolean difference is described briefly.

55

Given a function f(z) = f(z1, 22, ..., i, .., T,) which describes the behavior of a
combinational circuit, where zi,...,2, are the inputs of the circuit, we define the

Boolean difference of f(z) with respect to its sth input variable as

J |
Eg‘- = f(@1y e, Ty v Tn) D (@15 00, Ty ooey Tn) (6.1)

Then

N .
] - o

is the necessary and sufficient conditions of fault z; stuck at a detected by vector
T, where a = 1 or 0, X} = X;, and X? = X;. Equation 6.2 implies that the fault
under test is first excited to the logic value opposite to the stuck-at value, and then
the change of the logic value at the fault location can be observed at the primary
outputs. In short, test generation can be viewed as a search of an n-dimensional

0-1 space defined by the variables z; (1 < ¢ < n) for points that satisfy the above

equation.

6.1.2 Transferring Circuit into CNF

At first, the circuit is represented as the conjunctive normal form, i.e., CNF (also
known as product of sums). As an example, a two input AND gate shown in Figure

6.1 is used to illustrate how to get CNF formula from a circuit.

The formula of the AND gate is

Z=X-Y (6.3)

»
N
»
N

>

H

x—-——
—z o2z
Y

Figure 6.1. The CNF formulae of basic gates.

56

57

and it is logically equivalent to the following CNF formula:

CNF=(Z+X)-(Z+Y)-(X+Y + 2) (6.4)

It is obvious that if and only if the values of the variables are consistent with the

truth table of the AND gate, Equation 6.4 equals to 1.

Figure 6.1 illustrates the CNF formulae for the basic gates (only one or two
inputs). In the CNF formula, one sum is called a clause and each term in a clause
is called a variable. Clauses with one, two, or three variables are unary, binary, or
ternary clauses, respectively. It is convenient to extend the basic CNF formulae in
Figure 6.1 to gates which have more than two inputs. For example, the CNF formula

for a NAND gate with three inputs X, Y, and W is shown in Figure 6.2.

X —(Z2+X) ~

(Z+Y) -
T e - z
- (Z+X+Y4+W)

Figure 6.2. The CNF formula of 3-input NAND gate.

Considering the circuit example S1 shown in Figure 6.3. By extracting each
formula for each gate in the circuit using the above method, the CNF formula for the

output of the circuit is:

ONF = (D+4)-(D+B)-(D+A+B):(B+C)-(B+0)-(F+ D)-(F+ E)-(F+D+T)
(6.5)

We will derive a test for the fault D s-a-0. The faulted circuit is produced by

58

Figure 6.3. Formula extraction of a simple circuit S1.

copying the original circuit, renaming all related variables, and disconnecting the
faulted site (all faulted signals are labeled with ”’”), as shown in Figure 6.4. Because
of the fault D s-a-0, the signal D.is always at logic value 0 no matter what values
are at the inputs A and B. We disjoint the signal D to two signals: unfaulted D and
faulted D'. In order to detect the fault, D’ has logic value of s-a-0 and D must have

logic value 1.

A
B (Fr+D7)
(F*+E) - _ 14
(F'+D’+E)
E
c o—

Figure 6.4. Formula extraction of the simple circuit S1 with a fault.

As the unfaulted and faulted circuits have the same behavior except those nodes
that are affected by the fault, only the nodes that lies on a path between the fault site

and a circuit output need to be renamed. The CNF formula for the faulted circuit is

59

C’NF:(E+C’)'(’E+C");(7)—')-(F’+D’)-(F'+E)-(77‘7+T)7+F) (6.6)

It is not necessary to include the OR gate D in the CNF formula for the faulted

circuit because of the implied discontinuity at the fault site.

According to Boolean difference, in order to detect the fault at D, the unfaulted
and faulted circuits are put together and an XOR gate is added to their outputs. The
final circuit is shown in Figure 6.5. BD is the output of the XOR gate. For the fault
D s-a-0 to be covered, the output of the XOR gate should be 1. If the CNF formula
equals to 1, a solution is found. Otherwise, no test exists. The formula of the final

circuit is:

CNF=(D+A)-(D+B)-(D+A+B)-(E+C)-(E+C)-(F+D)-
(F+E)-(F+D+E)-(D)-(F'+D)-(F +E)-(F+D +E)- (BD)-

(F+F' +BD)-(F+F +BD)-(F+F +BD)-(F+ F + BD) (6.7)

The problem of combinational circuit test generation can now be formulated as
one of finding a consistent signal logic assignment which satisfies the above formula.
The transitive closure method which is used to solve the problem will be presented

in the next subsection.

6.1.8 Transitive Closure Method

On the basis of the CNF formula of the circuit, the transitive closure of the circuit
is obtained in this section. As an example, consider the AND gate shown in Figure

6.1. Its CNF formula is given in Equation 6.4. We can transform the relationship

60

A
B
P
c o
BD

A
B (Fr+D’) -

(FI +E) . F’

(Fr +D +EF)

Figure 6.5. The XOR, of the unfaulted and faulted circuits should be 1.

ONOPO
_, 57

ogoRo

Figure 6.6. Implicatioh graph of an AND gate.

61

Figure 6.7. Implication graph of the example circuit S1.

into an implication graph, as shown in Figure 6.6. Where — donates implication.
X — Z means that if X = 0, Z = 0, etc. This is consistent with the truth table of
the AND gate. When X = 0,‘or Y =0, Z must be zero. When Z =1, X and Y

must be 1.

In fact, the implication graph can be obtained from unary and binary clauses. For
example, there are two binary clauses (Z + X) and (Z +Y) in the AND gate. When
the formula is satisfied, each clause should be satisfied (equal to 1). For instance, to
meet the clause (Z + X), when X = 0, Z should be 0; when Z = 1, X should be 1.
From this clause, two implications are obtained: X — Z, and Z — X. The ternary
or M-ary clauses can not be transfered to the implication form. But if we know or
assume the logic values of one or more variables in these clauses, these clauses become

binary clauses.

The implication graph and transitive closure of the simple circuit S1 with the fault
D s-a-0 in Figure 6.3 are shown in Figure 6.7 and Table 6.1. In Table 6.1, ’1’
indicates that there is an edge and ’0’ indicates no edge between two signal nodes.

For example, there is a ’1’ at the row of A and the column of D, so there is an edge

from A to D.

As we discussed above, the implication graph can only be used to express unary and

binary clauses, so is transitive closure. But besides these unary and binary clauses,

62

D OO O oo

Q
coococoo
Q

flheococooo
RRoooo~o
_IDOOOOOO
Qoocoococoo
Rk ocoococoo
Foocooco—o
RMoococo—~o
EUOOOOI
RNeoocoooo
Qrro—~ooo©
fRoocoococoe
VDooococo o

Moococoocoo

Table 6.1. Transitive closure of the simple circuit S1.

Moocoooo
[Cococooe

JTooocooo

o

o

o

i

o

o

o OO

[

o

O H OO O

oo O oo

(e e i e i e B o

oo oco o

O OO OO

e B e S en B on B e}

o

o

o

(]

(o=l

o

o O O

AZBFC?DEEFFFUWF?MW

Table 6.2. SAT representation of ternary for the simple circuit S1.

BD

FI

A B C D E F D

-1
-1

-1

-1
-1

-1

1
1
-1
-1

1
-1
-1

1

-1
1
-1
1

63

there are still some ternary and M-ary (M > 3) clauses in the CNF of circuit. We use
the satisflability (SAT) form to express and save these ternary and M-ary (M > 3),
as shown in Table 6.2. Where, '1’ indicates that this is a positive variable and ’-1’

negative variable. For example, the first row can be expressed as (A + B + D).

Many algorithms and approaches [13, 14, 16, 15] have been developed to solve the

satisfiability problems.

With the combination of Tables 6.1 and 6.2, we can describe the circuit S1 with

the fault D s-a-0 completely.

6.2 Efficient Transitive Closure Computation

Efficient transitive closure computation is introduced in this section. Signal de-

pendencies are derived, and several methods are used to prune the search tree.

6.2.1 Signal Dependencies

Two kinds of signal dependencies are used: fixation and contradiction. If a path
¢ — T is found in the implication graph, it implies that = should be 0. Similarly, if
a path T — z is found, z should be 1. If both paths 2 — 7 and T — z are present
in the implication graph at the same time, the contradiction exists and no solution
can be found. By using this method, we can find if a variable is set to a value or
not. So instead of obtaining the transitive closure of the implication graph, we just
try to determine if there is a path between a variable and its complement. Here
we use a breadth-first search algorithm to find a path between a variable 2 and its
complement Z. The algorithm of signal dependency computation is quite simple, as

shown in Figure 6.8.

If a contradiction occurs in the signal dependence, it means that some variable(s)

64

Input : The directed graph G = (V, E) and the assignment array of signals.
Output : The signal dependencies of the graph.
Procedure transitive_closure() { !
for each variable v and its complement T {
if a path from v to 7 is found {
if v is assigned to 1 {
/¥ contradiction */
return no solution;

}

else v is assigned to 0;
}
if a path from 7 to v is found {
if v is assigned to 0 {
/* contradiction */
return no solution;
}
else v is assigned to 1;
}
}

return the signal dependencies of the implication graph;

}

Figure 6.8. The algorithm of signal dependency computation.

65

must be simultaneously assigned to logic values 0 and 1. In this case, there is no
solution for this variable assignment. If signal values, which have been determined,
satisfy the Boolean equation, the solution is found. Otherwise, a partial set of sig-
nal values determined may reduce some of the ternary relations to binary relations.
These new binary relations are included in the implication graph and new signal de-
pendencies should be determined. The process continues until no ternary or M-ary

relations reduces to binary relations.

6.2.2 Pruning the Search Tree

According to our experience, the more constraints the variables have, the smaller
the search tree. This is because when some variables are assigned to logic value 0
or 1, their relations with other variables may help us to determine other unassigned

variables’ logic values easily.

If a fault can propagate to one or more outputs of the circuit, there must be at
least one sensitized path (similar to D algorithm) from the fault site to the output.
In this path, the unfaulted and faulted values must be different. Suppose that if we
add an XOR gate whose inputs are the unfaulted and faulted values, the output of
the XOR gate must be one. The concept is similar to the active line variables used by
others [19]. Let X be the unfaulted value, X' the faulted value, and EX the output
of XOR gate whose inputs are X and X’, we obtain these two clauses in ternary
relation (EX + X + X')- (EX + X + X'). If this path is active, that means EX = 1,

X and X' must be different.

If a sensitized variable A has a single output, the clause (EX4 + EXx) is added,
which means that if A is the sensitized variable, X is sensitized. Also, if the sensitized

variable A have two outputs X and Y, then the clause (FX4 + EXx + EXy) should

66

j— X
X a
B—-——
Y

(a) . (o)

Figure 6.9. (a). If A is sensitized, X must be sensitized: (FX4 + EXx). (b). If A is
sensitized, either X or Y must be sensitized: (EX4 + EXx + EXy).

be added. That means that if the variable A is sensitized, either the variable X or Y

must be sensitized. Figure 6.9 shows two examples of these clauses.

On the other hand, some vertices in the directed graph may belong to a strongly
connected component. So these vertices can be considered as one vertex. When the
value of a vertex is obtained, the other vertices in this strongly connected component

can be easily determined.

Because of the duality of the implication graph, if some vertices belong to a strongly
connected component, the corresponding complemented vertices must belong to an-
other strongly connected component. For example, in the circuit S1, there is a path
from C to F and a path from E to C. Vertices C and F belong to a strongly con-
nected component, and their complemented vertices C and E must belong to another
strongly connected component. After transforming all implication relations with ver-
tices C and C to vertices E and E, the vertices C and C can be deleted from the
implication graph. By finding strongly connected components, the implication graph
is condensed. The algorithm of finding strongly connected components in a directed

graph can be found in [3].

Consider the simple circuit S1 with the fault D s-a-0 shown in Figure 6.4. In
order to excite the fault, the logic values of D and D’ must be different. The faulted

value D' is 0, so the unfaulted value D should be 1. A clause (D) is added to the

67

formula in Equation 6.7. D has one fanout F' and an XOR gate has been added to
the unfaulted line F' and faulted line F'. After considering the sensitized path, the
CNF formula is

CNF=(D+A4)-(D+B)-(D+A+B)-(E+C)-(E+C)-(F+D)-
(F+E)-(F+D+E)-(D')-(F'+D")-(F'+E)-(F'+D +E)-(BD) -

(F+F +BD)-(F+F' +BD)-(F+F' +BD)-(F+F +BD)-(D) (6.8)

From the clause (D'), we know that, in order to meet the CNF formula, D’ must
be set to 0. We can use the logic value of D’ to simplify the CNF formula. As the
clause (F"+ D’ + E) is satisfied due to the logic value of D', we omit the clause. The
clause (F'+ D') becomes (F"). From the new clause (F'), we know F' must be set to
1. We use the logic value of F’ again to simplify the formula. The process continues
until the formula can not be simplified any further. The final simplified CNF formula

is:

CNF =(A+B)-(E)-(D")-(F)-(F)-(BD)- (D) (6.9)

There are no ternary clauses in the formula. The corresponding transitive closure

is shown in Table 6.3.

6.3 Combinational Circuit Test Generation Algorithm

The test generation algorithm for combinational circuits based on the ideas pre-

sented above is as follows.

1. Derive the CNF representation of the combinational circuit with the fault. The

68

LLooo

Rooco
Reooo
A ooo
Mo oo
Mo—o

< oo o

Table 6.3. Condensed transitive closure of the simple circuit S1.
E
0
0
0

<ocoo

O O O

OO O

O O O

(e e Y e)

o O

oo o

o OO

o O o

-~ O O

o

o

o

(el)

o O

o o

[)

o

o

o

(o)

0

0

o

o

o

OO O

o o o

AZB?D?EFFFDFFFMW

69

unary and binary clauses are saved in the implication graph, and ternary and M-ary

(M > 3) clauses are saved in the satisfiability form (SAT form).

2. Determine the transitive closure of the implication graph by using signal depen-
dencies. If contradiction is found, the fault is combinational redundant. If variable
values satisfy the Boolean equation, a solution is found without backtracking. Oth-
erwise, only a partial set of variables are determined. These determined variables are

used to reduce some ternary and M-ary (M > 3) clauses into binary clauses.

3. Find strongly connected components in the implication graph. A condensed

implication graph is obtained.

4. Make a heuristic decision on the unassigned variables. Here we choose a decisive

variable which is related to most ternary clauses.

5. If the pre-assigned backtrack limit is reached, we stop picking new variables,
and go back to the previous decisive variables and assign the next logic value combi-
nation to them. Otherwise we pick the new variable determined in step 4 and assign
the variable a value. The assignment may reduce some ternary relations to binary

relations. These new binary relations are included into the implication graph.

6. If the variable assignments satisfy the Boolean equation, return the test vector.
If a contradiction does not occur and the assignments satisfy a partial set of Boolean
equation, we continue to do step 4. If a contradiction occurs, it means that the as-
signment does not satisfy the Boolean equation. Then we assign the decisive variable
to the next value and repeat step 6. If there are no decisive variables left, we have

implicitly exhausted the search space and no test vector is found.
The flow chart of the algorithm is shown in Figure 6.10.

For example, consider the transitive closure shown in Table 6.3. Two variables

Extract formula from
circuit with a fault

. A
Transitive closure
computation

Unassigned
ariable

Push variable to stack

Y
Assign a value to
variable at top of stack

N
A\ .
Transitive closure .)
computation Contradiction
Y
Y

Assign next assignment
to variables at stack

Redun.
fault

Figure 6.10. The flow chart of the combinational test generation algorithm.

70

71

A and B are unknown and one clause (A + B) is needed to be satisfied. Suppose
that we choose A first, and set it to logic value 0. A path from A to A is added to
the transitive closure. We derive new signal dependencies and find a path from B to
B. So B should be at logic value 1 and the clause (A + B) is satisfied. As C and
E belong to a strongly connected component, and E has logic value 1, so C should
be logic value 0. The whole CNF formula is satisfied, and .we find that the vector

(0,1,0) for A, B, and C is an excitation vector for the fault D s-a-0.

6.4 Summary

The transitive closure method for generating test patterns for single stuck-at faults
in combinational circuits is introduced in this chapter. It extracts a CNF formula from
the model of circuit incorporating necessary conditions for fault activation and path
sensitization, and then determines signal values which sa,tisfy the formula. Several.
methods are used to prune the search tree. Instead of computing the entire transitive
closure, we only concentrate on determining the signal dependencies of each variable

and its complement.

CHAPTER 7

STATE JUSTIFICATION AND STATE
DIFFERENTIATION

In three-phase ATPG, cover extraction is pefformed as a preprocess. The ON /OFF
set information is stored in the bit’s form. Test generation for sequential circuits is
divided into three phases: combinational excitation vector generation, state justi—'
fication, and state differentiation. In Chapter 5 and 6, we have described cover
extraction and the pseudo-combinational test generati;)n algorithm used in our sys-
tem. Here we are going to describe state justification and state diﬁ‘erentié,tion in

detail.
7.1 State Justification

After an excitation state is found to propagate the fault to the primary outputs or
the next state lines, state justification attempts to find a justification sequence from
the reset state to the excitation state Ey. If the excitation state covers the reset state,
the fault can be excited from the reset state, and state justification is not needed.

Otherwise, state justification is used to justify the excitation state.

At first, the state justification algorithm tries to find a single-vector justification
sequence from the reset state to the excitation state. The entire fan-in states E; can
be obtained by cube intersections. The cubes of fan-in states are chose1‘1 according to
the excitation state. If a present state line in the excitation state has logic value 1(0),

the ON set (OFF set) of the corresponding next state line is picked. If a present state

73

line has logic value X, the next state line is ignored and nothing is picked. The cube
intersection of the ON and OFF sets of the next state lines gives the fan-in states
of the excitation state Eo. The ON/OFF sets of the next state lines include both
primary input and present state parts. The present state vectors are used to check if
they cover the reset state and to get their fan-in states if needed. The primary input
véctors are used to supply test sequence if the fault is detected. If the present states

cover the reset state, the single-vector justification sequence is obtained.

If the single-vector state justification fails, we try to find a two-vector justification
sequence. This is performed by attempting to justify the fan-in states E;, via a
single vector justification sequence. If the state justification algorithm succeeds, a
two-vector justification sequence is found. Otherwise, a three-vector justification
sequence is attempted. The process is repeated for the fan-in states of the state

currently justified.

When we obtain the fan-in states, these states should be disjointed from the pre-
viously used states to prevent cycles. The state justification algorithm is shown in
Figure 7.1. Figure 7.2 shows the algorithm of obtaining fan-in states of present

state.

Consider the fault G2 s-a-0 in the circuit s27 shown in Figure 2.5. One of the
excitation vectors is (X, X, 1, X, X, X, 1) for GO, G1, G2, G3, G5, G6, and G7. So
the corresponding excitation state is (X, X,1) for G5, G6, and G7. The states of
G5 and G6 are the logic value X, so we can ignore them. As line G7 is at logic
value 1, we pick up the ON set of G13. The ON set of G13 is (X,1,0,X,X, X, X)
and (X, X,0,X, X, X,1) for GO, G1, G2, G3, G5, G6, and G7. From the first vector
in the ON set, we know that when G1 and G2 have logic values (1,0), G13 has a

logic value 1. In the next clock cycle, G7 would be logic value 1. As the reset state

Input : The excitation state State and ON/OFF sets of next state lines.

Output : A justification sequence from reset to State if found; else

return NOT-FOUND.

Procedure Justify_state(State) {
/* put the primary input part of State into PI Stack */
push State into PI Stack;
get_fanins(State, Fanins);
for each fan-in state Fanin in Fanins {
if Fanin covers the reset state {
return the state justification sequence saved in PI Stack;
}

}

for each fan-in state Fanin in Fanins {
Justify_state(Fanin);
if the justification sequence is found {
return the state justification sequence;
}

}
Pop State from PI Stack();

return (NOT-FOUND);

Figure 7.1. State justification algorithm.

74

75

Input : The present state State and ON/OFF sets of next state lines.
Output : All fan-in states of State except those included in Exist-state
(Used-state).

Procedure get_fanins(State, Fanins) {
first.mark = TRUE;
for each present state line that isa 1 or 0 {
if first_mark is TRUE {
Fanins = ON or OFF set of corresponding next state line;

first_mark = FALSE;
}
else
Fanins = Fanins U (ON or OFF set of corresponding next state line)
}

/* do sharp produce to remove used cubes from Fanins */
sharp_product(Fanins, Exist_state);

/* logic minimization */

minimization(Fanins);

add_fanins_to_exist(Fanins);

Figure 7.2. The algorithm of obtaining fan-in states of present state.

76

(0,0,0) implicates the states of G5, G6 and G7 (X, X, X) in the first vector of the
ON set, the excitation state is reachable from the reset state. Table 7.1 gives the
initial justification process. Where 0/1 means that 0 is the unfaulted value and 1 is

the faulted value, etc.

Table 7.1. Initial state justification process.

| primary inputs I present states | next states PO

gates GO|GL| G2 |G3|Gh|G6|GT|GLl0| Gil | G13 | G17
justification vector [X | 1 |0/0| X | X | X | X | X | X [1/1}| X
excitationvector | X | X |1/0| X | X | X | 1 X X (o/1}] X

As the sequential circuit starts from the reset state, we should set the initial states
of G5, G6 and G7 to (0,0,0). After fault simulation, the justification sequence is a

valid justification sequence. The final state justification is shown in Table 7.2.

Table 7.2. Final state justification process.

primary inputs present states next states | PO |

gate GO|GL| G2 |G3|G5|G6|GT7|Gl0| Gl | G13 | G17
justification vector [X | 1 j0/0| X | O [0 | O | X | X |1/1| X
excitationvector | X | X |1/0| X | X | X | 1 | X X 10/1] X

7.2 State Differentiation

In our algorithm, the flip-flops are disabled and the sequential circuits are converted
into pseudo-combinational circuits. For pseudo-combinational circuits, faults can be

‘divided into three kinds:

7

1) The fault site is a node in the output cones of the primary outputs, and a

combinational excitation vector can be found for the fault.

2) The fault site is not a node in any output cone, but is a node in the next state

cones of the next state lines.

3) The fault site is a node in the output cones of the primary outputs, but a
combinational excitation vector which propagates the fault to the primary outputs

can not be found.

Consider the circuit shown in Figure 7.3. The fault C s — a — 0 can propagate
to the primary output K and belongs to the first kind of fault. For the fault FF — [
s—a—0,as I is not a node in output cone of primary output K, the fault belongs to
the second kind of fault. For the fault B s—a—1, though B is a node in output cone of
primary output K, the fault can not propagate to the primary output k£ directly. We
should propagate the fault to the next state line I (the effect of the fault on I would
propagate to the present state line J in the next clock cycle), and then propagate the
effect of the fault on J to the primary output K. So the fault belongs to the third

kind of fault.

For the latter two kinds, we should propagate these faults to the next state lines
first by using the transitive closure based test generation method for combinational
circuits. If a combinational excitation state is found and justified, state differentiation
is used to propagate the effects of these faults on the next state lines to the primary
outputs. If the stats differentiation algorithm succeeds, a differentiation sequence
is found. Otherwise, the combinational excitation vector can not constitute a test

sequence for the sequential circuit.

When the excitation vector propagates the fault to the next state lines, the true

78

O__
D L\ G
PI —
A
E PO
sal K
PI —am—4
B
sal

_\
C ___’/ sal T
[o
J

PS Dff NS

Figure 7.3. Three kinds of faults defined in our algorithm.

79

state ST is the state in the fault-free circuit and the faulty state ST is the state in the
faulty circuit. S7 and ST are guaranteed to differ in at least 1 bit. Since the effect
of the fault has been propagated to S, we can assume that ST and ST are states in
the fault-free circuit. The purpose of state differentiation is to find a differentiation
sequence which causes ST and S¥ to have at least a different bit at the primary

outputs.

To make the program more time-efficient, we use a random differentiation sequence
as a first step. Some random vectors are added to the sequence starting from the reset
state to the excitation state, and the unspecified primary inputs in the whole sequence
are assigned random logic values. The whole sequence is used to fault-simulate the
~ fault. If the sequence can detect the fault, then, a test sequence is found. Otherwise,

a deterministic state differentiation method is used.

The idea of deterministic state differentiation is described as follows. According to
the ON and OFF sets of every primary output, we search for a primary input vector
which exists in both of the ON and OFF sets where the present state parts of the
ON (or OFF) set and the OFF (or ON) set cover S¥ and ST separately. If such a
primary input vector is found, the primary input vector constructs a single-vector
differentiation sequence. The algorithm of single-vector state differentiation is shown

in Figure 7.4. Otherwise, multi-vector differentiation sequences should be searched.

In multi-vector state differentiation, first, we try to find a two-vector differentiation
sequence, then a three-vector sequence and so on. We attempt to propagate the true
state 57 and the faulty state S§ to the next state lines by using a similar method
as the one used in single-vector state differentiation. Instead of using the ON/OFF
sets of the primary outputs in single-vector state differentiation, the ON/OFF sets

of the next state lines are used. If the new true and faulty states are not found, quit

Input : The true and faulty states ST and S¥, and the ON/OFF sets of
primary outputs.
Output : A single-vector differentiation sequence if found; else

return NOT-FOUND.

Procedure Single_vector_state_differ(ST, SF) {
for each primary output {
/* find a primary input vector existed in the ON and OFF sets of
the output */
PIvector = find . PI(ON-set, OFF-set);
if PI_vector is found {
/* judge if ST implies the ON-set and ST implies the OFF-set */
Judge_implication(S7, ON-set, S¥, OFF-set);
if implication is TRUE {
return(PLvector);
}
/¥ judge if ST implies the OFF-set and ST implies the ON-set */
Judge.implication(ST, OFF-set, S¥, ON-set);
if implication is TRUE {
return(PI_vector);
}
}
}
return (NOT-FOUND);

}

Figure 7.4. The algorithm of single-vector state differentiation.

80

81

without solution. Otherwise, the single-vector state differentiation method is used to
find single-vector differentiation sequence on the new true and faulty states (ST, ST)
again. If found, a two-vector differentiation sequence is constructed. Otherwise, a
three-vector differentiation sequence is attempted. The algorithm of multi-vector

state differentiation is shown in Figure 7.5.

When the new true and faulty states are found, these states are disjointed from the

used true and faulty states. Thus, cycles during state differentiation are prevented.

As test generation for combinational circuits produces an excitation vector with
as many don’t care entries in the primary inputs and present state lines as possible,
if we just use the state differentiation algorithm described above, in most cases, we
may not find a differentiation sequence even if it exists. This is because it is necessary
to set the unspecified inputs in the test sequence to either 1 or 0. But some primary
inputs and present states obtained by the transitive closure, state justification, and
state differentiation may have some don’t care entries. So in order to detect the fault,

these don’t care entries in the primary inputs and states have to be determined.

In STEED [11], all pogsible assignments to the unspecified inputs have to be made
before it can be concluded that a test for the fault under consideration does not exist.
There exists 2" possible assignments for n unspecified inputs. Considering that each
possible assignment may need to perform state justification, the real search space is

much larger than 2",

We propose a new backward deterministic method for state differentiation. This
method can help in finding the differentiation sequence and determining the don’t
care entries. When we attempt to propagate the fault to a primary output or next

state line, if some present state lines in the current clock cycle are don’t care entries,

82

Input : The true and faulty states ST and S¥, and the ON/OFF sets of
primary outputs and next state lines.
Output : A multi-vector differentiation sequence if found; else

return NOT-FOUND.

Procedure Multi_state_differ(S7, SF) {

/* find all (new) excitation vectors fanouts which propagate ST and S¥
to the next state lines */

get_next_differ_state(S7, SF, fanouts);

for each fanout ¢ in fanouts{
/¥ create new true and faulty states */
create_new_states(fanout[i], S¥, SF);
/* use single state differentiation method */
Single_vector_state_differ(S7, S7);
if found return (FOUND);

}

for each new true and faulty states S¥ and SF in fanout i{
Multi_state_differ(SF, SF);
if found return (FOUND);

}
return (NOT-FOUND);

}

Figure 7.5. The algorithm of multi-vector state differentiation.

83

while the same bits in the ON and OFF sets of the primary output or next state
line are deterministic logic values, e.g., 0 or 1, we know that, in order to obtain a
differentiation sequence, these present state lines must be set to the deterministic logic
values. After we set these present state lines to the same deterministic logic values as
in the ON and OFF sets, a new problem arises, i.e., whether the new specific present

state is still justified from the previous clock cycles or not.

To solve th¢ problem, in the backward deterministic method, we present a revised
state justification algorithm to justify the specific present state. Because we have
found a justification sequence from the réset state to the excitation state, in the
revised state justification algorithm, we just need to specify some don’t care entries
in the justification sequence. When the specific present state requires that some
of the don’t care entries of the present state lines of the last clock cycle be set to
deterministic logic values, the revised state justiﬁcatioﬁ algorithm is used again to
justify the modified present state of the last clock cycle. The process continues until
no more states are needed to be justified. If the specific present state is reached from
the previous clock cycles, the state differentiation process continues. Otherwise, a

differentiation sequence cannot be found for the true and faulty states.

When some don’t care entries of the primary inputs are needed to be set to specific
logic values, we just set them according to the ON/OFF sets and justification is not
required. The backward deterministic algorithm for single-vector state differentiation

is shown in Figure 7.6.

When the backward deterministic algorithm for single-vector state differentiation
fails to find a single-vector differentiation sequence, we use a backward deterministic
algorithm for multi-vector state differentiation. The algorithm is similar to the multi-

vector state differentiation algorithm shown in Figure 7.5. The only two differences

84

Input : The true and faulty states ST and S¥, and the ON/OFF sets of
primary outputs.
Output : A single-vector differentiation sequence if found; else

return NOT-FOUND.

Procedure Single_vector_back_state_differ(S7, SF) {
for each primary output {
/* find a PI vector existed in the ON and OFF sets of the output */
PI_vector = find_-PI(ON-set, OFF-set);
if PI_vector is found {
/* get intersections: STN ON-set, and S¥N OFF-set */
intersections(S7, ON-set, S¥, OFF-set);
if both intersections are not empty {
/* judge if some bits in ST and S¥ are X, while the same bits in
both intersections are deterministic values */
if some bits are needed to be set to specific values {
/* set these bits to the specific values, and then justify the new
deterministic state is reachable from the previous states */
set_new_state();
new_state_justification();
if new state is reachable
return(PIvector);
}
else return Pl_vector;
} R .
/* get intersections: STN OFF-set, SN ON-set */
intersections(S7, OFF-set, ST, ON-set);
if both intersections are not empty {
if some bits are needed to be set to specific values {
set_new_state();
new_state_justification();
if new state is reachable
return(PIl_vector);
}
else return Pl vector;
}
}
}
return (NOT-FOUND);
}

Figure 7.6. The backward deterministic algorithm for single-vector state differentia-
tion.

85

are:

e The backward deterministic algorithm for single-vector state differentiation shown
in Figure 7.6 is used to replace the single-vector state differentiation algorithm

shown in Figure 7.4.

e In order to propagate the fault to the next state lines, if some don’t care bits
in the state are needed to be set to specific values, we set them to the required
values and then justify if the new specific state is reachable from the previous

states.

To explain the idea of the backward deterministic state differentiation, we continue
to consider the fault G2 s-a-0 in circuit 827 shown in Figure 2.5 as an example. The
fault has been propagated to the next state line G13 and the justification sequence has
been found. From Table 7.2, the true and faulty states are (X, X,0) and (X, X,1)
for lines G5, G6 and G7.

First, we attempt to find a single-vector differentiation sequence. The ON and

OFF sets of primary output G17 are shown in Table 7.3.

The intersection of the primary input parts on the first vectors of the ON set and
the OFF set is not empty, i.e., (1,0,X,0). The present state in the first vector of
the ON set is (X, X, 1), and is same with the faulty state. The present state lines in
the first vector of the OFF set are (0, X,0), and its intersection with the true state
(X, X,0) is not empty, i.e., (0,X,0). As the first bit in the true and faulty states
is logic value X, in order to propagate the fault to the primary output, the first
bit should be set to logic value 0. After setting, the differentiation vector becomes

(1,0, X,0,0,X,0). For the primary inputs, we just set them to the new logic values.

86

But the new differentiation state (0,X,0) should be justified if it is reachable from

the previous clock cycle.

Table 7.3. The ON and OFF sets of primary output G17.

primary inputs present states

gate |GO|GL|G2|G3|G5]|G6|GT

ONset | 1 | X | X |0 | X | X |1
XX | X]0]1X]0

11| X]0 | X|[X]| X

X|1[|X]0}|X]|0]X

XXX X]1|X|X

OFFset | X | 0 | X | X |0 | X] 0

0 | X | X | X[0]1]X

X | X | X|1]l0|X]X

From the partial OFF set of the next state line G10, (1,1, X,0, X, X, X), we know
that if lines GO, G1 and G3 in the previous clock cycle are set to (1,1,0), the new
state would be reached from the previous clock cycle. The original vector in the
previous clock cycle is the excitation vector, (X, X, 1, X, X, X, 1), and its intersection
with the OFF set of the next state line G10 is not empty, i.e., (1,1,1,0, X, X,1). The
excitation vector should be set according to the intersection. As all bits needed to be
set are in the primary inputs, we just change the original logic value X to the new
value. The single-vector differentiation sequence is found. The final test sequence is
composed of the justification sequence, the excitation vector, and the differentiation

sequence shown in Table 7.4.

After finding the test sequence we use it to fault simulate the fault G2 s-a-0, with

results as shown in Table 7.4. The test sequence can detect the fault.

87

Table 7.4. The process of exciting the fault G2 s-a-0 to primary output G17.

| primary inputs l present states | next states [PO

gate GO|Gl| G2 | G3|G5|G6| G7 | G10 | G11 | G13 | G17
justifi. vector | X | 1 |0/0 | X] 0O | O | O X | X [1/1] X
excitationvector | 1 | 1 |1/0 | 0 | X [X | 1 0 0 [o/1]1/1
differen. vector | 1 | 0 [X/0(O | O | O [O/1]| 1/0 [1/0 | O/1 | 0/1

7.3 Summary

In this chapter, we have described two important steps in our ATPG system,
state justification and state differentiation, in detail. State justification and state
differentiation are efficiently performed ﬁsing cube intersection on the ON/OFF sets
of the primary outputs and next state lines. To increase the efficiency of the existing
state differentiation in dealing with the unspecified inputs in the excitation vector and
justification sequence, we have developed a new backward deterministic algorithm for

state differentiation.

CHAPTER 8
EXPERIMENTAL RESULTS

8.1 IEEE Benchmarks

For an accurate evaluation of a test system, real circuit examples should be used.
Benchmark circuits constitute a good example for evaluating a test system and also
for comparing results with other systems. We have used the ISCAS’89 [6] sequential
benchmark circuits to evaluate our test system. None of the ISCAS’89 benchmark
examples have a specified reset state. We have assumed a vector of all zero to be
the reset state, as in [L1, 8]. Table 8.1 shows a subset of the ISCAS’89 benchmark
circuits used in this research work. The five columns give the name and the numbers

of primary inputs, primary outputs, flip-flops, and gates of each circuit.

As in some test generators for sequential circuits [11, 8], we have added a random
fault simulator HOPE [20] as a front end to the deterministic test generation algo-
rithm. Random vector test generation enables us to detect some of the easy to detect
faults without much effort, and therefore, reduces test generation time. HOPE is an

efficient sequential circuit parallel fault simulator which simulates 32 faults at a time.

8.2 Evaluation of the Proposed Test Pattern Generator

The test generation algorithm described in the previous chapters has been imple-
mented in the program AST. It consists of about 10 000 lines of C code and runs in a

UNIX environment. Table 8.2 gives the statistics of running AST for test generation.

Table 8.1. ISCAS’89 sequential benchmark circuit characteristics.

circuit | pi | po | dff | gate l
5298 31 6| 14| 119
s344 91 11| 151 160
$349 9|11 15 161
s382 31 6| 21| 158
s386 T 7 6| 159
5400 31 6| 21| 162
s444 31 6| 21| 181
8510 19 7 6 211
$526 31 6| 21| 193
$526n 31 6| 21| 194
s641 35124 19| 379
s713 35123 19| 393
s820 18 1 19 51 289
s832 181 19 51 287
5953 16 | 23| 29| 418
s1196 [14| 14| 18| 529
s1238 |14 | 14| 18| 510
s1423 | 17| 5| 74| 657
s1488 8119 6| 653
s1494 8119 6| 647
sH378 | 35| 49 | 179 | 2779

90

Experiments were performed on a SUN Sparc 10 workstation. For each circuit, the
total number of faults (total faults), the number of detected faults (det. fault) and
the number of faults that were proven redundant (red. fault) are given. The total
fault coverage (coverage) includes detected and provably redundant faults. The next
column reports the execution times in seconds. The total number of test \;ectors in

test sequences is given in the column test vec.

Table 8.3 gives the statistical analysis of our system AST on the ISCAS’89 bench-
mark circuits. RTG det. fault is the number of faults detected by random test
generation and RTG time is the time spent in random test generation. All columns
under AST are the results obtained by our system AST. For each circuit, the number
of faults detected (det. fault), the number of faults that were proven combinational
redundant (com. redun.), the number of faults that were proven sequential redundant
(seq. redun.), the number of faults that were aborted (ab. fauit), and the execution
times in seconds are given. The aborted faults are the number of faults aborted by
the algorithm if it exceeds the backtrack limit set in the transitive closure method.
The backtrack limit was set to 20 for all circuits except circuit s5378. For circuit

$5378, the backtrack limit was raised to 50.

From Table 8.3, sequential random fault simulation was quite effective in generat-
ing tests. This may seem to contradict the accepted opinion that random sequences

are ineffective for sequential circuits. T'wo reasons may explain the above results [8]:

e The availability of a reset state increases the effectiveness of random sequences.

e Sequential circuits in the ISCAS’89 benchmarks have fairly low sequence depth.

Figure 8.1 shows how CPU time is distributed among the procedures in AST.

The transitive closure based test generation for combinational circuits(TC), state

91

Table 8.2. Real execution performance of our algorithm with the ISCAS’89 sequential
benchmark circuits.

circuit | total | det. | red. | coverage | time | test

faults | fault | fault (%) | (sec) | vec.
5298 308 | 273 35 100 | 2.4 192
s344 342 | 337 5 100 [2.6 94
s349 332 | 325 7 100 [2.7 95
s382 399 | 378 20 99.75 | 221 | 1431
s386 384 [314 70 100 42 | 243

5400 424 | 396 27 99.76 | 1187 | 1382
s444 474 | 438 35 99.79 | 148 | 1247
s510 564 | 564 0 100 | 4.3 450
s526 555 | 462 89 99.28 | 593 | 2034
s526n 553 | 461 87 99.10 | 891 | 2105
s641 465 | 405 59 99.78 | 683 | 155
s713 581 | 480 (101 100 | 341 | 248
s820 850 | 809 35 99.29 56 | 798
s832 870 | 812 51 99.20 45 | 818

s953 1079 | 1069 10 100 68 | 769
s1196 | 1242 | 1239 3 100 | 206 | 437
s1238 | 1355 | 1283 72 100 | 371 349

s1423 1515 | 1196 14 79.87 | 2653 | 4386
51488 | 1486 | 1443 40 99.80 | 162 | 1069
s1494 | 1506 | 1455 51 100 | 238 | 1108
s6378 | 4603 | 3515 | 285 82.55 | 3745 | 1676

92

Table 8.3. Statistics analysis of our algorithm with the ISCAS’89 sequential bench-

mark circuits.

RTG AST

circuit | total | det. | time| det. | com. seq. | ab. | time

faults | fault | (sec) | fault | redun. | redun. | fault | (sec)
5298 308 | 249 0.2 24 0 35 0| 22
s344 342 | 315 0.2 22 0 5 0| 24
s349 332 | 314 0.2 11 2) 0 2.5
s382 399 | 257 1.5] 121 0 20 1] 219
s386 384 | 260 2.5 54 0 70 0 39
s400 424 | 307 1.9 89 6 21 11 1185
s444 474 | 402 2.2 36 14 21 1] 146
510 564 | 563 | 2.3 1 0 0 0 2
s526 555 | 392 | 3.0 70 1 88 41 590
$526n 553 | 356 | 3.0{ 105 0 87 5| 888
s641 465 | 342 | 3.2 63 0 59 11 680
s713 581 | 433 | 3.2 47 38 63 0} 338
820 850 | 726 | 3.4 83 0 35 6 53
s832 870 | 732 | 3.3 80 14 37 7 42
s953 1079 | 964 | 3.8| 105 0 10 0 64
81196 1242 | 1112 3.9 127 0 3 0| 202
s1238 1355 | 1137 4.1 | 146 69 3 0] 367
s1423 | 1515 | 872 | 16.7| 324 14 0| 305 | 2636
s1488 | 1486 | 1353 | 4.4 90 0 40 3| 158
s1494 | 1506 | 1381 | 4.8 74 12 39 0| 233
sb378 | 4603 | 3156 | 22.4 | 359 40 245 | 803 | 3723

93

] gust
pitf
Simu
Bl other

Figure 8.1. CPU time distribution.

justification(Just), state differentiation(Diff), and fault simulation(Simu) are listed.

Table 8.4 compares the results of AST to those of STEED [11] and VERITAS
[8] on the ISCAS’89 benchmark circuits. The original CPU time of STEED was on a
VAX-11/8800 and the CPU time of VERITAS was on DEC 5000/200. As the same in
[8], we divided the times of STEED by 3 to obtain normalized DEC 5000/200 times

shown in Table 8.4. The CPU time of AST was run on a SUN Sparc 10 station.

For most circuits, our system obtains more fault coverage than STEED with a
smaller test sequence in a shorter CPU time. Considering the efficiency of STEED,
the results of AST are mostly satisfying. For one particular circuit s5378, STEED
obtained 99.3% fault coverage, and AST only got 82.55% coverage. This is due to the
large number of flip-flops and the huge number of states, both STEED and AST fail
to extract the complete covers. This adds to the difficulty of determining sequential
redundant faults. STEED claimed that it obtained 30.25% redundant fault. Actually,
STEED only found 69% detectable faults. But AST has found 76% detectable fault

and only found 6.19% redundant faults.

When our system AST was nearly finished, we saw the results of VERITAS. VER-
ITAS is faster, and gets 100% fault coverage in most circuits. But while STEED and
our system AST produced results for s1423 and $5378, VERITAS ran out of mem-

ory with 80MB memory limit during its preprocess (reachability analysis). For our

94

Table 8.4, Test generation comparison with STEED and VERITAS on ISCAS’89

benchmark circuits.

circuit coverage time test vectors

V] S| A| V] S| A| V] S| &
s298 100 | 99.0 | 100 4 5 24| 119 280 192
s344 100 | 100 | 100 4 5 2.6 48 125 94
$349 100 | 100 | 100 4 5 2.7 56 120 95
s382 100 | 95.2 1 99.8 | 195 | 1320 | 221 | 1028 | 1633 | 1431
s386 100 | 100 | 100 3 4 42| 168 238 243
s400 100 [95.8 1 99.8 | 195 | 1200 | 1187 [1091 409 | 1382
s444 100 | 95.6 | 99.8 | 152 [1992 | 148 | 1026 994 | 1247
s510 100 1 99.8 | 100 7 7 43| 584 733 450
$526 100 | 91.0 1 99.3 | 207 | 1060 | 593 | 1457 | 2037 | 2034
s526n [100 [91.0 | 99.1 | 342 | 1040 | 891 | 1528 | 2287 | 2105
s641 100 1 93.1 {99.8 | 15| 10200 | 683 | 134 327 155
s713 100 {93.1 | 100 | 21| 10440 | 341 | 139 315 248
s820 100 | 100 | 99.3 | 40 120 56| 785 | 1304 798
s832 100 1 99.7 1 99.2 | 49 120 45| 763 | 1344 818
s953 100 | 100 | 100 | 40 29’ 68 | 578 | 1050 769
s1196 | 100 | 98.7 | 100 | 41| 4080 | 206 | 376 545 437
s1238 | 100 [99.0 | 100 | 52| 3600 | 371 | 389 576 349
51423 - 56.4 | 79.9 - | 10800 | 2653 -| 4026 | 4386
s1488 [100 [100 | 99.8 | 84 133 | 1621031} 1310 1069
s1494 | 100 | 100 | 100 | 103 147 | 2381040 | 1374 | 1108
s5378 -199.3 | 82.5 - | 12000 | 3745 -| 1037} 1676
average | 95.6 | 98.0 | 2776.5 | 553.3 | 1050.7 | 1004.1 |

95

system, if it can not extract complete covers due to the limit of memory and time, it
could perform test generation on the partial covers, though it may fail to detect some

faults or prove their redundancy.

From Tables 8.2 to 8.4, the performance of our algorithm can be evaluated as

follows:

e The proposed algorithm outperforms the ATPG system STEED in terms of
time complexity, fault coverage, and test length on most circuits of ISCAS’89

benchmarks.

e The fault coverage our system obtained is slightly lower than that of the new
ATPG system VERITAS, but our system can perform test generation on large

size sequential circuits.

e As the circuit size and number of flip-flops increase, the algorithm still shows an
efficient performance. It has successfully generated tests for sequential circuits
with a large number of flip-flops within reasonable amount of CPU time and has

obtained close to maximum fault coverage.

e For some large circuits, when complete covers cannot be enumerated, the partial

cover is generated and the algorithm can work on it.

e The proposed algorithm is useful as a deterministic algorithm for sequential

circuit test generation.
8.3 Summary

In this chapter, the implementation of the system AST presented in Chapter 4
is discussed. Experimental results show that faults that require long test sequence

are handled efficiently and finite state machines with a large number of states are

96

tested using a reasonable amount of CPU time. Also our ATPG transitive closure
based system can effectively determine a larger class of combinational and sequential
redundant faults. Results show that considerable speedup factors and more fault
coverages were realized due to the efficiency of the transitive closure algorithm and
the powerful backward deterministic method for state differentiation. The overall test
system yields a high fault coverage and provides time efficient procedures to generate

tests for large size sequential circuits.

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

The rapid advances in integrated circuit technology have made it possible to fab-
ricate digital circuits with a very large number of devices on a single VLSI chip. The
increase in size and complexity of circuits placed on a chip, with little or no increase
in the number of input/output (I/0) pins, drastically reduce the controllability and
observability of the logic on the chip. More logic must be accessed with almost the
same number of I/O pins, making it much more difficult to test the chip. Yet, the
need for testing is becoming more important. This research work proposes a new
technique for designing test generation algorithms with better time complexity and

fault coverage.

The test generation problem for sequential circuits has been presented as a state
space search for test sequences which detect single stuck-at faults at the gate level
of abéfraction. It has been recognized that test generation for sequential circuits is
a difficult problem. Different approaches have been used to tackle the test problem,
either by randomly generating test sequences or by using deterministic test generation

methods.

The current test generation algorithms for sequential circuits can generate test
sequences for large sequential circuits. However, with increasing circuit complexity,
either test generation time increases exponentially or it can not produce test se-

quences due to the exponential increase of reachable states. A new approach based

98

on the transitive closure algorithm has been developed for the test generation of large
sequential circuits. The similarities of this algorithm with current approaches have

been identified.

As a preprocess, a new and efficient backward assignment method is presented
to perform cover extraction. Logic minimization is used to assure that complete or
maximum possible ON/OFF sets of the primary outputs and next state lines are ex-
tracted. By disabling flip-flops in the s;aquential circuits, the test generation problem
for sequential circuits is transformed into test generation for combinational circuits.
Then test generation for combinational circuits is formulated as the implication graph
and the SAT form expressing necessary conditions for fault activation and path sen-
sitization. A lot of techniques have been used to prune search trees. Our technique
determines all logical consequences based on pairwise signal relationships for a partial
set of signal assignments and provides a good framework for reasoning about signal

relationships in the circuit.

After a combinational excitation vector is found, state justification is used to find
a justification sequence from the reset state to the excitation state. If the effect of
the fault is propagated only to the next state lines, state differentiation is needed to
propagate the fault-effect to the primary outputs. To enhance the efficiency of state
differentiation in dealing with the unspecified inputs in the test sequence, a novel

backward deterministic algorithm for state differentiation is developed.

The implementation of the test generation algorithm for sequential circuits is pre-
sented with experimental results on the ISCAS’89 benchmark circuits. The results
on large sequential circuits suggest that our algorithm outperforms the other test
generation algorithms. Considerable speedup factors and more fault coverage are re-

alized due to the efficiency of our test generation algorithm for sequential circuits.

99

The overall test system has yielded a high fault coverage and provided time efficient
procedures to generate tests for large size sequential circuits. We have also shown

that random patterns can be very effective in test generation for sequential circuit.

We believe that our algorithm can efficiently perform test generation for sequential
circuits. It has obtained close to the maximum fault coverage on the ISCAS’89
benchmark circuits. Consequently, as was pointed out in [7], the parallelization of
transitive closure computation, though not attempted in the present work, is easily
possible. We hope that this system can be developed into parallel test generation

systems.

REFERENCES

[1] V.D. Agarwal, S. K. Jain, and D. M. Singer. Automation in design for testability.
In Proc. Custom Integrated Circuit Conf., pages 21-23. Rochester, NY, May 1984.

[2] V.D. Agrawal, K.-T. Cheng, and P. Agrawal. Contest: A concurrent test gener-
ator for sequential circuits. In Proc. 25nd Design Automat. Conf., pages 84-89,
June 1988.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Reading, Addison-Wesley, MA, 1974.

[4] R. K. Brayton, G. D. Hachtel, Curt McMullen, and A. Sangiovanni-Vincentelli.
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic, Hingham,
MA, 1984.

[5] M. A. Breuer and A. D. Friedman. Diagnosis and Reliable Design of Digital

Systems. Computer Science, New York, 1976.

[6] F. Brglez, D. Bryan, and Kozminski. Combinational profiles of sequential bench-
mark circuits. In Proc. IEEE Int. Symp. Circuits and Systems., pages 1929-1934,
May 1989.

[7] S. T. Chakradhar, V. D. Agrawal, and S. G. Rothweiler. A transitive closure
algorithm for test generation. IEEE Trans. on CAD, 12(7):1015-1027, July 1993.

[8] H. Cho, G. D. Hachtel, and F. Somenzi. Redundancy identification/removal and
test generation for sequential circuits using implicit state enumeration. IEFEFE

Trans. on CAD, 12(7):935-945, July 1993.

101

[9] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the Third ACM Symposium on Theory of Computing, pages 151-158, 1971.

[10] H. Fujiwara and T. Shimono. On the acceleration of test generation algorithms.

IEEE Trans. Comp., C-32:1137-1144, Dec. 1983. "

[11] A. Ghosh, S. Devadas, and A. R. Newton. Test generation and verification for
highly sequential circuits. IJEEE Trans. on CAD, 10(5):652-667, May 1991.

[12] P. Goel. An implicit enumeration algorithm to generate tests for combinational

logic circuits. IEEE Trans. Comp., C-30:215-222, Mar. 1981.

[13] J. Gu. Efficient local search for very large-scale satisfiability problems. SIGART
Bulletin, pages 8-12, 1992.

[14] J. Gu. Local search for satisfiability (SAT) problem. IEEE Trans. on Systems,
Man, and Cybernetics, 23(4):1108-1129, Jul./Aug. 1993.

[15] J. Gu, X. Huang, and B. Du. A quantitative solution to constraint satisfaction.

New Generation Computing, 13(1), Nov. 1994.

[16] J. Gu, P.W. Purdom, and B.W. Wah. Algorithms for satisfiability (SAT) prob-

lem: A survey. 1993. To appear.

[17] O. H. Ibarra and S. K. Sahni. Polynomially complete fault detection problems.
IEEFE Trans. on Comp., C-24:680, March 1975.

[18] H. Kubo. A procedure for generating test sequences to detect sequential circuit

failures. NEC Res. and Dev., 12:69-78, Oct. 1968.

[19] T. Larrabee. Test pattern generation using Boolean satisfiability. IEEE Trans.
on CAD, 11(1):4-15, Jan. 1992.

102

[20] H. K. Lee and D. S. Ha. Hope: An efficient parallel fault simulator for syn-
chronous sequential circuits. In 29th ACM/IEEE Design Automation Confer-
ence, pages 336-340, 1992.

[21] H. T. Ma, S. Devadas, A. R. Newton, and A. Sangiovanni-Vincentelli. Test
generation for sequential circuits. JEEE Trans. on CAD, 7(10):1081-1093, Oct.
1988.

[22] S. Mallela and S. Wu. A sequential test generation system. In Proc. Int. Test
Conf., pages 57-61, Philadelphia, PA, Oct. 1985.

[23] A. Miczo. The sequential atpg: A theoretical limit. In Proc. Int. Test Conf.,
pages 143-147, Oct. 1983.

[24] A. Miczo. Digital Logic Testing and Simulation. Harper and Row, Publishers,
New York, 1986.

[25] P. Muth. A nine-valued circuit model for test generation. IEEF Trans. Comput-
ers, C-25:630-636, June 1976.

[26] J. P. Roth. Diagnosis of automata failures, a calculus and a method. IBM J.
Res. Dev., 10:278-291, July 1966.

[27] F. F. Sellers, M. Y. Hsiao, and L. W. Bearnson. Analyzing errors with Boolean
difference. IEEE Trans. Computers, C-17:676-683, July 1968.

[28] S. Shteingart, A. W. Nagle, and J. Grason. Rtg: Automatic register level test

generator. In Proc. 22nd Design Automat. Conf., pages 803-807, Las Vegas,
June 1985.

[29] J. J. Thomas. Automated diagnostic test program for digital networks. Com-
puter Design, pages 63—-67, Aug. 1971.

103

[30] A.S. Yousif. A novel search approach for test generation. Master’s thesis, Dept.
of Electrical and Computer Engineering, The University of Calgary, Calgary, AB
T2N 1N4, September 1992.

