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Abstract 

System identification creates mathematical models of systems using measurements 

of their inputs and outputs. System identification techniques have been used in a 

variety of applications including in biomedical, control, and aeronautical engineering. 

Linear time-invariant models have been widely used in all these applications since 

they provide a simple description that nonetheless predicts the system's behaviour 

within acceptable errors. In some cases, linear, time-varying models can be used to 

provide more accurate descriptions of various non-linear or time-varying phenomena, 

while still retaining a relatively simple description. This thesis reviews two existing 

approaches for identifying time-varying systems: Temporal basis expansions and 

Ensemble techniques. This thesis presents two new algorithms for identifying linear 

time-varying systems including a novel term-selection technique. The algorithms 

have been demonstrated by applying them to ankle compliance dynamics and to 

experimental human elbow stiffness data 
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Chapter 1 

Introduction 

Much of engineering deals with the analysis and manipulation of mathematical mod-

els. Many different design procedures, from different facets of engineering, including 

the design and analysis of control systems, electronic circuits and bridges consist of 

manipulating and analyzing mathematical models of the system under consideration. 

These mathematical models are either generated by a priori modelling or by system 

identification techniques. 

System identification involves creating mathematical models of systems using 

measurements of their inputs and outputs. System identification, unlike mathe-

matical modelling, is a top-down approach where minimal knowledge of the system 

characteristics is required. 

Input SYSTEM Output 

Figure 1.1: System Identification Block Diagram 

As shown in Fig. 1. 1, the system is treated as a black-box for system identification 

purposes. The system transforms the inputs into the outputs, but few assumptions 

are made regarding how that is done. System identification is the process of filling 

in the black box with a mathematical model of the system. 
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Specialized system identification techniques have a wide-variety of applications 

which are reflected in this thesis. Applications of these methodologies include mod-

elling control systems, various physiological systems, aerodynamical systems and 

telecommunications systems. 

As varied as the applications of system identification are, the models themselves 

vary tremendously as well. The models come in various degrees of accuracy and com-

plexity. They range from static, linear and time-invariant to dynamic, non-linear and 

time-varying. The art of modelling a system properly comes from choosing a model 

with the simplest description which still gives a useful level of accuracy. Linear time-

varying models form a very important sub-class of models that require the use of 

specialized system identification techniques. They are often a reasonable compro-

mise between simplicity and accuracy - either for weakly nonlinear systems, or for 

truly time-varying systems. Thus, many biomedical, aerodynamical, and telecom-

munication systems can be modelled simply and accurately as linear, time-varying 

systems. 

State-of-the art techniques in this field include using temporal basis expansions, 

[12], [41], [53] and ensemble techniques [32], [34]. In the temporal basis expansion 

technique, each time-varying parameter is expanded onto a set of time-varying basis 

functions. Thus, each time-varying parameter is represented as a weighted sum of 

basis functions. The weights, which are time-invariant, together with the temporal 

basis functions, fully describe the time-varying parameter. As a result, each time-

varying parameter is replaced by a vector of time-invariant weights. One of the 

disadvantages of this method is the huge number of parameters that need to be 

estimated, which increases the sensitivity of the parameter estimates to noise in the 
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measured data. A number of term-selection techniques like the Fast Orthogonal 

Search (FOS) [24], and the Optimal Parameter Search (OPS) [33], [53] have been 

used in the past to deal with this issue. The FOS and OPS methods, however, 

perform local searches, and cannot be guaranteed to find the globally optimum model 

structure. In the ensemble technique, the model is not identified through time but 

across an ensemble of trials. An ensemble of input-output realizations is used to 

identify the time-varying dynamics at each point in time. The practical application 

of the ensemble method is very limited since it is extremely difficult to consistantly 

repeat experiments enough times to obtain the necessary sets of input-output data. 

In this thesis a novel method of identifying linear time-varying systems is dis-

cussed. The method combines temporal basis expansions and the ensemble tech-

nique. The time-varying parameters are expanded onto a set of basis functions and 

multiple ensembles are used in the final estimation of the parameters and the fi-

nal term-selection is done using Least Absolute Shrinkage and Selection Operator 

(LASSO). 

The body of this thesis is organized into three main chapters. The second chapter 

of the thesis includes an extensive literature survey. It describes in detail all the 

background material necessary for understanding this research area and discusses the 

two state-of-the art techniques in the field: temporal basis expansions and ensemble 

techniques. 

The third chapter of the thesis deals with a combination of the two techniques 

(basis expansions and the ensemble technique) [41]. The first section of this chapter 

deals with the theory behind this new technique. Then, a simulation involving human 

ankle dynamics is described in detail. The last section of this chapter presents the 
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results obtained from the simulation and a discussion on the validity of this technique. 

The next chapter of the thesis deals with Temporal Basis Expansions using an 

optimal term selection strategy. A novel term-selection technique, LASSO, is in-

troduced in this chapter [43]. The first part of this chapter introduces LASSO and 

gives a theoretical description of the technique. The next part discusses the algo-

rithm (temporal basis expansions and LASSO in conjunction) in detail. Next, the 

algorithm is demonstrated in human elbow stiffness dynamics. The application is 

presented in detail including discussions of accuracy and significance of the results 

obtained from the analysis. 

Finally, the thesis ends with a conclusion which includes a brief discussion of 

future work and a list of personal contributions made to the project. 



Chapter 2 

Background 

This chapter contains an overview of all the background material relevant to this 

thesis work. It starts with an overview of system identification. Focusing on linear 

systems, the concepts behind the identification of linear time-invariant and time-

varying systems are reviewed. Then, the current state-of-the art techniques in the 

field of linear time-varying system identification: Basis Expansions and Ensemble 

Techniques, are discussed in detail. 

2.1 Notation Conventions 

Unless specified otherwise, discrete time systems and signals will be used throughout. 

Thus, t, which represents time, will be an integer. The forward shift operator will 

be denoted by q, so that 

qy(t) = y(t+ 1) 

Raising q to the power k results in a forward time shift of k samples. In particular, 

setting k = —1 results in a backward time shift 

q'y(t) = y(t - 1) 

In this thesis the symbol " has been used to denote an estimate for example, 1% 

denotes an estimate of u. Unless specified otherwise, N denotes the total number of 

data points. The input and output are denoted by x(t), y(t) respectively and Zr is 
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a collection of N inputs and outputs 

ZN = 

U (0) y(0) 

u(1) y(l) 

- u(N) y(N) 

Matrices are denoted by upper case bold letters and M(i, j) means an element of 

matrix M in the i1h row and j" column. Vectors are denoted by lower case bold 

letters 

y= 

2.2 System Identification 

2.2.1 Definition 

System identification refers to a set of techniques that create mathematical models of 

systems using measurements of their inputs and outputs. Thus, unlike mathematical 

modelling, system identification is a top-down approach, that is, the system can be 

treated as a black box and minimal a priori knowledge of system characteristics is 

needed. The four basic entities required for system identification are [31]: 

1. A data set (input and output data) 

2. A set of candidate models 

3. A rule or process for model selection 
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4. A process for validating the selected model. 

The input and output data are collected from measurements of the physical sys-

tem. The next step is to choose an appropriate set of candidate models to describe 

the system. For example, one must decide whether to use models that are'linear or 

nonlinear, time invariant or time-varying etc. Once that choice has been made, the 

model is further specialized. For example, if the system is to be linear and time-

invariant, one could represent it using an impulse response or a frequency response or 

even a state-space model. Then a specific rule/process is identified to select the best 

possible model: for example, the model that describes the system most accurately, 

out of the set of candidate models. The last step is the validation step, where the 

selected model is tested by using it to predict the response to novel data. 

2.2.2 Applications 

System identification has applications in various different fields including control 

system design, [3], [171, biomedical engineering (systems physiology), [2], [34], aero-

dynamics [7], and wireless communications, [6], [51]. In the area of control systems 

it is very important to have a mathematical model of the system that is to be con-

trolled. In this area the applications emphasize short-range prediction of the system 

state, typically only one time-step into the future. In addition, recent model outputs 

may be used if the prediction is limited to one-step in the future. Thus, recursive 

model structures are commonly used in control applications. The identified model 

may be used online, or it may be used to design a controller. In either case, a simpler 

model is preferred. Since the emphasis is on one-step-ahead prediction, linear mod-

els are often adequate. Hence, controls applications often use low-order parametric 
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system models. A major exception is in Model based Predictive Control (MPG), 

where the system model is used to predict many steps into the future [4], [9]. In 

those cases, more accurate models are often required, and so more complex model 

structures are sometimes used. 

The physiological systems encountered in biomedical engineering are generally 

non-linear and time-varying. A great deal of research is being done in this field 

to model various sensory [8], [14], neuromuscular, [20], [46] and cardiopulmonary 

[50], [52] systems in order to gain a better understanding of their function and of 

the human body in general. Biomedical applications emphasize system analysis and 

understanding more so than short-range prediction. Models of physiological systems 

are often used in simulations, so, again, complex system descriptions are often needed 

(as in MPG) since recent system outputs are not available for use. 

2.2.3 Model Selection 

Once a suitable model class (set of candidate models) has been selected, the next step 

according to the list in section 2.2.1 is model selection. Model selection for a system 

becomes a search for the best model within the set using a particular rule. All of the 

models in a given model class can be represented by a vector, the parameter vector 0, 

containing all of the variables that define the model. The search for the best model is 

thus equivalent to the search for the best parameter vector. Evaluating the candidate 

models is done by a test which evaluates the models' ability to describe observed data 

and predict unknown data. Although, a good model should predict novel data well, 

in the searching process a model that predicts observed data accurately is adequate. 

A good model is a model that produces small prediction errors when applied to the 
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observed data. The prediction error is given by: 

e(t, 0) = y(t) - (tl0) (2.1) 

where Q(tI0) is the predicted output which is a function of time t, and 0. Let the 

prediction error be filtered by a linear filter L(q): 

F(t, 0) = L(q)(t, 0), 1 ≤ t ≤ N (2.2) 

The function VN(O, ZN) is, a well-defined scalar-valued cost function of the model 

parameter vector, 0 and is defined by: 

VN(O, ZN) = £(F(t, 0)) (2.3) 

where £( F(t, 0)) is a non-negative, scalar valued function of its argument, and, ON 

is an estimate of the parameters based on N data points and is defined by the 

minimization of (2.3) 

bN = arg min VN(O, ZN) (2.4) 

Here arg mill denotes "the minimizing argument of the function". If the minimum is 

not unique, we let arg mill denote the set of minimizing arguments. The filter L(q) 

in (2.2) acts as a frequency weighting. For our purposes L(q) = 1 has been used, so 

all frequencies will be equally weighted in the cost function. The standard choice for 

£ is the quadratic norm given by: 

= (2.5) 

where € is the vector which contains the prediction errors (t). The scalar form of 

(2.5) is given by: 

= 62(t) (2.6) 
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Rom Eq. (2.6) VN is given by: 

VN = (2.7) 

This norm leads to the Least Squares method of model selection which is the most 

common method for solving Linear System Identification problems. The Least 

Squares method is described in detail below. 

2.2.4 Linear System Identification 

Linear system identification is one of the most highly developed "sub-fields" of system 

identification [31]. It refers to the identification of systems whose outputs are linear 

functions of their inputs. Figure 2.1 illustrates the linear scaling property. 

A 
y 

A 

 00. 

Figure 2.1: Linear Scaling Property 

 00. 

Mathematically that means if y = Ax, where x is the input and y is the output 

and A denotes the linear system, then if the input is scaled by a factor of k, the 

output will be scaled by a factor of k as well: /cy = Akx. 

As well, linear systems follow the principle of superposition, i.e. if two inputs 

were added together and passed through a linear system, the final output would be 
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the same if the the two inputs were passed through individually and their respective 

outputs were added together: yi = Ax  and Y2 = Ax2, then, Yi + Y2 = A(xi + x2). 

Fig. 2.2 illustrates the principle of superposition. 

A 

Yl +Y2 

Figure 2.2: The principle of superposition 

Linear systems include parametric models such as AutoRegressive with Exoge-

nous input (ARX), AutoRegressive Moving Average with Exogenous input (AR-

MAX), Output Error (OD), Box-Jenkins (BJ) and state-space models, as well non-

parametric models such as Impulse Response Functions (IRFs) and Transfer Func-

tions. A generic linear system is shown in eq. (2.8) 

y(t) = G(q)u(t) + H(q)e(t) (2.8) 

where G(q) and H(q) are potentially time-invariant (TI), infinite polynomials in 

the shift operator q. G(q) filters the input, u(t), while H(q) filters the noise, e(t). 

Equation (2.8) is the most general form of linear TI systems and can also be written 
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as two infinite sums. 

00 00 

y(t) = '5 g(k)qu(t) + )' h(k)q ce(t) (2.9) 
k=1 k=O 

Several special cases of this model will be considered in the next two sections. 

For linear time-varying (TV) systems, the TI invariant polynomials G(q) and H(q) 

become time-dependant giving us the following equation: 

y(t) = G(q, t)u(t) + H(q, t)e(t) (2.10) 

where, G(q, t) and H(q, t) are time-varying (TV) polynomials in the shift operator q. 

Under linear system identification, TI linear systems form the most important class 

of dynamical systems considered in practice and in literature. Even though they 

represent idealizations of the processes encountered in real life, the approximations 

involved are often justified, and design considerations based on linear TI theory lead 

to good results in many cases [31]. The two major system classes under linear system 

identification include parametric and nonparametric models. 

Parametric Models 

Parametric models are obtained by replacing G(q) and H(q) with recursive, infinite 

impulse response (IIR) digital filters, or state space models. Examples of parametric 

models include ARX and OE models, explained in detail in this section. 

The ARX model structure, shown in Fig. 2.3, is linear in its variables. System 

dynamics can be easily understood using transfer function analysis or IRFs derived 

from ARX models [33]. The equation for Fig. 2.3 is given by: 

A(q)y(t) = B(q)u(t) + e(t) (2.11) 
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Figure 2.3: The ARX model structure 

where A(q) is the polynomial in the shift operator filtering the output y(t), B(q) 

is the shift polynomial filtering the input u(t) and e(t) is the unknown error in the 

system. Eq. (2.11) is equivalent to the following difference equation: 

Q 

y(t) = b(j)x(t -j) - 

:1=0 i=1 

(i)y(t - i) + e(t) (2.12) 

where a(i) and b(j) are TI ARX parameters that need to be estimated. In this 

equation t represents time, P and Q represent the degrees of the denominator and 

numerator polynomials respectively. Since the parameters are time-invariant and 

they appear linearly in the output, this problem can be solved by linear regression: 

y =MO+e (2.13) 

where y and e are vectors containing the output and noise, respectively, and M is 
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the regression matrix shown below: 

M = 

X(0) 0 0 ... —y(1) 0 0 

x(1) x(0) 0 ... —y(2) —y(l) 0 

x(2) x(i) x(0) ... —y(3) —y(2) —y(1) 
(2.14) 

The parameter vector, 6, contains the ARX coefficients that need to be estimated. 

On the other hand the Output Error (OE) model is a linear model which is 

non-linear in its variables. See Figure 2.4 below for a block diagram of this model. 

 01 
B(q)  

F(q) 

e 

Figure 2.4: Output-Error Block Diagram 

Now, writing the relationship between the input and the undisturbed output w 

as a linear difference equation we get: 

w(t) + flw(t -1)+...+fw(t — nf) 

= biu(t - 1) + ... + bbu(t - Thb) (2.15) 

the output of the OE model is then given by 

y(t) = w(t) + e(t) (2.16) 
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Define 

F(q)—l+f1q '+...+f q f (2.17) 

we can write the Output Error (OE) model structure as: 

Y(t) = 
B()() + e(t) 
F(q) 

(2.18) 

which is defined by the parameter vector: 

0 = [blb2 ... bbflf2 ... ff]T (2.19) 

In the OE model the predicted output is given by: 

(t, 0) = w(t) =  

= [u(t)u(t - 1) ... u(t - rib, —w(t - 1, 0), ,.., —w(t - n1, 0)]0 (2.20) 

Thus, the regression vector depends on the value of the parameter vector. Neverthe-

less, the output may be computed using the matrix multiplication: 

Y = M(0)0 + e (2.21) 

where the regressors in the matrix M(0) depend on the parameter vector 0. Since, 

the regression matrix depends on the parameters, the OE model is nonlinear in 

the parameters. Various methods including Bootstrap, Pseudolinear Regression, 

Instrumental Variables and Gradient-Descent Optimization can be used to identify 

an OE model [31]. The "bootstrap" method of solving for OE models includes 

constructing an intial estimate using Least Squares. This initial estimate is set up as 

if the system were ARX and thus the estimate is biased due to the error in the model 

structure. Then using the estimates of the parameters, the intermediate signal, w(t), 



16 

is generated and used to generate an updated regressor matrix. Using the updated 

regressor, the parameters are re-estimated, the estimate of w(t) is updated, and the 

process is repeated a number of times. It is clear that Linear Regression is a much 

simpler and more efficient way of solving for the unknown parameters, when and if 

it is applicable. Thus, linear in the variable models are often preferred over other 

more complex models if the two produce comparable results. 

Nonparametric Models 

A linear time-invariant system can be described by its transfer function or corre-

sponding impulse response. Nonparametric methods deal with determining these 

functions directly from the data, without assuming an underlying parametric model 

structure (such as the ARX or OB models discussed in the previous section). A 

nonparametric model is represented by its values at a large number of points. Thus, 

the term "nonparametric model" is a bit of a misnomer since identifying a non-

parametric model will require estimating a huge number of "parameters". 

The output y(t) obtained from convolution is given by: 

Y(t) = 
i-=O 

g(r)u(t - r) + e(t) (2.22) 

where g(i-) is the TI impulse response function and u(t—r) is the input delayed by r 

samples i.e. q_Tu(t). The above equation is an Finite Impulse Response (FIR) filter, 

which relating back to equation (2.8) is obtained by truncating the deterministic filter 

G(q) and setting the noise filter H(q) = 1. An example of a TI impulse response 

function is shown in Figure 2.5. 

As with the parametric model, eq. (2.22) can be solved using the linear regression 

in (2.13), where y is the vector containing the output and M is the regressor matrix 
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Figure 2.5: Representations of Discrete-Time, Time-Invariant Impulse Response 
Function. The upper panel shows a discrete time TI IRF sampled at O.Ols. The 
lower panel shows the linear interpolation of the discrete time IRF, which is the 
representation used in the body of this thesis. 
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containing columns of delayed input vectors shown below. The values of the IRFs 

are contained in 0. 

M = 

U(0) 0 0 

'u(i) 'u(0) 0 

u(2) u(1) u(0) 
(2.23) 

Linear Acausal Systems 

Linear acausal systems have also been considered in this thesis [15]. Acausal systems 

can be described by a two-sided IRF and is shown in Figure 2.6. 

x I  
2.5 

2-

1.5 

0.5 

E 

-1.5 

-2.5 
-0.05 0 

Lag(s) 
0.05 

Figure 2.6: 2-sided Impulse Response Function representing acausal systems 
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Eq. (2.24) describes a two-sided IRF. 

Y(t) = b(j, t)x(t - j) + e(t) (2.24) 

where Q is the number of causal terms and Qac is the number of acausal terms. 

Note that if b(j, t) 0 for Qac <j <0, the system will respond to an input before 

it arrives and hence the system will be acausal [16], [18], [19], [42]. Linear regression 

can be used to identify the IRF of an acausal system. However, in this case the 

regressor matrix M will contain both lagged and forward shifted copies of the input. 

Least Squares 

For FIR and ARX models, Equation (2.1) gives us the prediction error. Now, (tIO) 

in equation (2.1) can be calculated using: 

(tIO) = MO 

Substituting (2.25) into equation (2.1) we get 

€—y—MO 

Substituting (2.26) in (2.3) results in 

1 11Y 
- MOII VN(O,Z") 

1 
= y(Y - MO)T(y - MO) 

(2.25) 

(2.26) 

(2.27) 

For a given dataset, ZN, the function VN(O, ZN) is a well-defined scalar-valued func-

tion of the model parameter vector 0 [31]. The parameter vector that minimizes 

(2.27) satisfies the least squares criterion, also called the Mean Square Error (MSE). 
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Differentiating (2.27) w.r.t. 0 and setting the result to 0 solves the minimization 

given in (2.4) and in closed form we get: 

e = [MTM]_lMTy (2.28) 

Many commercial software packages contain routines for solving Eq. (2.28). For 

example, it is implemented in MATLABTM using the backslash operator. 

0 = (2.29) 

Linear regression forms the backbone for solving linear in the variables model 

structures, such as the FIR and ARX models discussed previously, and is used quite 

extensively in the balance of this thesis. 

2.2.5 Statistical Properties of Least Squares Parameter Estimates 

This section establishes the statistical properties of least squares parameter esti-

mates. This includes brief discussions of model accuracy, cross validation and noise 

sensitivity. 

Model Accuracy 

Model validation is an integral part of system identification. Once a model has 

been selected for a particular system, its important to verify the accuracy of that 

particular model. The percent Variance Accounted For (VAF) is one such measure 

of model accuracy. 

VAF = 100(1 - (var(y - )/var(y)) (2.30) 

where y is the system output and 0 is output of the estimated model. 
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In-sample vs Cross-Validation 

In-sample validation is sometimes used in system identification, due to the availabil-

ity of only a single data-set. In in-sample validation, the model is validated using 

the identification data. This however gives biased results because the noise present 

in the data may have already been modelled. 

On the other hand, validating on a novel data-set, cross-validation, gives a more 

accurate representation of the model's predictive power. Thus, ideally, two data-

sets are required for CV, one for identification and one for validation. The common 

practice is to use the first 70-80% of the data for identification and reserve the last 

20-30% for validation. However, this requires having a TI system and having the 

input that is stationary. 

However, having a short data length, TV data, or both limits the use of simple 

cross-validation, i.e. identifying on 80% of the data and validating on the remaining 

20%. Since the usual CV approach is not practical in these scenarios, alternate 

estimators of a model's predictive power have been proposed. These can be divided 

into two groups, the first one being methods that subdivide the data "point-by-

point" (i.e. 5 or 10 fold CV). The second group consists of methods that make 

statistical assumptions about the data, and try to infer the predictive power from in-

sample results (i.e. Akaike's Information Criteria [1], Approximate Cross-Validation 

(APCV) [42]). 

Fivefold-CrossValidation 

Given a data-set of length N, N and N are integers that list the number of points 

in the validation and identification sets [23]. So, one set contains N points, while 
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the other contains N0 points, where N and N0 are integers and N + N0 = N. There 

are () different subsets of size N. For each model Ma, the CV estimate of the 
squared prediction error is obtained by averaging over all or some sub-sets of size 

N. The model Ma is fitted using the construction data N0 and the prediction error 

is assessed using the validation data N. The squared prediction error is minimized 

over all the different subsets of the data. However, this becomes quite impractical 

even for relatively small data-sets, and some kind of simplified short-cut is required. 

In Tibshirani's paper [43] cross-validation is estimated using fivefold cross-validation. 

This method is a specific case of the Balanced Incomplete CV (BICV) described in 

Shao's paper [42] with N = 5. In Fivefold CV, the data-set is split into two, with 

every 5th row being put into the validation set. Five such trials are done, the first 

beginning with row 1, the second with row 2 and so on. The final squared prediction 

error is obtained by averaging the 5 intermediate prediction errors obtained from 

each of the 5 different models. 

2.2.6 Noise Sensitivity 

One of the steps in model validation is to assess how variable the parameters are 

to noise, or in other words, their sensitivity to noise. It is extremely important to 

evaluate the reliability of the parameter estimates. For a linear regression model, 

the covariance matrix of the estimated parameter vector is given by the following 

equation [49]: 

Co = a(MTM)_l (2.31) 
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where, Co is the covariance matrix of the estimated parameters in 0. ô3 is an 

unbiased estimate of the noise variance and M is the regressor matrix. 

From Eq. (2.31) it is clear that the covariance of the parameter estimates depends 

on the noise level and (MTM)_l. Obtaining the Singular Value Decomposition 

(SVD) of (MTM) we get: 

MTM = USVT (2.32) 

where U is an NxN matrix with orthogonal columns, S is an NxN diagonal matrix 

containing the singular values, and V is an NxN orthogonal matrix. So, the inverse 

of (MTM) could be written as: 

(MTM)_l = (USVT)l 

= (VT)lSlUl 

= VSlUT (2.33) 

From Eq. (2.33) it is clear that (MTM)1 depends on S'. For square, positive 

semi-definite matrices, the singular values are the same as the eigenvalues, and: 

8-1 = 

Aj 

0 

00 0 

1 
A2 

00 

0 0 

1 
A3 

000... 

0 (2.34) 
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where are the n eigenvalues of MTM. Combining Eq (2.33) and (2.34) it is 

clear that eigenvalues have an inverse relationship with matrix inverses. Thus, larger 

eigenvalues lead to a smaller inverses and smaller eigenvalues lead to bigger inverses. 

Relating the above with noise sensitivity, the larger (MTM) is, the better resis-

tant the model is to noise. Thus, larger eigenvalues are preferred. Also, the size of 

the largest term in Co is determined by the smallest eigenvalue, and adding rows to 

M reduces the smallest eigenvalue, thereby increasing the size of the largest term in 

Co. This is due to the Interlacing Property which states that [11], 

"If Ar denotes the leading r—by—r principal submatrix of an n—by—n symmetric 

matrix A, then for r = 1: n - 1 the following interlacing property holds": 

<A2(Ar+i) ≤ .Xi(Ar) <Ai(Ar+i) (2.35) 

where A represents MTM. From Eq.(2.35) it is evident that larger matrices have 

larger eigenvalues which ultimately lead to smaller inverse matrices thus giving a 

smaller covariance of the parameter estimates. Adding more rows (ensembles) to M 

leads to larger eigenvalues and a smaller covariance matrix. Also, adding parameters 

adds more eigenvalues, with the smallest one getting smaller and the biggest one 

getting bigger, thereby increasing the critical measure of conditioning (i.e. the ratio 

between the smallest and the largest eigenvalues). Thus, provided the model struc-

ture is capable of representing the system, estimating the smallest possible number 

of parameters from the longest available data record is likely to lead to the most 

accurate estimates possible. 
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2.2.7 Linear Time-Varying System Identification 

Most systems in the real-world do not follow the idealized linear time-invariant model. 

Most real systems are usually non-linear and/or time-varying. There is a great 

deal of research being conducted in the area of non-linear system identification: 

constructing models which explicitly include representations of the system's non-

linearities [29], [35]. However, a discussion of these techniques is beyond the scope 

of this thesis. 

A common engineering approach for dealing with nonlinear systems is to linearize 

the non-linearity about a particular operating point. For example, the force exerted 

by a non-linear spring is a non-linear function of its displacement. The simplest 

nonlinear spring has force equal to: 

F(x) = —kx + bx3 (2.36) 

where, k and b are spring constants, x is the displacement and F is the force. The 

simplest nonlinear spring needs to be cubic in order to avoid having an unstable 

region, which would be caused by a quadratic relationship between the force and 

displacement. The Taylor expansion about an operating point x0 for a short distance 

S is given by: 

F(xo + 8) = —kxo + bx + 6(F'(xo)) + 62 y, (F"(xo)) + 

= —kxo + bx + 8(—k + 3bx) + ... (2.37) 

Thus, extremely short displacements about a particular operating point can be mod-

elled as a linear function. The equation also takes into account the changing equl-
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librium point for a spring. 

The full non-linear system description is often very complicated, and identifying 

it would require testing the system at a large number of operating points (in order 

to map the entire non-linearity). However, if the behaviour is needed along a given 

trajectory, it is often simpler to treat the system as a linear, time-varying system, 

where the operating point moves along the given trajectory. For example, the rela-

tionship between the applied torque and the resulting motion of the human ankle 

from full plantarfiexion to full dorsiflexion is non-linear as a whole [32]. However, it 

can be linearized by considering only small perturbations throughout the movement. 

The other type of linear TV systems are those which genuinely have TV properties 

and thus have to be modeled using TV structures. The time-variations can be 

classified according to the magnitude of the timescale in relation to the dominant 

time-constants of the system's dynamics. Fatigue in neuromuscular systems and 

fading in wireless channel can be classified as time-variations with a time-scale that 

is of a similar (perhaps an order or two of magnitude longer) to the relevant dynamics, 

while aging of components in a control system is an example of time-variation with 

a relatively long time-scale. Specialized models and techniques are used for faster 

variations as opposed to the adaptive (but essentially TI) methods that are used for 

slower variations. 

2.2.8 Linear Parameter Varying Systems 

In this section we will consider systems that can be represented using linear regression 

models with TV coefficients. For example the output of a TV-Auto Regressive 
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Exogenous input (ARX) model is given by: 

y(t) = b(j, t)x(t - j) - 

j=o i=1 

a(i, t)y(t - i) + e(t) (2.38) 

where a(i, t) and b(j, t) are TV filter coefficients. The index t represents time and 

the indices Q and P are the maximum degree of the numerator and denominator 

polynomials, respectively, throughout the time variation. Sometimes the parameters 

b(Q, t) and a(P, t) may have values of 0, so that the instantaneous degree is less than 

P(or Q), however the maximum degree remains TI. As in LTI models, the term e(t) is 

the innovation present in the system. Two state-of-the art techniques for dealing with 

rapidly varying TV coefficients, temporal basis expansions and ensemble technique, 

are described in detail in the sections below. 

Temporal Basis Expansions for Parametric Models 

In temporal basis expansion techniques, each of the TV coefficients is expanded onto 

a set of TV basis functions, ir(t), selected by the user [12]. Expanding the TV 

numerator and denominator coefficients in (2.38) onto a set of basis functions: 

a(i, t) = a(i, k)lrk(t), 
k=O 

V 

b(j, t) = j3(j, k)lrk(t) (2.39) 
k=O 

where a(i, k) and j3(j, k) are the expansion coefficients and lrk(t) are the basis func-

tions. Substituting (2.39) into (2.38), 

Q V 

y(t) = :> k)Xk(t —j) 
j=O k=O 

P V 

a(i, k)yk(t - i) + e(t) (2.40) 
i=1 k=O 
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where, 

Yk(t -1) = lrk(t)y(t-z), 

Xk(t-j) = lrk(t)x(t—j) (2.41) 

Comparing (2.40) and (2.12) as a means of setting up the Least Squares solu-

tion, the regressor matrix Al contains all the candidate vectors y0(t - 1). ..yv(t - 

F), xo(t) ... xv(t - Q) arranged in the following way: 

M=1 y(t - 1) .....y(t - 1), xo(t) ,....xv(t) 

y0(t - 2) , ...yv(t - 2)..... , xo(t - 1), ...x  (t - 1), ...] (2.42) 

Once the Irk have been chosen, Xk and Yk are computed using eq. (2.41). The 

regressor matrix M can be constructed using (2.42). Using M and the output vector 

y, a linear regression can be solved to determine the unknown parameters a and ,8. 

Once, the a and /3 values have been determined, the values are substituted back into 

Eq. (2.39) to determine the original time varying parameters a(i,t) and b(j,t). 

Non-parametric temporal basis expansions 

The TV counterpart of (2.22) is given by: 

y(t) =) ' g(t, T)x(t - r) (2.43) 
r=O 

where 9(t, ,r) is the time-dependent IRF and x(t) is the input. Fig. 2.7 shows an 

example of a TV IRF. The IRFs last 0.2 seconds and are shown evolving over a 

period of 2 seconds. 

The IRFs in the figure represent the simulated intrinsic compliance of a human 

ankle. The ankle was moved from full plantarfiexion to full dorsifiexion over a period 
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Figure 2.7: Time-Varying Impulse Response Functions 
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of 2s. The 2s movement was divided into 200 equally spaced positions, each corre-

sponding to a given sampling time [32]. The data were sampled at a rate of 200 Hz. 

The compliance IRFs have been used to illustrate TV IRFs here and the simulation 

is described in greater detail in section 3.2. 

Again, expanding the TV IRF onto a set of basis functions we get: 

g(t, r) = L a(k, r)lrk(t) (2.44) 

where a(k, T) are TI parameters and rk(t) are the basis functions. Substituting 

(2.44) into ( 2.43), we get 

y(t) = a(k, r)lrk(t)x(t - T) (2.45) 
r=O k=O 

Now, we can define new variables such that: 

Xk(t - r) = lrk(t)x(t - T) (2.46) 

and by combining (2.45) and (2.46), we get 

y(t) = >> a(k,r)xk(t- r) (2.47) 
r=O k=O 

From (2.40) and (2.47) it is evident that the time variation is contained in the basis 

functions. As a result, the identification problem has been transformed into the 

estimation of a set of (TI) expansion coefficients, which can be accomplished by 

solving a linear regression (2.13). The regressor matrix in this case would contain 

delayed versions of the input vector multiplied by the basis functions. 

Mt=[xo(t)...xK(t),xo(t-1)...,xo(t-2) ... ] (2.48) 
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where 

Xk(t — T) = lrk(t)x(t—'r) 

= [lrk(1)x(1— r),lrk(2)x(2 - r), ..., lrk(N)x(N - ,r)]' (2.49) 

Appropriate Choice of Basis Functions 

One of the disadvantages of the basis expansion method is that the basis functions 

have to be chosen prior to the identification and have to model the time varia-

tion appropriately. Different basis functions show their own application dependant 

tractability and accuracy [53]. Thus, the successful application of this approach 

depends on the choice of an appropriate basis function. The basis functions need 

not be orthogonal or orthonormal but must be linearly independent of each other. 

Smooth variations can be modeled using orthogonal polynomials such as Tcheby-

chev or Legendre polynomials, periodic variations can be expanded onto sinusoids 

and sharp variations can be modeled with Walsh functions or Haar wavelets. The 

first 4 Tchebychev polynomials and Walsh functions are shown in Figures 2.8 and 

2.9, respectively 

Term-selection techniques, discussed in the next section, can .be used to evaluate 

the suitability of a proposed expansion basis. 

Term-Selection 

A major disadvantage with temporal basis expansions is the large increase in the 

number of parameters that must be estimated, and hence the resulting increase in 

the variance of those estimates. Specifically, if V is the numberS of elements in the 

temporal expansion basis, and P + Q +1 is the number of filter coefficients, a total of 

d = V(P+Q+1) parameters must be estimated. This can be mitigated by using some 
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Figure 2.8: Tchebychev Polynomials of degree 0,1,2,3 ove the domain [0 600] 

form of term selection to eliminate unnecessary regressors, which do not significantly 

contribute to the predictor output, and therefore reduce the dimensionality of the 

final estimation problem as much as possible. The term selection problem comes up 

in NARMAX identification as well [29], since NARMAX models are (pseudo) linear 

regression models and term selection techniques are applicable to all linear regression 

models. A great deal of the term-selection research has been done in this area, since 

similar overparameterization problems arise [23], [25], [44]. Several algorithms have 

been developed to address the term-selection problem. These include techniques 

based on orthogonal forward regression searches [24], [35], which are discussed in 

detail below. Other recently developed orthogonal searches include the Optimal 

Parameter Search (OPS) [53]. These algorithms all perform local searches, and, 
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therefore cannot be guaranteed to obtain the sparsest possible representation of the 

model. Other more global approaches to the term-selection problem include genetic 

algorithms [35] and significance testing based on boostrap resampling [29]. These 

methods though theoretically elegant require excessive computational time. 

Orthogonal Regression Searches 

Orthogonal regression searches rely on orthogonalizing the regressor matrix and using 

the orthogonalized relationship to compute how much each term will reduce the total 

mean-squared error [27]. The regressor matrix M is decomposed into H = MTM 

and ,8 = MTy. The ordered columns and rows of H are placed in new orthogonalized 

matrices C and R respectively. 

An error reduction ratio, Err is defined as the square /3 divided by the diagonal 

of H 

Err = diag(H) (2.50) 

A row and column of H is selected which gives the best reduction in error as the 

first column and row to include in new orthogonal matrices C and R. Elements of 

/3 are swapped as well. The rest of the rows and columns in H are orthogonalized 

w.r.t. to the first row and column. This process is repeated until no more columns 

contribute a greater reduction in the MSE than a pre-set tolerance, p. 

Ensemble Techniques 

Ensemble techniques produce very accurate models of TV systems without any a 

priori knowledge of their time variations, but as their name suggests, they require 

an ensemble of responses each of which contains the same time-varying behavior [32]. 
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They identify the dynamics at each point in time from a series of m input-output 

realizations; x(t, k) and y(t, k), k = 1. ..m, where t is the time since the beginning of 

the kth realization of the time variation. Thus, for the TV IRF model in (2.43), 

y(t,k) = h(j, t)x(t - j, k) + c(t, Ic) (2.51) 
:1=0 

At each instant, t, in the time-variation, there are m separate equations, corre-

sponding to Ic = 1.. .m. For TV FIR and ARX models respectively, for each instant 

of time, t, (2.43) or (2.38) are collected for all responses and rewritten in matrix 

notation as 

Yt = XH (2.52) 

where Yt is a vector of length m with kth element y(t, k), 

y(t,1) 

y(t,2) 

y(t,3) 

y(t,m) 

Ht is a vector of length Q with jh element h(t, j - 1), 

h(t, 0) 

h(t, 1) 

h(t, 3) 

- h(t, Q) 

and Xt is a m x q matrix with Ic, jt element x(k, t - j + 1) 

(2.53) 

(2.54) 
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Xt=: 

x(1,1) ... xt(1,q) 

x(2, 1) . . . x(2, q) 
(2.55) 

- xt(m, 1) ... xt(m, q) - 

In practice, Eq. (2.52) is solved for each time point, t. Conceptually, the equations 

can be grouped into a single relationship and collected into a single matrix that looks 

like: 

Yti 

Yt2 

xtl 0 ... 0 

0 X 2 ... 0 H 2 
(2.56) 

YT 0 0 ... XT HT 

Equation (2.52) is solved by linear regression for t = 1.. .T. For (2.52) and hence 

(2.56) to have a solution, Xt from (2.55) must have more rows than columns. In 

this method the input-output data are chosen from the same point in the system's 

time-variation across an ensemble of responses, rather than over the time course of 

a single response [34]. Thus, at least one response is required for each point in the 

IRF. 

A big advantage of this method is that additive noise can be averaged out by 

using multiple ensembles. Also, no prior assumptions are required about the TV 

basis functions. However, the practical use of this method is limited because in 

many applications it is very difficult to consistently repeat experiments enough times 

to obtain the necessary sets of input-output data. Ensemble techniques have been 
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used in biomedical applications such as tracking dynamic ankle stiffness during a 

rapid, voluntary, isometric contraction [34]. The ensemble technique has also been 

extended to identify parallel cascade models of ankle stiffness [2]. 



Chapter 3 

The Combined Ensemble Basis Expansion 

Algorithm 

This chapter includes a description of the development and testing of a new algorithm 

for time-varying system identification which combines the two techniques, Basis Ex-

pansion and Ensemble algorithms, described in Chapter 2. The combined Ensem-

ble/Basis Expansion (EBE) algorithm is derived, and its performance is demon-

strated using data from a simulation of the time-varying compliance dynamics of the 

human ankle, as the ankle moves from full dorsifiexion to full plantarfiexion . 

3.1 Theory 

Two recently developed techniques for linear, time-varying system identification were 

reviewed in Chapter 2, each of which had a potentially serious drawback. With basis 

expansions a large number of parameters must be estimated. With the ensemble 

technique more parameters have to be estimated than with basis expansions (a set 

of parameters is estimated for every time-point) and to do this a large number of 

data-sets must be obtained. The biggest drawback with the ensemble technique is 

that its extremely difficult to consist antly repeat experiments enough times to obtain 

the necessary sets of input-output data. Thus, the two methods, Basis Expansions 

'An abbreviated version of this chapter was presented at IEEE Canadian Conference on Elec-
trical and Computer Engineering, 2005 
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and the Ensemble Technique, were combined for this new method of system iden-

tification. In this new method, there is an ensemble of input/ouptut records where 

the system undergoes the same time variation in each realization (just as in the en-

semble technique). However, instead of estimating a full set of parameters at each 

point in the time variation, the TV parameters are projected onto a set of basis 

functions, thereby reducing the number of parameters to be estimated. The EBE 

algorithm reduces the number of parameters that must be estimated, as compared 

to the ensemble method [34], and therefore reduces the number of datasets necessary 

to achieve a given noise performance. The EBB algorithm uses the signal averaging 

properties of the ensemble algorithm to reduce its noise sensitivity, as compared to 

the temporal basis expansion technique [53] using an indentical expansion basis. The 

EBB algorithm reduces the severity of the disadvantages of each of the individual 

techniques. 

Since an ensemble of datasets will be required, let u(k,t) and y(k,t) be the input 

and output at time t in the realization. The output y(k,t) can be written as: 

y(k,t) = 

where, 

a(i, 1)yi(k, t - i) (3.1) 

tiz(k,t—j) = rj(n)u(k,t—j) 

yi(k,t—i) = irj(n)y(k,t—i) (3.2) 

where /3(j, 1) and a(i, 1) are the TI parameter with j, i representing the numerator and 

denominator orders respectively and 1 representing the order of the basis functions 

with a maximum of V parameters. From Eq.(3.1) it is clear that the basis elements 
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1 do not depend on the ensemble number k. Thus, we have: 

yo(1,n— 1) 

yo(1,n— 2) 

y1= 

Similarly, M can be written as: 

M 1= 

y1(1,n —1) 

y1(l,n — 2) 

yv(1,n 1) 

yv(1,n— 2) 

uo(l,n) 0 0 0 0 

uo(l,n—l) uo(1,n) 0 yo(1,n—l) 0 

uo(1,n-2) uo(1,n-1) uo(1,n) yo(1,n-2) yo(1,n.—l) 

(3.3) 

(3.4) 

Since the true expansion coefficients are the same in each realization, the basis 

vector is repeated the same number of times as the number of ensembles. The y and 

M matrices are also stacked with multiple ensembles. Thus we are solving the linear 

regression in equation ( 1.4), but using the following matrices: 

y = [yfy' 

M = [M'M' 

 Yki 
T1T 

' 

TIfT1T 
J-vJ.Jc I (3.5) 
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where Yk and Mk are the input and output matrices from the kt ensemble, as defined 

in Eqs. (3.4) and (3.5). 0, however, contains the same number of elements as in 

(1.4). Combining the two methods helps eliminate some disadvantages of each of 

the two methods. Using the ensemble method reduces the effective noise level and 

hence the noise sensitivity of the parameters by signal averaging. On the other hand, 

the use of basis expansions reduces the number of parameters needed to represent 

the time-varying system, and thereby reduces the number of ensembles required for 

identification. In the ensemble technique the number of input/output records must 

at least equal the number of model parameters at one time instant. However, the 

number of ensembles required for the combined technique is drastically reduced since 

the time-variation is contained in the basis functions. 

The last step of the algorithm is using a term-selection technique, which is iden-

tical to the ordinary basis expansion method (except in this case we have reduced 

noise sensitivity due to the use of the ensembles). Term-selection techniques were 

discussed in section 2.2.8. 

3.2 Simulation 

The EBE technique was tested on simulated TV data that represents the intrinsic 

compliance of the ankle joint as its position varies from full plantarfiexion to full dor-

siflexion over a period of 2s [32]. Intrinsic joint compliance is defined as the dynamic 

relationship between torque arising from intrinsic properties of joint and muscle and 

the joint angular position [32]. For small displacements about a stationary operating 

point, ankle dynamics can be modeled by a linear, second-order low pass filter with 
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transfer function (TF): 

0(S) 1 36 
T(s) - Is2-i-Bs-i-K 

where 0(s) is the Laplace transform of the joint's angular position, T(s) is the torque 

produced about the joint, and I,B and K are the position-dependant inertia, viscos-

ity, and elasticity parameters respectively. 

400 

300 

200 

1002 04 06 08 112 14 16 18 

1.5 

ci, 

- 

0.5  
0 0.2 0.4 0.6 0.8 

0.025  

1.2 1.4 1.6 1.8 

- 0.02-

0015 I I I I I I  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 
time,s 

Figure 3.1: Time-Varying parameters I,B,K - Parameters are actually functions of 
joint angle which is shown varying from full plantarflexion to full dorsiflexion over a 
period of 2 seconds 

The model parameters I, B, K have been shown to depend on the average ankle 

angle and background contraction level [16], [18], [19], [45]. However, the LTI model 

in Eq.(3.6) remains valid for minor displacements about a fixed operating point, pro-

vided the corresponding parameter values are used. For the simulation, the values 

of the I, B, K parameters and their dependance on the ankle position, 0 were deter-

mined from previously published values [32]. The ankle was simulated moving from 

full plantarfiexion to full dorsiflexion over a 2s period. Thus, the I, B, K parameters 
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were effectively time-dependant as shown in Figure 3.1. 
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Figure 3.2: Block diagram for ankle dynamics simulation 

The simulation was performed by dividing the ankle movement into 200 equally 

spaced positions, each corresponding to a given sampling time during the 2s move-

ment. The input perturbation for the simulation was generated by filtering Gaussian 

white noise with a second-order low-pass Butterworth filter with cut-off frequency 

of 25 Hz. Since Gaussian white noise has a fiat frequency spectrum, the maximally 

fiat pass-band of a Butterworth filter makes it an ideal choice for this application. 

This was done to simulate the capabilities of the experimental apparatus described 

in [32]. At each sampling time, a time-invariant transfer function was calculated. 

The process is illustrated in Figure 3.2. For simulation purposes, the TI continuous 

time TFs corresponding to each point in the 2s simulation, were discretized using 

a Zero Order Hold and the numerators and denominators were extracted from the 

discretized system. The numerator and denominator were then used to form an ARX 

model, which was then simulated using eq. (2.38). The ARX model was used to 

generate the output. The true TV IRFs are obtained by calculating the impulse 
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response of the TFs from the ARX models and are shown in Fig. 3.3. The input and 

output were then used to form the regressor matrix M. Three different simulations 

were performed: one with noise-free data, the second with 7 dB of additive noise and 

the third with 12 dB of additive noise. For the noise-free data, identification was 

performed using just the basis expansion technique, where the expansion basis con-

sisted of the first four Tchebychev polynomials shown in Fig 2.8. These were chosen 

because of their smooth time-variations spread evenly over the entire time-scale. For 

the noisy data, identification was performed using just the basis expansion and then 

a combination of 6 ensembles and basis expansions using the same set of Tchebychev 

basis functions. Once the time-varying parameters had been expanded onto the basis 

functions the final coefficient estimates were obtained using Least Squares and the 

FOS [24] was used for term-selection for all three cases. 
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Figure 3.3: Simulated TV IRFs 

1.5 

Figure 3.3 shows TV IRFs. The x-axis is the lag, while the y-axis represents 
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time. Each slice parallel to the lag axis corresponds to an IRF at a particular point 

in time. 

The results were validated using the Variance Accounted For (VAF) which was 

described in eq. (2.30). For this case the VAF was computed for the impulse re-

sponses, at each point in time as follows: 

F T 

VAFjrf(t) = 100 (1  E T= 0h2(t,.7-) r))2) (3.7) 

where h(t, 'r) is the true simulated IRF and i(t, r) is the estimated IRF and the VAF 

is calculated across all lag '7, for each instant in time. 

3.3 Results: Basis Expansion Algorithm 

The model obtained from the first simulation, using the noise-free data and a single-

trial, was accurate. It matched the simulated IRFs closely with an average VAF of 

99.9%. This result validates the use of Tchebychev polynomials as the temporal basis 

expansion funcion. Thus, the model is capable of representing system dynamics, so 

that any errors in the following simulations are due to effects of noise and not due 

to undermodelling. 

The TV IRFs estimated from a single-trial on data with 7 dB of additive noise 

are shown in Fig. 3.4. Significant errors are evident at the beginning and end of the 

data records. The magnitude of these errors masks the behaviour at all other times 

in the ensembles. Figure 3.5 shows the same estimated time-varying IRFs from is 

to 1.5s. 

As we can see the middle section matches up very well with the actual IRFs. The 

accuracy of the identified IRFs shown in Figure 3.4, further corroborates this. The 
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Figure 3.5: Estimated IRFs for SNR = 7dB, Single Trial, t = 1-1.5s 
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average VAF between the true IRFs and the single-trial IRFs shown in Fig. 3.6 is 

—3.62 x iO%, ranging from 99% to —5.66 x iO"%. 
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Figure 3.6: Variance Accounted For, 7dB single trial model 

The second trial was performed at 12dB SNB. and somewhat better results were 

obtained. Fig 3.7 shows the IRFs obtained using the basis expansion algorithm with 

12dB of SNR. 

Again, zooming in on the figure and displaying the IRFs from is to 1.5s, it is 

evident that it is only the extremities that are estimated inaccurately. 

The average VAF for this particular trial is 72.6%, ranging from 99% to -1986%. 

Model accuracy is plotted as a function of time and is shown in Fig. 3.9 and again 

it is clear that the extremities are estimated extremely inaccurately whereas the rest 

of the IRF estimates are quite accurate. Comparing Fig. 3.6 and Fig. 3.9 we can 

see that the accuracy of the 12dB model is fax less variable than that of the model 

identified at 7dB SNR. 
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Figure 3.7: Estimated IRFs for SNR = 12dB, Single Trial 
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Figure  3.9: Variance Accounted For, 12dB single trial model 
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3.4 Results: Ensemble Basis Expansion Algorithm 

The ensemble basis expansion technique was applied to noisy data obtained under 

the same conditions: 7 dB SNR. The EBB used 6 times as much data (i.e. 6 trials), 

as compared to the traditional BE algorithm. 

At 7 dB SNR, the estimated IRFs using the EBB algorithm is shown in Fig. 

3.10. It is clear from this figure that the combined technique provides much better 

estimates of the IRFs, particularly at the beginning and ends of the records. The 

average VAF is 94.3%, ranging from 82.2% to 99.9% which supports that this is a 

much better model. Fig.3.11 shows the VAF vs time obtained from this method. 

Again comparing this figure to the two previous VAFs vs time Fig. 3.6 and 3.9, that 

the combined technique provides a much more accurate model estimate. 

3.5 Statistics of the Estimates 

Monte-Carlo simulations (100 trials) were performed to estimate the means and 

variances of the IRFs estimated by both methods at an SNR of 7dB. Figure 3.12 

shows the standard deviations of the IRFs obtained from using a single trial at 7dB 

of SNR from time, t = 0.2s to 1.94s. The standard deviation is plotted in a 3-

dimensional graph against Lag and Time. Again, we see that at the extremities the 

standard deviation starts to vary quite a bit. 

Fig. 3.14 shows the same 3 dimensional standard-deviation graph from time, 

t = 0.2s to 1.94s, except this was obtained from using the combined technique at 

the same SNR of 7dB. The differences between the two graphs show that the en-

semble technique is indeed more robust than just using temporal basis expansions. 
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Figure 3.11: Variance Accounted For (VAF) between IRFs plotted as a function of 
time, SNR = 7 db EBE algorithm, 6 ensembles 

The standard deviations on this graphs have much lower values and the standard 

deviations do not start varying much towards the extremities. This clearly indicates 

that there is much less deviation in parameter estimates when using the combined 

techniques as opposed to just using temporal basis expansions. 

Fig 3.14 shows a comparison of the standard deviations obtained from the two 

methods at the same point of time (t = 0. is). 

In this figure the average IRF is plotted in solid for all lags and time t = 0. Is. 

The dotted lines show the mean plus and minus one standard deviation (SD) of 

the IRF using the combined method, while the dashed lines show the same bounds 

but using just the basis expansions. Again, it is obvious that the combined method 

provides much less variability in the estimates, proving that it is a better method 

than just the temporal basis expansion technique for this particular application. The 

results also strongly suggest that this method would provide superior results if used 

for identification of other linear, time-varying systems. 



53 

lag(s) 

Figure 3.12: 3D Standard Deviation for Single Trial t = 0.2 - 1.94s, SNR 7dB, 

estimated from 100 Monte-Carlo simulations 
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Figure 3.13: 3D Standard Deviation for Combined Technique t = 0.2 - 1.94s, SNR 
7dB, estimated from 100 Monte-Carlo simulations 
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Chapter 4 

Temporal Basis Expansions using an Optimal 

Term Selection Strategy 

One of the biggest problems with the temporal basis expansion algorithm introduced 

in Chapter 2 is the large number of potential model terms created by the expansion. 

While the ensemble approach described in Chapter 2 and the EBB technique de-

scribed in Chapter 3 can reduce the effective noise level, they do nothing to address 

the overparameterization. Robust identification of the model requires pruning the set 

of terms to produce a minimal set of significant terms, that can be estimated with far 

greater reliability than was possible before the excess terms had been removed. Since 

the term-selection process reduces the number of columns in the regression matrix, 

it should also result in a decrease in the variability of the parameter estimates, as a 

result of the mechanisms described in Section 2.2.6. This chapter provides a detailed 

description of a recently proposed term-selection technique, called the Least Absolute 

Shrinkage and Selection Operator (LASSO) [43], that was originally developed for 

linear-regression models. The LASSO term-selection technique constructs a model 

structure with a nearly minimal number of non-zero terms, deleting as many terms 

as possible without eliminating any significant terms, and hence having parameters 

with low variance and low bias. This term-selection technique was adapted for use 

in identifying linear, time-varying models'. 

'An abbreviated version of this chapter was presented at the IEEE Engineering in Medicine and 
Biology Conference, 2005, [40] 
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The balance of this chapter is organized as follows. In Section 4.1 the theory be-

hind the LASSO term selection technique is reviewed, and the technique is adapted 

for use in with TV LTI models. The LASSO based term-selection is proposed as 

an alternative to currently available techniques including Fast Orthogonal Search 

(FOS) [24], the Optimal Parameter Search (OPS) [33], [53], and the Bootstrap tech-

nique [29]. These existing term selection techniques are described in Section 2.3.1. 

Section 4.2 outlines the actual algorithm in detail. The algorithm is demonstrated in 

detecting changes in the dynamic stiffness of the human elbow immediately following 

the onset of a broadband perturbation, which is presented in Section 4.4, 4.5 and 

4.6. 

4.1 Theory 

LASSO is a term-selection, and in this context a model-structure selection, technique. 

Given a linear regression, the LASSO attempts to construct the sparsest possible 

solution, i.e. that with the fewest non-zero elements [43]. Kukreja et al. [30] have used 

LASSO for term-selection in the identification of parametric non-linear time-invariant 

models, a similar application in which a relatively small number of significant model 

terms must be extracted from an initial model structure that includes a large number 

of mostly insignificant terms. LASSO has also been used for other applications 

including PET imaging and analysis of cerebral blood flow [13], [26]. 

LASSO was developed for selecting terms in a linear regression in standard form 

such as y = MO. The columns of M contain delayed versions of the input and output 

multiplied by basis functions because of the specific application of LASSO in this 
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case i.e. identifying linear, TV systems, and must be normalized before the LASSO 

can be used. Once that has been done, the sum of squared errors is minimized 

mm II - MII Subject to 

which is equivalent to minimizing 

.1 
nun - II - MOII + A IIII e2 

<T (4.1) 

(4.2) 

where the relaxation parameter A is essentially a Lagrange multiplier associated 

with the constraint in (4.1). This is also the cost function that is minimized by a 

similar method called Basis Pursuit Denoising (BPDN) [5]. While the term-selection 

problem is a non-convex combinatorial problem, the minimization in (4.2) can be 

transformed into a quadratic programming (QP) problem with linear constraints. 

To accomplish this define 8 to be a vector containing the positive elements of 0, 

with zeros used as place-holders for the negative elements. Thus, 

= max(O, 0) (4.3) 

and let 0.... contain elements 

Thus, all the coefficients in the vector 

max(—O, 0) (4.4) 

(4.5) 
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are non-negative. By constructing the regression matrix, 

A=[M _M] 

the minimization in (4.2) becomes, 

(4.6) 

min i 
II - A& + A s.t. ≥ 0 (4.7) 

i 

which is a standard quadratic program. The relaxation parameter, A, determines 

the relative weight given to the two terms in (4.2), or equivalently, (4.7), and hence 

controls the number of non-zero terms retained in the final model. Increasing A 

increases the cost associated with each term retained in the model, and tends to 

reduce the number of terms in the final model. Conversely, decreasing the value 

of the relaxation parameter tends to result in an increase in the number of model 

terms. The structure selection problem, therefore, has been reduced to searching 

for the optimal value for the relaxation parameter, A. Optimal is used in the sense 

that the corresponding model produces the minimum mean squared error (MMSE) 

output predictions, when it is applied to novel data: data not used in the structure 

detection and parameter estimation procedure. Cross-validation is performed using 

methods described in Section 2.2.5, under Model Accuracy. 

4.2 Algorithm 

In practice searching for the MMSE value of the relaxation parameter is difficult, 

as the resulting cost-function is non-convex. As a result, there exists a potential for 

multiple local minima, as is evident in Figures 4.1 and 4.6, which show typical A 
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vs MSE curves. An exhaustive search will be required to find the global minimum. 

However, such an exhaustive search is possible, since we can constrain A to lie in 

2 4 6 8 
Lambda 

10 12 14 16 

Figure 4.1: A typical Mean Squared Error vs relaxation parameter A graph 

a feasible range. The lower limit on A is the point at which LASSO retains all of 

the model terms, clearly any further reduction to A will not cause any additional 

terms to be added to the model. Similarly, there is an upper limit, at which point 

the QP has no feasible points, and hence no solution. We use a logarithmic sweep 

to identify these two extremes, and then use a finer grained search to construct 

the MSE between them, and finally choose the value of A that minimizes the MSE. 

For every value of A, the optimization in (4.7) is solved using the primal-dual Log 

Barrier method, resulting in a reduced model structure. In practice, the interior 
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point iteration does not reach the boundary, where one or more parameters are 

set exactly to zero, but terminates very close to it. Thus, the parameter vector is 

further simplified by setting those particular parameter values to 0 that reduce the 

cost-function. This step moves the parameter vector from an Interior Point (IP) to 

the boundary of the convex search area. Once the optimal model structure has been 

determined, a final linear regression is used to determine the parameter values that 

minimize the MSE, without any of the bias that the regularization introduces. 

4.3 Application: Elbow Stiffness Dynamics 

In this section we present an application of the basis expansion algorithm, described 

in Chapter 2, in combination with the LASSO based term selection technique dis-

cussed in the previous section. The final algorithm was tested on data from an 

experiment to investigate human elbow stiffness dynamics. 

Joint dynamics describe the relationship between the torques applied about a 

joint and the position, velocity and acceleration of the corresponding limbs [48]. 

This relationship can be approximated by the linear, second-order low-pass filter 

given in eq. (3.6), which is repeated here for convenience. 

0(s) 1 48 
T(s) - Is2+Bs+K 

The parameters I, B and K in eq. (4.8) represent inertia, damping and spring 

constant and depend on background activation, position and perturbation amplitude. 

These linearized I, B, K models are only valid under specific operating conditions, 

and furthermore, they do not include any provision for modelling the actions of 

reflexes. System identification techniques have been used to estimate models of joint 
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dynamics by fitting models between input perturbations and the system's response. 

Results of such studies have been presented in [16],J19], [22], [45], . These studies 

indicate that human joint dynamics can be modelled quite effectively using the linear, 

second-order function shown in Eq.(4.8). 

Applications of these identified models have also been quite wide-spread. In 

Mirbagheri et al., system identification techniques were used to measure ankle dy-

namic stiffness at different positions through the range of motion, for passive and 

active conditions, in spastic, spinal cord injured (SCI) and healthy subjects. The 

study was undertaken to address issues regarding spastic hypertonia. Spasticity is a 

motor disorder associated with lesions at different levels of the nervous system due to 

traumatic injury, multiple sclerosis, cerebral palsy, or stroke. Hypertonia is an abnor-

mal increase in muscle tone (which is characterized as the sensation of resistance felt 

as one manipulates a joint through a range of motion, with the subject attempting to 

relax) and is regarded as the defining feature of spasticity [37]. Two important issues 

the study addressed were describing the mechanical properties of the joint in terms 

of its dynamic stiffness and characterizing the relative contributions of intrinsic and 

reflex stiffness using a parallel-cascade identification technique. The results from this 

study demonstrated that the overall joint stiffness was substantially greater in SCI 

subjects, both intrinsic and reflex mechanical responses were significantly increased 

in SCI patients, but the major mechanical abnormality arose from increased reflex 

stiffness, and the relative contributions of reflex and intrinsic changes were strongly 

dependant on position and condition [37]. 

In another different application time-domain and frequency-domain multiple-

input, multiple-output (MIMO) linear system identification techniques were used 
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to estimate the dynamic endpoint stiffness of a multijoint limb [39]. Estimates of the 

endpoint stiffness provides insight into how the nervous system normally controls 

motor behaviour. Understanding the stabilizing actions of the stiffness properties 

are useful in efforts to restore movements in disabled individuals by providing an 

indication of the effectiveness of rehabilitation interventions such as reconstructive 

surgery, external orthoses, and/or functional neuromuscular stimulation [39]. 

The above studies are just two examples of the various applications where system 

identification techniques and joint dynamics studies can be used. These studies 

provide useful quantitative results which can be used in clinical environments. 

However, one of the uncertainties regarding this method of identification is whether 

the perturbation actually changes the system dynamics. The linearized models de-

pend on the perturbation amplitude, so turning on the perturbation is much like 

moving from one operating point (zero amplitude) to another operating point [19]. 

The goal of this experiment was to use TV system identification to detect transients 

at the onset of perturbation. The actual experiment involved perturbing elbow pos-

ture to estimate elbow dynamics. The identification algorithm described in this 

chapter was used to estimate elbow dynamics using experimental data. 

4.3.1 Experimental Apparatus 

These experiments were performed at the Rehabilitation Institute of Chicago by Dr. 

Eric Perreault in March 2005. A linear motor (Copley ThrustTube, TB3806; Copley 

Controls, Canton MA) was used to perturb elbow posture. The motor was oriented 

orthogonal to the forearm and the upper limb was strapped into an adjustable trough 

to restrict motion to the elbow joint only. A custom-fitted fiberglass cast extending 
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from the fingers to the middle of the forearm was used to maintain the wrist joint 

in a neutral position and to attach the forearm to the actuator via an aluminum 

plate epoxied under the cast and a precision bearing centered at the wrist. This 

configuration allowed rotation only in the horizontal plane. Elbow torques were 

measured by a load-cell (67M25; JR3; Woodland, CA) mounted between the cast and 

linkage. This sensor has a force range of ±200N, and a moment range of ±12Nm, 

with an accuracy of better than 0.05N. Actuator motion was measured using a linear 

encoder (R0H24; Renishaw, Gloucestershire, UK) with a measurement resolution of 

The actuator was controlled by a dedicated computer running Matlab xPC 

(The Mathworks, Natick MA). This system was also used for data collection and to 

provide the subject with visual feedback of the voluntarily generated joint torques. 

Motor control and data acquisition occurred at 5KHz. The analog force signals 

were sampled by a 16-channel, 16-bit data acquisition system (PCI-DAS1GO2/16; 

Measurement and Computing, Middleboro, MA). Prior to sampling the force signals 

were anti-alias filtered using custom-built, differential input, 4th order Bessel filters 

with a cut-off frequency of 500Hz. The experimental set-up is shown in Fig. 4.2. 

In the experiments, the subject was instructed to maintain the background con-

traction level presented on an oscilloscope. Once the target force had been reached, a 

broadband perturbation was applied to the input of the position servo for 5 seconds. 

The goal of the experiment was to detect any changes that might have resulted in 

the dynamic stiffness of the elbow as the result of the perturbation. A total of 28 

such trials were performed. 

Fig. 4.3 shows the data recorded during Trial 20, and is typical of the experimen-

tal recordings. For the stiffness models, displacement was taken as the input and 
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Figure 4.2: Experimental Setup for the Elbow Dynamic Experiment - Figure courtesy 
Eric Perreault 



65 

200 

160 

100 

—50 

—100  
0 

15 

1 1 

w 
E 

0 0 

5 

x -3 

2 3 4 5 7 8 9 

1 2 3 4 5 6 
Time(s) 

7 8 9 

Figure 4.3: Typical Experimental Data, Force and Displacement over 9s 
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force as the output. Since the broadband perturbation was applied for 5 seconds, 

only the last 5 seconds of the data were used for the identification purposes. The DC 

value from the first 4 seconds of each trial was removed from the actual data used. 

4.4 Results: Elbow Stiffness Dynamics 

Since displacement was used as the input and torque as the output, stiffness models 

were identified using the two-sided IRFs described in Section 2.2.4. Acausal models 

represented by two-sided IRFs, as shown in Eq. (2.24) were fitted to the data [15]. 

The equation has been repeated here for convenience. 

QC 
y(t) = > b(j, t)x(t - j) + e(t) (4.9) 

The identified model included a total of 31 time-varying IRF weights with 5 anti-

causal coefficients, so that Q = 5 and Q0 = 25 in equation (2.24). The time-

variations at each point in the IRF were represented using the first 4 Tchebychev 

polynomials as shown in Figure 2.8. The stiffness IRFs that were estimated using the 

basis expansion algorithm, but without any term-selection, are shown in Fig. 4.4. 

Using this particular basis functions a subtle time-dependance is evident, especially 

in the amplitudes of the highest two peaks. 

Next, the LASSO procedure was used to remove any insignificant terms from the 

model. First, the optimal value of the relaxation parameter was determined using an 

exhaustive search. Figure 4.6 shows the MSE estimated using 5-fold cross-validation 

as a function of the relaxation parameter, A. It reaches a minimum at A = 0.28, where 

the LASSO eliminated 80 of the 186 terms (43%) in the initial model. The resulting 

time-varying IRFs are shown in Fig. 4.5. As we can see the time-variations apparent 
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Lag(s) 

Figure 4.4: Time-Varying impulse responses for elbow stiffness dynamics using 
Tchebychev basis functions and estimated using linear regression 

in this figure are very similar to the one in Fig 2.8. Again, subtle time-dependance 

is evident in the amplitudes of the highest two peaks. 

Finally, the model was tested on data from a separate trial. The results are shown 

in Fig. 4.7. This particular model could not predict output from novel data very 

well with the VAF being -6255.2%. 

Using 4 Tchebychev polynomials as basis functions, we obtained results that 

had subtle time variations. From the results obtained by testing the model with 

novel data it seems that the model is not well characterized using these low degree 

polynomials. 

If any time-variation is present in the data, it is likely to be a transition between 

an initial, pre-perturbation state, and a final, steady-state. Note, however, that 

the low-degree polynomials used in the previous analysis are not well-suited to such 
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transient time-variations as they tend to spread the TV across the whole record. 

Thus, for this particular application, a basis that can represent transient phenomena 

is required (in addition to a constant term that will represent the steady-state). 

Laguerre filters, which are described in detail in the next section, may well be suitable 

basis functions since they exhibit transients that are likely similar to the anticipated 

time-varying behaviour. 

Laguerre Filters 

The basis of discrete Laguerre filters comprises the IRFs defined by 

hk('r) =a(1 - a)1' 
i=O 

(_i)i (0 () a(1 - a)' ≥ 0 (4.10) 

Rom equation (4.10) it is clear that all the IRFs are dependent on a single 

parameter, a, called the 'decay parameter'. Fig. 4.8 illustrates the IRFs of the first 

four Laguerre filters for a = 0.25, a value often used in system identification because 

it provides a reasonable compromise between number of parameters and the length 

of the resulting IRFs [47]. 

Laguerre filters have three very desirable properties [36], [49]: 

1. The IRFs are orthogonal and lead to well-conditioned estimation problem. 

2. The IRFs decay exponentially to zero as T goes to infinity. 

3. The outputs of the Laguerre filters can be computed efficiently [38], by recur-

sively applying the same filter. Thus, the zero-order filter output is obtained 

using the relation 
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Figure 4.8: The first four impulse responses of Laguerre filters for c = 0.25 
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xo(t) = \/&Xk(t - 1) + v'l - au(t), xo(0) = 0 (4.11) 

where u(t) is the input. The z-domain transfer function of this filter can be 

written as: 

Ho(z)=  

The output of filter k can be obtained by filtering the (k - l)th filter with 

(4.12) 

Xk(t) = NfaXk - 1) + \/ Xk...1(t) - - 1), Xk(0) = 0 (4.13) 

The z-domain transfer function of equation (4.13) can be written as: 

so, 

-1 

ap (4.14) 

Xk(z) = Hap(Z)Xk_l(Z) = Ho(Z)(Hap(Z))hU(Z) (4.15) 

where, q is the forward shift operator defined in section 2.1. 

Laguerre Results 

While Laguerre filters (with the inclusion of a constant term) seem to be an ideal 

choice for basis functions, the performance of the basis expansion depends on the 

value of the decay parameter a. Thus, application of the LASSO algorithm required 

finding the optimum values for both the decay parameter, a, and the relaxation 

parameter A. This was done by setting A to various values from 0.1 to 15. For each 
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different value of A, 100 iterations of the algorithm, each with a different a were 

processed. The optimum a was chosen based on the a value that minimized the 

Mean Squared Error (MSE, also called the 5-Fold CV Cost-Function). The following 

table shows the various A values and the corresponding a and MSE values. 

A Optimum a MSE 

0.10 0.89 295.10 
1.50 0.87 33.12 

2.80 0.84 63.41 

5.00 0.86 78.23 
7.00 0.85 79.53 
10.00 0.84 59.55 
12.00 0.70 65.32 
15.00 0.84 85.03 

Table 4.1: Various As and the corresponding optimal a 

Foni Table 4.1, A = 1.5 and a = 0,87 minimizes the MSE. Figure 4.9 shows a 

graph of A vs MSE with A ranging from 0.1 - 15 and a = 0.87. 

The next step was to perform a further search, fixing a to 0.87 and searching 

over A from 0.1 to 6. This search yielded an optimum = 0.81. A finer search 

over a was performed with A varying from 0.50 to 2.0 in steps of 0.25.The results 

are tabulated in Table 4.2. 

So, again A = 0.81 and a = 0.87 minimizes the MSE. A further refined search was 

done by setting a = 0.87 and searching over A from 0.4 to 2.0. This search yielded 

= 0.81. Thus, the final values used for a and A were 0.87 and 0.81 respectively. 

Figure 4.10 shows the MSE as a function of A for a = 0.87 and A varying from 0.4 

to 2. 

From Fig.4. 10, it is clear that the Laguerre filters are a better fit with the stiffness 
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Figure 4.9: Lambda vs MSE graph for elbow stiffness dynamics using Laguerre Basis, 
a = 0.87 

A Optimum a MSE 

0.50 0.88 31.43 
0.75 0.86 32.11 
0.81 0.87 30.52 
1.00 0.86 33.68 
1.25 0.86 34.26 
1.50 0.88 33.12 
1.75 0.87 34.62 
2.00 0.88 37.34 

Table 4.2: As and the corresponding optimal a, further refined search 



76 

90 

80-

70 

Ui 
(06 

50 

40 -

30  
04 I 0.5 0.6 0.7 0.8 0.9 

Lambda, 
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models than the Tchebychev filters. The MSE values from Fig.4.10 are much lower 

than the MSE values obtained from using the Tchebychev basis functions. 

Once the optimum a and A were chosen, the identification algorithm was used 

to identify dynamic elbow stiffness using Laguerre Functions as the basis functions. 

Several different trials were used for the model estimation. The results shown below 

were obtained from the application of the new algorithm to Trial 10 of the experi-

mental data. 

The first 6 Laguerre filters with the addition of a constant were used as basis 

functions. As before, acausal IRFs were fitted to the data. The model included a 

total of 31 time-varying IRF weights with 10 anticausal coefficients, such that, Q 

= 10 and Q0 = 20 in equation (2.24). The time-varying IRFs are shown in Fig. 4.11. 

From the figure it is apparant that the model has transient time-variations. However, 



77 

Lag(s) 

0.1 

0.05 

Time(s) 

Figure 4.11: Time-Varying IRFs obtained for elbow stiffness dynamics using La-
guerre Basis 



78 

the time-variations settle down very quickly (within 0.1s as seen in the figure). One 

of the reasons for this is the choice of Laguerre filters as basis functions because of 

their inherently transient nature. The LASSO term-selection procedure eliminated 

120 out of 186 terms (64.5%) to obtain this relatively sparse model structure. An 

in-sample data prediction was done and as with the model-structure obtained with 

the Tchebychev polynomials, the model was tested on data from a separate trial. 

The results are shown in Fig. 4.13. 
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Figure 4.12: In-sample prediction using Trial 10 

From Fig. 4.12, 4.13 it is clear that the actual and predicted output match quite 

closely. To quantify the results, the average VAF was calculated. The average VAF 

for the in-sample prediction was 82.7% while the average VAF obtained for the novel 
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data prediction was 80.32% which shows that the model obtained is quite robust. 

The slight variation between the two VAFs could be due to either noise-fitting or 

slight differences between the two trials. 

4.5 Discussion: Elbow Stiffness Dynamics 

In this section the novel algorithm for identifying linear, time-varying systems was 

demonstrated on real data. Elbow stiffness dynamics were identified using this al-

gorithm which included temporal basis expansions and term selection using LASSO. 

Two different basis functions were used to identify the time-variations in the IRFs. 

Initially, the first four Tchebychev polynomials (including a constant term) were used 

as basis functions. The IRFs showed subtle time-variations spread evenly across the 

entire data record. However, the model performed poorly when tested on novel 

data, with the VAF between the actual and predicted output being -6255.2%. Since 

short, transient time-variations were expected, Laguerre filters were chosen as the 

next set of basis functions. The first six Laguerre filters (plus a constant) were used 

as basis functions. Time-varying acausal IRFs were then obtained and short tran-

sient changes, lasting 0.1s, were observed at the onset of the perturbation. This 

model was tested on in-sample and novel data and the VAFs obtained were 82.6% 

and 80.34% respectively, which were far superior than the results obtained using 

Tchebychev polynomials. This demonstrated the suitablility of Laguerre filters as 

basis functions for this particular application. Also, since the results obtained from 

the Laguerre filters show that the time-variations appear to be over after 0.1s, the 

low-order Tchebychev polynomials were bound to fail, since they spread the van-
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ations across the whole 5 second record. It is clear that higher-order Tchebychev 

polynomials need to be used, to model such fast time-variations. The experiment was 

performed to study the dynamic brought upon by the onset of perturbation. To this 

end, short, transient changes were observed at the start of the perturbation in the 

acausal, TV IRFs. Immediately following the perturbation, significant changes were 

observed in the stiffness IRFs. The robust performance of the TV model on novel 

data suggests strongly that these transient time-variations are real. These transient 

changes could be due to a sudden change in the perturbation amplitude, which have 

been demonstrated in [19]. A similar study performed to track the change in ankle 

joint stiffness during a large imposed movement involved superimposing a small, sto-

chastic perturbation onto the "ramp" perturbation [21], [22]. The stiffness dynamics 

identified in this study last about 0.3s after the onset of the ramp. This result is 

consistant with our findings which show the transient changes settling down after 

0. is after the onset of perturbation. The results obtained from this experiment do 

not provide conclusive answers to whether the perturbations have an effect on the 

system dynamics being measured. These results should be taken as a starting point 

and applied to further detailed experiments in this area. 



Chapter 5 

Conclusion 

This thesis describes two novel techniques for time-varying linear system identifica-

tion. An algorithm that combines ensemble and basis expansion (BE) techniques 

is presented in Chapter 3, while the use of a novel structure detection technique 

is discussed in Chapter 4. The new algorithm described in Chapter 3 is called the 

Ensemble Basis Expansion (EBE) algorithm and also contains the details of the 

ankle-compliance simulation used to demonstrate the validity of this algorithm. 

The ankle-compliance simulation generated the data. The BE and the EBE 

algorithms were used to identify models using the generated data at various noise 

levels and the results were compared. The BE algorithm performed very well in the 

noise-free case. However, when data with 7dB of additive noise were used, significant 

errors were observed at the beginning and at the end of the data records. A second 

simulation at 12dB SNR showed somewhat better results using the BE algorithm. 

The EBE algorithm used 6 times as much data i.e. 6 ensembles and performed much 

better than the BE algorithm at both 7 and 12 dB SNR. In addition, Monte-Carlo 

simulations (100) were performed to estimate the means and variances of the IRFs 

at 7dB SNR. Again, the standard deviations obtained from the BE algorithm show 

much greater variability than the ones obtained from the EBE algorithm, proving 

the robustness of this new technique. 

Chapter 4 introduced the new term selection technique LASSO. The new al-

gorithm combining BE and LASSO was described in detail. The algorithm was 
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applied to the identification of elbow stiffness dynamics to detect transient changes 

at the onset of broadband perturbation. The basis expansion in conjunction with the 

term-selection using LASSO was used to identify linear, time-varying, acausal IRFs 

to model the elbow stiffness dynamics. Initially, the first four Tchebychev polynomi-

als (including a constant) were used as basis functions. The time-variations obtained 

were spread smoothly across the whole data record. However, the model proved to 

be not very robust when tested on novel data. The model obtained from Trial 10 

was used to predict the output from Trial 20. The VAF between the predicted and 

actual output was -6255.5%. Since short, transient time-variations were expected, 

Laguerre filters were the next logical choice as basis functions. Indeed, with the 

use of Laguerre filters as basis functions, short, transient variations were observed 

within 0.1s of the onset of perturbation. The final model was tested to predict the 

in-sample output and was further tested on novel data. The in-sample VAF was 

82.7%. The output from Trial 20 was predicted using the model from, Trial 10. The 

VAF between the predicted and actual output was 80.34%. The difference between 

the two could be due to noise-fitting or differences between the two trials. The VAF 

percentage suggests strongly that the transient time-variations seen in the IRFs are 

real. These changes could be due to a number of reasons including due to a sudden 

change in operating point at the onset of perturbation. The results obtained from 

this application prove that the term selection has been well integrated into the algo-

rithm. Also, the algorithm is quite robust and it has been proven to model linear, 

time-varying systems successfully. 
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5.1 Contributions 

The completion of a successful research project includes a combination of ideas and 

work from many different people and sources. This section highlights my personal 

contributions to this research. Temporal basis expansions [53] and Ensemble tech-

niques [32] are the current state-of-the-art techniques for identifying linear, time-

varying systems. My contribution included integrating the two algorithms together 

into the EBE algorithm, and successfully demonstrating the superior performance 

of the EBE algorithm over just BE, using ankle joint simulations. Next, the issue of 

eliminating irrelevant parameters introduced by BE was dealt with. Again, LASSO 

was an existing mathematical technique for obtaining the sparsest possible repre-

sentations of objects. My contribution in this case was integrating LASSO with the 

temporal basis expansions. I performed extensive research into the most effective 

way of determining the optimum relaxation parameter, A. Minimizing the 5-fold CV 

cost-function and searching over a range of values was finally determined to be the 

most efficient way of determining the optimum A. Once the algorithm was perfected 

the next step was to apply it to experimental data. Again, my personal contribution 

included applying the algorithm to model elbow stiffness dynamics. The experimen-

tal data was obtained from Northwestern University in Chicago and my contribution 

was applying the new algorithm on the data and identifying time-varying, acausal 

IRFs. This included experimenting with two different basis functions (Tchebychev 

Polynomials and Laguerre Filters) and identifying IRFs and testing the robustness 

of the algorithm by testing the model with in-sample and novel data. 
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5.2 Future Work 

Developing and proving the robustness of the EBB algorithm and the LASSO tech-

nique for term-selection in identiftug linear, time-varying systems was the first step. 

It is recommended that future work in this area be conducted in further evaluating 

the algorithm and extending it for modelling more complex systems. This algorithm 

needs to be evaluated against other term selection techniques like FOS [24], OPS [53] 

and Bootstrap [29]. The evaluation procedure needs to be quite extensive and the 

algorithms have to be compared at various different noise levels and various degrees 

of overparameterization i.e. adding irrelevant parameters to the model to test the 

robustness of the algorithm. Initial studies in this direction have been done in the 

NARMAX context [30]. Monte-carlo simulations have been done in the area of non-

linear system identification comparing the rate of exact, over and under modelling 

with changing data-length and various levels of SNR for LASSO and Bootstrap [28]. 

The Bootstrap technique in particular has been compared quite extensively to T-

Tests and Stepwise Regression [29]. Similar studies need to be performed for linear, 

time-varying systems as well. 

Furthermore, research could be done in extending the algorithm from identifying 

linear, TV systems to non-linear, TV systems with iterative minimizations includ-

ing using it identify Hammerstein systems [46]. Also, if this algorithm is extended 

to identify parallel cascade models [2], these models which include reflexes can be 

applied to the elbow stiffness models to get more accurate representations. 

Lastly, further detailed experiments could be performed using the results pre-

sented in this thesis as a starting point. Experiments designed to subject the elbow 
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to a "ramp on" and "ramp off" perturbation with sharp transitions, could look at 

dynamics at the start and at the end of the perturbation. Such changes could be 

modelled by using Walsh functions and Laguerre filters in conjunction as basis func-

tions. Such experiments would provide more conclusive answers as to the changes 

brought upon by the system dynamics by the onset of perturbation. 
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Appendix A 

Primal-Dual Log Barrier Method 

This section describes the Primal-Dual Log Barrier Method that was used to solve the 

quadratic program generated by BPDN. In [5], the QP in (4.7) was transformed to 

a perturbed linear program (LP), which was solved using the primal dual log barrier 

method. While both LP and QP are convex, and can be solved using standard 

commercial tools, solving an LP is generally much simpler and faster than solving 

an equivalent QP. 

The large-scale perturbed linear programming problem mentioned in Chapter 4 

was solved using the primal-dual log barrier method. A linear program in standard 

form is given by: 

min CTX subject to Ax = b, x ≥ 0. (A.1) 

Equation (A.1) is called the primal linear program. The primal linear program 

is equivalent to the dual linear program given in the following equation: 

max bTy subject to ATy + z = c, z ≥ 0. (A.2) 

where x is called the primal variable, and y and z are called the dual variables. 

The term primal infeasibility refers to the quantity lib - Axlt2 and the term dual 

infeasibility refers to fic - z - ATyII2. The term duality gap refers to the difference 

between the primal objective and the dual objective: cTx - bTy. 
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One of the fundamental theorems of LI? states that (z, y, z) solves the LP in 

equations (A.1) and (A.2) if and only if the primal infeasibility, the dual infeasibility, 

and the duality gap are all zero [21]. The primal-dual log-barrier algorithm is based 

on solving the following perturbed LI? [10]: 

min cTx + -F 11p112 subject toAx + Sp = b, x ≥ 0, (A.3) 

where 'y is a small regularization parameter. 

For our case, c = [A, A, A ... A]T, b = y, x = 0, and A = M. 

The main steps of the algorithm is given below [5]: 

1. Set parameters: the feasibility tolerance FeaTol, the duality gap tolerance 

PDGapTol, the regularization parameters y. 

2. Initialize x> 0, y,z> 0, p > 0. Set k =0. 

3. Loop 

Set 

t = c+'y2x—z—ATy, 

r = b— Ax- 2y, 

V = je — Zx, 

D = (A.4) 

where X and Z are diagonal matrices composed of x and z; e is a vector 

of ones. 
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. Solve 

(ADAT + ö2I)ty = r - AD(X'v - t) (A.5) 

for Ay and set 

Lx = DAT Ly + D(X'v - t), Az = X'v - X'ZL\x. (A.6) 

. Calculate the primal and dual step sizes, Pp, Pd and update the variables: 

PP O.99xmaxp:x+pLx≥O, 

Pd = 0.99 x maxp : z + pöz ≥ 0; 

X = X+pL1X, 

y = 

Z = Z+PdLZ, 

= (1 - min(pp, Pd, 0.99)))L1. 

• Increase k by 1. 

4. Terminate if the following three conditions are satisfied: 

• Primal infeasibility < FeaTol 

• Dual infeasibility < FeaTol 

• Duality Gap < PDGapTol 

(A.7) 



Appendix B 

Basis Pursuit Denoising using Primal-Dual Log 

Barrier Method, MATLABTM Code 

function theta = bpdn4(X,yy,lambda); 

use basis pursuit denoising to fit a linear regression model. uses primal-dual log-

barrier method described in S.S. Chen et al, 1999. linear system is solved using the 

direct left divide to find dy 

EN,m] = size(X); 

A = [X -X]; 

b = yy; 

c = lambda*ones(2*m,1); 

FeaTol = 0.01; 

PDGapTo1 = 0.01; 

CGTo1 = 0.001; 

gamma = le-4; 

mu = 0.01; 

k = 0; 

theta = X\yy; 

x = [theta.*(theta>0); -theta.*(theta<O)] + le-10; 

z = C; 

y = zeros(N,1); 
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e = ones(2*m,1); 

CGtime = 0; 

searching = 1; 

while searching 

t = c + gamma2*x - z - 

r = b - A*x - 

v = mu*e - z.*x; 

d = i./(gamma-2 + z./x); 

D = diag(d); 

dvxt = d.*(v./x-t); 

timel = cputime; 

dy = (A*D*A' + eye(N))\(r - A*dvxt); 

dx = d.*(A'*dy) + dvxt; 

dz = v./x - (z./x).*dx; 

rp = rho(x,dx); 

rd = rho(z,dz); 

x = x + rp*dx; 

y = y + rd*dy; 

z = z + rd*dz; 

mu = (1 - min(Erd,rp,0.99]))*mu; 

k = k + 1; 

condi = norm(r)/(1+norm(x)); 

cond2 = norm(t)/(1+norm(y)); 

cond3 = (z'*x)/(l + norm(x)*norm(z)); 
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if ( condi < FeaTol) && ( cond2 < FeaTol) && (cond3 < PDGapTo1) 

searching = 0; 

end 

end 

theta = x(1:m) - x(m+1:2*m); 

function rr = rho(x,dx); 

test = -x./dx; 

t2 = test(find(test>0)); 

if length(t2)<1 

t2 = 1; 

end 

rr = 0.99*min(t2); 


