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ABSTRACT 

This thesis presents a new approach for test generation of sequential circuits. The 

problem of test generation for sequential circuits is decomposed into three subprob-

lems, i.e., excitation vector generation, state justification, and state differentiation. 

By disabling all flip-flops in a sequential circuit, the sequential circuit is transformed 

into a pseudo-combinational circuit. Then an extended transitive closure algorithm 

extracts the implication graph and the SAT formula from the model of the circuit 

incorporating necessary conditions for fault activation and path sensitization. To 

enhance the efficiency of state differentiation in the existing three-phase ATPG, a 

novel backward deterministic method for state differentiation is proposed. The new 

test generation algorithm has been tested using the ISCAS'89 benchmarks. The al-

gorithm yielded a high fault coverage and is shown to be very efficient in generating 

tests for large size sequential circuits. The experimental results on large sequential 

circuits indicate that, our approach is much faster than the existing deterministic test 

generation algorithms. 
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CHAPTER 1 

INTRODUCTION 

Very large-scale integration (VLSI) is the process of fabricating thousands of semi-

conductor components and interconnections at once by a common set of manufac-

turing steps. With the rapid advances in VLSI technology, a major problem, one 

which is growing in importance, is testing. The problems associated with testing of 

VLSI circuits have been exacerbated by the growing number of circuits placed on an 

individual chip. With little or no increase in the number of input/output (I/O) pins, 

more logic must be accessed with almost the same number of I/O pins, making it 

much more difficult to test a VLSI chip. 

As a result of growing circuit complexity, testing is taking an increasingly larger 

proportion of total product cost. Ironically, the very software design tools that make 

it possible to put more circuits on a chip at a reduced cost are effectively increasing 

the cost of circuit testing. The advantages of VLSI are reduced system cost, bet-

ter performance, and great reliability. These advantages would be lost unless VLSI 

devices can be tested economically. 

1.1 Background 

Manufacturing a chip consists of fabrication and testing. Testing is required in 

order to discover defects in a digital system. Design and test development precede 

manufacture. Test activities are interwoven with the VLSI design process. Architec-

tural design consists of the partitioning of a VLSI chip into realizable blocks. Either 
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the logic should be synthesized in a testable form or the synthesized logic should be 

analyzed and improved for testability. 

Tests for a VLSI circuit are developed in two phases. In the first phase, known as 

design verification, tests are generated to verify logic correctness and timing behavior 

of the circuit through simulation. For any reasonably large sequential circuit it would 

be impossible to enumerate all possible input sequences during testing. As a practical 

compromise, a subset of inputs, considered to be critical by the designer, is used for 

verification. 

The second phase of test generation consists of generating manufacturing tests. 

Manufacturing tests are used to determine if components and interconnections on 

the chip are fabricated correctly. These tests thoroughly check every node in the 

circuit and the effect of every fault is propagated to the circuit outputs. Ideally, 

manufacturing tests must cover all faults that can possibly occur during fabrication. 

In this thesis, we concentrate only on the second phase of test generation. 

In VLSI circuit design, the testing process is referred to as test generation and fault 

simulation. The goal of test generation is to obtain test vectors of high quality at an 

affordable cost. The quality of the test vectors is measured by fault coverage which is 

the fraction of the modeled faults detected by the test vectors. Given a set of faults 

and a set of test vectors, the goal of fault simulation is to determine which faults are 

detected by the test vectors. Both test generation and fault simulation rank equally 

in importance and complement one another. Test vectors capable of distinguishing 

between good circuits and faulted circuits do not become effective until these vectors 

are simulated so that their effects can be determined. Conversely, extremely accurate 

simulation with very precise models, and poor test vectors, will not effectively uncover 

many defects. 
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There are various factors that contribute to testing and its cost. Testing cost is 

determined mainly by the cost of real time test pattern generation and test applica-

tion. Test pattern generation cost depends on the computer time required to run the 

test pattern generation program. Test application cost is determined by the cost of 

equipment plus the testing time required to apply the test. This time may be assumed 

to be directly proportional to the number of tests. For combinational circuits, a test 

is a test vector. For sequential circuits, a test is a sequence of test vectors. 

A straightforward method for determining the testability of a circuit is to use an 

Automatic Test Pattern Generation (ATPG) program. It generates test vectors and 

determine the fault coverage. The running time of the program, the number of test 

patterns generated, and the fault coverage provide a measure of the testability of the 

circuit. 

1.2 Problems Addressed in this Thesis 

This thesis presents a new approach for test generation of sequential circuits. First, 

cover extraction is performed 6s a preprocess. A new backward assignment method 

is presented to extract the ON/OFF sets of the primary outputs and next state lines. 

Then a novel ATPG system is presented to generate test sequences. By disabling all 

flip-flops in a sequential circuit, the sequential circuit is transformed into a pseudo-

combinational circuit. Then an extended transitive closure algorithm extracts the 

implication graph and the SAT formula from the model of the circuit incorporating 

necessary conditions for fault activation and path sensitization. State justification and 

state differentiation are efficiently performed using the ON/OFF sets of the primary 

outputs and next state lines. To enhance the efficiency of state differentiation in 

the existing three-phase ATPG, a novel backward deterministic method for state 

differentiation is proposed. This method generates a compact testing sequence for a 
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given fault. 

1.3 Organization of this Thesis 

The thesis is organized as follows. In Chapter 2, the test generation terminologies 

and the fault models are introduced. The testing problems caused by combinational 

circuits and sequential circuits are addressed. 

The previous work in test generation for combinational circuits and sequential 

circuits is described in Chapter 3. 

In Chapter 4, first, observations that initiated this research work in test gen-

eration for sequential circuits are given. Then after the steps of cover extraction, 

combinational circuit test generation, state justification, and state differentiation are 

briefly introduced, a novel test generation system for sequential circuits is presented. 

The algorithms used in these steps are described in Chapters 5 - 7 in detail. 

A new backward assignment algorithm for cover extraction is described in detail 

in Chapter 5. It can efficiently extract the ON/OFF sets of the primary outputs and 

next state lines. 

Chapter 6 describes in detail a transitive closure method for pseudo-combinational 

circuit test generation. A Boolean difference equation is derived from the circuit 

model incorporating necessary conditions for fault activation and path sensitization. 

Efficient transitive closure computations are presented. 

In Chapter 7, state justification and state differentiation are described. To enhance 

the efficiency of state differentiation in the existing ATPG system, a new backward 

deterministic algorithm for state differentiation is developed. 

Experimental results with ISCAS'89 benchmarks are presented in Chapter 8. 

These results are compared to the existing test generation systems. Chapter 9 
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concludes this thesis. 



CHAPTER 2 

FAULT MODELS AND TESTING PROBLEMS 

In this chapter, the test generation problems are presented. The test fault models 

are identified and formulated in Section 2.1. Section 2.2 introduces the test gen-

eraton terminologies used through this work. In Section 2.3, the problems of test 

generation for combinational circuits and sequential circuits are presented. 

2.1 Faults in VLSI Systems 

The testing of a digital logic circuit involves the application of stimuli to the circuit 

and the evaluation of the response to determine whether the circuit is functionally 

correct. An important part of testing is the creation of effective stimuli. In, practice, 

the most commonly occurring faults are modeled. The fault model is a computer 

model of the circuit that has been modified to conform to some premise or conjecture 

about real physical defects. Then, input stimuli are created which can distinguish 

between the fault-free and the faulted models. There are a number of advantages of 

this approach [24]: 

. It is effective to create specific tests for faults most likely to occur. 

• The effectiveness of the test set can be measured by determining how many faults 

can be covered by the set of test vectors. 
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• Specific defects can be associated with specific test patterns. If a circuit under 

test responds to a test pattern incorrectly, there is information indicating the 

faulty component or a set of components. 

This method has become a standard approach to developing tests for digital logic 

failures. 

It is desirable to describe faults at various levels of abstraction in VLSI systems. A 

fault which is described at a very low level, e.g., the transistor level, may accurately 

describe the physical phenomena causing the fault. One of the difficulties with this 

level is the tedious task of analyzing each individual component in the circuit. Further 

complicating the task is the fact that there are several technologies in use and each 

has its own unique way to perform digital logic operations. 

Designers have long used logic symbols to represent their designs. These symbols 

reduce the complexity of the logic circuit drawings and have the advantage of being 

technology-independent. Figure 2.1 shows the logic diagram of an AND gate and its 

truth table. 

ABC D 

A 

B 
C 

000 
001 
010 
011 
100 
101 
110 
111 

0 
0 
0 
0 
0 
0 
0 
1 

Figure 2.1. Three input AND gate with its truth table. 

With these symbols, the circuits áan be logically represented at a higher level, 

i.e., the gate level. The faults can be described at the gate level and it would be 
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simpler for the purpose of analysis to consider the faults at that level. An important 

advantage of this representation is the fact that a computer algorithm can be defined 

upon these logic operators, which are, for most part, independent of the particular 

technology chosen to implement the circuits. 

2.1.1 Fault Models 

Fault models are descriptions of the effect of a defect or failure in a circuit. One 

of the earliest and still widely used fault models at the gate level of abstraction is 

the stuck-at model. In this model, it is assumed that physical defects and faults will 

result in the lines at the logic gate level of the circuit being permanently stuck at 

logic value 0 or 1. This model is popular since many defects at the transistor level 

can be modeled at the gate level. 

It is impractical to test for the combinations of all the stuck-at faults in a circuit. 

This has led to the adoption of the single-fault assumption. When attempting to 

create a test, it is assumed that a single fault exists. 

Consider a circuit containing nets which interconnect various components in the 

circuit. At one time, each net may have only one of the following results: 

• Fault-free 

• Stuck-at-1, i.e., s-a-1 

• Stuck-at-0, i.e., s-a-0 

2.1.2 Fault Equivalence and Dominance 

In building fault lists, it is often observed that some faults are indistinguishable 

from others. In Figure 2.1, faults A, B, or C stuck-at 0 would result in the output D 
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being permanently 0 and, therefore, it is impossible to distinguish between an input 

stuck-at 0 from the output stuck-at 0. These faults are said to be equivalent. There 

is no logic test that can distinguish between them. More precisely, if Ta is the set 

of tests which detect fault a and Tb is the set of tests which detect fault b, and if 

Ta = Tb, then it is not possible to distinguish a from b. 

When we test for inputs, e.g., A, B or C s-a-1, we simultaneously test for the 

output D s-a-1. A s-a-1 fault on the output, however, prevents one from testing any 

of the input s-a-1 faults. We say that the output D s-a-1 fault dominates the input 

s-a-1 fault. In general, fault a dominates fault b if Tb is included in Ta. From this 

definition it follows that if fault a dominates fault b, then any test which detects fault 

b will detect fault a. 

Since computer time for circuit testing is affected by the size of the fault list, the 

reduction of the fault list, a process called fault collapsing, can reduce test generation 

and simulation time. Therefore, fault equivalence and dominance relations are used 

to reduce the size of fault lists. 

2.2 Testing Terminologies and Definitions 

A sequential circuit is shown in Figure 2.2. The circuit consists of a combinational 

logic block and some feedback flip-flops. The inputs and outputs of flip-flops are the 

next state and present state lines, respectively. There are p primary inputs, n present 

state lines, n next state lines, and q primary outputs. Here it is assumed that the 

present state and next state lines are neither controllable nor observable. The task 

of test generation for sequential circuits is to find primary input sequences which can 

propagate the faults in the sequential circuit to the primary outputs. 

Figure 2.3 shows a conventional iterative array model [5] used in the test genera-
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Primary 
Inputs (P1) 

Present 
States (PS) 

Figure 2.2. A sequential circuit. 

Primary 
Outputs (P0) 

Next (NS) 
States 

tion of sequential circuits. Assume there is a fault, F, in the combinational logic block 

of the sequential circuit shown in Figure 2.2, we duplicate the block in terms of each 

clock cycle, i.e., time-frame. The iterative array in Figure 2.3 is logically equivalent 

to the sequential circuit shown in Figure 2.2. If an input sequence P1', P12, , PI1C is 

applied to the sequential circuit in initial state PS', i.e., a reset state, it generates an 

output sequence P0', P02,. . ., pQk and the next state sequence NS', NS2, . , NS 

(PS+' = NS, 1 ≤ i < k). 

- 

PS1 

F 
U 

NS1 : 

clock cycle 1 

cell 1 

F 
U 

NS2 

clock cycle 2 

cell 2 

'P NSk 

clock cycle k 

cell k 

Figure 2.3. An equivalent pseudo-combinational iterative array to the sequential 
circuit in Fig. 2.1. 

Definition 2.2.1 Beginning with the present state in clock cycle 1, PS', we set the 

reset state values and wish to produce an input sequence, P1', p12'.. . ., p1k which, 

when applied to clock cycles 1, 2,. . ., k, propagates the effect of the fault F to the 

primary outputs, pQk, during the kth clock cycle. This input sequence is called a 
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test sequence for the fault. 

Unlike combinational circuits, which only needs an input test vector to test a fault, 

a sequential circuit may require a test sequence of up to 211 input test vectors, where 

n is the number of memory elements (flip-flops) in the sequential circuits [5]. 

In sequential circuit testing, a state is a bit vector. Its length is equal to the 

number of memory elements in the sequential circuit. In general, a state is a cube, 

i.e., the values at the different bit positions may be 0, 1 or X (don't care). A minterm 

state is a state with only 0's or l's as bit values. A cube state is a group of minterm 

states. A universal cube is a cube with all X entries. 

Definition 2.2.2 State S implicates state S2, if and only if, every state contained 

in S is also contained in 52. That is, state 52 covers state S. 

For example, state (0, 1, 0) is a minterm state, and state (0, 1, X) is a cube state. 

There are two minterm states (0, 1, 0) and (0, 1, 1) in the state (0, 1, X), so state 

(0, 1, 0) implicates state (0, 1, X). (X, X) X) is a universal cube. 

The sequential circuits discussed here are assumed to have a reset state. All test 

sequences are applied to the sequential circuit with the reset state as the starting state. 

Some faults in the circuits may be redundant, i.e., their existence does not change 

the behavior of the circuit. There are two kinds of redundant faults, combinational 

redundant and sequential redundant. 

Definition 2.2.3 A combinational redundant fault cannot be propagated to the pri-

mary outputs or the next state lines, beginning from any state, with any input vector. 

Definition 2.2.4 A sequential redundant fault cannot be excited or whose effect can-

not be propagated to the primary outputs using any sequence of input vectors starting 
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from the reset state. 

Definition 2.2.5 An excitation vector for a fault is an assignment that propagates 

the fault to either the primary outputs or the next state lines. This assignment 

consists of two parts, the primary input and the present state. The present state of 

an excitation vector is called an excitation state. The primary input of an excitation 

vector is an excitation input. 

Definition 2.2.6 The process of finding an input sequence which takes a circuit from 

the reset state into the excitation state is called state justification. The corresponding 

input sequence is a justification sequence. 

There are two kinds of state justification, forward state justification and backward 

state justification. In the forward state justification, the search is done from the reset 

state to the excitation state; and vice versa for the backward state justification. If 

the excitation vector propagates the fault to the next state lines, state differentiation 

is required. 

Definition 2.2.7 State differentiation is the process of propagating the effect of the 

fault on the next state lines to the primary outputs. A differentiation sequence for a 

pair of states, true state ST and faulty state SF, which are different in at least one 

bit, is an input sequence such that, if the circuit is initially in 8T, the last vector in 

the sequence produces a different logic value in at least one primary output than if 

the circuit were initially in Si'. 

In circuit testing, the complete test sequence is obtained by combining the justifi-

cation sequence, the excitation vector, and the differentiation sequence. 
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When all flip-flops in a sequential circuit are disabled, the sequential circuit be-

comes a pseudo-combinational circuit as shown in Figure 2.4. The primary inputs and 

present state lines are considered as the inputs of the pseudo-combinational circuit. 

The primary outputs and next state lines are the outputs of the pseudo-combinational 

circuit. 

Primary p 
Inputs (PIE) ,  

Present 
States (PS 1) /0. 

b. 

n 

Combinational Logic 

F 
U 

q 
/ A (POE) 

n 
(NS E) 

Primary 
Outputs 

Next 
States 

Figure 2.4. A general pseudo-combinational circuit. 

Definition 2.2.8 The output cone of a primary output is a portion of circuit which 

includes the primary output and its subtree from the primary output to the primary 

inputs and present state lines. Any fault site in this subtree is a node in the output 

cone. The next state cone of a next state line is a portion of circuit which includes 

the next state line and its subtree from the next state line to the primary inputs and 

present state lines. 

Consider the sequential circuit, shown in Figure 2.2. Assuming a fault site in 

the circuit is a node in the output cones of r primary outputs, then we refer to the 

output cones of these r primary outputs as the primary output fault region for the 

fault under test. Similarly, if a fault site in the logic circuit is a node in the next state 

cones of s next state lines, the next state cones of these s next state lines compose 

the next state fault region for the fault under test. 

To illustrate the idea of a circuit cone, we use a simple sequential circuit s27 from 

the ISCAS'89 benchmarks. The circuit is shown in Figure 2.5. There is only one 
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primary output G17, and its output cone is shown in Figure 2.6. There are three 

next state lines Gb, Gil, and G13. The next state cone of Gil is shown in Figure 

2.7. Considering a fault on G15, as G15 is a node in the output cone of the primary 

output G17, its primary output fault region is the output cone of G17 shown in Figure 

2.6. Though G15 is a node in the next state cones of the next state lines Gil and 

Gb, if the fault is to propagate to Gb, it must propagate-to Gil first. One need 

only consider the next state line Gil. The next state fault region for the fault at 

node G15 is the next state cone of Gil, as shown in Figure 2.7. 

GO 

Gi 

G2 

G3 

•%•% G14  

-III1I GIO 
12 

—D G13 

G8 

G15 

G16 

G6 

G9 Gil 

—D 

G5 Dff 

G17 

G7 

Dff 

Dff 

Figure 2.5. Example circuit s27 from ISCAS'89 benchmarks. 

Definition 2.2.9 The ON set of an output is the complete set of the input values 

which produce the output logic value 1. The OFF set is the complete set of the input 

values such that the corresponding output is at logic value 0. 
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Figure 2.6. The output cone of G17 in circuit s27. 
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Figure 2.7. The next state cone of Gil in circuit s27. 
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The process of extracting the ON/OFF sets of the primary outputs and next state 

lines is called cover extraction. 

Definition 2.2.10 If a sequential circuit can reach a state F0 during the next clock 

cycle from a state Fin, state Fi,, is said to be a fan-in state of state and state 

F,,ut is a fanout state of state 

All fan-in states of a state can be easily obtained by cube intersection on the ON 

and OFF sets of the next state lines. 

Definition 2.2.11 The intersection of two cubes c and d, denoted cfl d, is the set of 

states that belong to both c and d. 

c d - { , if there exists one k, ck fl dk = , otherwise 
- {(cifl di) (c2fld2) ... (cfld)} 

The intersection of the three value tuple is defined in Table 2.1, where 0 is the 

empty set. 

Table 2.1. Cube intersection operation. 

d 
nolx 

ooco 
ci 1 q 1 1 
x01x 

Definition 2.2.12 The sharp product of two cubes, i.e., c#d, is the set of states that 

belong to c but not to d. 
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C7 if there exists one k, ck#dk = 
c#d= q, ifck#dk =e, for all k; else 

I. Uk{c1c2 ... Ck...1kCk+1 ... c,} 

where ck#dk=a/EO,1,k=1,2,...,n. 

The sharp product of the three value tuple is obtained in Table 2.2, where e means 

implication. 

Table 2.2. Sharp product operation. 

d 
#01x  

ci 1  

X1O 6 

Definition 2.2.13 A graph G = (V, E) consists of a finite, nonempty set of vertices 

Vand a set of edges E. If the edges are ordered pairs (v, w) of vertices, then the graph 

is said to be directed; v is called the tail and w the head of the edge (v, w). 

Definition 2.2.14 A path is a sequence of edges of the form (vi, v2), (v2, v3), 

(va_i, va). We say that the path is from v1 to Vn and is of length n-i. A cycle is a 

simple path of length at least 1 which begins and ends at the same vertex. 

If a graph contains a cycle, it is cyclic; otherwise it is acyclic. A Directed Acyclic 

Graph (DAG) can be used to describe a circuit. 
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Definition 2.2.15 The transitive closure of G is defined as a graph C* which has 

the same vertex set as G, but has an edge from v to w if and only if there is a path 

from v to w in G. 

Definition 2.2.16 The edges V can be partitioned into equivalence classes V, 1 ≤ 

i < r, such that vertices v and w are equivalent if and only if there is a path from v to 

w and a path from w to v. The graphs Gi = (V2, E) are called the strongly connected 

components of G. 

The goal of the satisfiability (SAT) problem [9] is to determine whether there 

exists an assignment of truth values to a set of variables (x1, X2, ..., xm) that makes 

the following Boolean formula satisfiable: 

C1C2  --- Cn (2.1) 

where is a logic and connector and c1, c2, ..., e are n distinct clauses. Each clause 

consists of only literals combined by just logic or (+) connector (a literal is a variable 

or a single negation of a variable). 

2.3 Test Generation and Its Problems 

With the progress of the VLSI technology, the problem of fault detection for logic 

circuits is becoming increasingly difficult. 

2.3.1 NP-Completeness of Combinational Test Generation 

A significant theoretical study by Ibarra and Sahni [17] shows that test generation 

for combinational circuits belongs to the class of NP-complete problems. This strongly 

suggests that no test generation algorithm with a polynomial time complexity is likely 
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to exist. The problem of combinational circuit test generation can be viewed as a 

finite space search problem [12]. For a combinational circuit with m primary inputs, 

there exists 2m combinations of input assignments. 

In practice, test generation algorithms for combinational circuits appear to be 

able to achieve lower average time growth by using heuristic search techniques. Up 

to now, some well-known test generation algorithms for combinational circuits, such 

as D-algorithm [26], PODEM [12], FAN [10], NEMESIS [19], and TRAN [7], have 

been developed. Some of them perform well for certain circuit structures. 

2.3.2 Test Problems in Sequential Circuits 

Test generation for sequential circuits has long been recognized as a difficult task 

[5, 23]. It remains to be a challenge in spite of a history of attempts dating back 

to the late 1960s. One new factor which complicates the task of creating tests for 

sequential circuits is the presence of memory elements. 

For combinational circuits, it is possible, but not necessarily reasonable, to create 

a complete test for logic faults by applying all possible binary combinations to the 

inputs. This is not true for sequential circuits with memory elements. Not only may 

they requires more than 2m tests, they are also sensitive to the order in which stimuli 

are applied. It has been shown [5] that a fault in a general synchronous sequential 

circuit may require a test sequence of up to 21 input test vectors, where i-i is the 

number of memory elements in the sequential circuits. This shows that the search 

space for sequential circuit test generation is very large. 

2.4 Summary 

The cost of manufacturing a VLSI chip is very much affected by the testing cost 

for the chip. The large number and complex nature of potential physical failures 
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suggests that a practical approach to testing should avoid working directly with the 

physical failure. One approach for solving the problem is to describe the effects of 

physical failures at some higher levels of abstraction. The stuck-at fault model at the 

gate level is the most popular model describing present VLSI testing methodology. 

It has been recognized that test generation for sequential circuits is an extremely 

difficult problem. Different approaches have been used to tackle the test generation 

problem for sequential circuits, either by randomly generating test sequences or by 

using other deterministic test generation methods. It is a challenging topic to develop 

an efficient test generation system for VLSI sequential circuits. 



CHAPTER 3 

PREVIOUS WORK 

In this chapter, the previous work in test generation for combinational circuits and 

sequential circuits is presented. 

3.1 Test Generation for Combinational Circuits 

Existing ATPG systems for combinational circuits fall into two classes: structural 

methods, such as PODEM [12], and algebraic methods. Structural search methods 

use a data structure representing the circuit to be tested. To generate a test pattern, 

they assign values that cause a discrepancy at the faulted line (fault site) and then 

search for consistent values for all circuit lines such that the discrepancy is visible at 

a circuit output. 

Among structural search methods, the D-algorithm, developed by Roth [26], is 

probably the most known test generation algorithm. This algorithm adopts a five-

valued 0, 1, X, D, calculus to be able to carry out the sensitization and the line 

justification procedures in a very formal manner. The faulty line is assigned a D, or 

depending on the fault on the line. The calculus and the circuit structure information 

are used to determine values on the other lines so that the D or can be sensitized 

to the prifnary outputs. A line justification step is then carried out to justify the 

values assigned in the preceding step. Both the sensitization and the line justification 

steps may have to be carried out many times before a test vectors is obtained. 
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A class of circuits for which the D-algorithm performs particularly poorly are 

those containing exclusive-or trees. The degradation in performance arises due to 

excessive amount of backtracking. This observation motivated Goel [12] to devise 

a new test generation algorithm called path oriented decision making (PODEM). He 

used a branch and bound technique. The algorithm starts by assigning a value of 0 

or 1 to a selected primary input (P1) line, and then determines its implication on the 

propagation of D or TD to a primary output. If no inconsistency is found, it again 

somehow selects another P1 line and, assigns a 0 or 1 to it, and then repeats the 

process, which is referred to as branching. If an inconsistency is determined in the 

branching, the branching stops and bounding starts. The PT line which was most 

recently assigned a binary value is assigned the complimentary value, and branching 

starts again. The complete process stops when either a test vector is found or when 

the fault is determined to be undetectable. PODEM implementations are known to 

run an order of magnitude faster than the D-algorithm on most circuits. 

Fujiwara and Shimono [10] described techniques to further accelerate a path-

sensitization algorithm like PODEM. Their algorithm, called FAN, does extensive 

analysis of the circuit connectivity in a preprocessing step to minimize backtracking. 

FAN has employed a better heuristic in the bounding-and-branching steps to speedup 

the test generation process. 

In these structural methods, backtracking, which is a branch procedure terminated 

by a bound step, is the most computationally expensive step in the process of search-

ing for a test vector. The branching step goes as deep in the binary search tree as 

possible, while the bound step backs up in the binary search tree to the most recent 

node with an unused alternative assignment. 

Instead of performing a search on a data structure representing a circuit, algebraic 
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methods produce an equation describing all possible tests for a particular fault and 

then simplify the resulting equation. A typical algebraic method is the Boolean 

difference method, proposed by Sellers et al. [27]. Once the Boolean difference 

formula for the testing problem is obtained, it is simplified by using the basic laws 

of Boolean algebra or using identities specific to the Boolean difference. The tedious 

nature of the algebraic manipulations involved in solving formulae using the Boolean 

difference led to its disfavor as a practical tool for test pattern generation [24]. 

Recently, Larrabee [19] proposed a Boolean satisfiability (SAT) method for gen-

erating test vectors for single stuck-at faults in combinational circuits. This new 

method generates test vectors in two steps. First, it constructs a formula express-

ing the Boolean difference between the unfault and faulted circuits. Second, instead 

of performing symbol manipulation, it applies a SAT algorithm to satisfy the for-

mula. This new method has, in practice, produced excellent results for the problem 

of combinational circuit test generation. 

Later, Chakradhar, Agrawal, and Rothweiler [7] developed a transitive closure 

algorithm for combinational circuit test generation. A test is obtained by determin-

ing signal values that satisfy a Boolean difference equation derived from the model 

of the circuit incorporating necessary conditions for fault activation and path sensi-

tization. The method is a sequence of two main steps that are repeatedly executed: 

transitive closure computation and decision-making. The transitive closure contains 

global pairwise (or binary) logical relationships among all signals. Higher-order sig-

nal relationships are represented as additional ternary relations. A key feature of 

the algorithm is that signal dependencies derived from the transitive closure are used 

to reduce ternary relations to binary relations that in turn dynamically update the 

transitive closure. The signals are either determined from the transitive closure or are 
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enumerated until the Boolean equation is satisfied. The transitive closure algorithm 

has produced excellent results on popular test pattern generation benchmarks. 

3.2 Test Generation for Sequential Circuits 

The Earlier algorithms represented sequential circuits as iterative combinational 

circuits. Some test generation algorithms for combinational circuits were extended 

to test sequential circuits [18, 25]. An algorithm that implements this method has 

been programmed into a commercial package called LAS AR. [29]. Several approaches 

[22, 28] based on the extensions of the classical D-algorithm were presented to solve 

the problem of test generation for sequential circuits. Shteingart et al. [28] gave 

an efficient technique for modeling sequential components. Although some progress 

was made in these attempts, an effective solution for circuits with more than a few 

hundred gates and large sequential depths was not available at that time. 

Due to the relative ineffectiveness of these ATPG systems, many large digital sys-

tems are being designed in compliance with design-for-testability rules which attempt 

to reduce the complexity of the test problem. The object of design-for-test is to pro-

vide guidelines which insure the creation of testable designs. A popular approach is 

to make the memory elements controllable and observable, i.e., a scan design [1]. The 

flip-flops and/or latches are designed to be able to operate in either parallel load or 

serial shift mode. In the normal mode of operation, flip-flops and latches are config-

ured for parallel load. For testing purposes the flip-flops are switched to a serial shift 

mode. In serial mode, any needed test values can be loaded by serially clocking in the 

desired values. In similar fashion, any values present in the flip-flops can be observed 

by clocking out their contents while in the serial shift mode. Scan design approaches 

have been successfully used to reduce the complexity of the problem of sequential 

circuit test generation by transforming the problem into that of combinational circuit 
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test generation. However, in some cases, the cost in terms of area and/or performance 

and/or extra numbers of I/O pins is unaffordable. 

Recently, considerable progress has been made in test generation for sequential 

circuits. A heuristic, simulation-based test generation algorithm was presented by 

Agrawal et al. [2]. Ma, Devaclas, Newton, and Sangiovanni-Vincentelli [21] described 

a PODEM-based deterministic approach to sequential circuit test generation, called 

STALLION. It first extracts .a partial state transition graph (STG) of a sequential 

circuit. The construction of the partial STG is based on an efficient state-enumeration 

algorithm that aims at finding paths from the reset state to different valid states 

(states reachable from the reset state) in the STG. Then test sequences for line stuck-

at faults can be generated using the two-phase ATPG system: fault excitation and 

propagation, and state justification. 

Later, a new system, STEED, was proposed by Ghosh, Devadas, and Newton 

[11] to improve STALLION. STEED decomposes the problem of sequential circuit 

test generation into three subproblems, i.e., excitation vector generation, state jus-

tification, and state differentiation. Given a fault under test, it first generates a 

combinational excitation vector that propagates the effect of the fault to the primary 

outputs or the next state lines. Combinational circuit test generation is based on 

a PODEM-based algorithm. A justification step is then performed, which involves 

finding a justification sequence for the excitation state. This step is carried out using 

a sequence of cube intersections on the complete or partial ON/OFF-sets of the next 

state lines. Thus a justification sequence is found. If the effect of the fault has been 

propagated to the next state lines alone, the true-faulty state pair is produced by the 

excitation vector. A differentiation sequence for this true-faulty state pair is obtained 

using another sequence of cube intersections, this time using the ON/OFF-sets of the 
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primary outputs. It is shown that this three-phase ATPG for sequential circuits is an 

efficient method. STEED significantly improved STALLION in terms of computing 

time for the same fault coverage. 

Cho, Hachtel, and Somenzi [8] have recently given an efficient algorithm, VER-

ITAS, for sequential circuit test generation. VERITAS is based on implicit state 

enumeration and a three-phase ATPG. The approach identifies sequential redundan-

cies through reachability analysis of sequential circuits. It constructs the product 

machine of two sequential circuits to be compared. The reachability analysis is per-

formed by traversing the finite state machine to find any difference in I/O behavior. 

When an output difference is detected, the information obtained by reachability anal-

ysis is used to generate a test sequence. As the product machine traversal (PMT) is 

quite resource-demanding, a three-phase ATPG system is used first to deal with most 

of the faults. PMT is used only for the faults for which the three-phase ATPG fails 

to generate test sequences. VERITAS further improved STEED in terms of running 

time, test vector length, and fault coverage. It is difficult, however, for VERITAS to 

handle large size sequential circuits. 

These approaches are capable of generating tests for sequential circuits with 1000-

3000 gates. Due to the difficulty of test generation for sequential circuits, significant 

improvements are needed for the testing of larger sequential circuits. 

3.3 Summary 

Up to now, some well-known test generation algorithms for combinational cir-

cuits have been developed and perform well for certain circuit structures. Existing 

ATPG systems for combinational circuits fall into two classes: structural and al-

gebraic methods. Both Boolean satisfiability and transitive closure methods have 
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produced excellent results on popular test pattern generation benchmarks. 

For sequential circuit test generation, some progress has been made in the past 

several years. The three-phase ATPG system is shown to be an efficient method. Due 

to the difficulty of test generation for sequential circuits, significant improvements are 

needed for very large scale sequential circuits. 



CHAPTER 4 

A NOVEL TEST GENERATION SYSTEM FOR 
SEQUENTIAL CIRCUITS 

In this chapter, we present an efficient test generation algorithm for sequential 

circuits. A transitive closure algorithm has been developed for combinational circuit 

test generation. We extend the transitive closure algorithm to test generation of se-

quential circuits. To make the previous three-phase ATPG system more efficient, a 

new backward deterministic method for state differentiation is developed. This algo-

rithm offers significant efficiency improvements for test generation of large sequential 

circuits. 

At first, observations that initiated this research work in sequential circuit test 

generation are given. Then after briefly introducing the steps of cover extraction, 

pseudo-combinational circuit test generation, state Justification, state differentiation, 

fault simulation, and determination of redundant faults, a novel test generation sys-

tem for sequential circuits is presented. The algorithms used in cover extraction, 

pseudo-combinational circuit test generation, state justification, and state differenti-

ation will be described in Chapters 5 - 7 in detail. 

4.1 Observations 

Up to now, the most popular ATPG systems for sequential circuits use the three-

phase ATPG method: excitation vector generation, state justification, and state dif-

ferentiation. The first phase, in the most cases, uses a PODEM-based combinational 
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ATPG, such as STALLION [21] or STEED [11]. This phase usually takes a large 

fraction of the total test generation time. As indicated in Section 3.1, Boolean satis-

fiability (SAT) method [19] and transitive closure method [7] have been developed to 

perform test generation for combinational circuits. Both SAT approach and transitive 

closure algorithm have obtained superior results over the PODEM-based algorithms. 

In our approach, we use the transitive closure algorithm to perform the first phase, 

i.e., excitation vector generation, in sequential circuit test generation. 

The second and third phases are state justification and state differentiation. They 

usually take a small fraction of the total test generation time. State differentiation in 

the existing three-phase ATPG systems lacks efficiency in dealing with the unspecified 

inputs in excitation vector and justification sequence. So STEED has to apply all 

possible assignments to the unspecified inputs before it concludes that a test for the 

fault under consideration does not exist. There exists 2 possible minterm states 

for n unspecified inputs. Considering that each possible minterm state may need to 

perform state justification, the real search space is much larger than 2'. 

In this thesis, we propose a new backward deterministic method for state differ-

entiation. In our approach, cubes, rather than minterm states, are used to represent 

states. Instead of using minterm state differentiation, our method searchs backward 

to specify the cubes into real excitation states. This has considerably reduced the 

running time for sequential circuit test generation. 

4.2 A Novel Test Generation System for Sequential Circuits 

The system starts by extracting the ON/OFF sets of the primary outputs and 

next state lines. A new backward assignment method is proposed to perform cover 

extraction. We employ the three-phase ATPG approach to generate test sequences. 
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The transitive closure algorithm is extended to test generation for sequential cir-

cuits. The problem of test generation for sequential circuits is decomposed into three 

subproblems: 

• pseudo-combinational circuit test generation: All flip-flops in the sequential cir-

cuit are disabled, and sequential circuit test generation becomes combinational 

circuit test generation. The transitive closure algorithm is used to find the exci-

tation vector for the pseudo-combinational logic circuit. 

• state justification: An input sequence is found to take a circuit from the reset 

state into the excitation state. 

• state differentiation: An input sequence is found to propagate the effect of the 

fault on the next state lines to the primary outputs. 

In the following discussion, we will describe briefly cover extraction, transitive 

closure based pseudo-combinational circuit test generation, state justification, state 

differentiation, fault simulation, and determination of redundant faults. Then the 

new test generation system for sequential circuits is presented. 

4.2.1 Cover Extraction 

The objective of cover extraction is to extract the ON/OFF sets of the primary 

outputs and next state lines. At first, all flip-flops in a sequential circuit are disabled. 

The sequential circuit becomes a pseudo-combinational circuit. The inputs of all 

flip-flops (next state lines) and the primary outputs are considered as outputs of 

the combinational circuit. The outputs of all flip-flops (present state lines) and the 

primary inputs are considered as inputs of the combinational circuit. 
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For each output of the pseudo-combinational circuit, the ON/OFF sets are ex-

tracted by assigning the corresponding output line to logic value 1 or 0 and using 

a new and efficient backward assignment method to implicitly enumerate the input 

combinations that can set the output line to 1 or 0. A similar backward assignment 

method has been successfully used in test generation for combinational circuits [30]. 

At first, the combinational circuit is represented as separate output cone for each 

output. For each circuit cone, we assign the output of the cone to 1 or 0. Then 

we propagate the assignment backward to the inputs of the cone. Finally, the com-

bination of the assignments at the inputs of the cone is the ON or OFF set of the 

output. 

Due to the connectivity of the logic circuit, some nodes in the circuit may be 

assigned more than once. Therefore with the increase of the circuit's depth, the 

number of assignments for each node per level may increase dramatically. So the 

CPU time for generating the ON/OFF sets may grow dramatically. A simple method 

is to set a limit for the maximum number of the assignments at each node [30]. 

Limiting the maximum number of assignments per node can dramatically decrease 

the extraction time. But after setting the limit, the ON/OFF sets obtained may be 

incomplete. 

We use a different and efficient method. After the number of assignments reaches 

the limit, we use logic minimization to compress the assignments. The method is 

based on the fact that each ON/OFF set usually requires less than a few hundred 

vectors for most of ISCAS'89 benchmark sequential circuits after logic minimization. 

This method assures that we obtain complete ON/OFF sets of the primary outputs 

and next state lines. Also it makes the storage of ON/OFF sets memory efficient. 

For some large circuits, it might not be possible to generate the complete cover. This 
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method would extract as many vectors in the cover as possible. The ON/OFF sets 

are saved in bit vectors, which are similar to those used in ESPRESSO [4]. 

Three methods can be used to extract the ON/OFF sets. 

1) The output of the circuit is set to 1 or 0, and the backward assignment method 

is used to generate the ON or OFF set separately. 

2) Because the ON set and OFF set for a same output are complementary, which 

means that the union of the ON set and OFF set for the same output should corre-

spond to the universal cube, when we generate the ON set, the OFF set can be easily 

obtained by disjointing the ON set from the corresponding universal cube. 

3) The output of the circuit can be set to the logic value D or D. The backward 

assignment method is used to generate the D set. When D is equal to 1, the ON set 

is obtained. When D is 0, the OFF set is obtained. A part of backward assignment 

rules of value D can be found in [30]. 

We use the first method to generate the ON/OFF sets of the primary outputs and 

next state lines. The backward assignment method will be discussed in Chapter 5 

in detail. 

4.2.2 Pseudo-Combinational Circuit Test Generation 

Our current method considers one fault at a time. Given a fault for which that a 

test sequence is to be generated, the first step in test generation for sequential circuits 

is to generate a combinational test vector in the pseudo-combinational circuit for the 

fault. Figure 2.4 shows a pseudo-combinational circuit obtained from a general 

sequential circuit by disabling all flip-flops. The goal of test generation for a pseudo-

combinational circuit is to find an excitation vector (PIE, PS') which excites the 
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fault to p0E or NSE. 

Our test generation algorithm for combinational circuits, which will be described 

in Chapter 6 in detail, is based on a transitive closure method [7]. At first, the 

algorithm tries to propagate the effect of the fault to the primary outputs. If failed, 

the algorithm tries to propagate the effect of the fault to the next state lines. When 

the fault is combinational redundant, the effect of the fault cannot propagate to either 

the primary outputs or the next state lines. 

To make state justification easier, the excitation vector is generated with as many 

don't care entries as possible - some lines may be left unknown. If the excitation state 

can not be justified, a new excitation vector should be generated. The new vector 

should be disjointed from all the previous states. This assures that all new generated 

excitation states are not used previously. 

We notice that each fault may only be a node in circuit cones of some primary 

outputs and/or next state lines. To generate excitation vector efficiently, we only need 

to consider the related part of the circuit with the fault. When the algorithm tries to 

propagate the effect of the fault to the primary outputs, we search the circuit forward 

from the fault site to the primary outputs and find all related primary outputs. The 

output cones of these primary outputs compose the primary output fault region for 

the fault. Similarly, when the algorithm tries to propagate the effect of the fault to 

the next state lines, we should search for an excitation vector in the next state fault 

region for the fault. Because the fault region is smaller than the original circuit, the 

search effort and time are decreased. 
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4.2.3 State Justification 

Once a combinational excitation vector is found for a fault in the pseudo-

combinational circuit with as many don't care entries as possible, state justification 

is used to justify if the excitation state is reachable from the reset state. Usually the 

excitation state is a cube. If the reset state implicates the excitation state, the fault 

can be excited from the reset state. If not, the excitation state should be justified by 

using state justification. 

The iterative array model in Figure 4.1 is used to illustrate state justification. 

The excitation input PIS and excitation state pgS excite the effect of a fault under 

test to p0E or NS'. As the sequential circuit discussed here is assumed to have a 

reset state, all valid states begin from this reset state. The goal of state justification 

is to find an input sequence PI', pjJ2 ,. . ., p1Jk which places the sequential circuit 

into the excitation state pgE from the reset state. If pSi' is the reset state, the 

justification sequence p1J1 , pjJ2. . . p1Jk is found. The set of states traversed 

during state justification, PSI', PS",'- . ., pgJk constitute the justification path. 

Justification 1 Justification k Excitation 

PIJi pOJ1 

psJ1 

(Reset state) 
NS 1 

F 
U 

0Jk 1E 

- -* 

NSJk psE 

F 
I 

PO E 
- 

- 

NSE 

Figure 4.1. General iterative array model for state justification. 

State justification can also be illustrated by the state transition graph (STG) shown 

in Figure 4.2. PS' is the excitation state, and we need to find a justification path 

from the reset state to the state PSE. 
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Reset state Excitation state 

Figure 4.2. State transition graph for state justification. 

There are two methods to perform state justification, forward and backward, de-

pending on whether the search is conducted from the reset state to the excitation 

state or vice verse. Here we use backward state justification. All fan-in states of the 

excitation state are obtained by performing cube intersection on the corresponding 

ON/OFF sets of the next state lines. If the reset state implicates the fan-in states, 

a single vector justification sequence is found. Otherwise, the process is repeated 

for the fan-in states being currently justified to try to find multi-vector justification 

sequence. 

It is noted that all fan-in states obtained in state justification are cubes. Because 

a cube state is a group of minterm states, using cubes is helpful to find a shorter 

justification sequence. Thus the justification time is reduced and the quality of the test 

pattern generator increases. Once the justification sequence is found, fault simulation 

is used to check if the excitation state is justified. The algorithm of state justification 

is given in Section 7.1. 

4.2.4 State Differentiation 

If the combinational excitation vector propagates the fault to the primary outputs, 

and the excitation state is justified, a test sequence for the fault is successfully gen-

erated. However, if the combinational excitation vector propagates the fault to the 

next state lines, state differentiation is required to continually propagate the effect of 
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Figure 4.3. Iterative array model for state differentiation. 

Excitation 
state 

Figure 4.4. State transition graph for state justification and state differentiation. 

the fault to the primary outputs. 

The iterative array model in Figure 4.3 is used to illustrate state differentia-

tion. The excitation input FIB and excitation state PSE excite the effect of a 

fault under test to the next state lines NSE, and a justification path from PSI' 

(reset state) to PSJk is found. The goal of state differentiation is to find an in-

put sequence pJD1 , p1D2. . ., p]Dr which propagates the effect of the fault on the 

next state lines of the excitation state clock cycle to the primary outputs of the 

rth differentiation clock cycle. The primary input sequence pjD1 , p1D2. . ., Pi' is 

the differentiation sequence. The set of states traversed during state differentiation, 

PSD1, , PSD ., constitutes the differentiation path. The test sequence is 

obtained by concatenating the justification sequence, the excitation vector, and the 

differentiation sequence. The state transition graph shown in Figure 4.4 is used to 

illustrate the test sequence. 
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algorithm is used. 

At first, fault simulation is used to create the true and faulty states (8?', Sr) 

with the combinational excitation vector. By employing cube intersection on the 

ON and OFF sets of each primary output, we try to find an input vector which 

produces a different output on the corresponding primary output, beginning from 

the true and faulty states separately. Such an input vector constitutes a single-

vector differentiation sequence. If a single-vector differentiation sequence cannot be 

found, all the fan-out states of the true and faulty states are found via repeated cube 

intersection. This is performed by finding an input vector that produces a different 

output on at least one next state line for the true and faulty states with the ON/OFF 

sets of each next state line. If the input vector is found, a new pair of true and faulty 

states (Si', Si') are obtained. For the new true and faulty states, a single-vector 

differentiation sequence is sought again. If found, a two-vector differentiation sequence 

is constructed. Otherwise, a pair of states fanning out from some fan-out state pair 

is picked and differentiation between this pair is attempted. The process continues 

until a differentiation sequence is found or there does not exist any differentiation 

sequence for ST and Sr. Once the differentiation sequence is found, the entire test 

sequence is fault simulated to check if the fault can be detected. 

As with state justification, in the general case, state differentiation is attempted 

between disjoint groups of states (cube states) rather than a minterm state pair. This 

means that some bits in the true and faulty states are unknown. The existence of 

a differentiation sequence between two groups of states means that if any state A 

from the true group is chosen, along with a corresponding state A' from the faulty 

group, then the differentiation sequence will be able to differentiate between the 

state A and A'. Since this is a strong requirement, it is often impossible to find a 



38 

differentiation sequence between the state groups [11]. This does not means that a 

test for the fault does not exist. In order to find a test, usually it is necessary to set' 

some unspecified bits in the primary inputs or the present states of the justification 

sequence and excitation vector to either 0 or 1. A simple method can be applied where 

the excitation state is separated into a group of minterm states, and state justification 

and differentiation are performed on the minterm states. The disadvantage of this 

method is the long running time. 

A novel and efficient backward deterministic method is developed in this thesis to 

solve this problem. After the combinational excitation state is found to propagate 

the fault to the next state lines with as many don't care entries as possible and is 

justified successfully, the backward deterministic method for state differentiation is 

used. When we search forward to perform state differentiation, if some unspecified 

bits in the present states and the primary inputs of the whole sequence are needed to 

be set to either 0 or 1, the backward deterministic method is used to determine the 

logic values of these unspecified bits and justify the new specific states. 

Cube intersection on the ON and OFF sets of the primary outputs or the next 

state lines is used if some unspecified bits are to be set to some specific logic values 

1 or 0. The fault can then be propagated to the primary outputs or the next state 

lines. If this setting causes conflict in the unspecified bits between the true and faulty 

states, the differentiation sequence doesn't exist. Otherwise, when the unspecified 

bits are on the primary inputs, we just set them to the required values. When the 

unspecified bits are on the present state lines, we check if the present state is justified 

from the next state of the last clock cycle. If the justification step needs to set some 

unspecified bits in the present state lines of the last clock cycle to specific logic value 

1 or 0, the same process is repeated on the last clock cycle. The new method will be 
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discussed in detail in Section 7.2. 

4.2.5 Fault Simulation 

The quality of a test is measured or quantified by means of fault simulation. When 

a potential test sequence for a fault in sequential circuits is found, we fault simulate 

the sequence to check if it detects this fault and other faults. The sequence is first fault 

simulated by applying it to circuit models which have been altered slightly to imitate 

the effects of faults. If the circuit output response, as determined by simulation, 

differs from the response of the circuit model without the fault, then the fault is 

detectable by the sequence. After the process has been performed for a sufficient 

number of faults, an estimate 

T = (no. of faults detected)/(no. of faults simulated) 

is obtained which reflects the quality of the test sequence. 

The fault simulation serves other purposes besides evaluating the test sequence 

[24]; in this thesis it: 

• confirms detection of a fault for which an automatic test pattern generator 

(ATPG) claims that a successful test was found. 

• computes fault coverage for a given test sequence. 

Fault simulation is an important step in any ATPG system for both combinational 

and sequential circuits. Up to now, some efficient fault simulation algorithms have 

been developed. In general, there are three kinds of fault simulation methods, i.e., 

parallel fault simulation, deductive fault simulation, and concurrent simulation. In 
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sequential circuits, the fault appears in every clock cycle. Hence, the single fault 

model becomes a multi-fault model. 

In our system, we use a simple event-driven fault simulation. The algorithm of 

fault simulation is shown in Figure 4.5. 

4.2.6 Determination of Redundant Faults 

The difficulty in test generation for sequential circuits lies not only in testing 

difficult but testable faults, but also in the determination of redundant faults. Low 

fault coverage on certain circuits does not mean that a test generation system for 

sequential circuits is not suitable for the sequential circuit if we can show that the 

detected faults are close to the maximum possible number of detectable faults. In 

general, the determination of a redundant fault may need an astronomical amount 

of CPU time, because we should exhaust all the search space before the fault is 

considered as redundant. 

There are two kinds of redundant faults in sequential circuits - combinational 

redundant and sequential redundant. For combinational redundant faults, it is rela-

tively easy to detect them by using test generation for combinational circuits. The 

sequential redundant faults can be divided into two kinds: unjustifiable faults and 

undifferentiable faults [11]. If none of the excitation states are justifiable for a fault, 

the fault is said to be unjustifiably redundant. If there is at least a justifiable exci-

tation state, but none of the excitation states have a differentiation sequence for a 

fault, the fault is said to be undifferentiably redundant. 

The sequentially redundant faults can be found using theorem 1 in [21]. The 

theorem states that if all excitation states are not reachable from the reset state in 

the fault-free machine, the fault is sequentially redundant. We use the theorem for the 
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Input A sequence of test vectors and a fault under test. 
Output : The fault is detected by the sequence or not. 

Procedure Multi_fault_simulator(a fault under test) { 
for each clock cycle of test vector { 

deduct signals values at the unfaulted circuit; 
deduct signals values at the faulted circuit; 
for each primary output { 

if the unfaulted value is different from the faulted value 
return that the fault is detected by the test sequence; 

} 
} 
return that the fault can not be detected by the test sequence; 

} 

Figure 4.5. Fault simulation algorithm. 
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detection of sequentially-redundant faults as in [11]. We generate all combinational 

excitation states for a fault. If all excitation states are unjustifiable, the fault under 

test is redundant. A state is said to be unjustifiable if the number of fan-in cubes 

determined in state justification is zero or if all the fan-in states of the state are 

unjustifiable. 

4.2.7 An Efficient Test Generation Algorithm for Sequential Circuits 

The flow chart of the sequential circuit test generation algorithm based on the 

ideas presented above is given in Figures 4.6. As a preprocess, the algorithm starts 

with the extraction of the ON/OFF sets of the primary outputs and next state lines. 

For each fault under test, the sequential circuit test generation algorithm is given in 

Figures 4.7. The algorithm consists of: 

Step 1. If the fault site is a node in the output cones of some primary outputs, the 

corresponding output cones of these primary outputs are extracted, and go to step 2. 

Otherwise, go to step 4. 

Step 2. The transitive closure based test generation algorithm for pseudo-

combinational circuits is used to find a (new) combinational excitation vector. If 

the combinational excitation vector has the present state part disjointed from the 

present state part of all the previously generated test vectors, go to step 3 to do state 

justification. If no such a new vector is found, the fault can't be propagated to the 

primary outputs directly, and go to step 4. 

Step 3. State justification is used to find if the excitation state is reachable from 

the reset state. If the justification sequence is not found, return to step 2. If found, 

go forward to step 7. 
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Figure 4.6. The flow chart of the test generation algorithm for sequential circuits. 
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Input : The sequential circuit and a faults to be tested. 
Output : A test sequence for the fault if found. 

Procedure Sequential_test_generator(a fault under test) { 
/* try to propagate the fault to primary outputs / 
if the fault site is a node in output cones of some primary outputs { 

extract the output cones of these primary outputs; 
while a new combinational excitation vector is found { 

if justification sequence is found { 
/ the fault is detected by the test sequence / 
use the test sequence to fault simulate the fault; 
if fault simulation succeeds 

return the test sequence; 

} 
} 

} 

} 
/ try to propagate the fault to next state lines as it can't be 

propagated to primary outputs directly *1 
if the fault site is a node in next state cones of some next state lines 

extract the next state cones of these next state lines; 
while a new combinational excitation vector is found { 

if justification sequence is found { 
if differentiation sequence is found { 
/ the fault is detected by the test sequence / 
use the test sequence to fault simulate the fault; 
if fault simulation succeeds 

return the test sequence; 

} 
} 
redundant..Sault_detectQ; 
if the fault is redundant 

return the fault is redundant; 
else return the fault is aborted; 

} 
} 

Figure 4.7. The algorithm of sequential circuit test generation. 

{ 
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Step 4. If the fault site is a node in the next state cones of some next state lines, 

the corresponding next state cones of these next state lines are extracted, and go to 

step 5. Otherwise, the fault is redundant and exit. 

Step 5. The test generation algorithm for pseudo-combinational circuits is used to 

find a (new) combinational excitation vector. If the combinational excitation vector 

has the present state part disjointed from the present state part of all the previously 

generated test vectors, go to step 6 to do state justification and state differentiation. 

If no such a new vector is found, exit without a test. 

Step 6. State justification is used to determine if the excitation state is reachable 

from the reset state. If a justification sequence is not found, return to step 5. If 

found, state differentiation is performed to propagate the effect of the fault to the 

primary outputs. If a differentiation sequence is found, go to step 7. Otherwise, go 

back to step 5. 

Step 7. Fault simulate the test sequence. If it detects the fault, return with the 

test sequence. Otherwise, go back to the previous step. 

When a test sequence is found, the test sequence is used in simulating all undecided 

faults in the fault list. All the faults that can be detected by the test sequence are 

removed from the fault list. 

4.3 Summary 

Observations that initiated our research work in test generation for sequential 

circuits have been introduced in this chapter. A new approach which extends the 

transitive closure algorithm to test generation for sequential circuits has been de-

veloped. The efficiency of our method stems largely from the integration of several 

new algorithms. Our approach involves extracting the ON/OFF sets of the primary 
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outputs and next state lines by adopting a new backward assignment method. The 

transitive closure algorithm hs been extended to perform fault excitation by dis-

abling all flip-flops in the sequential circuits. A novel backward deterministic method 

for state differentiation is developed to make our approach more efficient. 



CHAPTER 5 

COVER EXTRACTION 

In state justification, we find a justification sequence from the reset state to the 

excitation state that propagates a fault to the outputs of the pseudo-combinational 

circuit. In state differentiation, we also need to find a differentiation sequence from 

the excitation state to the final state that propagates the effect of the fault to the 

primary outputs of the sequential circuit. In order to perform these two operations, 

we adopt cube intersections on the complete or partial ON/OFF sets of the primary 

outputs and next state lines. This process of extracting the ON/OFF sets of the 

primary outputs and next state lines is called cover extraction. In this chapter, we 

present in detail a new and efficient backward assignment method to perform cover 

extraction. This method has been successfully used by Yousif [30] to perform test 

generation for combinational circuits. 

First, we present the backward assignment rules (referred to as B-rules). Then 

consistency and algorithm constraints are presented. Finally the new backward as-

signment procedure is presented. An example is used to illustrate the idea of the 

backward assignment algorithm. 

5.1 Backward Assignment Rules (B-rules) 

The objective of the B-rules is to propagate the assignment of a logic value at the 

output of a circuit to each node in the corresponding circuit cone during the backward 
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assignment procedure. Figure 5.1 defines the B-rules used in the algorithm. A logic 

value is supposed to exist on a gate's output node, and the logic value assignments 

are carried out at the gate's input nodes. 
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Figure 5.1. The backward assignment rules (B-rules). 
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For example, consider the 3-input AND gate shown in Figure 5.1. First, we want 

to find the OFF set of the output. From the K-map, we know that if any input of the 

AND gate is 0, the output is 0. So when the output is set to 0, one of the inputs must 

be 0. Three groups of inputs for the AND gate are obtained: (0, X, X), (X, 0, X), and 
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(X, X, 0). Similarly, we can obtain the ON set of the 3-input AND gate, as shown in 

Figure 5.1, and one group of inputs is obtained: (1, 1, 1). If the output of the AND 

gate is X (don't care), all inputs are don't care. In this case, we just skip the output 

and leave the inputs to keep the original values. 

5.2 Consistency and Algorithm Constraints 

We use this backward assignment method to propagate logic values at the primary 

outputs and next state lines to the inputs of the circuit. As some nodes may have 

multi-fanout nodes, these nodes may be assigned logic values more than once by their 

multi-fanout nodes. Since different paths are not equal in length, some primary inputs 

or nodes may be assigned earlier than others. Therefore, it is necessary to check at 

each level of assignments for the primary inputs or nodes that have been assigned 

new values. 

The consistency constraint is proposed to ensure that the assignments are correct, 

as shown in Figure 5.2. If these logic values are in conflict with each other, for 

example, one fanout requires the node to be logic value 0, and another fanout requires 

the node to be logic value 1, the assignment should be discarded. If logic value v1 

assigned by one fanout implies logic value v2 assigned by another fanout, we should 

choose the consistent logic value v1. 

0 

(a) 

0 1 

1  conflict   

x   x 

(b) (C) 

Figure 5.2. The consistency constraint. 

0 

1 
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The combination of the inputs may exceed one, for example, in the OFF set of the 

3-input AND gate, three groups of inputs are obtained. In this case, every time, one 

group of assignments is used as the outputs of backward stage gates. Therefore, with 

the increase of the circuit's depth, the number of assignments for each node per level 

may increase dramatically. We use logic minimization to compress the assignments 

after the number of assignments reach a limit. This method assures that we obtain 

complete ON/OFF sets. Also it makes the storage of ON/OFF sets memory efficient. 

5.3 The Backward Assignment Procedure 

A high level description of the cover extraction algorithm is shown in Figure 5.3. 

For each output, the 13-rules described earlier are used to extract the ON/OFF sets 

of the primary outputs and next state lines. 

Input : A sequential circuit's netlist. 
Output : The ON/OFF sets of the primary outputs and next state lines. 

Procedure cover-extract( ) { 
for each primary output and next state line { 

arrange the primary output or next state line in the list of 
node assignments; 

assign logic value 0 or 1 to it; 
while the list of node assignments is not empty { 

for each node in the list of node assignments { 
execute the backward-assignment function; 

} 
refresh the list of node assignments; 

} 
} 
return the ON/OFF sets of the primary outputs and next state lines; 

} 

Figure 5.3. Cover extraction algorithm. 
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To illustrate the idea of cover extraction, we use a simple sequential circuit s27 

from the ISCAS'89 benchmarks shown in Figure 2.5. The algorithm cover-extract 

firstselects an output node and assigns it logic value 0 or 1. Assume that cover-extract 

arbitrarily selects the next state line Gil and extracts the ON set (assign logic value 

1). We need only consider the next state cone of Gil, as shown in Figure 2.7. Node 

Gil now represents the only currently assigned node in the node list of the assignment 

and is assigned to logic value 1. According to the B-rules, both inputs of gate Gil are 

assigned logic value 0. At this point, a new level of assignment list includes two nodes 

G9 and G5. As node G5 is an input, its value is left unchanged and removed from the 

node list. From node G9, the algorithm assigns values (1, X) and (X, 1) to nodes G15 

and G16. Nodes G15 and G16 are the two elements in the node list at this level of 

assignment. Starting at node G1S then node G16, cover-extract assigns logic values 

to nodes Gl2, G8 and G3. As node G8 is assigned twice, the consistency constraint 

is used. First, the first assignment (1, X) for nodes G15 and Gl6 is considered. Node 

G15 requires nodes G12 and G8 to have the assignments (1, X) and (X, 1). As node 

G16 has logic value X, we can omit it and nodes G3 and G8 keep the logic value X. 

When these assignments are combined, nodes G12, G8 and G3 will have two groups 

of assignments (1, X - X, X) and (X, 1 - X, X). Here, 1 - X means that node G15 

requires node G8 to be 1 and node G16 requires node G8 to be X, etc. According to 

the consistency constraint, we should set node G8 to logic value 1. The assignments 

for nodes G12, G8, and G3 are (1, X, X) and (X, 1, X). Similarly, from the second 

assignment (X, 1) for nodes G15 and G16, the assignments for nodes Gl2, G8 and 

G3 are (X, 1, X) and (X, X, 1). So there are four assignments for node G12, G8 

and G3: (l,X,X), (X,1,X), (X,l,X), and (X,X,1). It is obvious that the second 

and the third assignments are the same. After logic minimization, only three groups 
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of assignments (1, X, X), (X, 1, X), and (X, X, 1) remains for nodes G12, G8 and 

G3. The process repeats until all values at the intermediate nodes are propagated to 

the inputs by using the B-rules. The final ON sets of Gil are (X, 0, X, X, 0, X, 0), 

(O,X,X,X,0,l,X), and (X,X,X,l,0,X,X) for the inputs GO, Gi, G2, G3, G5, G6 

and G7. Figure 5.4 shows how the backward assignment procedure assigns logic 

values to the circuit nodes. 

The obtained ON/OFF sets of the primary outputs and next state lines may 

be redundant. So after obtaining the ON/OFF sets, logic minimization is used to 

minimize the ON/OFF sets. The ON/OFF sets are represented as bit vectors which 

are similar to those used in ESPRESSO [4]. 

504 Summary 

In this chapter, the backward assignment rules (B-rules) are presented. They 

propagate the assignment of logic value at the output of a pseudo-combinational 

circuit to each node in the corresponding circuit cone. The consistency constraint is 

proposed to ensure that the assignments are correct. Logic minimization is used to 

compress the ON/OFF sets. 
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Figure 5.4. The next state cone of Gil in circuit S27 shows how the backward 
assignment procedure assigns logic values to the circuit nodes. 



CHAPTER 6 

PSEUDO-COMBINATIONAL CIRCUIT TEST 
GENERATION 

To generate a test sequence for a fault in sequential circuits, we first generate 

a combinational test vector that propagates the effect of the fault to the primary 

outputs or the next state lines. In this chapter, we extract a formula that defines the 

structure of the related circuit and then use a transitive closure algorithm to satisfy 

the formula. 

6.1 Circuit Representation 

When all flip-flops in a sequential circuit are disabled, the sequential circuit be-

comes a pseudo-combinational circuit. The digital combinational circuit can be rep-

resented as a set of unary, binary, ternary, and M-ary (M> 3) ±elations. 

6.1.1 Boolean Difference 

In the 1960s and early 1970s, an algebraic or symbolic manipulation method called 

Boolean difference, differing from structural methods, appeared. This method did not 

achieve the popularity of the structural methods because of its complexity of compu-

tation. Since the test pattern generation using Boolean satisfiability was introduced 

in [19], this method has received more and more attention. First, the method of 

Boolean difference is described briefly. 
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Given a function f(x) f(xi, x2, ..., x, .., x) which describes the behavior of a 

combinational circuit, where x, ..., x are the inputs of the circuit, we define the 

Boolean difference of f(x) with respect to its ith input variable as 

Then 

df 
•Xi =  f(xi, ...) ..., x7) ED f(x1, ...,, ..., x,) 

= 

X -1. dx T 

(6.1) 

1 (6.2) 

is the necessary and sufficient conditions of fault xi stuck at a detected by vector 

T, where a = 1 or 0, X' = Ti, and X = X. Equation 6.2 implies that the fault 

under test is first excited to the logic value opposite to the stuck-at value, and then 

the change of the logic value at the fault location can be observed at the primary 

outputs. In short, test generation can be viewed as a search of an n-dimensional 

0-1 space defined by the variables x (1 ≤ i ≤ n) for points that satisfy the above 

equation. 

6.1.2 Transferring Circuit into CNF 

At first, the circuit is represented as the conjunctive normal form, i.e., CNF (also 

known as product of sums). As an example, a two input AND gate shown in Figure 

6.1 is used to illustrate how to get CNF formula from a circuit. 

The formula of the AND gate is 

z=x.Y (6.3) 
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Figure 6.1. The CNF formulae of basic gates. 
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and it is logically equivalent to the following CNF formula: 

CNF =(Z+X).(+Y).(X+Y+Z) (6.4) 

It is obvious that if and only if the values of the variables are consistent with the 

truth table of the AND gate, Equation 6.4 equals to 1. 

Figure 6.1 illustrates the CNF formulae for the basic gates (only one or two 

inputs). In the CNF formula, one sum is called a clause and each term in a clause 

is called a variable. Clauses with one, two, or three variables are unary, binary, or 

ternary clauses, respectively. It is convenient to extend the basic CNF formulae in 

Figure 6.1 to gates which have more than two inputs. For example, the CNF formula 

for a NAND gate with three inputs X, Y, and W is shown in Figure 6.2. 

x 

Y 

w 

Figure 6.2. The CNF formula of 3-input NAND gate. 

Considering the circuit example Si shown in Figure 6.3. By extracting each 

formula for each gate in the circuit using the above method, the CNF formula for the 

output of the circuit is: 

CNF = 

(6.5) 

We will derive a test for the fault D s-a-O. The faulted circuit is produced by 
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\(D+A)'>'. 
1(D+). 

 )(D+A+B 

Figure 6.3. Formula extraction of a simple circuit Si. 

copying the original circuit, renaming all related variables, and disconnecting the 

faulted site (all faulted signals are labeled with "), as shown in Figure 6.4. Because 

of the fault D s-a-O, the signal D. is always at logic value 0 no matter what values 

are at the inputs A and B. We disjoint the signal D to two signals: unfaulted D and 

faulted D'. In order to detect the fault, D' has logic value of s-a-0 and D must have 

logic value 1. 

Figure 6.4. Formula extraction of the simple circuit Si with a fault. 

As the unfaulted and faulted circuits have the same behavior except those nodes 

that are affected by the fault, only the nodes that lies on a path between the fault site 

and a circuit output need to be renamed. The CNF formula for the faulted circuit is 
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(6.6) 

It is not necessary to include the OR gate D in the CNF formula for the faulted 

circuit because of the implied discontinuity at the fault site. 

According to Boolean difference, in order to detect the fault at D, the unfaulted 

and faulted circuits are put together and an XOR gate is added to their outputs. The 

final circuit is shown in Figure 6.5. BD is the output of the XOR gate. For the fault 

D s-a-O to be covered, the output of the XOR gate should be 1. If the CNF formula 

equals to 1, a solution is found. Otherwise, no test exists. The formula of the final 

circuit is: 

(6.7) 

The problem of combinational circuit test generation can now be formulated as 

one of finding a consistent signal logic assignment which satisfies the above formula. 

The transitive closure method which is used to solve the problem will be presented 

in the next subsection. 

6.1.3 Transitive Closure Method 

On the basis of the CNF formula of the circuit, the transitive closure of the circuit 

is obtained in this section. As an example, consider the AND gate shown in Figure 

6.1.. Its CNF formula is given in Equation 6.4. We can transform the relationship 
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BD 

Figure 6.5. The XOR of the unfaulted and faulted circuits should be 1. 

z 

Figure 6.6. Implication graph of an AND gate. 
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Figure 6.7. Implication graph of the example circuit Si. 

into an implication graph, as shown in Figure 6.6. Where -+ donates implication. 

-+ Y means that if X = 0, Z = 0, etc. This is consistent with the truth table of 

the AND gate. When X = 0, or Y = 0, Z must be zero. When Z = 1, X and Y 

must be 1. 

In fact, the implication graph can be obtained from unary and binary clauses. For 

example, there are two binary clauses (7 + X) and (7r + Y) in the AND gate. When 

the formula is satisfied, each clause should be satisfied (equal to 1). For instance, to 

meet the clause ( + X), when X = 0, Z should be 0; when Z = 1, X should be 1. 

From this clause, two implications are obtained: X? + Z, and Z -+ X. The ternary 

or M-ary clauses can not be transfered to the implication form. But if we know or 

assume the logic values of one or more variables in these clauses, these clauses become 

binary clauses. 

The implication graph and transitive closure of the simple circuit Si with the fault 

D s-a-0 in Figure 6.3 are shown in Figure 6.7 and Table 6.1. In Table 6.1, '1' 

indicates that there is an edge and '0' indicates no edge between two signal nodes. 

For example, there is a '1' at the row of A and the column of D, so there is an edge 

from A to D. 

As we discussed above, the implication graph can only be used to express unary and 

binary clauses, so is transitive closure. But besides these unary and binary clauses, 
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Table 6.1. Transitive closure of the simple circuit Si. 

AABBCCDDEEFFD'D'F'F'BDBD 
A 000 
000 

B 000 
R 000 
C 000 
•7 000 
D 000 
D 010 
E 000 
o 0 0 

F 000 
7' 000 
D' 0 0 0 
/Y 0 0 0 
F 0 0 0 
Y , 0 0. 0 

BD000 
B75 0 0 0 

00010 0000 0000 0 0 
0000000000000 0 0 
0001000000000 0 0 
0000000000000 0 0 
00000011000 10 0 0 
0000010000000 0 0 
0000000000000 0 0 
1000000100000 0 0 
0010000000000 0 0 
0100000100010 0 0 
0000000000000 0 0 
0011010000000 0 0 
0000000000110 0 0 
0000000000010 0 0 
0000000000000 0 0 
0010010001110 0 0 
0000000000000 0 0 
0000000000000 1 0 

Table 6.2. SAT representation of ternary for the simple circuit Si. 

ABCDEFD'F'BD 
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there are still some ternary and M-ary (M> 3) clauses in the CNF of circuit. We use 

the satisfiability (SAT) form to express and save these ternary and M-ary (M> 3), 

as shown in Table 6.2. Where, '1' indicates that this is a positive variable and '-1' 

negative variable. For example, the first row can be expressed as (A + B + ). 

Many algorithms and approaches [13, 14, 16, 15] have been developed to solve the 

satisflability problems. 

With the combination of Tables 6.1 and 6.2, we can describe the circuit Si with 

the fault D s-a-U completely. 

6.2 Efficient Transitive Closure Computation 

Efficient transitive closure computation is introduced in this section. Signal de-

pendencies are derived, and several methods are used to prune the search tree. 

6.2.1 Signal Dependencies 

Two kinds of signal dependencies are used: fixation and contradiction. If a path 

x -4 7 is found in the implication graph, it implies that x should be 0. Similarly, if 

a path 7 -+ x is found, x should be 1. If both paths a -+ T and are present 

in the implication graph at the same time, the contradiction exists and no solution 

can be found. By using this method, we can find if a variable is set to a value or 

not. So instead of obtaining the transitive closure of the implication graph, we just 

try to determine if there is a path between a variable and its complement. Here 

we use a breadth-first search algorithm to find a path between a variable x and its 

complement T. The algorithm of signal dependency computation is quite simple, as 

shown in Figure 6.8. 

If a contradiction occurs in the signal dependence, it means that some variable(s) 
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Input : The directed graph G = (V, B) and the assignment array of signals. 
Output: The signal dependencies of the graph. 

Procedure transitive_closure() { 
for each variable v and its complement V 

if a path from v to is found { 
if v is assigned to 1 { 

1* contradiction / 
return no solution; 

} 

} 
else v is assigned to 0; 

} 
if a path from J to v is found { 

if v is assigned to 0 { 
1* contradiction / 
return no solution; 

} 
} 
return the signal dependencies of the implication graph; 

} 
else v is assigned to 1; 

{ 

Figure 6.8. The algorithm of signal dependency computation. 
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must be simultaneously assigned to logic values 0 and 1. In this case, there is no 

solution for this variable assignment. If signal values, which have been determined, 

satisfy the Boolean equation, the solution is found. Otherwise, a partial set of sig-

nal values determined may reduce some of the ternary relations to binary relations. 

These new binary relations are included in the implication graph and new signal de-

pendencies should be determined. The process continues until no ternary or M-ary 

relations reduces to binary relations. 

6.2.2 Pruning the Search Tree 

According to our experience, the more constraints the variables have, the smaller 

the search tree. This is because when some variables are assigned to logic value 0 

or 1, their relations with other variables may help us to determine other unassigned 

variables' logic values easily. 

If a fault can propagate to one or more outputs of the circuit, there must be at 

least one sensitized path (similar to D algorithm) from the fault site to the output. 

In this path, the unfaulted and faulted values must be different. Suppose that if we 

add an XOR gate whose inputs are the unfaulted and faulted values, the output of 

the XOR gate must be one. The concept is similar to the active line variables used by 

others [19]. Let X be the unfaulted value, X' the faulted value, and EX the output 

of XOR gate whose inputs are X and X', we obtain these two clauses in ternary 

relation (TX + X + X')• (TX + X + Xi). If this path is active, that means EX = 1, 

X and X' must be different. 

If a sensitized variable A has a single output, the clause (EXA + EXx) is added, 

which means that if A is the sensitized variable, X is sensitized. Also, if the sensitized 

variable A have two outputs X and Y, then the clause (EXA + EXx + EXy) should 
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B1DD + 

(a) 

Figure 6.9. (a). If A is sensitized, X must be sensitized: (EXA + EXx ). (b). If A is 
sensitized, either X or Y must be sensitized: (EXA + EX + EXy). 

be added. That means that if the variable A is sensitized, either the variable X or Y 

must be sensitized. Figure 6.9 shows two examples of these clauses. 

On the other hand, some vertices in the directed graph may belong to a strongly 

connected component. So these vertices can be considered as one vertex. When the 

value of a vertex is obtained, the other vertices in this strongly connected component 

can be easily determined. 

Because of the duality of the implication graph, if some vertices belong to a strongly 

connected component, the corresponding complemented vertices must belong to an-

other strongly connected component. For example, in the circuit Si, there is a path 

from C to and a path from T to C. Vertices C and T belong to a strongly con-

nected component, and their complemented vertices and E must belong to another 

strongly connected component. After transforming all implication relations with ver-

tices C and ?17 to vertices and E, the vertices C and can be deleted from the 

implication graph. By finding strongly connected components, the implication graph 

is condensed. The algorithm of finding strongly connected components in a directed 

graph can be found in [3]. 

Consider the simple circuit Si with the fault D s-a-U shown in Figure 6.4. In 

order to excite the fault, the logic values of D and D' must be different. The faulted 

value D' is 0, so the unfaulted value D should be 1. A clause (D) is added to the 
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formula in Equation 6.7. D has one fanout F and an XOR gate has been added to 

the unfaulted line F and faulted line F. After considering the sensitized path, the 

CNF formula is 

(6.8) 

From the clause (D1), we know that, in order to meet the CNF formula, D' must 

be set to 0. We can use the logic value of D' to simplify the CNF formula. As the 

clause ( + + ) is satisfied due to the logic value of D', we omit the clause. The 

clause (F'+ D') becomes (F'). From the new clause (F'), we know F must be set to 

1. We use the logic value of F again to simplify the formula. The process continues 

until the formula can not be simplified any further. The final simplified CNF formula 

is: 

(6.9) 

There are no ternary clauses in the formula. The corresponding transitive closure 

is shown in Table 6.3. 

6.3 Combinational Circuit Test Generation Algorithm 

The test generation algorithm for combinational circuits based on the ideas pre-

sented above is as follows. 

1. Derive the CNF representation of the combinational circuit with the fault. The 
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Table 6.3. Condensed transitive closure of the simple circuit Si. 

AABBDDEEFFD'D'F'F'BDBD 
A 00000000000000 0 0 
00100000000000 0 0 

B 00000000000 000 0 0 
10000000000000 0 0 

D 00000000000000 0 0 
TL 00001000000000 0 0 
E 00000000000000 0 0 
00000010000000 0 0 

F 00000000010000 0 0 
i 00000000000000 0 0 
D' 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
100000000000000 0 0 
F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 000000100000 10 0 0 
BD0000 0000000000 0 0 
To 0000000000000 1 0 
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unary and binary clauses are saved in the implication graph, and ternary and M-ary 

(M> 3) clauses are saved in the satisfiability form (SAT form). 

2. Determine the transitive closure of the implication graph by using signal depen-

dencies. If contradiction is found, the fault is combinational redundant. If variable 

values satisfy the Boolean equation, a solution is found without backtracking. Oth-

erwise, only a partial set of variables are determined. These determined variables are 

used to reduce some ternary and M-ary (M> 3) clauses into binary clauses. 

3. Find strongly connected components in the implication graph. A condensed 

implication graph is obtained. 

4. Make a heuristic decision on the unassigned variables. Here we choose a decisive 

variable which is related to most ternary clauses. 

5. If the pre-assigned backtrack limit is reached, we stop picking new variables, 

and go back to the previous decisive variables and assign the next logic value combi-

nation to them. Otherwise we pick the new variable determined in step 4 and assign 

the variable a value. The assignment may reduce some ternary relations to binary 

relations. These new binary relations are included into the implication graph. 

6. If the variable assignments satisfy the Boolean equation, return the test vector. 

If a contradiction does not occur and the assignments satisfy a partial set of Boolean 

equation, we continue to do step 4. If a contradiction occurs, it means that the as-

signment does not satisfy the Boolean equation. Then we assign the decisive variable 

to the next value and repeat step 6. If there are no decisive variables left, we have 

implicitly exhausted the search space and no test vector is found. 

The flow chart of the algorithm is shown in Figure 6.10. 

For example, consider the transitive closure shown in Table 6.3. Two variables 
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Figure 6.10. The flow chart of the combinational test generation algorithm. 
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A and B are unknown and one clause (A + B) is needed to be satisfied. Suppose 

that we choose A first, and set it to logic value 0. A path from A to q is added to 

the transitive closure. We derive new signal dependencies and find a path from to 

B. So B should be at logic value 1 and the clause (A + .8) is satisfied. As C and 

belong to a strongly connected component, and E has logic value 1, 80 C should 

be logic value 0. The whole CNF formula is satisfied, and .we find that the vector 

(0, 1,0) for A, B, and C is an excitation vector for the fault D s-a-0. 

6.4 Summary 

The transitive closure method for generating test patterns for single stuck-at faults 

in combinational circuits is introduced in this chapter. It extracts a CNF formula from 

the model of circuit incorporating necessary conditions for fault activation and path 

sensitization, and then determines signal values which satisfy the formula. Several. 

methods are used to prune the search tree. Instead of computing the entire transitive 

closure, we only concentrate on determining the signal dependencies of each variable 

and its complement. 



CHAPTER 7 

STATE JUSTIFICATION AND STATE 
DIFFERENTIATION 

In three-phase ATPG, cover extraction is performed as a preprocess. The ON/OFF 

set information is stored in the bit's form. Test generation for sequential circuits is 

divided into three phases: combinational excitation vector generation, state justi-

fication, and state differentiation. In. Chapter 5 and 6, we have described cover 

extraction and the pseudo-combinational test generation algorithm used in our sys-

tem. Here we are going to describe state justification and state differentiation in 

detail. 

7.1 State Justification 

After an excitation state is found to propagate the fault to the primary outputs or 

the next state lines, state justification attempts to find a justification sequence from 

the reset state to the excitation state E0. If the excitation state covers the reset state, 

the fault can be excited from the reset state, and state justification is not needed. 

Otherwise, state justification is used to justify the excitation state. 

At first, the state justification algorithm tries to find a single-vector justification 

sequence from the reset state to the excitation state. The entire fan-in states B1 can 

be obtained by cube intersections. The cubes of fan-in states are chosen according to 

the excitation state. If a present state line in the excitation state has logic value 1(0), 

the ON set (OFF set) of the corresponding next state line is picked. If a present state 
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line has logic value X, the next state line is ignored and nothing is picked. The cube 

intersection of the ON and OFF sets of the next state lines gives the fan-in states 

of the excitation state E0. The ON/OFF sets of the next state lines include both 

primary input and present state parts. The present state vectors are used to check if 

they cover the reset state and to get their fan-in states if needed. The primary input 

vectors are used to supply test sequence if the fault is detected. If the present states 

cover the reset state, the single-vector justification sequence is obtained. 

If the single-vector state justification fails, we try to find a two-vector justification 

sequence. This is performed by attempting to justify the fan-in states E1, via a 

single vector justification sequence. If the state justification algorithm succeeds, a 

two-vector justification sequence is found. Otherwise, a three-vector justification 

sequence is attempted. The process is repeated for the fan-in states of the state 

currently justified. 

When we obtain the fan-in states, these states should be disjointed from the pre-

viously used states to prevent cycles. The state justification algorithm is shown in 

Figure 7.1. Figure 7.2 shows the algorithm of obtaining fan-in states of present 

state. 

Consider the fault G2 s-a-O in the circuit s27 shown in Figure 2.5. One of the 

excitation vectors is (X, X, 1, X, X, X, 1) for GO, Gi, G2, G3, G5, GG, and G7. So 

the corresponding excitation state is (X, X, 1) for G5, G6, and G7. The states of 

G5 and G6 are the logic value X, so we can ignore them. As line G7 is at logic 

value 1, we pick up the ON set of G13. The ON set of G13 is (X, l,O,X,X,X,X) 

and (X, X, 0, X, X, X, 1) for GO, Gi, G2, G3, G5, G6, and G7. From the first vector 

in the ON set, we know that when GI and G2 have logic values (1, 0), G13 has a 

logic value 1. In the next clock cycle, G7 would be logic value 1. As the reset state 
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Input : The excitation state State and ON/OFF sets of next state lines. 
Output : A justification sequence from reset to State if found; else 

return NOT-FOUND. 

Procedure Justify_st ate (State) { 
/* put the primary input part of State into P1 Stack */ 
push State into PT Stack; 
get_fanins(State, Fanins); 
for each fan-in state Fanin in Fanins { 

if Fanin covers the reset state { 
return the state justification sequence saved in PT Stack; 

} 
} 
for each fan-in state Fanin in Fanins { 

Justify_state(Fanin); 
if the justification sequence is found { 

return the state justification sequence; 

} 
} 
Pop State from P1 StackQ; 
return (NOT-FOUND); 

} 

Figure 7.1. State justification algorithm. 
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Input The present state State and ON/OFF sets of next state lines. 
Output : All fan-in states of State except those included in Exist-state 

(Used-state). 

Procedure get _fanins(State, Fanins) { 
first-mark = TRUE; 
for each present state line that is a 1 or 0 { 

if first-mark is TRUE { 
Fanins = ON or OFF set of corresponding next state line; 
first-mark = FALSE; 

} 
else 

Fanins = Fanins U (ON or OFF set of corresponding next state line) 

} 
/ do sharp produce to remove used cubes from Fanins / 
sharp-pro duct (Fanins, Exist-state); 
1* logic minimization / 
minimization (Fanins); 
add_fanins_to_exist(Fanins); 

} 

Figure 7.2. The algorithm of obtaining fan-in states of present state. 
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(0,0,0) implicates the states of G5, G6 and 07 (X, X, X) in the first vector of the 

ON set, the excitation state is reachable from the reset state. Table 7.1 gives the 

initial justification process. Where 0/1 means that 0 is the unfaulted value and 1 is 

the faulted value, etc. 

Table 7.1. Initial state justification process. 

primary inputs present states next states P0 

gates GO 01 02 G3 G5 06 G7 G1O Gil G13 G17 
justification vector X 1 0/0 X X X X X X 1/1 X 
excitation vector X X 1/0 X X X 1 X X 0/1 X 

As the sequential circuit starts from the reset state, we should set the initial states 

of G5, G6 and G7 to (0, 0, 0). After fault simulation, the justification sequence is a 

valid justification sequence. The final state justification is shown in Table 7.2. 

Table 7.2. Final state justification process. 

primary inputs present states next states P0 

gate GO Gi G2 03 G5 G6 07 010 Gil G13 Gi7 
justification vector X 1 0/0 X 0 0 0 X X 1/1 X 
excitation vector X X 1/0 X X X 1 X X 0/1 X 

72 State Differentiation 

In our algorithm, the flip-flops are disabled and the sequential circuits are converted 

into pseudo-combinational circuits. For pseudo-combinational circuits, faults can be 

divided into three kinds: 
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1) The fault site is a node in the output cones of the primary outputs, and a 

combinational excitation vector can be found for the fault. 

2) The fault site is not a node in any output cone, but is a node in the next state 

cones of the next state lines. 

3) The fault site is a node in the output cones of the primary outputs, but a 

combinational excitation vector which propagates the fault to the primary outputs 

can not be found. 

Consider the circuit shown in Figure 7.3. The fault C s - a - 0 can propagate 

to the primary output K and belongs to the first kind of fault. For the fault F - I 

s - a —0, as I is not a node in output cone of primary output K, the fault belongs to 

the second kind of fault. For the fault B .s - a—i, though B is a node in output cone of 

primary output K, the fault can not propagate to the primary output k directly. We 

should propagate the fault to the next state line I (the effect of the fault on I would 

propagate to the present state line J in the next clock cycle), and then propagate the 

effect of the fault on J to the primary output K. So the fault belongs to the third 

kind of fault. 

For the latter two kinds, we should propagate these faults to the next state lines 

first by using the transitive closure based test generation method for combinational 

circuits. If a combinational excitation state is found and justified, state differentiation 

is used to propagate the effects of these faults on the next state lines to the primary 

outputs. If the stats differentiation algorithm succeeds, a differentiation sequence 

is found. Otherwise, the combinational excitation vector can not constitute a test 

sequence for the sequential circuit. 

When the excitation vector propagates the fault to the next state lines, the true 
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state 8?' is the state in the fault-free circuit and the faulty state SF is the state in the 

faulty circuit. 8?' and S1' are guaranteed to differ in at least 1 bit. Since the effect 

of the fault has been propagated to Sf', we can assume that 8?' and Sf' are states in 

the fault-free circuit. The purpose of state differentiation is to find a differentiation 

sequence which causes 5?' and SF to have at least a different bit at the primary 

outputs. 

To make the program more time-efficient, we use a random differentiation sequence 

as a first step. Some random vectors are added to the sequence starting from the reset 

state to the excitation state, and the unspecified primary inputs in the whole sequence 

are assigned random logic values. The whole sequence is used to fault-simulate the 

fault. If the sequence can detect the fault, then, a test sequence is found. Otherwise, 

a deterministic state differentiation method is used. 

The idea of deterministic state differentiation is described as follows. According to 

the ON and OFF sets of every primary output, we search for a primary input vector 

which exists in both of the ON and OFF sets where the present state parts of the 

ON (or OFF) set and the OFF (or ON) set cover S?' and Sf' separately. If such a 

primary input vector is found, the primary input vector constructs a single-vector 

differentiation sequence. The algorithm of single-vector state differentiation is shown 

in Figure 7.4. Otherwise, multi-vector differentiation sequences should be searched. 

In multi-vector state differentiation, first, we try to find a two-vector differentiation 

sequence, then a three-vector sequence and so on. We attempt to propagate the true 

state 5?' and the faulty state Sf' to the next state lines by using a similar method 

as the one used in single-vector state differentiation. Instead of using the ON/OFF 

sets of the primary outputs in single-vector state differentiation, the ON/OFF sets 

of the next state lines are used. If the new true and faulty states are not found, quit 
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Input : The true and faulty states ST and S', and the ON/OFF sets of 
primary outputs. 

Output : A single-vector differentiation sequence if found; else 
return NOT-FOUND. 

Procedure Single...vector_state...differ(ST, SF) { 
for each primary output { 

1* find a primary input vector existed in the ON and OFF sets of 
the output */ 

PI-vector = find_PI(ON-set, OFF-set); 
if PI-vector is found { 

/* judge if ST implies the ON-set and 5F implies the OFF-set */ 
Judge_implication(ST, ON-set, Sr', OFF-set); 
if implication is TRUE { 

return (PI-vector); 

} 
/ judge if 5T implies the OFF-set and 5F implies the ON-set */ 
Judge_implication(ST, OFF-set, 8F, ON-set); 
if implication is TRUE { 

return (PI-vector); 

} 
} 
} 
return (NOT-FOUND); 

} 

Figure 7.4. The algorithm of single-vector state differentiation. 
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without solution. Otherwise, the single-vector state differentiation method is used to 

find single-vector differentiation sequence on the new true and faulty states (S', Sfl 

again. If found, a two-vector differentiation sequence is constructed. Otherwise, a 

three-vector differentiation sequence is attempted. The algorithm of multi-vector 

state differentiation is shown in Figure 7.5. 

When the new true and faulty states are found, these states are disjointed from the 

used true and faulty states. Thus, cycles during state differentiation are prevented. 

As test generation for combinational circuits produces an excitation vector with 

as many don't care entries in the primary inputs and present state lines as possible, 

if we just use the state differentiation algorithm described above, in most cases, we 

may not find a differentiation sequence even if it exists. This is because it is necessary 

to set the unspecified inputs in the test sequence to either 1 or 0. But some primary 

inputs and present states obtained by the transitive closure, state justification, and 

state differentiation may have some don't care entries. So in order to detect the fault, 

these don't care entries in the primary inputs and states have to be determined. 

In STEED [11], all possible assignments to the unspecified inputs have to be made 

before it can be concluded that a test for the fault under consideration does not exist. 

There exists 2' possible assignments for m unspecified inputs. Considering that each 

possible assignment may need to perform state justification, the real search space is 

much larger than 2. 

We propose a new backward deterministic method for state differentiation. This 

method can help in finding the differentiation sequence and determining the don't 

care entries. When we attempt to propagate the fault to a primary output or next 

state line, if some present state lines in the current clock cycle are don't care entries, 
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Input : The true and faulty states 5T and SF, and the ON/OFF sets of 
primary outputs and next state lines. 

Output : A multi-vector differentiation sequence if found; else 
return NOT-FOUND. 

Procedure Multi_state_differ(ST, SF) { 
/* find all (new) excitation vectors fanouts which propagate ST and SF 

to the next state lines */ 
get_next_differ_state(ST, 5F, fanouts); 
for each fanout i in fanouts{ 
/ * create new true and faulty states / 
create_new_states (fanout[i], S1, Sr); 
/ use single state differentiation method / 
Sing1e_vector_state_differ(S, Sr); 
if found return (FOUND); 

} 
for each new true and faulty states ST and Sr in fanout if 

Multi_state_differ(ST, Sr); 
if found return (FOUND); 

} 
return (NOT-FOUND); 

} 

Figure 7.5. The algorithm of multi-vector state differentiation. 
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while the same bits in the ON and OFF sets of the primary output or next state 

line are deterministic logic values, e.g., 0 or 1, we know that, in order to obtain a 

differentiation sequence, these present state lines must be set to the deterministic logic 

values. After we set these present state lines to the same deterministic logic values as 

in the ON and OFF sets, a new problem arises, i.e., whether the new specific present 

state is still justified from the previous clock cycles or not. 

To solve the problem, in the backward deterministic method, we present a revised 

state justification algorithm to justify the specific present state. Because we have 

found a justification sequence from the reset state to the excitation state, in the 

revised state justification algorithm, we just need to specify some don't care entries 

in the justification sequence. When the specific present state requires that some 

of the don't care entries of the present state lines of the last clock cycle be set to 

deterministic logic values, the revised state justification algorithm is used again to 

justify the modified present state of the last clock cycle. The process continues until 

no more states are needed to be justified. If the specific present state is reached from 

the previous clock cycles, the state differentiation process continues. Otherwise, a 

differentiation sequence cannot be found for the true and faulty states. 

When some don't care entries of the primary inputs are needed to be set to specific 

logic values, we just set them according to the ON/OFF sets and justification is not 

required. The backward deterministic algorithm for single-vector state differentiation 

is shown in Figure 7.6. 

When the backward deterministic algorithm for single-vector state differentiation 

fails to find a single-vector differentiation sequence, we use a backward deterministic 

algorithm for multi-vector state differentiation. The algorithm is similar to the multi-

vector state differentiation algorithm shown in Figure 7.5. The only two differences 
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Input : The true and faulty states 5T and SF, and the ON/OFF sets of 
primary outputs. 

Output : A single-vector differentiation sequence if found; else 
return NOT-FOUND. 

Procedure Single_vector_back_state_differ(ST, SF) { 
for each primary output { 
/ find a PT vector existed in the ON and OFF sets of the output / 
PI-vector = find_PI(ON-set, OFF-set); 
if PI-vector is found { 

/* get intersections: 5T ON-set, and SFfl OFF-set / 
intersections (ST, ON-set, 5F, OFF-set); 
if both intersections are not empty { 

1* judge if some bits in S" and 5F are X, while the same bits in 
both intersections are deterministic values / 

if some bits are needed to be set to specific values { 
/ set these bits to the specific values, and then justify the new 

deterministic state is reachable from the previous states / 
set_new_stateQ; 
new_state_justificationQ; 
if new state is reachable 

return (PI-vector); 

} 
else return PI-vector; 

} 
1* get intersections: STfl OFF-set, SFfl ON-set / 
intersections(ST, OFF-set, Si', ON-set); 
if both intersections are not empty { 

if some bits are needed to be set to specific values 
set_new_stateQ; 
new_state_justificationO; 
if new state is reachable 

return(PI_vector); 

} 
} 

} 
return (NOT-FOUND); 

} 

} 
else return PI-vector; 

{ 

Figure 7.6. The backward deterministic algorithm for single-vector state differentia-
tion. 
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are: 

• The backward deterministic algorithm for single-vector state differentiation shown 

in Figure 7.6 is used to replace the single-vector state differentiation algorithm 

shown in Figure 7.4. 

• In order to propagate the fault to the next state lines, if some don't care bits 

in the state are needed to be set to specific values, we set them to the required 

values and then justify if the new specific state is reachable from the previous 

states. 

To explain the idea of the backward deterministic state differentiation, we continue 

to consider the fault G2 s-a-O in circuit s27 shown in Figure 2.5 as an example. The 

fault has been propagated to the next state line G13 and the justification sequence has 

been found. From Table 7.2, the true and faulty states are (X, X, 0) and (X, X, 1) 

for lines G5, G6 and G7. 

First, we attempt to find a single-vector differentiation sequence. The ON and 

OFF sets of primary output G17 are shown in Table 7.3. 

The intersection of the primary input parts on the first vectors of the ON set and 

the OFF set is not empty, i.e., (1,0,X,0). The present state in the first vector of 

the ON set is (X, X, 1), and is same with the faulty state. The present state lines in 

the first vector of the OFF set are (0, X, 0), and its intersection with the true state 

(X, X, 0) is not empty, i.e., (0, X, 0). As the first bit in the true and faulty states 

is logic value X, in order to propagate the fault to the primary output, the first 

bit should be set to logic value 0. After setting, the differentiation vector becomes 

(1, 0, X, 0, 0, X, 0). For the primary inputs, we just set them to the new logic values. 
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But the new differentiation state (0, X, 0) should be justified if it is reachable from 

the previous clock cycle. 

Table 7.3. The ON and OFF sets of primary output G17. 

primary inputs present states 
G5 gate GO GI G2 G3 G6 G7 

ON-set 1 X X 0 X X 1 
xxx Ox 0 1 
1 ix ox X  
xix ox ox 
xxx xix x 

OFF-setx OX X Ox 0 
OX X  01 X 
xxxi ox x 

From the partial OFF set of the next state line Gb, (1, i,X,O,X,X,X), we know 

that if lines GO, GI and G3 in the previous clock cycle are set to (1, 1, 0), the new 

state would be reached from the previous clock cycle. The original vector in the 

previous clock cycle is the excitation vector, (X, X, 1, X, .C, X, 1), and its intersection 

with the OFF set of the next state line G1O is not empty, i.e., (i, 1, 1, 0, X, X, 1). The 

excitation vector should be set according to the intersection. As all bits needed to be 

set are in the primary inputs, we just change the original logic value X to the new 

value. The single-vector differentiation sequence is found. The final test sequence is 

composed of the justification sequence, the excitation vector, and the differentiation 

sequence shown in Table 7.4. 

After finding the test sequence we use it to fault simulate the fault G2 s-a-O, with 

results as shown in Table 7.4. The test sequence can detect the fault. 



87 

Table 7.4. The process of exciting the fault G2 s-a-0 to primary output G17. 

primary inputs present states next states P0 

gate GO GI G2 G3 G5 G6 G7 G1O Gil G13 G17 
justifi. vector X 1 0/0 X 0 0 0 X X 1/1 X 

excitation vector 1 1 1/0 0 X X 1 0 0 0/1 1/1 
differen. vector 1 0 X/O 0 0 0 0/1 1/0 1/0 0/1 0/1 

7.3 Summary 

In this chapter, we have described two important steps in our ATPG system, 

state justification and state differentiation, in detail. State justification and state 

differentiation are efficiently performed using cube intersection on the ON/OFF sets 

of the primary outputs and next state lines. To increase the efficiency of the existing 

state differentiation in dealing with the unspecified inputs in the excitation vector and 

justification sequence, we have developed a new backward deterministic algorithm for 

state differentiation. 



CHAPTER 8 

EXPERIMENTAL RESULTS 

8.1 IEEE Benchmarks 

For an accurate evaluation of a test system, real circuit examples should be used. 

Benchmark circuits constitute a good example for evaluating a test system and also 

for comparing results with other systems. We have used the ISCAS'89 [6] sequential 

benchmark circuits to evaluate our test system. None of the ISCAS'89 benchmark 

examples have a specified reset state. We have assumed a vector of all zero to be 

the reset state, as in [11, 8]. Table 8.1 shows a subset of the ISCAS'89 benchmark 

circuits used in this research work. The five columns give the name and the numbers 

of primary inputs, primary outputs, flip-flops, and gates of each circuit. 

As in some test generators for sequential circuits [11, 8], we have added a random 

fault simulator HOPE [20] as a front end to the deterministic test generation algo-

rithm. Random vector test generation enables us to detect some of the easy to detect 

faults without much effort, and therefore, reduces test generation time. HOPE is an 

efficient sequential circuit parallel fault simulator which simulates 32 faults at a time. 

8.2 Evaluation of the Proposed Test Pattern Generator 

The test generation algorithm described in the previous chapters has been imple-

mented in the program AST. It consists of about 10 000 lines of C code and runs in a 

UNIX environment. Table 8.2 gives the statistics of running AST for test generation. 
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Table 8.1. ISCAS'89 sequential benchmark circuit characteristics. 

circuit pi PO dif gate 

s298 3 6 14 119 
s344 9 11 15 160 
s349 9 11 15 161 
s382 3 6 21 158 
s386 7 7 6 159 
s400 3 6 21 162 
s444 3 6 21 181 
s510 19 7 6 211 
s526 3 6 21 193 
s526n 3 6 21 194 
s641 35 24 19 379 
s713 35 23 19 393 
s820 18 19 5 289 
s832 18 19 5 287 
s953 16 23 29 418 
s1196 14 14 18 529 
s1238 14 14 18 510 
s1423 17 5 74 657 
s1488 8 19 6 653 
s1494 8 19 6 647 
s5378 35 49 179 2779 
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Experiments were performed on a SUN Sparc 10 workstation. For each circuit, the 

total number of faults (total faults), the number of detected faults (det. fault) and 

the number of faults that were proven redundant (red. fault) are given. The total 

fault coverage (coverage) includes detected and provably redundant faults. The next 

column reports the execution times in seconds. The total number, of test vectors in 

test sequences is given in the column test vec. 

Table 8.3 gives the statistical analysis of our system AST on the ISCAS'89 bench-

mark circuits. RTG det. fault is the number of faults detected by random test 

generation and RTG time is the time spent in random test generation. All columns 

under AST are the results obtained by our system AST. For each circuit, the number 

of faults detected (det. fault), the number of faults that were proven combinational 

redundant (com. redun.), the number of faults that were proven sequential redundant 

(seq. redun.), the number of faults that were aborted (ab. fault), and the execution 

times in seconds are given. The aborted faults are the number of faults aborted by 

the algorithm if it exceeds the backtrack limit set in the transitive closure method. 

The backtrack limit was set to 20 for all circuits except circuit s5378. For circuit 

s5378, the backtrack limit was raised to 50. 

From Table 8.3, sequential random fault simulation was quite effective in generat-

ing tests. This may seem to contradict the accepted opinion that random sequences 

are ineffective for sequential circuits. Two reasons may explain the above results [8]: 

The availability of a reset state increases the effectiveness of random sequences. 

. Sequential circuits in the ISCAS'89 benchmarks have fairly low sequence depth. 

Figure 8.1 shows how CPU time is distributed among the procedures in AST. 

The transitive closure based test generation for combinational circuits(TC), state 
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Table 8.2. Real execution performance of our algorithm with the ISCAS'89 sequential 
benchmark circuits. 

circuit total det. red. coverage time test 
faults fault fault (%) (sec) vec. 

s298 308 273 35 100 2.4 192 
s344 342 337 5 100 2.6 94 
s349 332 325 7 100 2.7 95 
s382 399 378 20 99.75 221 1431 
s386 384 314 70 100 42 243 
s400 424 396 27 99.76 1187 1382 
s444 474 438 35 99.79 148 1247 
S510 564 564 0 100 4.3 450 
s526 555 462 89 99.28 593 2034 
s526n 553 461 87 99.10 891 2105 
s641 465 405 59 99.78 683 155 
s713 581 480 101 100 341 248 
s820 850 809 35 99.29 56 798 
s832 870 812 51 99.20 45 818 
s953 1079 1069 10 100 68 769 
s1196 1242 1239 3 100 206 437 
s1238 1355 1283 72 100 371 349 
s1423 1515 1196 14 79.87 2653 4386 
s1488 1486 1443 40 99.80 162 1069 
s1494 1506 1455 51 100 238 1108 
s5378 4603 3515 285 82.55 3745 1676 
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Table 8.3. Statistics analysis of our algorithm with the ISCAS'89 sequential bench-
mark circuits. 

circuit total 
faults 

RTG AST 
det. 
fault 

time 
(sec) 

det. 
fault 

com. 
redun. 

seq. 
redun. 

ab. 
fault 

time 
(sec) 

s298 308 249 0.2 24 0 35 0 2.2 
s344 342 315 0.2 22 0 5 0 2.4 
s349 332 314 0.2 11 2 5 0 2.5 
s382 399 257 1.5 121 0 20 1 219 
s386 384 260 2.5 54 0 70 0 39 
s400 424 307 1.9 89 6 21 1 1185 
s444 474 402 2.2 36 14 21 1 146 
S510 564 563 2.3 1 0 0 0 2 
s526 555 392 3.0 70 1 88 4 590 
s526n 553 356 3.0 105 0 87 5 888 
s641 465 342 3.2 63 0 59 1 680 
s713 581 433 3.2 47 38 63 0 338 
s820 850 726 3.4 83 0 35 6 53 
s832 870 732 3.3 80 14 37 7 42 
s953 1079 964 3.8 105 0 10 0 64 
s1196 1242 1112 3.9 127 0 3 0 202 
s1238 1355 1137 4.1 146 69 3 0 367 
s1423 1515 872 16.7 324 14 0 305 2636 
s1488 1486 1353 4.4 90 0 40 3 158 
s1494 1506 1381 4.8 74 12 39 0 233 
s5378 4603 3156 22.4 359 40 245 803 3723 
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Figure 8.1. CPU time distribution. 

j ustification(Just), state differentiation (Diff), and fault simulation(Simu) are listed. 

Table 8.4 compares the results of AST to those of STEED [11] and VERITAS 

[8] on the ISCAS'89 benchmark circuits. The original CPU time of STEED was on a 

VAX-11/8800 and the CPU time of VERITAS was on DEC 5000/200. As the same in 

[8], we divided the times of STEED by 3 to obtain normalized DEC 5000/200 times 

shown in Table 8.4. The CPU time of AST was run on a SUN Sparc 10 station. 

For most circuits, our system obtains more fault coverage than STEED with a 

smaller test sequence in a shorter CPU time. Considering the efficiency of STEED, 

the results of AST are mostly satisfying. For one particular circuit s5378, STEED 

obtained 99.3% fault coverage, and AST only got 82.55% coverage. This is due to the 

large number of flip-flops and the huge number of states, both STEED and AST fail 

to extract the complete covers. This adds to the difficulty of determining sequential 

redundant faults. STEED claimed that it obtained 30.25% redundant fault. Actually, 

STEED only found 69% detectable faults. But AST has found 76% detectable fault 

and only found 6.19% redundant faults. 

When our system AST was nearly finished, we saw the results of VERITAS. VER-

ITAS is faster, and gets 100% fault coverage in most circuits. But while STEED and 

our system AST produced results for s1423 and s5378, VERITAS ran out of mem-

ory with 80MB memory limit during its preprocess (reachability analysis). For our 
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Table 8.4. Test generation comparison with STEED and VERITAS on ISCAS'89 
benchmark circuits. 

circuit coverage time test vectors 
V S A V S A V S A 

s298 100 99.0 100 4 5 2.4 119 280 192 
s344 100 100 100 4 5 2.6 48 125 94 
s349 100 100 100 4 5 2.7 56 120 95 
s382 100 95.2 99.8 195 1320 221 1028 1633 1431 
s386 100 100 100 3 4 42 168 238 243 
s400 100 95.8 99.8 195 1200 1187 1091 409 1382 

s444 100 95.6 99.8 152 1992 148 1026 994 1247 
s510 100 99.8 100 7 7 4.3 584 733 450 
s526 100 91.0 99.3 207 1060 593 1457 2037 2034 
s526n 100 91.0 99.1 342 1040 891 1528 2287 2105 

s641 100 93.1 99.8 15 10200 683 134 327 155 
s713 100 93.1 100 21 10440 341 139 315 248 
s820 100 100 99.3 40 120 56 785 1304 798 
s832 100 99.7 99.2 49 120 45 763 1344 818 
s953 100 100 100 40 29 68 578 1050 769 
s1196 100 98.7 100 41 4080 206 376 545 437 
s1238 100 99.0 100 52 3600 371 389 576 349 
s1423 - 56.4 79.9 - 10800 2653 - 4026 4386 
s1488 100 100 99.8 84 133 162 1031 1310 1069 
s1494 100 100 100 103 147 238 1040 1374 1108 
s5378 - 99.3 82.5 - 12000 3745 - 1037 1676 

average 95.6 98.0 2776.5 553.3 1050.7 1004.1 
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system, if it can not extract complete covers due to the limit of memory and time, it 

could perform test generation on the partial covers, though it may fail to detect some 

faults or prove their redundancy. 

From Tables 8.2 to 8.4, the performance of our algorithm can be evaluated as 

follows: 

• The proposed algorithm outperforms the ATPG system STEED in terms of 

time complexity, fault coverage, and test length on most circuits of ISCAS'89 

benchmarks. 

• The fault coverage our system obtained is slightly lower than that of the new 

ATPG system VERITAS, but our system can perform test generation on large 

size sequential circuits. 

• As the circuit size and number of flip-flops increase, the algorithm still shows an 

efficient performance. It has successfully generated tests for sequential circuits 

with a large number of flip-flops within reasonable amount of CPU time and has 

obtained close to maximum fault coverage. 

• For some large circuits, when complete covers cannot be enumerated, the partial 

cover is generated and the algorithm can work on it. 

• The proposed algorithm is useful as a deterministic algorithm for sequential 

circuit test generation. 

8.3 Summary 

In this chapter, the implementation of the system AST presented in Chapter 4 

is discussed. Experimental results show that faults that require long test sequence 

are handled efficiently and finite state machines with a large number of states are 
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tested using a reasonable amount of CPU time. Also our ATPG transitive closure 

based system can effectively determine a larger class of combinational and sequential 

redundant faults. Results show that considerable speedup factors and more fault 

coverages were realized due to the efficiency of the transitive closure algorithm and 

the powerful backward deterministic method for state differentiation. The overall test 

system yields a high fault coverage and provides time efficient procedures to generate 

tests for large size sequential circuits. 



CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

The rapid advances in integrated circuit technology have made it possible to fab-

ricate digital circuits with a very large number of devices on a single VLSI chip. The 

increase in size and complexity of circuits placed on a chip, with little or no increase 

in the number of input/output (I/O) pins, drastically reduce the controllability and 

observability of the logic on the chip. More logic must be accessed with almost the 

same number of I/O pins, making it much more difficult to test the chip. Yet, the 

need for testing is becoming more important. This research work proposes a new 

technique for designing test generation algorithms with better time complexity and 

fault coverage. 

The test generation problem for sequential circuits has been presented as a state 

space search for test sequences which detect single stuck-at faults at the gate level 

of abstraction. It has been recognized that test generation for sequential circuits is 

a difficult problem. Different approaches have been used to tackle the test problem, 

either by randomly generating test sequences or by using deterministic test generation 

methods. 

The current test generation algorithms for sequential circuits can generate test 

sequences for large sequential circuits. However, with increasing circuit complexity, 

either test generation time increases exponentially or it can not produce test se-

quences due to the exponential increase of reachable states. A new approach based 
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on the transitive closure algorithm has been developed for the test generation of large 

sequential circuits. The similarities of this algorithm with current approaches have 

been identified. 

As a preprocess, a new and efficient backward assignment method is presented 

to perform cover extraction. Logic minimization is used to assure that complete or 

maximum possible ON/OFF sets of the primary outputs and next state lines are ex-

tracted. By disabling flip-flops in the sequential circuits, the test generation problem 

for sequential circuits is transformed into test generation for combinational circuits. 

Then test generation for combinational circuits is formulated as the implication graph 

and the SAT form expressing necessary conditions for fault activation and path sen-

sitization. A lot of techniques have been used to prune search trees. Our technique 

determines all logical consequences based on pairwise signal relationships for a partial 

set of signal assignments and provides a good framework for reasoning about signal 

relationships in the circuit. 

After a combinational excitation vector is found, state justification is used to find 

a justification sequence from the reset state to the excitation state. If the effect of 

the fault is propagated only to the next state lines, state differentiation is needed to 

propagate the fault-effect to the primary outputs. To enhance the efficiency of state 

differentiation in dealing with the unspecified inputs in the test sequence, a novel 

backward deterministic algorithm for state differentiation is developed. 

The implementation of the test generation algorithm for sequential circuits is pre-

sented with experimental results on the ISCAS'89 benchmark circuits. The results 

on large sequential circuits suggest that our algorithm outperforms the other test 

generation algorithms. Considerable speedup factors and more fault coverage are re-

alized due to the efficiency of our test generation algorithm for sequential circuits. 
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The overall test system has yielded a high fault coverage and provided time efficient 

procedures to generate tests for large size sequential circuits. We have also shown 

that random patterns can be very effective in test generation for sequential circuit. 

We believe that our algorithm can efficiently perform test generation for sequential 

circuits. It has obtained close to the maximum fault coverage on the ISCAS'89 

benchmark circuits. Consequently, as was pointed out in [7], the parallelization of 

transitive closure computation, though not attempted in the present work, is easily 

possible. We hope that this system can be developed into parallel test generation 

systems. 
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