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1 Abstract

An interesting problem in the oil and gas industry is the visualization of the movement of oil
and gas in porous media. In our work we have simulated the porous media using a pointer-
based octree, representing the distribution of pores and grains. This data structure allows us
to model the connectivity of the pores and thus visualize fluid penetration within the media.
Whereas earlier models represent a serious simplifications or two dimensional homogeneous
layers, our model provides us with a statistically accurate distribution in three dimensions and
thus a more accurate representation of the connectivity.

In this paper we present our data structure and the techniques which were used to create
models of porous media and their porous networks. Next, we present algorithms for con-
nectivity in octrees and we show how to apply them to modelling and visualization of fluid
penetration in porous media.

2 Introduction

2.1 Problem definition

Reservoir performance can be predicted from rock modelling and simulation techniques. The
quality of such processes is directly dependent on the quality of the numerical model and the
numerical description of the existing information. The most important factors is the quality
of the description for porosity, permeability and fluid distributions (see [Fedenczuk 92]) and
their realizations.

Computer modelling of porous media can be advanced through a combination of solid
modelling, visualization, stochastic description, numerical analysis, and analysis of connectivity
in the octree based models (see [Samet 90]). Connectivity is an important aspect of porous rock
structure that influences the flow of fluids through rocks during production of oil or natural
gas [Morrow 90]. Connectivity of real rocks has been studied by experiments with pore casts.
The pore cast is made of plastic resin, which is injected into the pore system of a rock sample.
After the resin hardens, the rock is then dissolved in acid, leaving a plastic replica of the rock’s
pore network. However, this is long and destructive type of analysis. Sequential changes can-
only be tested using different rock samples, which can vary significantly due to the high natural
variability.



Other techniques for examining pore connectivity are based on microscopic images of the
pores in 2D thin-sections of the rock [Dullien 91]. The thin-sections are analyzed to estimate
pore shapes and their size distribution, from which pore connectivity and various properties
are inferred. Their limitations come from the inference of the 3D properties from 2D images.
Recently, we observe appearance of new techniques. They include X-ray CAT scan and NMR
imaging [Kantzas 92]. The first one is based on observing the images, which intensity are
derived from the attenuation of X-rays in rocks. The second allows to visualize fluid saturated
3D pore structures. This is due to the physical principles this method is based on, which
observe hydrogen atomic nuclei in water.

Although actual rock samples can be tested by pushing fluids through under pressure
and measuring output volumes, such test do not reveal the structure and connectivity of the
pores. Taking pore casts does reveal the structure but destroys the original sample, preventing
further analysis. The direct techniques (CAT scan and NMR) are expensive, provide only for
the limited changes in the experimental conditions, and it is difficult to perform such test in a
fashion that leaves the rock ready for further testing.

Computer modelling is an attractive technique that provides for the non-destructive simu-
lation of porous rocks. The techniques described in this paper provide a statistically accurate
simulation of the rock pore network and allow us to produce visualizations of fluid flow as well
as other properties that are useful for prediction of reservoir behaviour. The visualizations
(see Plates: 1-4) show the rock samples in 3D or as a series of 2D cross sections, or a pore
network as an arbitrarily coloured cast, or as a model with the impregnated pore system. A
more powerful effect can be achieved by the visualization of the pore network or fluid paths
formed in this network through a translucent model. (see Plates 3 and 4)

2.2 Previous work

Numerical modelling of reservoir rocks and their properties such as porosity, permeability, elec-
trical conductivity, etc., are routinely applied in petrophysics [Schwartz 87]. The approaches
are simplistic as there is a limit to the size of the system of equations which can be solved
using current computer technology.

The sparse data is commonly enlarged through the use of interpolation or extrapolation
techniques while assuming spatial continuity [Naylor 66]. Often, stochastic approaches are
used to model each parameter separately [Dimitrakop 91). Many geometrical approximations
have been applied to modelling porous structures. Some have been based on a simple pack
of pipes [Edwards 91], or more complicated network of pipes connecting a set of large cubes
[Spearing 91], or packs of spheres having repetitive patterns, or fractal based recursive patterns
[Adler 87] and [Jacquin 87]. Other methods substitute the real medium with an electrical
circuit made of a network of resistors [Fatt 56]. Such approaches, unless they are based on
recursive or repetitive patterns, are algorithmically difficult and limit the amount of elements,
which can be used in the modelling. On the other hand, the recursive and repetitive patterns
represent gross approximations and cannot be used indiscriminately. In consequence, these
models in many cases provide poor estimates and are limited in application to a particular
rock type. In most cases these models are used to represent a perfect medium. An example
of the perfect rock is Fontainebleau sandstone made of spherical quartz grains (known also
to rock climbers!) However, this rock type is not an oil or gas bearing rock and due to its
regularity is therefore easy to simulate (see [Bryant 93]).

One of the most significant achievements in the connectivity in rocks, the network approach
gained momentum with the introduction of the percolation theory, which deals with random



mazes and fluid spreading phenomena [Yanuka 92]. The connecting concept was linked to the
idea of pore throat and pore body by Wardlaw in [Wardlaw 78]. The pore space is considered
to be a medium composed of pores relatively large empty spaces and much smaller conducting
channels, called pore throats. Some of the pore throats permit flow through them and others
do not. Their spatial distribution relative to the pore system controls the flow properties of the
sample. This model is attractive from the point of view of describing the capillary phenomena
in porous media [Macdonald 86).

2.3 The Stochastic Octree Approach

Our method for modelling, simulation, and visualization the three dimensional structure of
porous media is based on a stochastic octree data structure. Unlike traditional porous rock
modelling techniques, a three dimensional model is created directly, rather then from a series
of two dimensional slices [Wallin 91] or packs [Visscher 72] of primitives, which approximate
model or pore space. The model is described stochasticly using 3D distributions of basic logical
primitives encoded in the octree data structure. These primitives are: pore body, pore throat,
and grain body. They are built using just one geometrical primitive, a cube of variable size.
The pore network is the end result of the stochastic reconstruction of the media, for which the
three size distributions corresponding to pores, pore throats, and grains are taken from known
samples.

3 Model Definition

A model of a pore network in three dimensions can be generated by randomly placing both
pore bodies and pore throats in space, where their size could be taken from some distribution
functions. The difficulties arise in modelling these primitives so that we can easily locate and
link them into a pore network. This includes both the geometrical link as described above and
a logical link with a computer data structure.

These two conditions have been achieved in our approach. We assume that model space
can be described by distributions of:

e pore body size (empty spaces)
e pore throat size (narrow empty channels connecting pores)
e grain size (solid subvolumes)

The octree provides us with a unified and simple approach to porous media modelling. The
modelling procedure treats both the pore and the pore throat as primitives built out of the
same basic units (cubes) but of different sizes. The model of the network of pores and throats
is built of empty cubic elements where the throats are built of the smallest size cubes. The
same approach is applied to modelling grains or the rock matrix (everything that is not empty
space).

In many geological rocks grain and pore size are more or less lognormally distributed. A
normal distribution of the grain and pore sizes may be obtained by taking the log of the values
of the pore and grain sizes. A lognormal distribution is commonly used to describe random
processes that represent the product or combined effect of several lesser independent events
[Ripley 88]. In modelling we wish to generate random numbers whose distribution are other
than uniform. This is done by generating uniformly distributed pseudorandom numbers and
using these to draw random samples from theoretical or observed frequency distributions.



The octree as a hierarchical tree structure contains leaf nodes (cubes) of exponentially
decreasing size giving a simple relationship to observed distributions. Each node in the tree
represents a region of the modeled rock. If the node completely describes the homogeneous
region of the rock (grain/pore), it is a leaf node (black/white). If not, the node is subdivided
(grey) and points to the eight children that represent the eight octants or subregions of the
parent node. The stochastic process assigns to each octant a value, drawn independently at
random with a probability given by grain, pore, and pore throat size distributions. Pores and
pore throats are not distinguished in this process and they are drawn from the same distribution
as primitives representing the same part of the media (empty space). This requires a creation
of a combined distribution for pores and pore throats.

3.1 Creating the Octree

An initial cube is recursively subdivided into grey nodes along three planes (xy, xz, yz) until
we reach the level in the octree where the size of the leaf nodes corresponds to the largest
pore or grain. At this point some of the octants will become leaf nodes. The proportion of
white/black octants will correspond to a percentage of the pores/grains from the rock sample
with the size equivalent to that of the octant. The remaining nodes are further subdivided
and the same process is repeated at lower levels. This provides us with a model of the porous
rock, which has the same total porosity, pore and grain size distributions as the media we are
simulating. A more detailed description can be found in [Fedenczuk 92].

3.2 Model Verification

The accuracy of this process is measured by comparing the input data (distributions) with
statistics obtained from the computer model. These statistics are based on the count of the
leaf nodes at every level of the octree. The resulting grain and pore size distributions together
with volume calculations are performed from the size of the octant’s edge. Preliminary results
of this verification are found in [Fedenczuk 92].

4 Visualizing the Model

The visualization can include pores only, grains only, both with or without a fluid in 2D or 3D
space. The 2D images (cross-sections which are slices through the three-dimensional model)
allow a sequential visualization of the changes in the pore network topology along a selected
direction. The 3D images correspond to the images from the classical microscopes or from the
electron scanning microscope. The 2D slices correspond to the thin sections.

In every case, a rock material is displayed using a ”grey” colour, which is made of red,
green, and blue in equal amounts of intensity (0.70). When visualizing grains only the pore
spaces are not processed leaving empty spaces. In a case when a pore topology is what we want
to model the pores are displayed in a red ”cast” of pore spaces. A combined visualization of
rock/grain and pore systems has been used mainly in order to present the spatial relationships
and for monitoring the fluid penetration.

The rendering is performed on polygonized voxels, produced by our model. Atributes such
as diffuse light coefficeint, reflection, and refraction when required, are assigned according
to the visual requirements of the user. Pores, grains and pore throats can each be assigned
different attribute sets for rendering. Plate 1 shows the model without Phong shading with four
different pore and grain distributions (only solid parts). Cross sections of the selected models



are presented in Plate 2. Plate 3 and 4 show four Phong shaded views of the rock samples
Phong shading is applied for obtaining better visual effects without the artifacts associated
with the cube based models. Phong shading exaggerates the solid appearance of the voxels,
whilst effectively blending neighbouring voxels.

5 Simulating Fluid Penetration

Finding the connectivity of the pore network in rock samples is important, as it determines
how well a pore network can conduct fluid and electrical current in petroleum reservoirs or
rock samples used to estimate the reservoir properties. Analysis of flow through porous me-
dia has been under constant attention in different areas of science [Marle 81], [Hardy 90],
[Ghadiri 92]. Of particular interest is the ability to distinguish area of high permeability from
the non-permeable regions where fluid could not penetrate. In addition, we are interested in
the behaviour of the samples as affected by changes to the porous media structure, physical
conditions, and production processes.

Our algorithm does not follow the fluid as it flows in time. We are only concerned with
tracing the parts of the porous network that have been penetrated by liquid and marking these
nodes for visualization purposes. In this case we can start with any set of empty nodes and to
each of them apply the colour of the fluid. Next, we mark the node as visited and recursively
find all its empty neighbours and colour them the same way. Note that Plate 4 represents
different visual realizations of the same model, solid parts (top left), a cast of empty spaces
(top right), the same cast of empty spaces but this time visualized through translucent rock
(bottom left) before fluid penetration. Finally, bottom right shows the same simulated rock
after fluid penetration.

5.1 Visualizing Model Connectivity

Since we are simulating fluid flow, we are only interested in nodes representing empty subspaces,
which can be penetrated by fluids. Fluid flow starts at an arbitrarily chosen face (we choose,
the plane x=0) and proceeds to the opposite face (we choose our coordinate system so that the
opposite face is the plane x=1). The first step colours all the WHITE/EMPTY nodes/octants
whose faces are on the xz plane with the fluid colour (blue in the examples in this paper). At
the next step each of these coloured nodes is used as the starting point for recursively finding
the empty neighbours in each of the six face directions.
The algorithm implemented as function *find_all n’ proceeds as follows:

¢ 1. Finds the Greater-Equal neighbour in a specific direction (the current direction).

e 2. If the neighbour is WHITE /empty and not visited yet changes it to BLUE and finds
all its neighbours (recursively).

o 3. If the neighbour is GREY (subdivided) finds its smaller children, which are neighbours
in the current direction (recursively).

In the following sections we describe details of the data structures and algorithms necessary
to implement this process.



5.2 Connectivity in Octrees

In this section we introduce an algorithm for finding the connectivity between different nodes
of the model. The algorithm proceeds by locating neighbours in a pointer-based octree which
represents the model space. The method is based on techniques described by Hanan Samet
[Samet 82] and [Samet 90]. However the particular requirements of our application, made it
necessary to extend Samets basic neighbour finding strategy in the following manner:

» Nodes at the edge of the data structure are significant.

e Samet finds neighbours of the same or greater size, we need to also find neighbours of
smaller size.

The data structure is a standard octree structure comprising of eight links between a parent
and its children, and one link to the parent node. These links are used to find a nearest common
ancestor, and the neighbour node in the next step.

5.3 Octant Enumeration

As mentioned above, the initial model cube placed in the origin of the XYZ coordinate system
is subdivided recursively along three planes (xy, xz, yz). This results in the subdivision of the
node into eight octants.

Assume that the model is viewed from a point which is located at the positive x,y, and z
values. We can then split the space into left, right, down, up, back, and front orthogonal sub-
spaces [Samet 89]. These subspaces may be allocated corresponding alpha labels: R,L,D,U,B,F
are shown in figure 1. Applying appropriate symbols to all subdivisions (along xy,xz,yz planes)
and at the same time applying alpha labels, we obtain a unique three character description of
octants. For example the left, down, and front octant has the LDF descriptor. The numerical
equivalent notation of octants are in range from 0 to 7. Similarly we treat directions in which
we search for the node-octant neighbours. We annotate directions as: Left, Right, Down, Up,
Back, or Front with their numerical equivalents between 0-5.

5.4 Data Structure

The octree record (structure) used in this project is in the form:
typedef struct _octree
{
char code;
int external;
int color, depth, visited;
struct _octree *ancestor;
struct _octree *child[8];

The character variable code represents the type of the node and can be:
e BLACK - a leaf node representing solid/rock space

e WHITE - a leaf node representing empty space
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Figure 1: Direction and octant enumeration

¢ GREY - a subdivided node representing a mixture of solid and empty spaces.

Algorithms developed in [Samet 90] do not account for nodes on the edge face, which have
no neighbours in the outside direction. The next variable ’external’, in the data structure deals
with this problem. The ’external’ is assigned a value corresponding to the appropriate face of
the root cube, which is the direction of ’outside’ (if it is an internal node the value is set to
-1).

Three other integer variables describe the colour, the depth, and whether a node has been
already processed (visited). The last two variables in the record represent a pointer to the
ancestor and an array of pointers to all eight children/octants.

5.5 Connectivity functions
These functions have been implemented based directly on the Samet’s work and they return
simple but important information about nodes in the model octree.
5.5.1 Samet’s Primitive Connectivity Functions
The simplest functions are:
e parent() returns pointer to its parent
o child() returns pointer to a child of a specific type
e childtype() returns the type of a particular child.

These primitive connectivity functions are identical to those defined by Samet. More in-
volved functions are built on these and we call them the high level connectivity functions.

Before we proceed with more functions it is necessary to point out that there are different
types of neighbours: face, edge, and vertex neighbours. Presently we are concerned with face



Direction Type

Left 4 5 6 7
Right 0 1 2 3
Down 2 3 6 7
Up 0 1 4 5
Back 1 3 5 7
Front 0 2 4 6

Table 1: Table: SMALLER-ADJACENT

neighbours only. When simulating physical processes in porous media the other two types of

neighbour connectivity make no practical sense because the edge or vertex connectivity has no

real physical dimension and cannot be included in any of the flow equations. The next two

functions, 'reflect’ and 'adjacent’, are the backbones of the algorithm for finding neighbours of

equal or greater size in the octree data structure as implemented by Samet ([Samet 90]).
These functions are briefly described:

o reflect() returns a block/octant type of the equal size block/octant that is a neighbour
in the specified direction.

e adjacent() returns TRUE if and only if the octant is adjacent to the face of the block
in the selected direction (returns TRUE if and only if the direction is a subset of the
octant enumeration e.g. adjacent (Left, LDF) will return TRUE because L is p a subset
of LDF).

5.5.2 Function for Finding Neighbours of Smaller Size

Extensions to Samet’s algorithms have been built to find the connectivity to any type of
neighbour, in particular to a pore/empty neighbour of smaller size. Finding smaller neighbours,
is performed only if the equal size neighbour is further subdivided. Samet’s algorithm is used
to find a neighbour of equal or greater size.

The additional 'SMALLER_ADJACENT” table has been created (see table 1). This table
gives four possible smaller neighbour types, which are a part of a grey neighbour node in the
specific direction.

Figure 2 explains how the first row of this table has been created. Also the example shows
that this table gives the right result independently of the level of further subdivision.

The above table is used as follows to find smaller neighbours:

o Get octant type of a possible child from SMALLER.ADJ table.
e Get octant based on the parent and octant type from above.

e If octant is WHITE/EMPTY it is marked as penetrated by fluid (BLUE) and becomes
a starting point for the neighbour search (“find-all.n’), else if the octant is of the grey
type the recursive process of searching for a smaller neighbour continues.
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Smaller neighbours are of type: 4,5,6,7
(1st row in SMALLER_ADJACENT TABLE)

Figure 2: Finding smaller neighbours

6 Results

A number of different models were used to show fluid penetration in rocks of different porosity
distributions. Plate 4 shows four such samples. Initially all empty nodes had their colour
assigned to red. In all cases fluid has been introduced into all empty nodes with their left
planes coinciding with the xz plane. Further, nodes connected to these on the xz plane were
found and their colour changed to blue as described above. The rest of the empty nodes, which
were not interconnected retained their red colour. All solid nodes have been processed using
the colour grey. Transparency has been used during rendering of solid parts of the model. In
order to mark cells on the opposite face of the model where the process of the flow tracing
stops, we changed their colour to green as shown in Plate 4.

The resulting images (Plates 3 and 4) allow visualization of a fluid invasion in porous
media and location of areas where fluid could not flow. Red patches on the images clearly
represent the unconnected porosity. The blue marked nodes allow one to visualize changes in
connectivity as a function of changes in porosity as well as changes in pore size distribution.

6.1 Algorithm Performance

During the simulation of the fluid flow in the interconnected network of empty cells we recorded
a number of nodes visited in order to find a neighbour of equal or greater size. This allows
us to compare our results with the theoretical results produced by Samet [Samet 82]. The
algorithm performs two major steps:

e 1. Locate the nearest common ancestor.
e 2. Retrace the path taken by using the reflect function

According to Samet the theoretical average number of nodes processed during the search for
a common ancestor should approach two for octrees with a large number of subdivisions. His



theoretical average number of nodes visited during the search for neighbours of equal or greater
size should be bounded by 7/2. This means that the expected average number of nodes visited
in the second part of the process (descending from the common ancestor) should not exceed
two.

The statistics on effectiveness of the neighbour search corresponding to these two steps is
presented in table 2.

This table provides only the statistics for the search conducted during the fluid flow through
the network of pores (empty cells). Due to the process of marching through this network,
some of the solid (black) nodes where not included in the process. We did not search for their
neighbours.

In table 2 the model name contains a combination of two digits. The first digit represents
the total number of subdivisions and the second corresponds to the level where leaf nodes
start to be allocated. Each model is represented as a cube of unit size. The total number of
leaf nodes and the number of empty nodes (pores) in the model are presented in the first two
numerical columns of the table. The next numerical column represents the number of searches
for neighbours, which is equal to the number of times the process has been performed and this
is equal to the number of observation in the statistics. The average difference between the
levels of the starting node and the neighbour is presented in the following column. The last
five columns provide the average number of steps (nodes visited) in:

e 1. locating a common ancestor

e 2. finding a greater/equal neighbour during the reflected descent
¢ 3. finding a smaller neighbour (additional steps only)

e 4. finding any size neighbour (sum of the last two steps - the descent 2,3)
¢ 5. during the whole process of finding a neighbour.

In other words these can be described as

e 1. the number of steps up the tree,

¢ 2. the number of steps down the tree (GE neighbour)

¢ 3. additional number of steps down the tree (smaller neighbour)
e 4. sum of 2 and 3

¢ 5. total number of steps up and down the tree (1,2,3)

The probabilities of allocating a white/black octant (empty/solid) were kept constant at
each level (below the starting level). These probabilities were assigned as 6.25% and 21.9%
accordingly, with the exception of the lowest level where 50% of nodes were assigned as white
and 50% of nodes were assigned as black. These percentages are typical of actual rock samples
used for testing purposes.

For example in the model marked as 'r52’

e (r52) There are five levels of subdivision (starting from the root: 5,4,3,2,1,0)

e (r52) Before level 2 (levels: 5,4,3) all the nodes have been subdivided (all grey).

10



# of

extra # # of steps

#of steps ofsteps down to
Model # of # of #of steps downto tofind findany Total #
Name | Leaf nodes empty nodes searches up find GE smaller size of steps
r20 64 24 55 1.40 1.40 0.00 1.40 2.80
r21 29 12 43 1.35 1.19 0.09 1.28 2.63
r30 512 230 1149 1.62 1.62 0.00 1.62 3.24
r3l 344 168 1090 1.63 1.47 0.06 1.53 3.16
r32 246 112 680 1.59 1.36 0.07 1.43 3.02
r40 4096 1622 7711 1.76 1.76 0.00 1.76 3.52
4l 3137 1224 6300 1.76 1.64 0.05 1.68 3.44
r42 2500 958 4180 1.72 1.53 0.07 1.60 3.32
r43 1527 616 4631 1.77 1.44 0.08 1.52 3.29
r50 32768 12747 62930  1.85 1.85 0.00 1.85 3.70
51 24529 9332 44849  1.84 1.70 0.05 1.75 3.59
52 18173 6940 34689  1.85 1.59 0.08 1.67 3.52
53 11845 4507 22531  1.84 1.49 0.09 1.58 3.42
rb4 7624 2884 9739 1.84 1.49 0.08 1.57 3.41
r60 262144 102040 523255 1.91 1.91 0.00 191 3.82
r61 198661 75588 413130  1.90 1.76 0.05 1.81 3.71
r62 143984 54653 295367 1.91 1.66 0.07 1.73 3.64
r63 99849 37847 195146 191 1.57 0.09 1.66 3.57
r64 76063 28717 144324 193 1.54 0.10 1.64 3.57
r65 33909 12776 70311 1.92 1.51 0.11 1.62 3.54
r73 836543 317860 1782721 1.95 1.61 0.09 1.70 3.65
r74 581274 220683 1163805 1.95 1.55 0.10 1.65 3.60
r75 388396 147359 749334  1.95 1.53 0.11 1.64 3.59
r76 303451 115156 643255  1.96 1.53 0.11 1.64 3.60
r76a 87704 33116 220528  1.96 1.48 0.12 1.61 3.57
r86 2088465 795120 4462631 1.98 1.54 0.11 1.65 3.63
r87 1588441 604846 3373837 1.98 1.53 0.11 1.65 3.63

Table 2: Table: Neighbour Finding Statistics
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* (6.25%) At levels two and one (2 & 1) 6.25% of nodes have been assigned as empty
(white leaf nodes)
(

e (21.9%) 21.9% of nodes have been assigned as solid (black leaf nodes). The rest have
been further subdivided.

o (50%) At the lowest level (zero) 50% of the nodes have been assigned as empty and the
other 50% as solid (no subdivision allowed).

The exception to the above rules represents model 'r76a’, which had higher probabilities
at each of the levels. However, the statistics for this model is not significantly different from
the typical model 'r76’. The porosity of the models is calculated as the ratio of the volume of
the empty nodes to the whole volume.

Figure 3 presents the average number of steps up the tree (levels traversed) in order to find
a common ancestor. The experimental estimations are compared with the calculated values
from Samet’s formula and they are presented as a function of the number of levels in the
octree. Different symbols are used to display changes due to the leaf starting level (the level at
which the leaf nodes are permitted). Overall, the theoretical and experimental values follow
the same trend and the differences could be due to the Samet’s definition of the randomness.
The differences due to the starting level are relatively low and suggest that the ancestor search
is independent of this parameter.

The rest of graphs, which represent the downword movements from the ancestor already
located, are significantly affected by the starting level of the leaf nodes. The first of them
(Figure 4) presents the average number of steps which are required to find a neighbour of
equal or greater size. The additional number of steps made during the process of finding a
smaller neighbour and the sum of steps taken during a tree descent are presented in Figure 5
and Figure 6 accordingly. The average total number of nodes during the all of the stages of the
neighbour search is presented in Figure 7. Overall, the number of steps during a descent and
the total number of steps are effected by the starting level for the leaf nodes. The higher the
starting level the smaller is the number of the steps required to find a common ancestor and the
neighbour. The reverse trend is observed for the additional number of steps during the search of
the smaller neighbour after the equal size neighbour is further subdivided. However, this does
not affect the statistics significantly due to overall low values observed for this process. The
average number of additional steps is below 0.14 mark. The total of steps exponentially grows
with the number of levels and exceeds the predicted number as derived by Samet. However in
Samets case, traversals are made over all nodes including subdivided octants, whereas in our
models we are only interested in finding empty neighbours of empty leaf nodes.

7 Advantages of The Stochastic Octree Technique

The methods presented provide not only display of the model externally, but also reveal the

internal structure of the model during the simulation of physical processes in areas such as

flowing matter, visualized boundary layers, spatial topology of the porous metwork, etc. For

example, the proposed methodology may be used to build geometrical models of porous rocks.
The advantages of such a stochastic model, as opposed to a deterministic model, are:

e provide average behaviour

o provide for the description of local random variations

12
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e enable the estimation of correlation between neighbouring locations
e provide uncertainty of the estimates
e allow the reconstruction of the media using a concise description

o finally, the stochastic description allows an effective bridge and transformation of petro-
physical rock descriptions to computer data structures and numerical primitives.

Unlike traditional reservoir modelling techniques our approach allows building and visu-
alizing models of any complexity limited only by available memory and machine cycles. Our
model is sufficiently general that it can be applied to different types of fluids and minerals
from which rocks are built. Our model can be easily extended to simulate such processes as
a cementation, which can be defined as introducing mineral phases into a rock pore system.
When cement is formed it appears as an overgrowth on the grains, and can be represented as
concentric rims on the grains.

Another advantage of this technique is that we can simulate various physical properties
of the porous media and provide visualizations which allow a petroleum researcher to moni-
tor these processes. Using the various display techniques (slicing, transparency etc.) a user
can visualize the rock’s pore structure or spaces containing fluid in a translucent or opaque
appearance.

Finally, the adaptive octree data structure represents a major improvement to a 3D array
application of equal size cells by accounting for the local agglomeration and homogeneity. This
lowers the requirements for the computer resources, provides much better approximation of
rock structures, and facilities the simulation of physical properties.

8 Practical Applications of The Stochastic Octree Technique
The modeling and simulation results can be used to perform:
e quick evaluation of rock parameters

e calibration of well logging tools (tools used to measure electrical and magnetic responses
in oil wells).

¢ education
e determination of the estimation sensitivity.

Information derived from simulations will help to evaluate the potential of reservoirs and help
to monitor recovery processes. If rock types in the analyzed reservoir are similar to those of
the simulated sample, a user can infer all parameters without having to take long and detailed
measurements or tests, thus saving time and money.

Future development may include a real time simulation system for fluid flow, simulation and
interpretation of electrical and sonic properties of models as they vary with temperature, pres-
sure, etc. The statistics associated with the estimated parameters resulting from simulations
can provide the confidence intervals of the simulated values.
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9 Conclusion

We have presented a method of visualizing fluid flow in porous rocks for use by petrophysicists
and geophysicists interested in rock properties and reservoir simulation for testing existing
hypothesis on hydrodynamic processes in rocks, changes due to natural processes, and changes
due to oil and gas production in reservoir rocks. Our approach provides alternative means to
investigate porous media. It allows the creation of a wide range of computer models based on
the known description of naturally created rocks. Fluid behaviour in these models at different
scales of complexity (geometrical and physical) can be simulated. Using this approach we can
estimate and visualize other simulated physical properties (electric, sonic, etc). Finally, we
can model other processes (fluid interaction, permeability, cementation, etc.) and observe the
resulting changes in porous media.
To summarise:

10

The models based on the octree data structure provide a powerful tool in the simulation
and visualization of porous media properties.

The average number of nodes visited during the search for the common ancestor, when
searching for the neighbour of equal or greater size, increases with the number of subdi-
vision levels in the octree. In general, this value is independent of the internal structure
of the model.

The experimental results exceed slightly the theoretical bound on average number of
nodes (as a function of the number of levels) required to be visited in order to allocate
the common ancestor as provided by the formula derived by Samet [Same90].

The average number of nodes visited in the second part of the algorithm is strongly
dependent on the internal structure of the model. This value decreases for models with
a highly variable size of leaf nodes representing the network of empty cells.

The total number of steps in our experiments exceed the overall upper bound of finding
neighbours as cited by Samet. This is explained above.

We expect that our research will provide the basis for a system with potential applications
in petrophysics and other areas of engineering.

List of Plates

Plate 1: 3D view for models with 4 different pore distributions.
Plate 2: Cross sections of selected models.
Plate 3: Fluid penetration in 4 different pore distributions.

Plate 4: Fluid penetration green colour used to show the last cell of any path which ends
at plane x=1.
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