
THE UNIVERSITY OF CALGARY

Inducing Procedures Interactively

Adventures with Metamouse

by

David Maulsby

A thesis submitted to the Faculty of Graduate Studies

in partial fulfillment of the requirements for the degree

of

Master of Science

Department of Computer Science

Calgary, Alberta

December, 1988

© David Maulsby 1988

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a accordée
a la Bibliothque nationale
du Canada de microfilmer
cette thse et de prter ou
de vendre des exemplaires du
film.

L'auteur (titulaire du droit
d'auteur) se rserve les
autres droits de publication;
ni la thse ni de longs
extraits de celle-ci ne
doivent être imprims ou
autrement reproduits sans son
autorisation crite.

ISBN O-315--50339-4

The University of Calgary

Faculty of Graduate Studies

The undersigned certify that they have read, and recommend to the
Faculty of Graduate Studies for acceptance, a thesis entitled, "Inducing
Procedures Interactively," submitted by David Maulsby in partial
fuffihirnent of the requirements for the degree of Master of Science.

Supervisor Ian 1-I. -Vc'itten
Cornputej Sence

Bruce A. MacDonald
Computer Science

c
Mildred L. G. Shaw
Computer Science

Ron Wardell
Environmental Design

Brian L. M. Wyv ill
Computer Science

Date December 8, 1988

11

Abstract

Direct-manipulation interfaces have greatly extended the class of casual computer users and

encouraged them to conceptualize the system through metaphors. They have not, however,

successfully incorporated facilities for end-user programming without breaking out of the

direct-manipulation paradigm.

This thesis supports the contention that "teaching" provides an appropriate metaphor for

programming in such an environment. It presents a system for inducing procedures that

enables users of a graphics editor to teach it routine tasks by working through example

traces. A central problem in the design is to meet the requirements for instructibility

without imposing excessive demands on tie teacher.

A key component of the system is its teaching metaphor, a graphical apprentice called

Metamouse. Metamouse is the target of the teacher's demonstrations. It is an eager learner

designed to encourage consiructi'e methods, clarify ambiguous situations, reduce errors

and extraneous activity, and discourage free variation in teaching. Its behavior is expected

to be understood by users at a metaphorical, intentional level rather than from a precise

specification.

Metamouse has been fully designed but not yet fully implemented. However, a pilot

system has induced procedures with variables, generalized actions, conditional branches

and loops. Its ability to reduce errors and extraneous activity by prediction, and to identify

underspecification, has been demonstrated. Tests showed that the metaphor is easily

understood. Consequently the thesis argues that it is feasible for a system to induce

procedures interactively from casual users. This significantly broadens the scope of

application of machine learning techniques and opens new areas of research in knowledge

acquisition. It facilitates the investigation of intelligent user interfaces and, last but not

least, benefits the many users of interactive graphics systems.

Parturient montes, nascetur ridicula testudo.

- after Horace

111

Acknowledgements

This research has been supported in part by a Natural Sciences and Engineering Research

Council of Canada Post-Graduate Scholarship, and by Graduate Teaching and Research

Assistantships from the University of Calgary.

I would like to thank my supervisor, Ian Witten, for his editorial thoroughness, and

Tamara Lee for excellent work on the figures, some of which I know were taxing indeed. I

would also like to thank the Department of Computer Science support staff - Bev,

Bonnie, Camille, Dolores, Joan, Lesia, Lorraine, Marion and Parin - for all their patient

help.

Research may appear to be a solitary endeavor, but I have found that most ideas result from

collective cogitation. .1 have been fortunate to work in a lively research environment at

Calgary. Seminars and meetings have done their part. Much more, however, has come

from casual conversation, looking over someone's shoulder, misunderstanding, bluffing,

and wild speculation. Bibliographic citations ignore these vital resources. My fellow

students - Saul Greenberg, David Pauli, Jeff Allan, Debbie Leishman, Bruce Conrad,

Rosanna Heise, Thong Phan, Mike Hermann, Phong Truong, Dan Mo, Dan Freedman and

Brent Krawchuk - have all contributed to this thesis, often unknowingly. I wish them all

the best with their own research. Ken Kittlitz has taken up the cause of Metamouse - I

hope he enjoys it as much as I have.

I enjoyed not only excellent supervision from Ian Witten, but also the help of Bruce

MacDonald; our discussions in the early stages of this research gave the project its shape

and direction. I very much appreciated Bruce's insistence on defining a mission, and Ian's

willingness to let me dream a little.

iv

Contents

Approval

Abstract

Acknowledgements iv

Contents v

List of Figures viii

List of Tables viii

1 Teaching a Mouse How to Draw 1

1.1 Drawing Programs 1

1.2 Drawing Procedures 3

1.3 Programming by Example 10

1.4 Outline of Thesis 15

1.5 Introducing Metamouse 17

1.6 Box-to-Line—a. Worked Example 17

2 Meeting the Felicity Conditions 20

2.1 User Study 21

2.1.1 Tasks 21

2.1.2 Observations 23

2.2 Towards a Theory of Drawing 27

2.2.1 Empirical Studies 28

2.2.2 Phenomenology and Construction 29
2.3 Felicity Conditions 34

2.3.1 Correctness 35

2.3.2 Show Work 36

2.3.3 No Invisible Objects 37

2.3.4 Minimal Activity 38

2.4 Design Principles 39

3 Metamouse 41

3.1 A.Sq—the Drawing World 42

3.2 Basil—the Metamouse 45

3.2.1 Basil's Body 46

3.2.2 Basil's Sensory System 48

3.2.3 Basil's Memory 52

V

3.3 Generalization—Actions 56

3.3.1 Variables 58

3.3.2 Constraints 59

3.4 Generalization—Procedures 61

3.4.1 Definitions 62

3.4.2 Algorithm 63

3.5 Putting the System Together 65

4 An Implementation 67

4.1 Phase 0 Implementation 67

4.2 A.Sq 69

4.3 Basil 74

4.4 Daedalos 77

4.5 Generalization 79

4.5.1 Variables 79

4.5.2 Constraints 81

4.6 A Worked Example 85

5 Three Empirical Studies 95

5.1 The Metamouse Metaphor 95

5.2 Inducing Procedures 98

5.2.1 Box-to-Line 99

5.2.2 Picket Fence 100

5.2.3 Connectivity ioi
5.3 Learning without Prediction 102

6 What Have We Learned from Metamouse? 104

6.1 Project Status 104

6.2 Empirical Studies 105

6.2.1 The Metamouse Metaphor 105

6.2.2 Inductive Generalization 106

6.2.3 Benefits of Interaction 107

6.3 Analytic Evaluation of the System 108

6.3.1 Representing Problems 108

6.3.2 Distinguishing Programs 109

6.3.3 Sensitivity to Teaching Sequence iio

vi

6.4 Support for the Thesis 110

6.5 Further Work Proposed 112

6.5.1 Integrated System 112

6.5.2 Human Factors, Studies 112

6.5.3 Graphical Domain Analysis 113

6.5.4 Generalization and Learning 114

6.6 Summary and Conclusion 114

References 117

Appendix A 120

Vii

List of Figures

1.1 The "box-to-line" task 4

1.2 Using a sweep-line 4

1.3 Rules for positioning labels at arrowheads 5

1.4 Positioning a label at an arrowhead 6

1.5 Constructing the cyclic order of points 7

1.6 Distributing boxes along a line 8

1.7 Description of Metamouse given to teachers 16

1.8 Teaching Metamouse a trace of "box-to-line" 18

2.1 Left-to-right ordering of points 30

2.2 Use of sweeping methods to distinguish order 32

2.3 Two concepts of "thin box" 33

2.4 Spatial relation defined by an "invisible object" 37

3.1 Prototype system for programming graphics by example 42

3.2 Parts of A.Sq objects 43

3.4 Touch relations in sensory feedback 50

3.5 Program graph for "box-to-line" 54

3.6 Definition and instantiation of a variable 59

3.7 Main modules of graphical programming system 66

4.1 A.Sq user interface 69

4.2 Class hierarchy of A.Sq graphical objects 72

4.3 A.Sq system data structure 73

5.1 Performance of three typical subjects on Basil questionnaire 97

5.2 Connectivity task ioi

6.1 A graphical counting device 109

List of Tables

5.1 Learning system performance 99

5.2. Performance data for passive vs interactive modes 103

viii

I

Chapter 1

Teaching a Mouse How to Draw

At one time not so long ago, the task of preparing charts and diagrams presented the vast

majority of professionals and students with a dilemma. To draw them by hand required a

great deal of time and effort with no guarantee of satisfactory results. To hire someone else

to draw them implied considerable expense. Either approach was bound to be time-

consuming and onerous. Within the past five years however, drawing with the help of a

computer has become widely available and popular. Anyone with access to a personal

computer has the opportunity to draw with powerful and efficient software tools. The

ability to edit pictures without using an eraser is perhaps the greatest convenience of all.

The result is plainly visible in the workplace: the quality of drawings in unpublished

documents has improved tremendously. On the other hand, it appears that the amount of

time people spend drawing has increased as they produce more pictures to higher personal

(and communal) standiirds of draftsmanship. Of course, computers breed perfectionism -

out of nowhere springs a new concern for the semantic implications of alignment and

centering. Nonetheless, much of the effort people put into drawing with computers is

surely worthwhile. The problem is that popular drawing programs do not help their users

as much as they could with delicate and repetitive tasks. This thesis proposes the use of

programming-by-example to address this problem, so that computer users can meet their

drafting standards and concentrate more upon the design and meaning of their creations.

1.1 Drawing Programs

The average user of a drawing editor is quite unaware that she1 is really specifying a

program. The static picture she sends off to the laser printer is translated for her into a

sequence of device- driver commands. When Sutherland first experimented with

SKETCHPAD, computer drawing was very much like programming [Sutherland 63].

Images intended for production on a graphics plotter were typically FORTRAN programs.

The user of SKETCHPAD could program interactively and incrementally, toggling groups of

Please note that the use of singular pronouns is a matter of convenience; any distinction between male
and female is deemed irrelevant to the subject matter of this thesis.

2

switches to select shapes and twisting dials to set their parameters, with the results

immediately visible on a cathode-ray tube. Sutherland went even further, introducing an

interactive tool called the rubber-band line. With this the user could literally rough out a

picture for SKETCHPAD'S constraint-satisfaction system to beautify.

In the following two decades interactive computer graphics developed steadily. By the

mid-1970's, the digitizing tablet and color raster display made painting programs feasible.

Using such a program was very much like painting with watercolors, or with oils, or like

drawing with an air-brush - or like nothing that could have been done so simply by hand.

These programs illustrated the practicality of interactive graphics, but also the potential for

entirely novel methods of drawing made possible by computation on an internal

representation of the picture.

In the early 1980's programs like MacPaint and MacDraw brought the basic capabilities

of SKETCHPAD and paint systems into the popular domain [MacDraw 87]. These

programs stress the benefits of utterly concealing the internal representation and the

computational model; they attempt to sustain the illusion of drawing on paper (this illusion

gets shattered now and then, as when MacDraw exposes the peculiar logic of its

"alignment" commands). They offer the user a kit of graphical tools that have great

intuitive appeal - greater perhaps than the physical ruler and compass.

Despite their obvious virtues, contemporary drawing programs have limitations that rob

users of their time and patience. Surprisingly, the most prevalent and annoying of these

can be overcome by reintroducing the very activity that has been banned - programming.

Examples of functional limitations prevalent in popular editors include:

1. The lack of alignment facilities. MacDraw, for example, can align objects with

reference to their bounding boxes - at their centers, or a common edge or corner. It

cannot align the left edge of one box to the right edge of another. Nor will it move objects

to a guideline of arbitrary orientation given by the user.

2. The difficulty of positioning objectsexactly as desired. Most commercial drawing

programs provide a reduced resolution grid or object-gravity for exact positioning. Anyone

who has used these knows of their virtues, but also their deficiencies. A gravity grid

relentlessly frustrates attempts at fine adjustments of size or position until it is turned off.

Object gravity does not typically support such useful operations as bisecting a line.

3

3. The lack of facilities for creating specialized shapes. MacDraw and MacDraft,

though widely used, do not provide such useful shapes as hexagons, parallelograms, and

isosceles triangles, let alone n-gons. Perhaps this is because these are not supplied with the

Macintosh firmware.

4. The lack of user-specifiable constraints. If a drawing program does not support the

control of spatial relations then the user must "debug" the rest of her picture whenever she

edits some member of a constrained relation. Drawing programs support the constraints

inherent in their graphical tools - for example, that the edges of a polygon remain

connected - and also permit fixed relations by grouping elements. But suppose the user

wants an edge to remain vertical even when one of its end-points is moved. This local,

dynamically satisfied constraint is inexpressible.

The items in this brief catalogue have key features in common. They all require that a

constraint be specified. They have multiple parameters that must be given at ran-time; they

are just a little too complex for the "friendly" direct-manipulation interfaces of popular

drawing programs. They are too complex for typical macro-defining facilities such as

[Tempo 86], yet even casual users know how to perform them manually. Commissioning

an application programmer would be impractical. Yet how can the typical user of MacDraw

be expected to re-program MacDraw?

1.2 Drawing Procedures

An answer to this question arises from the way users produce and refine their "program

specifications" for the hard-copy device using MacDraw. The following tasks are good

candidates for programming; all are useful, and some would be quite difficult for a non-

expert to program in a formal language.

First, an alignment operation not supported by MacDraw. The task is to move one or

more boxes onto a guideline of arbitrary orientation, so that all boxes He entirely to one side

of the line. The procedure, called "box-to-line," is illustrated in Figure 1.1. The

user/executor of this procedure decides ad hoc where to place the guideline and on which

side the boxes shall lie when aligned. The first of these input parameters is drawn by the

user, the second is inferred from the way the user re-positions the first box. An algorithm

for "box-to-line" is given below.

4

box-to-line:
ask user to draw the guideline, G
ask user to move the first box, B1, to G
note which corner, C, of B1 is on G (ie. B1.0 is on G)
for each box, B1, of those remaining:

move B1 until B1.0 is on G
remove G

a. Before

d. RepeatforB2

a. First box after selection
and transformation

b. Draw guide-line G

e. Repeat far B3

c. Drag B 1 to G; lower right
corner of Bi is on G

f. Final result

Figure 1.1 The "box-to-line" task

b. Drag sweep-line up
to select next box

Figure 1.2 Using a sweep-line

c. Move box along
sweep-line to guide

5

The path a box takes from its origin to its target position may be more or less

constrained - along the horizontal, or perpendicular to the guideline, etc. This illustrates a

problem in specifying a graphics editing procedure: isolating a clearly defined task from

the user's goal set. After all, she might move the boxes so as to refine other aspects of

their arrangement at the same time. Figure 1.2 illustrates the use of a horizontal "sweep-

line" to select boxes and specify their path.

\1 0 M/
-'- Label R

U U

a • a
a North
North-East

/
a a

a U
,West by U
North-West

IN III

a. Rules for positioning a label at an arrowhead b. Two examples

Figure 1.3 Rules for positioning labels at arrowheads

The positioning of textual labels near arrowheads is an extension of the alignment

problem; some selected part of the label is made collinear with the arrow, but at a certain

distance from its end point. Figure 1.3 shows a graphical declaration of the rules for

positioning labels, where each case illustrated represents the center of the range over which

its rules applies.

6

Obviously, this declarative approach involves implicit information - conventions that

interpret the cases. A procedural, constructive specification can be more self-contained, by

demonstrating the range over which a rule applies. A rotating sweep line, as on a radar

scope, measures the angle to the particular arrow from a standard initial position in Figure

1.4. The sweep line pauses at each of the stations where one rule gives way to the next. If

it crosses the arrowhead on its journey between two stations it will stop sweeping. The

label is then moved into position at the arrowhead in accordance with the currently active

rule.

/
L North

North-East

a. Before: line A and label L

R
L North

North-East

 >-

L North
North-East

L North
North-East

b. Draw angle ruler R c. Move R to first station;
did not pass over A

L North
North-East R /

North
North-East

d. Move R to second e. Move label L to position f. Final result
station; did pass over A prescribed by rule

Figure 1.4 Positioning a label at an arrowhead

Next, let us examine a task from computational geometry - finding the convex hull of

a set of points. This procedure may not be used much but it is nicely illustrative. Suppose

we have some key points in our drawing, and want to make a polygon around them. We

choose our polygon tool, anchor it at the starting vertex, and then proceed around the

7

vertices in a rotational order, say, counter-clockwise. We have just performed Jarvis'

March, a classic algorithm [Preparata 85].

.
S

R

a. Draw ruler

d. Draw edge Eifrom
Vito V2

R

S

S

S

Vi
.

R

b. Drag Rto point Vl

e. Center RatV2

.

Vi

S

• V2

0;•

c. Rotate R about V 1 t V2

.

R

Rotate R about V2to V3

g. Draw edge E2from h. Repeat steps e, f, g until Vi i. Final result
V2 to Vs reached by edge drawn

Figure 1.5 Constructing the cyclic order of points

We took advantage of an ordering of the data, without having to sort them or know

how to express their ordering in mathematical terms. The graphical procedure was easy,

a. Before

d. Move S to right
edge of Bi

8

but specifying it in words requires special knowledge. Adopting more expressive graphical

methods, shown in Figure 1.5, yields a constructive form of Jarvis' March:

Jarvis' march:
draw the ruler line, R, near the bottom of the display
move R upwards until it touches some vertex, V1 (a point on convex hull)
for each vertex, V, encountered until done:

rotate R counter-clockwise about Vn until it touches another vertex,
draw a line segment from Vj to V +1
slide R along (V,V +i) until it is centered on V +
if Vn+j is Vi, signal done

remove ruler line R

Finally, consider the fairly simple, useful task of arranging some boxes in an equally

spaced row; that is, such that a gap of constant width separates each box from its neighbor

to the left. Figure 1.6 illustrates the procedure.

b. Draw guide-line G c. Move box Bi down to G
and spacer

e. Move B2 to G at right
end of 8; repeat for
remaining boxes

I
f. Final result

Figure 1.6 Distributing boxes along a line

9

The input to be filtered through this "picket-fence" procedure is the set of boxes. Two

other inputs parameterize it: a horizontal guideline that represents the ground underneath

the boxes, and a horizontal spacer line that specifies the size of the gap. If these parameter

objects are invisible, then the user is performing measurement by visual inspection; if

visible, she is constructing, in the traditions of geometry and drafting. The procedure

involves selecting and translating each box to the guideline, with the additional constraint

that the spacer separate it from its neighbor to the left. If the user is systematic about this,

she is following this algorithm:

Picket-fence:
create horizontal guideline G
create horizontal spacer S
translate S until it lies above but near left end of G
for each box B1 in the input set:

translate B1 until both
1. bottom edge of B1 lies on G, and
2. right end of S lies on left edge of B

translate S until left end of S lies on right side of B1
remove S and G

Notice that some of the terms in this algorithm, as in the others above, are somewhat

vague; for example, the phrase, "lies above but near". Moreover, the algorithm does not

determine the order in which boxes are selected. These under-constrained decisions are not

really important to the task, and are easily settled if need be; they are the sort of trivial

decisions the user makes ad hoc. Thus the algorithms examined above may well describe

what a human being would do in carrying out such routine tasks, but lack the determinism

expected of computer programs. To ask the user to write a deterministic program in a

suitably unambiguous, abstract language would be asking quite a lot: her "natural

algorithm" is expressed in a visually and kinesthetically reactive intercourse with a picture;

she does not have to account for what might happen, nor define trivial parameters of her

actions. The average user, even one who has a talent for programming, would be

disinclined to write such programs. Short-term economy would easily convince her that

the task is "not worth programming."

This thesis proposes that an amateur draftsman can indeed create programs to

accomplish constraint satisfaction and other tasks such as sorting, without having to

abandon her natural mode of work. She already, albeit indirectly and unwittingly,

programs the graphics plotter through the mediation of the drawing system. Another

10

intermediary, another level of indirection, enables her to program new functions for the

drawing system itself. A graphical device called the Metamouse expresses what the

physical input device, the mouse, would be doing under user control during execution of a

task. The Metamouse is connected to a learning system that records and generalizes actions

and induces the program's control structure. The system learns a program incrementally so

that the programmer need only execute those parts of it that accomplish her current task. In

short, it is a system for programming by graphical demonstration.

1.3 Programming by Example

Graphical programming almost inevitably involves the production of an example, since

particular representative objects must take the place of symbols. The tradition of graphical

programming is entwined with that of programming by example, beginning with

SKETCRPAD. A recent taxonomy of all programming systems [Myers 86Chi] classified

them according to three characteristics of the program translator: whether it is batch or

interactive; whether it processes a textual or visual representation, where "visual" refers to

the significance of two (or more) dimensions of input; and whether it analyzes examples (of

input and output, or of execution). Systems distinguished in the following discussion as

graphical are called "interactive, visual programming by example" in Myers' taxonomy.

Graphical approaches differ markedly, however, in their use of symbols, examples, and

inductive inference. A system for the programming tasks described in the previous section

ought to require no symbolic convention apart from those already present in the user

interface. Instead it should infer the attributes of program objects such as constants,

variables and control structures from representative example objects, based on an inductive

hypothesis that multiple example instances have a common reference. Visual programming

systems already in the literature do not meet this requirement.

The computational complexity of inductive inference under various conditions has been

thoroughly characterized [Angluin 83]. A graphical system that infers a program from its

input-output pairings alone is impractical owing to the enormous number of possible

programs. Fortunately this is not required for interactive graphics, where execution traces

are available. Nonetheless a trace of manual execution may well contain inputs and outputs

of complex functions computed but not expressed by the user. Existing systems can deal

with this problem by requiring that she augment her examples with symbolic specifications,

11

or tackle it directly by trying to induce the function. We will see later that non-symbolic

augmentation is another option. A further difficulty in analyzing traces is to identify the

conditions that govern branching and looping. Some systems require the user to annotate

her trace with symbolic markers at these decision points. This is clearly undesirable in

graphics, although it seems impracticable to escape from marking at least one decision -

task closure.

The remainder of this section describes graphical programming systems already in the

literature, in light of the issues raised above.

The user of SKETCHPAD [Sutherland 63] could not program a graphical transformation,

because the system recorded only the data structures produced by an interaction sequence.

Thus, SKETCHPAD demonstrated the simplest type of graphical programming - using

graphical input to set the values of system-defined object attributes.

The LOGO system [Papert 80] records procedures enacted with a graphical, robotic

"Turtle." LOGO programs create and transform hierarchically structured objects. The

underlying language is general-purpose, Turing-complete, and permits the recombination

of objects and actions by invoking them as subroutines. The system introduces the idea of

a programming metaphor - the Turtle whose physical functions correspond with the

programming language's operators. Even young children have no trouble learning how to

control a Turtle. LOGO seems very close to what we want. Unfortunately, the LOGO

Turtle is too literal-minded. Despite the coordinate-frame independence achieved by using

body-centered coordinates in Turtle geometry [Abelson 80], the system can record only

numeric constraints on an object's relative Cartesian coordinates or on distance moved; it

cannot capture constraints between named parts of objects. Moreover, interactive

sequences are recorded as given, without the inference of variables or control structures. If

an action is meant to be iterative, the programmer must edit a textual version of the

procedure to make it so.

THINGLAB [Borning 86] has excellent facilities for describing and solving constraints.

The programmer illustrates a constraint, and the method of solving it, by a combination of

pictures and text. This is not so awkward as it sounds; a pictorial example is simply

annotated with textual labels that name (graphically selected) points whose coordinates are

variables of the program. The important limitation of TIHNGLAB with respect to graphics

applications is the declarative method used to specify the program. The user must draw an

12

equational network (in which nodes are quantities or operators) - a nice representation,

but nonetheless requiring the user to have a mathematical model of her problem.

To specify a constraint without having to build a symbolic model the user must be able

to demonstrate its effect on example objects. The SNAP-DRAGGING technique [Bier 86]

shows how this can be done for binary constraints (such as extending the end-point of one

line to the mid-point of another) by letting the user point to the parts of objects that snap

onto each other. SNAP-DRAGGING does not program a constraint solution; the purpose of a

demonstration is to produce a new tool for shaping objects interactively. Thus the

programming element of SNAP-DRAGGING is nothing more than the setting of parameters,

as in SKETCHPAD. Nonetheless, the system demonstrates interesting advances in graphical

interaction. Heuristics about drawing (for example, that the translation of one vertex of a

polygon is often intended to align it with some other vertex) are combined with a strong

model of geometric relationships (and the construction tools expressing them) so that the

system can automatically generate appropriate tools for the operation the user appears to be

engaged in.

Another approach to specifying constraints by constructive techniques is the

programming language L.E.G.O. [Fuller 86]. With four primitives (point, line, circle, and

intersection, an operator that returns one or two points of intersection between objects) the

programmer constructs relationships by traditional ruler and compass techniques. As in

THINGLAB, variables are identified by naming points - in this case those returned by

intersection. A single demonstration generates a LISP function. The programmer must

explicitly identify input and output variables and control structures by (textually) editing her

LISP program.

The five systems described above demonstrate advanced facilities for programming in

the domain of geometry, but have minimal facilities for programming by example. The

following five systems exhibit the reverse. The first, PYGMALION [Smith 75], is a general-

purpose visual programming system. Its basic graphical construct is the box, semantically

equivalent to "()" in LISP. A program's details are textual but arranged graphically; the

nesting of boxes visualizes logical and scoping relations. Since a box may contain a value,

it can replace a named variable. Thus the programmer may give specific data which the

system generalizes to variables. The programmer defines each program step in order of

execution, annotating the trace by symbolic though pictorial (ie. "iconic") markers for

13

branches and loops. PYGMALION cannot discover branching and iteration inductively, but

does permit incremental programming, since each branch is developed only when it first

needs to be executed.

The SMALLSTAR system [Halbert 84] also employs the demonstrative method with

symbolic annotation. Here, the trace is itself graphical - the system observes the user /

programmer (the distinction becomes increasingly blurred) carry out a task in a desk-top

interface with most input coming through the locator device (mouse). SMALLSTAR does

no inference however; the programmer must identify constants and variables and insert

control structures by editing her program. Halbert provides a convenient form-filling

dialogue for this purpose. It works well since only the inherent attributes of an object (eg.

the name of a file) can be selected as constants and variables. Clearly, this would not be

useful when programming graphics, since the relevant values may well be spatial relations.

Programming by demonstration has been used to create user interfaces, as in the recent

PERIDOT system [Myers 87]. The programmer defines the screen-layout graphically, using

the techniques of MENULAY [Myers 86CG], then demonstrates relationships that hold

between program data and their graphical presentation. For example, to establish the height

of a scroll-bar as a function of the current position of a buffer window on a file, the

programmer manually adjusts the former and sets extremal values for the latter (0% and

100%); the system infers a linear relation. The interpretation of actions with an input

device, such as the mouse, is also induced from a demonstration. A moveable mouse icon

represents the actual locator in its spatial context. To show that the mouse can grab the

scroll bar and move it (thereby adjusting the buffer window), the programmer moves the

mouse icon to the scroll-bar, selects the mouse icon's button to show that it is to be pressed

during this operation, and then with the real mouse grabs and moves the scroll-bar.

PERIDOT deduces that the scroll-bar and the buffer position are to be adjusted under mouse

control. Although demonstrations can be action sequences, PERIDOT does not learn

procedures but only relations between actions at the user interface and elements of the

application program. On the other hand, the simulated, or "meta-" mouse, like the caret in

SNAP-DRAGGING, affords a means of describing the behavior of the mouse using the

mouse itself.

None of the systems considered above can induce the control structures inherent in a

task. NODDY [Andreae 85], a system for incrementally programming a robot, performs far

14

more sophisticated inference. The initial model of a program is simply the first trace of its

execution. Each subsequent trace is matched to the previous model, which is generalized to

cover it. A clever algorithm for matching program structures identifies loops and

conditional branches. NODDY identifies constants and variables by inducing functional

relationships between the parameters of actions; thus, even implicit constants can be

generated. NODDY'S function induction algorithm is powerful - but not powerful enough

to avoid searching the vast combinatorial space of functions that includes interesting

graphical relationships. Another factor that makes NODDY less appropriate to graphics

programming is the care that the programmer / teacher must exercise in ordering lessons.

LOGO and NODDY have a well-defined programming metaphor - a robotic pupil led

through a procedure. A recent pilot system, the Office Clerk [MacDonald 87], uses the

teaching metaphor to make program annotation easier and more natural. Just as a teacher

would tell a pupil to pay attention to some attribute of an object, the programmer can direct

the Office Clerk, represented as a face that moves under control of the mouse, to a

particular data field in an application's form-filling dialogue. The Office Clerk

demonstrates the next stage in "Metamouse" programming.

Several important points emerge from the work described above. First, systems that

employ inference have achieved robustness by requiring the programmer to annotate her

examples or at least present them in a carefully chosen order suited to the learning

algorithm. Symbolic annotation seems effective and convenient, when the annotation

consists of labeling points, but is awkward or arcane when more complex features must be

described. Second, the use of an attention device has emerged as a technique for non-

symbolic annotation; it isolates features and localizes the context of inferences. A point

locator is not sufficient for drafting problems however, since features of interest may be

spatially distributed. Third, the teaching metaphor, by presenting an intuitive model of the

learning system, permits increased use of inference and is readily embodied in an attention

device such as Metamouse. Finally, the literature shows a lack of reported empirical

studies of the potential or actual users of these innovative systems. SMALLSTAR for

example was tested by a few people at Xerox PARC who were reportedly quite impressed

with it [Halbert 84]; its usefulness to office workers has not been established. User

characteristics ought to receive more detailed consideration in the design of end-user

programming systems, and implementations should be followed by extensive testing. Of

course, it is not quite fair to demand this of pioneering investigations.

15

To date, no system for programming graphics has combined a rich model of geometric

constraints, a suitable teaching metaphor, and inductive inference. Nonetheless, results

from systems in the literature suggest, tantalizingly, that such a system is not far out of

reach.

1.4 Outline of Thesis

This thesis addresses the problem of end-user programming in a direct-manipulation

environment - specifically the problem of inducing procedures from execution traces of

graphical tasks. It proposes a system whose design takes into consideration the human

factors requirements of the user, the difficulties inherent in a rich graphical task domain,

and the technical limitations on a practical system for inducing programs. The crux of the

thesis is stated below, followed by an outline:

End-user programming for computer graphics should be graphical
and demonstrative. A practical programming system must limit the
complexity of functional components to be induced, by analyzing
traces and by requiring that the user employ graphically constructive
techniques to satisfy simple felicity conditions. These requirements
can be met by intensive interaction between user and learning system
through a device, the Metamouse, that embodies the teaching
metaphor and thereby enforces and helps the user to satisfy the
felicity conditions.

Chapter 1 has defined the project's goal, emphasizing pragmatic and human factors

considerations. Previous work has provided insights and techniques, but no method by

which casual users can teach drawing procedures without symbolic annotation. This

chapter concludes with an introduction to the Metamouse and a worked example.

Chapter 2 presents empirical and theoretical studies of the problem of teaching graphical

tasks. It proposes four aspects of a teaching protocol, called "felicity conditions," that the

user must satisfy if the system is to learn from her. In response to the difficulty this causes

the user, interaction techniques are proposed that serve as underlying principles for the

design of a programming system.

Chapter 3 describes the system's design in detail. The primary components are a model

of the graphics world in which it operates, the Metamouse interaction device, and a method

of inducing procedures.

16

My name is Basil, and as you can see I'm a turtle. I'm here to help you
draw. You teach me repetitive and finicky tasks like evenly spacing out
a row of boxes. I learn by acting as your apprentice: I follow you
around till I think I know what you'll do next, then I pitch in and do it
for you. If I guessed wrong, you give me a gentle tap so I'll undo it and
wait for you to show me what's right. I'm eager, but don't worry - I
only predict after I see you do something you've already taught me.

I can draw lines and boxes and drag them by their handles by grasping with my jaws.
You can teach me to make tools for a task; for example, build a staircase of boxes
using a diagonal line. When done with a tool, delete it so I learn to clean up after a job.

Although I have a good memory, I don't see too well. Because I crawl around a video
screen I see things edge on, which makes it hard to spot patterns. Instead, I work
mainly by feel. I remember how things fit together, which parts - such as handles and
line segments - are connected. Building the staircase mentioned above, I can learn to
copy a step by tracing over it: all the handles of the new step then mate with the old,
and the new step is moved until it sits on top of the old one, offset horizontally.

I'm touch-sensitive at my snout and I sense contact between the object I'm grasping
and anything else it touches. If I have to find, say a box, I set off in the general
direction you've taught me (up, down, left or right) until I bump into one. The box
doesn't have to be dead ahead - I'm not stone blind. But if you want me to be more
selective, give me a tool to carry and teach me to move until it touches something.

Now, this is very important. I can't learn directly how things should not touch - I
mean how they should be separated. Instead you should give me tools to separate
them. Say you're drawing an arch and want the columns an inch apart. Draw a
one-inch horizontal line and put the columns at either end of it.

If you move me to some point and I don't sense something touching, I'll ask whether I
should always move there, or always let you show me where to move. This is helpful
when making tools that measure, since some are constant and some need to be varied.
If you answer no to both options, I'll ask you to make a tool that reaches to this point.

When you want to teach me, choose "Time for a lesson!" from the Basil menu, and
"End of lesson" when you're done. To interrupt the lesson for something else, like
working out a method before showing me, just choose "Take a nap" and then "Wake
up, Basil!" when you're ready.

As soon as I can predict what to do, I'll take over the task, but I'm always ready to
learn something new. And as I've said, just tap me if you don't like what I've done.

Well that's all I have to say for myself. Hope you enjoy teaching me!

Figure 1.7 Description of Metamouse given to teachers

17

Chapter 4 describes the system actually implemented. Certain elements of the "ideal"

system were left for future work. The implementation nonetheless permits investigation of

the thesis.

Chapter 5 presents three empirical evaluations conducted on the system. The intuitive

appeal of Metamouse and its model of graphics were tested using a questionnaire given to

potential users. The performance of the learning system was tested on several graphical

tasks.

Chapter 6 evaluates the thesis according to all the analytic and empirical evidence

gathered. The empirical studies are criticized. Modifications to the system and further

research projects are suggested.

1.5 Introducing Metamouse

The Metamouse, which embodies the teaching metaphor, is a graphical turtle like that used

in the LOGO system. Its behavior depends on the algorithm for inducing procedures and on

its model of graphical constraints. The Metamouse introduces itself to potential teachers

through a short autobiography, given in Figure 1.7.

1.6 Box-to-Line—a Worked Example

Consider the "box-to-line" procedure as taught by example (Figure 1.8). The teacher leads

Basil through a trace of the task. Basil - to be precise, the learning system - starts

predicting actions as soon as it observes the teacher repeat an action already learned

(provided the predicted actions are appropriate and can be accomplished). The system

expects the parameters of actions to be constant, input by the user at run-time, or

constrained by tactile events (such as a corner coming into contact with the guide-line). It

generalizes constraints and induces program structure.

When the teacher places the guide-line's two end-points (Figure 1.8b), Basil observes

the absence of a contact, classifies the event as underconstrained and interrupts to ask

(through a dialogue box, see Figure 1.8c) whether the location is constant or a run-time

input. The teacher indicates that both points are to be specified at run-time.

j. Basil predicts steps e, f.

18

Why did we end the line here?

a. before

d. Teacher draws line S

b. Teacher draws line G

(Always here
(Ask user where)

)
(oopsl Forgot (Always this far

to construct. ,J \ from start point

e. Teacher drags S up to B

g. Teacher repeats grasp S h. Basil predicts repeat of e.

I-.

c. Basil inquires re. endpt of G

f. Teacher drags B to G

I Basil predicts step f.

k. Basil cannot predict e I. Teacher removes 8, G; done.

Figure 1.8 Teaching Metamouse a trace of "box-to-line"

19

In general the selection of objects and the iteration of action sequences depend on any

number of properties of objects or situations. Thus they should be ordered and conditioned

on events that Basil can sense by touch. A horizontal sweep-line serves this purpose, and

also constrains the boxes' path of translation. The teacher draws it near the bottom of the

screen (Figure l.8d) and indicates (through a dialogue box) that its initial placement is

constant. She then grabs the sweep-line at its mid-point handle and moves it upwards until

it touches the bottom edge of some box (Figure 1.8e). This contact is the condition on

which a box is selected for translation. When the line is swept past the last remaining box,

Basil notes that the sweep-until-contact action will fail. She interprets this as the reason for

terminating the loop.

Observe that this program achieves alignment through constraint-governed translation,

where the constraint is a visible contact. A suitable description, say "lower left corner of

box in grasp is coincident with some point on guide-line," is invariant over iteration on the

input set of boxes. The learning system distinguishes this contact event and induces its

invariance.

When the sweep-line touches the first box, the teacher grasps and moves it rightward

until its lower right corner touches the guide-line, its bottom edge still on the sweep-line

(Figure 1.81). The teacher then re-grasps the sweep-line (Figure 1.8g). Basil has seen this

action before; consequently he conjectures a loop and predicts the sweep upwards to the

next box that is to follow (Figure 1.8h). Up to this point Basil has been following the

teacher like a studious apprentice; now he takes the lead and performs his predicted action.

The teacher does not object, so Basil continues executing the loop. The second box,

however, must be moved to the left. Basil is biased towards easily generalizing directions

of movement, so this does not faze him; he moves the box in order to achieve the same type

of contact observed on the first iteration (Figure 1.8i). The teacher accepts this action as

well; Basil has now learned the body of the loop and operates on the next box by himself

(Figure 1.8j).

After processing the third and final box, Basil recognizes that he cannot complete the

action of moving the sweep-line as he has learned it (Figure 1.8k). Hence he terminates the

loop and calls upon the teacher to show him what to do. At this point, she removes the

sweep- and guide-lines (Figure 1.81) and then announces that the lesson is over.

20

Chapter 2

Meeting the Felicity Conditions

What human factors need to be considered in designing a system for inducing graphical

procedures? How can the learning system utilize knowledge of human visual perception

and of drawing practice? This chapter begins to answer these questions.

It begins with a description of a preliminary user study conducted to identify important

features of human performance in drawing. Although drawing is inherently procedural, the

results argue against inducing procedures by passive observation: the typical execution

trace leaves much of the computation unexpressed and is rife with noise. A strong model

of drawing practice does not emerge, but conditions are identified under which a learning

system should direct its own instruction by asking for explanations and generating its own

examples.

Section 2.2 examines more rigorous empirical studies of drawing on paper. These

reveal two basic elements of drawing practice: first, people decompose their procedures

hierarchically, that is, they use readily identifiable subroutines; and second, they carefully

order the production of sub-pictures, first drawing the part that constrains and then

attaching other parts to it. Comparison with such studies suggests that people are rather

more systematic when not using a computer. Nonetheless the basic principles are seen at

work in computer drawing. It follows that non-systematic actions in traces can be isolated,

and that the learning system should observe contact events in order to model constraints.

A consideration of some aspects of visual perception leads to a better understanding of

computation not expressed in traces. Much of it is particularly costly to perform, let alone

induce. Fortunately, key operations have strong analogies to the tools of geometric

construction. It is concluded that the learning system can reasonably expect and require the

user to express constraints by constructing them.

Finally, Section 2.3 summarizes the rules of protocol that govern the teaching process.

These "felicity conditions" are difficult to satisfy, but a primitive model of drawing practice

generates strategies the learning system can use to help the teacher. The system uses a

metaphor to explain its computational limitations, expects actions to arise from and result in

21

contact events, is able to ignore the teacher, predicts actions as early as possible, and learns

incrementally.

2.1 User Study

The work of other researchers ([Bier 86], [Borning 86], [Fuller 86]) suggests a widespread

belief that the users of drawing programs must annotate their procedures in order for a

practical learning system to generate code. Having found no empirical studies on the

practice of drawing with a computer, the author decided to perform a small study of his

own. Rather than test an hypothesis, the study was designed to illustrate the use of

graphical construction and to identify sources of noise in execution traces. It showed that

people use constructions in their graphical procedures, but not predictably; some construct

where others use visual inspection. The designers of a system that learned by passively

observing the user at work could make only weak assumptions about her use of

construction; they could not predict the complexity of functions the system must induce.

Participants in the study also exhibited a significant number of errors, experiments and

other extraneous actions during execution traces. These elements of noise make it

impossible for a passive learning system to induce the structure of a program from

execution traces alone.

A group of 10 subjects performed as many as 7 graphical tasks over a one-hour period,

using MacDraw; all subjects were able to complete the first 5. Execution traces were

recorded with a commercial programming-by-example system [Tempo 86]. The subjects

ranged widely in experience: 3 had never used MacDraw; 3 had used it fewer than 5 times;

2 were occasional users; and 2 were regular users. Inexperienced users were introduced to

the program in a preliminary training session. An observer / coach sat with each subject

through the task session.

The remainder of this section presents the tasks, some of the observations, and the

implications for graphical programming.

2.1.1 Tasks

The tasks were designed to meet severql criteria. First, they should be "realistic," le.

similar to the problems actual users of MacDraw must commonly solve. No case-book

22

was available, so problems were taken from the researcher's own experience with

MacDraw. Second, they should gradually increase in difficulty because most subjects

would be unfamiliar with the program. Third, some of the tasks should pose problems that

strongly motivate the use of explicit, planned constructions to achieve constraints. The

basic problems were altered and combined in order to meet all three criteria.

The instructions given to each subject are included as Appendix A.

For task 1, the subject was asked to reproduce a row of four objects illustrated on the

instruction sheet, then interpose a cross so that its arms lay above the other objects. This

task introduced the various primitive shapes and provided an opportunity to use

MacDraw's automated transformation facilities (rotation and alignment) to satisfy two

constraints between the stem and arms of the cross - that they be perpendicular, and that

the arms be as wide as the stem is tall.

Task 2 required the user to practise centering one object on another, in three different

situations: a circle inside a square; a pair of rectangles to make a Greek cross; and a circle

touching all four sides of a square. The first two could be done using MacDraw's

alignment command; the third required considerable ingenuity or patience to accomplish

exactly.

For task 3, the subject was asked to transform a square into a close approximation of a

rhombus; this transformation of one set of constraints into another could not be done using

MacDraw's built-in operations but required the subject to invent a procedure.

Task 4 illustrated a sequence of increasing constraints; the subject drew a scalene

triangle, then an isosceles, then a right isosceles, and finally an equilateral inscribed in a

circle. This last sub-task proved particularly difficult since MacDraw does not facilitate

arbitrary degrees of rotation.

Task 5 was presented in such a way as to encourage the use of constructive techniques.

The subject was given two objects, A and B, and asked to translate B horizontally until its

leftmost point lay at a distance of twice A's height from A's leftmost point.

Task 6, performed by about half the subjects, demonstrated a simple case of two

degrees of constraint and inheritance across groups; the subject had to position squares at

23

the vertices, mid-points and center of a polygon's extents box. The use of MacDraw's

alignment and grouping commands could make this procedure quite elegant.

Task 7, also performed by about half the subjects, presented a set of rules for

positioning labels next to arrowheads depending on orientation; the subject then applied

these rules to an actual case. The task illustrated the difficulty of positioning exactly with

respect to distance - the use of MacDraw's grid introduced quantization errors - and also

the difficulty of conceptualizing such a priori rules.

2.1.2 Observations

The user study produced a number of observations concerning the use of graphical

construction and visual inspection, the variety and internal consistency of methods, and the

occurrence of extraneous activity. No quantitative correlations were attempted; the study

was not arranged to isolate variables, and in any case the sample of subjects was too small

relative to the number of identifiable variables. As expected, subjects having prior

experience with MacDraw used more of its "advanced" facilities (duplicating objects,

rotation, alignment) in constructions. After tutoring most subjects used at least some of

these, but only the more experienced (and one first-timer) used all three together.

Construction and Visual Inspection. Graphical construction, as opposed to visual

inspection, is the use of tools to automate the processes of measurement and selection.

MacDraw supplies many such tools as primitives: commands for alignment and rotation; a

special key for constraining cursor movement to one axis; automated duplication of objects;

and positioning grids. Although by no means adequate as a set of operators for a graphical

language, they do illustrate the advantages of construction as a basis for programming.

Task 5, for example, requires that the subject take the height of A and use it as a

horizontal measurement. This involves rotating a vertical measure, impossible without

storing that information either in symbols (say, if the user measured in terms of grid

coordinates) or a graphical form. One approach is to draw a vertical line the height of A

and then rotate it to the horizontal; but if A is a complex polygon, exact measurement

involves considerable work: the user must draw the line to approximate length, based at

A's lowest point, then translate it horizontally to cut A's highest point, then move its top

end down to that point. A far simpler and more accurate procedure is to duplicate A and

then rotate it 900; the width of the duplicate is used as the desired measure. Note that this

24

can be trivially learned - that is, without knowing about such things as top and bottom

extremal points, nor having to observe contacts.

Only two of the subjects employed this particularly clever approach. Three others used

a similar technique, drawing and then rotating an extents box around A. This entailed

initial approximation, the fixing of one extreme and adjustment to find the other, as when

using a vertical ruler, but avoided the danger of accidentally undoing the first alignment

while moving into position to find the second extreme, since the box required no horizontal

translation. One subject used MacDraw's "show sizes" mode to get A's top and bottom

coordinates. The remaining three used the vertical ruler much as described above.

Subjects' performance of the measuring sub-task described above suggests that the use

of construction requires considerable understanding of graphical tools. On the other hand,

many useful constructive procedures were readily adopted by the majority of users, as in

task 1, where all subjects but one constructed the arms of the cross by duplicating and

rotating the stem. Performance over all tasks indicates that subjects tended to adopt

straightforward, albeit sub-optimal constructions. It is not necessarily the case that a

learning system would have more difficulty inducing a program that contains longer

sequences of operations. The real problem with construction is that many subjects did not

use it at all, but chose instead to measure by eye. In performing task 3 (constructing an

approximate rhombus from a square) seven subjects positioned the offset vertices by visual

inspection alone, locating the second vertex with respect to the first by adjusting it until

opposite sides appeared parallel; one subject used a vertical ruler to assist with visualizing

the horizontal offset; two subjects only used a fully constructive method (duplicate and

horizontally offset the square, then connect the lower corners of the first square to the

corresponding upper corners of the second).

The examples above also indicate the variety of methods employed. This suggests that

only elementary models of human behavior are likely to be of use in designing a graphical

programming system. Typical observations were: subjects used point-to-line contacts and

line intersection to determine position (tasks 3, 4, 5); they used visual inspection for

vertical and horizontal alignment (task 5); more experienced subjects preferred single

operations of higher-degree constraint over a sequence of less constrained operations (tasks

3, 5, 6).

25

The variety of methods that might be employed to perform a given task and the apparent

paucity of behaviors having a reliable standard interpretation imply that the learning system

will have to be quite general. The use of visual inspection implies that it must be able to

induce functions from input-output comparisons (that is, the positions of objects, or, more

generally, the state of the display, before and after a sequence of operations). The search

could begin with some obvious candidate relations such as alignment. The system may be

able to model the individual user sufficiently well to predict the maximal complexity of such

latent functions.

The observations made above can be operationalized as an hypothesis for the learning

system: if the transformation of an object does not result in contacts with other objects, the

teacher is using visual inspection.

Extraneous Activity. Subjects exhibited a great deal of inconsistent and extraneous

activity over the course of executing a given task. The experimental situation likely

exaggerated this problem, since they were unfamiliar with the tasks and several indicated

that they felt some pressure to perform well. The "noisy" activity observed has been

classified according to the subjects' own verbal explanations (collected during and

afterwards) of what they were doing at the time.

Missteps are those actions quickly retracted, such as vertically reflecting the duplicate

stem (task 1) rather than rotating it. These occurred often, especially with less experienced

subjects.

Experiments are extensive action sequences later retracted. When not performed on

temporary data, a successful experiment is of course indistinguishable from a previously

planned execution. Most subjects experimented with unfamiliar commands before trying

them out (eg. alignment in task 1, reshaping a polygon in task 3); several also performed

experiments to develop algorithms (there were many failed attempts to construct an

equilateral triangle in task 4). Experiments may also be performed after completion of a

task, to verify its success. One subject at the end of task 4 checked that his triangle was

indeed equilateral by rotating it several times.

Non-systematic experimentation, called fishing, is seemingly useless activity that may

lead to serendipity. For example, one subject toyed with circles while thinking about

26

equilateral triangles. Most of the novice and casual users would scan across the pull-down

menus when stuck for an approach to their task.

Another variant on experimentation is method drift, the abandonment of an action

sequence without retracting it or returning the task environment to its initial state. If the

actions were incorrect, the subject might have to fix up the display before continuing.

Method drift is hard to distinguish from an inelegant method (le. one that unnecessarily

treats situations as special cases) without asking the subject to explain her actions. Method

drift was observed in task 3 (rhombus), where one subject who had measured the offset at

the left using a rectangle suddenly duplicated the square and offset it using the rectangle.

The subject explained that using the rectangle gave him the idea of using the square instead.

In performing task 5 (2 x height) another subject initially measured off the distance with a

pair of horizontal lines placed end-to-end; after several failed attempts to align the left

extremes of the two polygons with their corresponding end-points, he switched to a pair of

boxes, without removing the lines or returning the polygons to their original positions.

Bustle is apparently purposeless activity performed while the mind is otherwise

engaged. Several subjects would occasionally move an object back and forth rhythmically

before committing to its placement. Most bustle, such as toying with the mouse, does not

affect the display at all.

Having identified some sources of noise, how can we apply this knowledge to the

design of a learning system? Much of this "useless" activity appeared to help subjects

accomplish their tasks; the learning system should not punish the user by failing to perform

in the presence of noise. To cope with extraneous actions, it must be able to identify

suspicious action sequences and remove them with surgical economy. Unfortunately, the

user study uncovered no reliable symptoms of incipient noise (though the mouse did appear

to cover more territory when a subject was not working systematically). This leaves only

more expensive methods of analyzing traces post hoc: measuring and comparing the effect

of action sequences.

For example, suppose sequence A is undone by sequence U - that is, U returns the

display to a close approximation of its state prior to A - then clearly AU can be identified

as a misstep, experiment or perhaps bustle. Since AU has no effect, it may be removed

from a model of the procedure; sequences before and after will form a seamless join.

27

If an iterative sequence R* (1 or more iterations) is followed by a different sequence

D*, and one iteration D can be shown to have the same effect as one R, then the system has

strong evidence to suspect method drift. In this case it could remove D*.

In general one cannot expect noisy sequences to be entirely undone or readily identified

as equivalent to others. Thus the post hoc removal of noise, apart from obvious cases as

above, seems intractable for the present. But a passive learner is inevitably exposed to

noise. Clearly, the system should avoid it by selectively ignoring the teacher, or even

prevent it by restricting or reducing the teacher's activity.

Summary of Results. In summary, two important lessons have been learned from the

user study. First, people do indeed use graphical constructions, but often rely upon visual

inspection. A passive learning system would therefore have to cope with under-

specification of procedures by performing function induction. An active system could ask

for an explanation when explicit construction is not used. Second, graphical procedures

also contain a good deal of extraneous activity. A passive system would have toclassify it.

An active system could prevent it by guiding or pre-empting the teacher.

Function induction is difficult even in restricted and noise-free situations. The author

has found no evidence of research on inducing functions from traces by casual users.

Distinguishing extraneous actions also seems intractable. Therefore, an active learning

system is the preferred choice. A further investigation of the drawing process sheds light

on the methods it should employ to elicit reliable information.

2.2 Towards a Theory of Drawing

Cognitive scientists have a growing interest in drawing and have proposed some theoretical

principles [van Sommers 84]. It is clear that human behavior, even in fairly simple tasks,

is too variable, and thus the connection between action and intention too tenuous, to be

modelled by an inductive system. Nonetheless, theory and experiments do suggest that

human beings can communicate a graphical procedure to a rather naive system. Drawing is

essentially procedural, and incrementally constructive: when drawing, people seek an

orderly execution, and employ constructive techniques to assist themselves. Moreover,

thinking graphically seems to involve construction. It follows that graphical programming

28

need not require symbolic annotation as previous systems have - or at any rate that the

annotation can be purely graphical.

2.2.1 Empirical Studies

It is obvious that drawing is a procedural activity. The user study did not show whether it

is systematic and therefore amenable to representation by programs. That drawing with

pencil on paper is quite systematic is in fact well supported by experiments [van Sommers

84]. People who draw, even young children, optimize their procedures to reduce the

number and complexity of mechanical and cognitive operations. They tend to make pencil

strokes in the direction of least resistance, but if they can reduce cognitive load at the

expense of mechanical effort, they will do so. Thus, if one line is to branch off from

another into empty space, it is almost always drawn from the stronger constraint (the point

of contact with the parent line) to the weaker, even against the preferred direction of stroke.

Contact constraints strongly influence the order of execution: drawing appears to be

primarily a process of accretion. A pyramid of rectangles is normally drawn bottom up, so

that the width of successive levels is constrained by those below. In experiments on

reconstructing shapes from memory, van Sommers found that visual memory seems to

record only scattered, local constraints (a result that would not have surprised Escher).

Nearly all subjects who attempted to reconstruct a triskele, for example, could draw some

of the joints, but almost none could reproduce the whole to a good approximation. Often a

subject would start out well, then suddenly become utterly confused.

Hierarchical decomposition, that is, the use of subprocedures, is another tactic

employed to reduce cognitive load. In drawing a hierarchical form - a tree, for example

- people typically follow one of two plans: order execution on the basis of similarity by

drawing all objects at each level of the hierarchy in turn (for example, the trunk, then the

boughs, smaller branches, twigs); or execute according to relations among sub-pictures,

such as connectivity and adjacency, by working down the hierarchy (draw one bough, one

branch, one twig, then repeat). Van Sommers found that such subroutines are quite

systematic: they are commonly repeated without any intervening action; they preserve their

internal order within a single drawing and often when a similar form is produced on

another occasion.

29

In summary, three rules of optimization govern drawing: choose stroke direction to

minimize mechanical effort; work from stronger constraints to weaker; decompose tasks

hierarchically as appropriate to cognitive / mechanical trade-off. Note, however, that van

Sommers studied drawing with a pencil on paper; the ergonomics of drawing with a

computer must be quite different. Although the differences have yet to be studied

empirically, it is possible to speculate that stroke direction is less important, and that the

ease of editing makes contact constraints less significant. Supposing, however, that the

three rules still apply, the question remains as to how they can be used by an inductive

learning system. Clearly, these rules do not determine behavior, and therefore cannot

interpret or predict it. On the other hand, behavior should be sufficiently well regulated that

the system can expect to observe hierarchies of action sequences, in which most actions are

conditional upon contact constraints.

2.2.2 Phenomenology and Construction

In the graphical domain a learning system with a numerical representation of objects is at a

peculiar disadvantage relative to its human teacher, who has a specialized image processing

system connected to a large knowledge base and facilities for planning. Human beings

have in addition a certain computational enrichment owing to their mobility in 3-space.

Thus the computer labors to find complex numerical relationships that the teacher perceives

instantaneously. This "computation gap" can be characterized in terms of differences in the

apparent complexity of geometric problems. Its most serious impact is on function

induction, which is vastly more difficult for the computer. Moreover, the teacher may be

unable to 1) recognize situations in which the system would have difficulty; 2) identify

implicit computations that need expressing; or 3) find a means of expressing them.

One approach to the problem is to give the computer visual processing facilities

comparable to a human's. This is interesting - pioneering work has been done on

systems analogous to the retina, for example [Marr 79], [Kienker 86] - but the research is

just beginning. A practical alternative is to require the teacher to give more information and

provide her with a powerful language: the constructive methods that form the intuitive

basis of computational geometry. The intuitive appeal and expressive power of these

methods are evident. They are easily represented in both graphical and numerical terms, as

in [Fuller 86].

30

[Freudenthal 67] describes a phenomenology of geometry whose three basic concepts

- order, measure and classification - yield powerful problem-solving methods.

Order. Order is a means of abstracting a structure from a set of objects. It may

encompass one dimension (a total order) or several (partial order). Humans often perceive

order in space as temporal order on the focus of attention. For example, relative distance

can be discovered by mapping perceptual events onto a time-line. A linear order is found

by sweeping one's gaze across a scene; a rotational (cyclic) order, by sweeping around

some imaginary center of gravity; a partial order, by two orthogonal sweeps. Nature has

cunningly equipped human beings with superb mechanisms to discriminate order -

consider our prodigious visual acuity for detecting misalignment. Other kinds of order,

such as relative size, seem in general to be processed less efficiently, although familiar

techniques of imaginary visualization permit the use of sweep-selection for some problems:

for example, to compare the heights of two objects one can imagine them side by side; to

compare volumes, imagine trying to fit one inside the other.

0 0 0

0

03

0

0

10 >-

0
20

a. Points widely spaced b. Points closely spaced C. Tool to distinguish order

Figure 2.1 Left-to-right ordering of points

Human vision exploits a high degree of computational parallelism. In addition, the

very mechanics of vision give human beings a significant advantage over von Neumann

computers. For the latter, naive sorting algorithms require 0(n2) binary comparisons;

clever ones, O(n log n). Consider the task of labelling a set of points in order from left to

right (see Figure 2.1). If they are spaced fairly far apart along the horizontal axis but quite

closely in the vertical (Figure 2.la), the sorting task is trivial for a human being, who

merely sweeps across the set and performs no explicit comparisons. On the other hand,

suppose the points are fairly close horizontally but quite scattered vertically (Figure 2. lb);

31

in this case, the human being must do 0(n2) comparisons. But if she uses a windowing

tool to focus her visual attention, she can reduce or even trivialize the sorting problem

(Figure 2. 1c). Now, suppose that this task is to be taught to a computer drafting program

that will begin predicting actions as soon as it has induced a candidate function; the

difference between human and computer becomes important. The sorting algorithm

involves a predictable amount of work for the computer, a highly variable amount for the

human teacher. If she does not understand this difference, she may be disappointed that

her pupil does not induce the sort during presentation of the easy case more quickly; on the

other hand, she may be quite surprised to discover that the computer has no more difficulty

with the complicated case, and hence ascribe to it far greater intelligence than it possesses.

This barrier of mutual misunderstanding is revealed to be even greater when we

consider the ease with which a person can revamp her representation of visual space to

accommodate different references of order. Suppose she wanted to sort objects with

respected to an axis tilted at 600; she need only cock her head and proceed as usual. Her

pupil, the computer, could take the same approach, by rotating the coordinate system

(applied as an inverse rotation of the displayed objects); but first it must guess that this pre-

processing will help it induce some function, and then find a suitable angle. A learning

system capable of such conjectures would have to be highly specialized or else search an

enormous space of models. The teacher, for whom the difference between this ordering

and the horizontal may seem marginal, would not appreciate the difficulty.

The problem of inferring relations of order from a large space of candidate relations is

not solved by observing traces of the user selecting objects in order; as shown above, the

space of candidate models for a sequence of invariant binary relations is still too large. The

user can, however, express many relations of order through an intuitively appealing device

- a construction of one or more sweep-lines, as in Figure 2.2. These are used in many

algorithms studied in computational geometry [Preparata 85]. A single sweep-line

expresses a total order in one dimension (see Figure 2.1); an ordering along an arbitrary

axis is easily expressed by initially rotating the sweep-line appropriately. A rotational

sweep can discover a rotational order. A pair of sweep-lines can find a partial order in two

dimensions.

Any ordering distinguishes certain points or thresholds, such as the mid- and end-

points of a line segment, the vertices of a polygon, or the boundary between half-planes.

32

Interactive drawing programs typically designate such points as "handles" by which the

user can manipulate the spatial relations between objects and parts of objects. A sweep-

line's initial contact with an object will be at one of its extremal points (a point on its

convex hull), which corresponds to one of its handles. Hence a great many useful

orderings can be observed by a system that distinguishes contacts between some part of a

line segment and a handle.

4A 5
C) I

03

10
0
2

a. Two-dimensional sweep b. "Sweep-circle" to order distance

Figure 2.2 Use of sweeping methods to distinguish order

Measure. An object's position within an unrealized ordering is given by its measure; for

example, its distance from the origin. Measures used commonly in describing space are

distance and angle. Apart from certain relative measures, such as bisection and trisection,

humans are not particularly well equipped to measure without the use of tools; after all,

absolute measures are cultural institutions. It is not surprising, therefore, that constructive

techniques for measuring are in wide use and have been thoroughly studied [Breidenbach

67]. One would expect the user of a drawing program to construct exact measures by

creating and manipulating graphical rulers; the parameters of their transformation would

express the measure. In practice, however, no absolute measure can be expressed

unambiguously without resort to symbolic annotation. The user can employ devices

external and hence unknown to the learning system, such as a tape measure held up to the

display. If the user draws a ruler line on the screen, it is not clear which parameters of the

line are relevant - its length, its angle from the horizontal, or the exact positions of its end-

points. If a drawing program, such as MacDraw, provides "passive" rulers to which the

user refers visually, the learning system cannot tell when they are in use unless it can

observe the movement of the user's eyes. Clearly, the most feasible approach for getting

33

the parameters of measurement is to give the user a tool for selecting them: for example, a

potentiometer in the form of a ruler or protractor.

Most measures employed in drawings are either relative (as in the "2 x height" task) or

estimated (as in the "spacing" task). Constructive techniques are quite adequate for these,

since the parameters need not be isolated: for example, it does not matter whether the gap

line used in the spacing task is perfectly horizontal. If the learning system attends to

contacts made between handles and line segments, and generalizes position within the

latter, then it can correctly model the use of ruler lines. Should the contact between the

ruler's handle and some line segment need to be constrained to some particular point within

the latter, that point can be constructed, perhaps with a second ruler.

a. Thin: height> 3 x width b. Fuzzy concept with special cases

Figure 2.3 Two concepts of "thin box"

Classification. Many problems involve distinguishing certain objects as equivalent in

some respect, so that they receive similar treatment. Equivalence is often determined by a

group of operations that transform one object into another [Freudenthal 67]. Common

experience suggests that human beings tend to think in terms of transformational

constructions. For example, to decide whether two polygons are the same shape, one

34

might imagine superimposing one upon the other by rotating, translating and scaling it.

Classification problems subsume those of order (eg. identify the vertices of a convex hull)

and measure (eg. identify points at equal distance from some reference). Thus the

difficulties and techniques germane to these problems apply here as well.

Classification is made even more difficult to communicate because often class

definitions are quite subtle. Consider two concepts of "thin box", illustrated in Figure 2.3.

The first case is straightforward; the height is at least 3 times the width. The second,

however, would be much more difficult to induce; boxes more than 2 cm wide are not thin,

regardless of their height, nor are boxes less than 1 cm tall, regardless of their width. It is

unlikely that a human being would be so precise in her definition as this. The constructions

used in ordering and measuring can be brought to bear, if the user is able to see how. For

example, to select squares one can employ a sweep-line that moves horizontally but is

angled at 45°; the line will contact a square at two corners.. Many other problems, such as

"thin boxes," are apt to be unprogrammable because the learning system would never find

the concept by search, and the constructive technique is elusive.

2.3 Felicity Conditions

An alternative way of modeling the interaction between user and programming system is to

specify the conditions under which procedural knowledge is most efficiently transferred.

Given that the user is not a trained programmer, the transfer of knowledge is best

understood as teaching [MacDonald 87]. The onus is on the teacher to present knowledge

in the most readily assimilated form. The teacher has an approximate, evolving model of

the system's capabilities - a far weaker model than does a programmer. Since she does

not know exactly how the system will interpret each component of a lesson, the teacher

follows a communication protocol, a set of "felicity conditions" whose primary purpose is

to limit the range of possible interpretations her pupil need consider [van Lehn 83]. The

transfer of procedural knowledge has four basic felicity conditions; van Lehn identified

these by modeling the teaching of arithmetic to schoolchildren. Similar conditions apply

when the pupil is a computer. The teacher in this case, however, is an amateur who cannot

be expected to satisfy the felicity conditions, especially when her pupil is so different from

herself (see §2.2). The remainder of this section describes the felicity conditions and

techniques by which the learning system actually helps the teacher satisfy them.

35

2.3.1 Correctness

The fundamental felicity condition is that lesson materials be correct. From the teacher's

point of view, correct data are consistent with the model (procedure, concept) being taught.

From the learning system's point of view, they are consistent with some model it could

learn - a much weaker criterion. The system can suspect data that disagree with its

current model, but must be prepared to alter that model to accommodate them. On the

assumption of correctness, the learning system need only consider those models that cover

all the data and may ignore the vastly larger number that cover only some. Moreover, the

system itself can be simpler: it need not analyze data for likelihood of error, it need not use

forgetting as a means of pruning out bad data.

The user study suggested that errors are bound to occur in the teaching of graphical

procedures. Since the space of models (graphical procedures) is practically infinite, the

learning system cannot in general identify these errors. The computer's perfect memory is

coupled with perfect forgetting. If the teacher recognizes her mistake, she can delete it

from the lesson by retracting her action trace; the learning system should provide an undo

facility for this purpose.

If the teacher does not recognize her mistake, or does not properly retract it, then the

program will contain a bug. To permit the removal of bugs without requiring that the

teacher examine a symbolic represeniation of the program, the system should combine

editing and execution; that is, at any point during execution, the user should be able to
intervene and begin teaching (this also facilitates incremental development). An erroneous

action could be excised upon the teacher's instruction; but the teacher may be mistaken that

the action is incorrect - perhaps the conditions under which it is performed need to be

specialized. It is therefore advisable not to eliminate a so-called bug altogether but to learn

alternative actions and limit activation of the bug by specializing its preconditions or by

reducing its priority amongst the alternatives.

Perhaps the best defense against the teacher's mistakes is to prevent them by

minimizing her activity during the lesson. To achieve this, the learning system could start

predicting actions as soon as possible. As soon as it observes the teacher do some

recollected action a and the current state of the drawing pernits some action P that has been
seen to follow a, the system could perform 0 on its own initiative. It must be able to

retract 0 should the teacher reject the prediction. Thus the learning system alternates

36

between observation and performance. Prediction structures the interaction: success

initiates performance, failure initiates observation.

2.3.2 Show Work

The show work felicity condition requires that the teacher demonstrate an execution of the

procedure to be taught. This eliminates the need to induce procedures from presentations

of their inputs and outputs. Such induction is practically impossible for a number of

reasons: the search space is infinite and not usefully ordered; the identification of input and

output objects, often a useful clue to function inducers, may be lost due to transformations;

data almost never sufficiently constrain the number of equivalence classes of procedures

that account for them. An execution trace limits candidate models to those that could have

generated it. A rote-learning system, such as the emacs macro facility [Stallman 81], could

model the procedure well enough to execute on sufficiently similar data. If the learning

system models the steps of the trace in terms of cause and effect, such as the (precondition,

action, postcondition) tuples used in the STRIPS planning system [Fikes 71], then it can

derive the conditions that govern loops and branches, and thereby produce a more general

model of the procedure.

Consider for example the task of finding a convex hull. If the system does not observe

its construction, but rather sees as input only a set of points and as output the same set with

certain points connected, then some very useful information is unavailable to it. The

relation of each vertex to the rest of the set - that it lies on the boundary of a half-plane

containing all the other points - must be induced from a large range of possibilities, and is

made even more difficult by the computer's perceptual disabilities, as noted above. The

cyclic order of the hull's vertices, which could be used as the basis of a simple derivation

- a sequence of pai.rwise relations - must be induced from the transitive closure of their

connectivity. A procedure for finding the convex hull is easily derived from a constructive

demonstration (using the algorithm given in Chapter 1) if the learning system's attention is

focussed upon the events that bound the successive transformations of the rotational

sweep-line.

The show work felicity condition is well suited to the users of a drawing system. In

fact, it minimizes the effort of teaching because it joins teaching to the accomplishment of

the task at hand - an efficient practice employed since time immemorial in workshops,

37

where a master would show her apprentices how to solve problems. On the other hand,

show work implies "no invisible objects" and "minimal activity" - two felicity conditions

that are much more difficult to satisfy.

2.3.3 No Invisible Objects

Invisible objects are parameters of actions or conditions that the teacher does not expressly

describe. The no invisible objects condition requires that the teacher make them explicit.

The pupil must see them to know that they are in use and what values they may assume.

The range of relevant graphical attributes and spatial relations is combinatorially explosive

over the number of objects displayed; a visible construction of the relevant relation can

eliminate search entirely. Constructing "invisible" objects is just a matter of showing work

at a finer granularity of decision-making and reduces the space of induction in the same

way.

A

B

a. Initial position

C

A

B

b. Final position c. Explanation

Figure 2.4 Spatial relation defined by an "invisible object"

For example, suppose the teacher moved box C as shown in Figure 2.4. It is not

immediately apparent why C is moved to that position - whether the distance moved or

the destination point is a constant, or whether some spatial relation governs the translation.

If the latter, then the system must find a sufficiently "obvious" relation that would be safe

to assume: clearly, two obvious relations obtain here - are both meant to, or just one of

them? Of course, the best way to answer these questions is to ask the teacher. In that case,

she would do what she should have done to begin with - point out the relevant

parameters, in this case, alignment of C with the left of A and a constant vertical distance,

38

which only coincidentally aligns it with B. A simple graphical technique to express this

condition is to draw a spacer line from A's lower-left corner.

Observations from the user study support the contention that invisible measurement

objects are used so efficiently that knowing when and how to express them can be difficult.

Most commonly used in drawing are alignments and distances, both well supported by

visual inspection. It follows that the onus of enforcing this felicity condition falls upon the

learning system: it should not attempt to induce the parameters of a transformation, but

rather deduce them from visible, constructed relationships. This means that the system will

look for tactile relations between the object transformed and other objects: thus it observes

the contact between the upper-right corner of C and the lower end-point of the spacer line.

If no contact is observed, as when setting the end-point of the spacer line, the system must

ask the user to provide a construction or verify that the selected position is a constant or ad

hoc input.

2.3.4 Minimal Activity

The minimal activity condition requires that the teacher show the pupil only those actions

that would be generated by the procedure. In its strictest form it bans all irrelevant activity,

such as experiments and doodling, and implies uniformity of method over iterations within

a single trace or among multiple traces. This limits the candidate models to those that

would generate the actions demonstrated in execution traces, eliminating models that

generate other actions or sequences having the same effect. Uniformity allows the learning

system to classify actions as novel without having to consider equivalence or

commutativity. The banning of irrelevant activity prevents the break-up of sequences; they

can be recognized more reliably when inducing loops and branches. The learning system

need not know how to determine that a sequence of actions, such as an experiment, has no

effect and may be ignored. Irrelevant activity may also corrupt the display and thus violate

the correctness condition.

The user study indicates that minimal activity is very difficult to satisfy. Methods

evolve as they are attempted; users have to conduct experiments; often they rearrange the

display to help them visualize relationships better, to make situations more general, or

simply to increase their comfort by making the layout more aesthetically appealing; and

sometimes, while thinking, they repeatedly perform some useless action. But if the

39

learning system is not able to recognize irrelevant and non-uniform activity, how can it

enforce this felicity condition?

One approach to the problem is to accept this form of noise - to learn procedures that

are less general, due to non-uniformity; that contain bugs, due to irrelevant activity.

Generalized loops and branches may well evolve and effectively supplant special cases as

the teacher provides more examples. Useless actions should be quite harmless (provided

that they do not corrupt the display). How well the system achieves desired behavior with

a model corrupted in these ways depends in part upon its representation of actions. Using

the cause-effect model (proposed in response to "show work") and preferring actions more

recently learned or more frequently observed, it should strongly favour uniform and useful

code.

The cause-effect model provides a front-line defense against misleading activity. If the

teacher launches into an experiment, her first actions will likely not follow from constructed

conditions; the system will ask for these and thereby remind the teacher that she should not

be teaching right now. To prevent the system's observing such actions, the teacher could

simply put it to sleep - luckily, computer systems don't forget what they've been doing.

Even more useful than this, however, is the ability to predict actions from their causes.

Using prediction, the learning system can supply uniformity where the teacher might not:

by matching a new action to one it has seen before, the system can conjecture a loop and

predict the action sequence within it; similarly, the actions of a new trace may be predicted

from the procedure as already learned, so that the teacher need only perform novel actions.

Prediction is perhaps the best way to help the teacher satisfy minimal activity; and has the

added benefit of demonstrating the pupil's understanding of the procedure. Moreover, it

provides that the computer will take over performance of the task as soon as possible - a

welcome reward for the user's effort of teaching.

2.4 Design Principles

Specifying the felicity conditions has provided a sufficiently well defined model of the

interaction between user and graphical programming system to discover some useful

principles of design.

40

First, the learning system must be active. The user study showed that a passive system

will not do. The felicity conditions are too difficult for average users to satisfy. The

system must question the user and help her maintain the conditions of instructibility. The

other design principles prescribe the techniques used to accomplish this.

The learning system should represent itself and its computational model in metaphorical

terms through an attention device. This device should convey the system's perceptual

limitations by demonstrating its current awareness.

The learning system should be strongly biased towards geometric construction. It

should model graphical actions in terms of cause and effect, that is, as (precondition,

action, postcondition) tuples. Conditions should be contacts between the parts of

geometric (le. graphical) objects. Since some actions cannot be constructed, it must also

permit numerical parameters. If an action is not constructed, the system should question

the user as to the reason.

The learning system should attempt to predict the user's actions whenever possible. As

soon as a user action matches one it has already seen, it should conjecture iteration and

predict the subsequent action. Since predictions may be incorrect, the system should

respond to the user's disagreement, predict only actions it could retract, and be able to

make all alternative predictions.

The learning system should be able to ignore the user, but only at the user's request. In

the event that the user does not warn the learning system of her extraneous activity, the

system should be relatively tolerant of the noise. This is achieved by allowing any number

of alternative actions to be available at each point of the execution; that is, the run-time user

may always reject an action and supply one of her own, from which the system may predict

subsequent actions.

The next chapter applies these principles to the design of a "Metamouse" programming

system.

41

Chapter 3

Metamouse

The design principles developed in Chapter 2 are applied in the design of a prototype

system for graphical programming. The design focuses upon an interaction device that

embodies the teaching metaphor. The thawing program, knowledge base and learning

system are described.

Chapter 2 established that the desired graphical programming system is really a learning

system with some stringent felicity conditions. To help the user/teacher satisfy them, the

system requires a metaphorical pupil (cf. MacDonald 87]), which is conceptualized more

precisely as an apprentice. The apprentice assists the teaching process by focussing the

teacher's attention upon itself, by refusing to accept input (actions) it cannot justify in terms

of its own model of the thawing world, and by predicting actions in new contexts. It

follows that the apprentice must have a body and behaviors the teacher can evoke, sensors

and an internal representation of the world in order to investigate justification conditions, a

memory with generalization capabilities, and a model of program structure. The

apprentice's "psychology" should be simple enough for the teacher to predict or at least

understand its behavior after a brief period of familiarization.

The prototype system for this project is illustrated in Figure 3.1. It consists of a simple

thawing program closely coupled to a learning system that induces variables, isolates

important constraints, constructs a procedure in the form of a directed graph of actions, and

predicts actions whose parameters are set by a constraint solver. The learning system's

user interface is a metaphorical apprentice. This appears as a special icon that selectively

tracks the movement of the mouse and is hence called the Metamouse.

This chapter first describes the thawing program, which edits pictures consisting of

boxes and lines. Section 3.2 explains the design of the Metamouse in terms of its body,

sensory system and memory. Section 3.3 describes the generalization of actions, which

involves inducing variables and isolating constraints. Section 3.4 discusses the

construction of procedures. The chapter concludes with a brief review of the system's

organization.

42

Teacher

Graphical
Action

Solve
Constraints

Observe
Touches, etc.

Induce
Variables k
Induce

Constraints

V
Match
Action

Form Loop,
Branch or
Sequence

Predict
Action

Action Trace

Knowledge Base

Program
Graph

Figure 3.1 Prototype system for programming graphics by example

3.1 A.Sq—the Drawing World

The goal of this research is to help users extend the functionality of practical drawing

programs. These programs typically provide a rich (more than complete) set of operators at

various levels of abstraction. A graphical programming system, especially one intended for

research, might well be based on a small set of graphical primitives and operators, formally

represented as a system G (P, 0). The minimal system sufficient to create and edit
pictures on a raster display is Go : {[pixel(x, y)], [place(p), remove(p)J), but this is of

course impractical, since graphic displays typically contain more than 100,000 pixels, and

since most drawings are composed of constrained groupings of pixels, such as continuous

a. Line

43

and straight lines and circles. Noma et al have proposed [Noma 88] what we will call U1,

where:

P1 = [line-through-points (1, Pi P2),
circle (c, ctr, rad)]

01 = [draw-line (1), erase-line (1)
draw-circle (c), erase-circle (c),
define-intercept-point-of-lines (pt, 11, 12),
define-point-at-distance-from-point-along-line (pt, d, p, 1),
define-intercept-points-of-circle-and-line (p1, p2, c, 1),
define-intercept-points-of-circles (p1, P29 c1, c2),
measure-distance-between-points (d, Pi P2)1

This system, similar to [Fuller 88], provides for the abstraction of graphical constraints

from examples by naming special points derived using classical ruler-and-compass

methods. A graphical interface to this system is conceivable: the user would draw lines

and circles and mark intersection points; an interpreter would associate these actions with

system operations. Although capable in theory of producing any picture, it falls far short

of the facilities users expect.

top-left top-mid

a I -

top
/

center /

•) left • right <
/

bottom
- - -.

I

top-right

bottom-left bottom-mid bottom-right

b. Box

Figure 3.2 Parts of A.Sq objects

Simplicity and realism are both required for testing the thesis. A good compromise is

to provide a few of the popular drawing program primitives and, perhaps even more

important, the normal methods of manipulating them. The drawing program, called A.Sq

(after the protagonist of Flatland [Abbott 1884]), emulates MacDraw and has a similar user

44

interface. It provides rubber-banding tools to make straight lines and boxes (rectangles

with vertical and horizontal sides).

The user manipulates objects by moving their "handle" icons as in MacDraw (see

Figure 3.2). A box has nine handles: the center effects translation of the entire box;

handles on its boundary scale it in either or both dimensions. A line has three handles: its

mid-point for translation and two end-points that effect a combined rotation and scaling (the

user's intention is probably to relocate that particular point). An object's handles are

normally concealed; in order to activate them the user must "pick" the object by moving the

cursor near one of its edges and pressing a button on the mouse. Only one object may be

active at a given time; it is designated A.Sq's active object.

An object is erased using a deletion operator. A.Sq does not provide a rotation operator

- but the Metamouse does (see below). To summarize the facilities formally:

A.Sq

P= [line-between-points (1, Pi p2)
box-between-corner-points (b, Pi P2)1

0= [draw-line (1),
draw-box (b),
delete-object (obj),
translate-handle-of-object-to-point (hndl, obj, pt)]

The single operator for object manipulation, translate-handle..., is quite powerful and

could of course be conceived instead as a number of routines for moving each type of

handle. The formal model above is intended to express the uniformity of the system as the

user sees it. A.Sq interprets translate-handle.., according to the type of handle:

translate-handle-of-object-to-point (hndl, obj, pt):
type of hndl is

center or mid-point
translate obj by (pt - center-of (hndl)).

box-corner
scale obj in x and y by x and y components of

(pt - center-of (obj)) / (center-of (hndl) - center-of (obj))
relative to origin at

center-of (handle-at-opposite-corner-of (hndl))

45

box-top-or-bottom-edge-mid-point
construct target point p' as the intercept of

horizontal-line-thru (pt) and vertical-line-thru (center-of (obj))
scale obj in y by y component of

(p' - center-of(obj)) / (center-of(hndl) - center-of(obj))
with respect to origin at

center-of (handle-opposite (hndl))

box-left-or-right-edge-mid-point
construct target point p' as the intercept of

vertical-line-thru (pt) and horizontal-line-thru (center-of (obj))
scale obj in x by x component of

(p' - center-of(obj)) / (center-of(hndl) - center-of(obj))
with respect to origin at

center-of (handle-opposite (hndl))

end-point
translate line-end-point-at (center-of (hndl) to pt

If nothing else, the above shows how much simpler a pictorial interpretation is! Although

A.Sq must resolve this high-level function into its several cases, it should be noted that the

learning system uses the same simple model of primitives and operators that its teacher

does.

3.2 Basil—the Metamouse

One way to operationalize the "show work" felicity condition is to teach by demonstration.

The instructor performs a task so that the apprentice observes each step in its execution.

Another approach is to teach by leading, a method employed in programming robots (see

[MacDonald 84]). The instructor carries out a manual task but substitutes the robot's

grasper for his own hand, which he uses instead to manipulate the robot's arm. The

simplest learning system based on either method merely records the movements made, but

with the addition of sensory feedback and some model of procedural decomposition, it

could learn complex tasks.

The proposed system supports both approaches to teaching, with a view to

investigating their relative merits and ability to supplement each other. The metaphorical

apprentice is a graphical robot that tracks the movement of the regular graphics cursor

under control of the mouse and is hence called a Metamouse (cf. [Myers 87]). In order to

demonstrate an action the teacher performs it as usual. Each time she fixes the cursor's

position (as at the start and end points of a line), Metamouse moves there to indicate that the

46

action has been observed. In order to lead Metamouse, the teacher gives it a command by

touching the appropriate part of its body. Demonstration and leading are not segregated

"modes" of operation - the teacher can switch from one to the other without issuing any

special command.

To help the teacher identify with Metamouse as an intelligence of some order, it is given

a personal name, "Basil." This section describes Basil's interaction with the teacher, his

sensory system and memory, and his knowledge of graphical semantics. Basil is designed

to enforce the felicity conditions and to make reasonable conjectures regarding the

constraints on parameters of graphical actions, yet nonetheless be simple enough that the

teacher can readily understand his behavior. This implies that we should be able to

describe Basil in relatively few words; a description given to teachers before they meet

Basil in person is shown in Chapter 1, Figure 1.7.

3.2.1 Basil's Body

The Metamouse augments the drawing facilities available in A.Sq (eg. by providing

rotation) and gives names to some of the constrained movements performed by the mouse

under user control (eg. move right without deviating vertically). These capabilities are

literally embodied in the Metamouse, a moveable menu in the form of a turtle - an icon

made familiar by the LOGO system [Papert 80]. Figure 3.3 illustrates.

The segments of Basil's shell and body are buttons, arranged so that leading him

resembles training a live animal. Touching his snout causes him to grasp or let go of an

object; prodding a segment of his carapace causes him to move away along a straight line;

touching one of his feet causes him to rotate about the tip of his snout in the direction of

mouse movement. Some body parts have less obvious functions. Tapping Basil's head

causes him to go into his shell, that is, to ignore the teacher's actions (he is reawakened by

tapping any part of his shell). A tap on the center of his carapace causes him to move

directly to the next position selected by the mouse. A tug on the tail causes him to undo his

last action (this is how the teacher signals disagreement with one of Basil's predictions).

Translation and rotation are continuous in space (to the limits of screen resolution)

hence the teacher must have some means of indicating the interval or degree. For

translation this is trivial: she selects the destination point with the mouse. For rotation a

47

number of approaches are attractive, such as measuring the mouse's angular movement.

Control must be precise, so that the teacher can demonstrate rotation until contact (as used

in the convex hull procedure). The method chosen is to continue moving in small but

increasing steps as long as the mouse button is held down, so that the teacher relies on

feedback from Basil to determine the limit of rotation.

Approximate actual size.
A locator / pick device separate from but
controlled by the mouse.

Brain: click here to
toggle Turtle's attention
on or off; Turtle's outline
is grey when "asleep".

Foot: rotate Turtle in
direction of mouse
movement.

Shell: move Turtle
along an unconstrained
path.

Move Turtle along
NE / SW diagonal.

Snout: grasps and
carries an object.

Brain: flashes when
Turtle detects a
sensory event.

Move Turtle along
vertical line.

Move Turtle along
horizontal line.

Move Turtle along
NW / SE diagonal.

Tail: undo predicted
action.

Figure 3.3 Metamouse icon with function buttons

Some implementations may not support a moveable menu and, in any case, users may

prefer not to interrupt their work to prod the Metamouse. In teaching by demonstration the

user shows Basil where to go by picking the destination point. Since the' mouse travels an

unconstrained path, some useful information is lost, but Basil conjectures a path constraint

(see below). If the pick selects an object, Basil moves to it and grasps it. If the teacher

then drags the object Basil re-grasps it at its new position. Letting go matters only if Basil

must leave an object behind or, grasp something else, hence this mode of activity offers no

48

explicit ungrasp command. Nor is rotation by demonstration supported, since A.Sq has no

such command.

Path constraints are important when generalizing actions. They enable Basil to ignore

the exact path or destination of the mouse, which may be noisy or irrelevant. On the other

hand, they eliminate the need to induce the reason for going in one general direction rather

than another. Moreover, when combined with other weak constraints (eg. one that

stipulates contact somewhere along a line segment) they can determine an action's

parameters. Eight path constraints considered the most useful in drawing are attached to

buttons on Basil's carapace: two vertical (up, down), two horizontal (left, right) and four

diagonal. Often Basil will be directed to go to a particular part of an object (eg. its bottom-

left corner) along such a path. If the destination is slightly off the path but nearer to no

other (ie. within 22.5°) Basil will deviate from the exact constraint to achieve the goal. The

path constraint is recorded nonetheless. Similarly, if Basil is moved without constraint to

the goal, be will find the nearest constrained path and record this as the direction in which

to search for such a goal when executing this action in future. Thus goals have priority

over paths but paths are used to narrow and order the search for a goal.

Finally, it should be noted that Basil records actions that modify other actions, such as

selecting a drawing tool. In fact, Basil can learn any A.Sq command, though learning

about the parameters of file manipulation is not attempted.

Formally, an action step executed by the teacher or by Basil is a tuple action-step

(precond, action, path, postcond), where precond is sensory feedback prior to the action,

which is a move (possibly modified by a drawing tool) or turn, whose direction is

constrained by path, and whose parameters are further constrained by sensory feedback

listed in postcond.

3.2.2 Basil's Sensory System

Geometric constructions - even the informal ones employed in van Sommers' model of

drawing - conditionally distinguish points in space. These distinguished points,

individually or in groups, result from operations whose semantics are order, measurement

and classification. To satisfy the "no invisible objects" felicity condition, the teacher must

draw objects whose intersections produce such points; Basil senses and remembers them as

49

the tactile postconditions of a step in the program. The learning system is conservatively

biased towards highly specific tactile constraints, and limits the scope of its attention to

touch relations between other objects and Basil's snout or the object in his grasp. If an

action is not governed by tactile conditions, the system considers other constraints:

absolute position, heading, or distance moved. Basil's model of "haptic perception"

classifies and orders constraints so that only the most effective items observed are used to

form postconditions. Moreover, it is biased towards novelty - information that has not

changed since the precondition is ignored unless needed to distinguish the postcondition

from an alternative.

Formally, the sensory state is sensing(G, DT, IT, D, P, H), where G is a touch

relation (defined below) between Basil and the object in his grasp, DT is a list of touch

relations between objects and Basil's snout, IT is similarly a list of relations between other

objects and the object in grasp, D is distance moved in the current step, P is current

position, and H is current beading. Details regarding each sense are given below. When

analyzing sensory data, the system derives a constraint (Data, Class, Used) descriptor from

each touch relation or other percept (Data), assigning it to a Class and deciding whether it

should be Used or ignored when explaining or generating actions. A precondition is

precond (cx) and a postcondition is postcond (J3), where a and /3 are sets of constraint
descriptors.

As mentioned above, touch is the most important sensory feedback. To clearly convey

Basil's visual processing limitations, the teacher is told that Basil (as a Flatland inhabitant)

sees objects almost edge-on. Nonetheless he can tell the shape and size of something by

nudging it. Since Basil is an essentially tactile creature the appropriate analog for spatial

relations is tactile, hence the construction of distinguished points (which in geometric

construction are points of intersection) by establishing touch relations.

A pair of objects may touch at several points. Each touch relation is expressed as a

correspondence of object parts, touch (objecti.parti : object2.part2), where parts indicates

some part of object1 (rather than the it/i in some ordered set of parts). Objects are the A.Sq

primitives box and line defined above. Parts are the handles (viz, specific points) and line

segments illustrated in Figure 3.2. Thus the constraints expressed by touch relations are of

three types, from strongest to weakest: 1) coincidence of two specific points, 2)

intersection of a point and a line, and 3) intersection of two lines. The second is weaker

50

than the first because any point on the line may be chosen. To meet the third type, any

point on either line will do. Figure 3.4 illustrates types of touch.

grasp (Basil: B.mid.left)

grasp (Basil: C.left)
touch (C.bottom.right : Q.endpt)

grasp (Basil: L.midpt)
touch (Basil.snout : B.left)
touch (L.midpt : B.left)
touch (L.endpt : B.top.mid)

Legend

• object grasped
E object touched

object indirectly touched

O object not sensed

Note: contact between Q and R
is not sensed

Figure 3.4 Touch relations in sensory feedback

Direct touch is a point-to-point or point-to-line constraint between Basil's reference

point (his snout) and some part of an object. It isolates the current focus of attention and

the origin point of the next operation. Basil may directly touch several objects, but only

one part of each (the most specific part is selected). The touch relation with the object in

Basil's grasp is not duplicated. Direct touch is expressed as a set of relations:

{touch (Basil.snout : 0bj1.Part1), ... touch (B asil. snout : Obj-Part)
I V i,j [Obji # Basil A - grasp (Basil : Obj) A (1 :?,-j) = (Obji # Obj)] }.

51

Grasping is a direct touch of the A.Sq active object (see 3.1). Grasping covers the

same types of spatial constraints as direct touch but expresses Basil's ability to transform

an object. It is defined:

grasp (Basil: Obj.Part)

touch (Basil.snout: Obj.Part) A Obj = active object.

Indirect touch occurs between the grasped object and other objects on the display. It

covers all three types of spatial relations and expresses more complex constraints than

either direct touch or grasping. It is expressed as a set of touch relations:

(touch (G-obj.G-part1 : Obji.Part1), ... touch (G-obj.G-part: Obj.Part
I grasp (Basil: G-obj) A

Vi,j [0bj1 # G-obj A 0bj1 # Basil A

j) := (0bj1 # Obj)) A -1((i # j) = (Part1 # Part))] }.

In Box-to-Line for example, when Basil contacts the first box with the sweep-line, his

sensory state (the postcondlition of moving the sweep-line upwards) includes the following

touch relations (see §4.6, step 6):

grasping:
grasp (Basil: S.midpt)

touching:
nil (ie. nothing he is not grasping)

indirectly touching:
touch (S.lineseg : G.lineseg) touch (S.lineseg: B.bottom-left)
touch (S.lineseg : B.bottom-mid) touch (S.lineseg : B.bottom-right)

definitions of variables:
S: the sweep-line created by Basil
G: the guide-line created by Basil
B: the object (a box) just encountered by the sweep-line

Observe that Basil notes the three contacts between S.lineseg and the handles on B.bottom

but not the line-to-line contact, touch (S.lineseg : B.bottom). This is because any one of

the point-to-line contacts implies a line-to-line constraint. Basil records only the most

constraining relations observed. In this case collinearity is captured by the occurrence of at

least two point-to-line touches.

In addition to touch, Basil senses current position and heading in both absolute and

relative terms. Absolute position, formally represented as position(x, y)., can provide a pair

52

of absolute screen coordinates as a program constant, useful when creating tools such as

the sweep-line. Similarly, heading(h), where h is an anti-clockwise angle in degrees from

the horizontal, provides a directional constant. Relative - in effect the change in -

position or heading is derived from the magnitude of a move or rotate operation and is

formally displacement(m, path), where m is a distance in screen coordinate space (move) or

an angle in degrees (rotate), and path is a heading descriptor. Displacement facilitates

programming in terms of body-centered coordinates, as in turtle geometry [Abelson 80].

3.2.3 Basil's Memory

The use of variables and constants mentioned above entails some sort of memory. The

organization of a memory may be considered in terms of data types or persistence over

time. Basil remembers procedures "forever," objects for their lifetime, and sensory

feedback - or state - briefly. Basil does not "actively forget," even though this could be

used to remove bugs from procedures. There are six memory partitions (one of which

properly belongs to A.Sq) that fall into three data types and four degrees of longevity.

Current-Step (immediate)
the action-step Basil has selected to execute or teacher is demonstrating

Recent-Steps (short-term)
action-steps recently performed, which Basil may undo or to which he may refer
when inducing variables

Program (long-term)
the executable procedure learned by Basil;
may be stored in a higher-level long-term memory (an archive)

Created (medium-term)
the list of variables bound to A.Sq objects created by Basil during this task

Transformed (medium-term)
the list of variables bound to A.Sq objects transformed but not created by Basil
during this task

Display-List (medium-term)
the A.Sq objects currently visible on the graphics display

The three data types are: action-steps, defined in 3.2.1; procedure, a directed graph of

action-steps; and variable, a name dynamically bound to an A.Sq primitive. Degrees of

longevity are immediate, persisting through duration of the current action-step; short-term,

53

over a small number of action-steps; medium-term, throughout a single teaching session;

and long-term, "forever."

The system remembers actions in two forms: specific actions performed by the teacher

or Basil during a given trace; and generalized actions recorded in the Program memory.

Current-Step is the action-step tuple describing the action most recently performed by Basil

or the teacher.

Recent-Steps is a stack of previous contents of Current-Step but in which direct

references to A.Sq objects have been associated with variables. Recent-Steps is used when

Basil must undo an action the teacher has rejected; this permits the undoing of several

actions. The undo () function performs the inverse of the top element of Recent-Steps and

pops it off the stack. Recent-Steps is also used to find previous occurrences of an A.Sq

object in touch relations, so that a variable can be induced. The find-most-re cent-

occurrence-of (Object) function searches back through Recent-Steps for a variable bound to

Object. The use and induction of variables is described in Section 3.3.

The size of the Recent-Steps memory is one of the parameters on which the learning

system's power can be conditioned. If it is too small, some variables may not be induced.

Moreover, it limits the number of actions that can be undone, hence the amount of

prediction that can be required to confirm the program's structure. On the other hand, if it

is too large, the system will spend more time looking for variables and is more likely to

induce them speciously. A reasonably small size, say 7 ± 2, is recommended for a

prototype system; the performance of larger memories is certainly worth further

investigation.

The long-term Program memory contains the procedure that Basil is learning or

executing. It is a directed graph of action-step tuples with generalized pre- and

postconditions. Each node may have many successors and predecessors; this is sufficient

to represent flow of control through sequences, loops and branches but does not impose a

block structure. Figure 3.5 illustrates an example program graph. This representation is at

least as general as that used by NODDY [Andreae 85].

The function successors (A, P) returns the set of action steps that immediately follow

step A in program graph P and therefore may be predicted after A. Function predecessors

(A, P) returns the actions that immediately precede A. The function find-match (D, A, P,

54

R) invokes predecessors() and successors() to search the graph P starting at step A for a

possible match with D, the action just demonstrated by the teacher, ignoring matches R

already found but rejected for other reasons. Although potentially exhaustive, the search is

biased so that loops and local jumps are considered first, and suspends when the first

match is found. The biasing heuristics are described in Section 3.4.

So: Start

Si. move to (posn = ask-user)

S2. draw-line G to (posn = ask-user)

S3. move to (posn = constant)

S4. draw-line S to (posn = constant)

S5. move to (grasp = S.midpt)

S6. drag S upwards to

(B isabox and

touch(S.line, B.bottom.left) and

touch(S.line, B.bottom.mid) and

touch(S.line, B.bottom.right) and

touch(S.line, Wine))

S7. move to (grasp = B.center)

58. drag B to (touch(B.bottom.right, Wine))

S18. remove S

Si9. move to (grasp = G.midpt)

S20. remove G

Figure 3.5 Program graph for "box-to-line"

55

Since Basil must be able to undo action-steps, he must remember the bindings of

variables in past steps. Bindings hold until a step is re-executed, but this is insufficient

since it may be re-executed before its previous execution is undone. Hence Basil always

appends a copy of Current-Step to a short-term memory, Recent-Steps - in effect an undo

list. The length of Recent-Steps is fixed; once the limit is reached, the oldest step is

forgotten as the newest is recorded.

Graphical construction typically involves "auxiliary" objects to measure distances or

otherwise capture constraints. To satisfy the "no invisible objects" felicity condition, the

teacher must draw such objects. Since they are apt to be re-used throughout the procedure

they should be remembered beyond the limits of Recent-Steps. Thus the system creates a

variable for every object drawn in the execution of a task and records it, with its binding, in

the Created memory. Variable names are themselves program constants; this causes one

serious problem. If a step that draws an object is executed more than once it cannot give

unique names to each one. The current design does not eliminate this problem; instead, it

adopts the convention that a variable name may appear more than once in Created, and that

variable instances are selected non-deterministically; objects having the same name can be

differentiated by other criteria. For example, suppose that Created contains several boxes

called X. The following subprogram would delete all of them:

while (move along any path to achieve grasping (Basil: X.center)) succeeds
delete-object (X)

In fact, "while (delete-object (X)) succeeds" would work, although Basil would inevitably

learn to move to X by observing the teacher pick X. If objects having the same name must

be ordered, then the teacher must express this through a construction such as a sweep-line.

Graphics programs process objects by transforming them. It may matter that objects be

processed only once and in a particular order. Transforming an object however may

position it such that it will be selected again by mistake (consider for example the Spacing

task in Chapter 1). To prevent this, Basil remembers references to objects already

transformed in the Transformed memory. If the teacher rejects Basil's prediction that such

an object T is selected again, the caveat "T not already in Transformed memory" is added to

the action's postcondition.

When a program step is learned (or executed) its variables are bound to actual values

provided by Basil's "sensors." A.Sq records the state of all objects currently displayed in a

56

list of object data structures, Display-List. The function select-by-constraint (Display-List,

Type, Touch-Specifier, Rejected) finds an object of given Type (eg. box) for which Touch-

Specifier, a touch predicate, holds, and which has not been found and rejected for other

reasons already.

3.3 Generalization—Actions

In order to learn procedures inductively the system performs generalization. References to

individual objects are replaced by variables that may be bound dynamically as the procedure

is executed. Sensory feedback is generalized to pre- and postconditions by ignoring some

aspects of it and by relaxing constraints on numbers (as in distance) or on touch relations.

Sequential action traces are reorganized as a program graph with branches and loops. This

section discusses the generalization of actions by introducing variables and relaxing

conditions. The method for constructing a program is described in Section 3.4.

Action generalization is performed at three stages of program development.

The first stage is when trying to match a new action with a program step. Many

program steps can potentially match an action if generalization is permitted. Preference

should be given to a match that requires a combination of the least generalization and the

least amount of search through the graph. The prototype system requires exact matching.

Generality is introduced by disjoining, that is by creating branches in the graph.

When matching a touch relation in a program step with actual sensory feedback,

variables in the relation must be bound to objects occurring in the same role in the

feedback. For example, touch (L.midpt : B.center) matches touch (<Obj #99>.midpt:

<Obj #31>.center) provided L = <Obj #99> and B = <Obj #31>.

The second stage in which generalization occurs is when adding a new step to the

program. Sensory data are classified in order to identify determining constraints; the rest

can be considered irrelevant for generating actions, though they may later prove useful in

distinguishing situations.

At this stage, variables replace object references. If the object occurs in Recent-Steps

or Created, the variable is inherited; otherwise a new variable is created.

57

Note that this second level of generalization could be performedfirst. It is analogous to

perceptual processing in that significant sensory data are abstracted from the input. This

"perceptual" generalization is quite powerful, since it captures essential constraints which

are likely to be intended by the teacher. Performing it on actions before attempting to match

them with program steps would of course reduce the amount of generalization required at

that stage but this does not matter. More important is the consistency of Basil's behavior.

Since perceptual generalization can be explained to teachers in terms of a simple and

consistent model, it should be given priority.

A third level of generalization is performed when executing a program. At any point a

number of alternative steps (branches) may be available. If a step cannot be predicted

because its precondition does not match the current feedback or its postcondition is

unattainable, it may be generalized by relaxing the troublesome condition. This type of

generalization seems especially risky; it is recommended to let the teacher demonstrate the

correct action and then generalize the program step to match it provided excessive

generalization is not required. The prototype system skirts this issue by disjoining the

teacher's action with the current alternatives.

Sometimes the teacher rejects a prediction but performs an action that matches the

offending program step nonetheless. This would occur if the step had been overly

generalized or had been selected for prediction instead of a more appropriate alternative. To

prevent the latter case alternatives should be ordered by generality if this can be determined.

In the former case the step should be specialized by reclassifying some of its conditions as

relevant. To do this requires that all conditions be remembered permanently. Moreover, to

prevent over-specialization, the system should also remember the most specialized version

of the step that covered all situations actually encountered. Since the teacher may reject

incorrectly, or the constraint may not be strictly learnable in terms of the system's

representation, even this minimal version may conflict with the required specialization. The

prototype system avoids this problem by not specializing steps at all; instead, it adds the

teacher's action to the program as a preferred alternative.

The remainder of this section concerns the second level "perceptual" generalization:

specifically the induction of variables and analysis of constraints.

58

3.3.1 Variables

An object or value may occur several times in the execution of a procedure. Some of these

occurrences may be related. For example, the teacher may wish to instruct Basil to grasp

"the center of the box contacted by the sweep-line at the end of the previous step." We can

think of an object playing one or more roles in the course of a task. Further, a role may be

played by several objects on different occasions. For example, the boxes in "box-to-line"

play the same role in each iteration of the loop. This notion of role is captured by variables

and valuation functions that get or change their binding. In the prototype system, variables

refer only to A.Sq objects. Numerical values such as position and distance are typically

specified by objects, but it is acknowledged that variables would be useful to capture

notions like "the position occupied 3 program steps ago."

Formally, a variable is a relation variable-definition (Name, Binding), where Name is

unique (scoping is global since the program graph has no block structure) and Binding is

an A.Sq object. Since the distinction of objects by type is especially important, Binding is

decomposed into (Type, Object), where Type is one of { box, line) and Object refers to a

specific instance.

A given program step may set or re-set a variable's value, whereas another may merely

inherit it. With reference to Figure 3.5, step S6 sets the value of B by solving a constraint,

whereas S7 and S8 inherit B. At the next iteration of S6, B is re-set. To ensure that values

are changed as required, individual occurrences of variables in program steps are given as

the relation variable-reference (Valuation, Definition), where Valuation is a function to set

or inherit the value and Definition refers to the variable-definition record. Figure 3.6

illustrates the referencing scheme.

There are three valuation functions (examples refer to Figure 3.5): Create binds a

variable to the new object drawn in Current-Step, eg. line G in step S2. Find binds a

variable to an object found by solving constraints, eg. B in S6, "the first box whose

bottom-edge handles contact the sweep-line as it moves upwards." Same inherits the

existing binding, eg. B in S7, "the box contacted by the sweep-line at the end of the

previous step." The choice of valuation function depends on occurrences of the object and

can be decided when the variable is induced. Create and Find are associated with a new

variable; Create if the object was just drawn, Find if it occurs in a touch relation. Same is

selected when a previous occurrence is found.

59

Step n Step n+k

grasp (Basil : L.endpt)

Variable Reference
Valuation = Create (draw-line)

grasp (Basil : L.midpt)

1
Variable Reference

Valuation = Same (use current value)

Variable Definition
Name = L
Type = Line
Object = <address>

Figure 3.6 Definition and instantiation of a variable

Induction of variables rests on the assumption that references to the same object on

different occasions are not merely coincidental. A variable is induced from an object

reference in Current-Step and previous occurrences in Recent-Steps or in the Created

objects memory. It is convenient to create a new variable for any object appearing for the

first time, and to keep variable-references in Recent-Steps and Created. In order to

distinguish different roles an object may play during a task, the degree of look-back or the

size of Recent-Steps should be limited. The most suitable limit has not been determined.

Since variables in Created are never re-bound, greater generality is achieved by inducing

variables from Recent-Steps and so this should be searched first. An algorithm for

inducing variables is presented in Chapter 4.

3.3.2 Constraints

Constraints implicit in touch relations and other sensory feedback must be isolated from

coincidental occurrences in order to capture the teacher's intentions. Here again the best

one can do is to make the inductive assumption that the important constraints are those

occurring consistently. Since actual feedback is a maximally specific description of

60

constraint, the isolation of features is a matter of generalization. [Michalski 83] describes a

number of methods of generalizing conjunctions of predicates. The prototype system

generalizes a feedback pattern by ignoring predicates that match generalization criteria

(heuristics). They should be remembered, however, in case they are needed for

specialization, to distinguish the pattern from others.

The criterion for dropping a feedback predicate could be related to its type or structure.

For example, Basil ignores third-degree indirect touch - an implicit generalization of

feedback. More interesting, however, is an event's effectiveness as a constraint. For

example, touch (Basil.snout S.midpt), where S is a particular line, is more constraining

than touch (Basil.snout B.center), where B is some box found by moving generally

upwards. Thus, if both occur together, the latter is more likely to be relaxed by

generalization. The feedback generalization function, specified in Chapter 4, classifies

touch relations and other feedback according to the constraint they place upon the operation

performed in Current-Step. The generalization heuristic declares that predicates of certain

classes should be ignored. The constraint classes are described below.

Effective constraints help determine an operation's parameters. A determining

constraint determines them exactly. Contact with a handle of an object whose variable

valuation is Same or Created is determining: for example, grasping the mid-point of

created line L determines the (x, y) components of a move. A strong constraint can

determine exact position when combined with a weak constraint: contact with a handle of

an object whose valuation is Find is strong. A weak constraint does not determine Basil's

exact position: contact with an edge and path of motion are weak. A crossing constraint is

an indirect touch between edges and has a very weak effect on position. A crossing

constraint on drawing a line through another line keeps Basil somewhere within the

frustum bounded by the line segment crossed and the projector rays from Basil's starting

position. In the presence of a determining constraint, other conditions should be

reclassified as overdetermined.

Unchanged conditions persist through an operation and thus appear in both pre- and

postconditions. The trivial ones, such as maintaining the grasp of a handle while dragging

it, are given by the definitions of operators. Discarding them makes no difference to a

postcondition's generality. Sustained are typically weak constraints that do not change.

61

For example, if Basil moves along an edge the contact is sustained though not at the same

position.

If touch predicates fail to sufficiently constrain (explain) an action's parameters, then

either position or distance may be a determining constraint. Thus Basil asks the teacher

whether the action is determined by a constant or a run-time input position or distance. If

none of these, then the trace contains an invisible object (see Chapter 2).

Having classified all the feedback, the system generalizes it by marking some features

as ignored. Overdetermined and trivial constraints are safely ignored - though it is not

impossible that overdetermined constraints have distinguishing power. Whether or not to

discard a sustained feature is a question of considerable importance to the types of

problems that can be programmed. In the real world, things that do not change are usually

not noticed. Since the generalization discussed here is based on a sense-perception

analogy, it is suggested that Basil will be more comprehensible to the teacher if he normally

ignores sustained constraints. Nonetheless, the system should prepare for those occasions

when the teacher intends that a feature be preserved, by remembering the constraint.

3.4 Generalization—Procedures

Given the internal representation of a graphical task as a sequence of actions governed by

tactile conditions, which is conveyed to the teacher through the Metamouse's predictions

and questions, consider the matter of generalizing a sequence of action-steps into a program

with branches and loops. The Daedalos algorithm constructs a network of action-steps that

embodies such control structures. Since the algorithm both learns and executes

procedures, it meets the design requirements of prediction and continuous, incremental

learning. The algorithm depends upon a (precondition, action, postcondition) model of

action-steps but is otherwise domain independent, although its effectiveness depends upon

the suitability of the generalization terms used in pre- and postconditions.

The learning algorithm constructs a directed graph (the structure specified for Basil's

Program memory). Each node is an action-step with links to preceding and ensuing steps

that may include itself. Thus the graph can represent looping and k-way branching with

return from a branch (cf block or subroutine) to its parent branch. A loop's entry point is

itself a k-way branch. The alternatives at any branch point should be ordered on the

62

generality of their preconditions, then on postconditions, and finally on path constraints.

Figure 3.5 showed an example graph. The learning algorithm can add nodes and links but

never alter or remove them, although a tentative link may be removed if evidence

supporting it (ie. the success of predictions) proves insufficient.

Given that Daedalos constructs an arbitrarily connected graph, it follows that the

programs it learns are not block structured. This may be unappealing to disciplined

computer programmers but may have quite the opposite effect upon teachers, who are free

to structure a task as they wish. The algorithm is nonetheless biased towards localizing

jumps (see below).

3.4.1 Definitions

The algorithm is presented here in its most general form; functions specific to the Basil

implementation are described in Chapter 4. Several important variables are here defined in

terms of how they are used:

PredictionSet
When executing a program, Daedalos selects the next step to perform from
PredictionSet, the options available at this point in the program; if none both
applies and is accepted by the user, Daedalos learns a new step and adds it to the
PredictionSet.

ProposedStep
If a member of PredictionSet fits the current situation (ie. its preconditions match
the current state), and if its parameters P can be instantiated to P' satisfying its
postconditions, then it becomes ProposedStep and Daedalos tentatively performs
it.

LastAcceptedStep
If the user accepts the ProposedStep, it becomes LastAcceptedStep and Daedalos
proceeds to its successors (the next PredictionSet); otherwise Daedalos looks for
an alternative from the current PredictionSet.

CurrentStep
If Daedalos is unable to predict the next step (nothing in PredictionSet can become
ProposedStep, or user rejects all ProposedSteps), the user must teach it. If the
new step, called CurrentStep, matches one already learned in another part of the
program, Daedalos proposes a link from LastAcceptedStep to the match; otherwise
CurrentStep, deemed novel, is appended to LastAcceptedStep and then itself
becomes LastAcceptedStep.

Several integer parameters control the algorithm:

63

OptionsLimit
When choosing the next step to execute, Daedalos may find several whose pre-
and postconditions match current and projected situations; Daedalos predicts each
in turn until either the user accepts one of them or the number of predictions
exceeds OptionsLimit.

ConfirmsLink
When Daedalos matches the teacher's action to a program step, a link to that step is
conjectured, but must be confirmed by successful prediction of at least
ConfirmsLink steps beyond that point.

LinkAttemptsLimit
If a conjectured link is rejected, Daedalos may try as many as (LinkAttemptsLimit -
1) other linkages before deeming the teacher's action a novel program sequence
and appending it to the current branch.

3.4.2 Algorithm

The Daedalos algorithm both learns and executes a procedure, commuting between these

two modes, signalled respectively by closure and failure. A failure occurs when no

member of the prediction set is performable or the teacher rejects all alternative predictions.

The end of the program is also treated as a special sort of failure so that the user may add a

continuation. A closure occurs when the teacher indicates the lesson is over or Daedalos

verifies that the teacher's actions match some part of the existing program. Thus in

simplest terms the learning algorithm is:

Daedalos-Lesson (Program, Trace)
Initialize Program
while Check-for-End-of-Lesson signals not-end-of-lesson

Execute Program starting with PredictionSet of LastAcceptedStep
[untilfailure or end-of-program)

Learn from Trace a new sequence in Program following LastAcceptedStep
[until join-achieved or end-of-lesson)

Store Program

Initialize. The algorithm is given a procedure Program that may have been selected by

the user from an archive. If Program is new, it is initialized to an empty program

containing dummy Start and Stop events which are used to control the execution of

Daedalos.

64

Check-for-End-of-Lesson. The program will be executed from the PredictionSet

following LastAcceptedStep. If the only successor is Stop, Daedalos may need to learn

new actions from the trace.

Execute. If the lesson is not over, there may be more program to execute before new

actions are learned. Check-for-End-of-Lesson could signal end-of-program if the next step

is Stop, but Execute must check for this anyway. Execute, given the PredictionSet

(successors) of the LastAcceptedStep, looks for an option whose relevant preconditions

hold in the current state of the world and whose relevant postconditions can be achieved by

applying its operator with variable parameters set by a constraint-solver. If the teacher

accepts this prediction, Execute recursively calls itself with the next PredictionSet.

Otherwise, the action is undone. The system will look for alternatives from the

PredictionSet until OptionsLimit is reached. In the event that no prediction succeeds,

Execute returns and the Learn routine is entered.

In the graphical world of Basil, preconditions hold if they and their variables match

corresponding items in Basil's immediate memory (the CurrentStateOfWorld).

To determine whether a Step's postconditions are attainable requires a constraint solver

to find values for the operator's variable parameters such that postconditions hold.

Checking the postconditions is easy - the method is the same as for preconditions.

Designing and implementing a constraint-solver is more difficult.

Learn. When Daedalos is unable to continue executing the program, it acquires new

program steps from the action trace. The Learn routine examines the next step in the trace

and looks for a matching step already in the program. If a matching step is found, the

LastAcceptedStep is connected to it through a Join node; otherwise, the trace step is copied

to a new program step, which is appended to LastAcceptedStep, and Learn continues from

the new step.

Learn (Trace, Program, LastAcceptedStep)
if CurrentStep - Get-next-trace-step from Trace is null

signal end-of-program

else if LinkTo - Find-and-confirm-join in Program
from LastAcceptedStep to a step (LinkTo)
that Matches CurrentS tep

Make-join from LastAcceptedStep to LinkTo
signal join-achieved

65

otherwise
Append CurrentS tep to LastAcceptedStep
LastAcceptedStep - CurrentStep
Learn next step in Trace, trying to join it to updated Program
or else appending it to LastAcceptedStep

The routine to get a new action step from the trace creates a Step node (which will be

thrown away if the step is matched) and fills in its action-step data slots.

Find-and-confirm-join. When the new step has been read in, Daedalos searches the

program for a step that matches it. If a matching step is found, Daedalos must confirm the

link to it by successfully predicting at least ConfirmsLink steps beyond that point (or by

reaching the end of the program), before making a join from LastAcceptedStep.

To find a matching step Daedalos can search the entire program graph. The search is

depth-first, but biased towards nodes near the LastAcceptedStep, where search

commences. It is also biased towards finding loops, by searching chains of

LastAcceptedStep's predecessors first. These biases are suitable to the two types of

hierarchical task decomposition found by van Sommers (see §2.2.1) Duplicate searches

and endless loops are prevented by marldng nodes as encountered.

Matches. The action matching predicate compares action-steps and succeeds if the

program step is (or can be made) a generalization of the demonstrated action. Given that

steps can be generalized in order to match, the number of candidate matches could increase

uncontrollably. Moreover, the best matches may be missed if the first match found is

accepted. Hence the system should limit the amount of generalization, produce all possible

matches and order them by closeness and other preference criteria. To avoid these

problems, the prototype system should generalize only path, position, distance and heading

- very easily justified generalizations - and not bother ordering candidates.

3.5 Putting the System Together

From the user's point of view, the graphical programming system has two modules - the

drawing program A.Sq and the apprentice Basil. For the purposes of research, however,

Basil, the interaction device with senses and memories, is distinguished from Daedalos, the

system that constructs program graphs. Basil is an intermediary between Daedalos and

A.Sq and performs a first level of generalization.

66

The three modules, their components and interfaces are shown in Figure 3.7. The

teacher transmits mouse events to A.Sq, which interprets them as graphical actions and

returns visual feedback. If Basil is active, he observes these A.Sq actions and the sensory

feedback before and after each step. Basil induces variables and constraints, then transmits

these observations to Daedalos, which further generalizes them and incorporates them into

the program. When predicting the next action step, Daedalos sends the generalized action

specification to a constraint solver to determine the action parameters; if the solver

succeeds, it sends a graphics command to A.Sq; otherwise it informs Daedalos of the

failure.

Teacher

action

A.Sq
drawing program

drawing

Metamouse Daedalos
metaphorical apprentice procedure induction module

operation

Induce
variables

Identify
constraints

program step> Situation
matcher

directed graph of
program steps

*
Constraint

solver

predicted action

Figure 3.7 Main modules of graphical programming system

67

Chapter 4

An Implementation

A phased implementation of the system described in Chapter 3 allows feasibility studies

and investigation of generalization heuristics and the requirements for constraint

satisfaction, prior to committing the resources needed for a working prototype. The initial

(Phase 0) system described here has no constraint solver. Although able to induce

procedures it cannot generate actions in the display environment, hence full graphical

interaction with the teacher is not supported. The Phase 0 system includes the A.Sq

drawing program and a Metamouse that follows the teacher and informs her of its

sensations. It records execution traces but induces variables and constraints off-line (le.

after the trace is completed). Daedalos operates interactively but in a separate session and

uses textual representations.

Implementing the system' presents some interesting challenges. Its major modules

(A.Sq, Basil, and Daedalos) are inherently complex: they receive, process and generate

large amounts of information. The interfaces between them have a high bandwidth and

interactivity. Efficiency is a major concern. The fully working system must respond to

events in real time. It must perform complex generalization inferences and solve geometric

constraints within the teacher's short-term attention span.

4.1 Phase 0 Implementation

The system's modularity enables successive versions to be built on the same basic

structure. The Phase 0 implementation includes most subcomponents of the major

modules, A.Sq, Basil, and Daedalos. A.Sq is as described in Chapter 3. Basil has the

sensory capabilities given in the design. He can follow the teacher's actions but cannot be

told directly to move or rotate. Basil therefore can be taught by demonstration but not by

leading. Daedalos follows the algorithm given in Chapter 3.

The major omission is the interface between Daedalos and Basil. In a complete

implementation Basil would report each action to Daedalos immediately after processing it.

Daedalos in turn would transmit predictions to Basil. In Phase 0, Basil processes and

68

stores the entire action trace. Daedalos then re-processes it, interacting with the teacher

through a textual dialogue. Since there is no constraint solver, Daedalos predicts actions

but not the particular objects involved. Phase 0 facilitates a feasibility study to answer such

questions as:

1. Can the teacher predict Basil's sensory responses?

2. Does the condition-action model apply to procedures actually performed by users,
ie. is Daedalos able to construct a procedure from a typical trace?

3. What sorts of generalization heuristics would help Daedalos correctly match
situations in actual traces of the sample problems from Chapter 1?

4. Is inescapable "noise," such as coincidental, irrelevant contacts between objects,
too widespread to be ignored?

5. Should Basil continuously monitor his sensory feedback, rather than just before
and after an action, ie. does this sampling introduce irrelevant postconditions?

If the answers to these questions suggest that the system is indeed feasible, further

implementations will proceed. Phase 1 has interaction between Daedalos and Basil, but

without a built-in constraint solver. Daedalos will print predictions in a text window

attached to the A.Sq display. The teacher acts as constraint solver by carrying out actions

she accepts. Phase 2, including a solver, will serve as a prototype system suitable for

testing alternative generalization methods.

The hardware and software support required for each phase is the same. The usability

of A.Sq and Basil depends upon a high-speed graphics processor and a mouse or tablet

input device. Basil and Daedalos benefit from built-in memory management to support

complex yet ephemeral intermediate representations of data. The system overall has been

designed as a group of entities cooperating in response to events. The Macintosh computer

running object-oriented ExperCommonLisp provides a suitable operating environment. In

Phase 0, A.Sq and Basil run as a single process in the Lisp environment; Daedalos is run

separately. A.Sq and Basil are defined as Lisp objects that send each other messages.

Other important components, such as user interface devices and graphical objects, have

their own class definitions. This object-oriented coding style could take advantage of a

multi-processor architecture.

The user interface was designed using the InterfaceBuilder, a commercial user interface

management system based on the same object-oriented Lisp. It provides a graphical editor

for windows and pull-down menus and a run-time interface to the Macintosh ToolBox. It

69

traps user-generated events and translates them into messages it sends to the appropriate

modules of the application.

4.2 A.Sq

The user of Phase 0 A.Sq will find it a Spartan imitation of MacDraw. Its primitives and

operators are as described in Chapter 3. This implementation of A.Sq is adequate for

representing the problems described in Chapter 1.

The user interface provides tools to draw and transform boxes and lines by rubber-

banding. The application has no interface to files and the display window cannot be

panned or zoomed. The A.Sq "panel," shown in Figure 4.1, consists of a row of pull-

down menus, a menu of drawing tool icons, and a drawing pad. The cursor is sensitive to

this division of the display region: when moving over menus it appears as an arrow; on the

pad it resembles the currently selected drawing tool. Menus, objects and locations are

selected by depressing the mouse button. Drawing lines and boxes requires two selections

(of end-points or corners); the button is held down after the first and released after the

second.

File Edit Shape Basil Tasks Options

 New Window 1.
ox

Line

ti-ape

U

+
Figure 4.1 A.Sq user interface

70

Pull-Down Menus. The bar at the top of the screen contains six pull-down menus. A

mouse event in this region invokes one of the A.Sq methods attached to individual menu

items. There are six pull-down menus ordered as follows from left to right on the menu-

bar:

File
ifie operations (currently none) and Quit, the command to exit A.Sq.

Edit
the Cut operation to remove an object from the display list; and Undo, to reverse
the effects of the previous operation

Shape
same as the iconic menu of drawing tools (see below).

Basil
commands to delimit the teaching session and control Metamouse (see below).

Tasks
names of procedures learned by Basil; not supported in Phase 0.

Options
control parameters for A.Sq; currently, only Show Handles is provided (see
Feedback below).

Basil. Since the Phase 0 instructional paradigm is teaching-by-demonstration and rotation

is not supported, the Basil menu currently contains only two items. Begin Lesson (which

toggles to End of Lesson when selected) delimits a single teaching session. Basil appears

on screen below the drawing icons and will observe the teacher's actions until put to sleep

or told the lesson is over. Take a nap (which toggles to Wake up, Basil!) temporarily

suspends Basil's attention.

Drawing Tools. Selecting one of the icons at the left of the panel (or under the Shape

menu) sets the current mode of operation on the drawing pad, which persists until changed

by another selection. There are three options: Box and Line modes create new objects by

rubber-banding; Reshape permits objects to be picked and transformed. The cursor takes

on the current tool's shape.

Drawing Pad. Picking a point inside this region commences a drawing operation. A.Sq

must also bring itself and Basil (if awake) up to date:

71

Handle Mouse-Button Down in Drawing Pad (Location)
CurrentPoint - Location
Inform Basil of Operation commencing at CurrentPoint
Invoke Operation bound to Pad:

Box/Line:
CurrentObject .- create and install object in DisplayList
CurrentPoint - location at which mouse-button is released

Reshape:
CurrentObject - Pick from DisplayList at Location

Inform Basil of operation completed and updates to CurrentObject, CurrentPoint

To draw a new box for example, the teacher 1) places the cursor on the pad where she

wants one corner to lie, 2) picks this point by pressing the mouse button, 3) sizes the box

by moving the mouse while keeping the button pressed and 4) piôks the opposite corner by

releasing the button. User action 2 invokes the Handle Mouse-Button Down in Drawing

Pad routine. It immediately informs Basil that a location has been picked; if Basil is awake

and not already at CurrentPoint, he will move there. This move is itself a step in the

program. User action 3 is monitored by the routine to edit a box by rubber-banding. User

action 4 returns control to the pad handler, which installs the box in the DisplayList and

activates its handles so that the teacher may immediately re-edit the box if she wishes. The

handler informs Basil of the cursor's new position and the box's address. Basil moves to

the opposite corner of the box, grasps it, and records the drawing operation.

Pick and Transformation. A.Sq employs a gravity pick with cyclic disambiguation. If

the current operation is Reshape, Handle Mouse-Button Down in Drawing Pad tries to

update CurrentObject to some object that lies near CurrentPoint. "Near" means that one of

its edges or handles is no more than 3 pixels away. Several objects may lie near enough to

be selected, but only the first found in DisplayList is picked. It is moved to the end of

DisplayList to give other objects higher priority for the next pick. To disambiguate a pick

the user need only repeat the mouse-button press.

Only CurrentObject can be edited. Each of its handles is bound to a method for

transforming the object when that handle is moved (see §3.1). The handles of

CurrentObject become active regions of the display, with priority over the drawing pad.

Thus when the mouse-button is pressed within the extents of the handle, the event manager

invokes the handle's method rather than the pad handler.

72

Cut and Undo. Only CurrentObject can be deleted from the display; the user may select

Cut from the Edit menu or hit the backspace (delete) key. The deleted object is moved from

the display list to a deletions list and CurrentObject is set to nil. Basil is informed of the cut

and updates his sensory record accordingly.

Rect

Macintosh built-in class for rectangles
Defines extents box of primitive

BPrimltive

Instance variables:
type: name of class (eg. BLine)
state: indicates whether object is drawn, erased or needs update
handles: list of icons for manipulating object

Methods:
create, draw, erase, update, pick, etc.

BLine BBox

Instance variables:
none; vertices defined by inherited
Rect data

Methods:
create-interactively, draw,
rubber-band-edge,
rubber-band-vertex, drag, etc.

Instance variables:
ptl, pt2: end-points of line

Methods:
create-interactively, draw,
rubber-band-vertex, drag, etc.

Figure 4.2 Class hierarchy of A.Sq graphical objects

The user can reverse the most recent drawing, transformation or cut by selecting Undo.

A.Sq's undo is self-reversing rather than regressive. Basil, upon hearing of an undo,

marks or unmarks as undone the most recent step of the action trace; Daedalos ignores an

undone step.

73

Feedback. Apart from the graphical display of objects, A.Sq provides several forms of

graphical feedback. As mentioned above, the cursor icon matches that of the current

drawing tool. Since the user is assumed to be focussed upon the cursor, CurrentPoint is

not explicitly displayed. When it does matter, as the anchor point during rubber-banding,

or as the current location of Basil, its display would be superfluous.

CurrentObject is indicated by displaying its handles filled in black (handles of other

objects are hidden). If the ShowHandles option is selected, handles are shown in outline

whenever the cursor moves near an object. This helps the user locate important points on

objects, such as centers, that are distinguished only by handles. The feedback routine is

run when the processor is idle and at regular intervals during rubber-banding. It invokes

the same proximity search as Pick, but with a slightly larger tolerance and permission to

highlight more than one object; moreover, boxes are selected by extents overlap.

ASq:
an ASq-Class object
(only major components are shown)

EdPanel:
a list of selectable objects in
the user interface; icons,
canvas, handles of objects

I
Canvas:
a Useritem; canvas area
is a selectable Rect

I
ltemData:
also known as
DisplayList,
a list of BPrimitive
objects

Metamouse:
a Basil-Class object;
all data regarding
Basil's sensory state

State Information:

Operation:
a symbol; currently
selected drawing operation
(draw-line or draw-box or
reshape-object)

CurrentPoint:
position selected by mouse

CurrentObject:
A.Sq object selected by
user for transformation

Figure 4.3 A.Sq system data structure

74

Data Structures. Phase 0 A.Sq has line and box primitives only. Figure 4.2 illustrates

the hierarchy of graphical object classes: each subclass has its own methods for rubber-

banding, transforming, displaying and picking. Objects are collected into DisplayList from

which the event manager updates the graphics window, and the Pick and ShowHandlles

routines select objects. An overview of the A.Sq data structure is shown in Figure 4.3;

profiling information for such features as the size of object gravity fields is not shown.

4.3 Basil

Basil 0, the Metamouse implemented for Phase 0, meets the requirements for teaching by

demonstration. Basil 0's sensory feedback and memories follow the Chapter 3

specification, except for the omission of heading.

Data Structure. Basil is an ExperCoxnmonLisp object that contains the following slots:

Activity-state
flag indicating whether Basil is currently awake or asleep; determines his response
to messages from A.Sq (when asleep, responds only to "begin lesson", "end of
lesson" and "wake up")

Icon
pointer to a Basil-Icon object

Application
pointer to A.Sq, so that Basil can access the DisplayList, etc.

Current-position
Basil's reference location at which touch and grasp are sensed; the screen-
coordinates of the snout on Icon

Previous-position
value of Current-Position prior to last movement of Icon, used to compute distance
moved; could use position recorded in postconditions of Previous-action

Touching
list of touch-predicates, naming points of intersection between Basil's snout and
other objects

Grasping
single-element list of touch-predicates describing Basil's relation to CurrentObject;
implemented as a list for uniformity with Touching & Indirectly-Touching

Indirectly-Touching
list of touch-predicates giving relations between object in Grasping and other
objects

75

Action-trace
list of action-steps recorded by Basil

Current-action
action-step node being instantiated by current A.Sq operation

Previous-action
previous value of Current-action, the last node in Action-trace, from which Basil
searches for recurrence of objects

Objects-Created
medium-term memory; list of pointers to A.Sq primitives drawn during teaching
trace

Objects-Transformed
medium-term memory; list of pointers to A.Sq primitives whose handles were
dragged during teaching trace

Body. Basil 0 learns programs that consist of moving, dragging, and drawing. The

restriction to teaching by demonstration makes direct manipulation of the Basil 0 icon

unnecessary. The Basil menu, described above, contains no commands for moving Basil.

Nonetheless, it is desirable to show Basil that his position (the location of his snout) should

not change between certain operations - for example, when drawing a sequence of

connected lines. Moreover, when Basil awakens from a nap, he may need to be told to

grasp what he is touching. Thus, rather than have the teacher try to place the cursor exactly

at Basil's snout, the Basil 0 icon is treated as a moveable button a simpler version of the

original Metamouse device. In keeping wit6 the demonstration paradigm, the method

attached to the icon invokes the drawing pad handler, but uses Basil's snout rather than the

cursor's position as the location.

Basil 0 delimits actions by observing mouse-down (teacher presses mouse-button) and

mouse-up (teacher releases button) events filtered through A.Sq's drawing pad and handle

server routines. Basil interprets a mouse-click event (button pressed and released

immediately) as a move to CurrentPoint. A mouse-drag event (mouse moved while button

held down) is a draw-line, draw-box or drag (transform object) as determined by the

current drawing mode. When informed by the server that an action has commenced, Basil

sets up a new action-step - and if necessary interposes a move step to reach the starting

point:

76

Basil Informed of Action Commencing (Operation, Location)
Previous-action <- Current-action

Current-action <- Create new action-step data structure
Generalize and record Current-action's preconditions

[based on Previous-action's postconditions}

If Operation is not Reshape and Location 9• Current-position
(Basil must move to starting point of operation)
Current-position - Move to Location
Record Action (move) Path and Distance

Generalize and record postconditions of move to Location
Append Current-action to Action-trace
Current-action - Create new action-step data structure
Generalize and record Current-action's preconditions
[based on move's postconditions]

else do nothing (Basil is ready for operation)
return to A.Sq and await completion of Operation

Once the teacher's action (mouse event) is completed the server informs Basil, who updates

his position, touch and grasp feedback and records the operation and its postconditions:

Basil Informed of Action Completed (Operation, Location, Current-Object)
Current-position <- Move to Location
If Current-Object is not nil, grasp it
Record Operation, Path and Distance to Location

Generalize and record postconditions of Current-action
Append Current-action to Action-trace

In Phase 0 the action-step node is appended to an Action-trace which is analyzed and run

through Daedalos after the teaching session; in Phase 1, it will be passed on to Daedalos

immediately.

Sensory Model. The Phase 1 routine to justify and record postconditions mentioned

above would 1) note Basil's current sensory feedback; 2) perform object generalization; 3)

classify feedback to determine whether sufficient constraint has been given to explain the

action's parameters; and, if need be, 4) ask for justification. The Phase 0 routine performs

step 1 only; filter programs run after the interactive process perform steps 2 ... 4. The

sensory capabilities implemented in Basil 0 are exactly those described in Chapter 3, except

that heading is omitted since Basil does not rotate.

Touch relations are represented as a pair of Object-Info records. An Object-Info record

associates object and part information with a variable-reference:

77

Address
pointer to the object, an A.Sq primitive in DisplayList

Part-Name
name of part of object in the relation

Part
pointer to the part's data structure, if any (nil if Part-Name is "line-segment")

Variable
pointer to the variable-definition associated with this object; derived from a search
through Basil's memories

Valuation
function that instantiates Variable (ie. sets Address) or leaves it unchanged

Basil 0 observes touch relations between itself and objects in DisplayList, and records

actual values for each Address, Part-Name and Part. A filter program to induce variables,

described in §4.5.1, sets Variable and Valuation according to the rules of generalization.

Since Phase 0 lacks a constraint solver, Valuation merely names an operation that the

researcher/user must perform manually in order to find a value for Object (see §4.4).

Recall the three types of touch relations defined in §3.2.2 - point-on-point, point-on-

line, and line-crosses-line - and the rule that only the most specific touches are recorded.

The Find-Touches routine looks for touches of each type in order. Although an object's

gravity field is implemented by enlarging its bounding box, there is no need to extend line

segments, since end-points lie within handles. Moreover, collinearity need not be checked,

since overlapping line segments will have handle-handle or handle-segment touches.

4.4 Daedalos

The Daedalos learning algorithm implemented for Phase 0 processes an action trace

translated into textual form by the researcher. It matches steps in the action trace to steps in

the program under construction, without a representation of particular graphical objects.

Generalization matching is omitted from Phase 0; steps are matched by syntactic identity.

Despite these limitations, a session with Daedalos 0 can be used to evaluate Basil's

generalization of objects by creating variables and of conditions by dropping terms. Of

course, a session with Daedalos also tests the learning algorithm itself.

Daedalos elicits the action trace from the teacher step by step. An action-step data

structure is a list of three items (precondition, operation, postcondition). The internal

78

syntax of each item does not matter provided it is consistent with items against which it

may be matched. Daedalos prints predictions and asks for confirmation.

The learning algorithm differs from the original design only in that OptionsLimit and

LinkAttemptsLimit are fixed at 1; ConfirmsLink is still variable. It is coded in

ExperCommonLisp. An object of class PgmNode represents a program step or node in the

directed graph. The node comprises:

Action-info
pointer to the action-step data structure

Predecessors
list of PgniNodes whose Successors lists include this node

Successors
list of PgmNodes whose Predecessors lists include this node

Mark
flag indicating whether this node has been visited during a given search of the
graph; reset before each invocation of Find-and-confirm-join (see §3.4.2)

The program graph is initialized to a connected pair of dummy "Start" and "Stop"

PginNodes. A sequence is created by inserting new nodes after Start and before Stop. A

branch is opened by appending a new node to the Successors of LastAcceptedStep. A

branch or loop is closed by appending the matched step (called the "join step") whose

successors were successfully predicted to the Successors of LastAcceptedStep.

Recall from §3.4.2 that the search for a join step gives priority to nodes preceding and

near LastAcceptedStep (Daedalos is biased towards hierarchical task decomposition) but

potentially selects from the entire graph. Ideally the Find-and-confirm-join function would

initiate a bounded search along chains of LastAcceptedStep's predecessors, followed by a

similar search along successors, followed by a total graph search. The Phase 0 version

crudely approximates this by recursively searching predecessors, followed by successors.

It thus gives priority to "non-local" connections over nodes near to but succeeding

LastAcceptedStep. This should not matter since the graphs of programs for tasks given in

Chapter 1 are small and offer few matching candidates (typically no more than 1) -

especially since Phase 0 matching involves no generalization.

79

4.5 Generalization

In order to abstract traces into program graphs, the Phase 0 system performs two kinds of

generalization on individual actions: 1) variables replace individual objects; 2) constraints

are dropped from pre- and postconditions. These are described in §3.3. Since Phase 0

does not support matching by generalization in Find-and-confirm-join, actions are

generalized by filter programs that process the entire action trace before it is handed on to

Daedalos. The first filter program induces variables; the second classifies constraints and

generalizes pre- and postconditions. The filters must run in this order since the occurrence

of variables affects the classification of constraints.

4.5.1 Variables

The variable filter finds multiple occurrences of a given object in the action trace and

associates them with common variables according to the rules outlined in §3.3.1. It

searches recent steps of the action trace and the list of objects created by Basil. It sets the

fields of Object-info records in touch relations (see §4.3 : Sensory Model) that correspond

to variable-references. Variable-definitions are maintained in a global symbol table. The

implementation introduces one new valuation function, Transformed, to facilitate

investigation of the usefulness of remembering transformed objects (see §3.2.3).

Induce-variables. The filter algorithm is given below. Note that all the information

needed to construct the memories of objects created and transformed is contained in the

trace, hence the system need not produce these beforehand.

Induce-variables (Trace)
set up empty Created and Transformed lists
for each step S in Trace

for each touch relation T in postcondition of S
for each object X in T

Get-variable-&-valuation-fn for X,
searching Traôe, Created and Transformed

Get-variable-&-valuation-fn. This routine searches (and constructs) memories to

identify recurrences of objects and variables. The Action-Trace contains variable-

references, Created contains. pointers to variable-definitions, and Transformed contains

object addresses. In keeping with the rules for inducing variables, Action-Trace is

searched first, followed by Created and Transformed. If the current action creates an

80

object, no search is performed and a new variable is defined. If the search fails, a new

variable is defined and a new item added to Transformed if appropriate. Object is an

Object-info record.

Get-variable-&-valuation-fn (Object, Action-Trace, Created, Transformed)
if Current-Step. Operator is Draw-box or Draw-line

Object.Variable - New-variable in Created list, bound to Object
Object.Valuation <- "Create"

else if V <- Variable-found in Action-Trace bound to Object.Address is not null
Object.Variable - V
Object.Valuation - "Same"

else if Object.Address occurs as binding of some variable V in Created
Object.Variable - V
Object.Valuation - "Same"

else if Object.Address occurs in Transformed list

Object.Variable <- "Trans" (don't individually name)
• Object.Selector - "Transformed"

otherwise (no previous occurrence of Object found)
Object.Variable <- New-variable bound to Object
Object.Valuation <- "Find"

[remember any object that has been transformed)
if Current-Step.Operator is Drag

append Object.Address to Transformed

Variable-found. The routine to search back through the trace for a previous occurrence

is governed by a parameter LookbackLimit, the maximum number of steps to be examined

(conceptually, the range of Basil's short-term memory). It checks each Object-Info record

in a given Trace step's postcondition. Note that the search begins with Current-Step; this

ensures that all occurrences of an object in a given step are associated with the same

variable.

Variable-occurrence (Trace, Object)
V - null

for lookback - 0 through LookbackLimit, until found is signalled
SearchStep - Current-Step - lookback

if Object.Address occurs as binding of some variable V in SearchStep
signal found

return V

New-variable. When no previous occurrence exists, a new variable is created and

bound to the current object. The initial binding in no way restricts future bindings. The

81

rules of touch-relation matching guarantee that a variable is always bound to objects of the

same type (Box or Line).

4.5.2 Constraints

Recall that a condition is simply a conjunction of constraint predicates generalized from

Basil's sensory feedback. Given a trace in which conditions have already been generalized

by introducing variables, a second filter generalizes them further by dropping predicates.

The decision regarding which predicates to drop is made by classifying them according to

their ability to distinguish a situation (precondition) or constrain the parameters of the

operation they govern (postcondition). The classes were described in §3.3.2. The

mappings of these classes onto the decision to keep or discard constitute generalization

heuristics. The filter permits different mappings for experimentation with heuristics.

The constraint generalization filter considers each trace step in turn. Precondition

predicates and their classification are inherited from the previous step's postcondition (the

first step has no precondition), but the discard heuristic is different.

Postconditions are simplified by discarding trivially uninformative predicates, and

generalized by ignoring others that may or may not be informative. The postcondition

generalizer rationalizes the selection of predicates to achieve sufficient constraint before

attempting to generalize.

The hierarchy of classes to which constraint predicates are assigned is based on the

model in §3.3.2 and is given below:

1. Effected
a. Determining
b. Strong
c. Weak
d. Crossing

2. Unchanged

3. Overdetermined
a. Strong
b. Weak
c. Crossing
d. Sustained
e. Trivial

82

4. Teacher-given
a. Input
b. Constant

The postcondition filter classifies and reclassifies predicates, checks for sufficient

justification and finally discards some predicates as required by the generalization heuristics

currently in force. If touch predicates do not provide sufficient justification, the filter asks

the teacher to reclassify position and distance predicates. If a determining constraint is

resent, other constraints are reclassified as overdetermined. The algorithm follows:

Generalize-Postcondition (PostCond, PreCond, Operator, Path, Heuristics)
{for class definitions see below)
Set-Class of PostCond position, distance and path as Trivial
Classify PostCond touch predicates into subclasses of Effected or Unchanged

using knowledge about Operator and PreCond - to - PostCond transitions
if any item is in class Determining then

Reclassify items in Effected or Unchanged to Overdetermined
if Sufficient-justification of Operator,

based on classification of PostCond touch predicates, then
if no item is Determining, Reclassify path as Weak
Discard some Overdetermined predicates according to Heuristics

else if Reclassify position or distance to class Teacher-given succeeds
Discard all other PostCond predicates

otherwise
signal failure to justify action

Classify. Initially, all touch predicates are assigned to subclasses of Effected and

Sustained; all other predicates are assigned to Trivial on the assumption that touch

constraints will prove sufficient. The rules for selecting a subclass of Effected or

Sustained are given below. The main features of interest are the type of relation (point-to-

point, point-on-line, line-crosses-line), its relation to Basil (grasp, direct or indirect touch),

and the role the object plays, as expressed in the valuation function of its variable. T is the

touch relation to be classified; U is some other touch relation; P and Q are Object-Info
records.

Trivial
T=grasp (Basil: P)
and Operation is one of (Draw-line, Draw-box}
le. Basil is grasping the object just drawn

83

Determining
T is one of (grasp (Basil : P), touch (Basil P)}
and P.Part is a handle
and P.Valuation is one of (Created, Same)
and T fails tests for Trivial and Unchanged
ie. Basil is moving to an object already identified to him

or
T = touch (P: Q)
and grasp (Basil: P)
and P.Part is a handle and Q.Part is a handle
and Q.Valuation is one of (Created, Same)
ie. Basil moves to achieve point-to-point touch between the object in grasp and
another already identified to him

Strong
T is one of { grasp (Basil : P), touch (Basil: P))
and P.Part is a handle
and P.Valuation = "Find"
ie. Basil is moving to a handle of an object found by solving constraints

or
T = touch (P: Q)
and grasp (Basil: P)
and P.Part is a handle and Q.Part is a line-segment
and Q.Valuation is one of { Created, Same)
ie. Basil moves to achieve point-to-line touch between the object in grasp and
another already identified to him

Weak
T is one of { grasp (Basil : P), touch (Basil : P)}
and P.Part is a line-segment
ie. Basil is moving to a line

or
T = touch (P: O_)
and grasp (Basil: P)
and P.Part is a handle and Q.Part is a line-segment
and Q.Valuation = "Find"
ie. Basil moves to achieve point-to-line touch between the object in grasp and some
other object found by solving constraints

Crossing
T = touch (P: Q)
and P.Part is a line-segment
and Q.Part is a line-segment
ie. Basil senses an indirect touch between lines or edges of boxes

Unchanged
T matches some U in precondition
ie. relation has not significantly changed as a result of the action

84

Overdetermined
class of T is not Determining
and 2 U in current precondition whose class is Determining
(select subclass of Overdetermined that matches T's previous classification)
ie. a determining constraint has been found; all others are reclassWed as
overdetermined

Sufficient-justification. After classifying all touch constraints, the generalization filter

checks for sufficient constraint to enable determination of action parameters. If any

predicates of classes Determining, Strong or Weak are present, the action is justified.

Otherwise the program asks the teacher (as Basil would do) for a reclassification of

position or distance as Input or Constant; the touch predicates are all reclassified as

Overdetermined.

If there is sufficient justification in touch predicates but none is Determining, path is

reclassified as Weak so that the constraint solver could use this to further constrain the

search for contacts.

Discard. The default generalization heuristic for Phase 0, represented as a list of classes

to be ignored, discards all Overdetermined items. Better modeling may be achieved by

retaining some Overdetermined constraints, such as Sustained; in any case all Trivial items

should be discarded.

Preconditions. Precondition predicates inherit the classification of the previous

corresponding postconditions. Phase 0 provides a separate generalization heuristic for

preconditions, but currently it covers the same classes as the postcondition heuristic. When

predicting actions, Daedalos ignores preconditions altogether if postconditions are

attainable. Should the teacher reject the prediction, the preconditions are marked

"necessary" and cannot be generalized again.

Path. A path constraint augments non-determining touch constraints. It is useful however

to generalize path somewhat when matching and predicting actions. Currently Basil

distinguishes 8 paths along octant boundaries in 2-D space. The boundaries themselves

constitute the four axes { vertical, horizontal, SWNE, SENW}. A pair of opposite but

(roughly) collinear paths may be generalized to the nearest axis.

85

4.6 A Worked Example

A teaching session of the box-to-line task was presented in Chapter 1. The series of

figures below illustrate the generalization of each step in the action trace by the filter

programs. The trace is one of those gathered for use in the studies described in Chapter 5.

Daedalos induced the program graph illustrated in Figure 3.4.

The number at the upper left of each frame corresponds to a step number in Figure 3.4.

At the upper right is a description of the teacher's and Basil's actions at that step. Below

each frame is a description of the action-step record. Sensory feedback is shown as

recorded after generalization. Feedback items are of the form (sense data class), where

sense is the type of feedback (eg. touch), data is the generalization of Basil's observation,

and class, printed in italics, is the constraint classification. Feedback items ignored due to

generalization are in plain type; items considered relevant are in bold. Variable-references

for each step are listed below the postconditions. Each entry is of the form-(variable name:

valuation function).

Note that the frames are not scaled-down snapshots of the Macintosh display: the real

drawing pad is somewhat larger in relation to Basil. The printed representation of touch

relations of the form "grasp (Basil: Obj.Part)" has been abbreviated to "grasp (Obj.part)",

Step 0. The teacher initiates the lesson and Basil appears at his standard position at the

left of the display. Basil records no actioiThrfeedbick at this point.

0 Starting Position;
Teacher has selected "Time for a Lesson"
from the Basil menu

86

Steps 1, 2. The teacher draws the guide-line. Both end-points are classified by the

teacher as inputs. In each case the generalization filter detects the lack of tactile constraint

and asks the teacher to explain Basil's current position. Note that step 2's preconditions

are inherited from step l's postconditions: this of course does not mean that Basil would

expect another input position, but that he should be at the position established by step 1—

a trivial precondition but potentially useful to prevent incorrect formation of a loop.

Preconditions

Operation

Path

Postconditions

2.

Preconditions

Operation

Path

Postconditions

Variables

Teacher begins line stroke; Basil moves to
position, asks why; Teacher answers that
point is a parameter

none

Move

overdetermined

position input

Teacher draws guide line; Basil requests
rationale for endpt; Teacher calls it input
parameter

= Step 1 Postconditions

Draw-line

overdetermined

position input

grasp (G.endpt) trivial

G : create

87

Steps 3, 4. The teacher draws the sweep-line. The only difference between this and the

guide-line, as far as Basil is concerned, is that its end-points are constant.

3.

4.

Teacher places anchor pt for sweep line;
Basil asks rationale; Teacher replies point is
constant

Preconditions : = Step 2 Postconditions

Operation : Move

Path : overdeterrnineci

Postconditions position constant

/ S

Preconditions

Operation

Path

Postconditions

Variable

Teacher draws sweep line; Basil requests
rationale; endpt is constant

= Step 3 Postconditions

Draw-line

overdeterrained

position constant

grasp (S . endpt) trivial
S : create

88

Steps 5, 6. The teacher grasps the sweep-line at its mid-point and drags it upwards until

contact with a box. Since the sweep-line was created by Basil in the previous step, it is a

known object. Moreover the move to grasp its mid-point establishes a point-to-point touch

relation. Therefore grasp(S.midpt) is determining and all other postconditions are

overridden. In step 6 the drag to establish contact between the sweep-line and a box has

only weak point-to-line constraints. Hence the upward path is reclassified as a weak

constraint.

5-

Preconditions

Operation

Path

Postconditions

Variables

6.

Preconditions

Operation

Path

Postconditions

Variables

Teacher begins dragging S; Basil follows

Step 4 Postconditions

Move

overcietermineci

position overdeterrnined

grasp (S . xnid) determining

S : from step -1 (i.e., previous step)

Teacher drags S to contact a box

= Step 5 Postconditions
Drag

upwards weak

position overdetermined

grasp (S . mid) trivial

touch (S . line: B . bottom. left)

touch (S . line: B . bottom.mid)

touch (S. line: B . bottom. right)

touch(S.line: G.line) crossing

B : found by solver

S : from step -1

G : from step -4

weak

weak

weak

89

Steps 7, 8. The teacher grasps the box by its center and drags it horizontally to the

guide-line. Since the box was encountered in the previous step, grasping its center

determines the move in step 7. The contact between box and guideline established by step

8 is only point-to-line, so the drag operation has only weak constraints; hence the rightward

path is promoted to weak.

7.

Preconditions

Operation

Path

Postconditions

Variables

8.

Preconditions

Operation

Path

Postconditions

Variables

Teacher picks box, Basil follows

= Step 6 Postconditions

Move

overdetermined

position overdetermined

grasp (B .mid) determining

touch(S.line: B.bottom.left)

touch(S.line: B.bottom.mid)

touch(S.line: B . bottom. right)

B : from step -1

S : from step -1

overdetermined

overdetermined

overdetermined

= Step 7 Postconditions

Drag

rightwards weak

position overdetermined

grasp (B . mid) trivial

touch(S.line : B.bot) unchanged

touch(B.br : G.line) weak

B : from step -1

G from step -2

S : from step -1

90

Steps 9, 10. The teacher returns to the sweep-line and drags it up to the next box. Step

9 patently repeats step 5. The preconditions at step 10 differ from those at step 6; Daedalos

ignores them and correctly predicts step 10 as a repeat of step 6.

9- DAEDALOS: MATCH 5

Teacher picks 8; Basil follows

Preconditions from Step 5, generalized
Operation Move

Path overcletermined

Postconditions position overdetermined

grasp(S.itiid) determining

touch(S.line: B.bottom.left)

touch(S.line: B . bottom.mid)

touch(S.line: B . bottom. right)

touch (B . bottom. right: G . line)
Variables : S : from step -1

B : from step -1

G : from step -1

10

Preconditions

Operation

Path

Poatcondit ions

Variables

unchanged

unchanged

unchanged

unchanged

DAEDALOS: GENERALIZE 6, PREDICT

Basil predicts drag S up to a box;
Teacher accepts

from Step 6, generalized

touch(S.line: B.bottom.left) optional

touch(S.line: B . bottom.mid) optional

touch(S.line: B.bottom.right) optional

touch(S.line: G.line) optional

as in Step 6
H

H

it

91

Steps 11, 12. Daedalos correctly predicts that the box encountered at step 10 is grasped

and dragged to the guide-line. In order to predict step 12 the path must be generalized to

"horizontal." Note that step 12 establishes a point-to-point contact between the box's

bottom-right corner and the guide-line's mid-point. When predicting actions Daedalos is

concerned only with establishing the constraints given in the program step; additional

constraints that happen to be established are ignored. In the figures here they are marked

"incidental."

11.

Preconditions

Operation

Path

Postconditions

Variables

12.

in 7

DAEDALOS: PREDICT 7

Basil predicts pick box

DAEDALOS: GENERALIZE 8, PREDIbT

Basil predicts drag box to G, contact
at lower right

Preconditions : as in 8
Operations : VT

Path : horizontal generalized
Postcondjtjons : as in 8

touch (B . mid. right: G.midpt) incidental
Variables : as in 8

92

Steps 13 ... 16. Daedalos correctly predicts the next iteration through step 16.

13. DAEDALOS: PREDICT

Basil predicts pick S midpf

Preconditions : as in 5
Operations : 11

Path

Postconditions as in 5, and

touch(B.mid.right: G.midpt) incidental
Variables : as in 5

'I

Step 17. The teacher accepts Daedalos' prediction that Basil re-grasps the sweep-line as

in step 5. But when Daedalos tries to predict another repeat of step 6, the constraint solver

(viz, the teacher) cannot find a box. The prediction fails and Daedalos asks the teacher for

the next action.

17. DAEDALOS: PREDICT 5

Basil predicts pick S at midpt

93

Steps 18 ... 20. The teacher deletes the sweep- and guide-lines. The cut operation need

not have any postconditions but this exception is not modelled in the current version. At

step 19 Basil encountered a box remembered only as "transformed." The window on

Recent-Steps, set to 5, prevented the variable filter from finding a previous occurrence of

this box in the trace.

18..

Preconditions

Basil unable to perform "drag up to
some box" as in step 7; Teacher
resumes control; deletes S

asin7, and

unable to satisfy Postconditions of 7

Operation : Cut

Path irrelevant

Postconditions position overdetermined

touch (Basil.snout: B.bottom) weak
Variable : B : from step -1

19.. Teacher picks G at midpt

Preconditions : = Step 18 Postconditions

Operation : Move

Path : overdetermined

Postconditions : position overdetermined

grasp (G.xnidpt) determining-

touch (K.mid.right: G.midpt) strong

touch(K.bottom.right: G.line) weak
Variables : K : previously transformed

G : from step -2

94

20. Teacher deletes G

Preconditions : = Step 19 Postconditions

Operations : Cut

Path : irrelevant

Postconditions : position trivial

Variables G : from step -1

Step 21. The teacher selects "End of Lesson" from the Basil menu. Basil returns to his

standard position. Daedalos prints out the program corresponding to Figure 3.4.

21. End of Lesson.

95

Chapter 5

Three Empirical Studies

A system for programming by example is of course an open system - it has a teacher.

Moreover it is in a real sense non-deterministic. The teacher provides three kinds of inputs:

actions, input data when requested, and responses to predictions. Because the system may

not be able to model every decision the teacher makes, it may find that the teacher disagrees

with an apparently determined state transition. Therefore the system's performance cannot

be predicted solely through analysis of its structure - it must be studied and assessed

empirically.

Given an incomplete pilot implementation, bow can we test its performance in

conjunction with human teachers? This chapter describes three empirical studies on

segregated components and abilities of the system. From these the performance of an

actual system can be projected not with certainty but at least credibly. These

experiments constitute a feasibility study of the integrated system. Chapter 6 expands

further on the conclusions that can be drawn.

The first study measures how quickly potential users learn to predict Basil's sensory

responses and behavior, providing some indication of the teaching metaphor's

comprehensibility. The second establishes the system's ability to induce procedures from

graphical traces (rather than contrived symbolic input). The third compares learning

performance with and without the teacher's criticism of predictions; this isolates an

important element of interaction.

5.1 The Metamouse Metaphor

A critical aspect of a learning system is that the teacher understand its behavior [MacDonald

88]. Users of the system are given a metaphor (Basil the Metamouse) to help their

understanding. Its suitability, measured as the ability of teachers to quickly learn to predict

its behavior, can be studied apart from a working system. The pilot experiment described

here, though not sufficiently controlled or naturalistic to be conclusive, provides evidence

that the metaphor is easy to understand.

96

A number of potential users were given the brief description of Basil shown in Figure

1.7 and then asked to work through a self-study guide, available from the author. Typical

questions depict a situation and ask the subject to predict Basil's response. Scores on each

set of questions were recorded separately so that progress could be measured. The study

guide provides correct answers after each set, to simulate system feedback. Subjects were

asked not to refer back to previous questions, however.

The study guide contains approximately 55 questions, of several types:

• two graphical situations depicted (Basil in contact with objects); subject asked
whether Basil matches these situations to each other (approx. 30 questions)

• two actions depicted, showing situations before and after; subject asked whether
Basil matches these actions (approx. 20 questions)

• a sequence of actions; subject asked to differentiate those performed by teacher from
those performed by Basil (1 question)

• a graphical task is specified; subject asked to create an algorithm that Basil could
learn (3 questions)

The questions are arranged in the order given above, so that difficulty tends to increase as

subjects become more experienced. The solution to each question is presented immediately

after the subject has completed it.

The pilot experiment was run with five volunteer subjects, all computer scientists. The

first subject, 'a Metamouse "expert," was given a preliminary version without an answer

key. The data for this subject were discarded, but editing suggestions were incorporated

into the next version of the questionnaire, given to the remaining subjects, who did not

have prior knowledge of the workings of Metamouse. All were allowed to work at their

own pace at a time of their choosing.

The first three groups of questions were graded for use in this study. Due to bad

photoduplication, some questions had to be discounted; hence the total number of questions

varies amongst subjects. Subjects' understanding of Metamouse at any point is measured

as the ratio of the number of questions correctly answered to the total questions counted.

This ratio is plotted for three subjects in Figure 5.1; perfect performance lies along the line

of slope 1. An increase in slope represents improvement in performance.

97

Perfect Score

• Subject 1

• Subject 2

A Subject 3

Potential Cumulative Score

Figure 5.1 Performance of three typical subjects on Basil questionnaire

Recall that questions were presented in order of increasing difficulty. If the metaphor

were unlearnable, one would expect to see a steady decline in performance (ever-decreasing

slope in the graph). If difficult to understand, one would expect numerous errors in the

early sets of questions, with at best a slow improvement. But if completely obvious, one

would expect near-perfect performance from the beginning with no degradation. The actual

plots maintain a fairly steady slope with some inflections. They show near-perfect

performance initially, with occasional mistakes and difficult spots after which near-perfect

performance is restored. This suggests that the "superficial" aspects of the metaphor -

namely the rules that distinguish parts of objects and types of direct touch - are easily

understood, while deeper aspects - the rules that govern action-matching and prediction

- are less well understood but learnable.

A number of methodological deficiencies prohibit stronger conclusions from this

experiment. Most of these problems are discussed in Chapter 6, but one particularly thorny

issue is this. All of the subjects commented that a number of the questions were difficult.

Some difficulties were due to bad photoduplication and have been eliminated from the data.

Some clearly show in the data. Others however have been masked if the subjects thought

98

through the problems or luckily guessed. Since the number of questions in each sample set

is small, such false positive data could seriously mask the degree of difficulty one is trying

to measure. This lessens the significance of the results and the utility of a (necessarily

small) questionnaire as opposed to real interaction.

5.2 Inducing Procedures

Consider the problem of testing the ability of a system that has no real performance

component (in this case a constraint solver) to express what it has learned. The system can

however express itself textually. Because its learning components (which select variables,

generalize constraint descriptions and induce control structures) process symbolic data

derived from the teacher's graphical input, a suitable way of assessing the system's ability

to learn is to collect graphical traces and process their symbolic descriptions. Predictions

given textually can be compared with what the teacher actually did, or with expectations

based on a knowledge of the task. Performance of graphical actions through a constraint

solver is not strictly necessary.

The pilot study tested the system's ability to generate a procedure that could produce

correct sequences of actions covering the different situations given in the traces, but not

necessarily matching the traces exactly, since they contained coincidental events, missteps

and irrelevant variances in order of execution.

The system's goal is to learn procedures that are general (not complete), accurate (not

perfectly correct) and minimally complex (not optimal). Generality achieved after each

lesson was measured in terms of the ratio of actions correctly predicted to the total

performed collectively by the system and the teacher in each trace. This ratio varied with

the complexity of situations encountered in each lesson. Hence no normalization is useful;

instead we get a rough measure of the rate at which Basil learns. Accuracy was measured

as the ratio of accepted to rejected predictions. Complexity was measured as the number of

edges in the program graph, which could be compared to the number in an "ideal" graph.

The figures obtained for each lesson are given in Table 5.1.

99

Task Steps Performed in Task Edges in Program Graph
Trace # Total by Basil Ratio Rejected Total Growth

Box-to-Line 1 20 8 0.4 0 13 13
2 24 24 1 0 13 0
3 20 20 1 0 13 0

Picket Fence 1 35 12 0.34 5 22 22
2 27 27 1 0 22 0

Connectivity 1 6 0 0 0 7 7
2 6 6 1 0 7 0
3 6 6 1 0 7 0
4 6 6 1 0 7 0
5* 4 1 0.25 2 11 4
6 4 4 1 0 11 0
7 6 6 1 0 11 0
8 6 6 1 0 11 0

* variant of task: move one end-point rather than entire line

Table 5.1 Learning system performance

The researcher performed several different traces of three tasks in A.Sq with Basil

activated. These were run through the variable and constraint generalization fliers, giving

augmented traces like that shown at the end of Chapter 4. The researcher fed the traces of

each task into the Daedalos program in the order they were produced, to simulate

incremental learning from multiple lessons. The researcher classified Daedalos' textual

predictions as correct if the action and its conditions matched what his ideal model of the

algorithm would have generated.

5.2.1 Box-to-Line

The first task was "box-to-line" as described in Chapters 1 and 4. The three traces

presented different orientations of the guide-line and different arrangements and numbers of

boxes. These variations were covered by generalization inherent in Basil's sensory model,

by explicit generalization of constraints, and by the induction of a loop. The need to

generalize a rightward path to a horizontal one could not be detected without a constraint

solver, so this one generalization was done manually. As a result, Daedalos predicted the

second and all subsequent iterations of the loop. Termination of the loop by failure could

not be detected without a constraint solver, so the teacher simply rejected the last move of

the sweep-line; this was not counted as a faulty prediction.

100

The first trace contained a coincidental contact when processing the third box. The

sweep-line's mid-point touched the guide-line; hence Basil observed that the box was

moved until its lower-right corner touched. the mid-point. This overlapping of handles led

to a "misstep" in which the teacher failed to pick the mid-point on the first try and had to

repeat the pick before advancing the sweep-line. This "noise" in the trace did not trouble

Daedalos, however. Since it had already learned the correct sequence to select a box, move

it and advance the sweep-line, it predicted the same actions in this case, which the teacher

accepted. The misstep was eliminated; hence the execution trace produced by the teacher

and Daedalos working together was shorter than that produced by the teacher alone (see

Table 5.1).

After the first lesson Daedalos was able to predict all actions in subsequent

performances of the task. The learning system became competent at the "box-to-line" task

as quickly as it could have. The program graph was judged to be minimal in complexity

for this algorithm.

5.2.2 Picket Fence

Recall the "Picket Fence" task from Chapter 1. Boxes randomly scattered about the screen

are moved onto a horizontal line such that the gap between them is constant. The algorithm

uses a vertical sweep-line that moves left to right to select boxes. The first box is moved

straight down to the guide-line; the gap-line is then attached to its right edge. Subsequent

boxes are moved so that their bottom lies on the guide-line and their left edge touches the

gap-line. The first point of the guide-line and the length of the gap-line are inputs.

Judging by the program size given in Table 5.1, this task was considerably more

complex than box-to-line. It afforded more opportunity to vary the order of actions yet still

accomplish the task. Boxes were translated to their final position along arbitrary directions,

establishing the usefulness of generalizing path. Moreover, numerous coincidental contacts

occurred. In particular, the sweep-line or the current box could be moved into contact with

a box already transformed; this facilitated testing the potential usefulness of the

"TransfOrmed" attribute (see §3.2.3).

Despite the increase in complexity, Daedalos was able to construct a small program

(though larger than the ideal) and was able to predict almost 1/3 of the actions in the first

lesson, and all of the second.

101

Five of Daedalos' predictions during the first lesson were rejected: 1) that the gap-line

would be of constant length like the guide-line (predicted because both have first points as

inputs); 2) that the sweep-line's first point would be input (predicted because the input of

first points of gap- and guide-lines formed a loop); 3) that the second box would be moved

straight down to the guide-line; 4) that the third box would be grasped before the gap-line

was advanced to the right of the second box (a bit of "bad teaching" caused this

confusion!); and 5) in a related error that the sweep-line would be grasped again even

though it was already in place. Once the correct actions were taught, Daedalos was able to

run through the second trace without error. It is interesting to note that if Daedalos were

required to match 2 steps before attempting to predict (instead of 1, the current setting of

ConflrmsLink), none of these erroneous predictions would have been made.

5.2.3 Connectivity

The third procedure maintained a connectivity constraint: given that the user has moved

one segment of a polyline, the program re-connects its vertex-mates as shown in Figure

5.2. The basic program contains six steps, two of which are performed by the user (le.

are inputs) to move the target segment.

1/
a. Before b. Input: user moves

one edge

Z7
C. Final result

Figure 5.2 Connectivity task

Daedalos was presented with 8 traces of this procedure. Traces 1-4 and 6-8 presented

different positionings of the target segment that resulted in coincidental contacts, and varied

the order in which the teacher re-connected vertex-mates. The use of variables and

constraint generalization easily eliminated these variances, so that Daedalos was predicting

the entire task from the second trace on.

102

Trace 5 introduced a variant in which the user moved only one end-point of the target

segment. Hence the user rejected Daedalos' prediction to grasp its mid-point and instead

grasped its right end-point. The user also rejected Daedalos' prediction to transform its left

vertex-mate (a harmless but also useless action). After learning this variant, Daedalos was

able to predict either sequence in subsequent traces, the user's first input action (grasping

either the mid-point or the end-point) being the trigger for the rest of the sequence.

It is most important to note that Basil did not classify the first grasping action as an

input, but as a scan rightwards to some mid-point. Basil's discrete recording of actions

precludes his observing that other lines were skipped.

Results of the tests above indicate that the system is capable of learning procedures. It

is clear that for the most part the generalization model captures the essential constraints and

structure of the tasks performed. The effectiveness of generalization was not quantified

through controlled experiments but some work towards this is presented in the next

section.

5.3 Learning without Prediction

Recall that eager prediction - to be precise the interleaving of performance with learning

from the earliest possible moment - was adopted as a means of helping the teacher meet

the correctness and minimal activity felicity conditions. Suppose this were eliminated; that

is, suppose that performance were delayed until some number of complete traces had been

integrated into a program. If eager prediction is useful, one would expect this to cause the

learning system to produce a more complicated and possibly incorrect program.

Such an experiment was performed. Daedalos was presented with the same lesson

traces used in the tests described in Section 5.2. This time, however, the researcher

assented to a prediction only if it exactly matched the next step of the trace. In effect

Daedalos was operating as a passive learner, matching its knowledge to observations rather

than generating examples for the teacher to classify. Table 5.2 compares the two modes of

learning (called "passive" and "interactive") with respect to efficiency of learning and

quality of results. Efficiency is the rate at which the learning system becomes competent in

a task; the measurement is based on the number of mismatches (between program and trace

103

steps) or rejected predictions. For the present, quality is synonymous with simplicity,

measured by the number of edges in the program graph.

Task Steps in Trace Edges in State Graph

Trace # Passive Interactive Passive Interactive
Box-to-Line 1 21 20 18 13

2 24 24 28 13
3 20 20 33 13

Picket Fence 1 35 35 25 22
2 29 27 32 22

Connectivity 1 6 6 - 7 7
2 6 6 10 7
3 6 6 10 7
4 6 6 10 7
5* 4 4 12 11
6 4 4 12 11
7 6 6 14 11
8 6 6 16 11

variant of task: move one end-point rather than entire line

Table 5.2. Performance data for passive vs interactive modes.

Clearly, the interactive mode learns faster and produces simpler programs. If we

examine the actual mismatches, we find, not surprisingly, that coincidences, missteps and

variant sequences are mostly to blame. The teacher has failed to meet the correctness and

minimal activity felicity conditions when generating traces, and the system's built-in

generalization capabilities are inadequate to filter out the noise. If the system's

generalization capabilities (for matching program steps with observed actions) were

enhanced, we might expect the passive mode to do nearly as well as the interactive, at

(perhaps greatly) increased cost in computation. Eager prediction, on the other hand,

makes correctness and invariance default conditions and changes the teacher's role to that

of an informant, so that variance can be introduced only deliberately.

This preliminary experiment therefore establishes that eager prediction does

significantly reduce the amount of effort the system must expend to become competent at a

task, by helping the teacher meet the felicity conditions.

104

Chapter 6

What Have We Learned from Metamouse?

Recall the thesis stated in Chapter 1, Section 4:

End-user programming for computer graphics should be graphical
and demonstrative. A practical programming system must limit the
complexity of functional components to be induced, by analyzing
traces and by requiring that the user employ graphically constructive
techniques to satisfy simple felicity conditions. These requirements
can be met by intensive interaction between user and learning system
through a device, the Metamouse, that embodies the teaching
metaphor and thereby enforces and helps the user to satisfy the
felicity conditions.

Does the actual system (ie. the design and its pilot implementation) speak for or against this

thesis? More importantly, does it clarify the meaning of the phrases "practical

programming system," "complexity of functional components," "analyzing traces,"

"intensive interaction," and "teaching metaphor"? In this chapter it is argued that the

system supports the thesis but does not place it entirely beyond doubt. The vague terms

have taken on specific meaning through the implementation.

The chapter begins by establishing the limits of the project as it stands. Sections 6.2

and 6.3 assess key aspects of the system: the Metamouse metaphor; the generalization of

traces and induction of programs; and the use of interaction. Sections 6.4 and 6.5 then

reconsider the system as a whole, first in relation to the thesis and second in relation to

more general problems. Shortcomings and ideas for further work are summarized.

Finally, Section 6.6 summarizes the work, isolating its most significant aspects and

indicating the nature of its contribution to knowledge.

6.1 Project Status

The project work related to this thesis comprises four parts: the development of design

principles for a graphical programming system (Chapter 2); a design based on these

principles (Chapter 3); a preliminary implementation (Chapter 4); and a series of

experiments to evaluate the design (Chapter 5). The current implementation is as described

in Chapter 4: a simple drawing program; a Metamouse icon that follows the teacher's

105

actions and provides sensory feedback; the recording of traces of actions and Basil's

sensory responses; a program to identify variables; a program to classify sensory events

according to a hierarchy of constraints; and a program to induce program structure. This

segregated system was used in experiments to show whether the system could work:

action traces were collected and filtered through the generalization programs, resulting in

symbolic program graphs (Chapter 5).

A phased implementation of the constraint solver is underway. When the first phase is

complete, the system will be integrated so that studies with user populations can be

conducted. The segregated system will continue to be of use to examine learning and

generalization in detail.

6.2 Empirical Studies.

Chapter 5 describes three assessment studies on the segregated system. The results are

recapitulated here with particular regard to the thesis.

6.2.1 The Metamouse Metaphor

The rate at which potential users learn to understand the behavior of Basil the Metamouse,

given a brief introductory description, was measured as the improvement in their ability to

predict Basil, that is, to answer questions about what he would do and what distinctions he

would make. The learning curves (Figure 5.1) indicated that the subjects had a good

understanding from the start, and their performance neither improved nor deteriorated

significantly as subsequent questions became harder. Furthermore, although sets of

questions isolated aspects of Basil's behavior, performance did not greatly vary from set to

set.

Several factors lessen the credibility of this study. First, it was not conducted in a

controlled fashion; all subjects received the same introduction and the same questions in the

same order. Second, the subject population was too small and too homogeneous (5

computer scientists). Third, the experimental situation was quite unlike the real one - a

guided study booklet as opposed to an interactive graphical programming system. Given

these shortcomings in the testing procedure, numerical results cannot be taken seriously.

106

Nonetheless, the gross results stated above have some value - it is easy to imagine very

different results that did not in fact occur.

The conclusion of this preliminary study is that the metaphorical apprentice with a

limited sensory system and a notion of conditional action is comprehensible to potential

users.

6.2.2 Inductive Generalization

The ability of the system to induce programs from user demonstrations was examined for

three example tasks (aligning boxes, equal spacing of boxes, and maintaining connectivity

of lines). In each case the system did generate a program that could reproduce the useful

actions originally performed by the teacher. The induced programs were general enough to

operate in new situations as well. In the event that a program was unable to operate, new

steps could be learned. Thus, capturing structure, achieving generality of performance,

and incremental learning - three hallmarks of a useable system for programming by

example - were demonstrated.

The major weakness of this study is the lack of proof that the results extend to an entire

class of tasks that potential users would program; thus, although the learning system is

shown to work, it is not shown to be useful. The study is defended on three grounds.

First, although classifying tasks is beyond the scope of this thesis, it is suggested that the

examples were at least representative: users actually perform these and very similar tasks;

they included commonly occurring problems of measurement, relative position, and

maintenance of constraint. Second, they expressed the fundamental elements of geometric

phenomena described in Chapter 2: order (eg. the sequential selection of boxes during the

alignment and spacing tasks); measure (eg. the spacer line used in the spacing task); and

classification, (eg. the selection of points to transform based on their prior attachment to

other points in the connectivity task). Thus the learning system is shown to be capable of

expressing such phenomena in the programs it generates. Third, the tasks incorporated

some of the basic problems in programming by example: detecting iteration (eg. sets of

boxes transformed) and conditional branches (eg. variant on the connectivity task);

identifying variables (eg. transformed points), constants (eg. initial placement of sweep-

lines), and inputs (eg. guide-line and spacer).

107

A second weakness is that individual elements of the system were not isolated or varied

to show their utility in the overall process of learning. The degree of lookback for variables

was held constant. The test runs used only one set of rules for classifying constraints and

only one set of generalization heuristics. The parameters that control the making and

acceptance of conjectures in Daedlos were fixed.

Granting these weaknesses, the study constitutes an existence proof that inductive

learning can be applied to graphical traces to produce generalized programs. The favorable

results shown in Table 5.1 demonstrate that such programs can be compact and reliable.

Moreover, the high ratio of actions performed by the system to those by the teacher

indicated that interactive teaching by demonstration is pedagogically efficient.

6.2.3 Benefits of Interaction

The third study presented in Chapter 5 isolated a key element of interaction in the teaching

process - the us'e of prediction to reduce variability in the action traces taught and thus

help the teacher satisfy the "minimal activity" felicity condition. Programs induced with the

aid of the teacher's responses to predictions were simpler and thus - conforming with

Ockham's Razor, recently applied to machine learning [Quinlan 86] - better captured the

structure of the task. To achieve identical programs without prediction would have

required more generalization capability to conjecture partial matches and, more

significantly, analysis to determine that different sequences have the same effect.

The main deficiency of this evaluation is that the experimental situation differs in two

important respects from the real one. First, the predictions were made not by performing

graphical actions but rather by printing a textual description of the program step without

instantiating the variables. Second, the predictions were adjudicated by the researcher

rather than actual users. Thus the results include no measurement of erroneous

adjudication or its effects upon inductive learning. Moreover there is no anecdotal evidence

regarding the comprehensibility of graphical predictions. Nonetheless the experiment was

useful in establishing best-case results.

In summary, matching and predicting actions (in effect, learning from an informant

[Michalski 83]) helped the system produce better programs than it would have by matching

only. Moreover, the amount of task work done by the teacher was reduced - assuming

that the cognitive load of accepting and rejecting predictions was not too high. Of course,

108

any useful learning system must eventually start predicting (ie. performing); the point is

that doing so as early as possible is preferable.

6.3 Analytic Evaluation of the System

Apart from conducting empirical studies, one might also investigate the system's

capabilities by analysis. In particular, the choice of internal representations and algorithms

determine its abilities: to represent graphical problems; to produce distinct programs for

different tasks; to generate equivalent programs from different lesson sequences. What

follows is an initial attempt to reveal implications of specific design decisions - a proper

analysis would require setting out a theory of graphics (a subsystem of geometry, no

doubt) and a theory of human interaction with computers in drawing tasks.

6.3.1 Representing Problems

Clearly, as suggested in §6.2, the current system is capable of programming tasks that

involve a sequence of point-to-point and point-to-line constraints. The limits of

representability have not been worked out, but it is known that many problems can not be

described because the action, sensory, constraint or generalization models fail to capture the

constraints. Some examples are listed below, with suggestions for improvements to the

system. The first two illustrate the need for more graphics operators - rotation as

originally proposed, and grouping. The third and fourth reveal limitations in the learning

algorithm and the system's model of constraints.

First, the pilot implementation cannot learn the Jarvis' march algorithm to construct a

convex hull. The rotation operator was not implemented, and rotation of a line by moving

one end-point without significantly altering its length is not modelled.

Second, given the current capabilities of A.Sq, the system cannot learn to trisect a line.

In A.Sq one can bisect a line by drawing to or through its mid-point handle but no

trisection constraint can be constructed. An operator for grouping objects so that they can

be transformed by the same relative amounts makes such problems solvable. The

procedure in this case is to make three copies of the original line, lay them end to end,

group them and then scale the group to the length of the original line; each line in the group

measures out one third of the original.

109

Third, the current design for Daedalos makes it impossible to learn to draw three boxes

in a row - or any problem governed by a constant number. Daedalos would form a loop

whose body draws one box, but the termination condition (that the third box has been

drawn) is not representable. Of course, the teacher could input a graphical representation

of the number, for example a box containing three line strokes with a line to sweep across

and "count" them, as illustrated in Figure 6.1. Obviously this is inefficient from the user's

standpoint and may be arcane as well. The learning system can induce number, as

suggested in [Maulsby 88a], if it records the actual count of iterations performed or

accepted by the teacher so that constants can be observed.

Counter unit lines

Sweep-line

Counter box

Count stops at contact
with right edge of box

Figure 6.1 A graphical counting device

Finally, the system designed in Chapter 3 cannot learn an important input to the

connectivity task. Selecting the line segment to shift out of place is really an ad hoc action

to be performed by the user (ie. an input), but since Basil sensed a specific contact (with

the mid-point handle) and a generally rightward path, the action is deemed sufficiently

constrained to be performed automatically. In practice the constraint solver would likely

select the leftmost line, regardless of which one was taught. The initial constraint analysis

could be improved by attempting to replicate the action just demonstrated; if the constraint

solver produces a different result, then what the teacher showed was underconstrained.

6.3.2 Distinguishing Programs

The ability to generate distinct programs for different tasks is a consequence of being able

to represent tasks. For example, if the system can induce number then it can learn a

program to generate four boxes but not five boxes, and another program to do the opposite.

110

Another example is being able to learn routines to translate boxes along specific paths (say

100 and 30°); because Basil's notion of direction is crude, programs induced from traces of

either task would be equivalent (and incorrect) - both would translate boxes at 00.

6.3.3 Sensitivity to Teaching Sequence

Teaching traces of a given task may vary in several ways not related to the different

subtasks or conditional branches that must be taught. Traces may be composed of different

actions - perhaps so different that a human observer would regard them as different

methods. Traces may comprise the same actions but presented in different order. A more

subtle variability, over which the teacher has little control, is introduced by coincidental

sensory feedback that might falsely distinguish situations; for example, in box-to-line

traces, sometimes a box is translated to the mid-point of the guide-line.

Eager prediction helps reduce the first two kinds of variability by reducing the influence

of their source, the teacher, from a generator to a critic of actions. Its effect upon the third

is quite unreliable: if the more general case (eg. moving the box to some point on the

guide-line) is taught first, then more special cases are merely subsumed; but if the special

case is seen first, the system will make incorrect predictions and must be taught the geneal

case. This problem does not seriously impair learning or performance unless many special

cases occur before the general case.

6.4 Support for the Thesis

The evidence for and against the thesis has been marshalled in the previous five chapters

and recapitulated above. The terms have been defined through design and implementation.

It is now time to decide whether the premises are reasonable, the propositions tenable.

The first premise, that end-user programming for computer graphics should be

graphical and demonstrative, was argued in Chapter 1. The second premise, that a practical

programming system must limit the complexity of functional components to be induced by

requiring the user to satisfy four felicity conditions, was argued in Chapter 2. Given these

premises, the thesis proposes 1) that an interactive device, the Metamouse, can be designed

and implemented to help the user meet the felicity conditions, and 2) that a useful and easy-

to-use system can be implemented for programming graphics by example. The thesis is

111

refuted if such a system is proven impossible; upheld if it exists; supported if obvious

progress has been made towards it and it still appears to be feasible.

The system is useful if it can generate programs for commonly occurring tasks.

Although a systematic inventory of tasks performed by users of thawing programs was not

produced - partly because delimiting such tasks is practically impossible - there is at

least anecdotal evidence that tasks involving alignment, spacing and connectivity

constraints are common. It is suggested also that loops and conditional branches are signal

attributes of useful programs. Hence the programs generated in the course of the

performance trials are empirical evidence that the system is potentially useful.

The system is easy to use if a representative users of drawing programs find it

preferable to the currently available alternatives. To determine this we must measure ease

of use - admittedly a subjective metric, but appropriately so. Three approaches are: 1)

ask users for ratings; 2) measure users' effort to execute vs teach given tasks in terms of

time spent, number of actions performed, number of failed attempts (user abandons trace

and recommences), and perhaps other quantifiable symptoms; 3) measure users' reliance

on the system in a natural situation (ie. in performing their regular work) in terms of

frequency of use. Collecting and interpreting any of these data is difficult'. The first

approach is clearly unreliable. The second presents methodological difficulties, since the

objective evidence is indirect and must be carefully conditioned relative to individual

subjects' skills. The third, while naturalistic, requires a fully working system and a long

period of data collection.

Lacking a fully working system, the author has not performed any of the above

measures. Instead he assessed the comprehensibility of the metaphor, on the assumption

that this becomes the major factor in ease of use, given that a conventional direct-

manipulation interface is provided. The results of that study suggest that the system is easy

to use. This supports proposition 2 above.

In conclusion, the thesis has been neither upheld nor refuted, but supported through

analytic and empirical means. The research has shown the feasibility of graphical

programming by example.

112

6.5 Further Work Proposed

A final affirmation or refutation of the thesis requires considerable further development and

investigation of the Metamouse programming system. If it is not refuted, the thesis should

spawn a good deal of related research. The research agenda has four main subject areas:

1) development of the integrated programming system; 2) human factors studies; 3) theory

of graphical tasks; 4) generalization and learning algorithms. Some activities under each

category are proposed below.

6.5.1 Integrated System

An important step towards further research is to complete the prototype system so that

studies of performance and human factors are more realistic. To achieve this we must build

a constraint solver and interfaces between Basil, Daedalos and the solver. Working with

the actual system may well reveal that it has been over-engineered and requires a rational

reconstruction with more efficient code. Beyond this, the system can be usefully extended

by:

• implementing the "leading" operators described in Chapter 3 to constrain paths

• adding rotation as an A.Sq or Metamouse primitive

• including more drawing primitives, such as ellipses and polygons

• providing an operation to group objects so that they are transformed identically

• being able to use previously learned procedures as subroutines

• supporting a voluntary explanation interrupt, so that the teacher can declare any
action to be governed by a constant or input.

6.5.2 Human Factors Studies

As stated above, the system should be tested through further empirical studies of its

interactive elements. A prototype system will allow "naturalistic" studies of actual use; but

experiments on parts of the system will continue to be worthwhile because they isolate

interesting features and hence permit greater control and easier analysis. The main lines of

inquiry proposed are: 1) comprehensibility of the programming metaphor; 2) usefulness of

interactive techniques to help users meet felicity conditions; 3) usefulness and usability of

the integrated system; 4) users' conceptions of the graphics domain, procedures and

113

constraints. These studies may reveal alternative metaphors, task models and interaction

techniques. Examples are:

• submitting the "Getting to Know Basil" questionnaire to a larger and more diverse
population

• adding controls to the questionnaire: vary the order of questions, exclude the
answers from some papers

• conducting a study similar to the questionnaire but using the actual system and
compare the results; such a study requires some means of monitoring subjects'
expectations or surprise

• quantifying users' performance in teaching a set of standard tasks with prescribed
algorithms, in terms of number of traces required, number of steps in each trace, and
complexity, generality and correctness of programs produced

• repeating the teaching study but have subjects invent their own algorithms

• repeating the teaching study but variably eliminate elements of interaction:
highlighting of indirect touches, of direct touches, of grasp; movement and presence
of Metamouse; queries for explanation of unconstrained actions; prediction during
lesson (ie. once performance has failed).

6.5.3 Graphical Domain Analysis

Other researchers have begun to investigate graphical tasks not only in terms of geometric

operations [Henderson 80, Geller 87, Noma 88] but also in the perception and effect of

constraints [van Sommers 84, Chow 88]. The graphical domain invites significant further

theoretical and empirical investigation, for example:

• varying the degree of Basil's sensitivity to indirect touch, from none at all to several
and unlimited degrees of indirection; study the effects on generalization

• continuing the empirical study of thawing behavior, following [Chow 88]

• comparing Basil's model of graphical constraints with actual human performance

• considering alternatives to the constraint classification model used in the system

• developing a similar constraint model for another domain, eg. text editing

• using conceptual graphs [Sowa 86] to represent graphical situations and constraints

• formalizing an algebra of drawing in terms of geometric constraints.

114

6.5.4 Generalization and Learning

Clearly, the choice of generalization methods and learning algorithm have a profound effect

upon the usefulness of this system, yet these matters have received little critical attention so

far. The pilot system, using the Daedalos algorithm and conservative generalization by

disjunction with no explicit specialization1 and no ordering of alternative predictions,

generates programs useful in the sense that they can make correct predictions. In actual

use, the system should make the best prediction first, where "best" means most specific or

productive; the integrated system should order alternatives. The learning algorithm itself

may be responsible for many inappropriate predictions because it has joined sequences too

readily; the parameters that govern matching may need to be adjusted - perhaps even on

the fly. Suggested projects include:

• repeating performance studies and teaching studies, varying Daednios control
parameters

• repeating the above studies varying generalization heuristics

• investigating adaptive selection of heuristics

• inducing constants and variables (viz, teaching study with queries for explanation
eliminated)

• substituting the NODDY learning algorithm [Andreae 85] for Daedalos (sacrifice
prediction during the first lesson)

• trying the Daedalos algorithm in other domains (eg. robot programming, text editing)

• characterizing the learning-power and instructibiity of Daedalos, following guide-
lines given by [MacDonald 88].

6.6 Summary and Conclusion

The work described in this thesis makes real progress towards a system for end-user

programming by example in graphics. Such a system has been shown to be feasible, and

most of its components have been implemented.

Chapter 1 defined the project's goal in general terms, emphasizing the importance of

pragmatic considerations, chiefly that it be of service to a broad and diverse population of

"ordinary" computer users. Previous work was surveyed and found to provide many

1 A more speciali7ed case is merely "disjoined" with the more general so that it can be selected as an
alternative prediction.

115

insights and useful techniques, but no system was considered adequate for use by the

general population. It was concluded that the system should be based on teaching by

example. The statement of thesis indicated that a teaching metaphor and specific techniques

of interaction would be required.

Chapter 2 examined the problems inherent in teaching and learning graphical tasks, as

revealed by both empirical studies and theoretical approaches. The variability and noise

inherent in graphical demonstrations was found to be a significant threat to the possibility

of teaching graphics by example. A phenomenological approach to geometry revealed that

human beings have an enormous advantage over computers in recognizing patterns and

reducing the search space for procedural models. (On the other hand, the theory provides

powerful tools to constrain and interpret actions.) In response to these problems, four

felicity conditions - correctness, show-work, no invisible objects, and minimal activity -

for teaching graphics were proposed. To help the teacher meet these felicity conditions five

principles of design were proposed for the programming system - it must be an active

learner, use a teaching metaphor embodied in an attention device, be based on geometric

construction, predict actions whenever possible, and be able to suspend learning.

Chapter 3 presented the design of a programming system following the principles given

above. The system is active in that it interacts with the teacher throughout the lesson; when

an action is unexplained, it queries the teacher. Learning is incremental and interleaved

with performance. The attention device is a metaphorical apprentice that embodies the

system's pattern-matching limitations in terms of a sensory model and provides an action

model appropriate to geometric construction, using transformation operators available in

familiar commercial drawing programs. The learning algorithm enables prediction even

during the first teaching trace (as soon as iteration is detected). The teacher can suspend

learning at any time by putting Metamouse to sleep.

Chapter 4 detailed differences between the design and the actual current pilot

implementation and defined the implementation path to a fully functional prototype. The

pilot system permits testing and refinement of basic components, such as the modeling of

graphical constraints, generalization heuristics, and so on.

Chapter 5 discussed three studies performed on the pilot system. The first presented

potential users with a questionnaire regarding Basil's behavior. It was found that

minimally instructed users became proficient at predicting Basil's responses and actions.

116

The second study examined the system's performance in learning several tasks from

demonstrations. The system did generate programs for each of the tasks. These programs

were quite compact and general even after a single teaching trace. The third study isolated a

key element of interaction, prediction, in order to measure its usefulness. It was found that

teaching by informant is extremely useful as a component of the system.

Chapter 6 summarized and criticized the work to date and rndered a verdict on the

thesis. The main criticism is the lack of empirical or analytical results that could clearly

affirm or refute the thesis. The studies conducted so far, despite their weaknesses, do

nonetheless corroborate it. A rich agenda of further research was proposed.

The work presented in this thesis makes two significant contributions to research in

end-user programming. First, it combines techniques of interaction and machine learning

in a novel way. Second, it proposes a specific system for a rich and difficult task domain.

The progress made to date is sufficient to warrant further research. And this research will

be well worth the while if it results in systems that users can program by example with

minimal effort. Once the barrier between using and programming is demolished, casual-

user computing will burgeon.

117

References

[Abbott 1884]
Edwin A. Abbott. Flatland—A Romance of Many Dimensions.
Signet Classics edition. New York. 1984.

[Abelson 80]
H. Abelson, A. di Sessa. Turtle Geometry. MIT Press. Cambridge MA. 1980.

[Andreae 85]
P. M. Andreae. "Justified generalization: acquiring procedures from examples,"
PhD dissertation. Department of Electrical Engineering and Computer Science, MIT.
January 1985.

[Angluin 83]
D. Angluin, C. H. Smith. "Inductive inference: theory and methods,"
Conputing Surveys 3 (15), pp. 237-269. September 1983.

[Behnke 74]
H. Behnke, F. Bachmann, K. Fladt, H. Kurile, eds., S. H. Gould, transi.
Fundamentals of Mathematics, Vol. II: Geometry. MIT Press. Cambridge MA. 1974.

[Bier 86]
E. A. Bier. "Snap-dragging," Computer Graphics: Proc. ACM SIGGRAPH '86.
Dallas. August 1986.

[Boming 86]
A. Boming. "Defining constraints graphically," Human Factors in Computing
Systems: Proc. ACM SIGCHI '86. Boston. April 1986.

[Breidenbach 67]
W. Breidenbach, W. Suss. "Geometric Constructions," in [Behnke 74].

[Chow 88]
U. Y. Chow, D. L. Maulsby, I. H. Witten. "Of mice and pens: human performance in
drawing," Research report no. 88/319/31. Dept. of Computer Science, University of
Calgary. September 1988.

[Dybvig 87]
R. K. Dybvig. The Scheme Programming Language. Prentice-Hall. Englewood
Cliffs, NJ. 1987.

Tikes 7 1
R. E. Fikes, N. J. Nilsson. "STRIPS - a new approach to the application of theorem
proving to problem solving," Artificial Intelligence, vol. 2, pp. 189-288. 1971.

[Freudenthal 67]
H. Freudenthal, A. Bauer. "Geometry - a phenomenological discussion,"
in [Behnke 74].

[Fuller 86]
N. Fuller, P. Prusinkiewicz. "L.E.G.O.—an interactive graphics system for teaching
geometry and computer graphics," Proc. CIPS Edmonton. 1986.

118

[Fuller 88]
N. Fuller, P. Prusinldewicz. "Geometric modeling with Euclidean constructions,"
in [Thalmann 88], pp. 379-39 1.

[Geller 87]
J. Geller, S. C. Shapiro. "Graphical deep knowledge for intelligent machine drafting,"
Proc. IfCAl 87. Milan. August 1987.

[Halbert 84]
D. C. Halbert. "Programming by example," Research report OSD-T8402. Xerox
PARC. Palo Alto CA. December 1984.

[Henderson 80]
P. Henderson. Functional Programming Application and Implementation.
Prentice-Hall. Englewood Cliffs NJ. 1980.

[Kienker 86]
P. K. Kienker, T. J. Sejnowski, G. B. Hinton, L. B. Schumacher. "Separating figure
from ground with a parallel network," Perception, vol. 15, pp. 197-216. 1986.

[MacDonald 84]
B. A. MacDonald. "Designing teachable robots," PhD dissertation.
Department of Electrical and Electronic Engineering, University of Canterbury.
Christchurch, NZ. 1984.

[MacDonald 87]
B. A. MacDonald, I. H. Witten. "Programming computer controlled systems by non-
experts," Proc. IEEE SMC Annual Conference. Alexandria VA. October 1987.

[MacDonald 88]
B. A. MacDonald, I. H. Witten. "Autonomy, intelligence, and instructibility,"
Research report No. 88/335/37. Dept. of Computer Science, University of Calgary.
October 1988.

[MacDraw 87]
M. Cutter, B. Halpern, J. Spiegel. MacDraw. Apple Computer Inc. 1985, 1987.

[Marr79]
D. Marr, T. Poggio. "A computational theory of human stereo vision,"
Proc. Royal Society of London, Series B, 204, pp. 301-328. 1979.

[Maulsby 88a]
D. L. Maulsby, I. H. Witten. "Teaching a mouse how to draw," Research report no.
88/294/06. Dept. of Computer Science, University of Calgary. January 1988.

[Michalski 83]
R. S. Michalski. "A theory and methodology of inductive learning,"
in Machine Learning, ed. R. S. Michalski, J. G. Carbonell, and T. M. Mitchell,
pp 83-134. Tioga. Palo Alto CA. 1983.

[Myers 86Chi]
B. A. Myers. "Visual programming, programming by example, and program
visualization: a taxonomy," Proc. CHI '86. Boston. April 1986.

119

[Myers 86CG]
B. A. Myers, W. Buxton. "Creating highly-interactive and graphical user interfaces by
demonstration," Computer Graphics: Proc. ACM SIGGRAPH '86. Dallas. August
1986.

[Myers 87]
B. A. Myers. "Creating dynamic interaction techniques by demonstration,"
Proc. CHI + GI 1987. Toronto. May 1987.

.[Noma 88]
T. Noma, T. L. Kunii, N. Kin, H. Enomoto, E. Aso, T. Y. Yamamoto. "Drawing
input through geometrical constructions: specification and applications,"
in [Thalmann 88], pp. 403-415.

[Papert 80]
S. Papert. Mindstorms. Basic Books. New York. 1980.

[Preparata 85]
F. P. Preparata, M. I. Shamos. Computational Geometry. Springer-Verlag.
New York. 1985.

[Quinlan 86]
J. R. Quinlan. "Induction of decision trees," Machine Learning 1, pp. 81-106.
Kluwer Academic Publishers. Boston. 1986.

[Smith 75]
D. C. Smith, "Pygmalion: a creative programming environment,"
Report no. STAN-CS-75-499. Stanford U. 1975.

[Sowa 86]
J. F. Sowa, E. C. Way. "Implementing a semantic interpreter using conceptual
graphs," IBM J. Res. Devel., vol. 30 no. 1. January, 1986.

[Stallman 81]
R. M. Stailman. "EMACS - the extensible, customizable, self-documenting display
editor," SIGOA Newsletter, vol. 2 no 1/2, pp. 147-156. Spring/Summer 1981.

[Sutherland 63]
I. E. Sutherland. "Sketchpad: a man-machine graphical communication system,"
Proc. AMPS Spring Joint Computer Conference, vol. 23, pp. 329-246. 1963.

[Tempo 86]
Tempo. Affinity MicroSystems Ltd. Boulder CO. 1985, 1986.

[Thalmann 88]
N. Magnenat-Thalmann, D. Thalmann, eds. New Trends in Computer Graphics:
Proc. CG International '88. June 1988.

[van Lehn 83]
K. van Lehn. "Felicity conditions for human skill acquisition: validating an AT-based
theory," Research Report CIS-21. Xerox PARC. Palo Alto CA. November 1983.

[van Sommers 84]
P. van Sommers. Drawing and Cognition. Cambridge Univ. Press. Cambridge UK.

120

Appendix A

This appendix contains a copy of the instructions given to subjects of the user study

described in §2.1. The pages have been reduced slightly. Note that subjects also received

some verbal instructions, and that a researcher was available to answer their questions.

121

Task 1

Draw this first...

Then add the upright bar...

Finally, the cross-piece.

122

Task 2

Center a circle
in a square.

Try to do this
and the next two tasks
without using the grid.

Make a Greek cross.

Square a circle. I

123

Task 3

Turn a square...

.into a rhombus.

124

Task 4

• •.,.•••••
p.

I,...

Scalene

Draw triangles
of the following types.

You may work on these tasks
in any order you think appropriate.

You may use the grid.

45/90/45

125

Task 5

Consider the height
of a polygon.

Left extreme of A Left extreme of B

Distance = 2 x Height of A

You may use the grid.

Here we use it as
the parameter of a
constraint on the distance
between two polygons.

126

Task 6

Draw some sort of polygon.

Consider its "extents box",
the rectangle that just
completely encloses it.

Represent the "extents box'
with eight squares,
the way MacDraw does.

You may use the grid.

127

Task 7

Here are the rules
for placing text at the end
of arrowhead lines: • • • Extents box

• • of text

Arrowhe line

The limiting cases... The in-between cases...

:<

The subject is given a picture of lines as shown below, but without labels. After the first
attempt the subject is shown the solution.

I

