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ABSTRACT 

Restructuring of the electricity industry in the past two decades has led to higher 

volatilities of power prices in competitive wholesale markets. Some electricity market 

crises, such as the one in California, inspired the use of risk management in newly 

restructured power markets. This thesis studies high price risks measured by Value at 

Risk (VaR) in the tails of the underlying distributions of electricity prices. Compared 

with traditional normal distribution modeling and historical simulation modeling, 

extreme value theory (EVT) has obvious advantages in estimating VaR by directly 

dealing with the tails of the underlying distributions and allowing fat-tailed and 

asymmetric behavior. This argument is confirmed by the empirical data analysis using 

Alberta Power Pool prices. Back-testing results show that at a high quantile level, VaR 

estimates from EVT are the most accurate among the above three methods. The 

estimation results of VaR can be applied in evaluating hedging call options as an 

insurance against extraordinarily high prices in a wholesale spot power market. 
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1 
1. Introduction 

The electricity business is comprised of five mutually exclusive services: 

generation, transmission, ancillary services, distribution, and wholesale and retail 

supply. Generation is the production of wholesale quantities of power. Transmission is 

the transportation of wholesale power over large distances using high-voltage cable 

networks. Ancillary services balance supply and demand in real time and maintain 

overall system security. Distribution is the transportation of power from the 

transmission system to consumers. Wholesale and retail supplies are services to 

facilitate the purchase and sale of the physical commodity of electricity (Masson, G.S., 

1999). 

Before the 1980s, the electricity industry was an institutionalized natural 

monopoly and vertical integration was the dominant organizational form of electric 

utilities. However, the last two decades have seen a trend of restructuring electricity 

industries around the world. Due to the development of new technologies, more and 

more jurisdictions have introduced competition in the generation segment and the 

wholesale (and some of the retail) markets. In the forefront of this restructuring 

movement is the United Kingdom, where the electricity supply industry (ESI) was 

privatized in 1990. In Australia the reform of the electricity industry, started in the early 

1990s, led to the major re-establishment in southern and eastern Australia of the 

National Electricity Market (NEM). NEM is a wholesale electricity market commenced 

on 13 December 1998, including the States of New South Wales, Queensland, Victoria, 

South Australia and Tasmania participate, together with the Australian Capital Territory, 

except Western Australia and the Northern Territory (http://www.efa.com.au/reform.html). 
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In the United States, competition in the electric power industry has been developing 

for 20 years. There were four key events that increased competition and shaped the new 

industry (http://www.nei.orgldoc.aSp?catnUm=3&cat1d=277): the passage in 1978 of the 

Public Utility Regulatory Policies Act, the emergence through the 1980s of competitive 

bidding processes to build new power plants, the passage in 1992 of the Energy Policy 

Act, and the Federal Energy Regulatory Commission's Order 888 in 1996. In Canada, 

two provincial governments, Alberta and Ontario, have established markets 

characterized by wholesale and retail unbundling, each with their own specific market 

designs. The reform to date is considered successful in Alberta but has failed in Ontario. 

By 2004, more than a dozen countries and jurisdictions have restructured their power 

industries to include competition, with many more in the planning or early 

implementation phases. 

As Masson (1999) points out, given that providing at least some services of the 

electricity business does not necessarily require a monopoly market structure, these 

services can be unbundled and treated as separate markets. Despite differences among 

jurisdictions, essentially all restructuring of electricity markets separate the generation 

function from the transmission function, and the distribution function. All the 

restructuring is designed to provide fair use and equal access to the transmission service. 

The generation and supply of wholesale power are restructured into an explicitly 

competitive market, while the transmission and distribution continue to be regulated as 

natural monopolies. In markets where retail competition exists, the regulated 

distribution function is separated from the competitive supply function. Ancillary 

services are a gray area and are treated in various ways, such as a sub-market in some 

restructures (Masson, G.S., 1999). 
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The goal of restructuring is to make the electricity industry more efficient and to 

create benefits for consumers. Efficiency is achieved by introducing price signals to the 

market players, and by introducing more trading from outside markets. More choice of 

suppliers and lower prices are a benefit to consumers. Many successes have been 

achieved in the newly restructured industries, especially in generation segments and 

wholesale markets. Many challenges remain, one of which is the increased risk in the 

new industry systems. Risks under a new system include market risk, political risk and 

trading risk (Doucet, J.A., 2004). 

This thesis will discuss market risks under newly restructured electricity 

industry systems-risks presented by extremely high prices in wholesale spot power 

markets. As competitively generated electricity becomes a commodity, price volatility 

is driven by the same supply and demand fundamentals that drive any other commodity 

market. The unique characteristic in the electricity industry is the high variability in 

demand and the constrained capacity of supply. Since electricity cannot be stored like 

other commodities and the transmission systems have finite capacities, electricity 

markets are necessarily regional in nature. During periods of low demand, the 

competition among numerous agents at the margin results in low market prices. During 

periods of high demand and under certain circumstances, only a very few participants 

are able to supply incremental power. In markets that are temporarily capacity 

constrained, a few firms may be able to extract substantial profits from extremely high 

market prices (Masson, G.S., 1999). 
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A recent example of an electricity market crisis in North America is the one in 

California in 2000. The California wholesale electricity market was opened in April 

1998 when its retail market was still regulated. The wholesale electricity prices 

increased to extraordinary levels in two years, reaching US$143 per megawatt-hour 

(MWh) in June 2000. These high prices produced enormous profits for generators and 

financial crises for the regulated utilities. As Pacific Gas & Electric, the state's largest 

utility company, declared bankruptcy in March 2001, the state of California had to take 

over the wholesale electricity purchases and spent more than US$1 billion per month 

buying power in the spring of 2001. At that time, average prices were more than ten 

times higher than they had been a year earlier (Borenstein, 2002). The lessons learned 

from the cases, like the one in Califomh4 inspired the use of risk management in the 

restructured electricity markets. 

Starting in finance systems, the risk management revolution has developed 

enormously in the last two and a half decades, both in theory and in practice (Dowd 

1998, 4). In theory, instead of studying average values in the central part of a 

distribution, risk management analysis only focuses on the extreme values related to the 

tails of the underlying distribution. This is desirable since many studies suggest that 

most financial time series have fat-tailed and asymmetric distributions. One definition 

of fat-tailness (heavy-tailness), given by Gencay and Selcuk (2004), is that a 

distribution is fat-tailed if a power decay of the density function is observed in the tails. 

In practice, the development of Value at Risk (VaR) opens up a radically new approach 

to firm-wide risk management. Value at Risk (VaR) is defined as the maximum 

expected loss over a given horizon period, at a given level of confidence. The concept 

of VaR involves two arbitrarily chosen parameters: the horizon period, which might be 
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daily, weekly, monthly, or other time frequencies, and the level of confidence, usually 

95% or above. Summarizing the overall market risk faced by a company in a single 

quantity number, VaR has become a way to quantify market risks. The results of VaR 

estimates can be used in setting the overall risk targets, allocating assets, assessing the 

risks of investment, and reporting the levels of risks to investors. 

While the underlying distribution is unknown, traditionally the VaR 

measurement and estimation are based on the assumption of a normal distribution, from 

which risks of high prices are defined as deviations. By assuming a normal distribution, 

the deviations from the mean should be symmetric and thin-tailed. Contrary to this 

assumption, empirical analyses show that financial data are generally asymmetric and 

fat-tailed. 

Extreme value theory (EVT) is the most recent development in tail studies. It 

deals with the tails of a distribution directly. Unlike the normal distribution model, EVT 

allows for asymmetric and fat-tailed distributions. The attraction of EVT for risk 

management analysis is that it fits extreme quantiles very well for fat-tailed and 

asymmetric distributions of the financial time series. It is a better theoretical foundation 

for tail studies compared with the traditional methods. 

This paper studies modeling and estimating electricity wholesale prices in the 

upper tails of the underlying price distributions. EVT is used to model the distribution 

of electricity market prices, and to estimate the probability of extremely high prices. To 

see the overall advantages of the EVT estimation method, other traditional estimation 

methods are used as benchmarks. The results of back-testing processes are used to 
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compare the performance of different methods. A back-testing process is a testing 

framework used in bank systems to test the quality and the accuracy of risk 

measurement systems. In the process, the actual trading result is compared with the 

model-generated risk measures. The closer the actual result is to the model-estimated 

result, the more accurate is the risk measurement model. 

The data used in this paper are hourly electricity prices from the Alberta Power 

Pool from 2001 to 2003. Only extremely high prices in the right side tail are studied as 

risks (high quantiles at 97%, 99%, and 99.9%) of the underlying distribution, F(p). 

Similar analysis can be applied to extremely low prices in the left, side tail. To do this, 

simply set the observation data X as negative of the prices P: X = - P. The objective of 

the left tail analysis then becomes an analysis on the right side tail of the negative price 

distribution, measured by their high quantiles (97%, 99%, 99.9%) of the underlying 

distribution, F (x) = F (-p). 

Using the Alberta data, the comparison of back-testing results indicates that the 

EVT method is better than other traditional methods, in terms of VaR estimates at high 

quantile levels. The EVT method of VaR estimation is very useful in the risk 

management analysis in electricity markets. For example, the EVT estimated VaR can 

be used to evaluate hedging call options. This thesis demonstrates that EVT is a new 

reliable tool in risk management analyses in electricity markets. 

The arrangement of this thesis is as follows. Chapter 2 introduces extreme value 

theory (EVT), and applies EVT and other methods in the estimation of Value at Risk 

(VaR). Chapter 3 first analyzes the empirical data by descriptive statistics and 
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diagnostic plots, and then gives the estimates of VAR from the generalized extreme 

value distribution (GEV) and the generalized Pareto distribution (GPD). In addition, the 

estimates of the expected shortfall (ES) are given by GPD. Chapter 4 compares the 

performance of the three different estimation methods using the back-testing processes. 

Chapter 5 gives an example of using EVT as a tool for risk management in the 

restructured power markets. Chapter 6 concludes that EVT is the most reliable 

estimation tool for analyzing extremely high prices in the restructured Alberta 

electricity spot market. 
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2. Extreme Value Theory (EVT) and Risk Management 

This chapter introduces measures of risks or extreme values, explains the 

relationship between extreme value theory and risk estimation, and reviews some 

traditional estimation methods of VaR. 

2.1 Measures of Extreme Risks: Value at Risk (VaR) and Expected Shortfall (ES) 

The term Value at Risk (VaR) was first introduced in bank systems. It was 

quickly adopted among other financial institutions and non-financial corporations. 

Dowd (1998) and Jorion (1997) thoroughly introduce the origin and development of 

VaR. Blanco (2001), Dowd (1998), McNeil (1999) and McNeil & Frey (2000) provide 

the mathematical analyses of VaR and its complementary concept; the expected 

shortfall (ES). 

According to Dowd (1998, 18), in the late 1970s and 1980s, a number of major 

financial institutions started working on their own internal models to measure and 

aggregate risks across the institutions as a whole. Among them, JP Morgan developed a 

best-known system, the RiskMetrics system. This particular system was designed to 

offer a daily one-page report to JP Morgan's then-chairman, Dennis Weatherstone, 

indicating risks and potential losses over the next 24 hours, across the bank's entire 

trading portfolio. The measure used was Value at Risk (VaR) or the maximum likely 

loss over the next trading day. For the purpose of competing with its rivals and setting 

an industry standard, JP Morgan published its RiskMetrics system and began to offer 

the necessary data freely on the Internet in October 1994. This act encouraged many of 
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the software providers to adopt the RiskMetrics approach and to develop VaR software 

systems. As a result, the use of VaR systems spread quickly among investment banks, 

commercial banks, pension funds, other financial institutions, and non-financial 

institutions. In the late 1990s, the VaR methodology was extended further by many 

users to deal with other risks beside market risks, including credit risks, liquidity risks, 

cash flow risks, and other risks that are particular concerns for non-financial 

corporations. 

So, what is VaR? According to the Capital Adequacy Directive of the Bank for 

International Settlement (BIS) in Basle Committee (1996b, 2), VaR is the losses on the 

bank's trading portfolio over a ten-day holding period in 99% of occasions. For the 

purpose of internal risk control, most financial firms use a holding period of one day 

and a confidence level of 95%. From a mathematical point of view, VaR is simply a 

quantile of the Profit-and-Loss distribution of a given portfolio over a prescribed 

holding period. The Profit-and-Loss distribution is described by different scenarios of 

possible future "states" of the market. Each of the VaR estimation methods makes 

different assumptions about the scenarios, thus has different assumptions of the 

underlying distributions (Blanco, 2001). 

Jorion (1997, 88) defines VaR of a portfolio as W, which can be derived from 

the probability distribution of the future portfolio value f (w). At a given confidence 

level c, VaR is the worst possible realization W* such that the probability of exceeding 

this value is c. The number W is a sample quantile of the distribution 

1_c=Lf(w)dw=P(wW*) = p 
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where f(w) is the density function of the distribution, and P(w S W*) is the 

cumulative function of the distribution. 

There are two VaR figures, absolute VaR and relative VaR (Dowd, 1998). The 

former is the maximum amount of the expected loss with a given level of confidence, 

measured from the current level of value. The latter is measured relative to the mean 

expected value over the period. Figure 2-1 shows the two types of VaR (under normal 

distribution assumptions) and their relation. 

Figure 2-1 Density function of a normal distribution 

C') 

(-. 

0 

x 

IT A B 

Note: pmean (= OM); VaR (absolute) = OA; VaR (relative) = OB 
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Figure 2-2 Cumulative function of a normal distribution 
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0 

Note: In this case, p=0, VaR (absolute) = VaR (relative) 
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In practice, instead of working with two different types of VaR, only the 

absolute VaR is calculated, since it does not require the measuring of the mean value p.. 

In fact, in dealing with a short period, the difference between an absolute VaR and a 

relative VaR is very small. 

McNeil (1999) and McNeil & Frey (2000) define more generally the concept of 

VaR from the statistics point of view. In their description, risks are random variables, 

mapping unforeseen future states of the world into values representing gains and losses. 

The potential values of a risk have a probability distribution never observed exactly, 

although past losses are available. Extreme events, such as losses, occur when a risk 

takes values from the tail of the underlying distribution. VaR summarizes the measuring 

of risk with a number, a high quantile of the underlying distribution, typically above 
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95th percentile. VaR provides a kind of upper bound for a loss, exceeded only in a 

small proportion of occasions. 

Let X1, X2, ...X,, be identically distributed random variables with unknown 

underlying distribution function F(x) = P {X, x}. Note that there is no assumption of 

an independent distribution of the random variable here, since the assumption of 

independence is unnecessary and unrealistic in financial time series (Embrechts et al. 

1997). 

Measures of extreme risks are defined in terms of the underlying distribution F(x) 

at high percentiles. Let 0.95 <q 1, Value at Risk at q (VaRq) is the qth quantile of the 

distribution F: 

VaRq —F'(q) (2-1) 

where F' is the inverse of F(x), and we have F(VaR0) = F (X, VaRq) = q. See Figure 

2-2. 

Although VaR gives us a simply summarized number about the loss at a 

particular point it tells us nothing about the potential size of the loss that exceeds it. 

Artzer et al. (1997) propose the use of the expected shortfall (ES) or the tail conditional 

expectation instead of VaR. Given a high percentile q, the tail conditional expectation is 

the expected size of a loss that exceeds VaRq: 

ESq = E [XI x> VaRq] 

ES is related to VaR by: 

ESq = VaRq + E [X— VaRq I X> VaRq} (22) 
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where the second term is simply the mean of the excess distribution F' (X— u I X> u) 

over the threshold VaRq (McNeil, 1999). 

The expected shortfall (ES) is an alternative risk measurement. It provides some 

information about the size of the potential losses, given that a loss bigger than VaR has 

occurred. ES is expected to be particularly sensitive with respect to the choice of the 

model that describes the underlying distribution. 

VaR and ES are theoretical quantities that one will never know. The goal in the 

risk measurement is to estimate them. The main challenge in implementing these risk 

measures is to come up with a good estimate for the tails of the underlying distribution. 

Given such tail estimation, both VaR and ES are very easy to compute. 

2.2 Estimating VaR and ES using Extreme Value Theory (EVT) 

By the nature of a random variable data set, the extreme values relate to the tails 

of the underlying distribution of the data generating process. The extreme value theory 

(EVT) is developed as a theory of the study of the tails in a distribution. It explains the 

general properties of the tails in a distribution, by making the best possible use of the 

limited set of the realized extreme values. EVT has been widely used in hydrology and 

structural engineering for studying extreme events (such as earthquakes, floods, etc.). 

More recently, it became popular in the financial context (Carrillo et al., 2002 and 

Blanco, 2001). 
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McNeil surveys all the extreme value theory models in one of his recent 

papers (McNeil, 1999). There are two main kinds of models for the extreme values. The 

block maximum models are a group of old models. They are models for the largest 

observations collected from a large sample of identically distributed observations. The 

peaks-over-threshold models (POT) are a group of modem models. They are models for 

all large observations that exceed the high threshold of the underlying distribution. 

The block maximum models are based on the generalized extreme value 

distribution (0EV). While within the peaks-over-threshold models, there are two 

parametric modeling types. The semi-parametric models of POT are built around the 

Hill estimators and their relatives; the fully parametric models of POT are based on the 

generalized Pareto distribution (GPD). With small data sets, the peaks-over-threshold 

models of EVT will give better estimates of the distribution tails than the block 

maximum models. 

2.2.1 Block Maximum Models and the Generalized Extreme Value Distribution 

(GEV) 

Instead of focusing on the fluctuations of sample averages, in the block 

maximum models one focuses on the fluctuations of sample block maxima. Sample 

block maxima, M1,... M, are defined as 

M1 = Xi, M= max X1,X2, ...X), n≥2, 

where X1, X2, ...X, are identically distributed random variables with the unknown 

underlying distribution function F(x) = P {X, S x} (Embrechts et al, 1997, 115). The 

block size is represented by n, the number of observations in the block. 



15 

Note that only maxima will be studied here, since the corresponding results for 

minima can be obtained from 

rn/n (X, X2, ... X,) = - max (- X], -X2, ... - X). 

The distribution function of the maximum M is 

P(Mx)=P (XI x,XSx)=F"(x), XER,nEN 

Extremes happen near the upper end of the underlying distribution, thus 

intuitively the asymptotic behavior of M must relate to the underlying distribution 

function F(x) in its right tail near the right endpoint. If XF is denoted as the right 

endpoint of F(x), then 

P(Mx)=F('x)—*O n— for all x<xF 

In the case XF < 

for x≥xp 

M converges in probability to Xl? 

M ->x, as n —+ c* 

Since the sequence (Mn) is non-decreasing in n, it converges as sure to the right 

endpoint of F(x) 

0.3 

M0 —*x, as n - cia. 
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Since the above fact does not provide enough information, one needs to have 

more insights to the weak convergence results for the centered and normalized maxima, 

which is one of the major topics in the classical extreme value theory. The first 

fundamental theorem is the Fisher-Tippett theorem (Fisher & Tippett, 1928). The follow 

expression of the theorem is from Embrechts et al (1997, 121). 

Fisher-Tippett Theorem (Limit Laws for Maxima): Let X1, X2,.. be a sequence of 

i.i.d random variables from an unknown distribution F, and M = max (Xi, X2, ... X,) has 

the distribution function F1. If there exist normalizing constants c> 0 and d11 E R, and 

some non-degenerate distribution functions H as n -+ co, such that the sequence of the 

normalized maxima (M - d) / c,, convergences in distribution to H, then 

P ((Ma - d,) / c, x} = F' (ci, x + d,) -+ H (x), as n -+ co. (2-3) 

The family of the distribution H can be subsumed under a single distribution 

function, the generalized extreme value distribution (GEV). GEV is the natural limit 

distribution for the normalized maxima. The definition of the standard GEV is 

1exp{—(1+)Y", • 0 
H, (x) 1exp{—e}, = 0 

(2-4) 

where x is such that 1+ x > 0 and is the single parameter. There are three cases of 

GEV: if > 0, there is the Frechet distribution with the shape parameter a =1/ ; if < 0, 

there is the Weibull distribution with the shape parameter a = - 1/ ; if = 0, by 

applying the well-known formula (1+ )" -* exp(x) as ç - 0, there is the Gumbel 

distribution. Here, the interest is on the Frechet distributions since they are fat-tailed 

distributions. 
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Note that if a random variable X has the distribution function F(x) = P {X1 s 

x}, then (p + a Aq has the distribution function F, (x) = P (p + or Xi x), or 13,, (x) = 

F ((x- p)/a) (Reiss and Thomas, 2001, 16). 

By introducing a location parameter p and a scale parameter a> 0, the family of 

distributions H can be extended to three-parameter models. The definition of the 

generalized extreme value distribution H, , (x) is H ((x- p.)/a). H, is said to be of 

the type Has follow: 

e 
=   

= 0 

(2-5) 

Similar to the central limit theorem, where the stable distributions are the only 

possible non-degenerate limit laws, the Fisher-Tippett theorem says that the family of 

distribution H is the only possible limiting distribution for the normalized block maxima. 

There are two important concepts for furthering the understanding of the Fisher-

Tippett theorem. One is the max-stable distribution, and the other is the maximum 

domain of attraction. 

Definition 2-1 Max-stable Distribution A non-degenerate random variable X is called 

max-stable, if it satisfies 

F' (c x + d) = F (x), d E R (2-6) 
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for a suitable choice of constants c> 0 and d E R and every n ?: 2 Reiss and 

Thomas, 2001, 19). 

Consequently, by combining (2-3) and (2-6), the underlying distribution 

function F(x) and the standardized maximum function F' (c x + d) are equally 

distributed, according to the extreme value distribution H, as the number of blocks n 

tends to infinity. 

F(x)=F'(cx+d)—+H(x),asn—>co, (2-7) 

Definition 2-2 Maximum Domain of Attraction (MIDA) The random variables X1, 

from an unknown distribution F, are said to belong to the maximum domain of 

attraction of the extreme value distribution H, if there exist constants C,,> 0 and d,, r= R 

such that (2-3) holds. We write X E MDA (H) or FE AMA (7Q (Embrechts et al., 1997, 

128). 

By definition 2-2, the Fisher-Tippett Theorem says conversely that if F is in the 

MDA of a non-degenerate extreme value distribution H, then we have the normalizing 

constants c> 0 and d,, R. Reiss and Thomas (Reiss & Thomas, 2001, 19) provide 

some examples of related constants c,, and d,,, given H follows the Gumble, Frechet, or 

Weibull distribution. 

Gumble: d,, = log ii, c,, = 1, 

Frechet: d,, = 0, c,, = 

h/X Weibull: d,, = 0, c,, = n. 
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From the Fisher-Tippett theorem and the definition of VaR, one can easily 

calculate a VaR from its underlying distribution function F(x), 

VaRq = H 1(q) 

where H is derived by the estimated parameters p and c. The explicit expression of 

the estimated H is 

H(x) = H,((x—p)/cr) 

The explicit expression of the estimated VaR can be further derived as follows. 

From 

A 

H (x) = exp{ —[1 + 
0• 

there is 

A 

In  

a 

A 

1+(xIi)=(lnH)-e 

0 7 

x—p=..[(—lnH)- —1] 

Substitute VaR = x and q = H (x) in last equation, there is 

A 

VaR =,u+.-[(— In. q —1] (2-8) 
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Recall the expression of ESq (2-2): 

ESq=VaRq+E[X—VaRq X> VaRq] 

To calculate an ES value, one needs to know the exact excess distribution of the 

model, which is unknown in GEV. Thus, there is no an explicit equation for the ES 

estimation from GEV. 

The problem of implementing VaR estimation based on GEV is that a large 

sample of data is required. On the one hand, a sufficiently large block size is required, 

so that the limiting result of the Fisher-Tippett Theorem may be taken as approximately 

exact. On the other hand, a large block size also decreases the number of maximum 

observations drawn from the raw data set. There should be a balance between choosing 

a large block size, and yet keeping enough maxima data points for the VaR estimation. 

2.2.2 Peaks-Over-Threshold Models (POT) and the Generalized Pareto 

Distribution (GPD) 

The generalized Pareto distribution (GPD) is usually expressed as a two-

parameter distribution function 

I1—(1+/fl)", # 0 
G,  (x) 1—exp(x/fl), 0 

where Ia> 0, 

x?0, if?0, 

Ox  -fl/, if< 0. 

(2-9) 
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There are three sub-models for GPD. The case > 0 corresponds to the fat-

tailed distributions with the tails decaying like the power functions, such as, the 

ordinary Parteo distribuiton, Student t, Cauchy , Burr, loggamma and Frechet 

distributions. The case = 0 corresponds to the normal, exponential, gamma and 

lognormal distributions, with the tails decaying exponentially. The case < 0 

correspond to the distributions with a finite right endpoint, such as the uniform and beta 

distributions (McNeil & Frey, 2000, 7). 

Again, the GPD family can be expended to three-parameter models by adding a 

location parameter ii. The generalized Pareto distribution p (x) is defined to be G, p 

(X- U) 

(x) = G, (x - 18 
—[1+-.(x—p)], 14 #0 

—exp(— x  ),Ø 

(2-10) 

As McNeil points out, the ordinary Pareto distribution is the most relevant 

distribution for risk management purposes, since GPD is fat-tailed when > 0. Whereas 

a normal distribution has moments of all orders, a fat-tailed distribution does not 

possess a complete set of moments. In the case of the GPD with > 0, the kth moment 

of the distribution E [X'J is infinite for k ≥ 1/ . When = '/2, GPD has an infinite 

variance. When ç' = ¼, GPD has an infinite fourth moment. Mostly in a risk analysis, the 

assumption is that the underlying distribution F is a distribution with an infinite right 

endpoint, i.e. it allows the possibility of arbitrarily large losses (McNeil, 1999, 4). 
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The Generalized Pareto distribution (GPD) functions G, , p (x) are the 

adequate parametric distribution functions for exceedances. The relationship between a 

GPD function G (x) and a GBV function H (x) is 

G (x) = 1 + in H (x), if in H (x) > -1 (2-11) 

(Reiss and Thomas, 2001, 23). It is easy to see by plugging the 

H (x) expression 

H (x) 
exp{—(1+)", # 0 

exp{_e_x}, =0 

into equation (2-11) and compare the result with (2-10). 

By (2-11), the same underlying distribution fitted by GEY and GPD models has 

the same shape parameter e, but different scale and location parameters. 

The excess (or exceedance) distribution function, or the distribution of excess 

losses over a high threshold u, is defined as 

F(y) = PX-u≤yIX>u) (2-12) 

for O≤y <XF - u, wher&xF ≤ co is the right endpoint of F(x). The excess distribution F 

(y) represents the probability that a loss exceeds the threshold u by at most an amount y, 

given the information that it exceeds the threshold (McNeil, 1999). The exceedance 

distribution can also be written in terms of the underlying distribution F as 

= [F (y+u)-F (u)J/[1- F (u)]. (2-13) 

The parametric modeling of the exceedance distribution function Ft'tl by the 

generalized Pareto distributions (GPD) is based on a limit theorem, the Pickands-

Balkema-de Haan Theorem (Balkema & de Haan 1974, Pickands 1975). The theorem 
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shows that under the MDA condition, GPD is the limiting distribution for the 

distribution of the excesses, as the threshold tends to the right endpoint. This is a key 

result in the extreme value theory, which explains the importance of GPD. The follow 

expression of the theorem is based on MeNeil (1997 and 1999). 

Pickands-Balkema-de Haan Theorem For a large class of underlying distributions, 

one can find a function fl (ii) such that 

urn sup 
U-XF Oy≤xF-u 

F'' (y) - G ,fl() (y) = 0. (2-14) 

That is, for a large class of underlying distributions F, as the threshold u is 

progressively raised, the excess distribution FM converges to the generalized Pareto 

distribution. 

In the sense of the Pickands-Balkema-de Haan Theorem, GPD is the natural 

model for the unknown excess distributions above sufficiently high thresholds. Suppose 

the right tail of the underlying distribution F(x) begins at the threshold u. Our model for 

a risk X, from this underlying distribution F(x) assumes that the excess distribution 

above the threshold u may be taken as exactly GPD for some and fi 

F1'1(x-u)=G,p()(x-u). (2-15) 

Again, the choice of a threshold is a compromise between choosing a 

sufficiently high threshold, which ensures the asymptotic exact of the Pickands-

Balkema-de Haan Theorem, and choosing a sufficiently low threshold, which gives 

enough excedances for the estimation of the GPD parameters (McNeil, 1999). 
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From the result of the Pickands-Balkema-de Haan Theorem, it is easy to 

calculate the tail estimates of the underlying distribution F. By setting x = u + y, one can 

rewrite the excesses distribution function (2-13) as 

F(x)_-[1—F(u)]F"1(y)+F(u). (2-16) 

From (2-14), we have F " (y) + G, fl(u) (x-u) for large u, where x> u. Equation 

(2-16) can be rewritten as 

F(x)—[1-F(u)]Gp (7 (x-u)+F(u), forx>u. 

This formula interprets the model in terms of the tail estimation of the 

underlying distribution F(x), given x> ii and the estimate of F(u). One suggestion for 

estimating F(u) from McNeil (1999) is to use the historical simulation (HS) estimator 

F(u) = fl  Here n is the sample size and flu is the number of exceedances given a 

threshold u. 

Putting the HS estimate of F(u) and the maximum likelihood estimates (MLE) 

of the parameters of GPD together, one can derive the tail estimator as follows. 

n—flu n-flu  )G (x—u)+ 
fl ,fl,u fl 

=-G  A (x—u)+ n-n 

n ,P,t' fl 

=1+-(G (x—u)-1) 
n e,p,u 
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Given (x) =1— [1+  )}, plug in the equation above, one has 
18 

_1 

A x—u 
F(x)=1_&(1+ ) 

fl 

A =l—F(x)=1—q 
/3 

where, q is the high probability above F (u). Let a = 1— q, one has 

(1+) =a 
/9 

A 

= [n /3 L i-

AX_U I n 
A a 

u 
—1 

For a given probability q > F (u), the VaR estimate x is calculated by 

A 

x=VaRq(1—q)=u+{--(1—qY —1]. (2-17) 

The GPD model for the excess distribution above a threshold u has a nice 

stability property. If one takes any higher threshold above u, such as u' = VaRq> ii, for 

q > F (u'), the excess distribution F P, (y) above the higher threshold u' is also a 

generalized Pareto distribution, with the same shape parameter , but a different scale 

parameter /3 (McNeil, 1999). A consequence of the model F N = G, p 'u) 'y) is that 

Frul (xu) = Gp() (x—u') 

F"7 (x— VaR) = G,p(1 9 (x- VaRq). (248) 
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Equation (2-18) is a simple explicit expression for the excess losses above VaRq. 

With this expression, one can calculate. many losses beyond VaRq. Noting that 

(providing 4 < 1) the mean of the distribution in (2-18) is 

E[x— VaRq] = (/3 + (VaRq—u))/(1—), (2-19) 

one can calculate the expected shortfall (ES) by plugging (2-19) into (2-2). The result is 

ESq = VaRq +1  /3 1 [+(VaRq—u)] 

ES VaR R-q =  (2-20) 

The estimated ES is expressed by substituting the data based estimates of what is 

unknown in (2-20) to obtain 

A A A 

A VaR /3—eu  
ESq  A A 

1—i 1-

2.3 Estimating VaR by Other Traditional Approaches 

(2-21) 

Several traditional backward-looking methods have been used in measuring VaR. 

Two of them are introduced in this chapter, the variance-covariance method with the 

normal distribution assumption and the historical simulation method with no 

distribution assumption. 

2.3.1 The Variance-Covariance Method with Normal Distribution 



27 

The variance-covariance approach of VaR has the same theoretical basis as the 

portfolio theory. They all interpret risks in terms of the standard deviation of the return. 

The variance-covariance approach is the simplest approach among the various models 

for VaR estimations. A most straightforward assumption of the underlying distribution 

is the normal distribution assumption (Dowd, 1998, 42). 

Suppose X is identically distributed random variable with an underlying normal 

distribution function N (x) = P {Xi x}. One can always describe the confidence level 

in terms of a single parameter, a, which tells how far away the cut-off values of the two 

tails are from the mean, ,u, in terms of units of the standard deviation, ci. In studying 

extremely high values above X* in the right tail of the distribution, one consider the 

probability function 

where Z is the standard normal variate with p = 0 and ci = 1, and c represents the 

probability of a right-tail event (such as q = 1 - c = 95% confidence level). 

In general, one has 

= 'U +a ci 

where a reflects the selected confidence level. From the standard normal tables, one can 

read off the value of a = (x* - or. For example, with c = 95% confidence level, there 

isa =. (X*p)/ a = 1.65. 

VaRq, with the assumption of a normal distribution, is expressed as 

VaRq = K' (q) ci (2-22) 
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where K' (q) is the qth quantile value of the normal distribution. The estimate of p 

and a can be obtained from the sample mean and the sample variance by 

A I it 2 A 2 

0 =  

n—i 1=1 

(2-23) 

(2-24) 

The normal distribution assumption in the variance-covariance method is simple 

to use. The problem is that it does not account for asymmetric possibilities. In addition, 

a normal distribution has an exponential decay at its tails. As a result, the normal 

distribution estimation tends to underestimate the risks at high quantiles in the right tail 

(or at low quantiles in the left tail), given the fact that empirical distributions often 

exhibit asymmetric fat-tails. 

2.3.2. Historical Simulation Method 

Based on Carnal et al. (2002) and Dowd (1998), the basic assumption of the 

historical simulation is that the underlying distribution is unknown, and that future risks 

are much like past risks. Thus, the VAR estimates from the historical simulation method 

are high quantiles of the empirical distribution. These high quantiles are obtained from 

the historical data of the realized observations. 

Among all the methods of modeling risks, historical simulations do not rely on 

assumptions about the underlying stochastic structure of the distribution. The advantage 

of a historical simulation is that it accounts for the fat-tailness and does not suffer from 
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model specific errors. In this sense, it is better than the variance-covariance method 

with the normal distribution assumption in describing risk scenarios. 

A disadvantage of the historical simulation is the assumption that future risks are 

much like past risks. When there are few observations in the historical observation 

sample, some extreme values not found in the past will not be predicted in the future. 

As such, the historical simulation is a poor method in analyzing the tails of the 

underlying distribution, where the sample data becomes sparse. 
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3. Estimating Value at Risk (VaR) and Expected Shortfall (ES) 

Using Extreme Value Theory Models 

3.1 Data Description 

The raw data of hourly electricity prices in this paper are Alberta Power Pool 

prices from January 2001 to December 2003. The data is obtained from the website of 

Alberta Electric System Operator, www.aeso.ca. A whole set of historical data is 

available from 1999 to date. The reason to choose the data beginning from January 2001 

is that this was when Albertans could choose their electricity suppliers and thus retailers 

started real market competition. 

The Alberta Power Pool began to operate in 1996, when the Electric Utilities 

Act came to effect. The pool is the wholesale electricity spot market where all power in 

Alberta must be bought and sold. The participants are suppliers and consumers. The 

suppliers include both power producers, and companies that purchased the rights, during 

two auctions in 2000, to the formerly regulated Alberta generation. The consumers 

include retailers who purchase the power and provide retail services for many other 

customers, and self-retailers who buy the power for their own use. By now, there are 

more than 200 participants and about $ 3 to $5 billion in annual energy transactions in 

the spot market (AESO fast facts, www.aeso.ca). 

The heart of the Alberta real-time electricity market is the System Coordination 

Center (SCC), which is staffed 24 hours a day, seven days a week by a team of system 

controllers. System controllers dispatch electricity to meet real-time demand, which sets 
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the hourly real-time wholesale market prices. The prices are established in a "merit 

order dispatching system": First, power producers and importers submit supply offers, 

and exporters and consumers submit demand bids. The supply offers and demand bids 

are sorted from the lowest price to the highest price at each hour of the day. Then, as 

electricity demand shifts throughout the day, system controllers keep supply and 

demand in balance by dispatching the next supply offers or demand bids in the merit 

order. Every minute, the last eligible electricity block dispatched by the system 

controller sets the System Marginal Price (SIvIP), which is updated in real-time and 

published on the AESO website. At the end of each hour, the time-weighted average of 

the sixty one-minute SMP is calculated and published as the market price. 

Because of the above open and transparent operation, the real time electricity 

wholesale market, the Alberta Power Pool, demonstrates similar characteristics as stock 

markets. The price data from this electricity wholesale market has properties similar to 

other time series. 

The differences between this electricity spot market and stock markets come 

from the special properties of electricity supply and demand. From the demand side, the 

electricity demand is subject to cyclical, seasonal, and daily fluctuations. In the long run, 

demand increases when the economy goes up and decreases when the economy goes 

down. At a seasonal level, demand is different between winter and summer. At a daily 

level, demand is much higher in peak hours than in off-peak hours. From the supply 

side, supply is constrained by the capacity of generators. Meanwhile, the diversity of 

generation technologies and cost structures result in various supply prices. A coal-

fueled generator cannot stop its' generation process during off-peak hours, because it 
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needs much longer time to preheat for a newly started operation. A quickly started 

gas-fueled generator requires high prices to cover its high fuel cost. Each day during 

off-peak hours, when many generators keep offering more supply of power than the 

demand of it, the price stays in a very low range. In contrast, when demand increases 

sharply in peak hours and supply is constraint by its capacity, the price goes up quickly. 

As a result, the real spot electricity wholesale market displays frequent fluctuations in 

its' prices. 

A study of the price distribution needs filtering the raw data, given the special 

stochastic properties of the power pool prices. To find an identically distributed time 

series, one can filter the data of electricity prices by seasons and peak hours. The 

assumption here is that the seasonal and peak-hour factors count for most non-stationary 

sources and that filtering the raw data by seasons and peak-hours gives the identically 

distributed observations. 

The convenience of Alberta Power Pool prices is that they are recorded by year, 

month, day, and hour. Thus, one can filter hourly prices according to the choices of 

different seasons and peak hours. According to weather conditions in Alberta, it is 

reasonable to define a two-season pattern in a year for the analysis: the eight- month 

winter season from October to May, and the four-month non-winter season from June to 

September. To decide the accurate peak hours, each average hourly price is calculated 

from the whole set of raw data. Among the twenty-four average hourly_prices, ten of 

them from 11:00 am to 20:00 pm are considered as peak hour prices, ranging from 

CD$7 1.57 per MWh to CD$92.82 per MWh. 
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To get the identically distributed observations, the set of raw data is filtered 

by the peak hours and the two seasons. First, by filtering out fourteen off-peak hour 

prices, there are then ten peak hour prices for the daily-based prices. Then, the whole set 

of peak hour prices are divided into two seasons: the winter season data from October to 

May, and the non-winter data from June to September. After filtering, there are two sets 

of data for further analysis, one is the winter-season peak-hour data with 7290 

observations, and the other is the set of non-winter-season peak-hour data with 3660 

observations. 

3.2 Exploratory Data Analysis for Extremes 

It is always useful to look at the data before carrying out a detailed statistical 

analysis. Two kinds of tools are used in this paper for the exploratory data analysis, one 

is the descriptive statistics, and the other is the diagnostic plot. 

3.2.1 Descriptive Statistics of the Electricity Prices 

A set of basic descriptive statistics of a distribution includes the minimum 

observed value, the maximum observed value, the mean, the standard deviation, the 

Skewness, and the Kurtosis. The follow descriptions of these concepts are based on 

Pindyck & Rubinfeld (1998). 

Suppose there is a sequence of discrete variables X1, ..., XN that represent N 

possible outcomes associated with the random variable X. The expected value, or the 
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mean, of X is a weighted average of the possible outcomes, where the probabilities of 

the outcomes serve as the appropriate weights. The average is denoted p = E(X). 

The variance of a random variable provides a measure of the spread, or 

dispersion, around the mean. The variance is denoted i, and defined as Var (A9 = cr = 

E[X. t)2j 

Skewness is a statistic that provides useful information about the symmetry of a 

probability distribution. The skewness statistic S of a variable Xis given by 

S = (1/N) (X—,U) 3/.3, 

where S is equal to zero for all symmetric distributions. For a non-symmetric 

distribution, S is positive when the upper tail of the distribution is thicker than the lower 

tail, and is negative when the lower tail is thicker than the upper tail. 

Kurtosis provides a measurement of the thickness or the shape of the tails of a 

distribution. The kurtosis statistic, K, is given by 

K=(1/N)(X—p) 4 /cy, 

where for a normal distribution, K is equal to three. When the tails of the distribution 

are thicker than a normal distribution, we have K> 3, and vice versa. 

The descriptive statistics of Alberta Power Pool prices are shown in Table 3-1. It 

is clear that the two sets of data both disperse largely from their means. Their skewness 

statistics are both positive, which means that the underlying distributions are 

asymmetric with the upper tails thicker than the lower tails. Their kurtosis statistics are 
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both much larger than 3, which mean that the tails of the underlying distribution are 

thicker than that of normal distributions. In other word, they are fat tails. 

Table 3-1 Descriptive statistics 

Data n A a S K Min Max 

Winter 7290 80.62 79.54925 4.264335 30.1544 9.81 1000 

Non-winter 3660 67.67 78.05554 6.382265 59.97808 6.29 999 

Note: Winter = October to May from 2001 to 2003 peak hourly prices (from 11:00 am 

to 20:00 pm); Non-winter = June to September from 2001 to 2003 peak hourly prices 

(from 11:00 am to 20:00 pm); n = sample size; j.t = sample mean; a = sample standard 

deviation; S = Skewness; K = Kurtosis; Min = Minimum observed price; Max = 

Maximum observed price 

3.2.2 Diagnostic Plots of the Distribution of the Electricity Prices 

With the descriptive statistics above, one gets some basic ideas about the shape 

of the distributions of Alberta Power Pool prices. Diagnostic plots can describe further 

details more clearly. For studying the tail behavior, the histogram, the QQ-plot, and 

ME-plot will be used in this paper. The follow description of the plot concepts is based 

on McNeil (1997), Reiss & Thomas (2001), and Embreohts et al (1997). The graphs are 

generated by the R-project software (http://www.r-project.org). 
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Figure 3-1 Histogram of winter and non-winter prices 



37 
Given a set of data, one usually starts diagnostic plot analysis with a 

histogram. A histogram is usually plotted of the sample observation values against their 

frequency numbers. The histograms of the Albert Power Pool data are shown in Figure 

3-1. 

A quantile plot; QQ-plot, is the plot of the sample quantiles against the quantiles 

of the assumed underlying (or tail) distribution. An assumed tail distribution can be any 

one of the generalized Pareto distributions (GPD), such as the exponential, the student t, 

or the beta distribution. Since an underlying distribution has the same shape parameter 

with its related tail distribution, an exponential tail distribution has an underlying 

Gumbel distribution. To find the evidence of a fat tailed distribution, an exponential 

distribution is used as the assumed distribution. In a QQ-plot, the quantiles of the 

empirical distribution is plotted on the x-axis, with the quantiles of the exponential 

distribution on the y-axis. That is 

{(Xk:fl, Q( fl -  k + 
O'l n+1 =1,...,n }, 

where Xk:,, denotes the kth order statistic, and G is the inverse of the exponential 

distribution function. If the points lie approximately along a straight line, the set of data 

is a sample from an exponential distribution. A concave shape of the points displays a 

fat tailed distribution, whereas a convex shape shows a thin-tailed distribution. 
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Figure 3-2 Exponential QQ-plot of winter and non-winter prices 

The QQ-plots of the Alberta data are shown in Figure 3-2, where the empirical 

quantiles of electricity prices are plotted against the exponential quantiles. From the 

concave shape of the plots, one can conclude that the two sets of electricity prices are 

from fat tailed distributions, with their shape parameter ç> 0. 
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Another useful graphical tool, in particular for distinguishing different tails, is 

the sample mean excess plot. A sample mean excess plot (ME-plot) is the plot of the 

sample mean excess function {(u, e(u)), X,,,,,< u <Xj,}, where X1, and X,,,, are the 1 

and n' order statistics and e(u) is the sample mean excess function. 

A sample mean excess function (sample ME) is an empirical estimate of the 

mean excess function, which is expressed as 

n 
(x, —u) 

en (U) 
1=1  
n 
I{x>j,) 

z=1 

where I is an indicator function equal to one when x,> ii, and equal to zero when xj u. 

A mean excess function (ME) is the sum of the excesses over the threshold u divided by 

the number of data that exceed ii, which is expressed as 

e(u) =E(X—u IX>u), O<U<XF, 

where XF is the right endpoint of the underlying distribution. 

The ME-plot is used mainly for distinguishing thin-tailed distributions from fat-

tailed distributions. If the points in a sample ME-plot show an upward trend, then it is 

considered an evidence of a fat-tailed distribution. An approximately horizontal line of 

the points relates to an exponential distribution, whereas a downward trend of points 

relates to a thin-tailed distribution. In particular, if the empirical plot follows a straight 

line with a positive slope above a certain value of u, then the data follow a generalized 

Pareto distribution (GPD) in the tail above the threshold u (McNeil, 1997). 
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Figure 3-3 Sample ME-plot of winter and non-winter data 

From Figure 3-3, the points in the sample ME-plots of the Alberta data are 

upward trending, which means that the electricity prices of the Alberta Power Pool are 

from fat-tailed underlying distributions. 
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All the above descriptive statistics and diagnostic plots show that the two data 

sets of the Alberta Power Pool prices are realized observations from asymmetric fat-

tailed underlying distributions. 

3.3 Estimating VaR and ES by EVT 

3.3.1 Maximum Likelihood Estimation (MLE) Method 

The generalized extreme value distribution (GEV) and the generalized Pareto 

distribution (GPD) are both parameter distributions. To estimate VaR and ES with GEV 

and GPD models, first one needs to estimate the related parameters. The maximum 

likelihood estimation (MLE) method is the most often used method for parameter 

estimations. 

When using MLE to estimate the parameters in GEV, the assumption is that the 

data X1, ... Xn consists of a sample of identically independent distribution of H, , 

which is Xi, ... X,, i.i.d from H, , In fact, the above condition is hard to be satisfied. 

It can be shown that relaxing the condition to 

Xi, ...Xi.i.d from F€MDA(H,c-,p), 

the MILE method is still available (Embrechts et al., 1997, 316). 

The maximum likelihood estimation is the most general fitting method in 

statistics. It allows one to estimate the statistical errors (standard errors) for the 

parameter estimates. 
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After estimating the parameters by IvILE, one can calculate the estimated VaR 

from the GEV and GPD models and ES from the GPD model. It is possible to give a 

confidence interval for the estimated VaR and ES in the GPD model, using a method 

known as profile likelihood. The confidence intervals of the estimated VaR and ES are 

asymmetric, which reflect fundamental asymmetries in the heavy-tailed distributions. 

3.3.2 Maximum Likelihood Estimation of GEV 

The key issue of fitting GEV for empirical data is to decide a block size n to get 

the maxima for estimating the parameters. Recall from the limit law for maxima (the 

Fisher-Tippett Theorem), condition (2-3) holds only if the block size n -+ 00. 

Consequently, the larger the block size n, the better the fitness of the GEV for the data. 

The problem is that given a set of raw data, the larger the block size n, the less the 

resulted observed maxima. If one chooses too large a block size n, one will have sparse 

data for the estimation and consequently get large standard deviations from the 

estimated parameters. 

In this analysis, since the raw data of prices are ten hourly prices of peak-hours, 

the maxima block sizes are chosen from 10, 30, 50, 70, 80, 90, to 110, which are related 

to one day, three days, .. .to  eleven days of peak hours data. The estimation results of 

the parameters and the VaR are listed in Table 3-2 and Table 3-3. 

From Table 3-2, one can see that the estimated value of the shape parameter 

decreases as the block size increases. From the Fisher-Tippett Theorem, we say that the 
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estimates from large size blocks should be considered correct. As a result, it seems 

that the estimates from small size blocks tend to exaggerate a fat-tailedness fact and 

give much larger estimates of values. A small increase in the block size results in 

much fewer observations in the maxima data sets. According to the asymptotic 

distribution theory, the estimations from small samples are less accurate than from large 

samples. This fact is confirmed by the large standard deviations of our parameter 

estimates from small samples. 
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Table 3-2 Parameter estimates for GEV models 

Raw data 

N 

Block size 

n 

Maxima 

k 

Estimated parameters & standard deviations 

4 s.e. () a s.e.(cy) g s.e.(t) 

10 729 0.571205 0.034617 52.3642 2.22079 77.5455 2.16829 

Winter 30 243 0.587092 0.093875 90.0274 7.2798 121.921 7.32328 

N=7290 50 144 0.423161 0.112003 121.871 11.5224 164.66 12.6746 

70 105 0.262945 0.132234 153.564 16.1165 210.788 19.1002 

80 92 0.178212 0.131228 167.989 17.8041 236.346 21.8923 

90 81 0.121395 0.124853 178.495 18.9851 254.244 24.0494 

10 366 0.526774 0.046607 43.6281 2.50154 60.9599 2.53625 

Non-winter 30 122 0.599027 0.096425 78.9698 8.4532 98.1616 8.19481 

N366O 50 74 0.595754 0.157017 102.94 14.8089 133.1727 14.7122 

70 53 0.526208 0.196303 130.142 21.7604 168.7567 22.6411 

80 46 0.462364 0.187255 136.339 22.9293 184.571 24.6125 

110 33 0.205696 0.203841 190.207 32.6987 247.574 40.0149 

Substituting the estimated parameters into the VaR estimation equation (2-8) 

VaR =p+.[(-lnp -11. 

The calculated VaR estimates are shown in Table3-3. From Table 3-3, one can 

see that when the block size n> 10, a larger estimated shape parameter always relates 

to a higher estimated VaR. 
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Table 3-3 VaR estimates from GEV 

Raw data Block size 

ti 

Maxima 

k 

Estimated 

4 

VaR (q) estimates 

q = 0.97 q = 0.99 q = 0.999 

10 729 0.571205 634.21 1229.53 4700.19 

Winter 30 243 0.587092 1127.56 2220.04 8784.13 

N=7290 50 144 0.423161 1095.77 1851.27 5189.18 

70 105 0.262945 1032.14 1527.22 3160.44 

80 92 0.178212 981.508 1365.18 2453.4 

90 81 0.121395 954.564 1278.23 2108.94 

10 366 0.526774 481.857 895.226 3111.09 

Non-winter 30 122 0.599027 1041.49 2020.92 8206.89 

N=3660 50 74 0.595754 1313.24 2607.64 10514.18 

70 53 0.526208 1435.71 2665.93 9253.52 

80 46 0.462364 1323 2315.23 7029.84 

110 33 0.205696 1161.75 1647.52 3094.14 

After estimating parameters by choosing different block sizes, one can check the 

fitness of GEV models to the data by residual plots, where the residual is defined as 

res = 
[ = 0 

ex[_ex( x_)]#0 

The observations are converted to exponentially distributed residuals under the 

null hypothesis that GEV fits the data. Figure 3-4 shows QQ-plots of residuals with 

different block sizes for the Albert data. 
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Figure3-4 QQ-plot of residuals 
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It is shown in Figure 3-4 that when the block size is n = 10, the residuals are not 

approximately exponential distributions, which is represented by points not on straight 

lines. When n ≥ 80, the residuals are approximately exponentially distributed with most 

points on straight lines, which means that the GEV model fits the data well. 

3.3.3 Maximum Likelihood Estimations of GPD 
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A similar basic problem for GPD estimation is to choose a suitable value of 

threshold, u, a threshold shows the beginning of a tail distribution converging to GPD. 

Based on the Pickands-Balkema-de Haan Theorem, a high enough threshold u should be 

chosen in order that GPD fits the conditional tail distribution. The dilemma is that 

although a high threshold u ensures a tail distribution as GPD, it leads to less data of 

excceedances and thus high standard errors. 

A tool used in the threshold determination is the Hill-plot. Hill, B. M proposed 

an estimator of for 4 > 0 (Gencay and Selcuk, 2004). By ordering the sample data Xj, 

X with respect to their values as XI,, ? X2,, ≥ ... ≥ X,,,,, the Hill estimator of the shape 

parameter 4 is 

A 1/C 
=— lnX, —lflX/Cfl, 
k ,, 

where k - is upper order statistics (the number of exceedances), and n is the sample 

size. Roughly speaking, the higher the value of 4, the heavier the tail and thus the larger 

the quantile estimates. 

In practice, there are two kinds of Hill-plots. A basic Hill-plot is plotted 

according to the Hill estimator function by fitting GPD with different thresholds to 

obtain the maximum likelihood estimates of 4. The estimated shape parameter 4 is 

plotted on the y-axis. The number of data points exceeding the threshold is plotted on 

the lower x-axis and the thresholds is plotted on the upper x-axis. This Hill-plot shows a 

95% asymptotic confidence interval of the estimation. In general, a threshold is chosen 

from a part of the Hill-plot where the values of the shape parameter are stable. 
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Another option of Hill-plot is to use the estimated quantiles as y-axis values, 

showing different thresholds related to different quantile estimates. 

Figure 3-5 shows the two kinds of Hill-plots for the Alberta data. The Hill-plots 

of 4 estimates suggest that, for the winter data, a threshold is chosen between-values 

around u = 100 and u250. For the non-winter data, the Hill-plot suggests a high 

threshold from u = 100 to u = 160. 

The Hill-plots of quantile estimates show stable estimates of VaR (at p = 0.97) 

between u = 100 and u = 250 for the winter data, and between u = 100 and u = 160 for 

the non-winter data. Among the same threshold interval, the estimates of VaR (at p = 

0.999) are not stable, showing more volatility in the extreme value estimations. 
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Figure 3-5 Hill plots 
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Part II Non-winter data 
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Table 3- 4 Parameter estimates for GPD models 

Raw data Winter (N = 7290) Non-winter (N = 3660) 

P 0.85 0,9 0.95 0.85 0.9 0.95 
Threshold 

U 111.33 145.73 230.16 96 114.02 141.38 

Extremes n 1094 729 365 547 366 183 

0.187020 0.137743 0.517094 0.785705 0.932226 0.158997 

GPD s.e () 0.0376274 0.0434214 0.120233 0.080409 0.1113176 0.09974 

Estimates 87.510657 102.3862 66.38154 31.43644 34.5744 150.6797 

s.e.() 4.195649 5.818412 7.41507 2.661378 3.9673 18.6269 

The empirical maximum likelihood estimates of the GPD parameters and the 

VaR and ES estimates for the Alberta data are shown in Table 3-4 and in Table 3-5. 

One can see from Table 3-4 that the standard deviation of the estimated parameter 

increases as the quantile of threshold increases. The confidence intervals for the VaR 

and ES estimates in Table 3-5 are asymmetric with higher upper bounds than lower 

bounds. 

To see the fitness of GPD to the empirical data, one can use a plot of the excess 

distribution and QQ-plot of the residuals for a certain threshold value u. For the Alberta 

data, the threshold u is chosen at the percentile p = 0.95 for the GPD modeling. Figure 

3-6 shows the plot of the excess distribution and the QQ-plot of the residuals. 
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Plots in Figure 3-6 show good fitness of GPD for both winter and non-winter 

data. As a result, it is prudent to set the high threshold at p = 0.95 level. The quantile of 

the chosen threshold u at the high percentile q = 0.95 is 230.16 for the winter data, and 

141.38 for the non-winter data. The VaR estimates above the chosen threshold at 

percentiles p = 0.97, 0.99, 0.999 are 269.0882, 397.0555, and 1072.9953 for the winter 

data, and 221.5587, 417.7387, and 958.8986 for the non-winter data. The ES estimates 

above the chosen threshold at percentiles p = 0.97, 0.99, 0.999 are 448.2352, 713.2293, 

and 2112.963 for the winter data, and 415.8845, 649.1536, and 1292.6231 for the non-

winter data. The confidence intervals of these estimates are displayed in Table 3-5. 
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Table 3-5 GPD estimated VaR and ES 

Raw data Winter (N = 7290) Non-winter (N = 3660) 

Threshold 
p 0.85 0.9 0.95 0.85 0.9 0.95 

u 111.33 145.73 230.16 96 114.02 141.38 

Extremes n 1094 729 365 547 366 183 

q = 0.97 VaR (q) 275.7236 279.82 269.0882 197.2799 190.8727 221.5587 

Upper CI 287.8089 291.9639 275.258 213.8676 206.0949 239.5646 
CI 

Lower CI 265.2524 270.5211 268.2153 183.7441. 178.5305 206.2151 

VaR (q) q = 0.99 VaR (ci) 419.9495 423.1652 397.0555 390.9467 394.2254 417.7387 

Estimates Upper CI 448.3454 449.2374 425.2012 476.5997 492.8279 468.4331 
CI 

Lower CI 397.9516 401.0185 373.888 335.2481 334.1847 375.9047 

q;:= 0.999 VaR (ci) 837.9023 804.1351 1072.995 2100.994 2791.405 958.8986 

Upper CI 984.6927 937.067 1499.985 1498.5 NA 1339.638 
CI 

Lower CI 738.1378 715.2786 835.967 1343.593 NA 785.5563 

q0.97 VaR (q) 421.1823 419.9812 448.2352 715.3161 1758.095 415.8845 

Upper CI 455.939 450.8721 579.9811 1498.5 1498.5 484.935 
CI 

Lower CI 397.9516 396.2474 402.7008 456.909 532.315 373.9978 

ES (ci) q = 0.99 VaR (ci) 598.5864 586.2254 713,2293 1619.055 4758.533 649.1536 

Estimates Upper CI 676.3254 655.1367 1106.787 1498.5 1498.5 834.3869 
CI 

Lower CI 544.3207 538.8517 582,5228 875.9285 1110.773 561.6198 

q = 0.999 VaR (q) 1112.686 1028.054 2112.963 NA NA 1292.623 

Upper CI 1406.857 1287.898 1499.985 NA NA 1498.5 
CI 

Lower CI 928.799 870.6765 1260.385 NA NA 965.6855 
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Figure 3-6 Plots of GPD fitness 
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The Excess Distribution Plot (u = 141.38) 
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Figure 3-7 shows the VaR and ES estimates and their 95% confidence 

intervals. 

Figure 3-7 GPD estimated VaR and ES 
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Part II Non-winter data with the threshold u = 141.37 
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4. Performance of VaR Models 

4.1 VaR Estimates from Different Models 

In the above chapter, the estimations of VaR from GEV and GPD models are 

based on the extreme value theory (EVT). Chapter 2 introduces other traditional 

methods for VaR estimation: the variance-covariance method with normal distribution 

model and the historical simulation method. To see which method is the most accurate, 

it is necessary to compare VaR estimates from EVT models and from the traditional 

methods. 

Table 4-1 shows the estimates of VaR from four different models at high 

percentiles q = 0.97, 0.99, 0.999. The chosen block size of GEV estimates of parameters 

and VaR is n 90 for the winter data, and n = 110 for the non-winter data. The chosen 

threshold for GPD estimates of parameters and VaR is q = 0.95 for both the winter and 

non-winter data. In the normal distribution model, there is no parameter estimation, and 

VaR are directly estimated from the symmetric distribution with the sample mean and 

standard deviations. In the historical simulation method, with no distribution 

assumptions and thus no parameter estimation, VaR are simulated from the realized 

historical data. 

It is obvious that different methods give different estimation results. Table 4-1 

shows that the VaR estimates from GEV are much larger than VaR estimates from other 

models. Recall from chapter 3, when choosing a large block size (n = 80 for the winter 

data, n = 110 for the non-winter data) to fit GEV to the standardized maximum 
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distribution, there is a big loss of observations in the data set. As a result, although 

the residual plots show good fitness of GEV for the maxima, with few observations of 

maxima (k = 81 for the winter data, k = 33 for the non-Winter data) the VaR estimates 

from GEV have large confidence intervals. Thus, this study will avoid using the 

estimation results from GEY for comparison. The EVT estimation method is 

represented by GPD in the comparison with other traditional methods. 

Table 4-1 VaR estimates from different models 

Raw data Model Blo-size Maxi Thres Shape VaR (q) estimates 

n k q(u) 4 q = 0.97 q = 0.99 q = 0.999 

GEV 90 81 0.12139 954.564 1278.23 2108.94 

Winter GPD 0.95 0.51709 269.0882 397.0555 1072.995 

N7290 Nor 230.2404 256.684 326.4507 

Hist 250 457.7096 847.8198 

GEV 110 33 0.2057 1161.75 1647.52 3094.14 

Non-winter GPD 0.95 0.159 221.5587 417.7387 958.8986 

N3660 Nor 214.4083 249.2583 308.8837 

Hist 211.925 434.9273 998.9341 

Comparing VaR estimates from the GPD model and from the normal 

distribution model in Table 4-1, it is clear that at each high percentile q = 0.97, 0.99, 

0.999, VaR estimates from the GPD model are larger than that from the normal 

distribution model. Comparing VaR estimates from the GPD model and those from the 
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historical simulation, at q = 0.97, 0.999 the GPD estimates of VaR are larger than the 

historical estimates. Whereas at q = 0.99, the historical estimates of VaR are larger than 

the GPD estimates. If the GPD estimates are closest to the true values, the normal 

distribution model will always underestimate the risks of high quantiles, and the 

historical simulation method will some times underestimate the risks of high quantiles. 

In fact, there is no proof that GPD estimates are closest to the true values yet. To 

evaluate which model estimates the most accurately, a back-testing method is 

introduced to compare the performance of various models. 

4.2 Back-testing Process and the Comparison of Estimation Models 

4.2.1 Back-testing Process 

With the development of modeling methods for market risk analysis, many 

banks have adopted a process to test the quality and accuracy of their risk measurement 

systems. The process is the back-testing process, summed up as a framework by Basle 

Committee on Banking Supervision in 1996 (Basle Committee, 1996a). In a bank 

system, the basic idea of the back-testing process is to compare actual trading results 

with the model-generated risk measures. If the result is close, there is no systematic 

problem in the risk measurement modeling. If the result is very different, there may be 

some problems in the modeling system. 

A practical application of the back-testing process is to use a "sliding time 

window". Gencay et al. (2004) use this process to test the VaR estimates with the data 
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from the investment returns in emerging markets. McNeil and Frey (2000) use this 

process to test the VaR estimates with the BMW data. The follow expression about the 

back-testing process is based on Gencay et al. (2004) and McNeil & Frey (2000). 

Suppose there is a historical series with N observations. To back-test the 

estimates from risk measurement models, one chooses a subset data size m, where 

m <<N. The sub-data set is called a time window of m observations. If one places the 

first window between the ft and the mt/I sub-data set, one can estimate the 

(m + 1) 'hVaRq at a high quantile q by this m sub-data set modeling, and then compare 

the estimates with the real (m + 1) observation value. When moving the window one 

period ahead from the 2' to the (m + 2)" sub-data set, it is called sliding a window. The 

estimate of the (m + 2)111 VaRq is,from another m sub-data set modeling and thus has a 

different value. This time the comparison is between the estimated (in + 2)th VaRq and 

the realized (m + 2)" observation value. Repeating the above steps, one can slide a time 

window of m observations in a set of historical data with N observations, getting (N - m) 

estimates of VaRq from the back-testing process. 

The performance of a risk measurement model is summarized by a violation 

value (violation number or violation ratio). A violation happens when the realized 

observation value is greater than the related estimated VaRq. By summing all the 

violations among (N - m) times of estimations, one gets the violation number of a back-

testing process. A violation ratio is the ratio of a violation number divided by the total 

number of estimations (N - m) during a back-testing process. 
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To evaluate the performance of a model, a critical value becomes the 

"expected violation value" (expected violation number or expected violation ratio). 

When estimating VaR at a certain high percentile q, one expects that the realized 

observation values will have (1 - a) N times or (1 - q) percent of the times be higher 

than the estimated VaRq, if the model is correct. In other words, the expected violation 

number is (1 - cj) N and the expected violation ratio is (1 - q). For an example of the 

violation ratio, if one chooses percentile q = 0.97, 0.99, 0.999 for VaRq estimations, the 

expected violation ratios are (1 - q) = 0.03, 0.01, 0.001. 

The performance of a model is evaluated by comparing the realized violation 

value with the expected violation value at a given high percentile. If the realized 

violation number (or ratio) is larger than the expected one, it means that the model 

consistently underestimates VaR in the upper tail of the underlying distribution. If the 

realized violation number (or ratio) is less than the expected one, it means that the 

model consistently overestimates VaR in the upper tail of the underlying distribution. 

As a result, if all models underestimate VaR, the model with the least underestimation is 

most accurate. If all models overestimate VaR, the model with the least overestimated is 

most accurate. If some models overestimate VaR and other models underestimate VaR, 

one compares the absolute difference level of the overestimates and underestimates. The 

model with the least absolute difference is the most accurate. 

Whether a small or a large violation value is desirable depends on the 

perspectives of different organizations. In a banking system, regulatory organizations 

may prefer a model with a smaller violation value, since this model consistently 

overestimates risks and thus requires more capital allocation than necessary. As a result, 
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an adequate amount of capital will be allocated in the banking system in case of 

excessive losses. On the other side, commercial financial institutions may prefer a 

model with a larger violation value, since this model consistently underestimates risks 

and requires less capital allocation than necessary. The result is that less capital is set 

aside preparing for extreme situations, and more capital is available for commercial 

investments. 

In a deregulated electricity wholesale market, high prices are good for 

generators and bad for retailers and self-retailers. However, it is not known for either 

side of the business whether a larger or a smaller violation value is preferred. As a result 

one may consider that they both prefer the exact accurate of the violation values. This 

paper compares absolute differences between violation values and their expected 

violation values, and concludes that the model with smallest absolute difference is most 

accurate and desirable. 

4.2.2 Comparison of the Back-testing Results 

In the back-testing processes, this study chooses two different sizes of the 

sliding window for both the winter and non-winter data set. One window size is 1000, 

which means using a data set with 100-day peak hour prices to predict the 1001st peak 

hour price. The other window size is 1500, which means using a data set with 150-day 

peak hour prices to predict the 1501St peak hour price. 

These window sizes are chosen not to be too small, so that a high percentile 

estimate of VaR can be tested. For example, when estimating VaR at percentiles q = 
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0.97, 0.99, 0.999 with window size 1000 and 1500, the expected violation numbers 

are 30, 10, and 1 for window size 1000, and 45, 15, and 1 (or 2) for window size 1500. 

To test the estimation results at the high percentile q = 0.999, a window size of at least 

1000 is necessary. 

On the other hand, the window size is chosen not to be too large, so that enough 

times of estimation are included in a back-testing process. For example, for the non-

winter data set with 3660 observations, when choosing window size 1000 and 1500, one 

will back test the estimation 2660 and 2160 times individually during the back-testing 

process. 

Violation numbers and violation ratios from the back-testing process for the 

GPD model, the normal distribution model, and the historical simulation method are 

shown in Table 4-2 and Table 4-3. The performance of each model is shown by the 

differences between the real violation values and the expected violation values. The 

differences are values in the "error" columns in Table 4-2 and Table 4-3. 

From Table 4-2, at the percentile q = 0.97, all the differences between real and 

expected violation numbers from three different models are positive, which means that 

all models consistently underestimate risks. At the percentile q = 0.99, two of the 

differences between the real and expected violation numbers from the GPD model and 

the historical simulation are negative for the non-winter data with the window size 1500. 

This means that these two models consistently overestimate risks. At the percentile q = 

0.999, the back-testing process for the non-winter data with the window size 1500 also 

shows overestimations of VaR from the GPD and historical models. Despite the above 
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exceptions, all the other testing processes at quantiles 0.99 and 0.999 show positive 

differences between the real and expected violations. 

In Table 4-2, the expected violation number for the winter data at the window 

size 1000 is 189, while the real violation number from the GPD estimation is 191, from 

the normal distribution estimation is 221, and from the historical simulation estimation 

is 198. The least difference between the real violation number and the expected 

violation number is 2 from the GPD estimation. Thus, the conclusion from this back-

testing process is that GPD is the most accurate model for the VaR estimation at the 

high percentile p = 0.97. The same conclusion can be derived from the winter data with 

the window size 1500 and from the non-winter data with the window size 1000. The 

exception at the p = 0.97 estimation is from the non-winter data with the window size 

1500. Here the least violation number 8 is from the normal distribution model. In 

summary, for VaR estimations at the high percentile p = 0.97, four back-testing 

processes show that the two most accurate results come from the GPD model, one from 

the normal distribution model, and one from both the GPD and normal distribution 

models. 
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Table 4-2 Violation numbers from different models 

Season Oct-May (winter) June-Sep (non-winter) 

Error Error Error Error 

Data N 7290 7290 3660 3660 

Window In 1000 1500 1000 1500 

Estimations (N - m) 6290 5790 2660 2160 

Expected 189 0 174 0 80 0 65 0 

p=O.97 GPD 191 2 180 6 99 19 76 11 

Normal 221 32 210 36 99 19 73 8 

Historical 198 9 190 16 102 22 82 17 

P=0.99 Expected 63 0 58 0 27 0 22 0 

GPD 83 20 66 8 50 23 12 10 

Normal 179 116 165 107 87 60 55 33 

Historical 76 13 65 7 50 23 11 -11 

p=O.999 Expected 6.3 0 5.8 0 2.7 0 2.2 0 

GPD 8 1.7 9 3.2 4 1.3 1 -1.2 

Normal 129 122.7 123 117.2 64 61.3 39 36.8 

Historical 15 8.7 11 5.2 7 4.3 0 -2.2 

Similarly, for VaR estimates at the percentile q = 0.99, four back-testing 

processes show that one of the most accurate results from the GPD model, two from the 

historical simulation, and one from both the GPD model and the historical simulation 



68 
models. For VaR estimations at the quantile q = 0.999, four back-testing processes 

show that all the most accurate results are from the GPD model. 

An overall conclusion from Table 4-2 is that, compared with the other two 

models, the GPD model is the most accurate one for extreme value estimations for q = 

0.999. The performance of the normal distribution is poor at any high percentile in the 

tail of underlying distributions (in our analysis a tail begins from q = 0.95). The 

performance of the historical simulation is better than that of the normal distribution at 

any high quantiles, and sometimes even better than the GPD model at a modest high 

quantile (q = 0.99). This is reasonable since a normal distribution is not suitable for 

asymmetric and fat tailed distributions, and a historical simulation captures modest high 

values but not extreme values, The GPD model fits any distribution, including fat-tailed 

and asymmetric. The same conclusion is derived when comparing the difference of the 

real and expected probabilities in Table 4-3. 
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Table 4-3 Violation ratios 

Season Oct to May (winter) June to Sep (non-winter) 

Error Error Error Error 

Data N 7290 7290 3660 3660 

Window m 1000 1500 1000 1500 

Estimates n 6290 5790 2660 2160 

...o97 Exp 0.0300 0 0.0300 0 0.0300 0 0.0300 0 

GPD 00304 0.0004 0.0311 0.0011 0.0372 0.0072 0.0352 0.0052 

Nor 0.0351 0.0051 0.0363 0.0063 0.0372 0.0072 0.0338 0.0038 

His 0.0315 0.0015 0.0328 0.0028 0.0383 0.0083 0.0380 0.0080 

Exp 0.0100 0.0000 0.0100 0.0000 0.0100 0.0000 0.0100 0.0000 

GPD 0.0132 0.0032 0.0114 0.0014 0.0188 0.0088 0.0056 -0.0044 

Nor 0.0285 0.0185 0.0285 0.0185 0.0327 0.0227 0.0255 0.0155 

His 0.0121 0.0021 0.0112 0.0012 0.0188 0.0088 0.0051 -0.0049 

P=0.999 Exp 0.0010 0.0000 0.0010 0.0000 0.0010 0.0000 0.0010 0.0000 

GPD 0.0013 0.0003 0.0016 0.0006 0.0015 0.0005 0.0005 -0.0005 

Nor 0.0205 0.0195 0.0212 0.0202 0.0241 0.0231 0.0181 0.0171 

His 0.0024 0.0014 0.0019 0.0009 0.0026 0.0016 0.0000 -0.0010 
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5. Risk Management Application in the Power Market 

After discussing the unique properties of electricity and the structures of the 

restructured power market, this chapter gives an application of using the extreme value 

theory in evaluating hedging options on the spot power market. 

5.1. Electricity Properties and Power Market Structures 

Electricity, the commodity traded in power markets, appears to be a perfect 

commodity, since all electrons are naturally identical. In fact, the unique non-storable 

characteristic of electricity makes the power delivered at any particular time to any 

particular location a different commodity. One cannot buy power early, store it and then 

sell it later for higher prices. The non-storable feature of electricity requires the real-

time balancing of supply and demand system-wide. In other words, the instantaneous 

supply and demand must be in balance. Otherwise, the reliability of the whole power 

system may be impacted. This peculiar feature of the electricity market introduces the 

need for an additional set of services, beyond production and distribution, the balancing 

and reserve resources. Therefore, the supply of electricity involves three types of 

activities: generation, transmission, and ancillary services or balancing (Eydeland and 

Wolyniec, 2003). 

In deregulated power industries, the primary cash market takes on two 

contracting structures: pools and bilateral markets. The main characteristic of the pool 

market is the formal establishment of the market (system)-clearing price at which all 
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cash (energy) transactions clear. In the bilateral markets, all transactions are made by 

two parties and are independent of any other transactions in the market. 

In Alberta, the format of the primary cash market is the Alberta Power Pool. It is 

an hourly wholesale spot market, operated by the Alberta Electric System Operator 

(AESO). AESO is independent of any industry affiliations and owns no transmission or 

market assets. AESO provides open transmission accesses to the Alberta Interconnected 

Electric system (AlES) for generators, distribution companies and large industrial 

consumers. AlES also provides contracts with transmission facility owners to acquire 

transmission services and provide customer accesses. Consistent with its responsibility 

to ensure system reliability, AESO procures ancillary services, including operating 

reserves, to address contingencies and moment-to-moment changes in load (AESO, 

"Fast Facts"). 

In addition to spot power markets, forward power markets are markets where the 

parties contract for the delivery of power in the future. There are three basic forms of 

forward power markets: bi-latered or broker-based (over-the-counter), market maker-

based, and exchange-based. In an over-the-counter forward market, the trading involves 

either direct contract between two parties or a contact mediated by a broker. In a market 

maker-based forward market, the trading is centered on a market maker who posts two-

sided (buying and selling) quotes, stands behind every transaction, and can carry 

inventory. In an exchange-based forward market, a central exchange matches up buyers 

and sellers, and guarantees the performance of the transaction without taking an outright 

position and carrying inventory (Eydeland and Wolyniec, 2003). 
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In Alberta, an exchange-based forward market is operated by the Alberta Watt 

Exchange Limited (Watt-Ex). Watt-Ex is an online trading system for the electrical 

energy in Alberta. It allows market participants to buy or sell contracts for firm forward 

commitments in the real time or spot electricity market, as well as trading of ancillary 

services. Through this forward market, buyers and sellers can lock in a firm price for 

electricity, or arrange direct sales or forward market contracts for their electricity needs 

(http://www.watt-ex.com). 

5.2 Application of the GPD Estimated VaR: Hedging Power Price Risks with Call 

Options 

It is well known that electricity prices are highly volatile, due to the variation in 

demand, together with the constraint in generation capacity. Many derivative 

instruments have been developed for the risk management of energy transactions. 

Derivatives are financial securities whose value is derived from another underlying 

financial security. Derivatives can be used in hedging, protecting against financial risks, 

or can be used to speculate on the movement of security or commodity prices, or the 

levels of financial indices. The valuation of derivatives is based on the statistical 

mathematics of uncertainty. In power markets, the non-storability of power is also a 

reason why well-known financial theories may not be applicable to electricity 

derivatives. 

5.2.1 Plain-vanilla Options 
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There are several standard derivative products, often called "plain vanilla", 

used as risk management tools in energy markets. Futures contracts, forward contracts, 

swaps, and options are the most frequently used ones. 

Futures are highly standardized exchange-traded contracts for the purchase or 

sale of an underlying commodity or financial product at a specified price over a certain 

future period. Forward contracts are agreements to buy or sell a commodity at a future 

time. When the forward contract is made, the price to be paid at delivery is specified. 

Swaps in energy markets are similar to swaps in financial markets and are natural 

generalizations of forward contracts (Eydeland and Wolyniec, 2003). 

After futures, forwards, and swaps, the other most frequently used risk 

management tools are plain-vanilla options. The plain-vanilla options are standard for 

the power and natural gas markets, including calls and puts. In energy markets, a call 

option is the right but not the obligation, to buy energy at a predetermined strike price, 

and a put option is the right, but not the obligation, to sell energy at a predetermined 

strike price. Typically, energy option specifications include location, exercise time, 

delivery conditions (for example the type of delivered power, such as on-peak, off-peak, 

round-the clock), strike, and volume (Eydeland and Wolyniec, 2003). 

Based on the exercise time, there are two kinds of options: European-style 

options, which exercised only once at the specified exercise date, and American options, 

which can be exercised only once at any time before the exercise date. In current energy 

markets, there are two groups of popular options: physical options and options on the 

spot market. 
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a. Physical Options 

To see the payoff at an option exercise, one needs to separate the financially 

settled options from the physically settled options. The usual exercise periods of the 

options in current energy markets are calendar year, quarter, and month. 

For financially settled options, there must be a widely accepted financial index 

(such as Inside FERC' Gas Market Report in the gas market). The options are exercised 

against the index. If K is the strike price, and S is the price of the index against which 

the option is settled, the call's payoff of a European option is ILaii = max {S - K, O}, 

and the put's payoff of a European option is 11put = max (S - K, 0). 

Physically settled options are power market instruments since power markets 

have not developed a financial index for the financial settlement. The holder of a 

physically settled call (or put) option has the right, but not the obligation to buy (or sell) 

the commodity for the contracted period, paying the strike price K. To extract the value 

from a physically settled European option, the second step for the option holder is to 

sell (or buy) the commodity at the spot market. The spot market price S used in 

exercising the option is the average spot price inside the contractual period. Again, the 

payoff of the option is = max {S - K, 0) for call options, and ilput = max IS - K, 0) 

for put options. 

b. Options on the Spot Commodity 



75 
Usually, options on spot commodity gas or power are excised daily during a 

certain period, such as month, quarter, and season. Two groups of options on the spot 

commodity exist in the energy market: fixed-strike options and floating-strike options. 

The owner of fixed-strike daily option can make daily decisions during the exercise 

period about buying (call option) or selling (put option) spot commodity at a fixed strike 

price. The owner of a floating-strike daily option can make daily decisions during the 

exercise period about buying or selling spot commodity at a strike price determined at 

the beginning of the exercise period as a settled value of the period's index. 

Typically, in the power market, hourly options on the spot commodity are 

available and used to manage price risks on an hourly basis. They are options 

financially settled against the real-time hourly prices such as power pool prices in 

Alberta. 

5.2.2 The Application Example: Hedging with Options as Insurance against 

Extraordinarily High Power Prices 

Because of the unpredictable demand from the consumer side, there are 

situations when a retail company must buy power at on-peak hours from the wholesale 

spot market to fulfill their obligations of supplying enough power to their customers. In 

this case, the retailers want to protect themselves from extraordinarily high prices in the 

spot wholesale market, since the high price spikes are typically low-probability events 

with possibly destructive effects on the company. In the above situation, an hourly 

option on the wholesale spot power market can be used as insurance for the retail 

companies. The details of how the option works are explained in the follow example. 
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Suppose during the winter season (from October to May) in Alberta, a retail 

company has to offer some unexpected extra power to its customers during some period 

of on-peak hours. In addition to the contracts in the forward market with power 

generators, it has to buy the extra power from the spot wholesale market. Since the high 

amount of demand in power always relates to high system margin prices, the retailer 

wants to find a way of hedging against the possible extremely high prices. 

Suppose the only available call option for this insurance purpose is an hourly 

option as follows: 100 MW Calgary on-peak Winter 2004-2005 $200 Call with 

premium $6/MW per day. 

This is an option financially settled against the real-time hourly prices of the 

Alberta Power Pool. The owner of this option has the right, but not the obligation, to 

call on the seller of the option to deliver 100 MWh of power at $200 /MWh in the city 

of Calgary. The contracted period is the on-peak hours (from 11 AM to 20 PM in this 

case) during the winter of 2004-2005 (from October 2004 to May 2005 in this case) 

The call option buyer has to pay $6 /MW per day during the eight month from 

October 2004 to May 2005. Since the market participants are more willing to buy calls 

than selling them, especially when prices are high due to the constraint of supply, the 

high premium is unavoidable. It is clear that the total premium during the exercise 

period is: 

C = $6 (/MW per day) * 243 (day) * 100 (MW) = $145,800 
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Now the retailer has to decide whether it should buy the call option or not. 

Suppose the company only considers the 0.999 quantile level as extremely high prices, 

which means that there are 2 hours ( 0.001 * 2430 h) during the eight-month (2430 

hours) period when the extremely high prices occur. Based on different estimation 

models, different retailer companies will have different VaR estimates at the same 

quantile level. Thus, they end up with different decisions about whether to buy the 

option or not. 

The VaR estimates predicted by the normal distribution model, the historical 

simulation model, and the GPD model at the 0.999 quantile level are $326 /MWh, $848 

/MWh, and $1073 /MWh separately. Noting that in the Alberta Power Pool, the highest 

price is capped at $1000 /MWh, this example will use $1000 /MWh instead of $1073 

/MWh as the VaR estimate at the quantile 0.999 from the GPD model. The different 

estimates of VaR are believed by different retailers as the true extremely high prices. 

Let SI, S2 and S3 be the total savings from exercising the option with VaR 

estimated by the GPD model, the normal distribution model, and the historical 

simulation model. A retailer will buy the option if the total saving is positive from 

exercising the option. 

If the retailer buys the option, it must pay the total amount of the premium of 

$145,800. Thus, by exercising the option for two hours, the total savings are calculated 

as follows: 

Si =($1000—$200)/MWh * 2h * 100 MW — $145,800 = $14,200 

52=($326_$200) /MWh * 2h * 100MW—$145,800-$120,600 
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S3 =($848—$200) /MWh * 2 h * 100 MW—$145,800 = -$16,200 

Based on the above calculation, a retail company would not buy the option if it 

estimated VaR at the 0.999 quantile by the normal distribution model or the historical 

simulation model, since the total savings S2 and S3 are negative. A retail company 

would buy the option if it estimated VaR at the 0.999 quantile by the GPD model, 

because the total saving Si is positive. 

Recall in chapter 4, the performance of the three models in estimating VaR has 

been compared by using the back-testing method. For the winter data, all the models 

underestimate the real VaR. Among them, GPD is the least underestimated and the most 

accurate model. Keeping this in mind, one should believe that the realized extreme 

prices or the real VaR are most close to the GPD estimates. 

As a result, when the extremely high prices in the market realized at $1000 

/MWh for only two hours, the retailer without hedging by the call option would in fact 

lose money at an amount of Li. 

Li=($200—$1000)/MWh * 2h * 100MW=-$160,000 

Here the retail company will lose money by paying spot prices of $1000 / MWII instead 

of the strike price of $200 /MWh, although it does not pay $145,800 of the premium. 

From this example, it is clear that when evaluating savings from hedging by call 

options on the spot power market, different estimates of VaR lead to different 

calculations of the total savings. If a retail company correctly uses the GPD model to 
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estimate VaR at the 0.999 quantile, it will choose to buy the call option and 

consequently save $14,200. If the retail company uses traditional estimation models 

such as the normal distribution model or the historical simulation model, it will 

miscalculate the estimated VaR and choose not to buy the call option. As a result, when 

the market realizes the extremely high prices as predicted by the GPD model, the retail 

company will lose $160,000. The amount of loss is much larger than that of saving. 

This is why we consider the call option as a tool of hedging as insurance. 
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6. Conclusion 

This paper introduces extreme value theory as an analytical tool in estimating 

electricity market risks. Market risks in a deregulated wholesale spot power market are 

extremely high (or some times low) market prices measured by Value at Risk (VaR) 

and the expected shortfall (ES). Extreme value theory is a study of the tails of various 

distributions. There are two groups of models in the extreme value theory: the block 

maximum models that study the fluctuations of sample block maxima, and the peaks-

over-threshold models that study the tails over a high threshold of the underlying 

distribution. 

Using data on Alberta Power Pool prices, this paper estimates VaR by the 

extreme value theory method and the other two traditional methods, the variance-

covariance model with a normal distribution assumption and the historical simulation 

model. A back-testing process is used to compare the VaR estimations from these three 

methods. The comparison shows that the extreme value theory method is the most 

accurate among all three methods. This is not a surprise since the exploratory analysis 

of the Alberta Power Pool data shows a fat-tailed and asymmetric distribution. Based on 

these factors, a normal distribution model is biased because it has an exponential-tail 

and a symmetric distribution, while a historical simulation model is limited to the 

historical observations and gives no possibility of realizing values beyond the historical 

extreme values. Only the extreme value theory models are able to encompass the fat-

tailed and asymmetric distributions, and also provide parameter estimates of the 

underlying distributions using the limited realizations of extreme values. 
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The application of the extreme value theory to risk management analysis in 

power markets is very broad. One of the applications is to evaluate hedging call options 

in a wholesale spot power market. When calculating savings from exercising the 

hedging call options, different models lead to different estimates of the total saving. 

Only with the estimates from the extreme value theory model would a retailer make the 

correct decision to buy the hedging options, and thus avoid big losses under extreme 

situations. 

The contribution of this paper is to apply the statistical tool of extreme value 

theory to the risk management analysis in the restructured power market. With the 

ongoing movement of restructuring electricity industries around the world, more and 

more volatility in market prices will require further studies to find new risk management 

tools. 

The conclusion of this paper is that the extreme value theory is a desirable 

statistical tool in analyzing the extremely high price risks in the Alberta electricity 

wholesale market. I am not sure whether or not the same tool is suitable to other energy 

market analyses at this point. To have more information about this, more studies need to 

be done. 
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