The thermodynamic properties of electrolyte solutions: Some formal results
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The Kirkwood-Buff approach is used to obtain exact determinate expressions for the
thermodynamic properties of electrolyte solutions. The solvent is treated at a molecular level
and the thermodynamic functions are expressed in terms of ion—ion, ion-solvent, and solvent—
solvent correlation functions. The equations obtained are particularly useful when used in
conjunction with integral equation theories. The low concentration limiting behavior of the
microscopic expressions is examined and it is shown that the Debye~Hiickel limiting law for
the activity coefficient can be readily extracted from the molecular theory. Also the partial
molecular volume of the salt is considered in some detail and microscopic relationships are

given for the infinite dilution value.

I. INTRODUCTION

In the statistical mechanical theory of multicomponent
systems the method of Kirkwood and Buff” often provides a
convenient route to the thermodynamic properties. The
Kirkwood-Buff approach is well known”? and uses grand
canonical concentration fluctuation relationships in order to
relate certain thermodynamic functions to integrals of the

type

Gy = %Jr'zkag(r)dr, (1a)
where
hog(r) =g.p(r) — 1, (1b)

and g, (7) is the radial distribution function associated with
species @ and S. This makes the Kirkwood-Buff theory par-
ticularly useful in extracting thermodynamic properties
from integral equation theories™* which provide results for
hop (7). Indeed, the present work was largely motivated by
recent developments™S which allow the hypernetted-chain
(HNC) and related integral equation approximations to be
solved for model electrolyte solutions which include the sol-
vent as a discrete molecular species.

For mixtures of uncharged particles, each species is an
independently variable component and the expressions giv-
en by Kirkwood and Buff' can be directly applied. However,
for electrolyte solutions where one has correlation functions
between dependent constituents rather then independent
components (i.e., the concentrations of individual ions can-

‘not be varied independently) the computational application
of the Kirkwood-Buff theory is not immediately obvious.
The ambiguity stems from the fact that when charge neutra-
lity conditions are applied, all Kirkwood-Buff expressions’
for the thermodynamic properties (e.g., the partial molar
volume of the salt, the compressibility of solution, etc.) are
indeterminate. This problem has been previously recognized
and dealt with by Friedman and Ramanathan’ for model
electrolytes which treat the solvent at the continuum level.
The purpose of the present paper is to derive more general
results for models which incorporate the solvent as a molec-
ular species, and to examine the limiting low concentration
behavior of the expressions obtained.
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il. GENERAL EXPRESSIONS

The exact formulation of Kirkwood and Buff' expresses
the thermodynamic properties of a multicomponent system
in terms of a matrix B. The elements of B are defined by

Baﬁ =pa6aﬁ +PapﬁGa 4 (2)
where G, is given by Eq. (1a) andp, = N,,/V is the num-
ber density of species a. If we consider a mixture of m species
and denote the chemical potential of species a by u,, the
partial molecular volume by ¥,, and the isothermal com-
pressibility of the system by y, then the relevant relation-
ships given by Kirkwood and Buff’ can be expressed as fol-
lows:

_Z_( a,ua ) (aﬂa ) lBlaﬂ (33)
KT\ON, )zv,  kT\dp, )7,  |B|
3 V.7,
_.V_( ”a) =._(‘9““) e (3
kT\ONg/ren, kT\dpg/rp, kTyr
= av 1 ¥
V, = = Bl g, 3c
4 (&N:, )T,I’,Nﬁ hY 3§1pﬁl s (o)
1
kTXT=§§BL (3d)
where
§= }‘, PapPs|Blass (3e)
af=1

|B| is the determinant of B and |B|,,, indicates the cofactor
of the element B,;. Also if we label the solvent 1 and the
remaining species by integers ranging from 2- - -m, the deriv-
ative of the osmotic pressure IT with respect to p, is given by

1 (an ) B'[og
= e (4a)
kT 9o, TttrPpe1 Z LT IB
where the elements of B’ are defined by
B(;B =pﬂ:5a6 +paPBGaB; aB #1. (4b)

It should be emphasized that Egs. (3) and (4) apply to ionic
solutions only in a formal manner since single ion properties
are not of course determined by thermodynamics.® How-
ever, physically meaningful quantities which apply to the
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electrically neutral salt can be obtained from the single ion
expressions.

Although the method described below can be applied to
any electrolyte solution, we shall write explicit results only
for a two component system consisting of a solvent and a salt
of the general type M, X, . Throughout, the solute (salt)
will be referred to as component 2. Also, it is convenient to
introduce the parameters v =v_ + v_, and the number
densities p, =N,/V, p,=N/V, po, =N_/V=v_p,
and p_ = N_/V = v_p,, where the subscripts 5, +, and

— denote the solvent and the positively and negatively
charged ionic species. For this system the charge neutrality

conditions can be expressed in the form®!2
1
P+ P-
and
G,,=G_, (5b)

As mentioned earlier, the charge neutrality conditions ren-
der indeterminate all thermodynamic quantities obtained by
direct substitution into the Kirkwood-Buff equations.
Therefore, in order to proceed it is necessary to employ a
formalism which allows the charge neutral limit to be taken
analytically in such a way that useful determinate expres-
sions are obtained for the thermodynamic properties. One
way of doing this in a general systematic manner is described
below.

|

P2 h'y 4 (k) p+p_il+_(k) p+P.j’+s(k)
Bk)=|pp_ho_(k) p~h__ (k) p_ph_,(k)],
WP k) poph_ (k) pihi (k)
where
Bo (k) = b () +—, (8)

and we have made use of the requirements that A, (7)
=h,(r) (i= + or —)andh,_(r) =h__(r). Inorder
to take the required K0 limits it is necessary to know the
small k behavior of the determinant |B(k)| and of the sum

= zfapﬂlii(k)lap. )

where again |B(k) |op denotes the cofactor of Eaﬁ (k). Using
Eq. (7a) together with the charge neutrality conditions giv-
en by Egs. (5) one finds that as k-0,

[B(k)|—p% o2 p2[h L (0)r, _ (0)

Sck)

—h% ,(0)]Dk2+ (10a)
S(ky—p* p P21 (0)
+h, _(0)—2h,,(0)]Dk*+ -+, (10b)
where
D=h®, 4+h®_ _2pP_, (10c)

It is obvious from Eqs. (10a) and (10b) that as k-0, both

We begin by introducing the matrix B(k) with elements
given by

Bog(K) =pobog + Pupphas (K), (6a)
where
= 47 [ .
h.g (k) =TJ‘ 7 h.g(r)sin(kr)dr (6b)
0

is the Fourier transform of 4,5 (7). Then by replacing B with
B(k) in Egs. (3) we can define k-dependent analogs of the
Kirkwood-Buff equations. At finite ion concentrations the
h,p(r) are screened and hence at small k%, Zaﬂ(k) can be
expanded in the form''-

hog(k) =h,g(0) + k%A 3Z + -, (7a)
where

h.5(0)=G,, (7o)
and

h¢ A haﬂ(r)f" dr. (7c)

This allows determinate expressions for the thermodynamic
properties to be obtained by taking the k—0 limit of the
appropriate k-dependent quantities.

Forthe M, X, / solvent system we consider, B(k) has
the explicit form

(8a)

S(k) and |§(k) | »0. Equations ( 10) are used in the follow-
ing derivations.

A. The partial molecular volumes

For the present system the partial molecular volume of
the salt ¥, is defined by

- av — -
= = V_, 11
V2 (azvz)mv iV tv-Vo (b

where ¥, and V_ are given by Eq. (3c). The appropriate k-
dependent quantlty is

Vz(k) = v+V k) +v_ V (k), (12a)
where
?’J(k) 1 |B(k)| (12b)
B =5 .2 PBEL

Using Egs. (6a), (7a), and (10b) together with the charge
neutrality conditions (5) we obtain

R (0) —h,,(0)
pal R (0) —hy_(0) — 2k, (0)]
which in the convenient G,z notation gives

(13)

lim ¥, (k) =
k-0
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Y 1+P,(Gg-G+,)
2 145G +G, _ —2G )]
Equation (14) is the required determinate expression for V>
Similarly, by defining ¥, (k) and taking the k—0 limit,
one obtains the partial molecular volume of the solvent
V = G+ -—G +s .
P 14p,(G,+G, _ —2G,,)
It is easy to see that Eqs. (14) and (15) satisfy the required
relationship
P:T/s +P272 =1L (16a)

Also, since only G, _ is divergent in the limit p,—0 (as
shown below), it follows that

(14)

(15)

lim 7, =L, (16b)
p2—0 Ps
lim 7, = 1, (16¢)
PO P2

which are the correct one component results. Finally, we
note that for the particular case v, = 1, Eq. (15) is equiva-
lent to the expression given by Enderby and Neilson.'*

B. The isothermal compressibility

By analogy with Eq. (3d), the k-dependent isothermal
compressibility is defined by

kTyr (k) = % |B(k)| (17)
It should be pointed out that when k appears in the combina-
tion k7, as in Eq. (17), it refers to the Boltzmann constant
and is not to be confused with the k in the Fourier transform.
The k-0 limit follows immediately from Eqs. (10a) and
(10b) yielding

G+— +ps(G+—-Gﬂ - G2+s)
1 +p:(Gss + G+— —2G+s)’

which agrees with the result previously given by Levesque et
al.?

(18)

kTyr =

C. Chemical potentials and activity coefficients

For our ionic solution the chemical potential of the sol-
ute (salt) u, is given by

Ho=v o, +v_p_, (19a)

where the single ion quantities ¢z, and pz__ are formally de-
fined by

u;=pd+kTlnyp, (19b)

with ¥, being the activity coefficient and uf the chemical
potential of the standard state. If we introduce the mean
activity coefficient of the salt defined® such that

Ve =vivs, (20a)
then it follows from Eqs. (19) and (20a) that
pr =43 +kTIn(vv*- ) +vkTiny, p,. (20b)

If we take the partial derivative of Eq. (20b) with respect to
p2 holding T and p, or P fixed we obtain

(aln Y+ ) — 1 (a,uz) ___1__ 1)
apz Tp,or 7 VKT apz Tp,ox P P,

It now remains to find expressions for the right-hand side of

Eq. (21) by applying the Kirkwood—Buff equations.

Using Eq. (19a) together with the mathematical rela-
tionship

(%)= > v(a“‘) ; i=+ or —, (22a)
apZ Jj=+,- apj Pk #j

one immediately finds that

) . (2), oo [(22)
L <] = 2 +V v_ .
(3/72 * /o * dp_/p

+(5) 1+~ ().

where in addition to the variables speclﬁcally indicated T
and p, or P are also held fixed. The partial derivatives re-
quired in the constant volume case are given by Eq. (3a) and
again in order to obtain a determinate result for

+

(22b)

52
9py/ Te:
it is necessary to define
1 (s B(x)
( (27 ) (k)=| a laﬁ (23)
KT\ dpg /7o, Bk)|

Substituting Eq. (23) onto the right-hand side of Eq. (22b)
and using Egs. (5), (7a), and (10a) in order to take the k -0
limit yields

-—G 2-|- $) ] .

_I._(aﬁz,) -
k T 3p2 Tp,
(24)

From Egs. (3b), (11), and (22b) one can obtain the con-
stant pressure result

1+p,G
P3Gy +p, (GG,

V2
), ), e
KT\dN,/trN, kT\3p,/Te. kTyr
or applying Eqs. (14) and (18),

aﬂz) _ Ps
T\ON,/teN,  pi[1+p,(Gs +G,_ —2G,,)]

(25b)

Using Eq. (25b) together with the relationship

ﬂ) ~Lla_,7y=L,7

(aNz S V(l pVa) = Vp’ Ves (25¢)
we obtain

ap,) 1
—| =2 = . 25d
kT(apz T.P p;(G..__ _G+s) ( )

Expressions for the mean activity coefficients follow
from Eqs. (21), (24), and (254d). Explicitly, one has

(8 Iny, )
dp, /e

1 14+p,G;

= —— _1 s
P vp. G _+ps(GssG ——G2 s) ]
2 2[ + + + ] (263)

and
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(26b)

(81:17/5:) =l[ 1 "1]
ap, P P2 VPz[G+—“G+s}

Finally, we note that the relationships

L(.a_&) = G+ —

kT\3o,)z,, p.[Gs— +p:(GuGr_—G% )]
(2

7)

and

L) ()
kT ap_, T,p, kT apz T\ps
_G+s

=PZ[G+— +p: (GG, — GZ-H)}
(28)

can also be derived.

D. The osmotic pressure

The derivative of the osmotic pressure with respect to p,
is given by

Jll ) (ar[ )
— = Vi _— » ( 29 )
(ap2 T, i= ;, —_ 3p, T,p_,ph“

where (J11/dp, ) is defined by Eq. (4a). Again direct substi-
tution into Eq. (29) leads to an indeterminate result when
the charge neutrality condition (5a) is applied. Therefore,
proceeding as above we define the matrix B'(k) [cf. Eq.
(4b)1 and k-dependent derivatives analogous to Eq. (4a).
Substituting the k-dependent quantities for (J11/dp; ) in Eq.
(29) and taking the k-0 limit yields the expression

_1_(211) -1 (30)
kT apz Ty p2G+._

For 1:1 electrolytes this result is equivalent to that given in
Ref. 12.

1ll. LIMITING BEHAVIOR

In order to determine the limiting behavior as p, -0 of
the expressions given in Sec. I, it is first necessary to deduce
the low concentration limiting laws for G, ., G . ;, and G.
For continuum level theories only G, _ is relevant and this
function has been previously considered by Rasaiah and
Friedman.!® The ion-ion distribution function g, _ () can
be written in the form

gi(r) =e P, (31

where w_ _(r) is the ion-ion potential of mean force and
B = 1/kT. For both continuum and molecular solvents it is
possible to show'® that as 7— ¢ and k-0,

w+_(r).....__:l'_"l.__e“"" (328)
€r i
where

is the usual Debye parameter, and € is the dielectric constant
of the pure solvent. If we now expand the exponential in Eq.
(31) and keep terms to order [Bw. _(r)]? Eqs. (32a) and
(1) yield the limiting law

(32b)

1 A

G, =—+ + (33a)
" Vo2 vp,
where
1/2 372
i (fﬁ-‘?—i) . (33b)
2 ekT

We emphasize that Eq. (33a) holds for both continuum and
molecular level theories.

In order to obtain limiting expressions for G ; and G,
it is necessary to introduce direct correlation functions, de-
noted by ¢, (12), and to apply the Ornstein—Zernike (OZ)
equation.** Therefore, the relationships given below are re-
stricted to systems which can be described by pairwise addi-
tive or effective pairwise additive potentials. The details of
the procedure we follow are described in Refs. 12 and 16 and
a brief summary of the relationships important in the present
context is given in Appendix A. Notationally, it is also useful
to define

Cop = ER(k=0) = Mjﬂc?,%"(r)dr, (34)

where ¢35 (#) is the angle-averaged ¢,z (12) (cf. Appendix
A). In Appendix A it is shown that the OZ equation leads to
the exact relationships

G+s(1 —psCss) =(1 +p+G++)C+s +p—G+—C—s

(35a)
and
G_,(1-p,Cy)=( +p_G._)C_, +p+G+ G,
(35b)

which combined with the charge neutrality condition (5a)
yield the result

G = G — (V+C+5 +V——C—~s)
+5 -5 (1-p,Cs)

Equation (36) is in fact the origin of the charge neutrality
condition (5b). It should be noted that Eq. (36) is obtained
with the aid of the charge neutrality condition (5a) and
hence holds only for p, > 0.

Inspection of Egs. (36) and (33a) shows that
G.(i= + or — ) will vary like yp, at low concentration.
This is also true of C;, (cf. Appendix B) and we write

0,G,_.  (36)

WiC,+v_C_)=Ww,C%, +v._C°))
S

where the superscript 0 indicates the infinite dilution result.
It is not possible to obtain an exact expression for the slope
S,, but in Appendix B it is shown that for fluids of nonpolari-
zable particles the HNC closure approximation gives

(37a)

_ 1200 _ 112
S, = AV (e 1),

psye

(37b)

where y = 4mBu’p, /9, u being the dipole moment of the sol-
vent. A discussion of the accuracy of the HNC result for S, is
given below. Combining Egs. (36), (33), and (37a) yields
the limiting law
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G .=G,,

+ SC
=G, + («;— +7A_-(v+C°+s + V-C"-s))‘//’_z’ (38)
v

where

G%,=G%,=1mG,,
p2—0"

_ 1 [ (V+C0+s -+ V~C0-—s) ]
T (1=p,C%) '

v
39

We note that p,—0" is the appropriate limit here since Eq.
(36) holds only for p, > 0.

It is interesting to apply the infinite dilution limit (i.e.,
p4 =p_ =0) to Egs. (35) to obtain

c°,
G0+s — m, (403)
[
°. =.i_£%_o.._ (40b)
— Pl

It is obvious that these expressions do not agree with Eq.
(39) and hence G, and G _ are discontinuous at p, = 0.
Furthermore, it is clear from Egs. (39) and (40) that

G%,=G%, =, G%, +v_G° )/ (41)

Thus, G° , and G¥" are just weighted averages of G°, ; and
G°,. In terms of the Fourier transforms & %®(k,p,)
(i= + or — ) thediscontinuous behavior can be expressed
in the form
. . 4 (xx) - . 4 (m

3:13}){1_1}3}1:, (k,pz)#k__ogghis (kp3). (42)
The left- and right-hand sides of Eq. (42) give Eqgs. (39) and
(40), respectively. Finally, we remark that earlier consider-
ations of G4 (for charged—uncharged species) at the second
virial coefficient level'® also indicated the discontinuous na-
ture of this function.

The limiting form for G, can also be obtained by consid-
ering the OZ equation. In Appendix A it is shown that

_(psCys+p C_,)G ,+C,

G, = 3 (43)
from which it follows that
CO
G, =——"o—e it 0 44
1=p.C0 -+ O(py) (44)

as p,—0. Also we note that

1
(1—-p,C)

where y7 is the isothermal compressibility of the pure sol-
vent. Equation (45) is a well known result,* which can be
obtained from the one component limit of Eq. (3d) or from
the p, -0 limit of Eq. (18).

We can now consider the limiting behavior of the ther-
modynamic functions. Using Eqgs. (26a), (26b), (33a),
(38), and (44) it can be shown that

= (14p,GY) =p,kTy%, (45)

(5lnyi) _’(61nyi) _*_A\/; (46)
dp, /T, dp2 /e p,

as p,—0. Equation (46) agrees with the derivative of the
usual Debye-Hiickel limiting law® for Iny, . From Egs.
(30) and (33a) it follows immediately that as p,—0,
1 /on ) . v

kT 5p2 Tis 1+ ANvp,
Also from Eqgs. (18), (33a), (38), and (44) it is clear that at
low concentrations,

Xr—XT+0(py). (48)
__ The limiting behavior of the partial molecular volume
V, is of particular importance and requires careful attention.
From Eq. (14) and the limiting expressions (33a), (38),
and (44) it is possible to show that as p, -0,
k7 (1+psGm) psG+s
Vz"" —

Psp2G 4 — P2pP:sG oy _

or using Eq. (36),
? (1+psGss) _ (V+C+s +V—-C~s)

(47)

3 (49a)

(49b)
z psPZG+— (1 ~psc$)
Now applying Eqs. (33a), (37a), and (45) we obtain
V,=V3 +S.p2 (50)

where

V2 =v kT3 (1 —p,C% ) +v_kTy3(1-p,C°))

(51a)
= vkTyy — pkTYF (v, C°%, +v_C°)), (51b)
and
- X1 sSc
S, = Akwﬂ(—f-gjz— —~ x‘%-) (52)

We remark, that as one would expect, V3 splits into two
independent terms which depend upon the interaction of the
positive and negative ions with the solvent [cf. Eq. (51a)].
Also it is interesting to note that 7’2 can be written as the
sum of two terms, only one of which depends upon the ion~
solvent interactions [cf. Eq. (51b)].

It is very instructive to compare Eq. (52) with the exact
macroscopic (i.e., Debye~Hiickel) result for S, which can
be expressed in the form®

s, =Akrv3/2[3(59-%5)r - x‘}]» (53)

where ¢ is again the pure solvent dielectric constant. Com-
paring Egs. (52) and (53) we obtain the differential equa-
tion

L0
(mn 6) - XTpsSc. (54)
P /r 341772
Using the identity
din e) i ( 65) o
~1(2€ , 55
(ap v e\ap /X7 (53)

Eq. (54) can be rewritten as
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1/ 0¢e ] ¢
22} = 56
€ (aP s) T 3AV3/2 ( )
We note that at least for systems characterized by pairwise
additive potentials Eqs. (54) and (56) are exact results.
If the HNC result for S, [i.e., Eq. (37b)] is substituted
into Eq. (56), then we obtain the differential equation

(86) _ (e—1?
aps T 3psy

This is exactly the equation obtained by Rasaiah, Isbister,
and Stell’” in their consideration of nonlinear effects in polar
fluids at the HNC level. Equation (57) integrates to give'’
€1
€42
which is the Debye approximation for the dielectric constant
of the pure solvent. Of course, Eq. (58) is not a very accurate
theory and this means that one cannot expect the HNC the-
ory to give very accurate values for S, . Rasaiah'® has shown
that improved results can be obtained if bridge diagrams

missing in the HNC theory are included in the closure ap-
proximation.

(37

IV. SUMMARY AND CONCLUSIONS

The principal purpose of this paper has been to apply
Kirkwood-Buff theory to electrolyte solutions where the
solvent is included as a molecular species. This is not a com-
pletely straightforward procedure because direct substitu-
tion into the Kirkwood-Buff equations leads to indetermin-
ate results for thermodynamic quantities when charge
neutrality conditions are applied. In the present paper this
problem is overcome by defining k-dependent analogs of the
Kirkwood~Buff equations and then taking the appropriate
k —0 limits analytically. This leads to exact determinate ex-
pressions for all thermodynamic functions normally given
by the Kirkwood-Buff approach. In the present paper ex-
plicit results are written only for the two component
M, X, /solventsystem but the method is general and could
be readily applied to mixed salt solutions. As is always the
case with Kirkwood-Buff theory, the formal equations we
have obtained relate the thermodynamic properties to the
various pair correlation functions. This means that these ex-
pressions are particularly useful for extracting thermody-
namic quantities from integral equation theories. Indeed, ex-
amples of this will be given in a forthcoming publication.®
Also the formal relationships may prove useful in giving a
microscopic interpretation to the temperature and concen-
tration behavior observed in experimental results for differ-
ent solutions.

In addition to deriving formally exact expressions we
have also examined the low concentration behavior for some
of the various thermodynamic functions. Not surprisingly, it
is possible to immediately extract the Debye—Hiickel limit-
inglaw forln y_ from the molecular theory. Also the micro-
scopic limiting law obtained for the partial molecular vol-
ume V, is functionally equivalent to the macroscopic
expression. Comparison of the HNC approximation for the
limiting slope of ¥, with the exact macroscopic result reveals
that the HNC theory will be rather inaccurate for this quan-

5115

tity. This is another example of a problem in the HNC treat-
ment of electrostriction effects first pointed out by Rasaiah,
Isbister, and Stell."”

Finally, we remark that this paper is the first in a series
on the molecular theory of electrolyte solutions. We have
carried out extensive calculations using the reference HNC
theory for model aqueous electrolytes and this work will be
described in subsequent articles.
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APPENDIX A: ORNSTEIN-ZERNIKE RELATIONSHIPS

The OZ equation for a mixture can be written in the
general form

hag(12) — c,p(12) = éz,oyjkw(13)cyg(32)d(3), |
k4
(A1)

where ,5(12) and c,5(12) are the pair and direct correla-
tion functions, respectively, and d(3) = dQQ, dr; denotes in-
tegration over the position and angular coordinates of parti-
cle 3. The reduction of the OZ equation for particles
interacting with the angle-dependent pair potentials was
first given by Blum and Torruella’ and detailed discussions
of this work are given in Refs. 3, 5, 12, and 16. Therefore,
here we shall simply summarize the results essential to the
present paper.

The basic procedure is to expand #(12) and c(12) and
their Fourier transforms #(12) and &(12) according to the
equations

MA12) = Zf'”"’(r)@"'"'(ﬂl,ﬂz,r), (A2a)
uv

F12) = 3 Froi() o (2,0,k), (A2b)
mni
uv

where the rotational invariants <I>"'"’ (12) are as defined else-
where>>121619 and the Hankel transforms fmrl(k) are given
by

Fralk) = 4ai' | Pjy (ke)f ot (rydr, (A2c)

with j, (kr) representing spherical Bessel functions. In Four-
ier space these expansions allow the OZ equation to be re-
duced to sets of coupled algebraic equations. For present
purposes the only relevent projections are 4 R(r)=hg(n
and ¥ (r). It can be shown'>'%" that these coefficients are
related to higher order terms by the general equation

hoR(k) — &Ry =3 p, S Z,.h 3, (k)% 5 (K),
o (A3)

where Z,, is a known nonzero coefficient dependent upon m.
In order to reduce Eq. (A3) to the desired form we use
the fact that if /7/() decays faster than 1/7°, then

f"’"‘(k 0) =0 for all /0. (A4)
Of course for ionic solutions at finite concentration screen-
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ing ensures that all # 3™ (r) decay exponentially and hence

all hmm (k = 0) = 0if m50. Now if we apply this condi-

tion to Eq. (A3) we obtain the relationship
7%, (0) — &%,(0) =p 7, (0)&%%,(0)
+p_h%°_ (0)8% (0)
+ph % (0)EX(0), (AS)

which can be easily rearranged to give the desired result [ Eq.
(35a) ]. Equations (35b) and (43) can be derived from Eq.
(A3) in a similar manner.

APPENDIX B: THE HNC RESULTFOR S,

The HNC closure can be written in the form

c(12) =h(12) —In[1 4+ A(12)] — Bu(12), (B1)
where u(12) is the pair potential. Expanding the logarithm
in Eq. (B1) immediately yields the result

c(12) 1A 2(12) — Bu(12) (B2)
as r— co. Also if we expand ¢(12), £(12), and #(12) as in
Eq. (A2a) it is possible to deduce that as p, 0, 7— oo,

SR(r) =3[R ] — BudC(r). (B3)

For nonpolarizable particles §[ 4 ' (r) ]? is the leading con-
centration dependent term and is sufficient to determine the
limiting HNC slope.
It is known from earlier work of Héye and Stell'®?° that
asp,—»0and 7— o,
o1t - 5"1)%(14"(’) —xr
hi' (r)~B ( P e~ ",
where , 1, and « are as defined in the text. Now using Egs.

(B3), (B4), and (34) it is possible, after considerable ma-
nipulation, to show that as p,—0,

1y g
e[ e

(B4)

(B5)

P. G. Kusalik and G. N. Patey: Electrolyte solutions

Combining the Eqs. (BS), (37a), and (32b) yields after

some algebra the required result

— Av¥?(e — 1)?
PsYE

where A is defined by Eq. (33b). We emphasize again that
this result is valid only for fluids of nonpolarizable particles
treated at the HNC level.

S, = (B6)
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