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Abstract 

Direct-manipulation interfaces have greatly extended the class of casual computer users and 

encouraged them to conceptualize the system through metaphors. They have not, however, 

successfully incorporated facilities for end-user programming without breaking out of the 

direct-manipulation paradigm. 

This thesis supports the contention that "teaching" provides an appropriate metaphor for 

programming in such an environment. It presents a system for inducing procedures that 

enables users of a graphics editor to teach it routine tasks by working through example 

traces. A central problem in the design is to meet the requirements for instructibility 

without imposing excessive demands on tie teacher. 

A key component of the system is its teaching metaphor, a graphical apprentice called 

Metamouse. Metamouse is the target of the teacher's demonstrations. It is an eager learner 

designed to encourage consiructi'e methods, clarify ambiguous situations, reduce errors 

and extraneous activity, and discourage free variation in teaching. Its behavior is expected 

to be understood by users at a metaphorical, intentional level rather than from a precise 

specification. 

Metamouse has been fully designed but not yet fully implemented. However, a pilot 

system has induced procedures with variables, generalized actions, conditional branches 

and loops. Its ability to reduce errors and extraneous activity by prediction, and to identify 

underspecification, has been demonstrated. Tests showed that the metaphor is easily 

understood. Consequently the thesis argues that it is feasible for a system to induce 

procedures interactively from casual users. This significantly broadens the scope of 

application of machine learning techniques and opens new areas of research in knowledge 

acquisition. It facilitates the investigation of intelligent user interfaces and, last but not 

least, benefits the many users of interactive graphics systems. 

Parturient montes, nascetur ridicula testudo. 

- after Horace 
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Chapter 1 

Teaching a Mouse How to Draw 

At one time not so long ago, the task of preparing charts and diagrams presented the vast 

majority of professionals and students with a dilemma. To draw them by hand required a 

great deal of time and effort with no guarantee of satisfactory results. To hire someone else 

to draw them implied considerable expense. Either approach was bound to be time-

consuming and onerous. Within the past five years however, drawing with the help of a 

computer has become widely available and popular. Anyone with access to a personal 

computer has the opportunity to draw with powerful and efficient software tools. The 

ability to edit pictures without using an eraser is perhaps the greatest convenience of all. 

The result is plainly visible in the workplace: the quality of drawings in unpublished 

documents has improved tremendously. On the other hand, it appears that the amount of 

time people spend drawing has increased as they produce more pictures to higher personal 

(and communal) standiirds of draftsmanship. Of course, computers breed perfectionism - 

out of nowhere springs a new concern for the semantic implications of alignment and 

centering. Nonetheless, much of the effort people put into drawing with computers is 

surely worthwhile. The problem is that popular drawing programs do not help their users 

as much as they could with delicate and repetitive tasks. This thesis proposes the use of 

programming-by-example to address this problem, so that computer users can meet their 

drafting standards and concentrate more upon the design and meaning of their creations. 

1.1 Drawing Programs 

The average user of a drawing editor is quite unaware that she1 is really specifying a 

program. The static picture she sends off to the laser printer is translated for her into a 

sequence of device- driver commands. When Sutherland first experimented with 

SKETCHPAD, computer drawing was very much like programming [Sutherland 63]. 

Images intended for production on a graphics plotter were typically FORTRAN programs. 

The user of SKETCHPAD could program interactively and incrementally, toggling groups of 

Please note that the use of singular pronouns is a matter of convenience; any distinction between male 
and female is deemed irrelevant to the subject matter of this thesis. 
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switches to select shapes and twisting dials to set their parameters, with the results 

immediately visible on a cathode-ray tube. Sutherland went even further, introducing an 

interactive tool called the rubber-band line. With this the user could literally rough out a 

picture for SKETCHPAD'S constraint-satisfaction system to beautify. 

In the following two decades interactive computer graphics developed steadily. By the 

mid-1970's, the digitizing tablet and color raster display made painting programs feasible. 

Using such a program was very much like painting with watercolors, or with oils, or like 

drawing with an air-brush - or like nothing that could have been done so simply by hand. 

These programs illustrated the practicality of interactive graphics, but also the potential for 

entirely novel methods of drawing made possible by computation on an internal 

representation of the picture. 

In the early 1980's programs like MacPaint and MacDraw brought the basic capabilities 

of SKETCHPAD and paint systems into the popular domain [MacDraw 87]. These 

programs stress the benefits of utterly concealing the internal representation and the 

computational model; they attempt to sustain the illusion of drawing on paper (this illusion 

gets shattered now and then, as when MacDraw exposes the peculiar logic of its 

"alignment" commands). They offer the user a kit of graphical tools that have great 

intuitive appeal - greater perhaps than the physical ruler and compass. 

Despite their obvious virtues, contemporary drawing programs have limitations that rob 

users of their time and patience. Surprisingly, the most prevalent and annoying of these 

can be overcome by reintroducing the very activity that has been banned - programming. 

Examples of functional limitations prevalent in popular editors include: 

1. The lack of alignment facilities. MacDraw, for example, can align objects with 

reference to their bounding boxes - at their centers, or a common edge or corner. It 

cannot align the left edge of one box to the right edge of another. Nor will it move objects 

to a guideline of arbitrary orientation given by the user. 

2. The difficulty of positioning objectsexactly as desired. Most commercial drawing 

programs provide a reduced resolution grid or object-gravity for exact positioning. Anyone 

who has used these knows of their virtues, but also their deficiencies. A gravity grid 

relentlessly frustrates attempts at fine adjustments of size or position until it is turned off. 

Object gravity does not typically support such useful operations as bisecting a line. 
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3. The lack of facilities for creating specialized shapes. MacDraw and MacDraft, 

though widely used, do not provide such useful shapes as hexagons, parallelograms, and 

isosceles triangles, let alone n-gons. Perhaps this is because these are not supplied with the 

Macintosh firmware. 

4. The lack of user-specifiable constraints. If a drawing program does not support the 

control of spatial relations then the user must "debug" the rest of her picture whenever she 

edits some member of a constrained relation. Drawing programs support the constraints 

inherent in their graphical tools - for example, that the edges of a polygon remain 

connected - and also permit fixed relations by grouping elements. But suppose the user 

wants an edge to remain vertical even when one of its end-points is moved. This local, 

dynamically satisfied constraint is inexpressible. 

The items in this brief catalogue have key features in common. They all require that a 

constraint be specified. They have multiple parameters that must be given at ran-time; they 

are just a little too complex for the "friendly" direct-manipulation interfaces of popular 

drawing programs. They are too complex for typical macro-defining facilities such as 

[Tempo 86], yet even casual users know how to perform them manually. Commissioning 

an application programmer would be impractical. Yet how can the typical user of MacDraw 

be expected to re-program MacDraw? 

1.2 Drawing Procedures 

An answer to this question arises from the way users produce and refine their "program 

specifications" for the hard-copy device using MacDraw. The following tasks are good 

candidates for programming; all are useful, and some would be quite difficult for a non-

expert to program in a formal language. 

First, an alignment operation not supported by MacDraw. The task is to move one or 

more boxes onto a guideline of arbitrary orientation, so that all boxes He entirely to one side 

of the line. The procedure, called "box-to-line," is illustrated in Figure 1.1. The 

user/executor of this procedure decides ad hoc where to place the guideline and on which 

side the boxes shall lie when aligned. The first of these input parameters is drawn by the 

user, the second is inferred from the way the user re-positions the first box. An algorithm 

for "box-to-line" is given below. 
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box-to-line: 
ask user to draw the guideline, G 
ask user to move the first box, B1, to G 
note which corner, C, of B1 is on G (ie. B1.0 is on G) 
for each box, B1, of those remaining: 

move B1 until B1.0 is on G 
remove G 

a. Before 

d. RepeatforB2 

a. First box after selection 
and transformation 

b. Draw guide-line G 

e. Repeat far B3 

c. Drag B 1 to G; lower right 
corner of Bi is on G 

f. Final result 

Figure 1.1 The "box-to-line" task 

b. Drag sweep-line up 
to select next box 

Figure 1.2 Using a sweep-line 

c. Move box along 
sweep-line to guide 
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The path a box takes from its origin to its target position may be more or less 

constrained - along the horizontal, or perpendicular to the guideline, etc. This illustrates a 

problem in specifying a graphics editing procedure: isolating a clearly defined task from 

the user's goal set. After all, she might move the boxes so as to refine other aspects of 

their arrangement at the same time. Figure 1.2 illustrates the use of a horizontal "sweep-

line" to select boxes and specify their path. 

\1 0 M/  
-'- Label R 

U U 

a • a 
a North 
North-East 

/ 
a a 

a   U 
,West by U 
North-West 

IN III 

a. Rules for positioning a label at an arrowhead b. Two examples 

Figure 1.3 Rules for positioning labels at arrowheads 

The positioning of textual labels near arrowheads is an extension of the alignment 

problem; some selected part of the label is made collinear with the arrow, but at a certain 

distance from its end point. Figure 1.3 shows a graphical declaration of the rules for 

positioning labels, where each case illustrated represents the center of the range over which 

its rules applies. 
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Obviously, this declarative approach involves implicit information - conventions that 

interpret the cases. A procedural, constructive specification can be more self-contained, by 

demonstrating the range over which a rule applies. A rotating sweep line, as on a radar 

scope, measures the angle to the particular arrow from a standard initial position in Figure 

1.4. The sweep line pauses at each of the stations where one rule gives way to the next. If 

it crosses the arrowhead on its journey between two stations it will stop sweeping. The 

label is then moved into position at the arrowhead in accordance with the currently active 

rule. 

/ 
L North 

North-East 

a. Before: line A and label L 

R 
L North 

North-East 

 >-

L North 
North-East 

L North 
North-East 

b. Draw angle ruler R c. Move R to first station; 
did not pass over A 

L North 
North-East R / 

North 
North-East 

d. Move R to second e. Move label L to position f. Final result 
station; did pass over A prescribed by rule 

Figure 1.4 Positioning a label at an arrowhead 

Next, let us examine a task from computational geometry - finding the convex hull of 

a set of points. This procedure may not be used much but it is nicely illustrative. Suppose 

we have some key points in our drawing, and want to make a polygon around them. We 

choose our polygon tool, anchor it at the starting vertex, and then proceed around the 
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vertices in a rotational order, say, counter-clockwise. We have just performed Jarvis' 

March, a classic algorithm [Preparata 85]. 

. 
S 

R 

a. Draw ruler  

d. Draw edge Eifrom 
Vito V2 

R 

S 

S 

S 

Vi 
. 

R 

b. Drag Rto point Vl 

e. Center RatV2 

. 

Vi 

S 

• V2 

0;• 

c. Rotate R about V 1 t V2 

. 

R 

Rotate R about V2to V3 

g. Draw edge E2from h. Repeat steps e, f, g until Vi i. Final result 
V2 to Vs reached by edge drawn 

Figure 1.5 Constructing the cyclic order of points 

We took advantage of an ordering of the data, without having to sort them or know 

how to express their ordering in mathematical terms. The graphical procedure was easy, 



a. Before 

d. Move S to right 
edge of Bi 
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but specifying it in words requires special knowledge. Adopting more expressive graphical 

methods, shown in Figure 1.5, yields a constructive form of Jarvis' March: 

Jarvis' march: 
draw the ruler line, R, near the bottom of the display 
move R upwards until it touches some vertex, V1 (a point on convex hull) 
for each vertex, V, encountered until done: 

rotate R counter-clockwise about Vn until it touches another vertex, 
draw a line segment from Vj to V +1 
slide R along (V,V +i) until it is centered on V + 
if Vn+j is Vi, signal done 

remove ruler line R 

Finally, consider the fairly simple, useful task of arranging some boxes in an equally 

spaced row; that is, such that a gap of constant width separates each box from its neighbor 

to the left. Figure 1.6 illustrates the procedure. 

b. Draw guide-line G c. Move box Bi down to G 
and spacer  

e. Move B2 to G at right 
end of 8; repeat for 
remaining boxes 

I 
f. Final result 

Figure 1.6 Distributing boxes along a line 
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The input to be filtered through this "picket-fence" procedure is the set of boxes. Two 

other inputs parameterize it: a horizontal guideline that represents the ground underneath 

the boxes, and a horizontal spacer line that specifies the size of the gap. If these parameter 

objects are invisible, then the user is performing measurement by visual inspection; if 

visible, she is constructing, in the traditions of geometry and drafting. The procedure 

involves selecting and translating each box to the guideline, with the additional constraint 

that the spacer separate it from its neighbor to the left. If the user is systematic about this, 

she is following this algorithm: 

Picket-fence: 
create horizontal guideline G 
create horizontal spacer S 
translate S until it lies above but near left end of G 
for each box B1 in the input set: 

translate B1 until both 
1. bottom edge of B1 lies on G, and 
2. right end of S lies on left edge of B 

translate S until left end of S lies on right side of B1 
remove S and G 

Notice that some of the terms in this algorithm, as in the others above, are somewhat 

vague; for example, the phrase, "lies above but near". Moreover, the algorithm does not 

determine the order in which boxes are selected. These under-constrained decisions are not 

really important to the task, and are easily settled if need be; they are the sort of trivial 

decisions the user makes ad hoc. Thus the algorithms examined above may well describe 

what a human being would do in carrying out such routine tasks, but lack the determinism 

expected of computer programs. To ask the user to write a deterministic program in a 

suitably unambiguous, abstract language would be asking quite a lot: her "natural 

algorithm" is expressed in a visually and kinesthetically reactive intercourse with a picture; 

she does not have to account for what might happen, nor define trivial parameters of her 

actions. The average user, even one who has a talent for programming, would be 

disinclined to write such programs. Short-term economy would easily convince her that 

the task is "not worth programming." 

This thesis proposes that an amateur draftsman can indeed create programs to 

accomplish constraint satisfaction and other tasks such as sorting, without having to 

abandon her natural mode of work. She already, albeit indirectly and unwittingly, 

programs the graphics plotter through the mediation of the drawing system. Another 
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intermediary, another level of indirection, enables her to program new functions for the 

drawing system itself. A graphical device called the Metamouse expresses what the 

physical input device, the mouse, would be doing under user control during execution of a 

task. The Metamouse is connected to a learning system that records and generalizes actions 

and induces the program's control structure. The system learns a program incrementally so 

that the programmer need only execute those parts of it that accomplish her current task. In 

short, it is a system for programming by graphical demonstration. 

1.3 Programming by Example 

Graphical programming almost inevitably involves the production of an example, since 

particular representative objects must take the place of symbols. The tradition of graphical 

programming is entwined with that of programming by example, beginning with 

SKETCRPAD. A recent taxonomy of all programming systems [Myers 86Chi] classified 

them according to three characteristics of the program translator: whether it is batch or 

interactive; whether it processes a textual or visual representation, where "visual" refers to 

the significance of two (or more) dimensions of input; and whether it analyzes examples (of 

input and output, or of execution). Systems distinguished in the following discussion as 

graphical are called "interactive, visual programming by example" in Myers' taxonomy. 

Graphical approaches differ markedly, however, in their use of symbols, examples, and 

inductive inference. A system for the programming tasks described in the previous section 

ought to require no symbolic convention apart from those already present in the user 

interface. Instead it should infer the attributes of program objects such as constants, 

variables and control structures from representative example objects, based on an inductive 

hypothesis that multiple example instances have a common reference. Visual programming 

systems already in the literature do not meet this requirement. 

The computational complexity of inductive inference under various conditions has been 

thoroughly characterized [Angluin 83]. A graphical system that infers a program from its 

input-output pairings alone is impractical owing to the enormous number of possible 

programs. Fortunately this is not required for interactive graphics, where execution traces 

are available. Nonetheless a trace of manual execution may well contain inputs and outputs 

of complex functions computed but not expressed by the user. Existing systems can deal 

with this problem by requiring that she augment her examples with symbolic specifications, 
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or tackle it directly by trying to induce the function. We will see later that non-symbolic 

augmentation is another option. A further difficulty in analyzing traces is to identify the 

conditions that govern branching and looping. Some systems require the user to annotate 

her trace with symbolic markers at these decision points. This is clearly undesirable in 

graphics, although it seems impracticable to escape from marking at least one decision - 

task closure. 

The remainder of this section describes graphical programming systems already in the 

literature, in light of the issues raised above. 

The user of SKETCHPAD [Sutherland 63] could not program a graphical transformation, 

because the system recorded only the data structures produced by an interaction sequence. 

Thus, SKETCHPAD demonstrated the simplest type of graphical programming - using 

graphical input to set the values of system-defined object attributes. 

The LOGO system [Papert 80] records procedures enacted with a graphical, robotic 

"Turtle." LOGO programs create and transform hierarchically structured objects. The 

underlying language is general-purpose, Turing-complete, and permits the recombination 

of objects and actions by invoking them as subroutines. The system introduces the idea of 

a programming metaphor - the Turtle whose physical functions correspond with the 

programming language's operators. Even young children have no trouble learning how to 

control a Turtle. LOGO seems very close to what we want. Unfortunately, the LOGO 

Turtle is too literal-minded. Despite the coordinate-frame independence achieved by using 

body-centered coordinates in Turtle geometry [Abelson 80], the system can record only 

numeric constraints on an object's relative Cartesian coordinates or on distance moved; it 

cannot capture constraints between named parts of objects. Moreover, interactive 

sequences are recorded as given, without the inference of variables or control structures. If 

an action is meant to be iterative, the programmer must edit a textual version of the 

procedure to make it so. 

THINGLAB [Borning 86] has excellent facilities for describing and solving constraints. 

The programmer illustrates a constraint, and the method of solving it, by a combination of 

pictures and text. This is not so awkward as it sounds; a pictorial example is simply 

annotated with textual labels that name (graphically selected) points whose coordinates are 

variables of the program. The important limitation of TIHNGLAB with respect to graphics 

applications is the declarative method used to specify the program. The user must draw an 
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equational network (in which nodes are quantities or operators) - a nice representation, 

but nonetheless requiring the user to have a mathematical model of her problem. 

To specify a constraint without having to build a symbolic model the user must be able 

to demonstrate its effect on example objects. The SNAP-DRAGGING technique [Bier 86] 

shows how this can be done for binary constraints (such as extending the end-point of one 

line to the mid-point of another) by letting the user point to the parts of objects that snap 

onto each other. SNAP-DRAGGING does not program a constraint solution; the purpose of a 

demonstration is to produce a new tool for shaping objects interactively. Thus the 

programming element of SNAP-DRAGGING is nothing more than the setting of parameters, 

as in SKETCHPAD. Nonetheless, the system demonstrates interesting advances in graphical 

interaction. Heuristics about drawing (for example, that the translation of one vertex of a 

polygon is often intended to align it with some other vertex) are combined with a strong 

model of geometric relationships (and the construction tools expressing them) so that the 

system can automatically generate appropriate tools for the operation the user appears to be 

engaged in. 

Another approach to specifying constraints by constructive techniques is the 

programming language L.E.G.O. [Fuller 86]. With four primitives (point, line, circle, and 

intersection, an operator that returns one or two points of intersection between objects) the 

programmer constructs relationships by traditional ruler and compass techniques. As in 

THINGLAB, variables are identified by naming points - in this case those returned by 

intersection. A single demonstration generates a LISP function. The programmer must 

explicitly identify input and output variables and control structures by (textually) editing her 

LISP program. 

The five systems described above demonstrate advanced facilities for programming in 

the domain of geometry, but have minimal facilities for programming by example. The 

following five systems exhibit the reverse. The first, PYGMALION [Smith 75], is a general-

purpose visual programming system. Its basic graphical construct is the box, semantically 

equivalent to "( )" in LISP. A program's details are textual but arranged graphically; the 

nesting of boxes visualizes logical and scoping relations. Since a box may contain a value, 

it can replace a named variable. Thus the programmer may give specific data which the 

system generalizes to variables. The programmer defines each program step in order of 

execution, annotating the trace by symbolic though pictorial (ie. "iconic") markers for 
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branches and loops. PYGMALION cannot discover branching and iteration inductively, but 

does permit incremental programming, since each branch is developed only when it first 

needs to be executed. 

The SMALLSTAR system [Halbert 84] also employs the demonstrative method with 

symbolic annotation. Here, the trace is itself graphical - the system observes the user / 

programmer (the distinction becomes increasingly blurred) carry out a task in a desk-top 

interface with most input coming through the locator device (mouse). SMALLSTAR does 

no inference however; the programmer must identify constants and variables and insert 

control structures by editing her program. Halbert provides a convenient form-filling 

dialogue for this purpose. It works well since only the inherent attributes of an object (eg. 

the name of a file) can be selected as constants and variables. Clearly, this would not be 

useful when programming graphics, since the relevant values may well be spatial relations. 

Programming by demonstration has been used to create user interfaces, as in the recent 

PERIDOT system [Myers 87]. The programmer defines the screen-layout graphically, using 

the techniques of MENULAY [Myers 86CG], then demonstrates relationships that hold 

between program data and their graphical presentation. For example, to establish the height 

of a scroll-bar as a function of the current position of a buffer window on a file, the 

programmer manually adjusts the former and sets extremal values for the latter (0% and 

100%); the system infers a linear relation. The interpretation of actions with an input 

device, such as the mouse, is also induced from a demonstration. A moveable mouse icon 

represents the actual locator in its spatial context. To show that the mouse can grab the 

scroll bar and move it (thereby adjusting the buffer window), the programmer moves the 

mouse icon to the scroll-bar, selects the mouse icon's button to show that it is to be pressed 

during this operation, and then with the real mouse grabs and moves the scroll-bar. 

PERIDOT deduces that the scroll-bar and the buffer position are to be adjusted under mouse 

control. Although demonstrations can be action sequences, PERIDOT does not learn 

procedures but only relations between actions at the user interface and elements of the 

application program. On the other hand, the simulated, or "meta-" mouse, like the caret in 

SNAP-DRAGGING, affords a means of describing the behavior of the mouse using the 

mouse itself. 

None of the systems considered above can induce the control structures inherent in a 

task. NODDY [Andreae 85], a system for incrementally programming a robot, performs far 
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more sophisticated inference. The initial model of a program is simply the first trace of its 

execution. Each subsequent trace is matched to the previous model, which is generalized to 

cover it. A clever algorithm for matching program structures identifies loops and 

conditional branches. NODDY identifies constants and variables by inducing functional 

relationships between the parameters of actions; thus, even implicit constants can be 

generated. NODDY'S function induction algorithm is powerful - but not powerful enough 

to avoid searching the vast combinatorial space of functions that includes interesting 

graphical relationships. Another factor that makes NODDY less appropriate to graphics 

programming is the care that the programmer / teacher must exercise in ordering lessons. 

LOGO and NODDY have a well-defined programming metaphor - a robotic pupil led 

through a procedure. A recent pilot system, the Office Clerk [MacDonald 87], uses the 

teaching metaphor to make program annotation easier and more natural. Just as a teacher 

would tell a pupil to pay attention to some attribute of an object, the programmer can direct 

the Office Clerk, represented as a face that moves under control of the mouse, to a 

particular data field in an application's form-filling dialogue. The Office Clerk 

demonstrates the next stage in "Metamouse" programming. 

Several important points emerge from the work described above. First, systems that 

employ inference have achieved robustness by requiring the programmer to annotate her 

examples or at least present them in a carefully chosen order suited to the learning 

algorithm. Symbolic annotation seems effective and convenient, when the annotation 

consists of labeling points, but is awkward or arcane when more complex features must be 

described. Second, the use of an attention device has emerged as a technique for non-

symbolic annotation; it isolates features and localizes the context of inferences. A point 

locator is not sufficient for drafting problems however, since features of interest may be 

spatially distributed. Third, the teaching metaphor, by presenting an intuitive model of the 

learning system, permits increased use of inference and is readily embodied in an attention 

device such as Metamouse. Finally, the literature shows a lack of reported empirical 

studies of the potential or actual users of these innovative systems. SMALLSTAR for 

example was tested by a few people at Xerox PARC who were reportedly quite impressed 

with it [Halbert 84]; its usefulness to office workers has not been established. User 

characteristics ought to receive more detailed consideration in the design of end-user 

programming systems, and implementations should be followed by extensive testing. Of 

course, it is not quite fair to demand this of pioneering investigations. 
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To date, no system for programming graphics has combined a rich model of geometric 

constraints, a suitable teaching metaphor, and inductive inference. Nonetheless, results 

from systems in the literature suggest, tantalizingly, that such a system is not far out of 

reach. 

1.4 Outline of Thesis 

This thesis addresses the problem of end-user programming in a direct-manipulation 

environment - specifically the problem of inducing procedures from execution traces of 

graphical tasks. It proposes a system whose design takes into consideration the human 

factors requirements of the user, the difficulties inherent in a rich graphical task domain, 

and the technical limitations on a practical system for inducing programs. The crux of the 

thesis is stated below, followed by an outline: 

End-user programming for computer graphics should be graphical 
and demonstrative. A practical programming system must limit the 
complexity of functional components to be induced, by analyzing 
traces and by requiring that the user employ graphically constructive 
techniques to satisfy simple felicity conditions. These requirements 
can be met by intensive interaction between user and learning system 
through a device, the Metamouse, that embodies the teaching 
metaphor and thereby enforces and helps the user to satisfy the 
felicity conditions. 

Chapter 1 has defined the project's goal, emphasizing pragmatic and human factors 

considerations. Previous work has provided insights and techniques, but no method by 

which casual users can teach drawing procedures without symbolic annotation. This 

chapter concludes with an introduction to the Metamouse and a worked example. 

Chapter 2 presents empirical and theoretical studies of the problem of teaching graphical 

tasks. It proposes four aspects of a teaching protocol, called "felicity conditions," that the 

user must satisfy if the system is to learn from her. In response to the difficulty this causes 

the user, interaction techniques are proposed that serve as underlying principles for the 

design of a programming system. 

Chapter 3 describes the system's design in detail. The primary components are a model 

of the graphics world in which it operates, the Metamouse interaction device, and a method 

of inducing procedures. 
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My name is Basil, and as you can see I'm a turtle. I'm here to help you 
draw. You teach me repetitive and finicky tasks like evenly spacing out 
a row of boxes. I learn by acting as your apprentice: I follow you 
around till I think I know what you'll do next, then I pitch in and do it 
for you. If I guessed wrong, you give me a gentle tap so I'll undo it and 
wait for you to show me what's right. I'm eager, but don't worry - I 
only predict after I see you do something you've already taught me. 

I can draw lines and boxes and drag them by their handles by grasping with my jaws. 
You can teach me to make tools for a task; for example, build a staircase of boxes 
using a diagonal line. When done with a tool, delete it so I learn to clean up after a job. 

Although I have a good memory, I don't see too well. Because I crawl around a video 
screen I see things edge on, which makes it hard to spot patterns. Instead, I work 
mainly by feel. I remember how things fit together, which parts - such as handles and 
line segments - are connected. Building the staircase mentioned above, I can learn to 
copy a step by tracing over it: all the handles of the new step then mate with the old, 
and the new step is moved until it sits on top of the old one, offset horizontally. 

I'm touch-sensitive at my snout and I sense contact between the object I'm grasping 
and anything else it touches. If I have to find, say a box, I set off in the general 
direction you've taught me (up, down, left or right) until I bump into one. The box 
doesn't have to be dead ahead - I'm not stone blind. But if you want me to be more 
selective, give me a tool to carry and teach me to move until it touches something. 

Now, this is very important. I can't learn directly how things should not touch - I 
mean how they should be separated. Instead you should give me tools to separate 
them. Say you're drawing an arch and want the columns an inch apart. Draw a 
one-inch horizontal line and put the columns at either end of it. 

If you move me to some point and I don't sense something touching, I'll ask whether I 
should always move there, or always let you show me where to move. This is helpful 
when making tools that measure, since some are constant and some need to be varied. 
If you answer no to both options, I'll ask you to make a tool that reaches to this point. 

When you want to teach me, choose "Time for a lesson!" from the Basil menu, and 
"End of lesson" when you're done. To interrupt the lesson for something else, like 
working out a method before showing me, just choose "Take a nap" and then "Wake 
up, Basil!" when you're ready. 

As soon as I can predict what to do, I'll take over the task, but I'm always ready to 
learn something new. And as I've said, just tap me if you don't like what I've done. 

Well that's all I have to say for myself. Hope you enjoy teaching me! 

Figure 1.7 Description of Metamouse given to teachers 
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Chapter 4 describes the system actually implemented. Certain elements of the "ideal" 

system were left for future work. The implementation nonetheless permits investigation of 

the thesis. 

Chapter 5 presents three empirical evaluations conducted on the system. The intuitive 

appeal of Metamouse and its model of graphics were tested using a questionnaire given to 

potential users. The performance of the learning system was tested on several graphical 

tasks. 

Chapter 6 evaluates the thesis according to all the analytic and empirical evidence 

gathered. The empirical studies are criticized. Modifications to the system and further 

research projects are suggested. 

1.5 Introducing Metamouse 

The Metamouse, which embodies the teaching metaphor, is a graphical turtle like that used 

in the LOGO system. Its behavior depends on the algorithm for inducing procedures and on 

its model of graphical constraints. The Metamouse introduces itself to potential teachers 

through a short autobiography, given in Figure 1.7. 

1.6 Box-to-Line—a Worked Example 

Consider the "box-to-line" procedure as taught by example (Figure 1.8). The teacher leads 

Basil through a trace of the task. Basil - to be precise, the learning system - starts 

predicting actions as soon as it observes the teacher repeat an action already learned 

(provided the predicted actions are appropriate and can be accomplished). The system 

expects the parameters of actions to be constant, input by the user at run-time, or 

constrained by tactile events (such as a corner coming into contact with the guide-line). It 

generalizes constraints and induces program structure. 

When the teacher places the guide-line's two end-points (Figure 1.8b), Basil observes 

the absence of a contact, classifies the event as underconstrained and interrupts to ask 

(through a dialogue box, see Figure 1.8c) whether the location is constant or a run-time 

input. The teacher indicates that both points are to be specified at run-time. 
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Why did we end the line here? 

a. before 

d. Teacher draws line S 

b. Teacher draws line G 

( Always here 
( Ask user where) 

) 
(oopsl Forgot ( Always this far 

to construct. ,J \  from start point  

e. Teacher drags S up to B 

g. Teacher repeats grasp S h. Basil predicts repeat of e. 

I-.  

c. Basil inquires re. endpt of G 

f. Teacher drags B to G 

I Basil predicts step f. 

k. Basil cannot predict e I. Teacher removes 8, G; done. 

Figure 1.8 Teaching Metamouse a trace of "box-to-line" 
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In general the selection of objects and the iteration of action sequences depend on any 

number of properties of objects or situations. Thus they should be ordered and conditioned 

on events that Basil can sense by touch. A horizontal sweep-line serves this purpose, and 

also constrains the boxes' path of translation. The teacher draws it near the bottom of the 

screen (Figure l.8d) and indicates (through a dialogue box) that its initial placement is 

constant. She then grabs the sweep-line at its mid-point handle and moves it upwards until 

it touches the bottom edge of some box (Figure 1.8e). This contact is the condition on 

which a box is selected for translation. When the line is swept past the last remaining box, 

Basil notes that the sweep-until-contact action will fail. She interprets this as the reason for 

terminating the loop. 

Observe that this program achieves alignment through constraint-governed translation, 

where the constraint is a visible contact. A suitable description, say "lower left corner of 

box in grasp is coincident with some point on guide-line," is invariant over iteration on the 

input set of boxes. The learning system distinguishes this contact event and induces its 

invariance. 

When the sweep-line touches the first box, the teacher grasps and moves it rightward 

until its lower right corner touches the guide-line, its bottom edge still on the sweep-line 

(Figure 1.81). The teacher then re-grasps the sweep-line (Figure 1.8g). Basil has seen this 

action before; consequently he conjectures a loop and predicts the sweep upwards to the 

next box that is to follow (Figure 1.8h). Up to this point Basil has been following the 

teacher like a studious apprentice; now he takes the lead and performs his predicted action. 

The teacher does not object, so Basil continues executing the loop. The second box, 

however, must be moved to the left. Basil is biased towards easily generalizing directions 

of movement, so this does not faze him; he moves the box in order to achieve the same type 

of contact observed on the first iteration (Figure 1.8i). The teacher accepts this action as 

well; Basil has now learned the body of the loop and operates on the next box by himself 

(Figure 1.8j). 

After processing the third and final box, Basil recognizes that he cannot complete the 

action of moving the sweep-line as he has learned it (Figure 1.8k). Hence he terminates the 

loop and calls upon the teacher to show him what to do. At this point, she removes the 

sweep- and guide-lines (Figure 1.81) and then announces that the lesson is over. 
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Chapter 2 

Meeting the Felicity Conditions 

What human factors need to be considered in designing a system for inducing graphical 

procedures? How can the learning system utilize knowledge of human visual perception 

and of drawing practice? This chapter begins to answer these questions. 

It begins with a description of a preliminary user study conducted to identify important 

features of human performance in drawing. Although drawing is inherently procedural, the 

results argue against inducing procedures by passive observation: the typical execution 

trace leaves much of the computation unexpressed and is rife with noise. A strong model 

of drawing practice does not emerge, but conditions are identified under which a learning 

system should direct its own instruction by asking for explanations and generating its own 

examples. 

Section 2.2 examines more rigorous empirical studies of drawing on paper. These 

reveal two basic elements of drawing practice: first, people decompose their procedures 

hierarchically, that is, they use readily identifiable subroutines; and second, they carefully 

order the production of sub-pictures, first drawing the part that constrains and then 

attaching other parts to it. Comparison with such studies suggests that people are rather 

more systematic when not using a computer. Nonetheless the basic principles are seen at 

work in computer drawing. It follows that non-systematic actions in traces can be isolated, 

and that the learning system should observe contact events in order to model constraints. 

A consideration of some aspects of visual perception leads to a better understanding of 

computation not expressed in traces. Much of it is particularly costly to perform, let alone 

induce. Fortunately, key operations have strong analogies to the tools of geometric 

construction. It is concluded that the learning system can reasonably expect and require the 

user to express constraints by constructing them. 

Finally, Section 2.3 summarizes the rules of protocol that govern the teaching process. 

These "felicity conditions" are difficult to satisfy, but a primitive model of drawing practice 

generates strategies the learning system can use to help the teacher. The system uses a 

metaphor to explain its computational limitations, expects actions to arise from and result in 
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contact events, is able to ignore the teacher, predicts actions as early as possible, and learns 

incrementally. 

2.1 User Study 

The work of other researchers ([Bier 86], [Borning 86], [Fuller 86]) suggests a widespread 

belief that the users of drawing programs must annotate their procedures in order for a 

practical learning system to generate code. Having found no empirical studies on the 

practice of drawing with a computer, the author decided to perform a small study of his 

own. Rather than test an hypothesis, the study was designed to illustrate the use of 

graphical construction and to identify sources of noise in execution traces. It showed that 

people use constructions in their graphical procedures, but not predictably; some construct 

where others use visual inspection. The designers of a system that learned by passively 

observing the user at work could make only weak assumptions about her use of 

construction; they could not predict the complexity of functions the system must induce. 

Participants in the study also exhibited a significant number of errors, experiments and 

other extraneous actions during execution traces. These elements of noise make it 

impossible for a passive learning system to induce the structure of a program from 

execution traces alone. 

A group of 10 subjects performed as many as 7 graphical tasks over a one-hour period, 

using MacDraw; all subjects were able to complete the first 5. Execution traces were 

recorded with a commercial programming-by-example system [Tempo 86]. The subjects 

ranged widely in experience: 3 had never used MacDraw; 3 had used it fewer than 5 times; 

2 were occasional users; and 2 were regular users. Inexperienced users were introduced to 

the program in a preliminary training session. An observer / coach sat with each subject 

through the task session. 

The remainder of this section presents the tasks, some of the observations, and the 

implications for graphical programming. 

2.1.1 Tasks 

The tasks were designed to meet severql criteria. First, they should be "realistic," le. 

similar to the problems actual users of MacDraw must commonly solve. No case-book 
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was available, so problems were taken from the researcher's own experience with 

MacDraw. Second, they should gradually increase in difficulty because most subjects 

would be unfamiliar with the program. Third, some of the tasks should pose problems that 

strongly motivate the use of explicit, planned constructions to achieve constraints. The 

basic problems were altered and combined in order to meet all three criteria. 

The instructions given to each subject are included as Appendix A. 

For task 1, the subject was asked to reproduce a row of four objects illustrated on the 

instruction sheet, then interpose a cross so that its arms lay above the other objects. This 

task introduced the various primitive shapes and provided an opportunity to use 

MacDraw's automated transformation facilities (rotation and alignment) to satisfy two 

constraints between the stem and arms of the cross - that they be perpendicular, and that 

the arms be as wide as the stem is tall. 

Task 2 required the user to practise centering one object on another, in three different 

situations: a circle inside a square; a pair of rectangles to make a Greek cross; and a circle 

touching all four sides of a square. The first two could be done using MacDraw's 

alignment command; the third required considerable ingenuity or patience to accomplish 

exactly. 

For task 3, the subject was asked to transform a square into a close approximation of a 

rhombus; this transformation of one set of constraints into another could not be done using 

MacDraw's built-in operations but required the subject to invent a procedure. 

Task 4 illustrated a sequence of increasing constraints; the subject drew a scalene 

triangle, then an isosceles, then a right isosceles, and finally an equilateral inscribed in a 

circle. This last sub-task proved particularly difficult since MacDraw does not facilitate 

arbitrary degrees of rotation. 

Task 5 was presented in such a way as to encourage the use of constructive techniques. 

The subject was given two objects, A and B, and asked to translate B horizontally until its 

leftmost point lay at a distance of twice A's height from A's leftmost point. 

Task 6, performed by about half the subjects, demonstrated a simple case of two 

degrees of constraint and inheritance across groups; the subject had to position squares at 
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the vertices, mid-points and center of a polygon's extents box. The use of MacDraw's 

alignment and grouping commands could make this procedure quite elegant. 

Task 7, also performed by about half the subjects, presented a set of rules for 

positioning labels next to arrowheads depending on orientation; the subject then applied 

these rules to an actual case. The task illustrated the difficulty of positioning exactly with 

respect to distance - the use of MacDraw's grid introduced quantization errors - and also 

the difficulty of conceptualizing such a priori rules. 

2.1.2 Observations 

The user study produced a number of observations concerning the use of graphical 

construction and visual inspection, the variety and internal consistency of methods, and the 

occurrence of extraneous activity. No quantitative correlations were attempted; the study 

was not arranged to isolate variables, and in any case the sample of subjects was too small 

relative to the number of identifiable variables. As expected, subjects having prior 

experience with MacDraw used more of its "advanced" facilities (duplicating objects, 

rotation, alignment) in constructions. After tutoring most subjects used at least some of 

these, but only the more experienced (and one first-timer) used all three together. 

Construction and Visual Inspection. Graphical construction, as opposed to visual 

inspection, is the use of tools to automate the processes of measurement and selection. 

MacDraw supplies many such tools as primitives: commands for alignment and rotation; a 

special key for constraining cursor movement to one axis; automated duplication of objects; 

and positioning grids. Although by no means adequate as a set of operators for a graphical 

language, they do illustrate the advantages of construction as a basis for programming. 

Task 5, for example, requires that the subject take the height of A and use it as a 

horizontal measurement. This involves rotating a vertical measure, impossible without 

storing that information either in symbols (say, if the user measured in terms of grid 

coordinates) or a graphical form. One approach is to draw a vertical line the height of A 

and then rotate it to the horizontal; but if A is a complex polygon, exact measurement 

involves considerable work: the user must draw the line to approximate length, based at 

A's lowest point, then translate it horizontally to cut A's highest point, then move its top 

end down to that point. A far simpler and more accurate procedure is to duplicate A and 

then rotate it 900; the width of the duplicate is used as the desired measure. Note that this 
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can be trivially learned - that is, without knowing about such things as top and bottom 

extremal points, nor having to observe contacts. 

Only two of the subjects employed this particularly clever approach. Three others used 

a similar technique, drawing and then rotating an extents box around A. This entailed 

initial approximation, the fixing of one extreme and adjustment to find the other, as when 

using a vertical ruler, but avoided the danger of accidentally undoing the first alignment 

while moving into position to find the second extreme, since the box required no horizontal 

translation. One subject used MacDraw's "show sizes" mode to get A's top and bottom 

coordinates. The remaining three used the vertical ruler much as described above. 

Subjects' performance of the measuring sub-task described above suggests that the use 

of construction requires considerable understanding of graphical tools. On the other hand, 

many useful constructive procedures were readily adopted by the majority of users, as in 

task 1, where all subjects but one constructed the arms of the cross by duplicating and 

rotating the stem. Performance over all tasks indicates that subjects tended to adopt 

straightforward, albeit sub-optimal constructions. It is not necessarily the case that a 

learning system would have more difficulty inducing a program that contains longer 

sequences of operations. The real problem with construction is that many subjects did not 

use it at all, but chose instead to measure by eye. In performing task 3 (constructing an 

approximate rhombus from a square) seven subjects positioned the offset vertices by visual 

inspection alone, locating the second vertex with respect to the first by adjusting it until 

opposite sides appeared parallel; one subject used a vertical ruler to assist with visualizing 

the horizontal offset; two subjects only used a fully constructive method (duplicate and 

horizontally offset the square, then connect the lower corners of the first square to the 

corresponding upper corners of the second). 

The examples above also indicate the variety of methods employed. This suggests that 

only elementary models of human behavior are likely to be of use in designing a graphical 

programming system. Typical observations were: subjects used point-to-line contacts and 

line intersection to determine position (tasks 3, 4, 5); they used visual inspection for 

vertical and horizontal alignment (task 5); more experienced subjects preferred single 

operations of higher-degree constraint over a sequence of less constrained operations (tasks 

3, 5, 6). 
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The variety of methods that might be employed to perform a given task and the apparent 

paucity of behaviors having a reliable standard interpretation imply that the learning system 

will have to be quite general. The use of visual inspection implies that it must be able to 

induce functions from input-output comparisons (that is, the positions of objects, or, more 

generally, the state of the display, before and after a sequence of operations). The search 

could begin with some obvious candidate relations such as alignment. The system may be 

able to model the individual user sufficiently well to predict the maximal complexity of such 

latent functions. 

The observations made above can be operationalized as an hypothesis for the learning 

system: if the transformation of an object does not result in contacts with other objects, the 

teacher is using visual inspection. 

Extraneous Activity. Subjects exhibited a great deal of inconsistent and extraneous 

activity over the course of executing a given task. The experimental situation likely 

exaggerated this problem, since they were unfamiliar with the tasks and several indicated 

that they felt some pressure to perform well. The "noisy" activity observed has been 

classified according to the subjects' own verbal explanations (collected during and 

afterwards) of what they were doing at the time. 

Missteps are those actions quickly retracted, such as vertically reflecting the duplicate 

stem (task 1) rather than rotating it. These occurred often, especially with less experienced 

subjects. 

Experiments are extensive action sequences later retracted. When not performed on 

temporary data, a successful experiment is of course indistinguishable from a previously 

planned execution. Most subjects experimented with unfamiliar commands before trying 

them out (eg. alignment in task 1, reshaping a polygon in task 3); several also performed 

experiments to develop algorithms (there were many failed attempts to construct an 

equilateral triangle in task 4). Experiments may also be performed after completion of a 

task, to verify its success. One subject at the end of task 4 checked that his triangle was 

indeed equilateral by rotating it several times. 

Non-systematic experimentation, called fishing, is seemingly useless activity that may 

lead to serendipity. For example, one subject toyed with circles while thinking about 
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equilateral triangles. Most of the novice and casual users would scan across the pull-down 

menus when stuck for an approach to their task. 

Another variant on experimentation is method drift, the abandonment of an action 

sequence without retracting it or returning the task environment to its initial state. If the 

actions were incorrect, the subject might have to fix up the display before continuing. 

Method drift is hard to distinguish from an inelegant method (le. one that unnecessarily 

treats situations as special cases) without asking the subject to explain her actions. Method 

drift was observed in task 3 (rhombus), where one subject who had measured the offset at 

the left using a rectangle suddenly duplicated the square and offset it using the rectangle. 

The subject explained that using the rectangle gave him the idea of using the square instead. 

In performing task 5 (2 x height) another subject initially measured off the distance with a 

pair of horizontal lines placed end-to-end; after several failed attempts to align the left 

extremes of the two polygons with their corresponding end-points, he switched to a pair of 

boxes, without removing the lines or returning the polygons to their original positions. 

Bustle is apparently purposeless activity performed while the mind is otherwise 

engaged. Several subjects would occasionally move an object back and forth rhythmically 

before committing to its placement. Most bustle, such as toying with the mouse, does not 

affect the display at all. 

Having identified some sources of noise, how can we apply this knowledge to the 

design of a learning system? Much of this "useless" activity appeared to help subjects 

accomplish their tasks; the learning system should not punish the user by failing to perform 

in the presence of noise. To cope with extraneous actions, it must be able to identify 

suspicious action sequences and remove them with surgical economy. Unfortunately, the 

user study uncovered no reliable symptoms of incipient noise (though the mouse did appear 

to cover more territory when a subject was not working systematically). This leaves only 

more expensive methods of analyzing traces post hoc: measuring and comparing the effect 

of action sequences. 

For example, suppose sequence A is undone by sequence U - that is, U returns the 

display to a close approximation of its state prior to A - then clearly AU can be identified 

as a misstep, experiment or perhaps bustle. Since AU has no effect, it may be removed 

from a model of the procedure; sequences before and after will form a seamless join. 
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If an iterative sequence R* (1 or more iterations) is followed by a different sequence 

D*, and one iteration D can be shown to have the same effect as one R, then the system has 

strong evidence to suspect method drift. In this case it could remove D*. 

In general one cannot expect noisy sequences to be entirely undone or readily identified 

as equivalent to others. Thus the post hoc removal of noise, apart from obvious cases as 

above, seems intractable for the present. But a passive learner is inevitably exposed to 

noise. Clearly, the system should avoid it by selectively ignoring the teacher, or even 

prevent it by restricting or reducing the teacher's activity. 

Summary of Results. In summary, two important lessons have been learned from the 

user study. First, people do indeed use graphical constructions, but often rely upon visual 

inspection. A passive learning system would therefore have to cope with under-

specification of procedures by performing function induction. An active system could ask 

for an explanation when explicit construction is not used. Second, graphical procedures 

also contain a good deal of extraneous activity. A passive system would have toclassify it. 

An active system could prevent it by guiding or pre-empting the teacher. 

Function induction is difficult even in restricted and noise-free situations. The author 

has found no evidence of research on inducing functions from traces by casual users. 

Distinguishing extraneous actions also seems intractable. Therefore, an active learning 

system is the preferred choice. A further investigation of the drawing process sheds light 

on the methods it should employ to elicit reliable information. 

2.2 Towards a Theory of Drawing 

Cognitive scientists have a growing interest in drawing and have proposed some theoretical 

principles [van Sommers 84]. It is clear that human behavior, even in fairly simple tasks, 

is too variable, and thus the connection between action and intention too tenuous, to be 

modelled by an inductive system. Nonetheless, theory and experiments do suggest that 

human beings can communicate a graphical procedure to a rather naive system. Drawing is 

essentially procedural, and incrementally constructive: when drawing, people seek an 

orderly execution, and employ constructive techniques to assist themselves. Moreover, 

thinking graphically seems to involve construction. It follows that graphical programming 
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need not require symbolic annotation as previous systems have - or at any rate that the 

annotation can be purely graphical. 

2.2.1 Empirical Studies 

It is obvious that drawing is a procedural activity. The user study did not show whether it 

is systematic and therefore amenable to representation by programs. That drawing with 

pencil on paper is quite systematic is in fact well supported by experiments [van Sommers 

84]. People who draw, even young children, optimize their procedures to reduce the 

number and complexity of mechanical and cognitive operations. They tend to make pencil 

strokes in the direction of least resistance, but if they can reduce cognitive load at the 

expense of mechanical effort, they will do so. Thus, if one line is to branch off from 

another into empty space, it is almost always drawn from the stronger constraint (the point 

of contact with the parent line) to the weaker, even against the preferred direction of stroke. 

Contact constraints strongly influence the order of execution: drawing appears to be 

primarily a process of accretion. A pyramid of rectangles is normally drawn bottom up, so 

that the width of successive levels is constrained by those below. In experiments on 

reconstructing shapes from memory, van Sommers found that visual memory seems to 

record only scattered, local constraints (a result that would not have surprised Escher). 

Nearly all subjects who attempted to reconstruct a triskele, for example, could draw some 

of the joints, but almost none could reproduce the whole to a good approximation. Often a 

subject would start out well, then suddenly become utterly confused. 

Hierarchical decomposition, that is, the use of subprocedures, is another tactic 

employed to reduce cognitive load. In drawing a hierarchical form - a tree, for example 

- people typically follow one of two plans: order execution on the basis of similarity by 

drawing all objects at each level of the hierarchy in turn (for example, the trunk, then the 

boughs, smaller branches, twigs); or execute according to relations among sub-pictures, 

such as connectivity and adjacency, by working down the hierarchy (draw one bough, one 

branch, one twig, then repeat). Van Sommers found that such subroutines are quite 

systematic: they are commonly repeated without any intervening action; they preserve their 

internal order within a single drawing and often when a similar form is produced on 

another occasion. 
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In summary, three rules of optimization govern drawing: choose stroke direction to 

minimize mechanical effort; work from stronger constraints to weaker; decompose tasks 

hierarchically as appropriate to cognitive / mechanical trade-off. Note, however, that van 

Sommers studied drawing with a pencil on paper; the ergonomics of drawing with a 

computer must be quite different. Although the differences have yet to be studied 

empirically, it is possible to speculate that stroke direction is less important, and that the 

ease of editing makes contact constraints less significant. Supposing, however, that the 

three rules still apply, the question remains as to how they can be used by an inductive 

learning system. Clearly, these rules do not determine behavior, and therefore cannot 

interpret or predict it. On the other hand, behavior should be sufficiently well regulated that 

the system can expect to observe hierarchies of action sequences, in which most actions are 

conditional upon contact constraints. 

2.2.2 Phenomenology and Construction 

In the graphical domain a learning system with a numerical representation of objects is at a 

peculiar disadvantage relative to its human teacher, who has a specialized image processing 

system connected to a large knowledge base and facilities for planning. Human beings 

have in addition a certain computational enrichment owing to their mobility in 3-space. 

Thus the computer labors to find complex numerical relationships that the teacher perceives 

instantaneously. This "computation gap" can be characterized in terms of differences in the 

apparent complexity of geometric problems. Its most serious impact is on function 

induction, which is vastly more difficult for the computer. Moreover, the teacher may be 

unable to 1) recognize situations in which the system would have difficulty; 2) identify 

implicit computations that need expressing; or 3) find a means of expressing them. 

One approach to the problem is to give the computer visual processing facilities 

comparable to a human's. This is interesting - pioneering work has been done on 

systems analogous to the retina, for example [Marr 79], [Kienker 86] - but the research is 

just beginning. A practical alternative is to require the teacher to give more information and 

provide her with a powerful language: the constructive methods that form the intuitive 

basis of computational geometry. The intuitive appeal and expressive power of these 

methods are evident. They are easily represented in both graphical and numerical terms, as 

in [Fuller 86]. 
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[Freudenthal 67] describes a phenomenology of geometry whose three basic concepts 

- order, measure and classification - yield powerful problem-solving methods. 

Order. Order is a means of abstracting a structure from a set of objects. It may 

encompass one dimension (a total order) or several (partial order). Humans often perceive 

order in space as temporal order on the focus of attention. For example, relative distance 

can be discovered by mapping perceptual events onto a time-line. A linear order is found 

by sweeping one's gaze across a scene; a rotational (cyclic) order, by sweeping around 

some imaginary center of gravity; a partial order, by two orthogonal sweeps. Nature has 

cunningly equipped human beings with superb mechanisms to discriminate order - 

consider our prodigious visual acuity for detecting misalignment. Other kinds of order, 

such as relative size, seem in general to be processed less efficiently, although familiar 

techniques of imaginary visualization permit the use of sweep-selection for some problems: 

for example, to compare the heights of two objects one can imagine them side by side; to 

compare volumes, imagine trying to fit one inside the other. 
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a. Points widely spaced b. Points closely spaced C. Tool to distinguish order 

Figure 2.1 Left-to-right ordering of points 

Human vision exploits a high degree of computational parallelism. In addition, the 

very mechanics of vision give human beings a significant advantage over von Neumann 

computers. For the latter, naive sorting algorithms require 0(n2) binary comparisons; 

clever ones, O(n log n). Consider the task of labelling a set of points in order from left to 

right (see Figure 2.1). If they are spaced fairly far apart along the horizontal axis but quite 

closely in the vertical (Figure 2.la), the sorting task is trivial for a human being, who 

merely sweeps across the set and performs no explicit comparisons. On the other hand, 

suppose the points are fairly close horizontally but quite scattered vertically (Figure 2. lb); 
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in this case, the human being must do 0(n2) comparisons. But if she uses a windowing 

tool to focus her visual attention, she can reduce or even trivialize the sorting problem 

(Figure 2. 1c). Now, suppose that this task is to be taught to a computer drafting program 

that will begin predicting actions as soon as it has induced a candidate function; the 

difference between human and computer becomes important. The sorting algorithm 

involves a predictable amount of work for the computer, a highly variable amount for the 

human teacher. If she does not understand this difference, she may be disappointed that 

her pupil does not induce the sort during presentation of the easy case more quickly; on the 

other hand, she may be quite surprised to discover that the computer has no more difficulty 

with the complicated case, and hence ascribe to it far greater intelligence than it possesses. 

This barrier of mutual misunderstanding is revealed to be even greater when we 

consider the ease with which a person can revamp her representation of visual space to 

accommodate different references of order. Suppose she wanted to sort objects with 

respected to an axis tilted at 600; she need only cock her head and proceed as usual. Her 

pupil, the computer, could take the same approach, by rotating the coordinate system 

(applied as an inverse rotation of the displayed objects); but first it must guess that this pre-

processing will help it induce some function, and then find a suitable angle. A learning 

system capable of such conjectures would have to be highly specialized or else search an 

enormous space of models. The teacher, for whom the difference between this ordering 

and the horizontal may seem marginal, would not appreciate the difficulty. 

The problem of inferring relations of order from a large space of candidate relations is 

not solved by observing traces of the user selecting objects in order; as shown above, the 

space of candidate models for a sequence of invariant binary relations is still too large. The 

user can, however, express many relations of order through an intuitively appealing device 

- a construction of one or more sweep-lines, as in Figure 2.2. These are used in many 

algorithms studied in computational geometry [Preparata 85]. A single sweep-line 

expresses a total order in one dimension (see Figure 2.1); an ordering along an arbitrary 

axis is easily expressed by initially rotating the sweep-line appropriately. A rotational 

sweep can discover a rotational order. A pair of sweep-lines can find a partial order in two 

dimensions. 

Any ordering distinguishes certain points or thresholds, such as the mid- and end-

points of a line segment, the vertices of a polygon, or the boundary between half-planes. 
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Interactive drawing programs typically designate such points as "handles" by which the 

user can manipulate the spatial relations between objects and parts of objects. A sweep-

line's initial contact with an object will be at one of its extremal points (a point on its 

convex hull), which corresponds to one of its handles. Hence a great many useful 

orderings can be observed by a system that distinguishes contacts between some part of a 

line segment and a handle. 
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a. Two-dimensional sweep b. "Sweep-circle" to order distance 

Figure 2.2 Use of sweeping methods to distinguish order 

Measure. An object's position within an unrealized ordering is given by its measure; for 

example, its distance from the origin. Measures used commonly in describing space are 

distance and angle. Apart from certain relative measures, such as bisection and trisection, 

humans are not particularly well equipped to measure without the use of tools; after all, 

absolute measures are cultural institutions. It is not surprising, therefore, that constructive 

techniques for measuring are in wide use and have been thoroughly studied [Breidenbach 

67]. One would expect the user of a drawing program to construct exact measures by 

creating and manipulating graphical rulers; the parameters of their transformation would 

express the measure. In practice, however, no absolute measure can be expressed 

unambiguously without resort to symbolic annotation. The user can employ devices 

external and hence unknown to the learning system, such as a tape measure held up to the 

display. If the user draws a ruler line on the screen, it is not clear which parameters of the 

line are relevant - its length, its angle from the horizontal, or the exact positions of its end-

points. If a drawing program, such as MacDraw, provides "passive" rulers to which the 

user refers visually, the learning system cannot tell when they are in use unless it can 

observe the movement of the user's eyes. Clearly, the most feasible approach for getting 



33 

the parameters of measurement is to give the user a tool for selecting them: for example, a 

potentiometer in the form of a ruler or protractor. 

Most measures employed in drawings are either relative (as in the "2 x height" task) or 

estimated (as in the "spacing" task). Constructive techniques are quite adequate for these, 

since the parameters need not be isolated: for example, it does not matter whether the gap 

line used in the spacing task is perfectly horizontal. If the learning system attends to 

contacts made between handles and line segments, and generalizes position within the 

latter, then it can correctly model the use of ruler lines. Should the contact between the 

ruler's handle and some line segment need to be constrained to some particular point within 

the latter, that point can be constructed, perhaps with a second ruler. 

a. Thin: height> 3 x width b. Fuzzy concept with special cases 

Figure 2.3 Two concepts of "thin box" 

Classification. Many problems involve distinguishing certain objects as equivalent in 

some respect, so that they receive similar treatment. Equivalence is often determined by a 

group of operations that transform one object into another [Freudenthal 67]. Common 

experience suggests that human beings tend to think in terms of transformational 

constructions. For example, to decide whether two polygons are the same shape, one 
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might imagine superimposing one upon the other by rotating, translating and scaling it. 

Classification problems subsume those of order (eg. identify the vertices of a convex hull) 

and measure (eg. identify points at equal distance from some reference). Thus the 

difficulties and techniques germane to these problems apply here as well. 

Classification is made even more difficult to communicate because often class 

definitions are quite subtle. Consider two concepts of "thin box", illustrated in Figure 2.3. 

The first case is straightforward; the height is at least 3 times the width. The second, 

however, would be much more difficult to induce; boxes more than 2 cm wide are not thin, 

regardless of their height, nor are boxes less than 1 cm tall, regardless of their width. It is 

unlikely that a human being would be so precise in her definition as this. The constructions 

used in ordering and measuring can be brought to bear, if the user is able to see how. For 

example, to select squares one can employ a sweep-line that moves horizontally but is 

angled at 45°; the line will contact a square at two corners.. Many other problems, such as 

"thin boxes," are apt to be unprogrammable because the learning system would never find 

the concept by search, and the constructive technique is elusive. 

2.3 Felicity Conditions 

An alternative way of modeling the interaction between user and programming system is to 

specify the conditions under which procedural knowledge is most efficiently transferred. 

Given that the user is not a trained programmer, the transfer of knowledge is best 

understood as teaching [MacDonald 87]. The onus is on the teacher to present knowledge 

in the most readily assimilated form. The teacher has an approximate, evolving model of 

the system's capabilities - a far weaker model than does a programmer. Since she does 

not know exactly how the system will interpret each component of a lesson, the teacher 

follows a communication protocol, a set of "felicity conditions" whose primary purpose is 

to limit the range of possible interpretations her pupil need consider [van Lehn 83]. The 

transfer of procedural knowledge has four basic felicity conditions; van Lehn identified 

these by modeling the teaching of arithmetic to schoolchildren. Similar conditions apply 

when the pupil is a computer. The teacher in this case, however, is an amateur who cannot 

be expected to satisfy the felicity conditions, especially when her pupil is so different from 

herself (see §2.2). The remainder of this section describes the felicity conditions and 

techniques by which the learning system actually helps the teacher satisfy them. 
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2.3.1 Correctness 

The fundamental felicity condition is that lesson materials be correct. From the teacher's 

point of view, correct data are consistent with the model (procedure, concept) being taught. 

From the learning system's point of view, they are consistent with some model it could 

learn - a much weaker criterion. The system can suspect data that disagree with its 

current model, but must be prepared to alter that model to accommodate them. On the 

assumption of correctness, the learning system need only consider those models that cover 

all the data and may ignore the vastly larger number that cover only some. Moreover, the 

system itself can be simpler: it need not analyze data for likelihood of error, it need not use 

forgetting as a means of pruning out bad data. 

The user study suggested that errors are bound to occur in the teaching of graphical 

procedures. Since the space of models (graphical procedures) is practically infinite, the 

learning system cannot in general identify these errors. The computer's perfect memory is 

coupled with perfect forgetting. If the teacher recognizes her mistake, she can delete it 

from the lesson by retracting her action trace; the learning system should provide an undo 

facility for this purpose. 

If the teacher does not recognize her mistake, or does not properly retract it, then the 

program will contain a bug. To permit the removal of bugs without requiring that the 

teacher examine a symbolic represeniation of the program, the system should combine 

editing and execution; that is, at any point during execution, the user should be able to 
intervene and begin teaching (this also facilitates incremental development). An erroneous 

action could be excised upon the teacher's instruction; but the teacher may be mistaken that 

the action is incorrect - perhaps the conditions under which it is performed need to be 

specialized. It is therefore advisable not to eliminate a so-called bug altogether but to learn 

alternative actions and limit activation of the bug by specializing its preconditions or by 

reducing its priority amongst the alternatives. 

Perhaps the best defense against the teacher's mistakes is to prevent them by 

minimizing her activity during the lesson. To achieve this, the learning system could start 

predicting actions as soon as possible. As soon as it observes the teacher do some 

recollected action a and the current state of the drawing pernits some action P that has been 
seen to follow a, the system could perform 0 on its own initiative. It must be able to 

retract 0 should the teacher reject the prediction. Thus the learning system alternates 



36 

between observation and performance. Prediction structures the interaction: success 

initiates performance, failure initiates observation. 

2.3.2 Show Work 

The show work felicity condition requires that the teacher demonstrate an execution of the 

procedure to be taught. This eliminates the need to induce procedures from presentations 

of their inputs and outputs. Such induction is practically impossible for a number of 

reasons: the search space is infinite and not usefully ordered; the identification of input and 

output objects, often a useful clue to function inducers, may be lost due to transformations; 

data almost never sufficiently constrain the number of equivalence classes of procedures 

that account for them. An execution trace limits candidate models to those that could have 

generated it. A rote-learning system, such as the emacs macro facility [Stallman 81], could 

model the procedure well enough to execute on sufficiently similar data. If the learning 

system models the steps of the trace in terms of cause and effect, such as the (precondition, 

action, postcondition) tuples used in the STRIPS planning system [Fikes 71], then it can 

derive the conditions that govern loops and branches, and thereby produce a more general 

model of the procedure. 

Consider for example the task of finding a convex hull. If the system does not observe 

its construction, but rather sees as input only a set of points and as output the same set with 

certain points connected, then some very useful information is unavailable to it. The 

relation of each vertex to the rest of the set - that it lies on the boundary of a half-plane 

containing all the other points - must be induced from a large range of possibilities, and is 

made even more difficult by the computer's perceptual disabilities, as noted above. The 

cyclic order of the hull's vertices, which could be used as the basis of a simple derivation 

- a sequence of pai.rwise relations - must be induced from the transitive closure of their 

connectivity. A procedure for finding the convex hull is easily derived from a constructive 

demonstration (using the algorithm given in Chapter 1) if the learning system's attention is 

focussed upon the events that bound the successive transformations of the rotational 

sweep-line. 

The show work felicity condition is well suited to the users of a drawing system. In 

fact, it minimizes the effort of teaching because it joins teaching to the accomplishment of 

the task at hand - an efficient practice employed since time immemorial in workshops, 
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where a master would show her apprentices how to solve problems. On the other hand, 

show work implies "no invisible objects" and "minimal activity" - two felicity conditions 

that are much more difficult to satisfy. 

2.3.3 No Invisible Objects 

Invisible objects are parameters of actions or conditions that the teacher does not expressly 

describe. The no invisible objects condition requires that the teacher make them explicit. 

The pupil must see them to know that they are in use and what values they may assume. 

The range of relevant graphical attributes and spatial relations is combinatorially explosive 

over the number of objects displayed; a visible construction of the relevant relation can 

eliminate search entirely. Constructing "invisible" objects is just a matter of showing work 

at a finer granularity of decision-making and reduces the space of induction in the same 

way. 

A 

B 

a. Initial position 

C 

A 

B 

b. Final position c. Explanation 

Figure 2.4 Spatial relation defined by an "invisible object" 

For example, suppose the teacher moved box C as shown in Figure 2.4. It is not 

immediately apparent why C is moved to that position - whether the distance moved or 

the destination point is a constant, or whether some spatial relation governs the translation. 

If the latter, then the system must find a sufficiently "obvious" relation that would be safe 

to assume: clearly, two obvious relations obtain here - are both meant to, or just one of 

them? Of course, the best way to answer these questions is to ask the teacher. In that case, 

she would do what she should have done to begin with - point out the relevant 

parameters, in this case, alignment of C with the left of A and a constant vertical distance, 
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which only coincidentally aligns it with B. A simple graphical technique to express this 

condition is to draw a spacer line from A's lower-left corner. 

Observations from the user study support the contention that invisible measurement 

objects are used so efficiently that knowing when and how to express them can be difficult. 

Most commonly used in drawing are alignments and distances, both well supported by 

visual inspection. It follows that the onus of enforcing this felicity condition falls upon the 

learning system: it should not attempt to induce the parameters of a transformation, but 

rather deduce them from visible, constructed relationships. This means that the system will 

look for tactile relations between the object transformed and other objects: thus it observes 

the contact between the upper-right corner of C and the lower end-point of the spacer line. 

If no contact is observed, as when setting the end-point of the spacer line, the system must 

ask the user to provide a construction or verify that the selected position is a constant or ad 

hoc input. 

2.3.4 Minimal Activity 

The minimal activity condition requires that the teacher show the pupil only those actions 

that would be generated by the procedure. In its strictest form it bans all irrelevant activity, 

such as experiments and doodling, and implies uniformity of method over iterations within 

a single trace or among multiple traces. This limits the candidate models to those that 

would generate the actions demonstrated in execution traces, eliminating models that 

generate other actions or sequences having the same effect. Uniformity allows the learning 

system to classify actions as novel without having to consider equivalence or 

commutativity. The banning of irrelevant activity prevents the break-up of sequences; they 

can be recognized more reliably when inducing loops and branches. The learning system 

need not know how to determine that a sequence of actions, such as an experiment, has no 

effect and may be ignored. Irrelevant activity may also corrupt the display and thus violate 

the correctness condition. 

The user study indicates that minimal activity is very difficult to satisfy. Methods 

evolve as they are attempted; users have to conduct experiments; often they rearrange the 

display to help them visualize relationships better, to make situations more general, or 

simply to increase their comfort by making the layout more aesthetically appealing; and 

sometimes, while thinking, they repeatedly perform some useless action. But if the 
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learning system is not able to recognize irrelevant and non-uniform activity, how can it 

enforce this felicity condition? 

One approach to the problem is to accept this form of noise - to learn procedures that 

are less general, due to non-uniformity; that contain bugs, due to irrelevant activity. 

Generalized loops and branches may well evolve and effectively supplant special cases as 

the teacher provides more examples. Useless actions should be quite harmless (provided 

that they do not corrupt the display). How well the system achieves desired behavior with 

a model corrupted in these ways depends in part upon its representation of actions. Using 

the cause-effect model (proposed in response to "show work") and preferring actions more 

recently learned or more frequently observed, it should strongly favour uniform and useful 

code. 

The cause-effect model provides a front-line defense against misleading activity. If the 

teacher launches into an experiment, her first actions will likely not follow from constructed 

conditions; the system will ask for these and thereby remind the teacher that she should not 

be teaching right now. To prevent the system's observing such actions, the teacher could 

simply put it to sleep - luckily, computer systems don't forget what they've been doing. 

Even more useful than this, however, is the ability to predict actions from their causes. 

Using prediction, the learning system can supply uniformity where the teacher might not: 

by matching a new action to one it has seen before, the system can conjecture a loop and 

predict the action sequence within it; similarly, the actions of a new trace may be predicted 

from the procedure as already learned, so that the teacher need only perform novel actions. 

Prediction is perhaps the best way to help the teacher satisfy minimal activity; and has the 

added benefit of demonstrating the pupil's understanding of the procedure. Moreover, it 

provides that the computer will take over performance of the task as soon as possible - a 

welcome reward for the user's effort of teaching. 

2.4 Design Principles 

Specifying the felicity conditions has provided a sufficiently well defined model of the 

interaction between user and graphical programming system to discover some useful 

principles of design. 
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First, the learning system must be active. The user study showed that a passive system 

will not do. The felicity conditions are too difficult for average users to satisfy. The 

system must question the user and help her maintain the conditions of instructibility. The 

other design principles prescribe the techniques used to accomplish this. 

The learning system should represent itself and its computational model in metaphorical 

terms through an attention device. This device should convey the system's perceptual 

limitations by demonstrating its current awareness. 

The learning system should be strongly biased towards geometric construction. It 

should model graphical actions in terms of cause and effect, that is, as (precondition, 

action, postcondition) tuples. Conditions should be contacts between the parts of 

geometric (le. graphical) objects. Since some actions cannot be constructed, it must also 

permit numerical parameters. If an action is not constructed, the system should question 

the user as to the reason. 

The learning system should attempt to predict the user's actions whenever possible. As 

soon as a user action matches one it has already seen, it should conjecture iteration and 

predict the subsequent action. Since predictions may be incorrect, the system should 

respond to the user's disagreement, predict only actions it could retract, and be able to 

make all alternative predictions. 

The learning system should be able to ignore the user, but only at the user's request. In 

the event that the user does not warn the learning system of her extraneous activity, the 

system should be relatively tolerant of the noise. This is achieved by allowing any number 

of alternative actions to be available at each point of the execution; that is, the run-time user 

may always reject an action and supply one of her own, from which the system may predict 

subsequent actions. 

The next chapter applies these principles to the design of a "Metamouse" programming 

system. 
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Chapter 3 

Metamouse 

The design principles developed in Chapter 2 are applied in the design of a prototype 

system for graphical programming. The design focuses upon an interaction device that 

embodies the teaching metaphor. The thawing program, knowledge base and learning 

system are described. 

Chapter 2 established that the desired graphical programming system is really a learning 

system with some stringent felicity conditions. To help the user/teacher satisfy them, the 

system requires a metaphorical pupil (cf. MacDonald 87]), which is conceptualized more 

precisely as an apprentice. The apprentice assists the teaching process by focussing the 

teacher's attention upon itself, by refusing to accept input (actions) it cannot justify in terms 

of its own model of the thawing world, and by predicting actions in new contexts. It 

follows that the apprentice must have a body and behaviors the teacher can evoke, sensors 

and an internal representation of the world in order to investigate justification conditions, a 

memory with generalization capabilities, and a model of program structure. The 

apprentice's "psychology" should be simple enough for the teacher to predict or at least 

understand its behavior after a brief period of familiarization. 

The prototype system for this project is illustrated in Figure 3.1. It consists of a simple 

thawing program closely coupled to a learning system that induces variables, isolates 

important constraints, constructs a procedure in the form of a directed graph of actions, and 

predicts actions whose parameters are set by a constraint solver. The learning system's 

user interface is a metaphorical apprentice. This appears as a special icon that selectively 

tracks the movement of the mouse and is hence called the Metamouse. 

This chapter first describes the thawing program, which edits pictures consisting of 

boxes and lines. Section 3.2 explains the design of the Metamouse in terms of its body, 

sensory system and memory. Section 3.3 describes the generalization of actions, which 

involves inducing variables and isolating constraints. Section 3.4 discusses the 

construction of procedures. The chapter concludes with a brief review of the system's 

organization. 
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Figure 3.1 Prototype system for programming graphics by example 

3.1 A.Sq—the Drawing World 

The goal of this research is to help users extend the functionality of practical drawing 

programs. These programs typically provide a rich (more than complete) set of operators at 

various levels of abstraction. A graphical programming system, especially one intended for 

research, might well be based on a small set of graphical primitives and operators, formally 

represented as a system G (P, 0). The minimal system sufficient to create and edit 
pictures on a raster display is Go : {[pixel(x, y)], [place(p), remove(p)J), but this is of 

course impractical, since graphic displays typically contain more than 100,000 pixels, and 

since most drawings are composed of constrained groupings of pixels, such as continuous 
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and straight lines and circles. Noma et al have proposed [Noma 88] what we will call U1, 

where: 

P1 = [line-through-points (1, Pi P2), 
circle (c, ctr, rad)] 

01 = [draw-line (1), erase-line (1) 
draw-circle (c), erase-circle (c), 
define-intercept-point-of-lines (pt, 11, 12), 
define-point-at-distance-from-point-along-line (pt, d, p, 1), 
define-intercept-points-of-circle-and-line (p1, p2, c, 1), 
define-intercept-points-of-circles (p1, P29 c1, c2), 
measure-distance-between-points (d, Pi P2)1 

This system, similar to [Fuller 88], provides for the abstraction of graphical constraints 

from examples by naming special points derived using classical ruler-and-compass 

methods. A graphical interface to this system is conceivable: the user would draw lines 

and circles and mark intersection points; an interpreter would associate these actions with 

system operations. Although capable in theory of producing any picture, it falls far short 

of the facilities users expect. 
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Figure 3.2 Parts of A.Sq objects 

Simplicity and realism are both required for testing the thesis. A good compromise is 

to provide a few of the popular drawing program primitives and, perhaps even more 

important, the normal methods of manipulating them. The drawing program, called A.Sq 

(after the protagonist of Flatland [Abbott 1884]), emulates MacDraw and has a similar user 
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interface. It provides rubber-banding tools to make straight lines and boxes (rectangles 

with vertical and horizontal sides). 

The user manipulates objects by moving their "handle" icons as in MacDraw (see 

Figure 3.2). A box has nine handles: the center effects translation of the entire box; 

handles on its boundary scale it in either or both dimensions. A line has three handles: its 

mid-point for translation and two end-points that effect a combined rotation and scaling (the 

user's intention is probably to relocate that particular point). An object's handles are 

normally concealed; in order to activate them the user must "pick" the object by moving the 

cursor near one of its edges and pressing a button on the mouse. Only one object may be 

active at a given time; it is designated A.Sq's active object. 

An object is erased using a deletion operator. A.Sq does not provide a rotation operator 

- but the Metamouse does (see below). To summarize the facilities formally: 

A.Sq 

P= [line-between-points (1, Pi p2) 
box-between-corner-points (b, Pi P2)1 

0= [draw-line (1), 
draw-box (b), 
delete-object (obj), 
translate-handle-of-object-to-point (hndl, obj, pt)] 

The single operator for object manipulation, translate-handle..., is quite powerful and 

could of course be conceived instead as a number of routines for moving each type of 

handle. The formal model above is intended to express the uniformity of the system as the 

user sees it. A.Sq interprets translate-handle.., according to the type of handle: 

translate-handle-of-object-to-point (hndl, obj, pt): 
type of hndl is 

center or mid-point 
translate obj by (pt - center-of (hndl)). 

box-corner 
scale obj in x and y by x and y components of 

(pt - center-of (obj)) / (center-of (hndl) - center-of (obj)) 
relative to origin at 

center-of (handle-at-opposite-corner-of (hndl)) 
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box-top-or-bottom-edge-mid-point 
construct target point p' as the intercept of 

horizontal-line-thru (pt) and vertical-line-thru (center-of (obj)) 
scale obj in y by y component of 

(p' -  center-of(obj)) / (center-of(hndl) - center-of(obj)) 
with respect to origin at 

center-of (handle-opposite (hndl)) 

box-left-or-right-edge-mid-point 
construct target point p' as the intercept of 

vertical-line-thru (pt) and horizontal-line-thru (center-of (obj)) 
scale obj in x by x component of 

(p' -  center-of(obj)) / (center-of(hndl) - center-of(obj)) 
with respect to origin at 

center-of (handle-opposite (hndl)) 

end-point 
translate line-end-point-at (center-of (hndl) to pt 

If nothing else, the above shows how much simpler a pictorial interpretation is! Although 

A.Sq must resolve this high-level function into its several cases, it should be noted that the 

learning system uses the same simple model of primitives and operators that its teacher 

does. 

3.2 Basil—the Metamouse 

One way to operationalize the "show work" felicity condition is to teach by demonstration. 

The instructor performs a task so that the apprentice observes each step in its execution. 

Another approach is to teach by leading, a method employed in programming robots (see 

[MacDonald 84]). The instructor carries out a manual task but substitutes the robot's 

grasper for his own hand, which he uses instead to manipulate the robot's arm. The 

simplest learning system based on either method merely records the movements made, but 

with the addition of sensory feedback and some model of procedural decomposition, it 

could learn complex tasks. 

The proposed system supports both approaches to teaching, with a view to 

investigating their relative merits and ability to supplement each other. The metaphorical 

apprentice is a graphical robot that tracks the movement of the regular graphics cursor 

under control of the mouse and is hence called a Metamouse (cf. [Myers 87]). In order to 

demonstrate an action the teacher performs it as usual. Each time she fixes the cursor's 

position (as at the start and end points of a line), Metamouse moves there to indicate that the 
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action has been observed. In order to lead Metamouse, the teacher gives it a command by 

touching the appropriate part of its body. Demonstration and leading are not segregated 

"modes" of operation - the teacher can switch from one to the other without issuing any 

special command. 

To help the teacher identify with Metamouse as an intelligence of some order, it is given 

a personal name, "Basil." This section describes Basil's interaction with the teacher, his 

sensory system and memory, and his knowledge of graphical semantics. Basil is designed 

to enforce the felicity conditions and to make reasonable conjectures regarding the 

constraints on parameters of graphical actions, yet nonetheless be simple enough that the 

teacher can readily understand his behavior. This implies that we should be able to 

describe Basil in relatively few words; a description given to teachers before they meet 

Basil in person is shown in Chapter 1, Figure 1.7. 

3.2.1 Basil's Body 

The Metamouse augments the drawing facilities available in A.Sq (eg. by providing 

rotation) and gives names to some of the constrained movements performed by the mouse 

under user control (eg. move right without deviating vertically). These capabilities are 

literally embodied in the Metamouse, a moveable menu in the form of a turtle - an icon 

made familiar by the LOGO system [Papert 80]. Figure 3.3 illustrates. 

The segments of Basil's shell and body are buttons, arranged so that leading him 

resembles training a live animal. Touching his snout causes him to grasp or let go of an 

object; prodding a segment of his carapace causes him to move away along a straight line; 

touching one of his feet causes him to rotate about the tip of his snout in the direction of 

mouse movement. Some body parts have less obvious functions. Tapping Basil's head 

causes him to go into his shell, that is, to ignore the teacher's actions (he is reawakened by 

tapping any part of his shell). A tap on the center of his carapace causes him to move 

directly to the next position selected by the mouse. A tug on the tail causes him to undo his 

last action (this is how the teacher signals disagreement with one of Basil's predictions). 

Translation and rotation are continuous in space (to the limits of screen resolution) 

hence the teacher must have some means of indicating the interval or degree. For 

translation this is trivial: she selects the destination point with the mouse. For rotation a 
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number of approaches are attractive, such as measuring the mouse's angular movement. 

Control must be precise, so that the teacher can demonstrate rotation until contact (as used 

in the convex hull procedure). The method chosen is to continue moving in small but 

increasing steps as long as the mouse button is held down, so that the teacher relies on 

feedback from Basil to determine the limit of rotation. 

Approximate actual size. 
A locator / pick device separate from but 
controlled by the mouse. 

Brain: click here to 
toggle Turtle's attention 
on or off; Turtle's outline 
is grey when "asleep". 

Foot: rotate Turtle in 
direction of mouse 
movement. 

Shell: move Turtle 
along an unconstrained 
path. 

Move Turtle along 
NE / SW diagonal. 

Snout: grasps and 
carries an object. 

Brain: flashes when 
Turtle detects a 
sensory event. 

Move Turtle along 
vertical line. 

Move Turtle along 
horizontal line. 

Move Turtle along 
NW / SE diagonal. 

Tail: undo predicted 
action. 

Figure 3.3 Metamouse icon with function buttons 

Some implementations may not support a moveable menu and, in any case, users may 

prefer not to interrupt their work to prod the Metamouse. In teaching by demonstration the 

user shows Basil where to go by picking the destination point. Since the' mouse travels an 

unconstrained path, some useful information is lost, but Basil conjectures a path constraint 

(see below). If the pick selects an object, Basil moves to it and grasps it. If the teacher 

then drags the object Basil re-grasps it at its new position. Letting go matters only if Basil 

must leave an object behind or, grasp something else, hence this mode of activity offers no 
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explicit ungrasp command. Nor is rotation by demonstration supported, since A.Sq has no 

such command. 

Path constraints are important when generalizing actions. They enable Basil to ignore 

the exact path or destination of the mouse, which may be noisy or irrelevant. On the other 

hand, they eliminate the need to induce the reason for going in one general direction rather 

than another. Moreover, when combined with other weak constraints (eg. one that 

stipulates contact somewhere along a line segment) they can determine an action's 

parameters. Eight path constraints considered the most useful in drawing are attached to 

buttons on Basil's carapace: two vertical (up, down), two horizontal (left, right) and four 

diagonal. Often Basil will be directed to go to a particular part of an object (eg. its bottom-

left corner) along such a path. If the destination is slightly off the path but nearer to no 

other (ie. within 22.5°) Basil will deviate from the exact constraint to achieve the goal. The 

path constraint is recorded nonetheless. Similarly, if Basil is moved without constraint to 

the goal, be will find the nearest constrained path and record this as the direction in which 

to search for such a goal when executing this action in future. Thus goals have priority 

over paths but paths are used to narrow and order the search for a goal. 

Finally, it should be noted that Basil records actions that modify other actions, such as 

selecting a drawing tool. In fact, Basil can learn any A.Sq command, though learning 

about the parameters of file manipulation is not attempted. 

Formally, an action step executed by the teacher or by Basil is a tuple action-step 

(precond, action, path, postcond), where precond is sensory feedback prior to the action, 

which is a move (possibly modified by a drawing tool) or turn, whose direction is 

constrained by path, and whose parameters are further constrained by sensory feedback 

listed in postcond. 

3.2.2 Basil's Sensory System 

Geometric constructions - even the informal ones employed in van Sommers' model of 

drawing - conditionally distinguish points in space. These distinguished points, 

individually or in groups, result from operations whose semantics are order, measurement 

and classification. To satisfy the "no invisible objects" felicity condition, the teacher must 

draw objects whose intersections produce such points; Basil senses and remembers them as 
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the tactile postconditions of a step in the program. The learning system is conservatively 

biased towards highly specific tactile constraints, and limits the scope of its attention to 

touch relations between other objects and Basil's snout or the object in his grasp. If an 

action is not governed by tactile conditions, the system considers other constraints: 

absolute position, heading, or distance moved. Basil's model of "haptic perception" 

classifies and orders constraints so that only the most effective items observed are used to 

form postconditions. Moreover, it is biased towards novelty - information that has not 

changed since the precondition is ignored unless needed to distinguish the postcondition 

from an alternative. 

Formally, the sensory state is sensing(G, DT, IT, D, P, H), where G is a touch 

relation (defined below) between Basil and the object in his grasp, DT is a list of touch 

relations between objects and Basil's snout, IT is similarly a list of relations between other 

objects and the object in grasp, D is distance moved in the current step, P is current 

position, and H is current beading. Details regarding each sense are given below. When 

analyzing sensory data, the system derives a constraint (Data, Class, Used) descriptor from 

each touch relation or other percept (Data), assigning it to a Class and deciding whether it 

should be Used or ignored when explaining or generating actions. A precondition is 

precond (cx) and a postcondition is postcond (J3), where a and /3 are sets of constraint 
descriptors. 

As mentioned above, touch is the most important sensory feedback. To clearly convey 

Basil's visual processing limitations, the teacher is told that Basil (as a Flatland inhabitant) 

sees objects almost edge-on. Nonetheless he can tell the shape and size of something by 

nudging it. Since Basil is an essentially tactile creature the appropriate analog for spatial 

relations is tactile, hence the construction of distinguished points (which in geometric 

construction are points of intersection) by establishing touch relations. 

A pair of objects may touch at several points. Each touch relation is expressed as a 

correspondence of object parts, touch (objecti.parti : object2.part2), where parts indicates 

some part of object1 (rather than the it/i in some ordered set of parts). Objects are the A.Sq 

primitives box and line defined above. Parts are the handles (viz, specific points) and line 

segments illustrated in Figure 3.2. Thus the constraints expressed by touch relations are of 

three types, from strongest to weakest: 1) coincidence of two specific points, 2) 

intersection of a point and a line, and 3) intersection of two lines. The second is weaker 
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than the first because any point on the line may be chosen. To meet the third type, any 

point on either line will do. Figure 3.4 illustrates types of touch. 

grasp (Basil: B.mid.left) 

grasp (Basil: C.left) 
touch (C.bottom.right : Q.endpt) 

grasp (Basil: L.midpt) 
touch (Basil.snout : B.left) 
touch (L.midpt : B.left) 
touch (L.endpt : B.top.mid) 

Legend 

• object grasped 
E object touched 

object indirectly touched 

O object not sensed 

Note: contact between Q and R 
is not sensed 

Figure 3.4 Touch relations in sensory feedback 

Direct touch is a point-to-point or point-to-line constraint between Basil's reference 

point (his snout) and some part of an object. It isolates the current focus of attention and 

the origin point of the next operation. Basil may directly touch several objects, but only 

one part of each (the most specific part is selected). The touch relation with the object in 

Basil's grasp is not duplicated. Direct touch is expressed as a set of relations: 

{touch (Basil.snout : 0bj1.Part1), ... touch (B asil. snout : Obj-Part) 
I V i,j [Obji # Basil A - grasp (Basil : Obj) A (1 :?,-j) = (Obji # Obj)] }. 
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Grasping is a direct touch of the A.Sq active object (see 3.1). Grasping covers the 

same types of spatial constraints as direct touch but expresses Basil's ability to transform 

an object. It is defined: 

grasp (Basil: Obj.Part) 

touch (Basil.snout: Obj.Part) A Obj = active object. 

Indirect touch occurs between the grasped object and other objects on the display. It 

covers all three types of spatial relations and expresses more complex constraints than 

either direct touch or grasping. It is expressed as a set of touch relations: 

(touch (G-obj.G-part1 : Obji.Part1), ... touch (G-obj.G-part: Obj.Part 
I grasp (Basil: G-obj) A 

Vi,j [0bj1 # G-obj A 0bj1 # Basil A 

j) := (0bj1 # Obj)) A -1((i # j) = (Part1 # Part))] }. 

In Box-to-Line for example, when Basil contacts the first box with the sweep-line, his 

sensory state (the postcondlition of moving the sweep-line upwards) includes the following 

touch relations (see §4.6, step 6): 

grasping: 
grasp (Basil: S.midpt) 

touching: 
nil (ie. nothing he is not grasping) 

indirectly touching: 
touch (S.lineseg : G.lineseg) touch (S.lineseg: B.bottom-left) 
touch (S.lineseg : B.bottom-mid) touch (S.lineseg : B.bottom-right) 

definitions of variables: 
S: the sweep-line created by Basil 
G: the guide-line created by Basil 
B: the object (a box) just encountered by the sweep-line 

Observe that Basil notes the three contacts between S.lineseg and the handles on B.bottom 

but not the line-to-line contact, touch (S.lineseg : B.bottom). This is because any one of 

the point-to-line contacts implies a line-to-line constraint. Basil records only the most 

constraining relations observed. In this case collinearity is captured by the occurrence of at 

least two point-to-line touches. 

In addition to touch, Basil senses current position and heading in both absolute and 

relative terms. Absolute position, formally represented as position(x, y)., can provide a pair 
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of absolute screen coordinates as a program constant, useful when creating tools such as 

the sweep-line. Similarly, heading(h), where h is an anti-clockwise angle in degrees from 

the horizontal, provides a directional constant. Relative - in effect the change in - 

position or heading is derived from the magnitude of a move or rotate operation and is 

formally displacement(m, path), where m is a distance in screen coordinate space (move) or 

an angle in degrees (rotate), and path is a heading descriptor. Displacement facilitates 

programming in terms of body-centered coordinates, as in turtle geometry [Abelson 80]. 

3.2.3 Basil's Memory 

The use of variables and constants mentioned above entails some sort of memory. The 

organization of a memory may be considered in terms of data types or persistence over 

time. Basil remembers procedures "forever," objects for their lifetime, and sensory 

feedback - or state - briefly. Basil does not "actively forget," even though this could be 

used to remove bugs from procedures. There are six memory partitions (one of which 

properly belongs to A.Sq) that fall into three data types and four degrees of longevity. 

Current-Step (immediate) 
the action-step Basil has selected to execute or teacher is demonstrating 

Recent-Steps (short-term) 
action-steps recently performed, which Basil may undo or to which he may refer 
when inducing variables 

Program (long-term) 
the executable procedure learned by Basil; 
may be stored in a higher-level long-term memory (an archive) 

Created (medium-term) 
the list of variables bound to A.Sq objects created by Basil during this task 

Transformed (medium-term) 
the list of variables bound to A.Sq objects transformed but not created by Basil 
during this task 

Display-List (medium-term) 
the A.Sq objects currently visible on the graphics display 

The three data types are: action-steps, defined in 3.2.1; procedure, a directed graph of 

action-steps; and variable, a name dynamically bound to an A.Sq primitive. Degrees of 

longevity are immediate, persisting through duration of the current action-step; short-term, 
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over a small number of action-steps; medium-term, throughout a single teaching session; 

and long-term, "forever." 

The system remembers actions in two forms: specific actions performed by the teacher 

or Basil during a given trace; and generalized actions recorded in the Program memory. 

Current-Step is the action-step tuple describing the action most recently performed by Basil 

or the teacher. 

Recent-Steps is a stack of previous contents of Current-Step but in which direct 

references to A.Sq objects have been associated with variables. Recent-Steps is used when 

Basil must undo an action the teacher has rejected; this permits the undoing of several 

actions. The undo () function performs the inverse of the top element of Recent-Steps and 

pops it off the stack. Recent-Steps is also used to find previous occurrences of an A.Sq 

object in touch relations, so that a variable can be induced. The find-most-re cent-

occurrence-of (Object) function searches back through Recent-Steps for a variable bound to 

Object. The use and induction of variables is described in Section 3.3. 

The size of the Recent-Steps memory is one of the parameters on which the learning 

system's power can be conditioned. If it is too small, some variables may not be induced. 

Moreover, it limits the number of actions that can be undone, hence the amount of 

prediction that can be required to confirm the program's structure. On the other hand, if it 

is too large, the system will spend more time looking for variables and is more likely to 

induce them speciously. A reasonably small size, say 7 ± 2, is recommended for a 

prototype system; the performance of larger memories is certainly worth further 

investigation. 

The long-term Program memory contains the procedure that Basil is learning or 

executing. It is a directed graph of action-step tuples with generalized pre- and 

postconditions. Each node may have many successors and predecessors; this is sufficient 

to represent flow of control through sequences, loops and branches but does not impose a 

block structure. Figure 3.5 illustrates an example program graph. This representation is at 

least as general as that used by NODDY [Andreae 85]. 

The function successors (A, P) returns the set of action steps that immediately follow 

step A in program graph P and therefore may be predicted after A. Function predecessors 

(A, P) returns the actions that immediately precede A. The function find-match (D, A, P, 
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R) invokes predecessors() and successors() to search the graph P starting at step A for a 

possible match with D, the action just demonstrated by the teacher, ignoring matches R 

already found but rejected for other reasons. Although potentially exhaustive, the search is 

biased so that loops and local jumps are considered first, and suspends when the first 

match is found. The biasing heuristics are described in Section 3.4. 

So: Start 

Si. move to (posn = ask-user) 

S2. draw-line G to (posn = ask-user) 

S3. move to (posn = constant) 

S4. draw-line S to (posn = constant) 

S5. move to (grasp = S.midpt) 

S6. drag S upwards to 

(B isabox and 

touch(S.line, B.bottom.left) and 

touch(S.line, B.bottom.mid) and 

touch(S.line, B.bottom.right) and 

touch(S.line, Wine)) 

S7. move to (grasp = B.center) 

58. drag B to (touch(B.bottom.right, Wine)) 

S18. remove S 

Si9. move to (grasp = G.midpt) 

S20. remove G 

Figure 3.5 Program graph for "box-to-line" 
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Since Basil must be able to undo action-steps, he must remember the bindings of 

variables in past steps. Bindings hold until a step is re-executed, but this is insufficient 

since it may be re-executed before its previous execution is undone. Hence Basil always 

appends a copy of Current-Step to a short-term memory, Recent-Steps - in effect an undo 

list. The length of Recent-Steps is fixed; once the limit is reached, the oldest step is 

forgotten as the newest is recorded. 

Graphical construction typically involves "auxiliary" objects to measure distances or 

otherwise capture constraints. To satisfy the "no invisible objects" felicity condition, the 

teacher must draw such objects. Since they are apt to be re-used throughout the procedure 

they should be remembered beyond the limits of Recent-Steps. Thus the system creates a 

variable for every object drawn in the execution of a task and records it, with its binding, in 

the Created memory. Variable names are themselves program constants; this causes one 

serious problem. If a step that draws an object is executed more than once it cannot give 

unique names to each one. The current design does not eliminate this problem; instead, it 

adopts the convention that a variable name may appear more than once in Created, and that 

variable instances are selected non-deterministically; objects having the same name can be 

differentiated by other criteria. For example, suppose that Created contains several boxes 

called X. The following subprogram would delete all of them: 

while (move along any path to achieve grasping (Basil: X.center)) succeeds 
delete-object (X) 

In fact, "while (delete-object (X)) succeeds" would work, although Basil would inevitably 

learn to move to X by observing the teacher pick X. If objects having the same name must 

be ordered, then the teacher must express this through a construction such as a sweep-line. 

Graphics programs process objects by transforming them. It may matter that objects be 

processed only once and in a particular order. Transforming an object however may 

position it such that it will be selected again by mistake (consider for example the Spacing 

task in Chapter 1). To prevent this, Basil remembers references to objects already 

transformed in the Transformed memory. If the teacher rejects Basil's prediction that such 

an object T is selected again, the caveat "T not already in Transformed memory" is added to 

the action's postcondition. 

When a program step is learned (or executed) its variables are bound to actual values 

provided by Basil's "sensors." A.Sq records the state of all objects currently displayed in a 
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list of object data structures, Display-List. The function select-by-constraint (Display-List, 

Type, Touch-Specifier, Rejected) finds an object of given Type (eg. box) for which Touch-

Specifier, a touch predicate, holds, and which has not been found and rejected for other 

reasons already. 

3.3 Generalization—Actions 

In order to learn procedures inductively the system performs generalization. References to 

individual objects are replaced by variables that may be bound dynamically as the procedure 

is executed. Sensory feedback is generalized to pre- and postconditions by ignoring some 

aspects of it and by relaxing constraints on numbers (as in distance) or on touch relations. 

Sequential action traces are reorganized as a program graph with branches and loops. This 

section discusses the generalization of actions by introducing variables and relaxing 

conditions. The method for constructing a program is described in Section 3.4. 

Action generalization is performed at three stages of program development. 

The first stage is when trying to match a new action with a program step. Many 

program steps can potentially match an action if generalization is permitted. Preference 

should be given to a match that requires a combination of the least generalization and the 

least amount of search through the graph. The prototype system requires exact matching. 

Generality is introduced by disjoining, that is by creating branches in the graph. 

When matching a touch relation in a program step with actual sensory feedback, 

variables in the relation must be bound to objects occurring in the same role in the 

feedback. For example, touch (L.midpt : B.center) matches touch (<Obj #99>.midpt: 

<Obj #31>.center) provided L = <Obj #99> and B = <Obj #31>. 

The second stage in which generalization occurs is when adding a new step to the 

program. Sensory data are classified in order to identify determining constraints; the rest 

can be considered irrelevant for generating actions, though they may later prove useful in 

distinguishing situations. 

At this stage, variables replace object references. If the object occurs in Recent-Steps 

or Created, the variable is inherited; otherwise a new variable is created. 
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Note that this second level of generalization could be performedfirst. It is analogous to 

perceptual processing in that significant sensory data are abstracted from the input. This 

"perceptual" generalization is quite powerful, since it captures essential constraints which 

are likely to be intended by the teacher. Performing it on actions before attempting to match 

them with program steps would of course reduce the amount of generalization required at 

that stage but this does not matter. More important is the consistency of Basil's behavior. 

Since perceptual generalization can be explained to teachers in terms of a simple and 

consistent model, it should be given priority. 

A third level of generalization is performed when executing a program. At any point a 

number of alternative steps (branches) may be available. If a step cannot be predicted 

because its precondition does not match the current feedback or its postcondition is 

unattainable, it may be generalized by relaxing the troublesome condition. This type of 

generalization seems especially risky; it is recommended to let the teacher demonstrate the 

correct action and then generalize the program step to match it provided excessive 

generalization is not required. The prototype system skirts this issue by disjoining the 

teacher's action with the current alternatives. 

Sometimes the teacher rejects a prediction but performs an action that matches the 

offending program step nonetheless. This would occur if the step had been overly 

generalized or had been selected for prediction instead of a more appropriate alternative. To 

prevent the latter case alternatives should be ordered by generality if this can be determined. 

In the former case the step should be specialized by reclassifying some of its conditions as 

relevant. To do this requires that all conditions be remembered permanently. Moreover, to 

prevent over-specialization, the system should also remember the most specialized version 

of the step that covered all situations actually encountered. Since the teacher may reject 

incorrectly, or the constraint may not be strictly learnable in terms of the system's 

representation, even this minimal version may conflict with the required specialization. The 

prototype system avoids this problem by not specializing steps at all; instead, it adds the 

teacher's action to the program as a preferred alternative. 

The remainder of this section concerns the second level "perceptual" generalization: 

specifically the induction of variables and analysis of constraints. 
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3.3.1 Variables 

An object or value may occur several times in the execution of a procedure. Some of these 

occurrences may be related. For example, the teacher may wish to instruct Basil to grasp 

"the center of the box contacted by the sweep-line at the end of the previous step." We can 

think of an object playing one or more roles in the course of a task. Further, a role may be 

played by several objects on different occasions. For example, the boxes in "box-to-line" 

play the same role in each iteration of the loop. This notion of role is captured by variables 

and valuation functions that get or change their binding. In the prototype system, variables 

refer only to A.Sq objects. Numerical values such as position and distance are typically 

specified by objects, but it is acknowledged that variables would be useful to capture 

notions like "the position occupied 3 program steps ago." 

Formally, a variable is a relation variable-definition (Name, Binding), where Name is 

unique (scoping is global since the program graph has no block structure) and Binding is 

an A.Sq object. Since the distinction of objects by type is especially important, Binding is 

decomposed into (Type, Object), where Type is one of { box, line) and Object refers to a 

specific instance. 

A given program step may set or re-set a variable's value, whereas another may merely 

inherit it. With reference to Figure 3.5, step S6 sets the value of B by solving a constraint, 

whereas S7 and S8 inherit B. At the next iteration of S6, B is re-set. To ensure that values 

are changed as required, individual occurrences of variables in program steps are given as 

the relation variable-reference (Valuation, Definition), where Valuation is a function to set 

or inherit the value and Definition refers to the variable-definition record. Figure 3.6 

illustrates the referencing scheme. 

There are three valuation functions (examples refer to Figure 3.5): Create binds a 

variable to the new object drawn in Current-Step, eg. line G in step S2. Find binds a 

variable to an object found by solving constraints, eg. B in S6, "the first box whose 

bottom-edge handles contact the sweep-line as it moves upwards." Same inherits the 

existing binding, eg. B in S7, "the box contacted by the sweep-line at the end of the 

previous step." The choice of valuation function depends on occurrences of the object and 

can be decided when the variable is induced. Create and Find are associated with a new 

variable; Create if the object was just drawn, Find if it occurs in a touch relation. Same is 

selected when a previous occurrence is found. 
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Step n Step n+k 

grasp (Basil : L.endpt) 

Variable Reference 
Valuation = Create (draw-line) 

grasp (Basil : L.midpt) 

1  
Variable Reference 

Valuation = Same (use current value) 

Variable Definition 
Name = L 
Type = Line 
Object = <address> 

Figure 3.6 Definition and instantiation of a variable 

Induction of variables rests on the assumption that references to the same object on 

different occasions are not merely coincidental. A variable is induced from an object 

reference in Current-Step and previous occurrences in Recent-Steps or in the Created 

objects memory. It is convenient to create a new variable for any object appearing for the 

first time, and to keep variable-references in Recent-Steps and Created. In order to 

distinguish different roles an object may play during a task, the degree of look-back or the 

size of Recent-Steps should be limited. The most suitable limit has not been determined. 

Since variables in Created are never re-bound, greater generality is achieved by inducing 

variables from Recent-Steps and so this should be searched first. An algorithm for 

inducing variables is presented in Chapter 4. 

3.3.2 Constraints 

Constraints implicit in touch relations and other sensory feedback must be isolated from 

coincidental occurrences in order to capture the teacher's intentions. Here again the best 

one can do is to make the inductive assumption that the important constraints are those 

occurring consistently. Since actual feedback is a maximally specific description of 
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constraint, the isolation of features is a matter of generalization. [Michalski 83] describes a 

number of methods of generalizing conjunctions of predicates. The prototype system 

generalizes a feedback pattern by ignoring predicates that match generalization criteria 

(heuristics). They should be remembered, however, in case they are needed for 

specialization, to distinguish the pattern from others. 

The criterion for dropping a feedback predicate could be related to its type or structure. 

For example, Basil ignores third-degree indirect touch - an implicit generalization of 

feedback. More interesting, however, is an event's effectiveness as a constraint. For 

example, touch (Basil.snout S.midpt), where S is a particular line, is more constraining 

than touch (Basil.snout B.center), where B is some box found by moving generally 

upwards. Thus, if both occur together, the latter is more likely to be relaxed by 

generalization. The feedback generalization function, specified in Chapter 4, classifies 

touch relations and other feedback according to the constraint they place upon the operation 

performed in Current-Step. The generalization heuristic declares that predicates of certain 

classes should be ignored. The constraint classes are described below. 

Effective constraints help determine an operation's parameters. A determining 

constraint determines them exactly. Contact with a handle of an object whose variable 

valuation is Same or Created is determining: for example, grasping the mid-point of 

created line L determines the (x, y) components of a move. A strong constraint can 

determine exact position when combined with a weak constraint: contact with a handle of 

an object whose valuation is Find is strong. A weak constraint does not determine Basil's 

exact position: contact with an edge and path of motion are weak. A crossing constraint is 

an indirect touch between edges and has a very weak effect on position. A crossing 

constraint on drawing a line through another line keeps Basil somewhere within the 

frustum bounded by the line segment crossed and the projector rays from Basil's starting 

position. In the presence of a determining constraint, other conditions should be 

reclassified as overdetermined. 

Unchanged conditions persist through an operation and thus appear in both pre- and 

postconditions. The trivial ones, such as maintaining the grasp of a handle while dragging 

it, are given by the definitions of operators. Discarding them makes no difference to a 

postcondition's generality. Sustained are typically weak constraints that do not change. 
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For example, if Basil moves along an edge the contact is sustained though not at the same 

position. 

If touch predicates fail to sufficiently constrain (explain) an action's parameters, then 

either position or distance may be a determining constraint. Thus Basil asks the teacher 

whether the action is determined by a constant or a run-time input position or distance. If 

none of these, then the trace contains an invisible object (see Chapter 2). 

Having classified all the feedback, the system generalizes it by marking some features 

as ignored. Overdetermined and trivial constraints are safely ignored - though it is not 

impossible that overdetermined constraints have distinguishing power. Whether or not to 

discard a sustained feature is a question of considerable importance to the types of 

problems that can be programmed. In the real world, things that do not change are usually 

not noticed. Since the generalization discussed here is based on a sense-perception 

analogy, it is suggested that Basil will be more comprehensible to the teacher if he normally 

ignores sustained constraints. Nonetheless, the system should prepare for those occasions 

when the teacher intends that a feature be preserved, by remembering the constraint. 

3.4 Generalization—Procedures 

Given the internal representation of a graphical task as a sequence of actions governed by 

tactile conditions, which is conveyed to the teacher through the Metamouse's predictions 

and questions, consider the matter of generalizing a sequence of action-steps into a program 

with branches and loops. The Daedalos algorithm constructs a network of action-steps that 

embodies such control structures. Since the algorithm both learns and executes 

procedures, it meets the design requirements of prediction and continuous, incremental 

learning. The algorithm depends upon a (precondition, action, postcondition) model of 

action-steps but is otherwise domain independent, although its effectiveness depends upon 

the suitability of the generalization terms used in pre- and postconditions. 

The learning algorithm constructs a directed graph (the structure specified for Basil's 

Program memory). Each node is an action-step with links to preceding and ensuing steps 

that may include itself. Thus the graph can represent looping and k-way branching with 

return from a branch (cf block or subroutine) to its parent branch. A loop's entry point is 

itself a k-way branch. The alternatives at any branch point should be ordered on the 
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generality of their preconditions, then on postconditions, and finally on path constraints. 

Figure 3.5 showed an example graph. The learning algorithm can add nodes and links but 

never alter or remove them, although a tentative link may be removed if evidence 

supporting it (ie. the success of predictions) proves insufficient. 

Given that Daedalos constructs an arbitrarily connected graph, it follows that the 

programs it learns are not block structured. This may be unappealing to disciplined 

computer programmers but may have quite the opposite effect upon teachers, who are free 

to structure a task as they wish. The algorithm is nonetheless biased towards localizing 

jumps (see below). 

3.4.1 Definitions 

The algorithm is presented here in its most general form; functions specific to the Basil 

implementation are described in Chapter 4. Several important variables are here defined in 

terms of how they are used: 

PredictionSet 
When executing a program, Daedalos selects the next step to perform from 
PredictionSet, the options available at this point in the program; if none both 
applies and is accepted by the user, Daedalos learns a new step and adds it to the 
PredictionSet. 

ProposedStep 
If a member of PredictionSet fits the current situation (ie. its preconditions match 
the current state), and if its parameters P can be instantiated to P' satisfying its 
postconditions, then it becomes ProposedStep and Daedalos tentatively performs 
it. 

LastAcceptedStep 
If the user accepts the ProposedStep, it becomes LastAcceptedStep and Daedalos 
proceeds to its successors (the next PredictionSet); otherwise Daedalos looks for 
an alternative from the current PredictionSet. 

CurrentStep 
If Daedalos is unable to predict the next step (nothing in PredictionSet can become 
ProposedStep, or user rejects all ProposedSteps), the user must teach it. If the 
new step, called CurrentStep, matches one already learned in another part of the 
program, Daedalos proposes a link from LastAcceptedStep to the match; otherwise 
CurrentStep, deemed novel, is appended to LastAcceptedStep and then itself 
becomes LastAcceptedStep. 

Several integer parameters control the algorithm: 
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OptionsLimit 
When choosing the next step to execute, Daedalos may find several whose pre-
and postconditions match current and projected situations; Daedalos predicts each 
in turn until either the user accepts one of them or the number of predictions 
exceeds OptionsLimit. 

ConfirmsLink 
When Daedalos matches the teacher's action to a program step, a link to that step is 
conjectured, but must be confirmed by successful prediction of at least 
ConfirmsLink steps beyond that point. 

LinkAttemptsLimit 
If a conjectured link is rejected, Daedalos may try as many as (LinkAttemptsLimit - 
1) other linkages before deeming the teacher's action a novel program sequence 
and appending it to the current branch. 

3.4.2 Algorithm 

The Daedalos algorithm both learns and executes a procedure, commuting between these 

two modes, signalled respectively by closure and failure. A failure occurs when no 

member of the prediction set is performable or the teacher rejects all alternative predictions. 

The end of the program is also treated as a special sort of failure so that the user may add a 

continuation. A closure occurs when the teacher indicates the lesson is over or Daedalos 

verifies that the teacher's actions match some part of the existing program. Thus in 

simplest terms the learning algorithm is: 

Daedalos-Lesson (Program, Trace) 
Initialize Program 
while Check-for-End-of-Lesson signals not-end-of-lesson 

Execute Program starting with PredictionSet of LastAcceptedStep 
[untilfailure or end-of-program) 

Learn from Trace a new sequence in Program following LastAcceptedStep 
[until join-achieved or end-of-lesson) 

Store Program 

Initialize. The algorithm is given a procedure Program that may have been selected by 

the user from an archive. If Program is new, it is initialized to an empty program 

containing dummy Start and Stop events which are used to control the execution of 

Daedalos. 
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Check-for-End-of-Lesson. The program will be executed from the PredictionSet 

following LastAcceptedStep. If the only successor is Stop, Daedalos may need to learn 

new actions from the trace. 

Execute. If the lesson is not over, there may be more program to execute before new 

actions are learned. Check-for-End-of-Lesson could signal end-of-program if the next step 

is Stop, but Execute must check for this anyway. Execute, given the PredictionSet 

(successors) of the LastAcceptedStep, looks for an option whose relevant preconditions 

hold in the current state of the world and whose relevant postconditions can be achieved by 

applying its operator with variable parameters set by a constraint-solver. If the teacher 

accepts this prediction, Execute recursively calls itself with the next PredictionSet. 

Otherwise, the action is undone. The system will look for alternatives from the 

PredictionSet until OptionsLimit is reached. In the event that no prediction succeeds, 

Execute returns and the Learn routine is entered. 

In the graphical world of Basil, preconditions hold if they and their variables match 

corresponding items in Basil's immediate memory (the CurrentStateOfWorld). 

To determine whether a Step's postconditions are attainable requires a constraint solver 

to find values for the operator's variable parameters such that postconditions hold. 

Checking the postconditions is easy - the method is the same as for preconditions. 

Designing and implementing a constraint-solver is more difficult. 

Learn. When Daedalos is unable to continue executing the program, it acquires new 

program steps from the action trace. The Learn routine examines the next step in the trace 

and looks for a matching step already in the program. If a matching step is found, the 

LastAcceptedStep is connected to it through a Join node; otherwise, the trace step is copied 

to a new program step, which is appended to LastAcceptedStep, and Learn continues from 

the new step. 

Learn (Trace, Program, LastAcceptedStep) 
if CurrentStep - Get-next-trace-step from Trace is null 

signal end-of-program 

else if LinkTo - Find-and-confirm-join in Program 
from LastAcceptedStep to a step (LinkTo) 
that Matches CurrentS tep 

Make-join from LastAcceptedStep to LinkTo 
signal join-achieved 
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otherwise 
Append CurrentS tep to LastAcceptedStep 
LastAcceptedStep - CurrentStep 
Learn next step in Trace, trying to join it to updated Program 
or else appending it to LastAcceptedStep 

The routine to get a new action step from the trace creates a Step node (which will be 

thrown away if the step is matched) and fills in its action-step data slots. 

Find-and-confirm-join. When the new step has been read in, Daedalos searches the 

program for a step that matches it. If a matching step is found, Daedalos must confirm the 

link to it by successfully predicting at least ConfirmsLink steps beyond that point (or by 

reaching the end of the program), before making a join from LastAcceptedStep. 

To find a matching step Daedalos can search the entire program graph. The search is 

depth-first, but biased towards nodes near the LastAcceptedStep, where search 

commences. It is also biased towards finding loops, by searching chains of 

LastAcceptedStep's predecessors first. These biases are suitable to the two types of 

hierarchical task decomposition found by van Sommers (see §2.2.1) Duplicate searches 

and endless loops are prevented by marldng nodes as encountered. 

Matches. The action matching predicate compares action-steps and succeeds if the 

program step is (or can be made) a generalization of the demonstrated action. Given that 

steps can be generalized in order to match, the number of candidate matches could increase 

uncontrollably. Moreover, the best matches may be missed if the first match found is 

accepted. Hence the system should limit the amount of generalization, produce all possible 

matches and order them by closeness and other preference criteria. To avoid these 

problems, the prototype system should generalize only path, position, distance and heading 

- very easily justified generalizations - and not bother ordering candidates. 

3.5 Putting the System Together 

From the user's point of view, the graphical programming system has two modules - the 

drawing program A.Sq and the apprentice Basil. For the purposes of research, however, 

Basil, the interaction device with senses and memories, is distinguished from Daedalos, the 

system that constructs program graphs. Basil is an intermediary between Daedalos and 

A.Sq and performs a first level of generalization. 
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The three modules, their components and interfaces are shown in Figure 3.7. The 

teacher transmits mouse events to A.Sq, which interprets them as graphical actions and 

returns visual feedback. If Basil is active, he observes these A.Sq actions and the sensory 

feedback before and after each step. Basil induces variables and constraints, then transmits 

these observations to Daedalos, which further generalizes them and incorporates them into 

the program. When predicting the next action step, Daedalos sends the generalized action 

specification to a constraint solver to determine the action parameters; if the solver 

succeeds, it sends a graphics command to A.Sq; otherwise it informs Daedalos of the 

failure. 

Teacher 

action 

A.Sq 
drawing program 

drawing 

Metamouse Daedalos 
metaphorical apprentice procedure induction module 

operation 

Induce 
variables 

Identify 
constraints 

program step> Situation 
matcher 

directed graph of 
program steps 

* 
Constraint 

solver 

predicted action 

Figure 3.7 Main modules of graphical programming system 
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Chapter 4 

An Implementation 

A phased implementation of the system described in Chapter 3 allows feasibility studies 

and investigation of generalization heuristics and the requirements for constraint 

satisfaction, prior to committing the resources needed for a working prototype. The initial 

(Phase 0) system described here has no constraint solver. Although able to induce 

procedures it cannot generate actions in the display environment, hence full graphical 

interaction with the teacher is not supported. The Phase 0 system includes the A.Sq 

drawing program and a Metamouse that follows the teacher and informs her of its 

sensations. It records execution traces but induces variables and constraints off-line (le. 

after the trace is completed). Daedalos operates interactively but in a separate session and 

uses textual representations. 

Implementing the system' presents some interesting challenges. Its major modules 

(A.Sq, Basil, and Daedalos) are inherently complex: they receive, process and generate 

large amounts of information. The interfaces between them have a high bandwidth and 

interactivity. Efficiency is a major concern. The fully working system must respond to 

events in real time. It must perform complex generalization inferences and solve geometric 

constraints within the teacher's short-term attention span. 

4.1 Phase 0 Implementation 

The system's modularity enables successive versions to be built on the same basic 

structure. The Phase 0 implementation includes most subcomponents of the major 

modules, A.Sq, Basil, and Daedalos. A.Sq is as described in Chapter 3. Basil has the 

sensory capabilities given in the design. He can follow the teacher's actions but cannot be 

told directly to move or rotate. Basil therefore can be taught by demonstration but not by 

leading. Daedalos follows the algorithm given in Chapter 3. 

The major omission is the interface between Daedalos and Basil. In a complete 

implementation Basil would report each action to Daedalos immediately after processing it. 

Daedalos in turn would transmit predictions to Basil. In Phase 0, Basil processes and 
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stores the entire action trace. Daedalos then re-processes it, interacting with the teacher 

through a textual dialogue. Since there is no constraint solver, Daedalos predicts actions 

but not the particular objects involved. Phase 0 facilitates a feasibility study to answer such 

questions as: 

1. Can the teacher predict Basil's sensory responses? 

2. Does the condition-action model apply to procedures actually performed by users, 
ie. is Daedalos able to construct a procedure from a typical trace? 

3. What sorts of generalization heuristics would help Daedalos correctly match 
situations in actual traces of the sample problems from Chapter 1? 

4. Is inescapable "noise," such as coincidental, irrelevant contacts between objects, 
too widespread to be ignored? 

5. Should Basil continuously monitor his sensory feedback, rather than just before 
and after an action, ie. does this sampling introduce irrelevant postconditions? 

If the answers to these questions suggest that the system is indeed feasible, further 

implementations will proceed. Phase 1 has interaction between Daedalos and Basil, but 

without a built-in constraint solver. Daedalos will print predictions in a text window 

attached to the A.Sq display. The teacher acts as constraint solver by carrying out actions 

she accepts. Phase 2, including a solver, will serve as a prototype system suitable for 

testing alternative generalization methods. 

The hardware and software support required for each phase is the same. The usability 

of A.Sq and Basil depends upon a high-speed graphics processor and a mouse or tablet 

input device. Basil and Daedalos benefit from built-in memory management to support 

complex yet ephemeral intermediate representations of data. The system overall has been 

designed as a group of entities cooperating in response to events. The Macintosh computer 

running object-oriented ExperCommonLisp provides a suitable operating environment. In 

Phase 0, A.Sq and Basil run as a single process in the Lisp environment; Daedalos is run 

separately. A.Sq and Basil are defined as Lisp objects that send each other messages. 

Other important components, such as user interface devices and graphical objects, have 

their own class definitions. This object-oriented coding style could take advantage of a 

multi-processor architecture. 

The user interface was designed using the InterfaceBuilder, a commercial user interface 

management system based on the same object-oriented Lisp. It provides a graphical editor 

for windows and pull-down menus and a run-time interface to the Macintosh ToolBox. It 
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traps user-generated events and translates them into messages it sends to the appropriate 

modules of the application. 

4.2 A.Sq 

The user of Phase 0 A.Sq will find it a Spartan imitation of MacDraw. Its primitives and 

operators are as described in Chapter 3. This implementation of A.Sq is adequate for 

representing the problems described in Chapter 1. 

The user interface provides tools to draw and transform boxes and lines by rubber-

banding. The application has no interface to files and the display window cannot be 

panned or zoomed. The A.Sq "panel," shown in Figure 4.1, consists of a row of pull-

down menus, a menu of drawing tool icons, and a drawing pad. The cursor is sensitive to 

this division of the display region: when moving over menus it appears as an arrow; on the 

pad it resembles the currently selected drawing tool. Menus, objects and locations are 

selected by depressing the mouse button. Drawing lines and boxes requires two selections 

(of end-points or corners); the button is held down after the first and released after the 

second. 

File Edit Shape Basil Tasks Options 

 New Window  1. 
ox 

Line 

ti-ape 

U 

+ 
Figure 4.1 A.Sq user interface 
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Pull-Down Menus. The bar at the top of the screen contains six pull-down menus. A 

mouse event in this region invokes one of the A.Sq methods attached to individual menu 

items. There are six pull-down menus ordered as follows from left to right on the menu-

bar: 

File 
ifie operations (currently none) and Quit, the command to exit A.Sq. 

Edit 
the Cut operation to remove an object from the display list; and Undo, to reverse 
the effects of the previous operation 

Shape 
same as the iconic menu of drawing tools (see below). 

Basil 
commands to delimit the teaching session and control Metamouse (see below). 

Tasks 
names of procedures learned by Basil; not supported in Phase 0. 

Options 
control parameters for A.Sq; currently, only Show Handles is provided (see 
Feedback below). 

Basil. Since the Phase 0 instructional paradigm is teaching-by-demonstration and rotation 

is not supported, the Basil menu currently contains only two items. Begin Lesson (which 

toggles to End of Lesson when selected) delimits a single teaching session. Basil appears 

on screen below the drawing icons and will observe the teacher's actions until put to sleep 

or told the lesson is over. Take a nap (which toggles to Wake up, Basil!) temporarily 

suspends Basil's attention. 

Drawing Tools. Selecting one of the icons at the left of the panel (or under the Shape 

menu) sets the current mode of operation on the drawing pad, which persists until changed 

by another selection. There are three options: Box and Line modes create new objects by 

rubber-banding; Reshape permits objects to be picked and transformed. The cursor takes 

on the current tool's shape. 

Drawing Pad. Picking a point inside this region commences a drawing operation. A.Sq 

must also bring itself and Basil (if awake) up to date: 
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Handle Mouse-Button Down in Drawing Pad (Location) 
CurrentPoint - Location 
Inform Basil of Operation commencing at CurrentPoint 
Invoke Operation bound to Pad: 

Box/Line: 
CurrentObject .- create and install object in DisplayList 
CurrentPoint - location at which mouse-button is released 

Reshape: 
CurrentObject - Pick from DisplayList at Location 

Inform Basil of operation completed and updates to CurrentObject, CurrentPoint 

To draw a new box for example, the teacher 1) places the cursor on the pad where she 

wants one corner to lie, 2) picks this point by pressing the mouse button, 3) sizes the box 

by moving the mouse while keeping the button pressed and 4) piôks the opposite corner by 

releasing the button. User action 2 invokes the Handle Mouse-Button Down in Drawing 

Pad routine. It immediately informs Basil that a location has been picked; if Basil is awake 

and not already at CurrentPoint, he will move there. This move is itself a step in the 

program. User action 3 is monitored by the routine to edit a box by rubber-banding. User 

action 4 returns control to the pad handler, which installs the box in the DisplayList and 

activates its handles so that the teacher may immediately re-edit the box if she wishes. The 

handler informs Basil of the cursor's new position and the box's address. Basil moves to 

the opposite corner of the box, grasps it, and records the drawing operation. 

Pick and Transformation. A.Sq employs a gravity pick with cyclic disambiguation. If 

the current operation is Reshape, Handle Mouse-Button Down in Drawing Pad tries to 

update CurrentObject to some object that lies near CurrentPoint. "Near" means that one of 

its edges or handles is no more than 3 pixels away. Several objects may lie near enough to 

be selected, but only the first found in DisplayList is picked. It is moved to the end of 

DisplayList to give other objects higher priority for the next pick. To disambiguate a pick 

the user need only repeat the mouse-button press. 

Only CurrentObject can be edited. Each of its handles is bound to a method for 

transforming the object when that handle is moved (see §3.1). The handles of 

CurrentObject become active regions of the display, with priority over the drawing pad. 

Thus when the mouse-button is pressed within the extents of the handle, the event manager 

invokes the handle's method rather than the pad handler. 
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Cut and Undo. Only CurrentObject can be deleted from the display; the user may select 

Cut from the Edit menu or hit the backspace (delete) key. The deleted object is moved from 

the display list to a deletions list and CurrentObject is set to nil. Basil is informed of the cut 

and updates his sensory record accordingly. 

Rect 

Macintosh built-in class for rectangles 
Defines extents box of primitive 

BPrimltive 

Instance variables:  
type: name of class (eg. BLine) 
state: indicates whether object is drawn, erased or needs update 
handles: list of icons for manipulating object 

Methods:  
create, draw, erase, update, pick, etc. 

BLine BBox 

Instance variables:  
none; vertices defined by inherited 
Rect data 

Methods:  
create-interactively, draw, 
rubber-band-edge, 
rubber-band-vertex, drag, etc. 

Instance variables:  
ptl, pt2: end-points of line 

Methods:  
create-interactively, draw, 
rubber-band-vertex, drag, etc. 

Figure 4.2 Class hierarchy of A.Sq graphical objects 

The user can reverse the most recent drawing, transformation or cut by selecting Undo. 

A.Sq's undo is self-reversing rather than regressive. Basil, upon hearing of an undo, 

marks or unmarks as undone the most recent step of the action trace; Daedalos ignores an 

undone step. 
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Feedback. Apart from the graphical display of objects, A.Sq provides several forms of 

graphical feedback. As mentioned above, the cursor icon matches that of the current 

drawing tool. Since the user is assumed to be focussed upon the cursor, CurrentPoint is 

not explicitly displayed. When it does matter, as the anchor point during rubber-banding, 

or as the current location of Basil, its display would be superfluous. 

CurrentObject is indicated by displaying its handles filled in black (handles of other 

objects are hidden). If the ShowHandles option is selected, handles are shown in outline 

whenever the cursor moves near an object. This helps the user locate important points on 

objects, such as centers, that are distinguished only by handles. The feedback routine is 

run when the processor is idle and at regular intervals during rubber-banding. It invokes 

the same proximity search as Pick, but with a slightly larger tolerance and permission to 

highlight more than one object; moreover, boxes are selected by extents overlap. 

ASq: 
an ASq-Class object 
(only major components are shown) 

EdPanel: 
a list of selectable objects in 
the user interface; icons, 
canvas, handles of objects 

I 
Canvas: 
a Useritem; canvas area 
is a selectable Rect 

I 
ltemData: 
also known as 
DisplayList, 
a list of BPrimitive 
objects 

Metamouse: 
a Basil-Class object; 
all data regarding 
Basil's sensory state 

State Information: 

Operation: 
a symbol; currently 
selected drawing operation 
(draw-line or draw-box or 
reshape-object) 

CurrentPoint: 
position selected by mouse 

CurrentObject: 
A.Sq object selected by 
user for transformation 

Figure 4.3 A.Sq system data structure 
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Data Structures. Phase 0 A.Sq has line and box primitives only. Figure 4.2 illustrates 

the hierarchy of graphical object classes: each subclass has its own methods for rubber-

banding, transforming, displaying and picking. Objects are collected into DisplayList from 

which the event manager updates the graphics window, and the Pick and ShowHandlles 

routines select objects. An overview of the A.Sq data structure is shown in Figure 4.3; 

profiling information for such features as the size of object gravity fields is not shown. 

4.3 Basil 

Basil 0, the Metamouse implemented for Phase 0, meets the requirements for teaching by 

demonstration. Basil 0's sensory feedback and memories follow the Chapter 3 

specification, except for the omission of heading. 

Data Structure. Basil is an ExperCoxnmonLisp object that contains the following slots: 

Activity-state 
flag indicating whether Basil is currently awake or asleep; determines his response 
to messages from A.Sq (when asleep, responds only to "begin lesson", "end of 
lesson" and "wake up") 

Icon 
pointer to a Basil-Icon object 

Application 
pointer to A.Sq, so that Basil can access the DisplayList, etc. 

Current-position 
Basil's reference location at which touch and grasp are sensed; the screen-
coordinates of the snout on Icon 

Previous-position 
value of Current-Position prior to last movement of Icon, used to compute distance 
moved; could use position recorded in postconditions of Previous-action 

Touching 
list of touch-predicates, naming points of intersection between Basil's snout and 
other objects 

Grasping 
single-element list of touch-predicates describing Basil's relation to CurrentObject; 
implemented as a list for uniformity with Touching & Indirectly-Touching 

Indirectly-Touching 
list of touch-predicates giving relations between object in Grasping and other 
objects 
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Action-trace 
list of action-steps recorded by Basil 

Current-action 
action-step node being instantiated by current A.Sq operation 

Previous-action 
previous value of Current-action, the last node in Action-trace, from which Basil 
searches for recurrence of objects 

Objects-Created 
medium-term memory; list of pointers to A.Sq primitives drawn during teaching 
trace 

Objects-Transformed 
medium-term memory; list of pointers to A.Sq primitives whose handles were 
dragged during teaching trace 

Body. Basil 0 learns programs that consist of moving, dragging, and drawing. The 

restriction to teaching by demonstration makes direct manipulation of the Basil 0 icon 

unnecessary. The Basil menu, described above, contains no commands for moving Basil. 

Nonetheless, it is desirable to show Basil that his position (the location of his snout) should 

not change between certain operations - for example, when drawing a sequence of 

connected lines. Moreover, when Basil awakens from a nap, he may need to be told to 

grasp what he is touching. Thus, rather than have the teacher try to place the cursor exactly 

at Basil's snout, the Basil 0 icon is treated as a moveable button a simpler version of the 

original Metamouse device. In keeping wit6 the demonstration paradigm, the method 

attached to the icon invokes the drawing pad handler, but uses Basil's snout rather than the 

cursor's position as the location. 

Basil 0 delimits actions by observing mouse-down (teacher presses mouse-button) and 

mouse-up (teacher releases button) events filtered through A.Sq's drawing pad and handle 

server routines. Basil interprets a mouse-click event (button pressed and released 

immediately) as a move to CurrentPoint. A mouse-drag event (mouse moved while button 

held down) is a draw-line, draw-box or drag (transform object) as determined by the 

current drawing mode. When informed by the server that an action has commenced, Basil 

sets up a new action-step - and if necessary interposes a move step to reach the starting 

point: 



76 

Basil Informed of Action Commencing (Operation, Location) 
Previous-action <- Current-action 

Current-action <- Create new action-step data structure 
Generalize and record Current-action's preconditions 

[based on Previous-action's postconditions} 

If Operation is not Reshape and Location 9• Current-position 
(Basil must move to starting point of operation) 
Current-position - Move to Location 
Record Action (move) Path and Distance 

Generalize and record postconditions of move to Location 
Append Current-action to Action-trace 
Current-action - Create new action-step data structure 
Generalize and record Current-action's preconditions 
[based on move's postconditions] 

else do nothing (Basil is ready for operation) 
return to A.Sq and await completion of Operation 

Once the teacher's action (mouse event) is completed the server informs Basil, who updates 

his position, touch and grasp feedback and records the operation and its postconditions: 

Basil Informed of Action Completed (Operation, Location, Current-Object) 
Current-position <- Move to Location 
If Current-Object is not nil, grasp it 
Record Operation, Path and Distance to Location 

Generalize and record postconditions of Current-action 
Append Current-action to Action-trace 

In Phase 0 the action-step node is appended to an Action-trace which is analyzed and run 

through Daedalos after the teaching session; in Phase 1, it will be passed on to Daedalos 

immediately. 

Sensory Model. The Phase 1 routine to justify and record postconditions mentioned 

above would 1) note Basil's current sensory feedback; 2) perform object generalization; 3) 

classify feedback to determine whether sufficient constraint has been given to explain the 

action's parameters; and, if need be, 4) ask for justification. The Phase 0 routine performs 

step 1 only; filter programs run after the interactive process perform steps 2 ... 4. The 

sensory capabilities implemented in Basil 0 are exactly those described in Chapter 3, except 

that heading is omitted since Basil does not rotate. 

Touch relations are represented as a pair of Object-Info records. An Object-Info record 

associates object and part information with a variable-reference: 
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Address 
pointer to the object, an A.Sq primitive in DisplayList 

Part-Name 
name of part of object in the relation 

Part 
pointer to the part's data structure, if any (nil if Part-Name is "line-segment") 

Variable 
pointer to the variable-definition associated with this object; derived from a search 
through Basil's memories 

Valuation 
function that instantiates Variable (ie. sets Address) or leaves it unchanged 

Basil 0 observes touch relations between itself and objects in DisplayList, and records 

actual values for each Address, Part-Name and Part. A filter program to induce variables, 

described in §4.5.1, sets Variable and Valuation according to the rules of generalization. 

Since Phase 0 lacks a constraint solver, Valuation merely names an operation that the 

researcher/user must perform manually in order to find a value for Object (see §4.4). 

Recall the three types of touch relations defined in §3.2.2 - point-on-point, point-on-

line, and line-crosses-line - and the rule that only the most specific touches are recorded. 

The Find-Touches routine looks for touches of each type in order. Although an object's 

gravity field is implemented by enlarging its bounding box, there is no need to extend line 

segments, since end-points lie within handles. Moreover, collinearity need not be checked, 

since overlapping line segments will have handle-handle or handle-segment touches. 

4.4 Daedalos 

The Daedalos learning algorithm implemented for Phase 0 processes an action trace 

translated into textual form by the researcher. It matches steps in the action trace to steps in 

the program under construction, without a representation of particular graphical objects. 

Generalization matching is omitted from Phase 0; steps are matched by syntactic identity. 

Despite these limitations, a session with Daedalos 0 can be used to evaluate Basil's 

generalization of objects by creating variables and of conditions by dropping terms. Of 

course, a session with Daedalos also tests the learning algorithm itself. 

Daedalos elicits the action trace from the teacher step by step. An action-step data 

structure is a list of three items (precondition, operation, postcondition). The internal 
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syntax of each item does not matter provided it is consistent with items against which it 

may be matched. Daedalos prints predictions and asks for confirmation. 

The learning algorithm differs from the original design only in that OptionsLimit and 

LinkAttemptsLimit are fixed at 1; ConfirmsLink is still variable. It is coded in 

ExperCommonLisp. An object of class PgmNode represents a program step or node in the 

directed graph. The node comprises: 

Action-info 
pointer to the action-step data structure 

Predecessors 
list of PgniNodes whose Successors lists include this node 

Successors 
list of PgmNodes whose Predecessors lists include this node 

Mark 
flag indicating whether this node has been visited during a given search of the 
graph; reset before each invocation of Find-and-confirm-join (see §3.4.2) 

The program graph is initialized to a connected pair of dummy "Start" and "Stop" 

PginNodes. A sequence is created by inserting new nodes after Start and before Stop. A 

branch is opened by appending a new node to the Successors of LastAcceptedStep. A 

branch or loop is closed by appending the matched step (called the "join step") whose 

successors were successfully predicted to the Successors of LastAcceptedStep. 

Recall from §3.4.2 that the search for a join step gives priority to nodes preceding and 

near LastAcceptedStep (Daedalos is biased towards hierarchical task decomposition) but 

potentially selects from the entire graph. Ideally the Find-and-confirm-join function would 

initiate a bounded search along chains of LastAcceptedStep's predecessors, followed by a 

similar search along successors, followed by a total graph search. The Phase 0 version 

crudely approximates this by recursively searching predecessors, followed by successors. 

It thus gives priority to "non-local" connections over nodes near to but succeeding 

LastAcceptedStep. This should not matter since the graphs of programs for tasks given in 

Chapter 1 are small and offer few matching candidates (typically no more than 1) - 

especially since Phase 0 matching involves no generalization. 
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4.5 Generalization 

In order to abstract traces into program graphs, the Phase 0 system performs two kinds of 

generalization on individual actions: 1) variables replace individual objects; 2) constraints 

are dropped from pre- and postconditions. These are described in §3.3. Since Phase 0 

does not support matching by generalization in Find-and-confirm-join, actions are 

generalized by filter programs that process the entire action trace before it is handed on to 

Daedalos. The first filter program induces variables; the second classifies constraints and 

generalizes pre- and postconditions. The filters must run in this order since the occurrence 

of variables affects the classification of constraints. 

4.5.1 Variables 

The variable filter finds multiple occurrences of a given object in the action trace and 

associates them with common variables according to the rules outlined in §3.3.1. It 

searches recent steps of the action trace and the list of objects created by Basil. It sets the 

fields of Object-info records in touch relations (see §4.3 : Sensory Model) that correspond 

to variable-references. Variable-definitions are maintained in a global symbol table. The 

implementation introduces one new valuation function, Transformed, to facilitate 

investigation of the usefulness of remembering transformed objects (see §3.2.3). 

Induce-variables. The filter algorithm is given below. Note that all the information 

needed to construct the memories of objects created and transformed is contained in the 

trace, hence the system need not produce these beforehand. 

Induce-variables (Trace) 
set up empty Created and Transformed lists 
for each step S in Trace 

for each touch relation T in postcondition of S 
for each object X in T 

Get-variable-&-valuation-fn for X, 
searching Traôe, Created and Transformed 

Get-variable-&-valuation-fn. This routine searches (and constructs) memories to 

identify recurrences of objects and variables. The Action-Trace contains variable-

references, Created contains. pointers to variable-definitions, and Transformed contains 

object addresses. In keeping with the rules for inducing variables, Action-Trace is 

searched first, followed by Created and Transformed. If the current action creates an 
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object, no search is performed and a new variable is defined. If the search fails, a new 

variable is defined and a new item added to Transformed if appropriate. Object is an 

Object-info record. 

Get-variable-&-valuation-fn (Object, Action-Trace, Created, Transformed) 
if Current-Step. Operator is Draw-box or Draw-line 

Object.Variable - New-variable in Created list, bound to Object 
Object.Valuation <- "Create" 

else if V <- Variable-found in Action-Trace bound to Object.Address is not null 
Object.Variable - V 
Object.Valuation - "Same" 

else if Object.Address occurs as binding of some variable V in Created 
Object.Variable - V 
Object.Valuation - "Same" 

else if Object.Address occurs in Transformed list 

Object.Variable <- "Trans" (don't individually name) 
• Object.Selector - "Transformed" 

otherwise (no previous occurrence of Object found) 
Object.Variable <- New-variable bound to Object 
Object.Valuation <- "Find" 

[remember any object that has been transformed) 
if Current-Step.Operator is Drag 

append Object.Address to Transformed 

Variable-found. The routine to search back through the trace for a previous occurrence 

is governed by a parameter LookbackLimit, the maximum number of steps to be examined 

(conceptually, the range of Basil's short-term memory). It checks each Object-Info record 

in a given Trace step's postcondition. Note that the search begins with Current-Step; this 

ensures that all occurrences of an object in a given step are associated with the same 

variable. 

Variable-occurrence (Trace, Object) 
V - null 

for lookback - 0 through LookbackLimit, until found is signalled 
SearchStep - Current-Step - lookback 

if Object.Address occurs as binding of some variable V in SearchStep 
signal found 

return V 

New-variable. When no previous occurrence exists, a new variable is created and 

bound to the current object. The initial binding in no way restricts future bindings. The 
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rules of touch-relation matching guarantee that a variable is always bound to objects of the 

same type (Box or Line). 

4.5.2 Constraints 

Recall that a condition is simply a conjunction of constraint predicates generalized from 

Basil's sensory feedback. Given a trace in which conditions have already been generalized 

by introducing variables, a second filter generalizes them further by dropping predicates. 

The decision regarding which predicates to drop is made by classifying them according to 

their ability to distinguish a situation (precondition) or constrain the parameters of the 

operation they govern (postcondition). The classes were described in §3.3.2. The 

mappings of these classes onto the decision to keep or discard constitute generalization 

heuristics. The filter permits different mappings for experimentation with heuristics. 

The constraint generalization filter considers each trace step in turn. Precondition 

predicates and their classification are inherited from the previous step's postcondition (the 

first step has no precondition), but the discard heuristic is different. 

Postconditions are simplified by discarding trivially uninformative predicates, and 

generalized by ignoring others that may or may not be informative. The postcondition 

generalizer rationalizes the selection of predicates to achieve sufficient constraint before 

attempting to generalize. 

The hierarchy of classes to which constraint predicates are assigned is based on the 

model in §3.3.2 and is given below: 

1. Effected 
a. Determining 
b. Strong 
c. Weak 
d. Crossing 

2. Unchanged 

3. Overdetermined 
a. Strong 
b. Weak 
c. Crossing 
d. Sustained 
e. Trivial 
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4. Teacher-given 
a. Input 
b. Constant 

The postcondition filter classifies and reclassifies predicates, checks for sufficient 

justification and finally discards some predicates as required by the generalization heuristics 

currently in force. If touch predicates do not provide sufficient justification, the filter asks 

the teacher to reclassify position and distance predicates. If a determining constraint is 

resent, other constraints are reclassified as overdetermined. The algorithm follows: 

Generalize-Postcondition (PostCond, PreCond, Operator, Path, Heuristics) 
{for class definitions see below) 
Set-Class of PostCond position, distance and path as Trivial 
Classify PostCond touch predicates into subclasses of Effected or Unchanged 

using knowledge about Operator and PreCond - to - PostCond transitions 
if any item is in class Determining then 

Reclassify items in Effected or Unchanged to Overdetermined 
if Sufficient-justification of Operator, 

based on classification of PostCond touch predicates, then 
if no item is Determining, Reclassify path as Weak 
Discard some Overdetermined predicates according to Heuristics 

else if Reclassify position or distance to class Teacher-given succeeds 
Discard all other PostCond predicates 

otherwise 
signal failure to justify action 

Classify. Initially, all touch predicates are assigned to subclasses of Effected and 

Sustained; all other predicates are assigned to Trivial on the assumption that touch 

constraints will prove sufficient. The rules for selecting a subclass of Effected or 

Sustained are given below. The main features of interest are the type of relation (point-to-

point, point-on-line, line-crosses-line), its relation to Basil (grasp, direct or indirect touch), 

and the role the object plays, as expressed in the valuation function of its variable. T is the 

touch relation to be classified; U is some other touch relation; P and Q are Object-Info 
records. 

Trivial 
T=grasp (Basil: P) 
and Operation is one of (Draw-line, Draw-box} 
le. Basil is grasping the object just drawn 
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Determining 
T is one of ( grasp (Basil : P), touch (Basil P)} 
and P.Part is a handle 
and P.Valuation is one of ( Created, Same) 
and T fails tests for Trivial and Unchanged 
ie. Basil is moving to an object already identified to him 

or 
T = touch (P: Q) 
and grasp (Basil: P) 
and P.Part is a handle and Q.Part is a handle 
and Q.Valuation is one of ( Created, Same) 
ie. Basil moves to achieve point-to-point touch between the object in grasp and 
another already identified  to him 

Strong 
T is one of { grasp (Basil : P), touch (Basil: P)) 
and P.Part is a handle 
and P.Valuation = "Find" 
ie. Basil is moving to a handle of an object found by solving constraints 

or 
T = touch (P: Q) 
and grasp (Basil: P) 
and P.Part is a handle and Q.Part is a line-segment 
and Q.Valuation is one of { Created, Same) 
ie. Basil moves to achieve point-to-line touch between the object in grasp and 
another already identified to him 

Weak 
T is one of { grasp (Basil : P), touch (Basil : P)} 
and P.Part is a line-segment 
ie. Basil is moving to a line 

or 
T = touch (P: O_) 
and grasp (Basil: P) 
and P.Part is a handle and Q.Part is a line-segment 
and Q.Valuation = "Find" 
ie. Basil moves to achieve point-to-line touch between the object in grasp and some 
other object found by solving constraints 

Crossing 
T = touch (P: Q) 
and P.Part is a line-segment 
and Q.Part is a line-segment 
ie. Basil senses an indirect touch between lines or edges of boxes 

Unchanged 
T matches some U in precondition 
ie. relation has not significantly changed as a result of the action 



84 

Overdetermined 
class of T is not Determining 
and 2 U in current precondition whose class is Determining 
(select subclass of Overdetermined that matches T's previous classification) 
ie. a determining constraint has been found; all others are reclassWed as 
overdetermined 

Sufficient-justification. After classifying all touch constraints, the generalization filter 

checks for sufficient constraint to enable determination of action parameters. If any 

predicates of classes Determining, Strong or Weak are present, the action is justified. 

Otherwise the program asks the teacher (as Basil would do) for a reclassification of 

position or distance as Input or Constant; the touch predicates are all reclassified as 

Overdetermined. 

If there is sufficient justification in touch predicates but none is Determining, path is 

reclassified as Weak so that the constraint solver could use this to further constrain the 

search for contacts. 

Discard. The default generalization heuristic for Phase 0, represented as a list of classes 

to be ignored, discards all Overdetermined items. Better modeling may be achieved by 

retaining some Overdetermined constraints, such as Sustained; in any case all Trivial items 

should be discarded. 

Preconditions. Precondition predicates inherit the classification of the previous 

corresponding postconditions. Phase 0 provides a separate generalization heuristic for 

preconditions, but currently it covers the same classes as the postcondition heuristic. When 

predicting actions, Daedalos ignores preconditions altogether if postconditions are 

attainable. Should the teacher reject the prediction, the preconditions are marked 

"necessary" and cannot be generalized again. 

Path. A path constraint augments non-determining touch constraints. It is useful however 

to generalize path somewhat when matching and predicting actions. Currently Basil 

distinguishes 8 paths along octant boundaries in 2-D space. The boundaries themselves 

constitute the four axes { vertical, horizontal, SWNE, SENW}. A pair of opposite but 

(roughly) collinear paths may be generalized to the nearest axis. 
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4.6 A Worked Example 

A teaching session of the box-to-line task was presented in Chapter 1. The series of 

figures below illustrate the generalization of each step in the action trace by the filter 

programs. The trace is one of those gathered for use in the studies described in Chapter 5. 

Daedalos induced the program graph illustrated in Figure 3.4. 

The number at the upper left of each frame corresponds to a step number in Figure 3.4. 

At the upper right is a description of the teacher's and Basil's actions at that step. Below 

each frame is a description of the action-step record. Sensory feedback is shown as 

recorded after generalization. Feedback items are of the form (sense data class), where 

sense is the type of feedback (eg. touch), data is the generalization of Basil's observation, 

and class, printed in italics, is the constraint classification. Feedback items ignored due to 

generalization are in plain type; items considered relevant are in bold. Variable-references 

for each step are listed below the postconditions. Each entry is of the form-(variable name: 

valuation function). 

Note that the frames are not scaled-down snapshots of the Macintosh display: the real 

drawing pad is somewhat larger in relation to Basil. The printed representation of touch 

relations of the form "grasp (Basil: Obj.Part)" has been abbreviated to "grasp (Obj.part)", 

Step 0. The teacher initiates the lesson and Basil appears at his standard position at the 

left of the display. Basil records no actioiThrfeedbick at this point. 

0 Starting Position; 
Teacher has selected "Time for a Lesson" 
from the Basil menu 
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Steps 1, 2. The teacher draws the guide-line. Both end-points are classified by the 

teacher as inputs. In each case the generalization filter detects the lack of tactile constraint 

and asks the teacher to explain Basil's current position. Note that step 2's preconditions 

are inherited from step l's postconditions: this of course does not mean that Basil would 

expect another input position, but that he should be at the position established by step 1— 

a trivial precondition but potentially useful to prevent incorrect formation of a loop. 

Preconditions 

Operation 

Path 

Postconditions 

2. 

Preconditions 

Operation 

Path 

Postconditions 

Variables 

Teacher begins line stroke; Basil moves to 
position, asks why; Teacher answers that 
point is a parameter 

none 

Move 

overdetermined 

position input 

Teacher draws guide line; Basil requests 
rationale for endpt; Teacher calls it input 
parameter 

= Step 1 Postconditions 

Draw-line 

overdetermined 

position input 

grasp (G.endpt) trivial 

G : create 
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Steps 3, 4. The teacher draws the sweep-line. The only difference between this and the 

guide-line, as far as Basil is concerned, is that its end-points are constant. 

3. 

4. 

Teacher places anchor pt for sweep line; 
Basil asks rationale; Teacher replies point is 
constant 

Preconditions : = Step 2 Postconditions 

Operation : Move 

Path : overdeterrnineci 

Postconditions position constant 

/ S 

Preconditions 

Operation 

Path 

Postconditions 

Variable 

Teacher draws sweep line; Basil requests 
rationale; endpt is constant 

= Step 3 Postconditions 

Draw-line 

overdeterrained 

position constant 

grasp ( S . endpt) trivial 
S : create 
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Steps 5, 6. The teacher grasps the sweep-line at its mid-point and drags it upwards until 

contact with a box. Since the sweep-line was created by Basil in the previous step, it is a 

known object. Moreover the move to grasp its mid-point establishes a point-to-point touch 

relation. Therefore grasp(S.midpt) is determining and all other postconditions are 

overridden. In step 6 the drag to establish contact between the sweep-line and a box has 

only weak point-to-line constraints. Hence the upward path is reclassified as a weak 

constraint. 

5-

Preconditions 

Operation 

Path 

Postconditions 

Variables 

6. 

Preconditions 

Operation 

Path 

Postconditions 

Variables 

Teacher begins dragging S; Basil follows 

Step 4 Postconditions 

Move 

overcietermineci 

position overdeterrnined 

grasp ( S . xnid) determining 

S : from step -1 ( i.e., previous step) 

Teacher drags S to contact a box 

= Step 5 Postconditions 
Drag 

upwards weak 

position overdetermined 

grasp ( S . mid) trivial 

touch (S . line: B . bottom. left) 

touch (S . line: B . bottom.mid) 

touch (S. line: B . bottom. right) 

touch(S.line: G.line) crossing 

B : found by solver 

S : from step -1 

G : from step -4 

weak 

weak 

weak 
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Steps 7, 8. The teacher grasps the box by its center and drags it horizontally to the 

guide-line. Since the box was encountered in the previous step, grasping its center 

determines the move in step 7. The contact between box and guideline established by step 

8 is only point-to-line, so the drag operation has only weak constraints; hence the rightward 

path is promoted to weak. 

7. 

Preconditions 

Operation 

Path 

Postconditions 

Variables 

8. 

Preconditions 

Operation 

Path 

Postconditions 

Variables 

Teacher picks box, Basil follows 

= Step 6 Postconditions 

Move 

overdetermined 

position overdetermined 

grasp (B .mid) determining 

touch(S.line: B.bottom.left) 

touch(S.line: B.bottom.mid) 

touch(S.line: B . bottom. right) 

B : from step -1 

S : from step -1 

overdetermined 

overdetermined 

overdetermined 

= Step 7 Postconditions 

Drag 

rightwards weak 

position overdetermined 

grasp ( B . mid) trivial 

touch(S.line : B.bot) unchanged 

touch(B.br : G.line) weak 

B : from step -1 

G from step -2 

S : from step -1 
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Steps 9, 10. The teacher returns to the sweep-line and drags it up to the next box. Step 

9 patently repeats step 5. The preconditions at step 10 differ from those at step 6; Daedalos 

ignores them and correctly predicts step 10 as a repeat of step 6. 

9- DAEDALOS: MATCH 5 

Teacher picks 8; Basil follows 

Preconditions from Step 5, generalized 
Operation Move 

Path overcletermined 

Postconditions position overdetermined 

grasp(S.itiid) determining 

touch(S.line: B.bottom.left) 

touch(S.line: B . bottom.mid) 

touch(S.line: B . bottom. right) 

touch ( B . bottom. right: G . line) 
Variables : S : from step -1 

B : from step -1 

G : from step -1 

10 

Preconditions 

Operation 

Path 

Poatcondit ions 

Variables 

unchanged 

unchanged 

unchanged 

unchanged 

DAEDALOS: GENERALIZE 6, PREDICT 

Basil predicts drag S up to a box; 
Teacher accepts 

from Step 6, generalized 

touch(S.line: B.bottom.left) optional 

touch(S.line: B . bottom.mid) optional 

touch(S.line: B.bottom.right) optional 

touch(S.line: G.line) optional 

as in Step 6 
H 

H 

it 
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Steps 11, 12. Daedalos correctly predicts that the box encountered at step 10 is grasped 

and dragged to the guide-line. In order to predict step 12 the path must be generalized to 

"horizontal." Note that step 12 establishes a point-to-point contact between the box's 

bottom-right corner and the guide-line's mid-point. When predicting actions Daedalos is 

concerned only with establishing the constraints given in the program step; additional 

constraints that happen to be established are ignored. In the figures here they are marked 

"incidental." 

11. 

Preconditions 

Operation 

Path 

Postconditions 

Variables 

12. 

in 7 

DAEDALOS: PREDICT 7 

Basil predicts pick box 

DAEDALOS: GENERALIZE 8, PREDIbT 

Basil predicts drag box to G, contact 
at lower right 

Preconditions : as in 8 
Operations : VT 

Path : horizontal generalized 
Postcondjtjons : as in 8 

touch (B . mid. right: G.midpt) incidental 
Variables : as in 8 
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Steps 13 ... 16. Daedalos correctly predicts the next iteration through step 16. 

13. DAEDALOS: PREDICT  

Basil predicts pick S midpf 

Preconditions : as in 5 
Operations : 11 

Path 

Postconditions as in 5, and 

touch(B.mid.right: G.midpt) incidental 
Variables : as in 5 

'I 

Step 17. The teacher accepts Daedalos' prediction that Basil re-grasps the sweep-line as 

in step 5. But when Daedalos tries to predict another repeat of step 6, the constraint solver 

(viz, the teacher) cannot find a box. The prediction fails and Daedalos asks the teacher for 

the next action. 

17. DAEDALOS: PREDICT 5 

Basil predicts pick S at midpt 
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Steps 18 ... 20. The teacher deletes the sweep- and guide-lines. The cut operation need 

not have any postconditions but this exception is not modelled in the current version. At 

step 19 Basil encountered a box remembered only as "transformed." The window on 

Recent-Steps, set to 5, prevented the variable filter from finding a previous occurrence of 

this box in the trace. 

18.. 

Preconditions 

Basil unable to perform "drag up to 
some box" as in step 7; Teacher 
resumes control; deletes S 

asin7, and 

unable to satisfy Postconditions of 7 

Operation : Cut 

Path irrelevant 

Postconditions position overdetermined 

touch (Basil.snout: B.bottom) weak 
Variable : B : from step -1 

19.. Teacher picks G at midpt 

Preconditions : = Step 18 Postconditions 

Operation : Move 

Path : overdetermined 

Postconditions : position overdetermined 

grasp (G.xnidpt) determining-

touch (K.mid.right: G.midpt) strong 

touch(K.bottom.right: G.line) weak 
Variables : K : previously transformed 

G : from step -2 
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20. Teacher deletes G 

Preconditions : = Step 19 Postconditions 

Operations : Cut 

Path : irrelevant 

Postconditions : position trivial 

Variables G : from step -1 

Step 21. The teacher selects "End of Lesson" from the Basil menu. Basil returns to his 

standard position. Daedalos prints out the program corresponding to Figure 3.4. 

21. End of Lesson. 
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Chapter 5 

Three Empirical Studies 

A system for programming by example is of course an open system - it has a teacher. 

Moreover it is in a real sense non-deterministic. The teacher provides three kinds of inputs: 

actions, input data when requested, and responses to predictions. Because the system may 

not be able to model every decision the teacher makes, it may find that the teacher disagrees 

with an apparently determined state transition. Therefore the system's performance cannot 

be predicted solely through analysis of its structure - it must be studied and assessed 

empirically. 

Given an incomplete pilot implementation, bow can we test its performance in 

conjunction with human teachers? This chapter describes three empirical studies on 

segregated components and abilities of the system. From these the performance of an 

actual system can be projected not with certainty but at least credibly. These 

experiments constitute a feasibility study of the integrated system. Chapter 6 expands 

further on the conclusions that can be drawn. 

The first study measures how quickly potential users learn to predict Basil's sensory 

responses and behavior, providing some indication of the teaching metaphor's 

comprehensibility. The second establishes the system's ability to induce procedures from 

graphical traces (rather than contrived symbolic input). The third compares learning 

performance with and without the teacher's criticism of predictions; this isolates an 

important element of interaction. 

5.1 The Metamouse Metaphor 

A critical aspect of a learning system is that the teacher understand its behavior [MacDonald 

88]. Users of the system are given a metaphor (Basil the Metamouse) to help their 

understanding. Its suitability, measured as the ability of teachers to quickly learn to predict 

its behavior, can be studied apart from a working system. The pilot experiment described 

here, though not sufficiently controlled or naturalistic to be conclusive, provides evidence 

that the metaphor is easy to understand. 
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A number of potential users were given the brief description of Basil shown in Figure 

1.7 and then asked to work through a self-study guide, available from the author. Typical 

questions depict a situation and ask the subject to predict Basil's response. Scores on each 

set of questions were recorded separately so that progress could be measured. The study 

guide provides correct answers after each set, to simulate system feedback. Subjects were 

asked not to refer back to previous questions, however. 

The study guide contains approximately 55 questions, of several types: 

• two graphical situations depicted (Basil in contact with objects); subject asked 
whether Basil matches these situations to each other (approx. 30 questions) 

• two actions depicted, showing situations before and after; subject asked whether 
Basil matches these actions (approx. 20 questions) 

• a sequence of actions; subject asked to differentiate those performed by teacher from 
those performed by Basil (1 question) 

• a graphical task is specified; subject asked to create an algorithm that Basil could 
learn (3 questions) 

The questions are arranged in the order given above, so that difficulty tends to increase as 

subjects become more experienced. The solution to each question is presented immediately 

after the subject has completed it. 

The pilot experiment was run with five volunteer subjects, all computer scientists. The 

first subject, 'a Metamouse "expert," was given a preliminary version without an answer 

key. The data for this subject were discarded, but editing suggestions were incorporated 

into the next version of the questionnaire, given to the remaining subjects, who did not 

have prior knowledge of the workings of Metamouse. All were allowed to work at their 

own pace at a time of their choosing. 

The first three groups of questions were graded for use in this study. Due to bad 

photoduplication, some questions had to be discounted; hence the total number of questions 

varies amongst subjects. Subjects' understanding of Metamouse at any point is measured 

as the ratio of the number of questions correctly answered to the total questions counted. 

This ratio is plotted for three subjects in Figure 5.1; perfect performance lies along the line 

of slope 1. An increase in slope represents improvement in performance. 
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Perfect Score 

• Subject 1 

• Subject 2 

A Subject 3 

Potential Cumulative Score 

Figure 5.1 Performance of three typical subjects on Basil questionnaire 

Recall that questions were presented in order of increasing difficulty. If the metaphor 

were unlearnable, one would expect to see a steady decline in performance (ever-decreasing 

slope in the graph). If difficult to understand, one would expect numerous errors in the 

early sets of questions, with at best a slow improvement. But if completely obvious, one 

would expect near-perfect performance from the beginning with no degradation. The actual 

plots maintain a fairly steady slope with some inflections. They show near-perfect 

performance initially, with occasional mistakes and difficult spots after which near-perfect 

performance is restored. This suggests that the "superficial" aspects of the metaphor - 

namely the rules that distinguish parts of objects and types of direct touch - are easily 

understood, while deeper aspects - the rules that govern action-matching and prediction 

- are less well understood but learnable. 

A number of methodological deficiencies prohibit stronger conclusions from this 

experiment. Most of these problems are discussed in Chapter 6, but one particularly thorny 

issue is this. All of the subjects commented that a number of the questions were difficult. 

Some difficulties were due to bad photoduplication and have been eliminated from the data. 

Some clearly show in the data. Others however have been masked if the subjects thought 
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through the problems or luckily guessed. Since the number of questions in each sample set 

is small, such false positive data could seriously mask the degree of difficulty one is trying 

to measure. This lessens the significance of the results and the utility of a (necessarily 

small) questionnaire as opposed to real interaction. 

5.2 Inducing Procedures 

Consider the problem of testing the ability of a system that has no real performance 

component (in this case a constraint solver) to express what it has learned. The system can 

however express itself textually. Because its learning components (which select variables, 

generalize constraint descriptions and induce control structures) process symbolic data 

derived from the teacher's graphical input, a suitable way of assessing the system's ability 

to learn is to collect graphical traces and process their symbolic descriptions. Predictions 

given textually can be compared with what the teacher actually did, or with expectations 

based on a knowledge of the task. Performance of graphical actions through a constraint 

solver is not strictly necessary. 

The pilot study tested the system's ability to generate a procedure that could produce 

correct sequences of actions covering the different situations given in the traces, but not 

necessarily matching the traces exactly, since they contained coincidental events, missteps 

and irrelevant variances in order of execution. 

The system's goal is to learn procedures that are general (not complete), accurate (not 

perfectly correct) and minimally complex (not optimal). Generality achieved after each 

lesson was measured in terms of the ratio of actions correctly predicted to the total 

performed collectively by the system and the teacher in each trace. This ratio varied with 

the complexity of situations encountered in each lesson. Hence no normalization is useful; 

instead we get a rough measure of the rate at which Basil learns. Accuracy was measured 

as the ratio of accepted to rejected predictions. Complexity was measured as the number of 

edges in the program graph, which could be compared to the number in an "ideal" graph. 

The figures obtained for each lesson are given in Table 5.1. 
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Task Steps Performed in Task Edges in Program Graph 
Trace # Total by Basil Ratio Rejected Total Growth 

Box-to-Line 1 20 8 0.4 0 13 13 
2 24 24 1 0 13 0 
3 20 20 1 0 13 0 

Picket Fence 1 35 12 0.34 5 22 22 
2 27 27 1 0 22 0 

Connectivity 1 6 0 0 0 7 7 
2 6 6 1 0 7 0 
3 6 6 1 0 7 0 
4 6 6 1 0 7 0 
5* 4 1 0.25 2 11 4 
6 4 4 1 0 11 0 
7 6 6 1 0 11 0 
8 6 6 1 0 11 0 

* variant of task: move one end-point rather than entire line 

Table 5.1 Learning system performance 

The researcher performed several different traces of three tasks in A.Sq with Basil 

activated. These were run through the variable and constraint generalization fliers, giving 

augmented traces like that shown at the end of Chapter 4. The researcher fed the traces of 

each task into the Daedalos program in the order they were produced, to simulate 

incremental learning from multiple lessons. The researcher classified Daedalos' textual 

predictions as correct if the action and its conditions matched what his ideal model of the 

algorithm would have generated. 

5.2.1 Box-to-Line 

The first task was "box-to-line" as described in Chapters 1 and 4. The three traces 

presented different orientations of the guide-line and different arrangements and numbers of 

boxes. These variations were covered by generalization inherent in Basil's sensory model, 

by explicit generalization of constraints, and by the induction of a loop. The need to 

generalize a rightward path to a horizontal one could not be detected without a constraint 

solver, so this one generalization was done manually. As a result, Daedalos predicted the 

second and all subsequent iterations of the loop. Termination of the loop by failure could 

not be detected without a constraint solver, so the teacher simply rejected the last move of 

the sweep-line; this was not counted as a faulty prediction. 
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The first trace contained a coincidental contact when processing the third box. The 

sweep-line's mid-point touched the guide-line; hence Basil observed that the box was 

moved until its lower-right corner touched. the mid-point. This overlapping of handles led 

to a "misstep" in which the teacher failed to pick the mid-point on the first try and had to 

repeat the pick before advancing the sweep-line. This "noise" in the trace did not trouble 

Daedalos, however. Since it had already learned the correct sequence to select a box, move 

it and advance the sweep-line, it predicted the same actions in this case, which the teacher 

accepted. The misstep was eliminated; hence the execution trace produced by the teacher 

and Daedalos working together was shorter than that produced by the teacher alone (see 

Table 5.1). 

After the first lesson Daedalos was able to predict all actions in subsequent 

performances of the task. The learning system became competent at the "box-to-line" task 

as quickly as it could have. The program graph was judged to be minimal in complexity 

for this algorithm. 

5.2.2 Picket Fence 

Recall the "Picket Fence" task from Chapter 1. Boxes randomly scattered about the screen 

are moved onto a horizontal line such that the gap between them is constant. The algorithm 

uses a vertical sweep-line that moves left to right to select boxes. The first box is moved 

straight down to the guide-line; the gap-line is then attached to its right edge. Subsequent 

boxes are moved so that their bottom lies on the guide-line and their left edge touches the 

gap-line. The first point of the guide-line and the length of the gap-line are inputs. 

Judging by the program size given in Table 5.1, this task was considerably more 

complex than box-to-line. It afforded more opportunity to vary the order of actions yet still 

accomplish the task. Boxes were translated to their final position along arbitrary directions, 

establishing the usefulness of generalizing path. Moreover, numerous coincidental contacts 

occurred. In particular, the sweep-line or the current box could be moved into contact with 

a box already transformed; this facilitated testing the potential usefulness of the 

"TransfOrmed" attribute (see §3.2.3). 

Despite the increase in complexity, Daedalos was able to construct a small program 

(though larger than the ideal) and was able to predict almost 1/3 of the actions in the first 

lesson, and all of the second. 
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Five of Daedalos' predictions during the first lesson were rejected: 1) that the gap-line 

would be of constant length like the guide-line (predicted because both have first points as 

inputs); 2) that the sweep-line's first point would be input (predicted because the input of 

first points of gap- and guide-lines formed a loop); 3) that the second box would be moved 

straight down to the guide-line; 4) that the third box would be grasped before the gap-line 

was advanced to the right of the second box (a bit of "bad teaching" caused this 

confusion!); and 5) in a related error that the sweep-line would be grasped again even 

though it was already in place. Once the correct actions were taught, Daedalos was able to 

run through the second trace without error. It is interesting to note that if Daedalos were 

required to match 2 steps before attempting to predict (instead of 1, the current setting of 

ConflrmsLink), none of these erroneous predictions would have been made. 

5.2.3 Connectivity 

The third procedure maintained a connectivity constraint: given that the user has moved 

one segment of a polyline, the program re-connects its vertex-mates as shown in Figure 

5.2. The basic program contains six steps, two of which are performed by the user (le. 

are inputs) to move the target segment. 

1/ 
a. Before b. Input: user moves 

one edge 

Z7 
C. Final result 

Figure 5.2 Connectivity task 

Daedalos was presented with 8 traces of this procedure. Traces 1-4 and 6-8 presented 

different positionings of the target segment that resulted in coincidental contacts, and varied 

the order in which the teacher re-connected vertex-mates. The use of variables and 

constraint generalization easily eliminated these variances, so that Daedalos was predicting 

the entire task from the second trace on. 
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Trace 5 introduced a variant in which the user moved only one end-point of the target 

segment. Hence the user rejected Daedalos' prediction to grasp its mid-point and instead 

grasped its right end-point. The user also rejected Daedalos' prediction to transform its left 

vertex-mate (a harmless but also useless action). After learning this variant, Daedalos was 

able to predict either sequence in subsequent traces, the user's first input action (grasping 

either the mid-point or the end-point) being the trigger for the rest of the sequence. 

It is most important to note that Basil did not classify the first grasping action as an 

input, but as a scan rightwards to some mid-point. Basil's discrete recording of actions 

precludes his observing that other lines were skipped. 

Results of the tests above indicate that the system is capable of learning procedures. It 

is clear that for the most part the generalization model captures the essential constraints and 

structure of the tasks performed. The effectiveness of generalization was not quantified 

through controlled experiments but some work towards this is presented in the next 

section. 

5.3 Learning without Prediction 

Recall that eager prediction - to be precise the interleaving of performance with learning 

from the earliest possible moment - was adopted as a means of helping the teacher meet 

the correctness and minimal activity felicity conditions. Suppose this were eliminated; that 

is, suppose that performance were delayed until some number of complete traces had been 

integrated into a program. If eager prediction is useful, one would expect this to cause the 

learning system to produce a more complicated and possibly incorrect program. 

Such an experiment was performed. Daedalos was presented with the same lesson 

traces used in the tests described in Section 5.2. This time, however, the researcher 

assented to a prediction only if it exactly matched the next step of the trace. In effect 

Daedalos was operating as a passive learner, matching its knowledge to observations rather 

than generating examples for the teacher to classify. Table 5.2 compares the two modes of 

learning (called "passive" and "interactive") with respect to efficiency of learning and 

quality of results. Efficiency is the rate at which the learning system becomes competent in 

a task; the measurement is based on the number of mismatches (between program and trace 
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steps) or rejected predictions. For the present, quality is synonymous with simplicity, 

measured by the number of edges in the program graph. 

Task Steps in Trace Edges in State Graph 

Trace # Passive Interactive Passive Interactive 
Box-to-Line 1 21 20 18 13 

2 24 24 28 13 
3 20 20 33 13 

Picket Fence 1 35 35 25 22 
2 29 27 32 22 

Connectivity 1 6 6 - 7 7 
2 6 6 10 7 
3 6 6 10 7 
4 6 6 10 7 
5* 4 4 12 11 
6 4 4 12 11 
7 6 6 14 11 
8 6 6 16 11 

variant of task: move one end-point rather than entire line 

Table 5.2. Performance data for passive vs interactive modes. 

Clearly, the interactive mode learns faster and produces simpler programs. If we 

examine the actual mismatches, we find, not surprisingly, that coincidences, missteps and 

variant sequences are mostly to blame. The teacher has failed to meet the correctness and 

minimal activity felicity conditions when generating traces, and the system's built-in 

generalization capabilities are inadequate to filter out the noise. If the system's 

generalization capabilities (for matching program steps with observed actions) were 

enhanced, we might expect the passive mode to do nearly as well as the interactive, at 

(perhaps greatly) increased cost in computation. Eager prediction, on the other hand, 

makes correctness and invariance default conditions and changes the teacher's role to that 

of an informant, so that variance can be introduced only deliberately. 

This preliminary experiment therefore establishes that eager prediction does 

significantly reduce the amount of effort the system must expend to become competent at a 

task, by helping the teacher meet the felicity conditions. 
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Chapter 6 

What Have We Learned from Metamouse? 

Recall the thesis stated in Chapter 1, Section 4: 

End-user programming for computer graphics should be graphical 
and demonstrative. A practical programming system must limit the 
complexity of functional components to be induced, by analyzing 
traces and by requiring that the user employ graphically constructive 
techniques to satisfy simple felicity conditions. These requirements 
can be met by intensive interaction between user and learning system 
through a device, the Metamouse, that embodies the teaching 
metaphor and thereby enforces and helps the user to satisfy the 
felicity conditions. 

Does the actual system (ie. the design and its pilot implementation) speak for or against this 

thesis? More importantly, does it clarify the meaning of the phrases "practical 

programming system," "complexity of functional components," "analyzing traces," 

"intensive interaction," and "teaching metaphor"? In this chapter it is argued that the 

system supports the thesis but does not place it entirely beyond doubt. The vague terms 

have taken on specific meaning through the implementation. 

The chapter begins by establishing the limits of the project as it stands. Sections 6.2 

and 6.3 assess key aspects of the system: the Metamouse metaphor; the generalization of 

traces and induction of programs; and the use of interaction. Sections 6.4 and 6.5 then 

reconsider the system as a whole, first in relation to the thesis and second in relation to 

more general problems. Shortcomings and ideas for further work are summarized. 

Finally, Section 6.6 summarizes the work, isolating its most significant aspects and 

indicating the nature of its contribution to knowledge. 

6.1 Project Status 

The project work related to this thesis comprises four parts: the development of design 

principles for a graphical programming system (Chapter 2); a design based on these 

principles (Chapter 3); a preliminary implementation (Chapter 4); and a series of 

experiments to evaluate the design (Chapter 5). The current implementation is as described 

in Chapter 4: a simple drawing program; a Metamouse icon that follows the teacher's 
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actions and provides sensory feedback; the recording of traces of actions and Basil's 

sensory responses; a program to identify variables; a program to classify sensory events 

according to a hierarchy of constraints; and a program to induce program structure. This 

segregated system was used in experiments to show whether the system could work: 

action traces were collected and filtered through the generalization programs, resulting in 

symbolic program graphs (Chapter 5). 

A phased implementation of the constraint solver is underway. When the first phase is 

complete, the system will be integrated so that studies with user populations can be 

conducted. The segregated system will continue to be of use to examine learning and 

generalization in detail. 

6.2 Empirical Studies. 

Chapter 5 describes three assessment studies on the segregated system. The results are 

recapitulated here with particular regard to the thesis. 

6.2.1 The Metamouse Metaphor 

The rate at which potential users learn to understand the behavior of Basil the Metamouse, 

given a brief introductory description, was measured as the improvement in their ability to 

predict Basil, that is, to answer questions about what he would do and what distinctions he 

would make. The learning curves (Figure 5.1) indicated that the subjects had a good 

understanding from the start, and their performance neither improved nor deteriorated 

significantly as subsequent questions became harder. Furthermore, although sets of 

questions isolated aspects of Basil's behavior, performance did not greatly vary from set to 

set. 

Several factors lessen the credibility of this study. First, it was not conducted in a 

controlled fashion; all subjects received the same introduction and the same questions in the 

same order. Second, the subject population was too small and too homogeneous (5 

computer scientists). Third, the experimental situation was quite unlike the real one - a 

guided study booklet as opposed to an interactive graphical programming system. Given 

these shortcomings in the testing procedure, numerical results cannot be taken seriously. 
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Nonetheless, the gross results stated above have some value - it is easy to imagine very 

different results that did not in fact occur. 

The conclusion of this preliminary study is that the metaphorical apprentice with a 

limited sensory system and a notion of conditional action is comprehensible to potential 

users. 

6.2.2 Inductive Generalization 

The ability of the system to induce programs from user demonstrations was examined for 

three example tasks (aligning boxes, equal spacing of boxes, and maintaining connectivity 

of lines). In each case the system did generate a program that could reproduce the useful 

actions originally performed by the teacher. The induced programs were general enough to 

operate in new situations as well. In the event that a program was unable to operate, new 

steps could be learned. Thus, capturing structure, achieving generality of performance, 

and incremental learning - three hallmarks of a useable system for programming by 

example - were demonstrated. 

The major weakness of this study is the lack of proof that the results extend to an entire 

class of tasks that potential users would program; thus, although the learning system is 

shown to work, it is not shown to be useful. The study is defended on three grounds. 

First, although classifying tasks is beyond the scope of this thesis, it is suggested that the 

examples were at least representative: users actually perform these and very similar tasks; 

they included commonly occurring problems of measurement, relative position, and 

maintenance of constraint. Second, they expressed the fundamental elements of geometric 

phenomena described in Chapter 2: order (eg. the sequential selection of boxes during the 

alignment and spacing tasks); measure (eg. the spacer line used in the spacing task); and 

classification, (eg. the selection of points to transform based on their prior attachment to 

other points in the connectivity task). Thus the learning system is shown to be capable of 

expressing such phenomena in the programs it generates. Third, the tasks incorporated 

some of the basic problems in programming by example: detecting iteration (eg. sets of 

boxes transformed) and conditional branches (eg. variant on the connectivity task); 

identifying variables (eg. transformed points), constants (eg. initial placement of sweep-

lines), and inputs (eg. guide-line and spacer). 
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A second weakness is that individual elements of the system were not isolated or varied 

to show their utility in the overall process of learning. The degree of lookback for variables 

was held constant. The test runs used only one set of rules for classifying constraints and 

only one set of generalization heuristics. The parameters that control the making and 

acceptance of conjectures in Daedlos were fixed. 

Granting these weaknesses, the study constitutes an existence proof that inductive 

learning can be applied to graphical traces to produce generalized programs. The favorable 

results shown in Table 5.1 demonstrate that such programs can be compact and reliable. 

Moreover, the high ratio of actions performed by the system to those by the teacher 

indicated that interactive teaching by demonstration is pedagogically efficient. 

6.2.3 Benefits of Interaction 

The third study presented in Chapter 5 isolated a key element of interaction in the teaching 

process - the us'e of prediction to reduce variability in the action traces taught and thus 

help the teacher satisfy the "minimal activity" felicity condition. Programs induced with the 

aid of the teacher's responses to predictions were simpler and thus - conforming with 

Ockham's Razor, recently applied to machine learning [Quinlan 86] - better captured the 

structure of the task. To achieve identical programs without prediction would have 

required more generalization capability to conjecture partial matches and, more 

significantly, analysis to determine that different sequences have the same effect. 

The main deficiency of this evaluation is that the experimental situation differs in two 

important respects from the real one. First, the predictions were made not by performing 

graphical actions but rather by printing a textual description of the program step without 

instantiating the variables. Second, the predictions were adjudicated by the researcher 

rather than actual users. Thus the results include no measurement of erroneous 

adjudication or its effects upon inductive learning. Moreover there is no anecdotal evidence 

regarding the comprehensibility of graphical predictions. Nonetheless the experiment was 

useful in establishing best-case results. 

In summary, matching and predicting actions (in effect, learning from an informant 

[Michalski 83]) helped the system produce better programs than it would have by matching 

only. Moreover, the amount of task work done by the teacher was reduced - assuming 

that the cognitive load of accepting and rejecting predictions was not too high. Of course, 
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any useful learning system must eventually start predicting (ie. performing); the point is 

that doing so as early as possible is preferable. 

6.3 Analytic Evaluation of the System 

Apart from conducting empirical studies, one might also investigate the system's 

capabilities by analysis. In particular, the choice of internal representations and algorithms 

determine its abilities: to represent graphical problems; to produce distinct programs for 

different tasks; to generate equivalent programs from different lesson sequences. What 

follows is an initial attempt to reveal implications of specific design decisions - a proper 

analysis would require setting out a theory of graphics (a subsystem of geometry, no 

doubt) and a theory of human interaction with computers in drawing tasks. 

6.3.1 Representing Problems 

Clearly, as suggested in §6.2, the current system is capable of programming tasks that 

involve a sequence of point-to-point and point-to-line constraints. The limits of 

representability have not been worked out, but it is known that many problems can not be 

described because the action, sensory, constraint or generalization models fail to capture the 

constraints. Some examples are listed below, with suggestions for improvements to the 

system. The first two illustrate the need for more graphics operators - rotation as 

originally proposed, and grouping. The third and fourth reveal limitations in the learning 

algorithm and the system's model of constraints. 

First, the pilot implementation cannot learn the Jarvis' march algorithm to construct a 

convex hull. The rotation operator was not implemented, and rotation of a line by moving 

one end-point without significantly altering its length is not modelled. 

Second, given the current capabilities of A.Sq, the system cannot learn to trisect a line. 

In A.Sq one can bisect a line by drawing to or through its mid-point handle but no 

trisection constraint can be constructed. An operator for grouping objects so that they can 

be transformed by the same relative amounts makes such problems solvable. The 

procedure in this case is to make three copies of the original line, lay them end to end, 

group them and then scale the group to the length of the original line; each line in the group 

measures out one third of the original. 
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Third, the current design for Daedalos makes it impossible to learn to draw three boxes 

in a row - or any problem governed by a constant number. Daedalos would form a loop 

whose body draws one box, but the termination condition (that the third box has been 

drawn) is not representable. Of course, the teacher could input a graphical representation 

of the number, for example a box containing three line strokes with a line to sweep across 

and "count" them, as illustrated in Figure 6.1. Obviously this is inefficient from the user's 

standpoint and may be arcane as well. The learning system can induce number, as 

suggested in [Maulsby 88a], if it records the actual count of iterations performed or 

accepted by the teacher so that constants can be observed. 

Counter unit lines 

Sweep-line 

Counter box 

Count stops at contact 
with right edge of box 

Figure 6.1 A graphical counting device 

Finally, the system designed in Chapter 3 cannot learn an important input to the 

connectivity task. Selecting the line segment to shift out of place is really an ad hoc action 

to be performed by the user (ie. an input), but since Basil sensed a specific contact (with 

the mid-point handle) and a generally rightward path, the action is deemed sufficiently 

constrained to be performed automatically. In practice the constraint solver would likely 

select the leftmost line, regardless of which one was taught. The initial constraint analysis 

could be improved by attempting to replicate the action just demonstrated; if the constraint 

solver produces a different result, then what the teacher showed was underconstrained. 

6.3.2 Distinguishing Programs 

The ability to generate distinct programs for different tasks is a consequence of being able 

to represent tasks. For example, if the system can induce number then it can learn a 

program to generate four boxes but not five boxes, and another program to do the opposite. 
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Another example is being able to learn routines to translate boxes along specific paths (say 

100 and 30°); because Basil's notion of direction is crude, programs induced from traces of 

either task would be equivalent (and incorrect) - both would translate boxes at 00. 

6.3.3 Sensitivity to Teaching Sequence 

Teaching traces of a given task may vary in several ways not related to the different 

subtasks or conditional branches that must be taught. Traces may be composed of different 

actions - perhaps so different that a human observer would regard them as different 

methods. Traces may comprise the same actions but presented in different order. A more 

subtle variability, over which the teacher has little control, is introduced by coincidental 

sensory feedback that might falsely distinguish situations; for example, in box-to-line 

traces, sometimes a box is translated to the mid-point of the guide-line. 

Eager prediction helps reduce the first two kinds of variability by reducing the influence 

of their source, the teacher, from a generator to a critic of actions. Its effect upon the third 

is quite unreliable: if the more general case (eg. moving the box to some point on the 

guide-line) is taught first, then more special cases are merely subsumed; but if the special 

case is seen first, the system will make incorrect predictions and must be taught the geneal 

case. This problem does not seriously impair learning or performance unless many special 

cases occur before the general case. 

6.4 Support for the Thesis 

The evidence for and against the thesis has been marshalled in the previous five chapters 

and recapitulated above. The terms have been defined through design and implementation. 

It is now time to decide whether the premises are reasonable, the propositions tenable. 

The first premise, that end-user programming for computer graphics should be 

graphical and demonstrative, was argued in Chapter 1. The second premise, that a practical 

programming system must limit the complexity of functional components to be induced by 

requiring the user to satisfy four felicity conditions, was argued in Chapter 2. Given these 

premises, the thesis proposes 1) that an interactive device, the Metamouse, can be designed 

and implemented to help the user meet the felicity conditions, and 2) that a useful and easy-

to-use system can be implemented for programming graphics by example. The thesis is 
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refuted if such a system is proven impossible; upheld if it exists; supported if obvious 

progress has been made towards it and it still appears to be feasible. 

The system is useful if it can generate programs for commonly occurring tasks. 

Although a systematic inventory of tasks performed by users of thawing programs was not 

produced - partly because delimiting such tasks is practically impossible - there is at 

least anecdotal evidence that tasks involving alignment, spacing and connectivity 

constraints are common. It is suggested also that loops and conditional branches are signal 

attributes of useful programs. Hence the programs generated in the course of the 

performance trials are empirical evidence that the system is potentially useful. 

The system is easy to use if a representative users of drawing programs find it 

preferable to the currently available alternatives. To determine this we must measure ease 

of use - admittedly a subjective metric, but appropriately so. Three approaches are: 1) 

ask users for ratings; 2) measure users' effort to execute vs teach given tasks in terms of 

time spent, number of actions performed, number of failed attempts (user abandons trace 

and recommences), and perhaps other quantifiable symptoms; 3) measure users' reliance 

on the system in a natural situation (ie. in performing their regular work) in terms of 

frequency of use. Collecting and interpreting any of these data is difficult'. The first 

approach is clearly unreliable. The second presents methodological difficulties, since the 

objective evidence is indirect and must be carefully conditioned relative to individual 

subjects' skills. The third, while naturalistic, requires a fully working system and a long 

period of data collection. 

Lacking a fully working system, the author has not performed any of the above 

measures. Instead he assessed the comprehensibility of the metaphor, on the assumption 

that this becomes the major factor in ease of use, given that a conventional direct-

manipulation interface is provided. The results of that study suggest that the system is easy 

to use. This supports proposition 2 above. 

In conclusion, the thesis has been neither upheld nor refuted, but supported through 

analytic and empirical means. The research has shown the feasibility of graphical 

programming by example. 
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6.5 Further Work Proposed 

A final affirmation or refutation of the thesis requires considerable further development and 

investigation of the Metamouse programming system. If it is not refuted, the thesis should 

spawn a good deal of related research. The research agenda has four main subject areas: 

1) development of the integrated programming system; 2) human factors studies; 3) theory 

of graphical tasks; 4) generalization and learning algorithms. Some activities under each 

category are proposed below. 

6.5.1 Integrated System 

An important step towards further research is to complete the prototype system so that 

studies of performance and human factors are more realistic. To achieve this we must build 

a constraint solver and interfaces between Basil, Daedalos and the solver. Working with 

the actual system may well reveal that it has been over-engineered and requires a rational 

reconstruction with more efficient code. Beyond this, the system can be usefully extended 

by: 

• implementing the "leading" operators described in Chapter 3 to constrain paths 

• adding rotation as an A.Sq or Metamouse primitive 

• including more drawing primitives, such as ellipses and polygons 

• providing an operation to group objects so that they are transformed identically 

• being able to use previously learned procedures as subroutines 

• supporting a voluntary explanation interrupt, so that the teacher can declare any 
action to be governed by a constant or input. 

6.5.2 Human Factors Studies 

As stated above, the system should be tested through further empirical studies of its 

interactive elements. A prototype system will allow "naturalistic" studies of actual use; but 

experiments on parts of the system will continue to be worthwhile because they isolate 

interesting features and hence permit greater control and easier analysis. The main lines of 

inquiry proposed are: 1) comprehensibility of the programming metaphor; 2) usefulness of 

interactive techniques to help users meet felicity conditions; 3) usefulness and usability of 

the integrated system; 4) users' conceptions of the graphics domain, procedures and 
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constraints. These studies may reveal alternative metaphors, task models and interaction 

techniques. Examples are: 

• submitting the "Getting to Know Basil" questionnaire to a larger and more diverse 
population 

• adding controls to the questionnaire: vary the order of questions, exclude the 
answers from some papers 

• conducting a study similar to the questionnaire but using the actual system and 
compare the results; such a study requires some means of monitoring subjects' 
expectations or surprise 

• quantifying users' performance in teaching a set of standard tasks with prescribed 
algorithms, in terms of number of traces required, number of steps in each trace, and 
complexity, generality and correctness of programs produced 

• repeating the teaching study but have subjects invent their own algorithms 

• repeating the teaching study but variably eliminate elements of interaction: 
highlighting of indirect touches, of direct touches, of grasp; movement and presence 
of Metamouse; queries for explanation of unconstrained actions; prediction during 
lesson (ie. once performance has failed). 

6.5.3 Graphical Domain Analysis 

Other researchers have begun to investigate graphical tasks not only in terms of geometric 

operations [Henderson 80, Geller 87, Noma 88] but also in the perception and effect of 

constraints [van Sommers 84, Chow 88]. The graphical domain invites significant further 

theoretical and empirical investigation, for example: 

• varying the degree of Basil's sensitivity to indirect touch, from none at all to several 
and unlimited degrees of indirection; study the effects on generalization 

• continuing the empirical study of thawing behavior, following [Chow 88] 

• comparing Basil's model of graphical constraints with actual human performance 

• considering alternatives to the constraint classification model used in the system 

• developing a similar constraint model for another domain, eg. text editing 

• using conceptual graphs [Sowa 86] to represent graphical situations and constraints 

• formalizing an algebra of drawing in terms of geometric constraints. 
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6.5.4 Generalization and Learning 

Clearly, the choice of generalization methods and learning algorithm have a profound effect 

upon the usefulness of this system, yet these matters have received little critical attention so 

far. The pilot system, using the Daedalos algorithm and conservative generalization by 

disjunction with no explicit specialization1 and no ordering of alternative predictions, 

generates programs useful in the sense that they can make correct predictions. In actual 

use, the system should make the best prediction first, where "best" means most specific or 

productive; the integrated system should order alternatives. The learning algorithm itself 

may be responsible for many inappropriate predictions because it has joined sequences too 

readily; the parameters that govern matching may need to be adjusted - perhaps even on 

the fly. Suggested projects include: 

• repeating performance studies and teaching studies, varying Daednios control 
parameters 

• repeating the above studies varying generalization heuristics 

• investigating adaptive selection of heuristics 

• inducing constants and variables (viz, teaching study with queries for explanation 
eliminated) 

• substituting the NODDY learning algorithm [Andreae 85] for Daedalos (sacrifice 
prediction during the first lesson) 

• trying the Daedalos algorithm in other domains (eg. robot programming, text editing) 

• characterizing the learning-power and instructibiity of Daedalos, following guide-
lines given by [MacDonald 88]. 

6.6 Summary and Conclusion 

The work described in this thesis makes real progress towards a system for end-user 

programming by example in graphics. Such a system has been shown to be feasible, and 

most of its components have been implemented. 

Chapter 1 defined the project's goal in general terms, emphasizing the importance of 

pragmatic considerations, chiefly that it be of service to a broad and diverse population of 

"ordinary" computer users. Previous work was surveyed and found to provide many 

1 A more speciali7ed case is merely "disjoined" with the more general so that it can be selected as an 
alternative prediction. 
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insights and useful techniques, but no system was considered adequate for use by the 

general population. It was concluded that the system should be based on teaching by 

example. The statement of thesis indicated that a teaching metaphor and specific techniques 

of interaction would be required. 

Chapter 2 examined the problems inherent in teaching and learning graphical tasks, as 

revealed by both empirical studies and theoretical approaches. The variability and noise 

inherent in graphical demonstrations was found to be a significant threat to the possibility 

of teaching graphics by example. A phenomenological approach to geometry revealed that 

human beings have an enormous advantage over computers in recognizing patterns and 

reducing the search space for procedural models. (On the other hand, the theory provides 

powerful tools to constrain and interpret actions.) In response to these problems, four 

felicity conditions - correctness, show-work, no invisible objects, and minimal activity - 

for teaching graphics were proposed. To help the teacher meet these felicity conditions five 

principles of design were proposed for the programming system - it must be an active 

learner, use a teaching metaphor embodied in an attention device, be based on geometric 

construction, predict actions whenever possible, and be able to suspend learning. 

Chapter 3 presented the design of a programming system following the principles given 

above. The system is active in that it interacts with the teacher throughout the lesson; when 

an action is unexplained, it queries the teacher. Learning is incremental and interleaved 

with performance. The attention device is a metaphorical apprentice that embodies the 

system's pattern-matching limitations in terms of a sensory model and provides an action 

model appropriate to geometric construction, using transformation operators available in 

familiar commercial drawing programs. The learning algorithm enables prediction even 

during the first teaching trace (as soon as iteration is detected). The teacher can suspend 

learning at any time by putting Metamouse to sleep. 

Chapter 4 detailed differences between the design and the actual current pilot 

implementation and defined the implementation path to a fully functional prototype. The 

pilot system permits testing and refinement of basic components, such as the modeling of 

graphical constraints, generalization heuristics, and so on. 

Chapter 5 discussed three studies performed on the pilot system. The first presented 

potential users with a questionnaire regarding Basil's behavior. It was found that 

minimally instructed users became proficient at predicting Basil's responses and actions. 
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The second study examined the system's performance in learning several tasks from 

demonstrations. The system did generate programs for each of the tasks. These programs 

were quite compact and general even after a single teaching trace. The third study isolated a 

key element of interaction, prediction, in order to measure its usefulness. It was found that 

teaching by informant is extremely useful as a component of the system. 

Chapter 6 summarized and criticized the work to date and rndered a verdict on the 

thesis. The main criticism is the lack of empirical or analytical results that could clearly 

affirm or refute the thesis. The studies conducted so far, despite their weaknesses, do 

nonetheless corroborate it. A rich agenda of further research was proposed. 

The work presented in this thesis makes two significant contributions to research in 

end-user programming. First, it combines techniques of interaction and machine learning 

in a novel way. Second, it proposes a specific system for a rich and difficult task domain. 

The progress made to date is sufficient to warrant further research. And this research will 

be well worth the while if it results in systems that users can program by example with 

minimal effort. Once the barrier between using and programming is demolished, casual-

user computing will burgeon. 
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Appendix A 

This appendix contains a copy of the instructions given to subjects of the user study 

described in §2.1. The pages have been reduced slightly. Note that subjects also received 

some verbal instructions, and that a researcher was available to answer their questions. 
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Task 1 

Draw this first... 

Then add the upright bar... 

Finally, the cross-piece. 
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Task 2 

Center a circle 
in a square. 

Try to do this 
and the next two tasks 
without using the grid. 

Make a Greek cross. 

Square a circle. I 
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Task 3 

Turn a square... 

.into a rhombus. 
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Task 4 

• •.,.••••• 
p. 

I,... 

Scalene 

Draw triangles 
of the following types. 

You may work on these tasks 
in any order you think appropriate. 

You may use the grid. 

45/90/45 
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Task 5 

Consider the height 
of a polygon. 

Left extreme of A Left extreme of B 

Distance = 2 x Height of A 

You may use the grid. 

Here we use it as 
the parameter of a 
constraint on the distance 
between two polygons. 
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Task 6 

Draw some sort of polygon. 

Consider its "extents box", 
the rectangle that just 
completely encloses it. 

Represent the "extents box' 
with eight squares, 
the way MacDraw does. 

You may use the grid. 
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Task 7 

Here are the rules 
for placing text at the end 
of arrowhead lines: • • • Extents box 

• • of text 

Arrowhe line  

The limiting cases... The in-between cases... 

:< 

The subject is given a picture of lines as shown below, but without labels. After the first 
attempt the subject is shown the solution. 

I 


