
THE UNIVERSITY OF CALGARY

A NOVEL TEST GENERATION SYSTEM FOR

SEQUENTIAL CIRCUITS

by

Bin Du

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

JUNE, 1994

© Bin Du 1994

National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1 0N4

Bibliotheque nationate
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1 0N4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT N HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

Your tile Votre rillilrerce

Our tile Noire riltErence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUTRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CE 1-1'h THESE A LA DISPOSITION DES
PERSONNE INTERES SEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUE PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUB STANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRJMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-315-99344-8

Canadc!

Name 8i
Dissertation Abstracts international is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

krwkS ornk E1OL(, eq
SUBJECT TERM

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES
COMMUNICATIONS AND THE ARTS
Architecture 0729
Art History 0377
Cinema 0900
Dance 0378
Fine Arts 0357
Information Science 0723
Journalism 0391
Library Science 0399
Mass Communications 0708
Music 0413
Speech Communication 0459
Theater 0465

EDUCATION
General 0515
Administration 0514
Adult and Continuing 0516
Agricultural 0517
Art 0273
Bilingual and Multicultural 0282
Business 0688
Community College 0275
Curriculum and Instruction 0727
Early Childhood 0518
Elementary 0524
Finance 0277
Guidance and Counseling 0519
Health 0680
Higher 0745
History. of 0520
Home Economics 0278
Industrial 0521
Language and Literature 0279
Mathematics 0280
Music 0522
Philosophy of 0998
Physical 0523

Psychology 0525
Reading 0535
Religious 0527
Sciences 0714
Secondary 0533
Social Sciences 0534
Sociology of 0340
Special 0529
Teacher Training 0530
Technology 0710
Tests and Measurements 0288
Vocational 0747

LANGUAGE, LITERATURE AND
LINGUISTICS
Lan guage

General 0679
Ancient 0289
Linguistics 0290
Modern 0291

Literature
General 0401
Classical 0294
Comparative 0295
Medieval 0297
Modern 0298
African 0316
American 0591
Asian 0305
Canadian English) 0352
Canadian French) 0355
English 0593
Germanic 0311
Latin American 0312
Middle Eastern 0315
Romance 0313
Slavic and East European 0314

THE SCIENCES AND ENGINEERING
BIOLOGICAL SCIENCES
Agriculture

General
Agronomy
Animal Culture and

Nutrition
Animal Pathology
Food Science and
Technology

Forestry and Wildlife
Plant Culture
Plant Pathology
Plant Physiology
Range Management
Wood Technology

Biology
General 0306
Anatomy 0287
Biostatistics 0308
Botany 0309
Cell 0379
Ecology 0329
Entomology 0353
Genetics 0369
Limnology 0793
Microbiology 0410
Molecular 0307
Neuroscience 0317
Oceanography 0416
Physiology 0433
Radiation 0821
Veterinary Science 0778
Zoology 0472

Biophysics
General 0786
Medical 0760

EARTH SCIENCES
Biogeochemistuy 0425
Geochemistry 0996

Geodesy 0370
Geology 0372

0473 Geophysics 0373
0285 Hydrology 0388

Mineralogy 0411
0475 Paleobotany 0345
0476 Paleoecology 0426

Paleontology 0418
0359 Paleozoology 0985
0478 Palynology 0427
0479 Physical Geography 0368'
0480 Physical Oceanography 0415
0817
0777 HEALTH AND ENVIRONMENTAL
0746 SCIENCES

Environmental Sciences 0768
Health Sciences

General 0566
Audiology 0300
Chemotherapy 0992
Dentistry 0567
Education 0350
Hospital Management 0769
Human Development 0758
Immunology 0982
Medicine and Surgery 0564
Mental Health 0347
Nursing 0569
Nutrition 0570
Obstetrics and Gynecology 0380
Occupational Health and
Therapy 0354

Ophthalmology 0381
Pathology 0571
Pharmacology 0419
Pharmacy 0572
Physical Therapy 0382
Public Health 0573
Radiology 0574
Recreation 0575

PHILOSOPHY, RELIGION AND
THEOLOGY
Philosophy 0422
Religjon

General 0318
Biblical Studies 0321
Clergy 0319 History of 0320
Philosophy of 0322

Theology 0469

SOCIAL SCIENCES
American Studies 0323
Anthropology

Archaeology 0324
Cultural 0326
Physical 0327

Business Administration
General 0310
Accounting 0272
Banking 0770
Management 0454
Marketing 0338

Canadian Studies 0385
Economics

General 0501
Agricultural 0503
Commerce-Business 0505
Finance 0508
History 0509
Labor 0510
Theory 0511

Folklore 0358
Geography 0366
Gerontology 0351
History

General 0578

Speech Pathology 0460
Toxicology 0383

Home Economics 0386

PHYSICAL SCIENCES
Pure Sciences
Chemistry

General 0485
Agricultural 0749
Analytical 0486
Biochemistry 0487
Inorganic 0488
Nuclear 0738
Organic 0490
Pharmaceutical 0491
Physical 0494
Polymer 0495
Radiation 0754

Mathematics 0405
Physics

General
Acoustics
Astronomy and
Astrophysics 0606

Atmospheric Science 0608
Atomic 0748
Electronics and Electricity 0607
Elementary Particles and
High Energy 0798

Fluid and Plasma 0759
Molecular 0609
Nuclear 0610
Optics 0752
Radiation 0756
Solid State 0611

Statistics 0463

Applied Sciences
Applied Mechanics 0346
Computer Science 0984

a £11-

SUBJECT CODE
U-M-1

Ancient 0579
Medieval 0581
Modern 0582
Black 0328
African 0331
Asia, Australia and Oceania 0332
Canadian 0334
European 0335
Latin American 0336
Middle Eastern 0333
United States 0337

History of Science 0585
Law 0398
Political Science

General 0615
International Law and

Relations 0616
Public Administration 0617

Recreation 0814
Social Work 0452
Sociology

General 0626
Criminology and Penology 0627
Demography 0938
Ethnic and Racial Studies 0631
Individual and Family

Studies 0628
Industrial and Labor

Relations 0629
Public and Social Welfare 0630
Social Structure and
Development 0700

Theory and Methods 0344
Transportation 0709
Urban and Regional Planning 0999
Women's Studies 0453

Engineering
General 0537
Aerospace 0538
Agricultural 0539
Automotive 0540
Biomedical 0541
Chemical 0542
Civil 0543
Electronics and Electrical 0544
Heat and Thermodynamics 0348
Hydraulic 0545
Industrial 0546
Marine 0547
Materials Science 0794
Mechanical 0548
Metallurgy 0743
Mining 0551
Nuclear 0552
Packaging 0549
Petroleum 0765
Sanitary and Municipal 0554

0605 System Science 0790
0986 Geotechnology 0428

Operations Research 0796
Plastics Technology 0795
Textile Technology 0994

PSYCHOLOGY
General 0621
Behavioral 0384
Clinical 0622
Developmental 0620
Experimental 0623
Industrial 0624
Personality 0625
Physiolo9ical 0989
Psychobiology 0349
Psychometrics 0632
Social 0451

Nom
Dissertation Abstracts International est organisé en categories de sulets. Veuillez s.v.p. choisir le sulet qui décrit le mieux votre
these et inscrivez le code numérique approprié dans I'espace réservé ci-dessous.

UMI
SUJET

Categories par sulets

HUMANITES ET SCIENCES SOCIALES

COMMUNICATIONS ET [ES ARTS
Architecture 0729
Beaux-arts 0357
Bibliothéconomie 0399
Cinema - 0900
Communication verbole 0459
Communications 0708
Danse 0378
Histoire de 'art 0377
Joumalisme 0391
Musique 0413
Sciences de 'information 0723
Théâtre 0465

EDUCATION
Généralités 515
Administration 0514
Art 0273
Colleges communoutaires 0275
Commerce 0688
Economie domestique 0278
Education permonente 0516
Education préscoloire 0518
Education sanitaire 0680
Enseignement ogrico!e 0517
Enseignement bilingue et

multiculturel 0282
Enseignement industriel 0521
Enseignement primoire. 0524
Enseignement proFessionnel 0747
Enseignement religieux 0527
Enseignement secondoire 0533
Enseignement special 0529
nseignement supérleur 0745

Evaluation 0288
Finances 0277
Fortnation des enseignants 0530
Histoire de 'education 0520
Longues et litterature 0279

Lecture 0535
Mathématiques 0280
Musique 0522
Orientation et consultation 0519
Philosophie de 'education 0998
Physique 0523
Programmes d'études et
enseinement 0727

Ps'choIogie 0525
Sciences 0714
Sciences sociales 0534
Sociologie de 'education 0340
Technologie 0710

LANGUE, LITTERATURE ET
LINGUISTIQUE
Lengues

Généralités 0679
Anciennes 0289
Linguistique 0290
Modernes 0291

Littérature
Genéralités 0401
Anciennes 0294
Cornparee 0295
Mediévale 0297
Moderno 0298
AFricaine 0316
Américaine 0591
Anglaise 0593
Asiatique 0305
Canactienne Anglaise) 0352
Conadienne Francaiso) 0355
Germanique 0311
Latino-oméricaine 0312
Moyen-orientale 0315
Romano 0313
Slave et est-européenne 0314

SCIENCES ET INGENIERIE

SCIENCES BIOLOGIQUES
Agriculture

Généralités 0473
Agronomie. 0285
Alimentation et technologie

alimentaire 0359
Culture 0479
Elevage et alimentation 0475
Exploitation des peturages 0777
Pathologie animale 0476
Pathologie vé9éta1e 0480
Physiologie vegétale 0817
Sylviculture et taune 0478
Technologie du bois 0746

Biologie
Généralités 0306
Anatomie 0287
Biologie (Statistiques) 0308
Biologie moléculaire 0307
Botanique 0309
Cellule 0379
Ecologie 0329
Entomologie 0353
Genetique 0369
Limnologie 0793
Microbiologie 0410
Neurologie 0317
Oceonographie 0416
Physiologie 0433
Radiation 0821
Science vétérinaire 0778
Zoologie 0472

Biophysique
Généralités 0786
Medicale 0760

SCIENCES DE LA TERRE
Bic géochimie 0425
Géochimie 0996
Géodésie, 0370
Geogrophie physique 0368

Géologie 0372
Geophysique 0373
Hydrologie 0388
Minéralogie 0411
Océonographie physique 0415
Po!eobotanique 0345
Pa!éoécologie 0426
Pa!eontologie., 0418
Poleozoologie 0985
Palynologie 0427

SCIENCES DE LA SANTE ET DE
L'ENVIRONNEMENT
Economie domestique 0386
Sciences de l'environnement 0768
Sciences de la sante

Généralités 0566
Administration des hipitaux 0769
Alimentation et nutrition 0570
Audiologie 0300
Chimiothérapie 0992
Dentisterie 0567
Developpement humain 0758
Enseignement 0350
lmmunologie 0982
Loisirs 0575
Médecine du travail et

therapie 0354
Médecine et chirur9ie 0564
Obstetrique et gynecologie 0380
Ophtalmologie 0381
Orthophonie 0460
Pathologie 0571
Pharmacie 0572
Pharmocologie 0419
Physiothérapie 0382
Rodiologie 0574
Sante mentale 0347
Sante publique 0573
Soins unlirmiers 0569
Toxicologie 0383

PHILOSOPHIE, RELIGION ET
THEOLOGIE
Philosophie
Religjon

Généralités
Clergé
Etudes bibliques
Histoire des reliaions

Théologie

SCIENCES SOCIALES
Anthropologie

Archéologie
Culturelle
Physique

roit
Economie

Géneralites
Commerce-Affaires
Economie agricole
Economie du travail
Finances
Histoire
Théorie

Etudes oméricaines
hides canodiennes

Etudes feministes
Folklore
Geographie
Gérontologie
Gestion dos olfoires

Généralités
Administration
Banques
Comptabilite
Marketing

Histoire
Histoire gCnérale

Philosophie de r0 religion

CODE DE SUJET

Ancienne 0579
Médiévale 0581

0422 Moderne 0582
Histoire des noirs 0328

0318 Africaine 0331
0319 çanodienne 0334
0321 Etats-Unis 0337
0320 Européenne 0335
0322 Moyen-orientole 0333
0469 Latino-oméricaine 0336

Asie, Australie et Océonie 0332
Histoire des sciences 0585
Loisirs 0814

0324 PloniFication urbaine et
0326 régionale 0999
0327 Science politique
0398 Géneralités 0615

Administration publique 0617
0501 Droit et relations
0505 internationales 0616
0503 Sociologie
0510 Générolités 0626
0508 Aide et bien-àtre social 0630
0509 Criminologie et
0511 etoblissements
0323 pénitentiaires 0627
0385 Demographie 0938
0453 Etudes do I' individu et
0358 - de la Farnille 0628
0366 Etudes des relations
0351 interethniques et

des relations rocioles 0631
0310 Structure et developpement
0454 social 0700
0770 Theorie et méthodes. 0344
0272 Travail et relations
0338 industrielles 0629

Transports 0709
0578 Travail social 0452

SCIENCES PHYSIQUES
Sciences Pures
Chimie

Genéralités 0485
Biochimie 487
Chimie ogricole 0749
Chimie analytique 0486
Chimie minérale 0488
Chimie nucléaire 0738
Chimie orgonique 0490
Chimie pharmoceutique 0491
Physique 0494
PolymCres 0495
Radiation 0754

Mathématiques 0405
Physique

Genéralités 0605
Acoustique 0986
Astranomie et
astraphysique 0606

Electronique et electricité 0607
Fluides et plasma 0759
Météorologie 0608
Optique 0752
Particules (Physique

nucleaire) 0798
Physique atomique 0748
Physique de l'état solide 0611
Physique moleculoire 0609
Physique nuclêoire 0610
Radiation 0756

Statistiques 0463

Sciences Appliqués Et
Technologie
InFormatique
Ingénierie

Généralités
Agricole
Automobile

Biomédicale 0541
Chaleur et thor
modynamique 0348

Conditionnement
(Embollage) 0549

Genie oérospatial 0538
Genie chimique 0542
Genie civil 0543
Genie electronique et

électrique 0544
Genie industriel 0546
Genie mécanique 0548
Genie nucléaire 0552
lnénierie des systämes 0790
Meconique navale 0547
Metallurgie 0743
Science des matériaux 0794
Technique du pétrole 0765
Technique miniére 0551
Techniques sanitaires et

municipales 0554
Technologie hydraulique 0545

Mècanique appliquee 0346
Geotechno!ogie 0428
Matières plastiques

(Technologie) 0795
Recherche opérationnelle 0796
Textiles et tissus (Technologie) 0794

PSYCHOLOGIE
Généralités 0621
Personnalite 0625
Psychobiologie 0349
Psychologie clinique 0622
Psychologie du comportement 0384

0984 Psychologie du développement 0620
Psychologie expérimentale 0623

0537 Psychologie industrielle 0624
0539 Psychologie physiologique 0989
0540 Psychologie sociale 0451

Psychametrie 0632

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled, "A NOVEL TEST GENERA-

TION SYSTEM FOR SEQUENTIAL CIRCUITS", submitted by Bin Du in partial

fulfillment of the requirements for the degree of Master of Science.

Dr. Jun Cu, Superviser & Chairman
Dept. of Electrical & Computer Engineering

Dr. E. P. Nowicki
Dept. of Electrical & Computer Engineering

Dr. 'Paul Kwok
Department of Computer Science

Date

11

ABSTRACT

This thesis presents a new approach for test generation of sequential circuits. The

problem of test generation for sequential circuits is decomposed into three subprob-

lems, i.e., excitation vector generation, state justification, and state differentiation.

By disabling all flip-flops in a sequential circuit, the sequential circuit is transformed

into a pseudo-combinational circuit. Then an extended transitive closure algorithm

extracts the implication graph and the SAT formula from the model of the circuit

incorporating necessary conditions for fault activation and path sensitization. To

enhance the efficiency of state differentiation in the existing three-phase ATPG, a

novel backward deterministic method for state differentiation is proposed. The new

test generation algorithm has been tested using the ISCAS'89 benchmarks. The al-

gorithm yielded a high fault coverage and is shown to be very efficient in generating

tests for large size sequential circuits. The experimental results on large sequential

circuits indicate that, our approach is much faster than the existing deterministic test

generation algorithms.

11'

Acknowledgement

I do not know how to express my sincere thanks to my supervisor, Jun Gu. It

is my greatest fortune to have Jun as my advisor. I appreciate so much for Jun's

insight, inspiration, and constant encouragement throughout my graduate research

work. He is not only the best advisor I ever have, he is also the best friend for me

and my family. The friendship between us is what has been keeping me going for

these years, and it will keep me going for the rest of my life. Jun's deep insight into

the difficult problems is always a precious resource for me. Without him, my stay

at Calgary would not have been meaningful. I have been convinced that Jun is a

dedicated educator and first class researcher, a role model which I found very difficult

to follow. He has provided me tremendous support whenever I run into a difficult

situation. There is no way for me to express my gratitude to him in any words.

I am grateful to Ruchir Puri who gave me many constructive discussion during

this research work. I would also like to thank Abdel Yousif who was kind enough to

read the contents of this thesis during its preparation and provided me with helpful

comments. I thank many friends at the University of Calgary, for those enjoyable

moments which they have been so generous to share with me. I would also like to

gratefully acknowledge the financial support provided by NSERC and the Department

of Electrical and Computer Engineering at the University of Calgary.

Finally and most of all, I am grateful to my wife, Xiaoying. As a husband who is

engaged in work most of the time, I thank her for supporting me for these years.

iv

To

my family

V

TABLE OF CONTENTS

APPROVAL PAGE

ABSTRACT

ACKNOWLEDGEMENT iv

DEDICATION V

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

CHAPTERS

1. INTRODUCTION 1

1.1 Background 1

1.2 Problems Addressed in this Thesis 3

1.3 Organization of this Thesis 4

2. FAULT MODELS AND TESTING PROBLEMS 6

2.1 Faults in VLSI Systems 6

2.1.1 Fault Models 8

2.1.2 Fault Equivalence and Dominance 8

2.2 Testing Terminologies and Definitions 9

2.3 Test Generation and Its Problems 18

2.3.1 NP-Completeness of Combinational Test Generation 18

2.3.2 Test Problems in Sequential Circuits 19

2.4 Summary 19

3. PREVIOUS WORK 21

3.1 Test Generation for Combinational Circuits 21
vi

3.2 Test Generation for Sequential Circuits 24

3.3 Summary 26

4. A NOVEL TEST GENERATION SYSTEM FOR SEQUENTIAL
CIRCUITS 28

4.1 Observations 28

4.2 A Novel Test Generation System for Sequential Circuits 29

4.2.1 Cover Extraction 30

4.2.2 Pseudo-Combinational Circuit Test Generation 32

4.2.3 State Justification 34

4.2.4 State Differentiation 35

4.2.5 Fault Simulation 39

4.2.6 Determination of Redundant Faults 40

4.2.7 An Efficient Test Generation Algorithm for Sequential Circuits 42

4.3 Summary 45

5. COVER EXTRACTION 47

5.1 Backward Assignment Rules (B-rules) 47

5.2 Consistency and Algorithm Constraints 49

5.3 The Backward Assignment Procedure 50

5.4 Summary 52

6. PSEUDO-COMBINATIONAL CIRCUIT TEST GENERATION. 54

6.1 Circuit Representation 54

6.1.1 Boolean Difference 54

6.1.2 Transferring Circuit into CNF 55

6.1.3 Transitive Closure Method 59

6.2 Efficient Transitive Closure Computation 63

6.2.1 Signal Dependencies 63

6.2.2 Pruning the Search Tree 65

6.3 Combinational Circuit Test Generation Algorithm 67

6.4 Summary 71

7. STATE JUSTIFICATION AND STATE DIFFERENTIATION... 72

7.1 State Justification 72

vii

7.2 State Differentiation 76

7.3 Summary 87

8. EXPERIMENTAL RESULTS 88

8.1 IEEE Benchmarks 88

8.2 Evaluation of the Proposed Test Pattern Generator 88

8.3 Summary 95

9. CONCLUSIONS AND FUTURE WORK 97

REFERENCES t 100

viii

LIST OF TABLES

2.1 Cube intersection operation 16

2.2 Sharp product operation. 17

6.1 Transitive closure of the simple circuit Si. 62

6.2 SAT representation of ternary for the simple circuit Si 62

6.3 Condensed transitive closure of the simple circuit Si. 68

7.1 Initial state justification process. 76

7.2 Final state justification process 76

7.3 The ON and OFF sets of primary output G17. 86

7.4 The process of exciting the fault G2 s-a-U to primary output 017 87

8.1 ISCAS'89 sequential benchmark circuit characteristics. 89

8.2 Real execution performance of our algorithm with the ISCAS'89 sequential
benchmark circuits 91

8.3 Statistics analysis of our algorithm with the ISCAS'89 sequential bench-
mark circuits 92

8.4 Test generation comparison with STEED and VERITAS on ISCAS'89
benchmark circuits 94

ix

LIST OF FIGURES

2.1 Three input AND gate with its truth table. 7

2.2 A sequential circuit. 10

2.3 An equivalent pseudo-combinational iterative array to the sequential cir-
cuit in Fig. 2 1 10

2.4 A general pseudo-combinational circuit. 13

2.5 Example circuit s27 from ISCAS'89 benchmarks. 14

2.6 The output cone of G17 in circuit s27. 15

2.7 The next state cane of Gil in circuit s27. 15

4.1 General iterative array model for state justification 34

4.2 State transition graph for state justification 35

4.3 Iterative array model for state differentiation. 36

4.4 State transition graph for state justification and state differentiation. . 36

4.5 Fault simulation algorithm. 41

4.6 The flow chart of the test generation algorithm for sequential circuits. . 43

4.7 The algorithm of sequential circuit test generation. 44

5.1 The backward assignment rules (B-rules). 48

5.2 The consistency constraint. 49

5.3 Cover extraction algorithm. 50

x

• 5.4 The next state cone of Gil in circuit S27 shows how the backward assign-
ment procedure assigns logic values to the circuit nodes. 53

6.1 The CNF formulae of basic gates 56

6.2 The CNF formula of 3-input NAND gate. 57

6.3 Formula extraction of a simple circuit Si. 58

6.4 Formula extraction of the simple circuit Si with a fault. 58

6.5 The XOR of the unfaulted and faulted circuits should be 1. 60

6.6 Implication graph of an AND gate. 60

6.7 Implication graph of the example circuit Si. 61

6.8 The algorithm of signal dependency computation 64

6.9 (a). If A is sensitized, X must be sensitized: (EXA + EXx). (b). If A is
sensitized, either X or Y must be sensitized: (EXA + EXx + EXy). 66

6.10 The flow chart of the combinational test generation algorithm 70

7.1 State justification algorithm. 74

7.2 The algorithm of obtaining fan-in states of present state 75

7.3 Three kinds of faults defined in our algorithm 78

7.4 The algorithm of single-vector state differentiation. 80

7.5 The algorithm of multi-vector state differentiation. 82

7.6 The backward deterministic algorithm for single-vector state differentiation. 84

8.1 CPU time distribution 93

xi

CHAPTER 1

INTRODUCTION

Very large-scale integration (VLSI) is the process of fabricating thousands of semi-

conductor components and interconnections at once by a common set of manufac-

turing steps. With the rapid advances in VLSI technology, a major problem, one

which is growing in importance, is testing. The problems associated with testing of

VLSI circuits have been exacerbated by the growing number of circuits placed on an

individual chip. With little or no increase in the number of input/output (I/O) pins,

more logic must be accessed with almost the same number of I/O pins, making it

much more difficult to test a VLSI chip.

As a result of growing circuit complexity, testing is taking an increasingly larger

proportion of total product cost. Ironically, the very software design tools that make

it possible to put more circuits on a chip at a reduced cost are effectively increasing

the cost of circuit testing. The advantages of VLSI are reduced system cost, bet-

ter performance, and great reliability. These advantages would be lost unless VLSI

devices can be tested economically.

1.1 Background

Manufacturing a chip consists of fabrication and testing. Testing is required in

order to discover defects in a digital system. Design and test development precede

manufacture. Test activities are interwoven with the VLSI design process. Architec-

tural design consists of the partitioning of a VLSI chip into realizable blocks. Either

2

the logic should be synthesized in a testable form or the synthesized logic should be

analyzed and improved for testability.

Tests for a VLSI circuit are developed in two phases. In the first phase, known as

design verification, tests are generated to verify logic correctness and timing behavior

of the circuit through simulation. For any reasonably large sequential circuit it would

be impossible to enumerate all possible input sequences during testing. As a practical

compromise, a subset of inputs, considered to be critical by the designer, is used for

verification.

The second phase of test generation consists of generating manufacturing tests.

Manufacturing tests are used to determine if components and interconnections on

the chip are fabricated correctly. These tests thoroughly check every node in the

circuit and the effect of every fault is propagated to the circuit outputs. Ideally,

manufacturing tests must cover all faults that can possibly occur during fabrication.

In this thesis, we concentrate only on the second phase of test generation.

In VLSI circuit design, the testing process is referred to as test generation and fault

simulation. The goal of test generation is to obtain test vectors of high quality at an

affordable cost. The quality of the test vectors is measured by fault coverage which is

the fraction of the modeled faults detected by the test vectors. Given a set of faults

and a set of test vectors, the goal of fault simulation is to determine which faults are

detected by the test vectors. Both test generation and fault simulation rank equally

in importance and complement one another. Test vectors capable of distinguishing

between good circuits and faulted circuits do not become effective until these vectors

are simulated so that their effects can be determined. Conversely, extremely accurate

simulation with very precise models, and poor test vectors, will not effectively uncover

many defects.

3

There are various factors that contribute to testing and its cost. Testing cost is

determined mainly by the cost of real time test pattern generation and test applica-

tion. Test pattern generation cost depends on the computer time required to run the

test pattern generation program. Test application cost is determined by the cost of

equipment plus the testing time required to apply the test. This time may be assumed

to be directly proportional to the number of tests. For combinational circuits, a test

is a test vector. For sequential circuits, a test is a sequence of test vectors.

A straightforward method for determining the testability of a circuit is to use an

Automatic Test Pattern Generation (ATPG) program. It generates test vectors and

determine the fault coverage. The running time of the program, the number of test

patterns generated, and the fault coverage provide a measure of the testability of the

circuit.

1.2 Problems Addressed in this Thesis

This thesis presents a new approach for test generation of sequential circuits. First,

cover extraction is performed 6s a preprocess. A new backward assignment method

is presented to extract the ON/OFF sets of the primary outputs and next state lines.

Then a novel ATPG system is presented to generate test sequences. By disabling all

flip-flops in a sequential circuit, the sequential circuit is transformed into a pseudo-

combinational circuit. Then an extended transitive closure algorithm extracts the

implication graph and the SAT formula from the model of the circuit incorporating

necessary conditions for fault activation and path sensitization. State justification and

state differentiation are efficiently performed using the ON/OFF sets of the primary

outputs and next state lines. To enhance the efficiency of state differentiation in

the existing three-phase ATPG, a novel backward deterministic method for state

differentiation is proposed. This method generates a compact testing sequence for a

4

given fault.

1.3 Organization of this Thesis

The thesis is organized as follows. In Chapter 2, the test generation terminologies

and the fault models are introduced. The testing problems caused by combinational

circuits and sequential circuits are addressed.

The previous work in test generation for combinational circuits and sequential

circuits is described in Chapter 3.

In Chapter 4, first, observations that initiated this research work in test gen-

eration for sequential circuits are given. Then after the steps of cover extraction,

combinational circuit test generation, state justification, and state differentiation are

briefly introduced, a novel test generation system for sequential circuits is presented.

The algorithms used in these steps are described in Chapters 5 - 7 in detail.

A new backward assignment algorithm for cover extraction is described in detail

in Chapter 5. It can efficiently extract the ON/OFF sets of the primary outputs and

next state lines.

Chapter 6 describes in detail a transitive closure method for pseudo-combinational

circuit test generation. A Boolean difference equation is derived from the circuit

model incorporating necessary conditions for fault activation and path sensitization.

Efficient transitive closure computations are presented.

In Chapter 7, state justification and state differentiation are described. To enhance

the efficiency of state differentiation in the existing ATPG system, a new backward

deterministic algorithm for state differentiation is developed.

Experimental results with ISCAS'89 benchmarks are presented in Chapter 8.

These results are compared to the existing test generation systems. Chapter 9

5

concludes this thesis.

CHAPTER 2

FAULT MODELS AND TESTING PROBLEMS

In this chapter, the test generation problems are presented. The test fault models

are identified and formulated in Section 2.1. Section 2.2 introduces the test gen-

eraton terminologies used through this work. In Section 2.3, the problems of test

generation for combinational circuits and sequential circuits are presented.

2.1 Faults in VLSI Systems

The testing of a digital logic circuit involves the application of stimuli to the circuit

and the evaluation of the response to determine whether the circuit is functionally

correct. An important part of testing is the creation of effective stimuli. In, practice,

the most commonly occurring faults are modeled. The fault model is a computer

model of the circuit that has been modified to conform to some premise or conjecture

about real physical defects. Then, input stimuli are created which can distinguish

between the fault-free and the faulted models. There are a number of advantages of

this approach [24]:

. It is effective to create specific tests for faults most likely to occur.

• The effectiveness of the test set can be measured by determining how many faults

can be covered by the set of test vectors.

7

• Specific defects can be associated with specific test patterns. If a circuit under

test responds to a test pattern incorrectly, there is information indicating the

faulty component or a set of components.

This method has become a standard approach to developing tests for digital logic

failures.

It is desirable to describe faults at various levels of abstraction in VLSI systems. A

fault which is described at a very low level, e.g., the transistor level, may accurately

describe the physical phenomena causing the fault. One of the difficulties with this

level is the tedious task of analyzing each individual component in the circuit. Further

complicating the task is the fact that there are several technologies in use and each

has its own unique way to perform digital logic operations.

Designers have long used logic symbols to represent their designs. These symbols

reduce the complexity of the logic circuit drawings and have the advantage of being

technology-independent. Figure 2.1 shows the logic diagram of an AND gate and its

truth table.

ABC D

A

B
C

000
001
010
011
100
101
110
111

0
0
0
0
0
0
0
1

Figure 2.1. Three input AND gate with its truth table.

With these symbols, the circuits áan be logically represented at a higher level,

i.e., the gate level. The faults can be described at the gate level and it would be

8

simpler for the purpose of analysis to consider the faults at that level. An important

advantage of this representation is the fact that a computer algorithm can be defined

upon these logic operators, which are, for most part, independent of the particular

technology chosen to implement the circuits.

2.1.1 Fault Models

Fault models are descriptions of the effect of a defect or failure in a circuit. One

of the earliest and still widely used fault models at the gate level of abstraction is

the stuck-at model. In this model, it is assumed that physical defects and faults will

result in the lines at the logic gate level of the circuit being permanently stuck at

logic value 0 or 1. This model is popular since many defects at the transistor level

can be modeled at the gate level.

It is impractical to test for the combinations of all the stuck-at faults in a circuit.

This has led to the adoption of the single-fault assumption. When attempting to

create a test, it is assumed that a single fault exists.

Consider a circuit containing nets which interconnect various components in the

circuit. At one time, each net may have only one of the following results:

• Fault-free

• Stuck-at-1, i.e., s-a-1

• Stuck-at-0, i.e., s-a-0

2.1.2 Fault Equivalence and Dominance

In building fault lists, it is often observed that some faults are indistinguishable

from others. In Figure 2.1, faults A, B, or C stuck-at 0 would result in the output D

9

being permanently 0 and, therefore, it is impossible to distinguish between an input

stuck-at 0 from the output stuck-at 0. These faults are said to be equivalent. There

is no logic test that can distinguish between them. More precisely, if Ta is the set

of tests which detect fault a and Tb is the set of tests which detect fault b, and if

Ta = Tb, then it is not possible to distinguish a from b.

When we test for inputs, e.g., A, B or C s-a-1, we simultaneously test for the

output D s-a-1. A s-a-1 fault on the output, however, prevents one from testing any

of the input s-a-1 faults. We say that the output D s-a-1 fault dominates the input

s-a-1 fault. In general, fault a dominates fault b if Tb is included in Ta. From this

definition it follows that if fault a dominates fault b, then any test which detects fault

b will detect fault a.

Since computer time for circuit testing is affected by the size of the fault list, the

reduction of the fault list, a process called fault collapsing, can reduce test generation

and simulation time. Therefore, fault equivalence and dominance relations are used

to reduce the size of fault lists.

2.2 Testing Terminologies and Definitions

A sequential circuit is shown in Figure 2.2. The circuit consists of a combinational

logic block and some feedback flip-flops. The inputs and outputs of flip-flops are the

next state and present state lines, respectively. There are p primary inputs, n present

state lines, n next state lines, and q primary outputs. Here it is assumed that the

present state and next state lines are neither controllable nor observable. The task

of test generation for sequential circuits is to find primary input sequences which can

propagate the faults in the sequential circuit to the primary outputs.

Figure 2.3 shows a conventional iterative array model [5] used in the test genera-

10

Primary
Inputs (P1)

Present
States (PS)

Figure 2.2. A sequential circuit.

Primary
Outputs (P0)

Next (NS)
States

tion of sequential circuits. Assume there is a fault, F, in the combinational logic block

of the sequential circuit shown in Figure 2.2, we duplicate the block in terms of each

clock cycle, i.e., time-frame. The iterative array in Figure 2.3 is logically equivalent

to the sequential circuit shown in Figure 2.2. If an input sequence P1', P12, , PI1C is

applied to the sequential circuit in initial state PS', i.e., a reset state, it generates an

output sequence P0', P02,. . ., pQk and the next state sequence NS', NS2, . , NS

(PS+' = NS, 1 ≤ i < k).

-

PS1

F
U

NS1 :

clock cycle 1

cell 1

F
U

NS2

clock cycle 2

cell 2

'P NSk

clock cycle k

cell k

Figure 2.3. An equivalent pseudo-combinational iterative array to the sequential
circuit in Fig. 2.1.

Definition 2.2.1 Beginning with the present state in clock cycle 1, PS', we set the

reset state values and wish to produce an input sequence, P1', p12'.. . ., p1k which,

when applied to clock cycles 1, 2,. . ., k, propagates the effect of the fault F to the

primary outputs, pQk, during the kth clock cycle. This input sequence is called a

11

test sequence for the fault.

Unlike combinational circuits, which only needs an input test vector to test a fault,

a sequential circuit may require a test sequence of up to 211 input test vectors, where

n is the number of memory elements (flip-flops) in the sequential circuits [5].

In sequential circuit testing, a state is a bit vector. Its length is equal to the

number of memory elements in the sequential circuit. In general, a state is a cube,

i.e., the values at the different bit positions may be 0, 1 or X (don't care). A minterm

state is a state with only 0's or l's as bit values. A cube state is a group of minterm

states. A universal cube is a cube with all X entries.

Definition 2.2.2 State S implicates state S2, if and only if, every state contained

in S is also contained in 52. That is, state 52 covers state S.

For example, state (0, 1, 0) is a minterm state, and state (0, 1, X) is a cube state.

There are two minterm states (0, 1, 0) and (0, 1, 1) in the state (0, 1, X), so state

(0, 1, 0) implicates state (0, 1, X). (X, X) X) is a universal cube.

The sequential circuits discussed here are assumed to have a reset state. All test

sequences are applied to the sequential circuit with the reset state as the starting state.

Some faults in the circuits may be redundant, i.e., their existence does not change

the behavior of the circuit. There are two kinds of redundant faults, combinational

redundant and sequential redundant.

Definition 2.2.3 A combinational redundant fault cannot be propagated to the pri-

mary outputs or the next state lines, beginning from any state, with any input vector.

Definition 2.2.4 A sequential redundant fault cannot be excited or whose effect can-

not be propagated to the primary outputs using any sequence of input vectors starting

12

from the reset state.

Definition 2.2.5 An excitation vector for a fault is an assignment that propagates

the fault to either the primary outputs or the next state lines. This assignment

consists of two parts, the primary input and the present state. The present state of

an excitation vector is called an excitation state. The primary input of an excitation

vector is an excitation input.

Definition 2.2.6 The process of finding an input sequence which takes a circuit from

the reset state into the excitation state is called state justification. The corresponding

input sequence is a justification sequence.

There are two kinds of state justification, forward state justification and backward

state justification. In the forward state justification, the search is done from the reset

state to the excitation state; and vice versa for the backward state justification. If

the excitation vector propagates the fault to the next state lines, state differentiation

is required.

Definition 2.2.7 State differentiation is the process of propagating the effect of the

fault on the next state lines to the primary outputs. A differentiation sequence for a

pair of states, true state ST and faulty state SF, which are different in at least one

bit, is an input sequence such that, if the circuit is initially in 8T, the last vector in

the sequence produces a different logic value in at least one primary output than if

the circuit were initially in Si'.

In circuit testing, the complete test sequence is obtained by combining the justifi-

cation sequence, the excitation vector, and the differentiation sequence.

13

When all flip-flops in a sequential circuit are disabled, the sequential circuit be-

comes a pseudo-combinational circuit as shown in Figure 2.4. The primary inputs and

present state lines are considered as the inputs of the pseudo-combinational circuit.

The primary outputs and next state lines are the outputs of the pseudo-combinational

circuit.

Primary p
Inputs (PIE) ,

Present
States (PS 1) /0.

b.

n

Combinational Logic

F
U

q
/ A (POE)

n
(NS E)

Primary
Outputs

Next
States

Figure 2.4. A general pseudo-combinational circuit.

Definition 2.2.8 The output cone of a primary output is a portion of circuit which

includes the primary output and its subtree from the primary output to the primary

inputs and present state lines. Any fault site in this subtree is a node in the output

cone. The next state cone of a next state line is a portion of circuit which includes

the next state line and its subtree from the next state line to the primary inputs and

present state lines.

Consider the sequential circuit, shown in Figure 2.2. Assuming a fault site in

the circuit is a node in the output cones of r primary outputs, then we refer to the

output cones of these r primary outputs as the primary output fault region for the

fault under test. Similarly, if a fault site in the logic circuit is a node in the next state

cones of s next state lines, the next state cones of these s next state lines compose

the next state fault region for the fault under test.

To illustrate the idea of a circuit cone, we use a simple sequential circuit s27 from

the ISCAS'89 benchmarks. The circuit is shown in Figure 2.5. There is only one

14

primary output G17, and its output cone is shown in Figure 2.6. There are three

next state lines Gb, Gil, and G13. The next state cone of Gil is shown in Figure

2.7. Considering a fault on G15, as G15 is a node in the output cone of the primary

output G17, its primary output fault region is the output cone of G17 shown in Figure

2.6. Though G15 is a node in the next state cones of the next state lines Gil and

Gb, if the fault is to propagate to Gb, it must propagate-to Gil first. One need

only consider the next state line Gil. The next state fault region for the fault at

node G15 is the next state cone of Gil, as shown in Figure 2.7.

GO

Gi

G2

G3

•%•% G14

-III1I GIO
12

—D G13

G8

G15

G16

G6

G9 Gil

—D

G5 Dff

G17

G7

Dff

Dff

Figure 2.5. Example circuit s27 from ISCAS'89 benchmarks.

Definition 2.2.9 The ON set of an output is the complete set of the input values

which produce the output logic value 1. The OFF set is the complete set of the input

values such that the corresponding output is at logic value 0.

15

GO

Gi

G3

G7

GO

GI

G3

> o'

T>

G6

G12

G8

_IIIII Gl5DG9

1 :)G16
G5

Figure 2.6. The output cone of G17 in circuit s27.

-D
G12

G8

D 16

G7

G5

G6

Figure 2.7. The next state cone of Gil in circuit s27.

Gil

16

The process of extracting the ON/OFF sets of the primary outputs and next state

lines is called cover extraction.

Definition 2.2.10 If a sequential circuit can reach a state F0 during the next clock

cycle from a state Fin, state Fi,, is said to be a fan-in state of state and state

F,,ut is a fanout state of state

All fan-in states of a state can be easily obtained by cube intersection on the ON

and OFF sets of the next state lines.

Definition 2.2.11 The intersection of two cubes c and d, denoted cfl d, is the set of

states that belong to both c and d.

c d - { , if there exists one k, ck fl dk = , otherwise
- {(cifl di) (c2fld2) ... (cfld)}

The intersection of the three value tuple is defined in Table 2.1, where 0 is the

empty set.

Table 2.1. Cube intersection operation.

d
nolx

ooco
ci 1 q 1 1
x01x

Definition 2.2.12 The sharp product of two cubes, i.e., c#d, is the set of states that

belong to c but not to d.

17

C7 if there exists one k, ck#dk =
c#d= q, ifck#dk =e, for all k; else

I. Uk{c1c2 ... Ck...1kCk+1 ... c,}

where ck#dk=a/EO,1,k=1,2,...,n.

The sharp product of the three value tuple is obtained in Table 2.2, where e means

implication.

Table 2.2. Sharp product operation.

d
#01x

ci 1

X1O 6

Definition 2.2.13 A graph G = (V, E) consists of a finite, nonempty set of vertices

Vand a set of edges E. If the edges are ordered pairs (v, w) of vertices, then the graph

is said to be directed; v is called the tail and w the head of the edge (v, w).

Definition 2.2.14 A path is a sequence of edges of the form (vi, v2), (v2, v3),

(va_i, va). We say that the path is from v1 to Vn and is of length n-i. A cycle is a

simple path of length at least 1 which begins and ends at the same vertex.

If a graph contains a cycle, it is cyclic; otherwise it is acyclic. A Directed Acyclic

Graph (DAG) can be used to describe a circuit.

18

Definition 2.2.15 The transitive closure of G is defined as a graph C* which has

the same vertex set as G, but has an edge from v to w if and only if there is a path

from v to w in G.

Definition 2.2.16 The edges V can be partitioned into equivalence classes V, 1 ≤

i < r, such that vertices v and w are equivalent if and only if there is a path from v to

w and a path from w to v. The graphs Gi = (V2, E) are called the strongly connected

components of G.

The goal of the satisfiability (SAT) problem [9] is to determine whether there

exists an assignment of truth values to a set of variables (x1, X2, ..., xm) that makes

the following Boolean formula satisfiable:

C1C2 --- Cn (2.1)

where is a logic and connector and c1, c2, ..., e are n distinct clauses. Each clause

consists of only literals combined by just logic or (+) connector (a literal is a variable

or a single negation of a variable).

2.3 Test Generation and Its Problems

With the progress of the VLSI technology, the problem of fault detection for logic

circuits is becoming increasingly difficult.

2.3.1 NP-Completeness of Combinational Test Generation

A significant theoretical study by Ibarra and Sahni [17] shows that test generation

for combinational circuits belongs to the class of NP-complete problems. This strongly

suggests that no test generation algorithm with a polynomial time complexity is likely

19

to exist. The problem of combinational circuit test generation can be viewed as a

finite space search problem [12]. For a combinational circuit with m primary inputs,

there exists 2m combinations of input assignments.

In practice, test generation algorithms for combinational circuits appear to be

able to achieve lower average time growth by using heuristic search techniques. Up

to now, some well-known test generation algorithms for combinational circuits, such

as D-algorithm [26], PODEM [12], FAN [10], NEMESIS [19], and TRAN [7], have

been developed. Some of them perform well for certain circuit structures.

2.3.2 Test Problems in Sequential Circuits

Test generation for sequential circuits has long been recognized as a difficult task

[5, 23]. It remains to be a challenge in spite of a history of attempts dating back

to the late 1960s. One new factor which complicates the task of creating tests for

sequential circuits is the presence of memory elements.

For combinational circuits, it is possible, but not necessarily reasonable, to create

a complete test for logic faults by applying all possible binary combinations to the

inputs. This is not true for sequential circuits with memory elements. Not only may

they requires more than 2m tests, they are also sensitive to the order in which stimuli

are applied. It has been shown [5] that a fault in a general synchronous sequential

circuit may require a test sequence of up to 21 input test vectors, where i-i is the

number of memory elements in the sequential circuits. This shows that the search

space for sequential circuit test generation is very large.

2.4 Summary

The cost of manufacturing a VLSI chip is very much affected by the testing cost

for the chip. The large number and complex nature of potential physical failures

20

suggests that a practical approach to testing should avoid working directly with the

physical failure. One approach for solving the problem is to describe the effects of

physical failures at some higher levels of abstraction. The stuck-at fault model at the

gate level is the most popular model describing present VLSI testing methodology.

It has been recognized that test generation for sequential circuits is an extremely

difficult problem. Different approaches have been used to tackle the test generation

problem for sequential circuits, either by randomly generating test sequences or by

using other deterministic test generation methods. It is a challenging topic to develop

an efficient test generation system for VLSI sequential circuits.

CHAPTER 3

PREVIOUS WORK

In this chapter, the previous work in test generation for combinational circuits and

sequential circuits is presented.

3.1 Test Generation for Combinational Circuits

Existing ATPG systems for combinational circuits fall into two classes: structural

methods, such as PODEM [12], and algebraic methods. Structural search methods

use a data structure representing the circuit to be tested. To generate a test pattern,

they assign values that cause a discrepancy at the faulted line (fault site) and then

search for consistent values for all circuit lines such that the discrepancy is visible at

a circuit output.

Among structural search methods, the D-algorithm, developed by Roth [26], is

probably the most known test generation algorithm. This algorithm adopts a five-

valued 0, 1, X, D, calculus to be able to carry out the sensitization and the line

justification procedures in a very formal manner. The faulty line is assigned a D, or

depending on the fault on the line. The calculus and the circuit structure information

are used to determine values on the other lines so that the D or can be sensitized

to the prifnary outputs. A line justification step is then carried out to justify the

values assigned in the preceding step. Both the sensitization and the line justification

steps may have to be carried out many times before a test vectors is obtained.

22

A class of circuits for which the D-algorithm performs particularly poorly are

those containing exclusive-or trees. The degradation in performance arises due to

excessive amount of backtracking. This observation motivated Goel [12] to devise

a new test generation algorithm called path oriented decision making (PODEM). He

used a branch and bound technique. The algorithm starts by assigning a value of 0

or 1 to a selected primary input (P1) line, and then determines its implication on the

propagation of D or TD to a primary output. If no inconsistency is found, it again

somehow selects another P1 line and, assigns a 0 or 1 to it, and then repeats the

process, which is referred to as branching. If an inconsistency is determined in the

branching, the branching stops and bounding starts. The PT line which was most

recently assigned a binary value is assigned the complimentary value, and branching

starts again. The complete process stops when either a test vector is found or when

the fault is determined to be undetectable. PODEM implementations are known to

run an order of magnitude faster than the D-algorithm on most circuits.

Fujiwara and Shimono [10] described techniques to further accelerate a path-

sensitization algorithm like PODEM. Their algorithm, called FAN, does extensive

analysis of the circuit connectivity in a preprocessing step to minimize backtracking.

FAN has employed a better heuristic in the bounding-and-branching steps to speedup

the test generation process.

In these structural methods, backtracking, which is a branch procedure terminated

by a bound step, is the most computationally expensive step in the process of search-

ing for a test vector. The branching step goes as deep in the binary search tree as

possible, while the bound step backs up in the binary search tree to the most recent

node with an unused alternative assignment.

Instead of performing a search on a data structure representing a circuit, algebraic

23

methods produce an equation describing all possible tests for a particular fault and

then simplify the resulting equation. A typical algebraic method is the Boolean

difference method, proposed by Sellers et al. [27]. Once the Boolean difference

formula for the testing problem is obtained, it is simplified by using the basic laws

of Boolean algebra or using identities specific to the Boolean difference. The tedious

nature of the algebraic manipulations involved in solving formulae using the Boolean

difference led to its disfavor as a practical tool for test pattern generation [24].

Recently, Larrabee [19] proposed a Boolean satisfiability (SAT) method for gen-

erating test vectors for single stuck-at faults in combinational circuits. This new

method generates test vectors in two steps. First, it constructs a formula express-

ing the Boolean difference between the unfault and faulted circuits. Second, instead

of performing symbol manipulation, it applies a SAT algorithm to satisfy the for-

mula. This new method has, in practice, produced excellent results for the problem

of combinational circuit test generation.

Later, Chakradhar, Agrawal, and Rothweiler [7] developed a transitive closure

algorithm for combinational circuit test generation. A test is obtained by determin-

ing signal values that satisfy a Boolean difference equation derived from the model

of the circuit incorporating necessary conditions for fault activation and path sensi-

tization. The method is a sequence of two main steps that are repeatedly executed:

transitive closure computation and decision-making. The transitive closure contains

global pairwise (or binary) logical relationships among all signals. Higher-order sig-

nal relationships are represented as additional ternary relations. A key feature of

the algorithm is that signal dependencies derived from the transitive closure are used

to reduce ternary relations to binary relations that in turn dynamically update the

transitive closure. The signals are either determined from the transitive closure or are

24

enumerated until the Boolean equation is satisfied. The transitive closure algorithm

has produced excellent results on popular test pattern generation benchmarks.

3.2 Test Generation for Sequential Circuits

The Earlier algorithms represented sequential circuits as iterative combinational

circuits. Some test generation algorithms for combinational circuits were extended

to test sequential circuits [18, 25]. An algorithm that implements this method has

been programmed into a commercial package called LAS AR. [29]. Several approaches

[22, 28] based on the extensions of the classical D-algorithm were presented to solve

the problem of test generation for sequential circuits. Shteingart et al. [28] gave

an efficient technique for modeling sequential components. Although some progress

was made in these attempts, an effective solution for circuits with more than a few

hundred gates and large sequential depths was not available at that time.

Due to the relative ineffectiveness of these ATPG systems, many large digital sys-

tems are being designed in compliance with design-for-testability rules which attempt

to reduce the complexity of the test problem. The object of design-for-test is to pro-

vide guidelines which insure the creation of testable designs. A popular approach is

to make the memory elements controllable and observable, i.e., a scan design [1]. The

flip-flops and/or latches are designed to be able to operate in either parallel load or

serial shift mode. In the normal mode of operation, flip-flops and latches are config-

ured for parallel load. For testing purposes the flip-flops are switched to a serial shift

mode. In serial mode, any needed test values can be loaded by serially clocking in the

desired values. In similar fashion, any values present in the flip-flops can be observed

by clocking out their contents while in the serial shift mode. Scan design approaches

have been successfully used to reduce the complexity of the problem of sequential

circuit test generation by transforming the problem into that of combinational circuit

25

test generation. However, in some cases, the cost in terms of area and/or performance

and/or extra numbers of I/O pins is unaffordable.

Recently, considerable progress has been made in test generation for sequential

circuits. A heuristic, simulation-based test generation algorithm was presented by

Agrawal et al. [2]. Ma, Devaclas, Newton, and Sangiovanni-Vincentelli [21] described

a PODEM-based deterministic approach to sequential circuit test generation, called

STALLION. It first extracts .a partial state transition graph (STG) of a sequential

circuit. The construction of the partial STG is based on an efficient state-enumeration

algorithm that aims at finding paths from the reset state to different valid states

(states reachable from the reset state) in the STG. Then test sequences for line stuck-

at faults can be generated using the two-phase ATPG system: fault excitation and

propagation, and state justification.

Later, a new system, STEED, was proposed by Ghosh, Devadas, and Newton

[11] to improve STALLION. STEED decomposes the problem of sequential circuit

test generation into three subproblems, i.e., excitation vector generation, state jus-

tification, and state differentiation. Given a fault under test, it first generates a

combinational excitation vector that propagates the effect of the fault to the primary

outputs or the next state lines. Combinational circuit test generation is based on

a PODEM-based algorithm. A justification step is then performed, which involves

finding a justification sequence for the excitation state. This step is carried out using

a sequence of cube intersections on the complete or partial ON/OFF-sets of the next

state lines. Thus a justification sequence is found. If the effect of the fault has been

propagated to the next state lines alone, the true-faulty state pair is produced by the

excitation vector. A differentiation sequence for this true-faulty state pair is obtained

using another sequence of cube intersections, this time using the ON/OFF-sets of the

26

primary outputs. It is shown that this three-phase ATPG for sequential circuits is an

efficient method. STEED significantly improved STALLION in terms of computing

time for the same fault coverage.

Cho, Hachtel, and Somenzi [8] have recently given an efficient algorithm, VER-

ITAS, for sequential circuit test generation. VERITAS is based on implicit state

enumeration and a three-phase ATPG. The approach identifies sequential redundan-

cies through reachability analysis of sequential circuits. It constructs the product

machine of two sequential circuits to be compared. The reachability analysis is per-

formed by traversing the finite state machine to find any difference in I/O behavior.

When an output difference is detected, the information obtained by reachability anal-

ysis is used to generate a test sequence. As the product machine traversal (PMT) is

quite resource-demanding, a three-phase ATPG system is used first to deal with most

of the faults. PMT is used only for the faults for which the three-phase ATPG fails

to generate test sequences. VERITAS further improved STEED in terms of running

time, test vector length, and fault coverage. It is difficult, however, for VERITAS to

handle large size sequential circuits.

These approaches are capable of generating tests for sequential circuits with 1000-

3000 gates. Due to the difficulty of test generation for sequential circuits, significant

improvements are needed for the testing of larger sequential circuits.

3.3 Summary

Up to now, some well-known test generation algorithms for combinational cir-

cuits have been developed and perform well for certain circuit structures. Existing

ATPG systems for combinational circuits fall into two classes: structural and al-

gebraic methods. Both Boolean satisfiability and transitive closure methods have

27

produced excellent results on popular test pattern generation benchmarks.

For sequential circuit test generation, some progress has been made in the past

several years. The three-phase ATPG system is shown to be an efficient method. Due

to the difficulty of test generation for sequential circuits, significant improvements are

needed for very large scale sequential circuits.

CHAPTER 4

A NOVEL TEST GENERATION SYSTEM FOR
SEQUENTIAL CIRCUITS

In this chapter, we present an efficient test generation algorithm for sequential

circuits. A transitive closure algorithm has been developed for combinational circuit

test generation. We extend the transitive closure algorithm to test generation of se-

quential circuits. To make the previous three-phase ATPG system more efficient, a

new backward deterministic method for state differentiation is developed. This algo-

rithm offers significant efficiency improvements for test generation of large sequential

circuits.

At first, observations that initiated this research work in sequential circuit test

generation are given. Then after briefly introducing the steps of cover extraction,

pseudo-combinational circuit test generation, state Justification, state differentiation,

fault simulation, and determination of redundant faults, a novel test generation sys-

tem for sequential circuits is presented. The algorithms used in cover extraction,

pseudo-combinational circuit test generation, state justification, and state differenti-

ation will be described in Chapters 5 - 7 in detail.

4.1 Observations

Up to now, the most popular ATPG systems for sequential circuits use the three-

phase ATPG method: excitation vector generation, state justification, and state dif-

ferentiation. The first phase, in the most cases, uses a PODEM-based combinational

29

ATPG, such as STALLION [21] or STEED [11]. This phase usually takes a large

fraction of the total test generation time. As indicated in Section 3.1, Boolean satis-

fiability (SAT) method [19] and transitive closure method [7] have been developed to

perform test generation for combinational circuits. Both SAT approach and transitive

closure algorithm have obtained superior results over the PODEM-based algorithms.

In our approach, we use the transitive closure algorithm to perform the first phase,

i.e., excitation vector generation, in sequential circuit test generation.

The second and third phases are state justification and state differentiation. They

usually take a small fraction of the total test generation time. State differentiation in

the existing three-phase ATPG systems lacks efficiency in dealing with the unspecified

inputs in excitation vector and justification sequence. So STEED has to apply all

possible assignments to the unspecified inputs before it concludes that a test for the

fault under consideration does not exist. There exists 2 possible minterm states

for n unspecified inputs. Considering that each possible minterm state may need to

perform state justification, the real search space is much larger than 2'.

In this thesis, we propose a new backward deterministic method for state differ-

entiation. In our approach, cubes, rather than minterm states, are used to represent

states. Instead of using minterm state differentiation, our method searchs backward

to specify the cubes into real excitation states. This has considerably reduced the

running time for sequential circuit test generation.

4.2 A Novel Test Generation System for Sequential Circuits

The system starts by extracting the ON/OFF sets of the primary outputs and

next state lines. A new backward assignment method is proposed to perform cover

extraction. We employ the three-phase ATPG approach to generate test sequences.

30

The transitive closure algorithm is extended to test generation for sequential cir-

cuits. The problem of test generation for sequential circuits is decomposed into three

subproblems:

• pseudo-combinational circuit test generation: All flip-flops in the sequential cir-

cuit are disabled, and sequential circuit test generation becomes combinational

circuit test generation. The transitive closure algorithm is used to find the exci-

tation vector for the pseudo-combinational logic circuit.

• state justification: An input sequence is found to take a circuit from the reset

state into the excitation state.

• state differentiation: An input sequence is found to propagate the effect of the

fault on the next state lines to the primary outputs.

In the following discussion, we will describe briefly cover extraction, transitive

closure based pseudo-combinational circuit test generation, state justification, state

differentiation, fault simulation, and determination of redundant faults. Then the

new test generation system for sequential circuits is presented.

4.2.1 Cover Extraction

The objective of cover extraction is to extract the ON/OFF sets of the primary

outputs and next state lines. At first, all flip-flops in a sequential circuit are disabled.

The sequential circuit becomes a pseudo-combinational circuit. The inputs of all

flip-flops (next state lines) and the primary outputs are considered as outputs of

the combinational circuit. The outputs of all flip-flops (present state lines) and the

primary inputs are considered as inputs of the combinational circuit.

31

For each output of the pseudo-combinational circuit, the ON/OFF sets are ex-

tracted by assigning the corresponding output line to logic value 1 or 0 and using

a new and efficient backward assignment method to implicitly enumerate the input

combinations that can set the output line to 1 or 0. A similar backward assignment

method has been successfully used in test generation for combinational circuits [30].

At first, the combinational circuit is represented as separate output cone for each

output. For each circuit cone, we assign the output of the cone to 1 or 0. Then

we propagate the assignment backward to the inputs of the cone. Finally, the com-

bination of the assignments at the inputs of the cone is the ON or OFF set of the

output.

Due to the connectivity of the logic circuit, some nodes in the circuit may be

assigned more than once. Therefore with the increase of the circuit's depth, the

number of assignments for each node per level may increase dramatically. So the

CPU time for generating the ON/OFF sets may grow dramatically. A simple method

is to set a limit for the maximum number of the assignments at each node [30].

Limiting the maximum number of assignments per node can dramatically decrease

the extraction time. But after setting the limit, the ON/OFF sets obtained may be

incomplete.

We use a different and efficient method. After the number of assignments reaches

the limit, we use logic minimization to compress the assignments. The method is

based on the fact that each ON/OFF set usually requires less than a few hundred

vectors for most of ISCAS'89 benchmark sequential circuits after logic minimization.

This method assures that we obtain complete ON/OFF sets of the primary outputs

and next state lines. Also it makes the storage of ON/OFF sets memory efficient.

For some large circuits, it might not be possible to generate the complete cover. This

32

method would extract as many vectors in the cover as possible. The ON/OFF sets

are saved in bit vectors, which are similar to those used in ESPRESSO [4].

Three methods can be used to extract the ON/OFF sets.

1) The output of the circuit is set to 1 or 0, and the backward assignment method

is used to generate the ON or OFF set separately.

2) Because the ON set and OFF set for a same output are complementary, which

means that the union of the ON set and OFF set for the same output should corre-

spond to the universal cube, when we generate the ON set, the OFF set can be easily

obtained by disjointing the ON set from the corresponding universal cube.

3) The output of the circuit can be set to the logic value D or D. The backward

assignment method is used to generate the D set. When D is equal to 1, the ON set

is obtained. When D is 0, the OFF set is obtained. A part of backward assignment

rules of value D can be found in [30].

We use the first method to generate the ON/OFF sets of the primary outputs and

next state lines. The backward assignment method will be discussed in Chapter 5

in detail.

4.2.2 Pseudo-Combinational Circuit Test Generation

Our current method considers one fault at a time. Given a fault for which that a

test sequence is to be generated, the first step in test generation for sequential circuits

is to generate a combinational test vector in the pseudo-combinational circuit for the

fault. Figure 2.4 shows a pseudo-combinational circuit obtained from a general

sequential circuit by disabling all flip-flops. The goal of test generation for a pseudo-

combinational circuit is to find an excitation vector (PIE, PS') which excites the

33

fault to p0E or NSE.

Our test generation algorithm for combinational circuits, which will be described

in Chapter 6 in detail, is based on a transitive closure method [7]. At first, the

algorithm tries to propagate the effect of the fault to the primary outputs. If failed,

the algorithm tries to propagate the effect of the fault to the next state lines. When

the fault is combinational redundant, the effect of the fault cannot propagate to either

the primary outputs or the next state lines.

To make state justification easier, the excitation vector is generated with as many

don't care entries as possible - some lines may be left unknown. If the excitation state

can not be justified, a new excitation vector should be generated. The new vector

should be disjointed from all the previous states. This assures that all new generated

excitation states are not used previously.

We notice that each fault may only be a node in circuit cones of some primary

outputs and/or next state lines. To generate excitation vector efficiently, we only need

to consider the related part of the circuit with the fault. When the algorithm tries to

propagate the effect of the fault to the primary outputs, we search the circuit forward

from the fault site to the primary outputs and find all related primary outputs. The

output cones of these primary outputs compose the primary output fault region for

the fault. Similarly, when the algorithm tries to propagate the effect of the fault to

the next state lines, we should search for an excitation vector in the next state fault

region for the fault. Because the fault region is smaller than the original circuit, the

search effort and time are decreased.

34

4.2.3 State Justification

Once a combinational excitation vector is found for a fault in the pseudo-

combinational circuit with as many don't care entries as possible, state justification

is used to justify if the excitation state is reachable from the reset state. Usually the

excitation state is a cube. If the reset state implicates the excitation state, the fault

can be excited from the reset state. If not, the excitation state should be justified by

using state justification.

The iterative array model in Figure 4.1 is used to illustrate state justification.

The excitation input PIS and excitation state pgS excite the effect of a fault under

test to p0E or NS'. As the sequential circuit discussed here is assumed to have a

reset state, all valid states begin from this reset state. The goal of state justification

is to find an input sequence PI', pjJ2 ,. . ., p1Jk which places the sequential circuit

into the excitation state pgE from the reset state. If pSi' is the reset state, the

justification sequence p1J1 , pjJ2. . . p1Jk is found. The set of states traversed

during state justification, PSI', PS",'- . ., pgJk constitute the justification path.

Justification 1 Justification k Excitation

PIJi pOJ1

psJ1

(Reset state)
NS 1

F
U

0Jk 1E

- -*

NSJk psE

F
I

PO E
-

-

NSE

Figure 4.1. General iterative array model for state justification.

State justification can also be illustrated by the state transition graph (STG) shown

in Figure 4.2. PS' is the excitation state, and we need to find a justification path

from the reset state to the state PSE.

35

Reset state Excitation state

Figure 4.2. State transition graph for state justification.

There are two methods to perform state justification, forward and backward, de-

pending on whether the search is conducted from the reset state to the excitation

state or vice verse. Here we use backward state justification. All fan-in states of the

excitation state are obtained by performing cube intersection on the corresponding

ON/OFF sets of the next state lines. If the reset state implicates the fan-in states,

a single vector justification sequence is found. Otherwise, the process is repeated

for the fan-in states being currently justified to try to find multi-vector justification

sequence.

It is noted that all fan-in states obtained in state justification are cubes. Because

a cube state is a group of minterm states, using cubes is helpful to find a shorter

justification sequence. Thus the justification time is reduced and the quality of the test

pattern generator increases. Once the justification sequence is found, fault simulation

is used to check if the excitation state is justified. The algorithm of state justification

is given in Section 7.1.

4.2.4 State Differentiation

If the combinational excitation vector propagates the fault to the primary outputs,

and the excitation state is justified, a test sequence for the fault is successfully gen-

erated. However, if the combinational excitation vector propagates the fault to the

next state lines, state differentiation is required to continually propagate the effect of

36

Justification 1

pr11 p0J1

PS' NS JI

(Reset state)

Reset
state

Justification k Excitation Differentiation 1 Differentiation r

1Jk pQJk 1E

psJk NSJk psE

F F
U

0 E p1Dl

- -

NSE ps l

F

Figure 4.3. Iterative array model for state differentiation.

Excitation
state

Figure 4.4. State transition graph for state justification and state differentiation.

the fault to the primary outputs.

The iterative array model in Figure 4.3 is used to illustrate state differentia-

tion. The excitation input FIB and excitation state PSE excite the effect of a

fault under test to the next state lines NSE, and a justification path from PSI'

(reset state) to PSJk is found. The goal of state differentiation is to find an in-

put sequence pJD1 , p1D2. . ., p]Dr which propagates the effect of the fault on the

next state lines of the excitation state clock cycle to the primary outputs of the

rth differentiation clock cycle. The primary input sequence pjD1 , p1D2. . ., Pi' is

the differentiation sequence. The set of states traversed during state differentiation,

PSD1, , PSD ., constitutes the differentiation path. The test sequence is

obtained by concatenating the justification sequence, the excitation vector, and the

differentiation sequence. The state transition graph shown in Figure 4.4 is used to

illustrate the test sequence.

37

algorithm is used.

At first, fault simulation is used to create the true and faulty states (8?', Sr)

with the combinational excitation vector. By employing cube intersection on the

ON and OFF sets of each primary output, we try to find an input vector which

produces a different output on the corresponding primary output, beginning from

the true and faulty states separately. Such an input vector constitutes a single-

vector differentiation sequence. If a single-vector differentiation sequence cannot be

found, all the fan-out states of the true and faulty states are found via repeated cube

intersection. This is performed by finding an input vector that produces a different

output on at least one next state line for the true and faulty states with the ON/OFF

sets of each next state line. If the input vector is found, a new pair of true and faulty

states (Si', Si') are obtained. For the new true and faulty states, a single-vector

differentiation sequence is sought again. If found, a two-vector differentiation sequence

is constructed. Otherwise, a pair of states fanning out from some fan-out state pair

is picked and differentiation between this pair is attempted. The process continues

until a differentiation sequence is found or there does not exist any differentiation

sequence for ST and Sr. Once the differentiation sequence is found, the entire test

sequence is fault simulated to check if the fault can be detected.

As with state justification, in the general case, state differentiation is attempted

between disjoint groups of states (cube states) rather than a minterm state pair. This

means that some bits in the true and faulty states are unknown. The existence of

a differentiation sequence between two groups of states means that if any state A

from the true group is chosen, along with a corresponding state A' from the faulty

group, then the differentiation sequence will be able to differentiate between the

state A and A'. Since this is a strong requirement, it is often impossible to find a

38

differentiation sequence between the state groups [11]. This does not means that a

test for the fault does not exist. In order to find a test, usually it is necessary to set'

some unspecified bits in the primary inputs or the present states of the justification

sequence and excitation vector to either 0 or 1. A simple method can be applied where

the excitation state is separated into a group of minterm states, and state justification

and differentiation are performed on the minterm states. The disadvantage of this

method is the long running time.

A novel and efficient backward deterministic method is developed in this thesis to

solve this problem. After the combinational excitation state is found to propagate

the fault to the next state lines with as many don't care entries as possible and is

justified successfully, the backward deterministic method for state differentiation is

used. When we search forward to perform state differentiation, if some unspecified

bits in the present states and the primary inputs of the whole sequence are needed to

be set to either 0 or 1, the backward deterministic method is used to determine the

logic values of these unspecified bits and justify the new specific states.

Cube intersection on the ON and OFF sets of the primary outputs or the next

state lines is used if some unspecified bits are to be set to some specific logic values

1 or 0. The fault can then be propagated to the primary outputs or the next state

lines. If this setting causes conflict in the unspecified bits between the true and faulty

states, the differentiation sequence doesn't exist. Otherwise, when the unspecified

bits are on the primary inputs, we just set them to the required values. When the

unspecified bits are on the present state lines, we check if the present state is justified

from the next state of the last clock cycle. If the justification step needs to set some

unspecified bits in the present state lines of the last clock cycle to specific logic value

1 or 0, the same process is repeated on the last clock cycle. The new method will be

39

discussed in detail in Section 7.2.

4.2.5 Fault Simulation

The quality of a test is measured or quantified by means of fault simulation. When

a potential test sequence for a fault in sequential circuits is found, we fault simulate

the sequence to check if it detects this fault and other faults. The sequence is first fault

simulated by applying it to circuit models which have been altered slightly to imitate

the effects of faults. If the circuit output response, as determined by simulation,

differs from the response of the circuit model without the fault, then the fault is

detectable by the sequence. After the process has been performed for a sufficient

number of faults, an estimate

T = (no. of faults detected)/(no. of faults simulated)

is obtained which reflects the quality of the test sequence.

The fault simulation serves other purposes besides evaluating the test sequence

[24]; in this thesis it:

• confirms detection of a fault for which an automatic test pattern generator

(ATPG) claims that a successful test was found.

• computes fault coverage for a given test sequence.

Fault simulation is an important step in any ATPG system for both combinational

and sequential circuits. Up to now, some efficient fault simulation algorithms have

been developed. In general, there are three kinds of fault simulation methods, i.e.,

parallel fault simulation, deductive fault simulation, and concurrent simulation. In

40

sequential circuits, the fault appears in every clock cycle. Hence, the single fault

model becomes a multi-fault model.

In our system, we use a simple event-driven fault simulation. The algorithm of

fault simulation is shown in Figure 4.5.

4.2.6 Determination of Redundant Faults

The difficulty in test generation for sequential circuits lies not only in testing

difficult but testable faults, but also in the determination of redundant faults. Low

fault coverage on certain circuits does not mean that a test generation system for

sequential circuits is not suitable for the sequential circuit if we can show that the

detected faults are close to the maximum possible number of detectable faults. In

general, the determination of a redundant fault may need an astronomical amount

of CPU time, because we should exhaust all the search space before the fault is

considered as redundant.

There are two kinds of redundant faults in sequential circuits - combinational

redundant and sequential redundant. For combinational redundant faults, it is rela-

tively easy to detect them by using test generation for combinational circuits. The

sequential redundant faults can be divided into two kinds: unjustifiable faults and

undifferentiable faults [11]. If none of the excitation states are justifiable for a fault,

the fault is said to be unjustifiably redundant. If there is at least a justifiable exci-

tation state, but none of the excitation states have a differentiation sequence for a

fault, the fault is said to be undifferentiably redundant.

The sequentially redundant faults can be found using theorem 1 in [21]. The

theorem states that if all excitation states are not reachable from the reset state in

the fault-free machine, the fault is sequentially redundant. We use the theorem for the

41

Input A sequence of test vectors and a fault under test.
Output : The fault is detected by the sequence or not.

Procedure Multi_fault_simulator(a fault under test) {
for each clock cycle of test vector {

deduct signals values at the unfaulted circuit;
deduct signals values at the faulted circuit;
for each primary output {

if the unfaulted value is different from the faulted value
return that the fault is detected by the test sequence;

}
}
return that the fault can not be detected by the test sequence;

}

Figure 4.5. Fault simulation algorithm.

42

detection of sequentially-redundant faults as in [11]. We generate all combinational

excitation states for a fault. If all excitation states are unjustifiable, the fault under

test is redundant. A state is said to be unjustifiable if the number of fan-in cubes

determined in state justification is zero or if all the fan-in states of the state are

unjustifiable.

4.2.7 An Efficient Test Generation Algorithm for Sequential Circuits

The flow chart of the sequential circuit test generation algorithm based on the

ideas presented above is given in Figures 4.6. As a preprocess, the algorithm starts

with the extraction of the ON/OFF sets of the primary outputs and next state lines.

For each fault under test, the sequential circuit test generation algorithm is given in

Figures 4.7. The algorithm consists of:

Step 1. If the fault site is a node in the output cones of some primary outputs, the

corresponding output cones of these primary outputs are extracted, and go to step 2.

Otherwise, go to step 4.

Step 2. The transitive closure based test generation algorithm for pseudo-

combinational circuits is used to find a (new) combinational excitation vector. If

the combinational excitation vector has the present state part disjointed from the

present state part of all the previously generated test vectors, go to step 3 to do state

justification. If no such a new vector is found, the fault can't be propagated to the

primary outputs directly, and go to step 4.

Step 3. State justification is used to find if the excitation state is reachable from

the reset state. If the justification sequence is not found, return to step 2. If found,

go forward to step 7.

43

Cover extraction

Choose a fault from fault list

Fault site in
utput cone of P

Transitive closure method

md a new
xcitation vector

State justification

Justification
sequence found

Fault simulation
succeeds

Fault site in next
tate cone of N

Transitive closure method

All faults
tried

md a new
xcitation vector

State justification

Justification
sequence found

State differentiation

ifferentiation
sequence found

Fault simulation
succeeds

Redun. fault

Figure 4.6. The flow chart of the test generation algorithm for sequential circuits.

44

Input : The sequential circuit and a faults to be tested.
Output : A test sequence for the fault if found.

Procedure Sequential_test_generator(a fault under test) {
/* try to propagate the fault to primary outputs /
if the fault site is a node in output cones of some primary outputs {

extract the output cones of these primary outputs;
while a new combinational excitation vector is found {

if justification sequence is found {
/ the fault is detected by the test sequence /
use the test sequence to fault simulate the fault;
if fault simulation succeeds

return the test sequence;

}
}

}

}
/ try to propagate the fault to next state lines as it can't be

propagated to primary outputs directly *1
if the fault site is a node in next state cones of some next state lines

extract the next state cones of these next state lines;
while a new combinational excitation vector is found {

if justification sequence is found {
if differentiation sequence is found {
/ the fault is detected by the test sequence /
use the test sequence to fault simulate the fault;
if fault simulation succeeds

return the test sequence;

}
}
redundant..Sault_detectQ;
if the fault is redundant

return the fault is redundant;
else return the fault is aborted;

}
}

Figure 4.7. The algorithm of sequential circuit test generation.

{

45

Step 4. If the fault site is a node in the next state cones of some next state lines,

the corresponding next state cones of these next state lines are extracted, and go to

step 5. Otherwise, the fault is redundant and exit.

Step 5. The test generation algorithm for pseudo-combinational circuits is used to

find a (new) combinational excitation vector. If the combinational excitation vector

has the present state part disjointed from the present state part of all the previously

generated test vectors, go to step 6 to do state justification and state differentiation.

If no such a new vector is found, exit without a test.

Step 6. State justification is used to determine if the excitation state is reachable

from the reset state. If a justification sequence is not found, return to step 5. If

found, state differentiation is performed to propagate the effect of the fault to the

primary outputs. If a differentiation sequence is found, go to step 7. Otherwise, go

back to step 5.

Step 7. Fault simulate the test sequence. If it detects the fault, return with the

test sequence. Otherwise, go back to the previous step.

When a test sequence is found, the test sequence is used in simulating all undecided

faults in the fault list. All the faults that can be detected by the test sequence are

removed from the fault list.

4.3 Summary

Observations that initiated our research work in test generation for sequential

circuits have been introduced in this chapter. A new approach which extends the

transitive closure algorithm to test generation for sequential circuits has been de-

veloped. The efficiency of our method stems largely from the integration of several

new algorithms. Our approach involves extracting the ON/OFF sets of the primary

46

outputs and next state lines by adopting a new backward assignment method. The

transitive closure algorithm hs been extended to perform fault excitation by dis-

abling all flip-flops in the sequential circuits. A novel backward deterministic method

for state differentiation is developed to make our approach more efficient.

CHAPTER 5

COVER EXTRACTION

In state justification, we find a justification sequence from the reset state to the

excitation state that propagates a fault to the outputs of the pseudo-combinational

circuit. In state differentiation, we also need to find a differentiation sequence from

the excitation state to the final state that propagates the effect of the fault to the

primary outputs of the sequential circuit. In order to perform these two operations,

we adopt cube intersections on the complete or partial ON/OFF sets of the primary

outputs and next state lines. This process of extracting the ON/OFF sets of the

primary outputs and next state lines is called cover extraction. In this chapter, we

present in detail a new and efficient backward assignment method to perform cover

extraction. This method has been successfully used by Yousif [30] to perform test

generation for combinational circuits.

First, we present the backward assignment rules (referred to as B-rules). Then

consistency and algorithm constraints are presented. Finally the new backward as-

signment procedure is presented. An example is used to illustrate the idea of the

backward assignment algorithm.

5.1 Backward Assignment Rules (B-rules)

The objective of the B-rules is to propagate the assignment of a logic value at the

output of a circuit to each node in the corresponding circuit cone during the backward

48

assignment procedure. Figure 5.1 defines the B-rules used in the algorithm. A logic

value is supposed to exist on a gate's output node, and the logic value assignments

are carried out at the gate's input nodes.

1

X
X

0

0

0

X
1

X

01

01

01

10

X
X
1

0

1

0

0

0

1

1

1

1

1

1

l x x
X i x
X X 1

0

0

0

0 1
1 0

0 1
0 1

Figure 5.1. The backward assignment rules (B-rules).

1

0

1

1

1

1

For example, consider the 3-input AND gate shown in Figure 5.1. First, we want

to find the OFF set of the output. From the K-map, we know that if any input of the

AND gate is 0, the output is 0. So when the output is set to 0, one of the inputs must

be 0. Three groups of inputs for the AND gate are obtained: (0, X, X), (X, 0, X), and

49

(X, X, 0). Similarly, we can obtain the ON set of the 3-input AND gate, as shown in

Figure 5.1, and one group of inputs is obtained: (1, 1, 1). If the output of the AND

gate is X (don't care), all inputs are don't care. In this case, we just skip the output

and leave the inputs to keep the original values.

5.2 Consistency and Algorithm Constraints

We use this backward assignment method to propagate logic values at the primary

outputs and next state lines to the inputs of the circuit. As some nodes may have

multi-fanout nodes, these nodes may be assigned logic values more than once by their

multi-fanout nodes. Since different paths are not equal in length, some primary inputs

or nodes may be assigned earlier than others. Therefore, it is necessary to check at

each level of assignments for the primary inputs or nodes that have been assigned

new values.

The consistency constraint is proposed to ensure that the assignments are correct,

as shown in Figure 5.2. If these logic values are in conflict with each other, for

example, one fanout requires the node to be logic value 0, and another fanout requires

the node to be logic value 1, the assignment should be discarded. If logic value v1

assigned by one fanout implies logic value v2 assigned by another fanout, we should

choose the consistent logic value v1.

0

(a)

0 1

1 conflict

x x

(b) (C)

Figure 5.2. The consistency constraint.

0

1

50

The combination of the inputs may exceed one, for example, in the OFF set of the

3-input AND gate, three groups of inputs are obtained. In this case, every time, one

group of assignments is used as the outputs of backward stage gates. Therefore, with

the increase of the circuit's depth, the number of assignments for each node per level

may increase dramatically. We use logic minimization to compress the assignments

after the number of assignments reach a limit. This method assures that we obtain

complete ON/OFF sets. Also it makes the storage of ON/OFF sets memory efficient.

5.3 The Backward Assignment Procedure

A high level description of the cover extraction algorithm is shown in Figure 5.3.

For each output, the 13-rules described earlier are used to extract the ON/OFF sets

of the primary outputs and next state lines.

Input : A sequential circuit's netlist.
Output : The ON/OFF sets of the primary outputs and next state lines.

Procedure cover-extract() {
for each primary output and next state line {

arrange the primary output or next state line in the list of
node assignments;

assign logic value 0 or 1 to it;
while the list of node assignments is not empty {

for each node in the list of node assignments {
execute the backward-assignment function;

}
refresh the list of node assignments;

}
}
return the ON/OFF sets of the primary outputs and next state lines;

}

Figure 5.3. Cover extraction algorithm.

51

To illustrate the idea of cover extraction, we use a simple sequential circuit s27

from the ISCAS'89 benchmarks shown in Figure 2.5. The algorithm cover-extract

firstselects an output node and assigns it logic value 0 or 1. Assume that cover-extract

arbitrarily selects the next state line Gil and extracts the ON set (assign logic value

1). We need only consider the next state cone of Gil, as shown in Figure 2.7. Node

Gil now represents the only currently assigned node in the node list of the assignment

and is assigned to logic value 1. According to the B-rules, both inputs of gate Gil are

assigned logic value 0. At this point, a new level of assignment list includes two nodes

G9 and G5. As node G5 is an input, its value is left unchanged and removed from the

node list. From node G9, the algorithm assigns values (1, X) and (X, 1) to nodes G15

and G16. Nodes G15 and G16 are the two elements in the node list at this level of

assignment. Starting at node G1S then node G16, cover-extract assigns logic values

to nodes Gl2, G8 and G3. As node G8 is assigned twice, the consistency constraint

is used. First, the first assignment (1, X) for nodes G15 and Gl6 is considered. Node

G15 requires nodes G12 and G8 to have the assignments (1, X) and (X, 1). As node

G16 has logic value X, we can omit it and nodes G3 and G8 keep the logic value X.

When these assignments are combined, nodes G12, G8 and G3 will have two groups

of assignments (1, X - X, X) and (X, 1 - X, X). Here, 1 - X means that node G15

requires node G8 to be 1 and node G16 requires node G8 to be X, etc. According to

the consistency constraint, we should set node G8 to logic value 1. The assignments

for nodes G12, G8, and G3 are (1, X, X) and (X, 1, X). Similarly, from the second

assignment (X, 1) for nodes G15 and G16, the assignments for nodes Gl2, G8 and

G3 are (X, 1, X) and (X, X, 1). So there are four assignments for node G12, G8

and G3: (l,X,X), (X,1,X), (X,l,X), and (X,X,1). It is obvious that the second

and the third assignments are the same. After logic minimization, only three groups

52

of assignments (1, X, X), (X, 1, X), and (X, X, 1) remains for nodes G12, G8 and

G3. The process repeats until all values at the intermediate nodes are propagated to

the inputs by using the B-rules. The final ON sets of Gil are (X, 0, X, X, 0, X, 0),

(O,X,X,X,0,l,X), and (X,X,X,l,0,X,X) for the inputs GO, Gi, G2, G3, G5, G6

and G7. Figure 5.4 shows how the backward assignment procedure assigns logic

values to the circuit nodes.

The obtained ON/OFF sets of the primary outputs and next state lines may

be redundant. So after obtaining the ON/OFF sets, logic minimization is used to

minimize the ON/OFF sets. The ON/OFF sets are represented as bit vectors which

are similar to those used in ESPRESSO [4].

504 Summary

In this chapter, the backward assignment rules (B-rules) are presented. They

propagate the assignment of logic value at the output of a pseudo-combinational

circuit to each node in the corresponding circuit cone. The consistency constraint is

proposed to ensure that the assignments are correct. Logic minimization is used to

compress the ON/OFF sets.

53

0 Gi

0 G7

X GO

X G6

X G3

X Gi

X G7

0 GO -

1 G6

X G3

G12

G14

G8

x

(a)

G14

G8

X

(b)

X Gi G12) >
X G7

X GO -

X G6

1 G3

G14

G8

G15
1

G16

\

—7

G15
1-

G16

(;15

1

G16

G9
0

0

G5 -

G9
0'

0

G5 -

G5

G9

0

1

Gil

1

Gil

Gil

1 -

(C)

Figure 5.4. The next state cone of Gil in circuit S27 shows how the backward
assignment procedure assigns logic values to the circuit nodes.

CHAPTER 6

PSEUDO-COMBINATIONAL CIRCUIT TEST
GENERATION

To generate a test sequence for a fault in sequential circuits, we first generate

a combinational test vector that propagates the effect of the fault to the primary

outputs or the next state lines. In this chapter, we extract a formula that defines the

structure of the related circuit and then use a transitive closure algorithm to satisfy

the formula.

6.1 Circuit Representation

When all flip-flops in a sequential circuit are disabled, the sequential circuit be-

comes a pseudo-combinational circuit. The digital combinational circuit can be rep-

resented as a set of unary, binary, ternary, and M-ary (M> 3) ±elations.

6.1.1 Boolean Difference

In the 1960s and early 1970s, an algebraic or symbolic manipulation method called

Boolean difference, differing from structural methods, appeared. This method did not

achieve the popularity of the structural methods because of its complexity of compu-

tation. Since the test pattern generation using Boolean satisfiability was introduced

in [19], this method has received more and more attention. First, the method of

Boolean difference is described briefly.

55

Given a function f(x) f(xi, x2, ..., x, .., x) which describes the behavior of a

combinational circuit, where x, ..., x are the inputs of the circuit, we define the

Boolean difference of f(x) with respect to its ith input variable as

Then

df
•Xi = f(xi, ...) ..., x7) ED f(x1, ...,, ..., x,)

=

X -1. dx T

(6.1)

1 (6.2)

is the necessary and sufficient conditions of fault xi stuck at a detected by vector

T, where a = 1 or 0, X' = Ti, and X = X. Equation 6.2 implies that the fault

under test is first excited to the logic value opposite to the stuck-at value, and then

the change of the logic value at the fault location can be observed at the primary

outputs. In short, test generation can be viewed as a search of an n-dimensional

0-1 space defined by the variables x (1 ≤ i ≤ n) for points that satisfy the above

equation.

6.1.2 Transferring Circuit into CNF

At first, the circuit is represented as the conjunctive normal form, i.e., CNF (also

known as product of sums). As an example, a two input AND gate shown in Figure

6.1 is used to illustrate how to get CNF formula from a circuit.

The formula of the AND gate is

z=x.Y (6.3)

56

x
(Z+Y)
(Z+X+Y)

Y
(Z+X+Y)
J •__'

x

Y

—z

z

z
x

Y

(Z+X+Y)

(Z+X+Y)
(Z+X+Y)
(Z+X+Y)

0- Z

0- Z

0- Z

0- Z

Figure 6.1. The CNF formulae of basic gates.

57

and it is logically equivalent to the following CNF formula:

CNF =(Z+X).(+Y).(X+Y+Z) (6.4)

It is obvious that if and only if the values of the variables are consistent with the

truth table of the AND gate, Equation 6.4 equals to 1.

Figure 6.1 illustrates the CNF formulae for the basic gates (only one or two

inputs). In the CNF formula, one sum is called a clause and each term in a clause

is called a variable. Clauses with one, two, or three variables are unary, binary, or

ternary clauses, respectively. It is convenient to extend the basic CNF formulae in

Figure 6.1 to gates which have more than two inputs. For example, the CNF formula

for a NAND gate with three inputs X, Y, and W is shown in Figure 6.2.

x

Y

w

Figure 6.2. The CNF formula of 3-input NAND gate.

Considering the circuit example Si shown in Figure 6.3. By extracting each

formula for each gate in the circuit using the above method, the CNF formula for the

output of the circuit is:

CNF =

(6.5)

We will derive a test for the fault D s-a-O. The faulted circuit is produced by

58

\(D+A)'>'.
1(D+).

)(D+A+B

Figure 6.3. Formula extraction of a simple circuit Si.

copying the original circuit, renaming all related variables, and disconnecting the

faulted site (all faulted signals are labeled with "), as shown in Figure 6.4. Because

of the fault D s-a-O, the signal D. is always at logic value 0 no matter what values

are at the inputs A and B. We disjoint the signal D to two signals: unfaulted D and

faulted D'. In order to detect the fault, D' has logic value of s-a-0 and D must have

logic value 1.

Figure 6.4. Formula extraction of the simple circuit Si with a fault.

As the unfaulted and faulted circuits have the same behavior except those nodes

that are affected by the fault, only the nodes that lies on a path between the fault site

and a circuit output need to be renamed. The CNF formula for the faulted circuit is

59

(6.6)

It is not necessary to include the OR gate D in the CNF formula for the faulted

circuit because of the implied discontinuity at the fault site.

According to Boolean difference, in order to detect the fault at D, the unfaulted

and faulted circuits are put together and an XOR gate is added to their outputs. The

final circuit is shown in Figure 6.5. BD is the output of the XOR gate. For the fault

D s-a-O to be covered, the output of the XOR gate should be 1. If the CNF formula

equals to 1, a solution is found. Otherwise, no test exists. The formula of the final

circuit is:

(6.7)

The problem of combinational circuit test generation can now be formulated as

one of finding a consistent signal logic assignment which satisfies the above formula.

The transitive closure method which is used to solve the problem will be presented

in the next subsection.

6.1.3 Transitive Closure Method

On the basis of the CNF formula of the circuit, the transitive closure of the circuit

is obtained in this section. As an example, consider the AND gate shown in Figure

6.1.. Its CNF formula is given in Equation 6.4. We can transform the relationship

60

BD

Figure 6.5. The XOR of the unfaulted and faulted circuits should be 1.

z

Figure 6.6. Implication graph of an AND gate.

61

Figure 6.7. Implication graph of the example circuit Si.

into an implication graph, as shown in Figure 6.6. Where -+ donates implication.

-+ Y means that if X = 0, Z = 0, etc. This is consistent with the truth table of

the AND gate. When X = 0, or Y = 0, Z must be zero. When Z = 1, X and Y

must be 1.

In fact, the implication graph can be obtained from unary and binary clauses. For

example, there are two binary clauses (7 + X) and (7r + Y) in the AND gate. When

the formula is satisfied, each clause should be satisfied (equal to 1). For instance, to

meet the clause (+ X), when X = 0, Z should be 0; when Z = 1, X should be 1.

From this clause, two implications are obtained: X? + Z, and Z -+ X. The ternary

or M-ary clauses can not be transfered to the implication form. But if we know or

assume the logic values of one or more variables in these clauses, these clauses become

binary clauses.

The implication graph and transitive closure of the simple circuit Si with the fault

D s-a-0 in Figure 6.3 are shown in Figure 6.7 and Table 6.1. In Table 6.1, '1'

indicates that there is an edge and '0' indicates no edge between two signal nodes.

For example, there is a '1' at the row of A and the column of D, so there is an edge

from A to D.

As we discussed above, the implication graph can only be used to express unary and

binary clauses, so is transitive closure. But besides these unary and binary clauses,

62

Table 6.1. Transitive closure of the simple circuit Si.

AABBCCDDEEFFD'D'F'F'BDBD
A 000
000

B 000
R 000
C 000
•7 000
D 000
D 010
E 000
o 0 0

F 000
7' 000
D' 0 0 0
/Y 0 0 0
F 0 0 0
Y , 0 0. 0

BD000
B75 0 0 0

00010 0000 0000 0 0
0000000000000 0 0
0001000000000 0 0
0000000000000 0 0
00000011000 10 0 0
0000010000000 0 0
0000000000000 0 0
1000000100000 0 0
0010000000000 0 0
0100000100010 0 0
0000000000000 0 0
0011010000000 0 0
0000000000110 0 0
0000000000010 0 0
0000000000000 0 0
0010010001110 0 0
0000000000000 0 0
0000000000000 1 0

Table 6.2. SAT representation of ternary for the simple circuit Si.

ABCDEFD'F'BD

63

there are still some ternary and M-ary (M> 3) clauses in the CNF of circuit. We use

the satisfiability (SAT) form to express and save these ternary and M-ary (M> 3),

as shown in Table 6.2. Where, '1' indicates that this is a positive variable and '-1'

negative variable. For example, the first row can be expressed as (A + B +).

Many algorithms and approaches [13, 14, 16, 15] have been developed to solve the

satisflability problems.

With the combination of Tables 6.1 and 6.2, we can describe the circuit Si with

the fault D s-a-U completely.

6.2 Efficient Transitive Closure Computation

Efficient transitive closure computation is introduced in this section. Signal de-

pendencies are derived, and several methods are used to prune the search tree.

6.2.1 Signal Dependencies

Two kinds of signal dependencies are used: fixation and contradiction. If a path

x -4 7 is found in the implication graph, it implies that x should be 0. Similarly, if

a path 7 -+ x is found, x should be 1. If both paths a -+ T and are present

in the implication graph at the same time, the contradiction exists and no solution

can be found. By using this method, we can find if a variable is set to a value or

not. So instead of obtaining the transitive closure of the implication graph, we just

try to determine if there is a path between a variable and its complement. Here

we use a breadth-first search algorithm to find a path between a variable x and its

complement T. The algorithm of signal dependency computation is quite simple, as

shown in Figure 6.8.

If a contradiction occurs in the signal dependence, it means that some variable(s)

64

Input : The directed graph G = (V, B) and the assignment array of signals.
Output: The signal dependencies of the graph.

Procedure transitive_closure() {
for each variable v and its complement V

if a path from v to is found {
if v is assigned to 1 {

1* contradiction /
return no solution;

}

}
else v is assigned to 0;

}
if a path from J to v is found {

if v is assigned to 0 {
1* contradiction /
return no solution;

}
}
return the signal dependencies of the implication graph;

}
else v is assigned to 1;

{

Figure 6.8. The algorithm of signal dependency computation.

65

must be simultaneously assigned to logic values 0 and 1. In this case, there is no

solution for this variable assignment. If signal values, which have been determined,

satisfy the Boolean equation, the solution is found. Otherwise, a partial set of sig-

nal values determined may reduce some of the ternary relations to binary relations.

These new binary relations are included in the implication graph and new signal de-

pendencies should be determined. The process continues until no ternary or M-ary

relations reduces to binary relations.

6.2.2 Pruning the Search Tree

According to our experience, the more constraints the variables have, the smaller

the search tree. This is because when some variables are assigned to logic value 0

or 1, their relations with other variables may help us to determine other unassigned

variables' logic values easily.

If a fault can propagate to one or more outputs of the circuit, there must be at

least one sensitized path (similar to D algorithm) from the fault site to the output.

In this path, the unfaulted and faulted values must be different. Suppose that if we

add an XOR gate whose inputs are the unfaulted and faulted values, the output of

the XOR gate must be one. The concept is similar to the active line variables used by

others [19]. Let X be the unfaulted value, X' the faulted value, and EX the output

of XOR gate whose inputs are X and X', we obtain these two clauses in ternary

relation (TX + X + X')• (TX + X + Xi). If this path is active, that means EX = 1,

X and X' must be different.

If a sensitized variable A has a single output, the clause (EXA + EXx) is added,

which means that if A is the sensitized variable, X is sensitized. Also, if the sensitized

variable A have two outputs X and Y, then the clause (EXA + EXx + EXy) should

66

B1DD +

(a)

Figure 6.9. (a). If A is sensitized, X must be sensitized: (EXA + EXx). (b). If A is
sensitized, either X or Y must be sensitized: (EXA + EX + EXy).

be added. That means that if the variable A is sensitized, either the variable X or Y

must be sensitized. Figure 6.9 shows two examples of these clauses.

On the other hand, some vertices in the directed graph may belong to a strongly

connected component. So these vertices can be considered as one vertex. When the

value of a vertex is obtained, the other vertices in this strongly connected component

can be easily determined.

Because of the duality of the implication graph, if some vertices belong to a strongly

connected component, the corresponding complemented vertices must belong to an-

other strongly connected component. For example, in the circuit Si, there is a path

from C to and a path from T to C. Vertices C and T belong to a strongly con-

nected component, and their complemented vertices and E must belong to another

strongly connected component. After transforming all implication relations with ver-

tices C and ?17 to vertices and E, the vertices C and can be deleted from the

implication graph. By finding strongly connected components, the implication graph

is condensed. The algorithm of finding strongly connected components in a directed

graph can be found in [3].

Consider the simple circuit Si with the fault D s-a-U shown in Figure 6.4. In

order to excite the fault, the logic values of D and D' must be different. The faulted

value D' is 0, so the unfaulted value D should be 1. A clause (D) is added to the

67

formula in Equation 6.7. D has one fanout F and an XOR gate has been added to

the unfaulted line F and faulted line F. After considering the sensitized path, the

CNF formula is

(6.8)

From the clause (D1), we know that, in order to meet the CNF formula, D' must

be set to 0. We can use the logic value of D' to simplify the CNF formula. As the

clause (+ +) is satisfied due to the logic value of D', we omit the clause. The

clause (F'+ D') becomes (F'). From the new clause (F'), we know F must be set to

1. We use the logic value of F again to simplify the formula. The process continues

until the formula can not be simplified any further. The final simplified CNF formula

is:

(6.9)

There are no ternary clauses in the formula. The corresponding transitive closure

is shown in Table 6.3.

6.3 Combinational Circuit Test Generation Algorithm

The test generation algorithm for combinational circuits based on the ideas pre-

sented above is as follows.

1. Derive the CNF representation of the combinational circuit with the fault. The

68

Table 6.3. Condensed transitive closure of the simple circuit Si.

AABBDDEEFFD'D'F'F'BDBD
A 00000000000000 0 0
00100000000000 0 0

B 00000000000 000 0 0
10000000000000 0 0

D 00000000000000 0 0
TL 00001000000000 0 0
E 00000000000000 0 0
00000010000000 0 0

F 00000000010000 0 0
i 00000000000000 0 0
D' 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
100000000000000 0 0
F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 000000100000 10 0 0
BD0000 0000000000 0 0
To 0000000000000 1 0

69

unary and binary clauses are saved in the implication graph, and ternary and M-ary

(M> 3) clauses are saved in the satisfiability form (SAT form).

2. Determine the transitive closure of the implication graph by using signal depen-

dencies. If contradiction is found, the fault is combinational redundant. If variable

values satisfy the Boolean equation, a solution is found without backtracking. Oth-

erwise, only a partial set of variables are determined. These determined variables are

used to reduce some ternary and M-ary (M> 3) clauses into binary clauses.

3. Find strongly connected components in the implication graph. A condensed

implication graph is obtained.

4. Make a heuristic decision on the unassigned variables. Here we choose a decisive

variable which is related to most ternary clauses.

5. If the pre-assigned backtrack limit is reached, we stop picking new variables,

and go back to the previous decisive variables and assign the next logic value combi-

nation to them. Otherwise we pick the new variable determined in step 4 and assign

the variable a value. The assignment may reduce some ternary relations to binary

relations. These new binary relations are included into the implication graph.

6. If the variable assignments satisfy the Boolean equation, return the test vector.

If a contradiction does not occur and the assignments satisfy a partial set of Boolean

equation, we continue to do step 4. If a contradiction occurs, it means that the as-

signment does not satisfy the Boolean equation. Then we assign the decisive variable

to the next value and repeat step 6. If there are no decisive variables left, we have

implicitly exhausted the search space and no test vector is found.

The flow chart of the algorithm is shown in Figure 6.10.

For example, consider the transitive closure shown in Table 6.3. Two variables

70

Extract formula from
circuit with a fault

Transitive closure
computation

(Redun
fault

(Test

L found

Push variable to stack

Redun.
fault

Contradiction

Strong connected components

Unassigned.
ariable

Jr

Assign a value to
variable at top of stack

'I,
Transitive closure

computation

Assign next assignment
to variables at stack

Y

Contradiction

Y

Figure 6.10. The flow chart of the combinational test generation algorithm.

71

A and B are unknown and one clause (A + B) is needed to be satisfied. Suppose

that we choose A first, and set it to logic value 0. A path from A to q is added to

the transitive closure. We derive new signal dependencies and find a path from to

B. So B should be at logic value 1 and the clause (A + .8) is satisfied. As C and

belong to a strongly connected component, and E has logic value 1, 80 C should

be logic value 0. The whole CNF formula is satisfied, and .we find that the vector

(0, 1,0) for A, B, and C is an excitation vector for the fault D s-a-0.

6.4 Summary

The transitive closure method for generating test patterns for single stuck-at faults

in combinational circuits is introduced in this chapter. It extracts a CNF formula from

the model of circuit incorporating necessary conditions for fault activation and path

sensitization, and then determines signal values which satisfy the formula. Several.

methods are used to prune the search tree. Instead of computing the entire transitive

closure, we only concentrate on determining the signal dependencies of each variable

and its complement.

CHAPTER 7

STATE JUSTIFICATION AND STATE
DIFFERENTIATION

In three-phase ATPG, cover extraction is performed as a preprocess. The ON/OFF

set information is stored in the bit's form. Test generation for sequential circuits is

divided into three phases: combinational excitation vector generation, state justi-

fication, and state differentiation. In. Chapter 5 and 6, we have described cover

extraction and the pseudo-combinational test generation algorithm used in our sys-

tem. Here we are going to describe state justification and state differentiation in

detail.

7.1 State Justification

After an excitation state is found to propagate the fault to the primary outputs or

the next state lines, state justification attempts to find a justification sequence from

the reset state to the excitation state E0. If the excitation state covers the reset state,

the fault can be excited from the reset state, and state justification is not needed.

Otherwise, state justification is used to justify the excitation state.

At first, the state justification algorithm tries to find a single-vector justification

sequence from the reset state to the excitation state. The entire fan-in states B1 can

be obtained by cube intersections. The cubes of fan-in states are chosen according to

the excitation state. If a present state line in the excitation state has logic value 1(0),

the ON set (OFF set) of the corresponding next state line is picked. If a present state

73

line has logic value X, the next state line is ignored and nothing is picked. The cube

intersection of the ON and OFF sets of the next state lines gives the fan-in states

of the excitation state E0. The ON/OFF sets of the next state lines include both

primary input and present state parts. The present state vectors are used to check if

they cover the reset state and to get their fan-in states if needed. The primary input

vectors are used to supply test sequence if the fault is detected. If the present states

cover the reset state, the single-vector justification sequence is obtained.

If the single-vector state justification fails, we try to find a two-vector justification

sequence. This is performed by attempting to justify the fan-in states E1, via a

single vector justification sequence. If the state justification algorithm succeeds, a

two-vector justification sequence is found. Otherwise, a three-vector justification

sequence is attempted. The process is repeated for the fan-in states of the state

currently justified.

When we obtain the fan-in states, these states should be disjointed from the pre-

viously used states to prevent cycles. The state justification algorithm is shown in

Figure 7.1. Figure 7.2 shows the algorithm of obtaining fan-in states of present

state.

Consider the fault G2 s-a-O in the circuit s27 shown in Figure 2.5. One of the

excitation vectors is (X, X, 1, X, X, X, 1) for GO, Gi, G2, G3, G5, GG, and G7. So

the corresponding excitation state is (X, X, 1) for G5, G6, and G7. The states of

G5 and G6 are the logic value X, so we can ignore them. As line G7 is at logic

value 1, we pick up the ON set of G13. The ON set of G13 is (X, l,O,X,X,X,X)

and (X, X, 0, X, X, X, 1) for GO, Gi, G2, G3, G5, G6, and G7. From the first vector

in the ON set, we know that when GI and G2 have logic values (1, 0), G13 has a

logic value 1. In the next clock cycle, G7 would be logic value 1. As the reset state

74

Input : The excitation state State and ON/OFF sets of next state lines.
Output : A justification sequence from reset to State if found; else

return NOT-FOUND.

Procedure Justify_st ate (State) {
/* put the primary input part of State into P1 Stack */
push State into PT Stack;
get_fanins(State, Fanins);
for each fan-in state Fanin in Fanins {

if Fanin covers the reset state {
return the state justification sequence saved in PT Stack;

}
}
for each fan-in state Fanin in Fanins {

Justify_state(Fanin);
if the justification sequence is found {

return the state justification sequence;

}
}
Pop State from P1 StackQ;
return (NOT-FOUND);

}

Figure 7.1. State justification algorithm.

75

Input The present state State and ON/OFF sets of next state lines.
Output : All fan-in states of State except those included in Exist-state

(Used-state).

Procedure get _fanins(State, Fanins) {
first-mark = TRUE;
for each present state line that is a 1 or 0 {

if first-mark is TRUE {
Fanins = ON or OFF set of corresponding next state line;
first-mark = FALSE;

}
else

Fanins = Fanins U (ON or OFF set of corresponding next state line)

}
/ do sharp produce to remove used cubes from Fanins /
sharp-pro duct (Fanins, Exist-state);
1* logic minimization /
minimization (Fanins);
add_fanins_to_exist(Fanins);

}

Figure 7.2. The algorithm of obtaining fan-in states of present state.

76

(0,0,0) implicates the states of G5, G6 and 07 (X, X, X) in the first vector of the

ON set, the excitation state is reachable from the reset state. Table 7.1 gives the

initial justification process. Where 0/1 means that 0 is the unfaulted value and 1 is

the faulted value, etc.

Table 7.1. Initial state justification process.

primary inputs present states next states P0

gates GO 01 02 G3 G5 06 G7 G1O Gil G13 G17
justification vector X 1 0/0 X X X X X X 1/1 X
excitation vector X X 1/0 X X X 1 X X 0/1 X

As the sequential circuit starts from the reset state, we should set the initial states

of G5, G6 and G7 to (0, 0, 0). After fault simulation, the justification sequence is a

valid justification sequence. The final state justification is shown in Table 7.2.

Table 7.2. Final state justification process.

primary inputs present states next states P0

gate GO Gi G2 03 G5 G6 07 010 Gil G13 Gi7
justification vector X 1 0/0 X 0 0 0 X X 1/1 X
excitation vector X X 1/0 X X X 1 X X 0/1 X

72 State Differentiation

In our algorithm, the flip-flops are disabled and the sequential circuits are converted

into pseudo-combinational circuits. For pseudo-combinational circuits, faults can be

divided into three kinds:

77

1) The fault site is a node in the output cones of the primary outputs, and a

combinational excitation vector can be found for the fault.

2) The fault site is not a node in any output cone, but is a node in the next state

cones of the next state lines.

3) The fault site is a node in the output cones of the primary outputs, but a

combinational excitation vector which propagates the fault to the primary outputs

can not be found.

Consider the circuit shown in Figure 7.3. The fault C s - a - 0 can propagate

to the primary output K and belongs to the first kind of fault. For the fault F - I

s - a —0, as I is not a node in output cone of primary output K, the fault belongs to

the second kind of fault. For the fault B .s - a—i, though B is a node in output cone of

primary output K, the fault can not propagate to the primary output k directly. We

should propagate the fault to the next state line I (the effect of the fault on I would

propagate to the present state line J in the next clock cycle), and then propagate the

effect of the fault on J to the primary output K. So the fault belongs to the third

kind of fault.

For the latter two kinds, we should propagate these faults to the next state lines

first by using the transitive closure based test generation method for combinational

circuits. If a combinational excitation state is found and justified, state differentiation

is used to propagate the effects of these faults on the next state lines to the primary

outputs. If the stats differentiation algorithm succeeds, a differentiation sequence

is found. Otherwise, the combinational excitation vector can not constitute a test

sequence for the sequential circuit.

When the excitation vector propagates the fault to the next state lines, the true

78

DI G

F'
A

P0

P1

P1

sal

B

saO

C

PS

F

saO

Dff

I

NS

Figure 7.3. Three kinds of faults defined in our algorithm.

K

79

state 8?' is the state in the fault-free circuit and the faulty state SF is the state in the

faulty circuit. 8?' and S1' are guaranteed to differ in at least 1 bit. Since the effect

of the fault has been propagated to Sf', we can assume that 8?' and Sf' are states in

the fault-free circuit. The purpose of state differentiation is to find a differentiation

sequence which causes 5?' and SF to have at least a different bit at the primary

outputs.

To make the program more time-efficient, we use a random differentiation sequence

as a first step. Some random vectors are added to the sequence starting from the reset

state to the excitation state, and the unspecified primary inputs in the whole sequence

are assigned random logic values. The whole sequence is used to fault-simulate the

fault. If the sequence can detect the fault, then, a test sequence is found. Otherwise,

a deterministic state differentiation method is used.

The idea of deterministic state differentiation is described as follows. According to

the ON and OFF sets of every primary output, we search for a primary input vector

which exists in both of the ON and OFF sets where the present state parts of the

ON (or OFF) set and the OFF (or ON) set cover S?' and Sf' separately. If such a

primary input vector is found, the primary input vector constructs a single-vector

differentiation sequence. The algorithm of single-vector state differentiation is shown

in Figure 7.4. Otherwise, multi-vector differentiation sequences should be searched.

In multi-vector state differentiation, first, we try to find a two-vector differentiation

sequence, then a three-vector sequence and so on. We attempt to propagate the true

state 5?' and the faulty state Sf' to the next state lines by using a similar method

as the one used in single-vector state differentiation. Instead of using the ON/OFF

sets of the primary outputs in single-vector state differentiation, the ON/OFF sets

of the next state lines are used. If the new true and faulty states are not found, quit

80

Input : The true and faulty states ST and S', and the ON/OFF sets of
primary outputs.

Output : A single-vector differentiation sequence if found; else
return NOT-FOUND.

Procedure Single...vector_state...differ(ST, SF) {
for each primary output {

1* find a primary input vector existed in the ON and OFF sets of
the output */

PI-vector = find_PI(ON-set, OFF-set);
if PI-vector is found {

/* judge if ST implies the ON-set and 5F implies the OFF-set */
Judge_implication(ST, ON-set, Sr', OFF-set);
if implication is TRUE {

return (PI-vector);

}
/ judge if 5T implies the OFF-set and 5F implies the ON-set */
Judge_implication(ST, OFF-set, 8F, ON-set);
if implication is TRUE {

return (PI-vector);

}
}
}
return (NOT-FOUND);

}

Figure 7.4. The algorithm of single-vector state differentiation.

81

without solution. Otherwise, the single-vector state differentiation method is used to

find single-vector differentiation sequence on the new true and faulty states (S', Sfl

again. If found, a two-vector differentiation sequence is constructed. Otherwise, a

three-vector differentiation sequence is attempted. The algorithm of multi-vector

state differentiation is shown in Figure 7.5.

When the new true and faulty states are found, these states are disjointed from the

used true and faulty states. Thus, cycles during state differentiation are prevented.

As test generation for combinational circuits produces an excitation vector with

as many don't care entries in the primary inputs and present state lines as possible,

if we just use the state differentiation algorithm described above, in most cases, we

may not find a differentiation sequence even if it exists. This is because it is necessary

to set the unspecified inputs in the test sequence to either 1 or 0. But some primary

inputs and present states obtained by the transitive closure, state justification, and

state differentiation may have some don't care entries. So in order to detect the fault,

these don't care entries in the primary inputs and states have to be determined.

In STEED [11], all possible assignments to the unspecified inputs have to be made

before it can be concluded that a test for the fault under consideration does not exist.

There exists 2' possible assignments for m unspecified inputs. Considering that each

possible assignment may need to perform state justification, the real search space is

much larger than 2.

We propose a new backward deterministic method for state differentiation. This

method can help in finding the differentiation sequence and determining the don't

care entries. When we attempt to propagate the fault to a primary output or next

state line, if some present state lines in the current clock cycle are don't care entries,

82

Input : The true and faulty states 5T and SF, and the ON/OFF sets of
primary outputs and next state lines.

Output : A multi-vector differentiation sequence if found; else
return NOT-FOUND.

Procedure Multi_state_differ(ST, SF) {
/* find all (new) excitation vectors fanouts which propagate ST and SF

to the next state lines */
get_next_differ_state(ST, 5F, fanouts);
for each fanout i in fanouts{
/ * create new true and faulty states /
create_new_states (fanout[i], S1, Sr);
/ use single state differentiation method /
Sing1e_vector_state_differ(S, Sr);
if found return (FOUND);

}
for each new true and faulty states ST and Sr in fanout if

Multi_state_differ(ST, Sr);
if found return (FOUND);

}
return (NOT-FOUND);

}

Figure 7.5. The algorithm of multi-vector state differentiation.

83

while the same bits in the ON and OFF sets of the primary output or next state

line are deterministic logic values, e.g., 0 or 1, we know that, in order to obtain a

differentiation sequence, these present state lines must be set to the deterministic logic

values. After we set these present state lines to the same deterministic logic values as

in the ON and OFF sets, a new problem arises, i.e., whether the new specific present

state is still justified from the previous clock cycles or not.

To solve the problem, in the backward deterministic method, we present a revised

state justification algorithm to justify the specific present state. Because we have

found a justification sequence from the reset state to the excitation state, in the

revised state justification algorithm, we just need to specify some don't care entries

in the justification sequence. When the specific present state requires that some

of the don't care entries of the present state lines of the last clock cycle be set to

deterministic logic values, the revised state justification algorithm is used again to

justify the modified present state of the last clock cycle. The process continues until

no more states are needed to be justified. If the specific present state is reached from

the previous clock cycles, the state differentiation process continues. Otherwise, a

differentiation sequence cannot be found for the true and faulty states.

When some don't care entries of the primary inputs are needed to be set to specific

logic values, we just set them according to the ON/OFF sets and justification is not

required. The backward deterministic algorithm for single-vector state differentiation

is shown in Figure 7.6.

When the backward deterministic algorithm for single-vector state differentiation

fails to find a single-vector differentiation sequence, we use a backward deterministic

algorithm for multi-vector state differentiation. The algorithm is similar to the multi-

vector state differentiation algorithm shown in Figure 7.5. The only two differences

84

Input : The true and faulty states 5T and SF, and the ON/OFF sets of
primary outputs.

Output : A single-vector differentiation sequence if found; else
return NOT-FOUND.

Procedure Single_vector_back_state_differ(ST, SF) {
for each primary output {
/ find a PT vector existed in the ON and OFF sets of the output /
PI-vector = find_PI(ON-set, OFF-set);
if PI-vector is found {

/* get intersections: 5T ON-set, and SFfl OFF-set /
intersections (ST, ON-set, 5F, OFF-set);
if both intersections are not empty {

1* judge if some bits in S" and 5F are X, while the same bits in
both intersections are deterministic values /

if some bits are needed to be set to specific values {
/ set these bits to the specific values, and then justify the new

deterministic state is reachable from the previous states /
set_new_stateQ;
new_state_justificationQ;
if new state is reachable

return (PI-vector);

}
else return PI-vector;

}
1* get intersections: STfl OFF-set, SFfl ON-set /
intersections(ST, OFF-set, Si', ON-set);
if both intersections are not empty {

if some bits are needed to be set to specific values
set_new_stateQ;
new_state_justificationO;
if new state is reachable

return(PI_vector);

}
}

}
return (NOT-FOUND);

}

}
else return PI-vector;

{

Figure 7.6. The backward deterministic algorithm for single-vector state differentia-
tion.

85

are:

• The backward deterministic algorithm for single-vector state differentiation shown

in Figure 7.6 is used to replace the single-vector state differentiation algorithm

shown in Figure 7.4.

• In order to propagate the fault to the next state lines, if some don't care bits

in the state are needed to be set to specific values, we set them to the required

values and then justify if the new specific state is reachable from the previous

states.

To explain the idea of the backward deterministic state differentiation, we continue

to consider the fault G2 s-a-O in circuit s27 shown in Figure 2.5 as an example. The

fault has been propagated to the next state line G13 and the justification sequence has

been found. From Table 7.2, the true and faulty states are (X, X, 0) and (X, X, 1)

for lines G5, G6 and G7.

First, we attempt to find a single-vector differentiation sequence. The ON and

OFF sets of primary output G17 are shown in Table 7.3.

The intersection of the primary input parts on the first vectors of the ON set and

the OFF set is not empty, i.e., (1,0,X,0). The present state in the first vector of

the ON set is (X, X, 1), and is same with the faulty state. The present state lines in

the first vector of the OFF set are (0, X, 0), and its intersection with the true state

(X, X, 0) is not empty, i.e., (0, X, 0). As the first bit in the true and faulty states

is logic value X, in order to propagate the fault to the primary output, the first

bit should be set to logic value 0. After setting, the differentiation vector becomes

(1, 0, X, 0, 0, X, 0). For the primary inputs, we just set them to the new logic values.

86

But the new differentiation state (0, X, 0) should be justified if it is reachable from

the previous clock cycle.

Table 7.3. The ON and OFF sets of primary output G17.

primary inputs present states
G5 gate GO GI G2 G3 G6 G7

ON-set 1 X X 0 X X 1
xxx Ox 0 1
1 ix ox X
xix ox ox
xxx xix x

OFF-setx OX X Ox 0
OX X 01 X
xxxi ox x

From the partial OFF set of the next state line Gb, (1, i,X,O,X,X,X), we know

that if lines GO, GI and G3 in the previous clock cycle are set to (1, 1, 0), the new

state would be reached from the previous clock cycle. The original vector in the

previous clock cycle is the excitation vector, (X, X, 1, X, .C, X, 1), and its intersection

with the OFF set of the next state line G1O is not empty, i.e., (i, 1, 1, 0, X, X, 1). The

excitation vector should be set according to the intersection. As all bits needed to be

set are in the primary inputs, we just change the original logic value X to the new

value. The single-vector differentiation sequence is found. The final test sequence is

composed of the justification sequence, the excitation vector, and the differentiation

sequence shown in Table 7.4.

After finding the test sequence we use it to fault simulate the fault G2 s-a-O, with

results as shown in Table 7.4. The test sequence can detect the fault.

87

Table 7.4. The process of exciting the fault G2 s-a-0 to primary output G17.

primary inputs present states next states P0

gate GO GI G2 G3 G5 G6 G7 G1O Gil G13 G17
justifi. vector X 1 0/0 X 0 0 0 X X 1/1 X

excitation vector 1 1 1/0 0 X X 1 0 0 0/1 1/1
differen. vector 1 0 X/O 0 0 0 0/1 1/0 1/0 0/1 0/1

7.3 Summary

In this chapter, we have described two important steps in our ATPG system,

state justification and state differentiation, in detail. State justification and state

differentiation are efficiently performed using cube intersection on the ON/OFF sets

of the primary outputs and next state lines. To increase the efficiency of the existing

state differentiation in dealing with the unspecified inputs in the excitation vector and

justification sequence, we have developed a new backward deterministic algorithm for

state differentiation.

CHAPTER 8

EXPERIMENTAL RESULTS

8.1 IEEE Benchmarks

For an accurate evaluation of a test system, real circuit examples should be used.

Benchmark circuits constitute a good example for evaluating a test system and also

for comparing results with other systems. We have used the ISCAS'89 [6] sequential

benchmark circuits to evaluate our test system. None of the ISCAS'89 benchmark

examples have a specified reset state. We have assumed a vector of all zero to be

the reset state, as in [11, 8]. Table 8.1 shows a subset of the ISCAS'89 benchmark

circuits used in this research work. The five columns give the name and the numbers

of primary inputs, primary outputs, flip-flops, and gates of each circuit.

As in some test generators for sequential circuits [11, 8], we have added a random

fault simulator HOPE [20] as a front end to the deterministic test generation algo-

rithm. Random vector test generation enables us to detect some of the easy to detect

faults without much effort, and therefore, reduces test generation time. HOPE is an

efficient sequential circuit parallel fault simulator which simulates 32 faults at a time.

8.2 Evaluation of the Proposed Test Pattern Generator

The test generation algorithm described in the previous chapters has been imple-

mented in the program AST. It consists of about 10 000 lines of C code and runs in a

UNIX environment. Table 8.2 gives the statistics of running AST for test generation.

89

Table 8.1. ISCAS'89 sequential benchmark circuit characteristics.

circuit pi PO dif gate

s298 3 6 14 119
s344 9 11 15 160
s349 9 11 15 161
s382 3 6 21 158
s386 7 7 6 159
s400 3 6 21 162
s444 3 6 21 181
s510 19 7 6 211
s526 3 6 21 193
s526n 3 6 21 194
s641 35 24 19 379
s713 35 23 19 393
s820 18 19 5 289
s832 18 19 5 287
s953 16 23 29 418
s1196 14 14 18 529
s1238 14 14 18 510
s1423 17 5 74 657
s1488 8 19 6 653
s1494 8 19 6 647
s5378 35 49 179 2779

90

Experiments were performed on a SUN Sparc 10 workstation. For each circuit, the

total number of faults (total faults), the number of detected faults (det. fault) and

the number of faults that were proven redundant (red. fault) are given. The total

fault coverage (coverage) includes detected and provably redundant faults. The next

column reports the execution times in seconds. The total number, of test vectors in

test sequences is given in the column test vec.

Table 8.3 gives the statistical analysis of our system AST on the ISCAS'89 bench-

mark circuits. RTG det. fault is the number of faults detected by random test

generation and RTG time is the time spent in random test generation. All columns

under AST are the results obtained by our system AST. For each circuit, the number

of faults detected (det. fault), the number of faults that were proven combinational

redundant (com. redun.), the number of faults that were proven sequential redundant

(seq. redun.), the number of faults that were aborted (ab. fault), and the execution

times in seconds are given. The aborted faults are the number of faults aborted by

the algorithm if it exceeds the backtrack limit set in the transitive closure method.

The backtrack limit was set to 20 for all circuits except circuit s5378. For circuit

s5378, the backtrack limit was raised to 50.

From Table 8.3, sequential random fault simulation was quite effective in generat-

ing tests. This may seem to contradict the accepted opinion that random sequences

are ineffective for sequential circuits. Two reasons may explain the above results [8]:

The availability of a reset state increases the effectiveness of random sequences.

. Sequential circuits in the ISCAS'89 benchmarks have fairly low sequence depth.

Figure 8.1 shows how CPU time is distributed among the procedures in AST.

The transitive closure based test generation for combinational circuits(TC), state

91

Table 8.2. Real execution performance of our algorithm with the ISCAS'89 sequential
benchmark circuits.

circuit total det. red. coverage time test
faults fault fault (%) (sec) vec.

s298 308 273 35 100 2.4 192
s344 342 337 5 100 2.6 94
s349 332 325 7 100 2.7 95
s382 399 378 20 99.75 221 1431
s386 384 314 70 100 42 243
s400 424 396 27 99.76 1187 1382
s444 474 438 35 99.79 148 1247
S510 564 564 0 100 4.3 450
s526 555 462 89 99.28 593 2034
s526n 553 461 87 99.10 891 2105
s641 465 405 59 99.78 683 155
s713 581 480 101 100 341 248
s820 850 809 35 99.29 56 798
s832 870 812 51 99.20 45 818
s953 1079 1069 10 100 68 769
s1196 1242 1239 3 100 206 437
s1238 1355 1283 72 100 371 349
s1423 1515 1196 14 79.87 2653 4386
s1488 1486 1443 40 99.80 162 1069
s1494 1506 1455 51 100 238 1108
s5378 4603 3515 285 82.55 3745 1676

92

Table 8.3. Statistics analysis of our algorithm with the ISCAS'89 sequential bench-
mark circuits.

circuit total
faults

RTG AST
det.
fault

time
(sec)

det.
fault

com.
redun.

seq.
redun.

ab.
fault

time
(sec)

s298 308 249 0.2 24 0 35 0 2.2
s344 342 315 0.2 22 0 5 0 2.4
s349 332 314 0.2 11 2 5 0 2.5
s382 399 257 1.5 121 0 20 1 219
s386 384 260 2.5 54 0 70 0 39
s400 424 307 1.9 89 6 21 1 1185
s444 474 402 2.2 36 14 21 1 146
S510 564 563 2.3 1 0 0 0 2
s526 555 392 3.0 70 1 88 4 590
s526n 553 356 3.0 105 0 87 5 888
s641 465 342 3.2 63 0 59 1 680
s713 581 433 3.2 47 38 63 0 338
s820 850 726 3.4 83 0 35 6 53
s832 870 732 3.3 80 14 37 7 42
s953 1079 964 3.8 105 0 10 0 64
s1196 1242 1112 3.9 127 0 3 0 202
s1238 1355 1137 4.1 146 69 3 0 367
s1423 1515 872 16.7 324 14 0 305 2636
s1488 1486 1353 4.4 90 0 40 3 158
s1494 1506 1381 4.8 74 12 39 0 233
s5378 4603 3156 22.4 359 40 245 803 3723

93

9%

24%

34%

TC

Just

Diff

Simu

- other

Figure 8.1. CPU time distribution.

j ustification(Just), state differentiation (Diff), and fault simulation(Simu) are listed.

Table 8.4 compares the results of AST to those of STEED [11] and VERITAS

[8] on the ISCAS'89 benchmark circuits. The original CPU time of STEED was on a

VAX-11/8800 and the CPU time of VERITAS was on DEC 5000/200. As the same in

[8], we divided the times of STEED by 3 to obtain normalized DEC 5000/200 times

shown in Table 8.4. The CPU time of AST was run on a SUN Sparc 10 station.

For most circuits, our system obtains more fault coverage than STEED with a

smaller test sequence in a shorter CPU time. Considering the efficiency of STEED,

the results of AST are mostly satisfying. For one particular circuit s5378, STEED

obtained 99.3% fault coverage, and AST only got 82.55% coverage. This is due to the

large number of flip-flops and the huge number of states, both STEED and AST fail

to extract the complete covers. This adds to the difficulty of determining sequential

redundant faults. STEED claimed that it obtained 30.25% redundant fault. Actually,

STEED only found 69% detectable faults. But AST has found 76% detectable fault

and only found 6.19% redundant faults.

When our system AST was nearly finished, we saw the results of VERITAS. VER-

ITAS is faster, and gets 100% fault coverage in most circuits. But while STEED and

our system AST produced results for s1423 and s5378, VERITAS ran out of mem-

ory with 80MB memory limit during its preprocess (reachability analysis). For our

94

Table 8.4. Test generation comparison with STEED and VERITAS on ISCAS'89
benchmark circuits.

circuit coverage time test vectors
V S A V S A V S A

s298 100 99.0 100 4 5 2.4 119 280 192
s344 100 100 100 4 5 2.6 48 125 94
s349 100 100 100 4 5 2.7 56 120 95
s382 100 95.2 99.8 195 1320 221 1028 1633 1431
s386 100 100 100 3 4 42 168 238 243
s400 100 95.8 99.8 195 1200 1187 1091 409 1382

s444 100 95.6 99.8 152 1992 148 1026 994 1247
s510 100 99.8 100 7 7 4.3 584 733 450
s526 100 91.0 99.3 207 1060 593 1457 2037 2034
s526n 100 91.0 99.1 342 1040 891 1528 2287 2105

s641 100 93.1 99.8 15 10200 683 134 327 155
s713 100 93.1 100 21 10440 341 139 315 248
s820 100 100 99.3 40 120 56 785 1304 798
s832 100 99.7 99.2 49 120 45 763 1344 818
s953 100 100 100 40 29 68 578 1050 769
s1196 100 98.7 100 41 4080 206 376 545 437
s1238 100 99.0 100 52 3600 371 389 576 349
s1423 - 56.4 79.9 - 10800 2653 - 4026 4386
s1488 100 100 99.8 84 133 162 1031 1310 1069
s1494 100 100 100 103 147 238 1040 1374 1108
s5378 - 99.3 82.5 - 12000 3745 - 1037 1676

average 95.6 98.0 2776.5 553.3 1050.7 1004.1

95

system, if it can not extract complete covers due to the limit of memory and time, it

could perform test generation on the partial covers, though it may fail to detect some

faults or prove their redundancy.

From Tables 8.2 to 8.4, the performance of our algorithm can be evaluated as

follows:

• The proposed algorithm outperforms the ATPG system STEED in terms of

time complexity, fault coverage, and test length on most circuits of ISCAS'89

benchmarks.

• The fault coverage our system obtained is slightly lower than that of the new

ATPG system VERITAS, but our system can perform test generation on large

size sequential circuits.

• As the circuit size and number of flip-flops increase, the algorithm still shows an

efficient performance. It has successfully generated tests for sequential circuits

with a large number of flip-flops within reasonable amount of CPU time and has

obtained close to maximum fault coverage.

• For some large circuits, when complete covers cannot be enumerated, the partial

cover is generated and the algorithm can work on it.

• The proposed algorithm is useful as a deterministic algorithm for sequential

circuit test generation.

8.3 Summary

In this chapter, the implementation of the system AST presented in Chapter 4

is discussed. Experimental results show that faults that require long test sequence

are handled efficiently and finite state machines with a large number of states are

96

tested using a reasonable amount of CPU time. Also our ATPG transitive closure

based system can effectively determine a larger class of combinational and sequential

redundant faults. Results show that considerable speedup factors and more fault

coverages were realized due to the efficiency of the transitive closure algorithm and

the powerful backward deterministic method for state differentiation. The overall test

system yields a high fault coverage and provides time efficient procedures to generate

tests for large size sequential circuits.

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

The rapid advances in integrated circuit technology have made it possible to fab-

ricate digital circuits with a very large number of devices on a single VLSI chip. The

increase in size and complexity of circuits placed on a chip, with little or no increase

in the number of input/output (I/O) pins, drastically reduce the controllability and

observability of the logic on the chip. More logic must be accessed with almost the

same number of I/O pins, making it much more difficult to test the chip. Yet, the

need for testing is becoming more important. This research work proposes a new

technique for designing test generation algorithms with better time complexity and

fault coverage.

The test generation problem for sequential circuits has been presented as a state

space search for test sequences which detect single stuck-at faults at the gate level

of abstraction. It has been recognized that test generation for sequential circuits is

a difficult problem. Different approaches have been used to tackle the test problem,

either by randomly generating test sequences or by using deterministic test generation

methods.

The current test generation algorithms for sequential circuits can generate test

sequences for large sequential circuits. However, with increasing circuit complexity,

either test generation time increases exponentially or it can not produce test se-

quences due to the exponential increase of reachable states. A new approach based

98

on the transitive closure algorithm has been developed for the test generation of large

sequential circuits. The similarities of this algorithm with current approaches have

been identified.

As a preprocess, a new and efficient backward assignment method is presented

to perform cover extraction. Logic minimization is used to assure that complete or

maximum possible ON/OFF sets of the primary outputs and next state lines are ex-

tracted. By disabling flip-flops in the sequential circuits, the test generation problem

for sequential circuits is transformed into test generation for combinational circuits.

Then test generation for combinational circuits is formulated as the implication graph

and the SAT form expressing necessary conditions for fault activation and path sen-

sitization. A lot of techniques have been used to prune search trees. Our technique

determines all logical consequences based on pairwise signal relationships for a partial

set of signal assignments and provides a good framework for reasoning about signal

relationships in the circuit.

After a combinational excitation vector is found, state justification is used to find

a justification sequence from the reset state to the excitation state. If the effect of

the fault is propagated only to the next state lines, state differentiation is needed to

propagate the fault-effect to the primary outputs. To enhance the efficiency of state

differentiation in dealing with the unspecified inputs in the test sequence, a novel

backward deterministic algorithm for state differentiation is developed.

The implementation of the test generation algorithm for sequential circuits is pre-

sented with experimental results on the ISCAS'89 benchmark circuits. The results

on large sequential circuits suggest that our algorithm outperforms the other test

generation algorithms. Considerable speedup factors and more fault coverage are re-

alized due to the efficiency of our test generation algorithm for sequential circuits.

99

The overall test system has yielded a high fault coverage and provided time efficient

procedures to generate tests for large size sequential circuits. We have also shown

that random patterns can be very effective in test generation for sequential circuit.

We believe that our algorithm can efficiently perform test generation for sequential

circuits. It has obtained close to the maximum fault coverage on the ISCAS'89

benchmark circuits. Consequently, as was pointed out in [7], the parallelization of

transitive closure computation, though not attempted in the present work, is easily

possible. We hope that this system can be developed into parallel test generation

systems.

REFERENCES

[1] V. D. Agarwal, S. K. Jam, and D. M. Singer. Automation in design for testability.

In Proc. Custom Integrated Circuit Conf., pages 21-23. Rochester, NY, May 1984.

[2] V. D. Agrawal, K.-T. Cheng, and P. Agrawal. Contest: A concurrent test gener-

ator for sequential circuits. In Proc. 25nd Design Automat. Conf., pages 84-89,

June 1988.

[3] A. V. Aho, J. E. Hoperoft, and J. D. Ullman. The Design and Analysis of

Computer Algorithms. Reading, Addison-Wesley, MA, 1974.

[4] R. K. Brayton, G. D. Hachtel, Curt McMullen, and A. Sangiovanni-Vincentelli.

Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic, Hingham,

MA, 1984.

[5] M. A. Breuer and A. D. Friedman. Diagnosis and Reliable Design of Digital

Systems. Computer Science, New York, 1976.

[6] F. Brglez, D. Bryan, and Kozminski. Combinational profiles of sequential bench-

mark circuits. In Proc. IEEE Int. Symp. Circuits and Systems., pages 1929-1934,

May 1989.

[7] S. T. Chakradhar, V. D. Agrawal, and S. G. Rothweiler. A transitive closure

algorithm for test generation. IEEE Trans. on CAD, 12(7):1015-1027, July 1993.

[8] H. Cho, G. D. Hachtel, and F. Somenzi. Redundancy identification/removal and

test generation for sequential circuits using implicit state enumeration. IEEE

Trans. on CAD, 12(7):935-945, July 1993.

101

[9] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of

the Third ACM Symposium on Theory of Computing, pages 151-158, 1971.

[10] H. Fujiwara and T. Shimono. On the acceleration of test generation algorithms.

IEEE Trans. Comp., C-32:1137-1144, Dec. 1983.

[11] A. Ghosh, S. Devadas, and A. R. Newton. Test generation and verification for

highly sequential circuits. IEEE Trans. on CAD, 10(5):652-667, May 1991.

[12] P. Goel. An implicit enumeration algorithm to generate tests for combinational

logic circuits. IEEE Trans. Comp., C-30:215-222, Mar. 1981.

[13] J. Gu. Efficient local search for very large-scale satisfiability problems. SIGART

Bulletin, pages 8-12, 1992.

[14] J. Gu. Local search for satisfiability (SAT) problem. IEEE Trans. on Systems,

Man, and Cybernetics, 23(4):1108-1129, Jul./Aug. 1993.

[15] J. Gu, X. Huang, and B. Du. A quantitative solution to constraint satisfaction.

New Generation Computing, 13(1), Nov. 1994.

[16] J. Gu, P.W. Purdom, and B.W. Wah. Algorithms for satisfiability (SAT) prob-

lem: A survey. 1993. To appear.

[17] 0. H. Ibarra and S. K. Sahni. Polynomially complete fault detection problems.

IEEE Trans. on Comp., 0-24:680, March 1975.

[18] H. Kubo. A procedure for generating test sequences to detect sequential circuit

failures. NEC Res. and Dcv., 12:69-78, Oct. 1968.

[19] T. Larrabee. Test pattern generation using Boolean satisfiability. IEEE Trans.

on CAD, 11(1):4-15, Jan. 1992.

102

[20] H. K. Lee and D. S. Ha. Hope: An efficient parallel fault simulator for syn-

chronous sequential circuits. In 29th ACM/IEEE Design Automation Confer-

ence, pages 336-340, 1992.

[21] H. T. Ma, S. Devadas, A. R. Newton, and A. Sangiovanni-Vincentelli. Test

generation for sequential circuits. IEEE Trans. on CAD, 7(10):1081-1093, Oct.

1988.

[22] S. Mallela and S. Wu. A sequential test generation system. In Proc. Int. Test

Conf., pages 57-61, Philadelphia, PA, Oct. 1985.

[23] A. Miczo. The sequential atpg: A theoretical limit. In Proc. Int. Test Conf.,

pages 143-147, Oct. 1983.

[24] A. Miczo. Digital Logic Testing and Simulation. Harper and Row, Publishers,

New York, 1986.

[25] P. Muth. A nine-valued circuit model for test generation. IEEE Trans. Comput-

ers, C-25:630-636, June 1976.

[26] J. P. Roth. Diagnosis of automata failures, a calculus and a method. IBM J.

Res. Dev., 10:278-291, July 1966.

[27] F. F. Sellers, M. Y. Hsiao, and L. W. Bearnson. Analyzing errors with Boolean

difference. IEEE Trans. Computers, C-17:676-683, July 1968.

[28] S. Shteingart, A. W. Nagle, and J. Grason. Rtg: Automatic register level test

generator. In Proc. 22nd Design Automat. Conf., pages 803-807, Las Vegas,

June 1985.

[29] J. J. Thomas. Automated diagnostic test program for digital networks. Com-

puter Design, pages 63-67, Aug. 1971.

103

[30] A. S. Yousif. A novel search approach for test generation. Master's thesis, Dept.

of Electrical and Computer Engineering, The University of Calgary, Calgary, AB

T2N 1N4, September 1992.

