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Abstract

Power system stabilizers are responsible for enhancing the power system sta-
bility and for improving the dynamic performance of the system. An adaptive
power system stabilizer using on-line trained neural networks is developed in
this dissertation. The feed-forward multi-layer neural network along with
the back-propagation algorithm in on-line mode is used to design the neu-
ral adaptive power system stabilizer (NAPSS) . The structure and training
procedure of the proposed NAPSS are discussed.

The proposed NAPSS consists of an identifier to track and identify the
non-linear plant in real-time and a controller to damp power plant oscilla-
tions. These two subnetworks are trained in each sampling period employing
the on-line version of the back-propagation algorithm. The resulting NAPSS
does not require any reference model or teacher and is trained directly based
on output performance of the plant. It also does not need the internal states
of the plant to be measured and just uses the output of the plant. The
NAPSS is tested on a single-machine infinite-bus power system model for a
variety of disturbances.

A multi-machine power system is used to evaluate the performance of the

NAPSS in damping power system multi-mode oscillations. The effectiveness



of the NAPSS in damping multi-mode oscillations and its self-coordination
ability are also demonstrated. A Digital Signal Processor (DSP) board is
employed to implement the NAPSS. The behavior of the NAPSS is then
investigated using a physical model of a power system in the Power System
Research Laboratory at the University of Calgary. Implementation steps and

real-time test results are presented.
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Chapter 1

Introduction

1.1 Power System Stability

Electric power systems are highly complicated systems that contain non-
linear and time-varying elements. Their dynamics cover a wide spectrum
of phenomena, which are electrical, electro-mechanical and thermal in na-
ture. Since interconnected power systems can encompass entire countries
and continents, they can involve a large number of interacting systems with
an immense array of variables [1], [2], [3].

The highly interconnected nature of power systems makes their operation
and control a complex process. Disturbances in some elements may affect
the whole system operation and stability causing poor power quality or even
the interruption of power supply [4], {3].

The problem of power system instability first arose when generating units
were tied together to improve power system reliability and to reduce the cost
of generation [6]. It was noticed that the system damping was insufficient.

One of the first approaches to overcome this problem was to introduce damper



1.1 Power System Stability

windings in the synchronous generator [6].
Extensive research has been conducted to overcome power system stabil-
ity problems. For analytical studies, researchers have classified the power

system stability into three categories [7], {8], [9], [10]:

e Steady-state stability

This corresponds to the stability of the power system around an oper-
ating point. If the system is able to maintain synchronism after small
changes in operating conditions, it is said that it has steady-state sta-

bility.

e Dynamic stability

Dynamic stability is the stability of the power system under small and
sudden disturbances. These type of disturbances can lead to long term

sustained oscillations {8].

e Transient stability

Transient stability refers to the ability of the power system to regain
stability after a sudden and severe disturbance. System faults, line
switching and large changes in loads can be considered as severe dis-

turbances that lead to transient stability problems.

A small signal perturbation model around an equilibrium point can be
considered for dynamic stability studies and the system can be described by
linear differential equations. However, for transient stability analysis and
control design, the power system must be described by non-linear differential

equations.
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Although there are several sources of positive damping (8] in 2 power sys-
tem, there are also sources of negative damping, notably voltage-regulating
and speed-governing systems. Furthermore, although ordinarily the inherent
positive damping predominates, in some circumstances the net damping can
become negative. With net negative damping, angular swing of the machine,
instead of declining, increases either until equilibrium amplitude is reached
or synchronism is lost.

As power system stability is ultimately concerned with the quality of elec-
tricity supply, it is one of the main research topics in power system studies.

There are three means of improving power system stability:
@ Generator excitation control [11], [12], [13], [14], [15], [16], [17].
@ Generator input power control [18], [19], [20].

o System operating condition and configuration control [21], [22], [23],
[24], [23].

For a particular problem, one or more of the above methods can be used.

However, excitation control is usually preferred for the following reasons:

@ the electrical system has much smaller time constants than the me-

chanical system;

@ an electrical control system is more economical and easier to implement

than a mechanical control system;

¢ because of small loop time constant, an electrical control system is
effectively a continuously acting system. Consequently, it gives smooth

system response.
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1.2 Excitation Control

Excitation controllers have been widely used in power systems since the early
1960°s [26]. The purpose of using excitation control is to achieve an accept-
able voltage profile at the consumer terminal and to effectively control the
reactive power flow in the network. It is generally recognized that high gain,
short time constant and high ceiling voltage excitation usually increases both
the steady-state and transient stability limits of the system [27], [28]. Al-
though it is also found that this high performance excitation sometimes pro-
vides negative damping, it does not seem to have caused any serious problem
in its early applications [29].

As the high performance excitation systems became a large percentage
in the generating capacity, it became apparent that their actions had a
detrimental impact upon the dynamic stability of the power systems. Low
frequency oscillations often persisted ior long periods of time and in some
cases presented limitations on power transfer capability. It has been found
that inappropriately chosen controller parameters greatly decrease the sys-
tem damping and even make it negative at times [19], [26]. A significant
amount of research has been conducted on the development of compensating
control to provide the required system stability and various methods have

been proposed. Generally these methods can be divided into two areas:

e Design new excitation controllers based on modern control theory to

replace old ones [30], [31], [32], [33], [34].

@ Improve the performance of the presently used excitation controliers

by introducing a supplementary control signal [33], [36].
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Some examples of the first area are the utilization of optimal control
theory, sub-optimal control, bang-bang control and adaptive control.

The typical method in the second area is to use a power system stabilizer
(PSS) to extend stability limits by modulating generator excitation to provide
damping to the oscillations of synchronous machine rotors relative to one

another.

1.3 Power System Stabilizers

As mentioned in Section 1.2, the basic function of a PSS is to modulate the
generator excitation to damp out the oscillations of synchronous generator
rotors relative to one another. Oscillations of concern typically occur in the
frequency range of approximately 0.2 to 2.5 Hz [37]. Insufficient damping of
these oscillations may limit the ability to transmit power. The PSS input is

one of the following signals or a combination of them:

e Shaft speed deviation
e Bus frequency

e Electric power deviation or accelerating power

The PSS must operate through the "plant” which consists of the gererator,
the excitation system, and the power system. The basic characteristics of

this plant which are significant to stabilizer applications are as follows:

¢ phase characteristics of the plant are nearly identical to the phase char-

acteristics of the closed loop voltage regulator;
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® gain of the plant increases with the generator load;

® gain of the plant increases as the AC system becomes stronger. This

effect is simplified with high gain voltage regulators;

e gain of the plant at the oscillation frequencies of concern is proportional
to the regulator gain and inversely proportional to the main generator

open-circuit time constant and the oscillation frequency;

e phase lag of the plant increases as the AC system becomes stronger.
This has the greatest influence with high gain exciters, since the voltage
regulator loop crossover frequency approaches that of the oscillation of

concern.

1.4 Different Types of Stabilizers

1.4.1 Conventional Power System Stabilizer

The most commonly used PSS, referred to as the conventional PSS (CPSS)
is based on the linear model of the power system at some operating point
[9], [37]. Usually the operating condition where the control is needed most
is chosen [37]. The classical control theory, based on transfer functions,
was employed as the design tool for the CPSS. There have been decades of
theoretical studies and field experiments. This type of PSS is widely used in
power systems and has made a great contribution in enhancing power system
dynamic stability [37]. Since the CPSS is designed based on the linear model
of a fixed configuration of the power system for a specific operating point,

it works well for the configuration and operating condition for which it was
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tuned.

However, the CPSS performance deteriorates as the system operating
conditions and configuration change. In addition, the highly non-linear power
system with saturating elements and stochastic nature, makes the control

task of the CPSS even more difficult. Therefore, the CPSS faces a problem

in the following areas:

& accuracy of the linear model of the power system;
e accuracy of the parameters for that model;

& effective tuning of the model;

& interaction between the various machines;

e tracking of the system non-linearity and operating condition.

Extensive research has been carried out to solve these problems. Dif-
ferent CPSS transfer functions associated with different systems have been
proposed [27], [33], [37]. Various tuning techniques have been introduced
to effectively tune CPSS parameters [38], [39], [40]. Effective placement and
mutual cooperation between the PSSs in multi-machine systems are also pre-
sented [41], [42]. To solve the parameter tracking problem, variable structure
control theory was introduced to design the CPSS [43]. All this research has
resulted in great progress in understanding the operation of the PSS and
effectively applying PSS in the power systems. However, it cannot change
the basic fact, namely the conventional PSS is a fixed-parameter controller
designed for a specific operating point which generally cannot maintain the

same quality of performance at other operating points [44]. It is for this
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reason that adaptive control, "control” that adapts to changing system char-

acteristics, has so much potential to improve power system performance.

1.4.2 Fuzzy Logic Based Power System Stabilizer

One of the modern methods which has recently been used is Fuzzy Logic
Control (FLC). Fuzzy control systems are rule-based systems in which a set
of fuzzy rules represent a control decision mechanism. FLC based controllers

have a number of advantages:

& Model-free based algorithm

This is a property of a larger group of modern control techniques called
artificial intelligence (AI) based controllers. Unlike other classical con-
trol techniques, Al based methods (including Neural Networks and
Fuzzy Logic) do not require the exact mathematical model of the sys-

tem.

o Knowledge based algorithm
Fuzzy logic control emulates the strategy of a human operator control-
ling the process.

@ Small development time

Since FLC is a simple algorithm, development time is relatively small.

Research on FLC based PSSs is reported in [45], [46], [47]. The FLC based
PSS, however, suffers from two important drawbacks; the parameter tuning
and lack of adaptation. The latter is of great importance, since adaptation

ability is one of the most important features that a PSS should have.
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1.4.3 Adaptive Power System Stabilizer

Adaptive control theory provides a possible way to solve the problems men-
tioned for the CPSS. At each sampling instance, the input and output of
the generating unit are sampled, and a mathematical model is obtained by
some on-line identification algorithm to represent the dynamic behavior of
the system at that instant of time. It is expected that the mathematical
model obtained at each sampling period can track changes in the system.
Following the identification of the model, the required control signal for
the generating unit is calculated based on the identified model. There are
various control strategies; among them are pole assignment (PA) and pole
shifting (PS) methods. These control strategies are generally developed by
assuming that the identified model is a very close approximation to the gen-
erating unit (48], [49]. [50]. However, since the power system is a high-order
non-linear continuous system, it is hard for the low-order discrete identified
model to precisely describe the dynamic behavior of the power system. Con-
sequently, a high-order model is used to represent the power system, which
consumes a significant amount of computation time. This in turn limits the
control effect, as the system is unable to act at higher sampling rates. This
becomes more significant when the oscillation frequency is relatively high.
For this type of controller, there is a compromise between the order of the
discrete model and the computation time for parameter identification and

optimization.
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1.4.4 Neural Network Based Power System Stabilizer

1.4.4.1 Neural Networks

Neural Networks (NN) attempt to achieve good performance via dense in-
terconnection of simple computational elements. Their structure is based on
the present understanding of biological nervous systems.

In recent years, interest in studying the mechanism and structure of the
brain has been increasing. Based on this biological background, recent work
has led to the development of new computational models for solving problems
such as pattern recognition, fast information processing and adaptation.

In the early 1940s, pioneers of this field studied the potential and ca-
pabilities of the adaptation laws involved in neural systems [51], [52]. In
1950s and 1960s, the Perceptron architecture which has subsequently re-
ceived much attention was developed and its properties and limitations were
analyzed [53], [54]. In 1970s, and 1980s, the work reported in [53] and [56]
and the parallel distributed processing (PDP) group [57] provided a strong
impetus to the area and was the catalyst for much of the subsequent research
in this field. Since then, much research on neural networks has been done
and today there are several well-defined architectures to apply to a variety
of problems.

Neural networks enjoy a variety of advantages:

o Capability to synthesize complez mappings

Neural networks can synthesize complex and transparent mappings
which may be very difficult or even impossible to be expressed in math-

ematical form. Since a neural network is trained by input-output data,
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a properly trained neural network can perform highly non-linear map-
pings [57].

&® High speed
Due to the parallel mechanism, the NN has the potential to solve the
mapping problem much faster than conventional methods and other
artificial intelligence methods, such as expert systems.

¢® Robustness and fault tolerance
Neural networks are robust. Even if the input data is not complete or
has some noise, the NN can still produce good results [38].

o Adaptation ability
Neural networks can be trained on-line by using their error perfor-
mance. This allows the NN to adjust to a new environment easily.

¢® Capacity for generalization

Neural networks are able to respond properly to the inputs they haven’t
come across in training. If neural networks are trained properly they

are able to generalize the input space.

1.4.4.2 Neural Network Applications in Power Systems

Since the publication of the first paper on the application of NNs in power
engineering in February 1989 [59], many papers have been published in this
area. Neural networks have been applied in the following fields of power

engineering [60]:

¢ Load forecasting
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e Harmonics Prediction

e Machine or plant control

s Generation Expansion

¢ Capacitor allocation

e Optimal power flow

e Unit commitment

¢ Economic load dispatch

e State estimation

e Fault detection and diagnosis
e Alarm processing

e Dynamic security assessment
e Contingency analysis

¢ Machine modeling

1.4.4.3 Why Neural Network Based Power Systems Stabilizer ?

As mentioned before, the CPSS, which is based on deterministic control the-
ory, has some limitations. It has to be designed for a particular operating
condition around which a linearized model is obtained. Usually this operating
condition is chosen where the control is needed most [37], i.e. the operat-
ing condition at which the generating unit is most likely to operate. The

high non-linearity, wide range of operating conditions and non-deterministic
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properties of the actual power systems present problems to the CPSS. In ad-
dition, tuning of the CPSS poses another drawback to CPSS. On the other
hand, neural networks have the ability to learn non-linear mappings. They
also enjoy the very important feature of learning, enabling them to acquire
underlying knowledge from input-output data. Using the on-line learning
feature of neural networks, it is proposed that the time-varying power plant
can be tracked and control signal can be computed accordingly. Because of
these inherent features of neural networks, they appear to be able to im-
plement many functions essential to control systems with a higher degree of

autonomy [61].

1.5 Dissertation Objective

In this thesis a neural adaptive power system stabilizer (NAPSS) is proposed
to replace the conventional PSS. In order to develop NAPSS, the following

topics are discussed and studied in this thesis:

e Investigation of the theory of neural networks and discuss the feasibility
of each type of neural networks for application in power system control.

Select one, among many types of NN which best fits the PSS design.

¢ Design of an adaptive neural network based PSS. This PSS is directly
trained from the output data in each sampling period and utilizes only

the input-output data of the generating unit.

o Simulation studies on the performance of NAPSS in a single-machine
power system. Comparison of the control capacity of the NAPSS with
that of the CPSS.
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e Simulation studies on the performance of the NAPSS in a multi-machine
power systems. Investigation of the cooperation of the NAPSS with

CPSS in damping multi-mode oscillations.

o Hardware implementation and on-line experimental verification of the

proposed NAPSS in a laboratory environment.

The aim of this dissertation is to perform studies on the above-mentioned

topics and investigate the feasibility of the NAPSS.

1.6 Dissertation Organization
This thesis is composed of 8 chapters divided into three parts:

e Part I Theoretical development:

Chapter 2 serves as a brief review of the basic concepts and theories
relating to NNs. The classification of neural networks and the structure
of single neurons are introduced. Three most popular types of the
NNs,the feed-forward multi-layer network, the Hopfield network and
the Kohonen self-optimizing feature maps are discussed. Based on a
comparison of the features of different types of NNs, the feed-forward
multi-laver network is chosen to build the NAPSS.

The indirect adaptive control method is described in Chapter 3. The
controller is trained on-line using back-propagation method. It is de-
signed using feed-forward multi-layer neural networks. Using single-

element error vector, the training algorithm is simplified.

e Part I1 Simulation studies:
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The neuro-identifier design and simulation results are presented in
Chapter 4. The plant Model IV along with series-parallel identifier
is used to construct the neuro-identifier. The simulation results for the

neuro-identifier are also given in this chapter.

The NAPSS structure and its application to a single-machine power
system are presented in Chapter 5. The ability of the NAPSS to provide

enough damping over a wide range of operating conditions is discussed.

Then, in Chapter 6, detailed simulation studies of the proposed NAPSS
under a multi-machine power system environment are given. A five-
machine power system which exhibits both local and inter-area modes
of oscillations is used to demonstrate the effectiveness of the NAPSS.

Self-coordination ability of the NAPSS with CPSS is also shown.

Part III Ezperimental tests:

Laboratory implementation and experimental tests of the proposed
NAPSS on a physical model power system are described in Chapter
7. Real-time tests are performed on this model employing ABB PHSC
Programmable Logic Controller (PLC) acting as an Automatic Volt-
age Regulator (AVR) and a Digital Signal Processor (DSP) acting as
stabilizer. For comparison, a digital type CPSS is also implemented in
the same environment and tested under the same conditions. Behav-
ior of the NAPSS and CPSS in an actual power system is observed.
Details of implementation along with the experimental results are also

described in Chapter 7.
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Finally, conclusion and comments on further research topics in this area

are summarized in Chapter 8.

1.7 Dissertation Contribution

The author believes that the work presented in this dissertation makes orig-

inal contribution in the following respects:

e development of an adaptive neural network PSS based on on-line trained
teed-forward neural networks which combines the inherent advantages

of neural networks and good control performance of adaptive control.

e design of the NAPSS without any reference model or teacher signal
and without measuring the internal states, only using the output per-

formance of the plant in real-time.

e simplification of on-line training algorithm by making use of single-

element error vector.

o verification of the NAPSS in damping multi-mode oscillations in a

multi-machine power system.

e laboratory implementation of the proposed NAPSS and experimental
tests on a physical model. Although many off-line simulation stud-
ies using neural networks are reported in the literature, rarely, if any,

experimental real-time tests have been reported.



Part I

Theoretical Development



Chapter 2

Neural Networks

2.1 Introduction

Artificial neural network models have been studied for many years in the hope
of achieving human-like performance in the various fields of science. Neural
networks appear to be a recent development, although this field was estab-
lished before the advent of computers. Inspired by neuro-physiologists such
as Donald Hebb [52] at McGill University, work in the neural network field
began in the 1940s. During the 50s and 60s, researchers integrated biological
and physiological insights to produce the first artificial neural network. The
early success generated a burst of research activity.

Then, following some failures, neural network research was eclipsed for
nearly two decades [62]. In 1983, increased research funding in neural net-
works opened the flood gates for intense activity in this area. As an example
of the pace at which this field has emerged, it is enough to say that the num-
ber of identified neural networks grew from 6 in early 1987 to 26 in early 1988.

This field is especially exciting today because neural network algorithms and



2.2 Types of Neural Networks

19

architectures can be implemented in VLSI technology.

Neural networks and control systems community have a long history,
which probably began with the Wiener’s book Cybernetics [63]. The first
neuro-controller was developed by Widrow and Smith in 1963 [64]. A simple
ADAptive LINear Element (ADALINE) was taught to reproduce a switching
curve in order to stabilize and control an inverted pendulum. This ADALINE
was one of the first neural networks (the Perceptron being the other [53]).
It has a simple architecture that has been used extensively in other neural
networks.

During the 70s, Albus proposed the Cerebellar Model Arithmetic Com-
puter (CMAC) as a tabular model of the functioning of the cerebellum and
used it to control robotic manipulation. Since the early 80s, the CMAC has
been used extensively to model and control highly non-linear processes [63].
During the 80s, many different neural networks and IC architectures were
proposed for integrating and extending these algorithms. Reinforcement
learning and adaptive critic schemes have been extensively researched [66]
and new neural networks such as Multi-Layer Perceptron (MLP) [57], Ra-
dial Basis Function (RBF) [67], Functional Link Networks (FLN) [68] and
B-Spline [69] have been developed.

2.2 Types of Neural Networks

In recent years, research in the field of neural networks has achieved signifi-
cant success. Detailed introduction and classification are given in [38], [70],
[62].

In [538], the neural networks are classified into different groups according
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to the data type of inputs and training procedures. These are:

1) Binary inputs
e Supervised training

— Hopfield net;
— Hamming net;
¢ Unsupervised training

— Carpenter/Grossberg classifier;
2) Continuous-valued inputs

e Supervised training

— Perceptron;

— Multi-layver perceptron;
¢ Unsupervised training

— Kohonen self-organizing feature maps.

Among these six types, the Hopfield net, the muiti-layer perceptron and
the Kohonen self-organizing feature maps have been widely used in power
engineering.

In this chapter, a brief review is given of the basic concept of neural
network, the most popular types of neural networks and their potential ap-

plication in power system control.
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2.3 Basic Elements

The basic processing element of a neural network is called a neuron by
analogy with neurophysiology, but other names such as Perceptron [53] or
ADALINE [71] are also used. Fig. 2.1 shows a standard and unifying model

of a neuron. It has three compornents:

® a weighted summer;
e 2 linear dynamic SISO system;

e a non-dynamic non-linear function

Each of these components is considered in turn below.

Linear Non-Linear
Dynamics | ] Function |

Figure 2.1: Basic model of a neuron.
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2.3.1 Weighted Summer

The weighted summer is described by:

vi(t) = i wjiy;(t) + i wi;ue(t) + 6: (2.1)
k=1

=1

giving a weighted sum v; in terms of the outputs of all elements y;, external
inputs ux and corresponding weights w;; and wy,; together with the constants
6; which is called a bias. A number n of these weighted summers can be
conveniently expressed in vector-matrix notation.

Stacking n weighted sums v; into a column vector v, the n outputs y;
into a vector y and m inputs u; into a vector u and the n constants ; into

a vector O, (2.1) may be written in vector matrix form as:
v(t) = Wy(t) + Wu(t) + O (2.2)

where the j7i-th element of the nxn matrix W is wj; and the ki-th element of

the nxm matrix W’ is wi,.

2.3.2 Linear Dynamic System

The linear dynamic SISO system has input v; and output z;. In transfer

function form it is described by:

i‘,‘(s) = H(s)ﬁ,-(s) (23)
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where the bar denotes Laplace transformation. In the time domain, (2.3)

becomes:

zi(t) = '/_ h(t — EYui(#)d (2.4)

where H(s) and h(t) form a Laplace transformation pair. Five common

choices of H(s) are:

H(s) = 1, (2.3)
1

H(S) = ;71 (2’6)

H(s) = T3 (2.7)

1 .
HGs) = = (2.8)
H(s) = T (2.9)
corresponding to:

Rt) = 6(2), (2.10)
0, t<0,

h(t) = (2.11)
1, t>0

h(t) = %e"ll’, (2.12)
1 21,

h(t) = 'a'—o'e 0, (2-13)

h(t) = 6t~-T) (2.14)

where ¢ is the Dirac delta function. In the time domain, the corresponding

input-output relations are:

zt) = wi(?), (2.15)
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E(t) = vit), (2.16)

Tzit) +z:(t) = wilt), (2.17)

aoii(t) + arzit) = wilt), (2.18)

z(t) = v{t—T) (2.19)

The first, second and third versions are clearly special cases of the fourth.

Discrete-time dynamic systems are also used. For example:

aux,-(t + 1) + alz,-(t) = U,’(t) (2.20)

where ¢ is now an integer time index.

2.3.3 Non-Dynamic Non-Linear Function

The non-dynamic non-linear function g{.} gives the element output y; in

terms of the transfer function cutput z;:

yi = g(z:) (2.21)

There are a number of two-fold classifications of these functions:
1) Differentiable/non-differentiable
2) Pulse-like/step-like
3) Positive/zero-mean

Classification 1 distinguishes smooth from sharp functions. Smooth func-

tions are needed for some adaptation algorithms such as back-propagation
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[72] (Section 2.5.2), whereas discontinuous (e.g. signum) functions are needed
to give a true binary output.

Classification 2 distinguishes functions which only have a significant out-
put value for inputs near zero from functions which change significantly only
around zero.

Classification 3 refers to step-like functions. Positive functions change
from 0 at —oc to 1 at oo; zero-mean changes from —1 at —oc to 1 at occ.

Some standard functions are given in Table 2.1. Note that in the table
there are strong relations between the given functions. The sigmoid and tanh
functions are similar; sigmoid ranges from 0 to 1 while tanh ranges from -1
to 1. Secondly, the threshold functions correspond to the high gain limits of

the sigmoid and tanh functions.

2.4 Connections

The neurons by themselves are not very powerful in terms of computation
or representation, but their interconnection allows one to encode relations
between the variables and gives different powerful processing capabilities.
The three components of the neuron discussed in Section 2.3 can be combined
in various ways. For example, if the neurons are all non-dynamic (H(s) = 1)
then an assembly of neurons can be written as the set of algebraic equations

obtained by combining (2.2) and (2.3), and (2.21):

z(t) = Wy(t)+ Wu(t) + 0, (2.22)

y(t) = g(=z(2)), (2.23)
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where z is a vector of n z; elements and g(z) is a vector whose components are

g(z:). If, on the other hand, each neuron has first order low-pass dynamics:

(2.24)

Table 2.1: Non-linear functions, g(z).

Name Formula Characteristics
. Non-differentiable,
Threshold 1 £2>0, Step-like,
0 otherwise .e-
Positive
X Non-differentiable,
Threshold todz> 9’ Step-like,
—1 otherwise
Zero-mean
Differentiable,
Sigmoid ﬁ:_—, Step-like,
Positive
_ » Differentiable,
Hyperbolic tangent | tanh(z) = St Step-like,
Zero-mean
. =z2 Differentiable
(';!‘) '
Gausian e Pulse-like,
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then an assembly of neurons can be written as the set of differential equations:
Tz(t)+ z:(t) = Wy(t)+ Wu(t)+ 0O, (2.25)
y(t) = g(z(t)) (2.26)

Clearly, the solutions of (2.22) and (2.23) form possible steady-state solutions
of (2.25) and (2.26).

Discrete-time versions of (2.23) and (2.26) are:

Tz(t+1)+ (1 =T)z(t) = Wy(t)+Wu(t) + O, (2.27)

y(&) = g(z(t)) (2.28)

where t is the integer time index.

The behavior of such a network clearly depends on the interconnection
matrix W and on the form of H(s). The variations of W and H(s) lead
to different types of neural networks. Three most popular types of neural

networks are discussed in the following sections.

2.5 Multi-Layer Feed-Forward Network

The multi-layer feed-forward network is also called the Multi-Layer Percep-
tron (MLP) (58], [62] or madaline {70]. It is widely applied in power engi-
neering. Almost 60% of neural networks applications in power engineering
are based on multi-layer networks, and almost 90% of the neural networks

applications in control systems employ this type of neural network.
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2.5.1 Configuration

Generally the connection of several layers gives the possibility of more com-
plex non-linear mapping between the inputs and the outputs. This capability
can be used to implement classifier or to represent complex non-linear rela-
tions among the variables.

Such networks are typically non-dynamic; that is H(s) =1 in (2.3). The
connection matrix W is such that the outputs are partitioned into layers so
that a neuron in one layer receives inputs only from neurons in the previous
layer (or, in the case of first layer, from the network input layer). The
elements of the connection weight matrix W are derived from the training
process. There is no feedback in such networks.

A four layer network (an input layer, two hidden layers and one output
layer) is shown in Fig. 2.2. Neurons in the first hidden layer receive the
inputs from the external inputs and send the outputs to the second hidden
layer. The neurons in the second hidden layer receive the outputs of the
first hidden layer as their inputs, and send their outputs to the output layer.
Neurons in the output layer get the outputs from the second hidden layer as
the inputs, and the outputs of the output layer are the outputs of the neural
network.

Each neuron 7 gets the weighted sum of the outputs of all the neurons j
in the previous layer that connect with neuron i through weight w;;, which
is given as:

Ti=v;= ijgyj +6; (2.29)
i

If neuron : is in the first layer, the weighted sum is over all of the external
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Figure 2.2: Multi-layer network with two hidden layers.
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inputs k that connect with neuron i through weight w}; as shown below:

zi=v; =Y whuk+6; (2.30)
k

where 0; is a bias of the neuron 1.

This weighted sum is altered by a non-linear function to establish the out-
put. Since the back-propagation training method, which will be discussed
later in this section, requires differentiable non-linear functions, and the na-
ture of control system requires a zero-mean control signal, the most appropri-
ate non-linear function is a hyperbolic tangent-like function, which is given
as:

=, (2.31)

T e 4 e

where r is the maximum absolute value of the neuron output.

2.5.2 Back-Propagation Training Method

Connecting weights between the neurons must be determined before the neu-
ral network can be used in the application. The process of determining the
weights is called the training or learning process. The multi-layer network
employs the back-propagation method which was developed in [73] for its
training.

The learning procedure proposed here involves the presentation of a set
of pairs of input and output patterns. For each input and output pattern
p, the system first uses the input vector to produce its own output vector

and then compares this with the desired output, or target vector. If there is
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no difference, no learning takes place. If a difference exists, the weights are
adjusted to eliminate the total squared error, E,, which is the sum of the
squared differences between the set of desired outputs and the set of actual

outputs of the neural network:

By = 5 ¥ ldni — i) (232)

where d; is the j-th desired output of pattern p, and y,; is the j-th actual
output of pattern p.
The weights w;; can be adjusted to minimize E, for the set of training

patterns by a gradient descent method:
wii(n+1) = wij(n) + Aw;ii(n) (2.33)

where:

Aw;ij(n) = ndp;yp: (2.34)

where n is the iteration number, and 7 is the learning rate. If the neuron j

is in the output layer:

= 4 —y) (2.35)

d:z:,,

If the neuron j is not in the output layer:

5= BN (2.36)
Pl P 7
dzp;

where d, is from the neurons in the layer following the layer where neuron

7 is located.
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Better convergence can be achieved if a momentum term is added to
(2.34) as:
Aw;j(n) = nbpiyp + aAwji(n — 1) (2.37)

where o is the momentum factor. In the above equations, the learning rate,
n, and the momentum factor, «, are between 0.0 and 1.0 to be determined
by experience. Some good discussion on selecting n and a is given in [74].
The configuration of the multi-layer network has to be determined by
experience since there are no definite rules to select the number of hidden

layers and the number of neurons in each hidden layer.

2.6 Hopfield Net

The introduction of feedback produces a dynamic network with several stable

points. The general equation can be expressed as:

E(t) = F(z(),u(t), (), (2.38)

y(&) = G(=().¢) (2:39)

Here, r represents the state, u the external inputs, and { the parameters
of the network. F'is a function that represents the structure of the network
and G is a function which represents the relation between the state variables
and the outputs.

Originally, feedback (recurrent) networks were introduced in the context
of associative or content addressable memory problems for pattern recogni-

tion. The uncorrupted pattern is used as a stable equilibrium point and its
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noisy versions should lie in its basin of attraction. In this way, a dynami-
cal system associated with a set of pattern is created. If the whole working
space is correctly partitioned by such a content-addressable memory, then
any initial condition should have a steady-state solution corresponding to
the uncorrupted pattern. The dynamics of such a classifier serve as a filter.

The best-known example of a content-addressable memory is the Hopfield
net {75]. The structure of the Hopfield net with n neurons is shown in
Fig. 2.3. There are two models of the Hopfield net, the discrete model and

the continuous model.

2.6.1 Discrete Model of Hopfield Net

The discrete model assumes the step-like non-linearity:

0, z(t) <0,
g(z:i(t)) = (2.40)
1, z:i(¢) >0,
with:
zi(t) = Zn: wjiy;(t) + 6 (2.41)
=

and works in the asynchronous mode, i.e. only one neuron output is cal-
culated at a time, leaving the others unchanged. The active neuron, p, is
chosen randomly. The system evolves with weights w;; established earlier,
which will be discussed below, and held fixed during output calculation. The
update rule is as follows:

vt +1) = 9(z:(t), ifi=p,z:(t) #0 (2.42)

yi(t), otherwise
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Figure 2.3: The Hopfield net.
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If w; =0 and wj; = w;;, then the energy furction is given by
1
E(y) ; z Z WiiYiY; + Z exyt (2.43)
= =1 j=1
or
1
E(y) = —5y" Wy + 07y (2.44)
will decrease with every asynchronous change of y, according to
AE= —Ayp[z wp;y; — 6] (2.45)
=1
where
Dyy(t) = yp(t + 1) — y(2) (2.46)

The network will always reach an equilibrium because (2.43) and (2.44) are
bounded and (2.45) is non-positive, and the system does not change when
AFE = 0. It will settle after a finite time, since the domain of E is finite.
The Hebbian rule is an attempt to encode P patterns, yx, k=1,..., P, as
equilibrium points of the system represented by (2.40) to (2.46) by choosing

g = | Tha(h =D D), i, o

0, otherwise

and

1= 3 Z Wiy (2.48)

J—l
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since £ is within a multiple and is a constant
— P - - -
E~—(2y - DT (2" - D7 (%" - DIy* - 1) (2.49)
=1

where I is a vector of Is. I (2y* — I) are all orthogonal, £ will have a
minimum at each y*, and, hopefully, the dynamics of the system will have a
region of attraction about each y* that associates initial values of y that are

near y*.

2.6.2 Continuous Model of the Hopfield Net

The continuous model is described by:

Tid: = —z:+ Y wiy; +6 (2.50)
=1
v = g(z:),i=1,....n (2.51)

where z; = zi(t), ¥ = yi(t) and g(.) is sigmoid function. The system de-
scribed by (2.50) and (2.51) is just a system of ordinary differential equations.

Hopfield suggested the Lyapunov function:

n

12
= "5 E Z wiYiY; + E pi /v gz dE Z otyz (2°52)

=1 j=1 =1 =1

where p; > 0 are constants, g:;(.) are monotone increasing functions and

w;; = w;; for all 2 and j. It is straightforward to show that E<o.
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2.7 Kohonen Self-Organizing Feature Maps

It is believed that the placement of neurons in the brain is orderly and reflects
some physical characteristic of the external stimulus being sensed. Although
much of the low-level organization is generally pre-determined, it is likely
that some of the organization at high level is created during learning by
algorithms which promote self-organizing. Kohonen self-organizing feature
maps [76] are similar to those that occur in the brain.

Kohonen’s algorithm creates a vector quantizer by adjusting weights from
common input nodes to m output nodes arranged in a two dimensional grid
as shown in Fig. 2.4. Output nodes are extensively interconnected with

many local connections. Continuous-valued input vectors are presented se-

Figure 2.4: Kohonen self-organizing feature map.
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quentially in time without specifying the desired output to train the nets.
Before the actual training, the weights from n inputs to the m output nodes
are initialized to small random values. After the presentation of each new
input, the distance d; between the input and each output node j is computed
using:

s = 3-(ult) = w8 (259

i=

where u;(t) is the input to node ¢ at time ¢t and w;;(t) is the weight from
input node 1 to output node j at time ¢. Then the weights for node J which

has minimum d; and the weights for the neighbors of node J are updated.

The new weights are:
wij(t + 1) = wi;(t) + () (ui(t) — wi; (), 1 <i<n (2.54)

where 7n(t) is a gain term (0 < n(t) < 1).

2.8 Suitability of Different NNs in Control
System Applications

In the previous sections, three most popular types of neural networks have
been discussed. Due to the different properties they have, these three types
of neural networks can be applied in control systems in different ways.
Hopfield nets are mainly used as associative memories or as classifiers.
They can be used to memorize a control function required by a control sys-
tem. The continuous model is more appropriate in control systems. If the

discrete model is to be used, A/D and D/A converters are needed for contin-



2.8 Suitability of Different NNs in Control System Applications

39

uous input and output values. Hopfield nets have two major limitations in
application as controllers. The first limitation is that the number of patterns
of the control outputs that can be stored and accurately recalled is severely
limited. Hopfield showed that the number of classes M must be less than
15% of the number of nodes NV [56]. For a fairly complicated system like a
generating unit, an extremely large number of nodes in a Hopfield net will be
required. One practical method to overcome this limitation is to use a pre-
processor to simplify the input and output patterns. The second limitation
is that the time of convergence is unpredictable. For a real-time application,
the longest running time must be considered.

The properly trained Kohonen self-organizing feature maps will map dif-
ferent inputs to different output nodes and map the inputs with similar fea-
tures into closer output nodes. Since the training of this type of neural
network is unsupervised, the self-organizing feature map cannot be used di-
rectly as a controller, but it can be used as a pre-processor for other neural
network controllers.

The feed-forward multi-layer network is the most commonly used neural
network in control systems. Such networks can generate input/output maps
which can approximate, under mild assumptions, any static function with any
desired accuracy. One may have to use a large number of neurons , but any
desired approximation, if it can be accomplished at all, can be accomplished
with a multi-layer network with only one hidden layer of neurons or two
layers of weights [61].

Compared with other types of neural networks, the feed-forward multi-

layer neural network is more appropriate for application in control systems.
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In the proposed neural adaptive power system stabilizer (NAPSS) in this
dissertation, the multi-layer network with on-line back-propagation iearning

is employed to build the adaptive neural network controller.

2.9 Summary

The basic concepts and theories of neural networks are introduced in this
chapter. According to the data types of inputs, the architecture , and the
training procedure, neural networks are classified into different groups. The
basic processing element of a neural network, the neuron, has three compo-
nents, i.e. weighted summer. linear dynamic SISO system, and non-dynamic
non-linear function. The three components of the neurons can be combined
in various ways, that distinguishes various neural networks from one another.

Three most popular types of neural networks, the feed-forward multi-
layer network, the Hopfield net and the Kohonen self-organizing feature map
are discussed in this chapter.

The feed-forward multi-layer network is a non-dynamic network. It has
an output layer, an input layer and several hidden layers. The information
can only be fed forward between layers. There is no feedback information
available during the operation. However, the feedback information is avail-
able during the training by using the back-propagation training method.

Hopfield net is 2 dynamic network with feedback. All of the neurons are
interconnected into one layer. This net has two models, the discrete model
and the continuous model.

The Kohonen self-organizing feature maps are designed to simulate the

low-level organization in the brain, and employ the unsupervised training
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algorithm. Properly trained Kohonen self-organizing feature maps will map
different inputs to different output nodes and map the inputs with similar
features into closer output nodes.

Comparing the features of three neural networks, the feed-forward multi-
layer neural network is more appropriate for application in control systems.
Therefore, it is employed to build the neural network controller in this dis-

sertation.



Chapter 3

Indirect Adaptive Control

Using Neural Networks

3.1 Introduction

Studies over the past four decades have shown that power system stabilizer
(PSS) is a very effective tool to damp out the low frequency oscillations in the
power system. Since power systems are highly non-linear dynamic systems,
design of a PSS which can maintain the desired performance under different
operating conditions is a topic of continuing investigation. Conventional
power system stabilizer (CPSS) is designed based on linear control theory [8],
[37]. The parameters of the CPSS are usually fixed at a certain set of values
which are determined based on a nominal operating condition [42]. Therefore,
the fixed parameter CPSS is a compromise between the best settings for
light and heavy load conditions. As a result, it is impossible for this type of

stabilizers to maintain the best damping performance when there is a drastic

change in the system operating conditions, such as that resulting from a three
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phase to ground fault.

In order to overcome this problem, an adaptive stabilizer should be used
in which the parameters are adjusted on-line to automatically track the vari-
ations in the operating conditions and system structure. For over 20 vears,
two distinct approaches have been used to control a plant adaptively [77].
These are Direct Adaptive Control and Indirect Adaptive Control. In direct
control [78], [79], the parameters of the controller are directly adjusted to
reduce some norm of the output error. In indirect control (78] , [80], [81],
the parameters of the plant are estimated as the elements of a vector (k)
at any instant k and the parameters vector 8(k) of the controller is adapted
based on that vector. Even when the plant is assumed to be linear and
time-invariant, both direct and indirect adaptive control result in overall
non-linear systems [78].

Most adaptive control methods require either a reference model or an
extensive identification scheme. Use of the reference model is usually avoided
in power systems due to the difficulty involved in choosing a proper model
for a complex non-linear plant such as a power system. Identification of
the power plant, on the other hand, as studied in classical adaptive control,
is also a computationally extensive task which increases the complexity of
the controller. Therefore, for the purpose of control of power systems, it
is desirable to use a method which is neither model reference based nor
computationally extensive.

Neural networks have recently emerged as a successful tool in the fields
of pattern classification, modeling and control of dynamical systems [58],
[78], [82]. This is mainly due to the computational efficiency of the back-
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propagation algorithm ([72], [73] and the versatility of the three layer feed-
forward neural network in approximating an arbitrary static non-linear func-
tion [83]. A neural network based controller using an indirect adaptive control
method is presented in this chapter. It combines the advantages of neural
networks with good performance of the adaptive control. The proposed con-
troller employs the learning ability of neural networks in adaptation process
and is trained in each sampling period using the on-line version of the back-
propagation algorithm [62], [84]. It consist of two subnetworks. The first
one is an adaptive neuro-identifier (ANI) which identifies the power plant in
terms of its internal weights and predicts the dynamic characteristics of the
plant; and the second one is an adaptive neuro-controller (ANC) which pro-
vides the necessary control action to damp out the oscillations of the plant

output.

3.2 Adaptive Neuro-Identifier

To design an adaptive controller, a suitable identification algorithm must be
chosen. The required control signal is, then, computed based on the identifier
parameters. Therefore, the identifier plays an important role in the control
algorithm.

Identification of a system has three major steps:

e Selection of a suitable plant model;
@ Selection of a proper identification model;

o Adjustment of the parameters of the model so as to minimize a certain

cost function.
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In the following subsections, first, the issues of selecting the proper plant
model and a neural network model for the identification purposes are ad-
dressed. In the first step, considering the nature of the dependence of the
plant output on the past plant inputs and outputs, a plant model is chosen.
In contrast to the static systems which are described by algebraic equations,
dynamical systems are governed by differential or difference equations. It is,
therefore, important to understand how a dynamic system can be modeled
by feed-forward memoryless neural networks.

In the second step, a proper identification model should be selected based
on the availability of the plant states. In general, a model is based on the
plant states. However, for the cases where only outputs are available, it
is possible, under certain assumptions, to predict the output from delayed
inputs and outputs [78], [83] using a Multi-Layer Perceptron (MLP). In this
dissertation, it is assumed that the states of the plant are not accessible and
hence the identifier is based on the inputs and outputs of the plant.

And finally for the third step of identification, i.e., parameter update,
the well-known back-propagation algorithm is used in an on-line mode to
be suitable for adaptive control methods. To maintain the simplicity of the
learning method, only a scalar error, as opposed to a vector of delayed errors,

is back-propagated through the neural network.

3.2.1 Plant Models

In this subsection four models of the discrete-time plants are introduced [7§],

[86], [87]. They can be described by the following equations:
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Model I:
(k41) = 3 6yl =)+ gulb k= D)oo+ 1)
Model II:
(k4 1) = Sk = 1) oalE =+ D]+ S bl =)
Model III:
y(k+1) = FlyR), gk — 1)y y(k =+ 1)] +
u(R),ulk =1), . u(k —m + 1)
Model IV:

y(k +1) = Aly(k),y(k - 1),...,y(k —n + 1),

u(k),u(k —1),...,u(k —m +1)]

(3.1)

(3.2)

(3.3)

(34)

where u(k) and y(k) represent the input and the output of the plant at time

k respectively. The functions f: R*—»R, g: R®"=>R and h: R**™ R are

assumed to be differentiable functions of their arguments. These functions

along with a; and b; parameters are found by the identification process. In all

four models, the output at time k+1 depends on both past n values of cutput

and past m values of input. Models I and II assume linear dependence on the

past values of plant output and input, respectively, while Model III assumes

decoupled non-linear dependence on the system input and output. Model IV
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is the most general and covers the other three models as a special case. Thus,
for an unknown system or a system which is neither separable nor linear (in
input or output), Model IV is used. Since synchronous generator is neither a

separable nor a linear system, Model IV is employed for modeling the plant.

3.2.2 Identification Models

There are two main categories for the identification models in system lit-
erature [88]; the State-Output model and the Non-linear Auto Regressive
Moving Average (NARMA) model. Their main difference roots in the avail-
ability of the states for measurement. The following subsections explain the

basic procedure for each model.

The State-OQutput Model

It is well known in system theory that the state-output model, which relates
the past and the present states, can represent a fairly large class of non-linear

dynamical systems. The state-output model is given by

(k) = ®lz(k — 1), u(k — 1)]

y(k) = W[2(k), u(k)] (3.3)

where u(k) and z(k) represent the input and the state of the system, (k)
is the state of the model, §(k) is the output of the model and & is the
discretized time. The non-linear functions ® and ¥ are static and hence
can be modeled by feed-forward neural networks. If all of the system states,

along with the outputs, are measured, then the problems of building $ and
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Figure 3.1: The state-output model.

¥ are decoupled. To train a neural network to approximate ®, the inputs
are z(k — 1) and u(k —1) and the output is £(k). The inputs to the ¥ block
are (k) and u(k) and the output is §(k) (Fig. 3.1). Any supervised learning

method can be used for training [72], {73].

The NARMA Model

Since all the states are not usually available for measurement, the state-
output model, although quite general, is not a good candidate for the iden-
tification model. In this case, 2 NARMA model (78], [88], which relates the
output of the plant to the past inputs and outputs of the plant by means
of a non-linear function, is preferred. There are two approaches to use a
NARMA model; namely the parallel model and the series-parallel model. In

the parallel model, the governing equation of the identifier is

g(k +1) = Np[g(k), (k- 1),...,9(k —n +1),

u(k),u(k—1),--., u(k —m +1)] (3.6)

where N,: R"*™ R is a static mapping. This model uses the identifier
output for autoregression (Fig. 3.2) which results in slow convergence and

sometimes may even lead to instability. Hence, this model is not generally
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Figure 3.2: The parallel model.

used. Instead, the following model, known as series-parallel model, is used.

In this case the identifier equation has the form

g(k + l) = N-s[y(k)7y(k - 1)7 s 7y(k —-n+ 1)7

u(k),u(k —1),...,u(k —m + 1)] (3.7)

In contrast to the parallel model, in the series-parallel model the output
of the plant (instead of the model) is fed back to the identifier as shown in
Fig. 3.3. In this dissertation, this model is used for the identification of

synchronous generator.
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Figure 3.3: The series-parallel model.

3.3 Adaptive Neuro-Controller and Control
Algorithm

The structure of the control system is shown in Fig. 3.4. It consists of two
subnetworks. The first subnetwork is an adaptive neuro-identifier (ANI)
which tracks the dynamic behavior of the plant and identifies the plant
in terms of its internal weights, and the second one is an adaptive neuro-
controller (ANC) to provide the necessary control action so as to damp out
the oscillations of the plant output. This architecture was first introduced
in [89]. However, the learning process employed in this dissertation is quite
different. Here, a scalar error is used in each sampling period to update the
identifier and controller weights continuously. The same architecture is also

proposed in [78] and called as Indirect Adaptive Control. In that paper, the
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Figure 3.4: Controller structure.
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authors suggested the use of a reference model that is avoided here owing
to the difficulties in choosing a proper reference model for a complex system
such as power system. The next two sections describe the details of each

subnetwork.

3.3.1 Adaptive Neuro-Identifier

The input vector to the ANI is :

[w(k), y(k —1).....y(k —m),u(k),u(k — 1),...,u(k —n)] (3-8)

where y(k) is the plant output and u(k) is the plant input (controller output),
both at timestep k. The output of the identifier is the predicted plant output,
Y(k + 1), at time step (k + 1). This is based on considering a series-parallel
identifier along with the plant Model IV.

As it is seen, this model is the most general non-linear model which
considers coupled non-linear dependence between the plant output at the
present time and past values of plant inputs and outputs. The series-parallel
identifier, in lieu of parallel identifier, is considered here since the former has
faster convergence and is more stable.

The cost function used for the ANI is

Ji(k) = -ez(k [y(k) — g(k))? (3.9)

The weights are updated as

Wi(k) = Wi(k — 1) — %:Vw, Ji(k) (3.10)
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in which W;(k) is the matrix of identifier weights at time step k and 7; is the

learning rate for the ANI. The gradient Vw, J;(k) is computed by:

Vi diH) = ~{u(k) ~ Sl (.1)

Using (3.10) and (3.11), the cost function J;(k) is minimized in each sampling

period by back-propagating the scalar error [y(k) — (k)]

3.3.2 Adaptive Neuro-Controller

The input vector to the ANC is:

[y(k),y(k—1),...,y(k —p)] (3.12)

The output of the ANC is the control action, u(k), at time step k. The cost

function for the ANC is considered as:

Je(k) = 3lec(k) + hu(k)?]

&

k) — 9CRIT + Su(k)? (313

| =0~

where y4(k) is the desired output at time step k, which is equal to zero in
a regulatory setup, and % is a tuning parameter which is used to improve
the plant output dynamic characteristics. By taking ~ greater than zero, a
penalty factor is applied to the control action generated by the controller
which helps in the tuning of the dynamic trajectory and in optimizing the

overshoot and the settling time of the response curve. The weights of the
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controller, W_(k), are updated as

W(k) = We(k — 1) — 1.V Je(k) (3-14)

where 7, is the controller learning rate and the gradient Vw,_J.(k) is defined

as
95(k)

VLK) = (k) 5+ bl

Bu(k)
OW(k)

(3.15)

Using (3.14) and (3.15), J.(k) is minimized in each sampling period.

3.4 Training Process

The success of the control algorithm presented in section 3.3 highly depends
on the accuracy of the identifier in tracking the dynamic plant. For this
reason, the ANI is initially trained off-line before being hooked up in the final
configuration. The training data were collected for operating conditions in
the range of 0.1 pu to 1.0 pu power output and 0.7 pf lead to 0.1 pf lag.
The disturbances used were the voltage reference and input torque reference
disturbances as well as three phase to ground fault. The batch mode of
back-propagation algorithm with adaptive learning rate was employed. The
tralning was iteratively done until a pre-specified tolerance is met. After the
off-line training stage, the ANI is hooked up in the system. Further training
of the ANI and ANC is done in every sampling period employing the on-line
version of the back-propagation method [62], [84]. This enables the controller
to track the plant variations as they occur to yield the optimum performance.

The on-line training process comprises the following steps:
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1) At time step k, y(k) is sampled.

2) Using y(k) and g§(k), the weights of the ANI are updated, mini-

mizing J;(k).
3) The output of the controller, u(k), is computed.

4) Using u(k), the predicted plant output, y(k + 1), is computed by
the ANL

5) Based on §(k + 1), the weights of the ANC are updated, mini-

mizing Ju(k).

In step 2 above, the training is straightforward since the error at the
output of the ANI is known. However, in step 5 the training is not as
easy, since the error at the output of the ANC is not known. In this case,
first the weights of the ANI are frozen and the error between the desired
and predicted plant output is back-propagated through the ANI. Then, the
back-propagated signal at the input of the ANT is further back-propagated
through the ANC, making the necessary changes to the controller weights. In
other words, for adapting the weights of the controller, the identifier acts as
a channel to convey the error from the cutput of the identifier to the output
of the controller. This justifies the need to have the identifier.

The error used to train the ANI and the ANC are both scalar and the
learning is done only once in each sampling period for each of the two subnet-
works. This simplifies the training algorithm in terms of computation tirne,

which is of special importance in real-time implementation.
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3.5 Summary

In this chapter various plant models and identification models are discussed.
Based on the discussion, a plant model and identification model are chosen
to be used for the implementation of neural adaptive power system stabilizer
presented in the next part. An indirect adaptive controller based on on-line
trained neural networks is also introduced in this Chapter. The proposed
controller consists of two subnetworks; an adaptive neuro-identifier and an
adaptive neuro-controller. These two subnetworks are trained in on-line mode
using the back-propagation method. Details of the training procedure are
also explained. The on-line training process enables the controller to track
the variations in control environment and act accordingly. It also considers
the non-linear nature of the plant. Using the scalar error vector is another
advantage of this algorithm. This reduces the computation burden of the

adaptive on-line algorithm.
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Chapter 4

On-Line Identification of
Synchronous Generator Using

Neural Networks

4.1 Introduction

In the previous chapter, different plant and identification models were stud-
ied. In order to verify the suitability of the plant and identifier models chosen
for the identification of synchronous generator, a simulation study should be
conducted. In this chapter, plant Model IV and the series-parallel identifier
model are combined in order to build an on-line trained neuro-identifier. The
proposed identifier has a simple architecture and is trained using the back-
propagation method in on-line mode. It is verified in a variety of operating
conditions and disturbances. Simulation results confirm the suitability of the

models used and demonstrates the effectiveness of the identifier in tracking
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the synchronous generator.

4.2 Identifier Structure

The identifier structure is studied in this section. The popular MLP network
with back-propagation learning has been used to develop the identifier. A
variety of structures were tested for the identifier. Different number of in-
puts (i.e. from four to twelve), hidden layers (i.e. one and two) and hidden
neurons (i.e. from four to sixteen) were tested. The network with 4 inputs,
which uses two signals and their delays, did not generate good results, regard-
less of the number of hidden neurons. The 6x8x1 network generated good
results for different tests. The networks larger than that did not improve the
result. Therefore, the 6x8x1 structure, as shown in Fig. 4.1, was chosen for
the identifier. Sigmoid non-linearity was used for the hidden neurons. The

output neuron was chosen to have linear characteristics. The input vector to

Aw (k)

Aw(k-1)

N S A® (k+1)
u(k) e

u(k-2)

Figure 4.1: The neuro-identifier.
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the neuro-identifier is
[Aw(k), Awk — 1), Aw(k - 2),u(k) u(k — Dyuk -2 (41)

where Aw(k) is the generator speed deviation and u(k) is the power system
stabilizer (PSS) control signal (generator input), both at the time step k.
The output of the identifier is the predicted speed deviation at the time step
k+1, Aok +1).

The inputs to the neuro-identifier are scaled before being applied to the
network to take a value in the range of [—1, +1]. This is because of the fact
that the sigmoid non-linearity used changes between these two values. This
also makes the weights of the first layer not to take very large values. The

cost function defined for the identifier is:
Ji(k) = 3[Aw(k) — AB(R)]? (4.2)

The identifier goes through two stages of training, namely off-line and on-line
training. In off-line training, first the identifier is trained using the input-
output data for a variety of operating conditions and disturbances. The
operating condition changes in the range of 0.1 pu to 1.0 pu power output and
0.7 pf lead to 0.1 pf lag. The disturbances used were the voltage reference
and input torque reference disturbances and three phase to ground fault.
The training was iteratively done until a pre-specified tolerance is met.
After the off-line training, the network is further trained on-line. The
cost function 4.2 is minimized using back-propagation method in the on-line

mode. At each sampling instant, the input and the output of the generator
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are sampled and the input vector to the identifier is formed as in (4.1).
Then the error between the output of the plaat, i.e., desired output, and the
identifier, which is a scalar value, is back-propagated through the identifier
to make necessary updates to the weights of the network. This process is
repeated every sampling period making the training on-line, which in turn

results in an adaptive approach to identify a plaat.

4.3 Simulation Results

The performance of the proposed identifier is investigated on a synchronous
generator connected to a constant voltage bus through two parallel transmis-
sion lines as shown in Fig. 4.2. A non-linear seventh-order model is used to
simulate the dynamic behavior of the single-machine infinite-bus power sys-
tem. The differential equations used to simulate the synchronous generator,
the transfer function of the governor, AVR and CPSS along with the system
parameters are given in Appendix A. A sampling rate of 25 Hz is chosen
for the digital system. The response of the identifier after training is com-
pared to that of the plant for various disturbances under different operating

conditions as explained in the following subsections.

4.3.1 Loaded Generator

With the generator operating at P.=0.7 pu, pf=0.85 lag a 0.05 pu step
increase in input torque reference is applied at 1 s. The generator speed
deviation and its predicted value are shown in Fig. 4.3. The figure clearly

shows the effectiveness of the identifier in tracking the generator.
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4.3.2 Light Load

In light load test, the generator is operating at P.=0.2 pu, pf=0.85 lag when
a 0.15 pu step increase in input torque reference is applied at 1 s. Fig.
4.4 shows the response of the system under the new operating condition and

disturbance. Again, very good tracking is achieved using the neuro-identifier.

4.3.3 Leading Power Factor

In this test, the generator is operating under a leading power factor condition.
A 0.10 pu step increase in input torque reference is applied at 1 s while
generator is operating at P.=0.3 pu, pf=0.9 lead. Fig. 4.5 depicts the

plant and identifier responses to such a disturbance.

4.3.4 Voltage Reference Change

In this test, the ability of the identifier in tracking the generator when a
voltage disturbance occurs is verified. A 0.05 pu step increase in exciter
reference voltage is applied at 1 s with the generator operating at P.=0.2
pu, pf=0.85 lag. Result given in Fig. 4.6, shows that the proposed identifier

can track the plant satisfactorily.

4.4 Summary

An on-line trained identifier to track synchronous generator is introduced
in this chapter. The proposed identifier uses the feed-forward multi-layer

neural networks. Its structure is very simple and there is no need for a
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large number of neurons in its implementation. The training algorithm is
simplified by making use of a single element error vector. The simulation
results show the effectiveness of the tracking ability of the proposed identifier

under various operating conditions and disturbances.



Chapter 5

NAPSS Application in

Single-Machine Power System

5.1 Introduction

Low frequency oscillations are a common problem in large interconnected
power systems [90]. Power system stabilizer (PSS) can provide supplemen-
tary control signal to the excitation system and/or governor system of the
electric generating unit to damp out these oscillations and to improve gener-
ator’s dynamic performance [9], [91]. Conventional power system stabilizer
(CPSS) is a lead-lag compensation-type device, based on linear control the-
ory {8]. It has been adopted by most utility companies because of its simple
structure, flexibility and ease of implementation, and it has made a great
contribution in enhancing power system damping and dynamic stability [37].

The CPSS parameters are tuned based on the linear model of the power
system. After off-line tuning of the parameters, extensive field testing is

done at the time of commissioning. However, power systems are highly non-
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linear systems. Moreover, their configuration and parameters change with
time. In fact, it has been found that the dynamic properties of the power
system are quite different for different operating conditions [92]. This brings
discrepancies between the mathematical linear model of the power system
and the physical non-linear plant. Therefore, the parameters of the CPSS
must be retuned so that it can continue to provide the desired performance.
Even under nominal operating conditions, there is still some uncertainty due
to the approximate knowledge of the power system parameters. Thus, to
yield satisfactory control performance, it is desirable to develop a stabilizer
which considers the non-linear nature of the plant and has the ability to
adjust 1ts own parameters on-line according to the environment in which it
is working.

With the development of power systems and the increasing demand for
quality electricity supply, modern control techniques are being investigated.
In recent years, there have been new approaches to PSS design using modern
control techniques {46], [50], [93]. Having a variety of advantages, neural
networks have also been applied to power system control problems. In [94],
a neural network regulator for a turbogenerator was proposed to control
the voltage and speed of the generator. Design of a PSS based on neural
networks was also suggested in [{95]. [n that paper, the authors employed an
external teacher (a non-linear controller based on variable structure control
theory) to train the neuro-PSS. This way, the neural network is used to
realize a complicated control algorithm in a comparatively easy way. In [96],
a sophisticated training algorithm was proposed for the neuro-PSS. In [97],
Zhang proposed a few off-line methods to design a neuro-PSS. First, he
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designed the neuro-PSS by employing the pole-shifting adaptive PSS as a
teacher. Then, he proposed an inverse I/O mapped Neuro-PSS to be trained
directly from plant I/O data. In the final design, he developed a multi-
input Neuro-PSS in which he used both speed deviation and electrical power
deviation. But, as indicated earlier, all of his designs were off-line and there
was no on-line adaptation involved. An on-line trained neuro-control system
for power system stabilization was also proposed in [98]. There, the authors
proposed a neural-network based PSS using two feed-forward networks which
needs the measurement of all the generator states. The proposed PSS does
not use tapped delay elements to consider dynamic characteristics of the
generator. The authors then verified their PSS on a single-machine infinite-
bus system employing a third-order model for the generator.

In this Chapter, the neural adaptive power system stabilizer (NAPSS) is
presented. Then, it is applied to the single-machine infinite-bus power sys-
tem. The control architecture consists of two neural networks; the adaptive
neuro-identifier (ANI) to track the plant, and the adaptive neuro-controller
(ANC) to damp out the output oscillations. Using the on-line training
method, the NAPSS is able to track the plant variations as they occur and
to provide the control signal accordingly. It has a simple structure and does
not require the internal states of the plant. It is trained directly from the
output performance and does not need any reference model or teacher signal.
The performance of the proposed NAPSS under different load conditions and

disturbances is investigated for the single-machine infinite-bus system.
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5.2 Single-Machine Power System Model

A nonlinear seventh-order model is used to simulate the dynamic behavior of
the generating unit connected to a constant voltage bus through two parallel
transmission lines. A schematic diagram of the system is shown in Fig. 5.1.
For comparison purposes, the CPSS is also included in the studies. The dif-
ferential equations used to simulate the synchronous generator, the transfer
function of the governor, AVR and CPSS along with the system parameters
are given in Appendix A. Studies performed with various sampling rates
show that the performance is practically the same for a sampling rate in the
range of 20-100 Hz. Sampling frequencies above 100 Hz are of no practical
benefit and the performance deteriorates for sampling rates under 20 Hz. A
sampling rate of 25 Hz has been chosen to make sure that there is enough

time available for weight update calculations.

5.3 Controller Structure

The structure of the controller for single-machine study is shown in Fig. 3.2.
It consists of two subnetworks. The first subnetwork is an adaptive neuro-
identifier (ANI) which tracks the dynamic behavior of the plant and identifies
the plant in terms of its internal weights, and the second one is an adaptive
neuro-controller (ANC) to provide the necessary control action so as to damp
out the oscillations of the plant output.

The input vector to the ANI is

[Aw(k), Aw(k — 1), Aw(k — 2), u(k), u(k — 1), u(k — 2)] (5.1)
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Figure 5.2: Controller structure for single-machine study.
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where Aw(k) is the generator speed deviation and u(k) is the PSS output
(generator input), both at time step k. The output of the identifier is the
predicted speed deviation, A&(k + 1), at time step (k+1). The input vector
to the AN is scaled before being applied to the network to take a value in

the range of [—1,+1]. The cost function used for the ANI is

F{K) = 3ek)? = 5[Aw(k) - AS(R)] (5.2)
The weights are updated as
Wilk) = Wik — 1) — 1V, Ji(k) (53)

in which Wj(k) is the matrix of identifier weights at time step & and n; is the

learning rate for the ANI. The gradient V. Ji(k) is computed by

dAG(k)
oW, (k)

Vw,Ji(k) = —[Aw(k) — Ad(k)] (54)

in which 320 is a vector of partial derivatives of Ad(k) with respect to
each element of W;(k). Using (5.3) and (5.4), the cost function Ji(k) is
minimized in each sampling period by back-propagating the scalar error
[Aw(k) — Ad(k)].

The input vector to the ANC is:
[Aw(k)' Aw(k - 1)7 AL:J(]C - 2)7 APe(k)t AP:(k - 1)7 APe(k - 2)] (5*5)

where AP,(k) is the accelerating power at time step k. The output of the
ANC is the PSS control action, u(k), at time step k. The inputs to the ANC
are also scaled in the range of [—1,+1]. The cost function for the ANC is
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considered as:

JA) = ledk)? + hu(k)?]

—

= =[Awa(k) - AG(K)]: + gu(k)z (5.6)

[\

where Awy(k) is the desired speed deviation at time step k, which is equal
to zero in a regulatory setup, and A is a tuning parameter which is used
to improve the plant output dynamic characteristics. By taking h greater
than zero, a penalty factor is applied to the control action generated by the
NAPSS which helps the tuning of the dynamic trajectory and optimizing
the overshoot and the settling time of the response curve. The controller

weights, W.(k), are updated as

M(k) = Wc(k -1) - ncchJc(k) (5'7)

where 7. is the controller learning rate and the gradient V_J.(k) is defined

as

0AL(k)
Ou(k)

+ hu(k)] 24E)L (5.8)

Vw.J.(k) = [Ad(k) oW, (k)

Using (5.7) and (5.8), J.(k) is minimized each sampling period. As it is seen
in (5.1) and (5.5), the generator states are not required for the implementa-
tion of the ANI and ANC and only input-output data are used. This greatly

simplifies the implementation of the NAPSS.
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5.4 Training Process

The success of the control algorithm presented in section 5.3 depends highly
on the accuracy of the identifier in tracking the dynamic plant. If the identi-
fier is not sufficiently trained, the control signal which is computed based on
the identifier parameters can not be trusted and may result in unsatisfactory
response. For this reason, the ANI is initially trained off-line before being
hooked up in the final configuration. The training is performed over a wide
range of operating conditions and a wide spectrum of possible disturbances
for the generating unit. It is further discussed in the next section. After the
off-line training stage, the ANT is hooked up in the system. Further training
of the ANT and ANC is done in every sampling period employing the on-line
version of the back-propagation method [62]. This enables the NAPSS to
track the plant variations as they occur to yield the optimum performance.

The training of the NAPSS comprises the following steps:
1) At time step k, Aw(k) and AP.(k) are sampled.

2) Using Aw(k) and Ad(k), the weights of the ANI are updated,

minimizing J;(k).
3) The output of the controller, u(k), is computed.

4) Using u(k), the predicted speed deviation, A@&(k+1), is computed
by the ANIL.

5) Based on A&(k + 1), the weights of the ANC are updated, mini-

mizing J.(k).
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In step 2 above, the training is straightforward since the error at the
output of the ANI is known. However, in step 5 the training is not as easy,
since the error at the output of the ANC is not known. In this case, first
the weights of the ANI are frozen and the error between the desired and
the predicted plant output is back-propagated through the ANI. Then, the
back-propagated signal at the input of the ANI is further back-propagated
through the ANC, making the necessary changes to the controller weights.
The MATLAB function to perform the controller training is given in Ap-
pendix B. The error used to train the ANI and the ANC are both scalar and
the learning is done only once in each sampling period for each of the two
subnetworks. This simplifies the training algorithm in terms of computation
time, which is of special importance in real-time implementation.

Moreover, in order to further simplify the training algorithm, the use
of dynamic back-propagation method [99], [100], [101], which considers the
tapped-delay elements present in the input of the ANI, is avoided here due
to the extra computation burden involved. Static back-propagation [78] has
been used instead, since it is accurate enough for the purpose of this appli-
cation. The parameters of the identifier and controller along with those of

the learning algorithm are discussed in next section.

5.5 Simulation Studies

5.5.1 Parameter Setting

A variety of structures were tested for the ANC. Different number of inputs

(i.e. from four to twelve), hidden layers (i.e. one and two) and hidden neurons
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(i.e. from four to sixteen) were tested. The network with 4 inputs, which
uses two signals and their delays, did not generate good resulfs, regardless
of the number of hidden neurons. The 6x8x1 network generated good results
for different tests. The networks larger than that did not improve the result.
Therefore, the 6x8x1 structure was chosen for the ANC. The ANT structure
is also 6x8x1 as explained in the previous Chapter. For both networks, the
hidden neurons have sigmoid nonlinearity and the output neuron is linear.
Initial weights of the ANC lie between [—0.1, 4+0.1], chosen randomly at
the beginning of the process. The initial weights of the ANI are set to those
obtained from off-line training stage of the ANI as discussed before. The
learning rate for the ANI and the ANC is 0.01 and 0.03, respectively. The
value of h, the tuning parameter, is set to 4.5. It is worth mentioning that
all of the above mentioned parameters as well as the network structure were
found through simulation and trial and error. For off-line training, data
were collected for operating conditions in the range of 0.1 pu to 1.0 pu power
output and 0.7 pf lead to 0.1 pf lag. The training was iteratively done until
a pre-specified tolerance is met. The disturbances used were the voltage
reference and input torque reference disturbances and three-phase to ground

fault.

5.5.2 CPSS Parameter Tuning

With the generator operating at a power output of 0.7 pu, 0.85 pf lag, a 0.05
pu step increase in input torque reference is applied at time 1 s. At time 5
s, the change in torque reference is removed and the system returns to its

original operating condition.
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Under the above conditions, the CPSS was carefully tuned for the best
possible performance, i.e. the overshoot and the settling time were mini-
mized. The parameters of the CPSS were then kept unchanged for all of
the tests performed. Results of the study with the NAPSS, the CPSS and
without a stabilizer are shown in Fig. 5.3. It is seen from the figure that the

NAPSS damps out the low frequency oscillations very quickly.

5.5.3 Loaded Generator Test

In this test, a 0.10 pu step increase in input torque reference is applied at 1 s
and removed at 5 s. The generator is operating at 0.7 pu power, 0.85 pf lag.
The system response given in Fig. 5.4 shows that the NAPSS can handle
the disturbance better than the CPSS and the oscillations settle down more
quickly. This test demonstrates the effectiveness of the NAPSS in damping

the low frequency oscillations.

5.5.4 Light Load Test

The system condition is the same as in the previous case except that the gen-
erator is now operating under a light load condition, i.e. 0.2 pu power, 0.85
pf lag. The disturbance is a 0.05 pu step decrease in the voltage reference.
Fig. 5.5 shows the result of the system with the CPSS and the NAPSS. It is
evident that, despite a large change in the operating conditions, the NAPSS

still provides good result because of the adaptation process.
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5.5.5 Leading Power Factor Operation Test

When the generator is operating at a leading power factor, it makes the
situation difficult for the controller because the stability margin is reduced.
However, in order to absorb the capacitive charging current in a high voltage
power system in light load condition, it may sometimes become necessary to
operate the generator at a leading power factor. Thus, it is desirable that
the controller be able to guarantee stable operation of the generator under a
leading power factor condition.

A test is conducted with the generator at 0.3 pu power, 0.9 pf lead. A
disturbance of 0.20 pu step increase in the input torque reference was ap-
plied. This disturbance is high enough to cause the system to operate in the
nonlinear region. The results given in Fig. 5.6 show that the oscillation of
the system is damped out quickly and demonstrates the effectiveness of the
NAPSS to control the generator under leading power factor operating con-

ditions. The control signals of both NAPSS and CPSS are given in Fig. 5.7.

5.5.6 Fault Test

To verify the behavior of the proposed neural adaptive stabilizer under tran-
sient conditions, a fault is applied to the system. For this study, the equiva-
lent reactance of the double circuit transmission line was set at 0.4 pu instead
of 0.6 pu. The response of the power system to a three-phase to ground short
circuit at the middle of one transmission line, cleared 200 ms later by the
disconnection of the faulted line and successful reclosure after 4 s is shown

in Fig. 5.8. It can be seen that the NAPSS minimizes the deviation of the
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power angle of the generator after the fault and helps the system to reach
the new operating point very quickly. The test shows that the NAPSS not
only improves the dynamic performance but also enhances the transient per-
formance of the system. An important fact worth mentioning here is that
the parameters of the NAPSS were not required to be tuned for different
test conditions. This indicates that the proposed stabilizer enjoys the high

adaptability to the operating conditions.

5.5.7 Different Line Impedances Test

The parameters of the CPSS have to be re-tuned if the configuration and/or
parameters of the power system change. Otherwise, its performance cannot
be guaranteed. However, with the Neural Adaptive PSS, since the controller
is adapted on-line based on the output performance, the control algorithm
can automatically respond to the variations. In this test, different transmis-
sion line impedances are used to investigate the adaptability of the proposed
NAPSS. With the change of the transmission line impedance, the extent of
the coupling of the controlled generator with the fixed bus can be simulated.

If the transmission line impedance becomes larger, the generator becomes
more unstable. A robust controller should be effective for this kind of con-
dition too. In this test, the transmission line impedances of 0.2 pu and 0.6
pu are used to simulate the tightly and loosely coupled systems. With the
power system operating at 0.95 pu power, 0.9 pf lag, a 0.05 pu step decrease
in voltage reference at 1 s is applied which is removed at 5 s. Results are
shown in Figs. 5.9 and 5.10.

It is seen that NAPSS can still provide a good response despite the
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changes that happen in the system parameters.

5.5.8 Stability Margin

The introduction of the supplementary controller for the power system not
only improves the dynamic performance but also increases the stability mar-
gin. To demonstrate this fact, a simulation study was conducted. With the
initial operating conditions of 0.95 pu power, 0.9 pf lag, the input torque
reference was increased gradually. The dynamic stability margin can be
described by the maximum power output at which the system loses synchro-
nism. The results for the system without stabilizer, with the CPSS and with
the NAPSS are given in Table 5.1. The NAPSS provides the largest output
power, which indicates that the dynamic stability margin of the system is

improved most by the NAPSS.

Table 5.1: Dynamic stability margin for different stabilizers.

OPEN CPSS NAPSS
Maximum Power 2.65 p.u. | 3.35 p.u. | 3.60 p.u.
Maximum Rotor Angle | 1.55 rad. r2.14 rad. | 2.36 rad.

5.6 Summary

Application of the neural adaptive power system stabilizer to single-machine
infinite-bus power system is presented in this Chapter. The back-propagation
network with on-line learning is used in the proposed stabilizer. The stabilizer

introduced here has the following advantages:
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e is able to track plant variations;

e considers non-linear nature of the plant;
e does not need states of the plant;

® uses simple (scalar) error vector;

e has a simple structure consisting of 9 neurons in each of the two sub-

networks;
e does not require a reference model or teacher signal;
¢ does not require exact mathematical model of the plant.

Simulation results for various operating conditions and disturbances show
that the proposed neural adaptive stabilizer can provide good damping over a
wide operating range and significantly and adaptively improves the dynamic
performance of the system. The stability margin is also increased by the
proposed NAPSS.



Chapter 6

NAPSS Application in

Multi-Machine Power System

6.1 Introduction

Simulation studies in Chapter 4 demonstrated that a properly designed NAPSS
can provide effective damping of the power system [80], [81]. These studies
were on the single-machine infinite-bus environment. The effectiveness of the
NAPSS to damp out multi-mode oscillations in multi-machine environment
needs to be verified.

The effectiveness of the NAPSS to damp out muiti-mode oscillations in a
multi-machine environment is investigated in this Chapter. A five-machine
power system is used in this study and its transient response to a large
disturbance is presented with the multi-mode oscillation phenomenon.

Multi-mode oscillations appear in multi-machine power system in which
the interconnected generating units have quite different inertia constants

and are weakly connected by transmission lines. These oscillations are gen-
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erally analyzed in three main oscillation modes, i.e. local, inter-area and
inter-machine modes. Depending upon their location in the system, some
generators participate in only one oscillation mode, while others participate

in more than one mode [37].

6.2 Power System Multi-Mode Oscillations

There are three modes of oscillations in a multi-machine power system:

o Local Mode

Usually refers to oscillations occurring in plant transients stemming
from generator rotors oscillating relative to the combined equivalent
inertia of the system. This is also described as the generator swinging
relative to an infinite-bus formed by the combined equivalent inertia
external to a particular generator as shown in Chapter 5. Frequency
magnitudes are directly related to the equivalent rotational inertia of
the generator and the prime mover, and to the synchronous torque co-
efficient linking the generator to the fixed bus. Local mode oscillations

are in the range of 0.8 to 2 H=.

® Inter-Machine Mode

This describes frequencies related to closely coupled generators swing-
ing relative to each other. This can occur at a plant that has a di-
verse mix of generators and controllers or at neighboring plants that
are linked with inter-ties such that the machines are relatively closely

coupled. Intra-plant frequencies are related to the equivalent machine



6.3 Multi-Machine Power System Model

95

inertia of the closely coupled generator groups and are in the range of

03tol H=.

@ Inter-Areea Mode

These frequencies stem from coherent groups of generators in one area
swinging relative to a number of other coherent groups in other areas.
Inter-area frequencies are in the range of 0.1 to 0.7 Hz and these fre-
quencies may overlap with frequencies described under the other two

modes.

6.3 Multi-Machine Power System Model

A five-machine power system without infinite bus, as shown in Fig. 6.1, is
used to evaluate the performance of the proposed NAPSS. Five generating
units are connected through a transmission network. Generators G;, G2 and
G4 have much larger capacities than G3 and Gs. All five generators are
equipped with governors, exciters and AVRs. Parameters of all generators,
governors, exciters, AVRs, transmission lines, loads and operating conditions
are given in Appendix C. Generators G2, G3 and Gs may be considered to
form one area, and generators G; and G4 a second area. The two areas
are connected through a tie-line connecting buses 6 and 7. Under normal
conditions, each area serves its own load and is almost fully loaded with a
small load flow over the tie-line.

Due to the different sizes of the generators and system configuration,
multi-mode oscillations occur when the system experiences a disturbance. In

order to observe this fact a 0.10 pu step decrease in input torque reference of
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G3 is applied at 1 s while the system is operating without any PSSs at the
operating point #1 as given in Appendix C. At 10 s, the system returns to
its initial condition. Oscillations in Fig. 6.2 show the local mode at about
1.3 Hz and the inter-area mode at about 0.65 Hz. These two frequencies
differ significantly due to the large difference in the inertia of the generators.
The speed difference between G, and G3 exhibits mainly the local mode
oscillations, while the speed difference between G; and G, shows the inter-
area mode oscillations. Both local and inter-area modes of oscillations appear

in the speed difference between G; and Gs.

6.4 Controller Structure

The structure of the control system for multi-machine study is shown in Fig.

6.3. The input vector to the ANI is
[APe(k)v APe(k - 1)3 APe(k - 2)’ u(k)’u(k - 1)’u(k - 2)] (61)

where AP, (k) is the accelerating power and u(k) is the PSS output (genera-
tor input), both at time step k. The output of the identifier is the predicted
accelerating power, AP.(k + 1), at time step (k + 1). The input vector to
the ANI is scaled before being applied to the network to take a value in the

range of [—1,+1]. The cost function used for the ANI is
1 1 -
Ji(k) = sei(k)? = S[AP(k) — AP(K)]? (6-2)

The weights are updated as
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Wi(k) = Wi(k — 1) — n:Vw, Ji(k) (6.3)

in which W;(k) is the matrix of identifier weights at time step k and #; is the

learning rate for the ANI. The gradient Vi, Ji(k) is computed by

AAPB,(k)

(6.4)

Using (6.3) and (6.4), the cost function J;(k) is minimized in each sampling
period by back-propagating the scalar error [AP.(k) — AP.(K)].

The input vector to the ANC is
[AP.(k),AP.(k —1),AP.(k — 2), Aw(k), Aw(k — 1), Aw(k — 2)] (6.3)

where Aw(k) is the generator’s speed deviation at time step k& which goes
through a washout filter in order to remove its DC offset. The output of the
ANC is the PSS control signal, u(k), at time step k. The inputs to the ANC
are also scaled in the range of [-1,+1]. The cost function for the ANC is

considered as

J(R) = Sledk)? + hu(k)]
1

S[AP(k) ~ ABGKI + Zu(ky? (6.6)

where AP,.4(k), the desired accelerating power at time step k, is equal to
zero in a regulatory setup, and A is a tuning parameter used to improve the

plant output dynamic characteristics. The weights of the controller, W.(k),
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are updated as

We(k) = We(k — 1) — n.Vw.J(k) (6.7)

where 7. is the controller learning rate and the gradient Vi, J.(k) is defined

as
Vi k) = DA ) bkl (69

Using (6.7) and (6.8), J.(k) is minimized each sampling period. As seen in
(6.1) and (6.3), the states of the generator are not required for the imple-

mentation of the ANI and ANC and only input-output data are used.

6.5 Training of NAPSS

The training of NAPSS has two steps, namely off-line training of the identifier

and on-line training of the identifier and controller.

6.5.1 Off-Line Training of Identifier

The success of the NAPSS in suppressing the output oscillations highly de-
pends on the accuracy of the identifier in tracking the plant. This is the very
reason to train the ANI off-line before using it in the control algorithm. The
training data was gathered with the plant operating over the range of 0.1 pu
to 1.0 pu power output and 0.7 pf lead to 0.1 pf lag. Disturbances of voltage
reference and input torque reference step changes and three phase to ground
fault were applied to the system. Using this data, the ANI was trained in

the off-line mode employing the back-propagation algorithm [62].
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6.5.2 On-Line Training of Identifier and Controller

After off-line training, the ANI is hooked up in the system for further on-line
training of both ANI and ANC. The on-line training procedure is composed

of the following steps:
1)} At time step &k, Aw(k) and AP.(k) are sampled.

2) Using AP.(k) and AP.(k), the weights of the ANI are updated,

minimizing J;(k).

3) The output of the controller, u(k), is computed and applied to

the generator.

4) Using u(k), the predicted accelerating power, AP.(k+1), is com-
puted by the ANL

5) Based on AP.(k + 1), the weights of the ANC are updated, min-

imizing J.(k).

To train the controller based on AP.(k + 1), first the weights of the ANT
are frozen and the error between the desired and the predicted plant output
is back-propagated through the ANI. Then, this back-propagated signal at
the input of the ANT is further back-propagated through the ANC to make
the required changes to the controller weights.

The errors used to train the ANI and the ANC are both scalar and the
learning is done only once in each sampling period for each of the two subnet-
works. This simplifies the training algorithm in terms of computation time,
which is of special importance in real-time implementation. Also, as it is

clear from the above training procedure, the controller is updated based on
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the output performance and there is no need for a desired controller (external

teacher) or a reference model.

6.6 Identifier and Controller Parameters

Both the ANT and the ANC have 6 inputs. There is one hidden layer of 8
neurons with sigmoid nonlinearity and an output layer with one linear neu-
ron, both for the ANT and the ANC. Initial weights of the ANC lie between
[—0.1, +0.1], chosen randomly at the beginning of the process. The initial
weights of the ANI are set to those obtained from off-line training stage of
the ANI as discussed before. The learning rate for the ANI and the ANC is
0.02 and 0.01, respectively. The value of A, the tuning parameter, is set to

2.7. A sampling rate of 25 Hz has been chosen for the digital control system.

6.7 Simulation Results

6.7.1 PSS on One Unit

The proposed NAPSS is first installed on G3 while none of the other units
are equipped with PSS. A 0.10 pu step decrease in input torque reference of
G4 is applied at 1 s which is later removed at 10 s. As shown in Fig. 6.4, the
NAPSS damps out the local mode oscillations very effectively. However, as
expected, it has little influence on the inter-area mode oscillations. This is
because of the fact that the small unit of G5 does not have enough power
to control the inter-area mode oscillations introduced mainly by large units

G, and G;. For comparison purposes, a CPSS with the following transfer
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function [102] was installed on Gj3:

sTs 1+sTy1+sTs
UPSS(S) - K31 +sTs1+ 5T 14 sT,

APg(s) (6.9)

After careful parameter tuning, the following parameter set was obtained

for the CPSS on Ga.

K, = 1.0, T}_ = Ta = 0.3, Tz = T4 = 0.1, T5 =0.4 (6.10)

Results of the study with no PSS (OPEN) and with CPSS installed on G3

are also shown in Fig. 6.4.

6.7.2 PSS on Three Units

To damp out both local and inter-area modes of oscillations, two NAPSSs
are additionally installed on G, and G,. Fig. 6.5 shows the response for
the same operating conditions and disturbances as before. It can be seen
that both modes of oscillations are damped out very effectively. If CPSSs
are to be installed additionally on G; and G, to damp out inter-area mode
of oscillations, their parameters have to be re-tuned. After careful parameter

tuning, the following parameters are obtained for CPSSs on G, and G».

K, = 0-3, T1 = T3 = 007. T2 = T4 = 003. T5 = 0.3 (6.11)

The responses of the system with no PSS and with CPSSs installed on Gy,

G, and G5 are shown in Fig. 6.5.
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6.7.3 Three-Phase to Ground Fault Test

Having the same operating condition as before, a three-phase to ground fault
is applied at the middle of one transmission line between buses 3 and 6 at
1 s and cleared 100 ms later. At 10 s. the faulted line is restored success-
fully. This disturbance is large enough to cause the system to operate in the
non-linear region. Fig. 6.6 shows the response of the system with no PSS.
NAPSSs only and CPSSs only installed on Gy, G; and Gi. [t is seen that the
NAPSS improves the system response. This is due to the adaptive property
of the NAPSS.

6.7.4 Self-Coordination Ability of NAPSS

One of the important features of the NAPSS is its self-coordinating property.
The NAPSS can coordinate itself with the existing PSSs in the system au-
tomatically due to its on-line learning property. To demonstrate this fact,
the NAPSS is installed on G; and G and CPSS with proper parameter set
on G,, G4 and G5. Fig. 6.7 shows the response for 0.15 pu step decrease in
torque reference of G3 at 1 s and return to imitial condition at 10 s. It can

be seen that all PSSs work cooperatively to achieve a good performance.

6.7.5 New Operating Condition Test

To test the performance of the NAPSS under other operating conditions,
the operating point of the system is set to operating point #2 as given in
Appendix C. Fig. 6.8 shows the response under a three-phase to ground
fault having no PSS (OPEN), CPSS and NAPSS on G, Gz and G3. It is

shown that NAPSSs can damp out the oscillations very effectively even as
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the operating conditions change.

6.8 Summary

Multi-mode oscillations appear in a multi-machine power system in which
the interconnected generating units have quite different inertias and they
are weakly connected by transmission lines. Application of a neural adaptive
power system stabilizer (NAPSS) to a five-machine power system is described
in this chapter. The proposed NAPSS employs back-propagation network
with on-line learning. Its structure is very simple and there is no need for a
large number of neurons in its implementation. The accelerating power and
speed deviation of the unit are used as inputs to the NAPSS. The stabilizer is
trained in each sampling period by input-output data using a simple single-
element error vector. Due to its adaptability, the NAPSS can adjust itself to
different conditions to effectively damp out both local and inter-area modes

of oscillations. The self-coordinating ability of NAPSS is also demonstrated.
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Chapter 7

NAPSS Laboratory

Implementation and Real-Time

Test Results

7.1 Introduction

Results in the previous chapters have shown that NAPSS exhibits very good
control performance [80], [103]. Like most other neural network based con-
troller research, the results in the previous chapters are based on computer
simulations. In these simulations, the power system was simulated by using a
set of simultaneous differential equations, and NNs were simulated by using
a sequential algorithm to simulate the parallel distributed nature of NNs.
Since the power system simulation models represent fairly closely the physi-
cal system and the sequential algorithm can get the same output except for

a longer computation time, the simulation results presented in the previous
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chapters may be said to be close to those expected in a physical system.

Computer simulation is different from the real physical system since the
operating environment of the physical system is not ideal and there exist
noise and saturation of elements as well as unexpected disturbances that
cause the power system to operate under a continuous small perturbation.
Therefore, after theoretical development and computer sirulation, the next
desirable step is to evaluate the control strategy on a physical model of the
controlled system.

In general, it is necessary to implement a controller in hardware. Thus,
the design of the NAPSS is not finished until the hardware implementation
is finished. There are some practical considerations that need to be looked

at in NAPSS implementation in the laboratory. These are:

@ what type of physical plant can be used in the laboratory;
@ in what environment the NAPSS can be built;

® how to implement the parallel distributed nature of NN.

Because of the above considerations, very few laboratory implementations
of the neural network based controllers are reported in the literature. An
early stage laboratory implementation of an NN based controller to simulate
an adaptive trajectory controller for a DC motor is described in [104]. In
this work, different NNs were trained to simulate the identification part and
control part of the adaptive controller. An off-line trained neural network
based controller was also implemented in [105].

So far as is known, the first implementation of an on-line trained neural

network based PSS in a laboratory environment is reported in this chap-
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ter. A laboratory physical model of a power system, which has the same
characteristics as that of a real power system, is set up. Since the neural
network hardware capable of handling on-line training was not available at
the time of implementation, a sequential simulation method was employed
to implement the NAPSS in software on a Digital Signal Processor (DSP)
board mounted on a 80386 PC. For comparison, a digital conventional PSS
(CPSS) is implemented in the same environment on the DSP board. De-
tails of implementation along with the experimental results are described in
this chapter. Effectiveness of the NAPSS in response to various types of

disturbances for a variety of operating conditions is demonstrated.

7.2 Power System Physical Model

Schematic diagram of the physical model of a single-machine infinite-bus
power system available in the Power System Research Laboratory at the
University of Calgary is shown in Fig. 7.1. It consists of 2 3 phase, 3 kV A,
220 V synchronous micro-alternator driven by a 220V, 30 A DC motor.
The alternator is connected to the city power system (constant voltage bus)
through two parallel transmission lines. The parameters of the physical sys-
tem are given in Appendix D. The lumped element physical model of the
transmission line simulates the performance of 2 500 £V, 300 km long double
circuit transmission line which consists of six w-sections. It has a frequency
response which is close to that of an actual transmission line up to 500 Hz.
A Time Constant Regulator (TCR) is used to change effective field time con-
stant of the generator in order to emulate a large generating unit. Using this

circuit, effective field time constant of the generator can be increased up to
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10 s.

The system is also equipped with a commercial ABB PHSC AVR imple-
mented on a Programmable Logic Controller (PLC) to control the terminal
voltage of the generating unit. It is programmed using a function block pro-
gramming language called FUPLA. Three phase AC voltages and currents at
the generator terminal are stepped down, rectified and filtered with a cut-off
frequency of 8 Hz to form six DC input signals to the AVR. The PLC-based
AVR computes the required field control signal which is fed to the TCR. The
AVR also calculates the active power signal which is used as the PSS input.
The NAPSS is implemented on a DSP board based on the TMS320C30 DSP
chip. It computes the required control signal, Up,,, to be fed to the AVR.
Details of the DSP hardware and its connection to the AVR are covered in
the next section.

A variety of disturbances can be applied to the system. Using the switch
shown in the excitation circuit of the DC motor, Fig. 7.1, a step change in
input torque of the generator can be applied. Similarly, the input reference
voltage of the AVR can be stepped down or up. In addition, different types of
faults can be applied to simulate large disturbances. The operating condition
of the generator, i.e. active power and power factor, can also be changed by
changing the armature current of DC motor and terminal voltage of the

generator respectively.
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7.3 Implementation of NAPSS

7.3.1 Sequential Implementation of Parallel Mechanism

Parallel processing is one of the most important properties of the neural net-
works. The neurons in a layer operate in parallel. This results in high speed
operation. Research on designing neural networks by using VLSI technology
is advancing very fast. However, becanse NN hardware with on-line learning
capability was not available in the laboratory at the time of implementation,
a sequential implementation method was designed to sirnulate the parallel
mechanism.

The sequential implementation is very similar to the NN simulation used
in the simulation studies in the previous chapters. Instead of allowing all
neurons in the same layer to compute simultaneously, this method only allows
neurons to compute one after another. The computation starts from the first
neuron of the first layer and ends with the last neuron of the output layer.
The output of each neuron is held constant until the next computation cycle
starts. This method can get the same output as that of a real neural network

chip except that the computation time is much longer here.

7.3.2 Hardware Structure

Structure of the digital control system is shown in Fig. 7.2. The NAPSS
is developed on a DSP board supplied by SPECTRUM Signal Processing
Inc. It contains a Texas Instruments TMS320C30 DSP chip. The chip is a
32-bit floating point device with a speed of 16.7 million instructions per sec-

ond. Its performance is further enhanced through its large on-chip memories,
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concurrent DMA controller, two external interface ports and an instruction
cache. Two 200 kHz, 16-bit analog I/O channels on board, coupled with
direct access to all serial and parallel I/O channels of DSP chip, provide the
exterior input-output functions. The 32-bit on-chip timer is programmed by
software to a resolution of 120 ns. The board is mounted inside a PC which
is equipped with corresponding development and debugging tools.

The AVR calculates the generator active power, P., based on the mea-
sured instantaneous voltages and currents. The P. signal is then transfered
to DSP board through the A/D channel. This A/D channel samples the
signal at 200 Hz. The sampled signal goes through a filter, which limits the
noise and provides anti-aliasing protection. The filtered signal is then stored
in a buffer. The DSP chip reads the buffer and computes the control signal,
Upss- The computed Up,, is fed to the D/A channel which filters the sig-
nal for smoothing before sending it out. The AVR receives the PSS control
signal as a supplementary input and adds it to the voltage reference signal.
The combined signal then goes through the AVR block in order to make the
required field control signal to the TCR.

7.3.3 Software Structure

The NAPSS software, running on DSP, is developed in C and Assembly lan-
guages. In addition, a Man-Machine-Interface (MMI) routine, running on
PC, is also developed to further improve the PSS development and imple-
mentation environment. Flow chart of the MMI routine is shown in Fig.
7.3.  This routine functions as a supervisor monitor. It first initializes [/O

vectors for DSP-PC communication. Then, it loads the DSP code into the
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Figure 7.3: Flow chart of the Man-Machine-Interface (MMI) program.
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chip. It then reads control parameters and sends them to DSP chip through
Dual Access RAM (DARAM). After the inception of main contro! loop by
DSP, the MMI routine reads the input-output data of the controller running
on the DSP board every 50 ms. These data are plotted on-line on the screen,
and also can be forwarded to a file for further analysis.

Flow chart of the program running on the DSP board is shown in Fig.
7.4. This program first initializes the [/O vectors for DSP-PC communica-
tion, then reads control parameters from DARAM. After initializing A/D
and D/A channels and sampling time counter, it enters the main control
loop. There, it iteratively reads the input signal, processes that signal, com-
putes the controller output and sends the output signal along with the neural
network weights to DARAM.

7.4 Control Strategy

A schematic diagram of the controller architecture is shown in Fig. 7.5.

The input vector to the ANT is:
[AP.(k), AP.(k — 1), AP.(k - 2), u(k),u(k — 1), u(k — 2)] (7.1)

where AP, (k) is the active power deviation and u(k) is the PSS output (gen-
erator input), both at time step k. The active power deviation is obtained
by removing the DC offset of the generator active power using a washout

filter. The output of the identifier is the predicted active power deviation,
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Figure 7.5: Control system architecture in implementation stage.
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AP.(k + 1), at time step (k + 1). The input vector to the ANC is

[AP.(E), AP.(k — 1), AP.(k — 2), Aw(k), Aw(k — 1), Aw(k — 2)]  (7.2)

where Aw(k) is a signal proportional to the generator speed deviation. This
signal is obtained by integrating the AP, signal. Again, a washout filter is
used to remove the DC offset of this signal.

7.5 Training Procedure

The on-line training procedure is composed of the following steps:

1) At time step k, P.(k) is sampled and AP.(k) and Aw(k) are

computed.
2) Using AP.(k) and AP.(k), the ANT is trained.
3) The output of the controller, u(k), is computed.

4) Using u(k), the predicted active power deviation, AP.(k + 1), is
computed by the ANT.

5) Based on AP.(k + 1), the ANC is trained.

To train the ANC, first the weights of the ANI are frozen and the er-
ror between the desired and the predicted plant output is back-propagated
through the ANI. This back-propagated signal at the input of the ANI is
further back-propagated through the ANC to make the required changes to

the controller weights.
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Since the sampling period can not be less than the time needed for back-
propagation of error and updating the weights of the neural network, special
care should be given to the selection of the network size and error vector size.
If the network is big and/or the error vector is large, the on-line training
algorithm can not be accomplished in one sampling period. Here, the errors
used to train the ANI and the ANC are both scalar and the learning is done
only once in each sampling period for each of the two subnetworks. This
simplifies the training algorithm in terms of computation time. Also, the
controller is updated based on the output performance and there is no need
for a desired controller (external teacher) or a reference model.

Both the ANI and the ANC have a 6x8x1 structure, based on earlier ex-
perience (see Chapter 5) [80]. This leads to a simple network with a total
of 9 neurons in each of the two subnetworks. Having a simple network is
very important in real-time implementation, since it involves less computa-
tion which allows a small sampling time. This in turn results in a better
performance. The 8 neurons of hidden layer have sigmoid non-linearity and
the single output neuron is a linear one. The learning rate for the ANT and
the ANC is 0.01 and 0.03 respectively.

Using computer simulation and parameters of the system given in Ap-
pendix D, both the ANI and ANC are first trained on a SUN Sparc Sta-
tion platform employing the on-line version of the back-propagation algo-
rithm [62]. After this stage, the weights of the neural networks are plugged

into the real system for further on-line training.
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7.6 Implementation of CPSS

A CPSS is digitally implemented on the same digital control environment for

comparison purposes. Having the analog transfer function of:

STs 1+ ST1 1+ ST3

Upss(s) = K, 1+sTs1+sTh1+sT,

APg(s) (7.3)

the CPSS is discretized using the bilinear transformation, s = %—i—;{, where
T is the sampling period. Since the washout filter is implemented in another
block, only the lead-lag element needs to be discretized. After applying this

transformation, the digital CPSS would have the following transfer function:

-1 -2
u(k) = SEA 2B Ar Gy (7.4

where coefficients {g/} and {f} are explicit function of gain K, and time
constants T; — T4. The sampling period for the digital CPSS is chosen to be

T=1ms.

7.7 Experimental Results

The performance of the proposed NAPSS has been investigated by a number
of experimental tests for a variety of operating conditions and disturbances.
For the sake of brevity, however, results of only a representative set of studies
are presented here. For comparison purposes, results of the same tests using
digital CPSS are also included. All experimental data are collected by the
MMI routine and saved automatically for further analysis. However, in order

to make the disturbances seem to happen at the desired time point, the time
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axis is adjusted.

The inherent damping of the physical model power system used for exper-
imental tests is quite high. However, to evaluate the supplementary damping
effect provided by PSS, a small system damping is desired. To achieve this
goal, only one transmission line is in operation for all the tests except the
three-phase to ground fault test. The sampling time for the digital control

system is 3 ms.

7.7.1 Voltage Reference Step Change

With the generating unit operating at 0.9 pu power, 0.85 pf lag and termi-
nal voltage of 1.1 pu, a 0.10 pu step increase in voltage reference is applied
at 1 s. At time 8 s, the change in input reference voltage is removed and
the system returns to its original operating condition. The generator active
power deviation with NAPSS and without PSS (OPEN) are shown in Fig.
7.6. For the open-loop system, when the voltage reference drops, the oscil-
lations become more severe. This is because the stability margin is reduced
when the voltage drops. Therefore, in Fig. 7.6, the generator is in a more
stable situation at 1 s compared to its situation at 8 s.

In order to make a comparison between CPSS and NAPSS, the param-
eters of the CPSS are carefully tuned to give the best response for the op-
erating conditions of this test. These parameters are given in Appendix D.
The response of the system with the CPSS having these parameters is also
given in Fig. 7.6. It is obvious from the figure that both NAPSS and CPSS
are producing good results.

To further test the performance of the NAPSS, the operating condition



129

0.15 ~
0.10
05
000 ;¥
05
0.10
0.15

3 s

{nd} uopaa(] 1Mo g aanoy

7.7 Experimental Results

Time [s]

0.9 pu and pf=0.85 lag.

Figure 7.6: System respouse to a 0.10 pu step disturbance in voltage refer-
ence, P



7.7 Experimental Results 130

is changed to 0.96 pu power, 0.96 pf lead and 1.0 pu terminal voltage. The
same disturbance of 0.10 pu step change in input reference voltage is applied
with the same timing. System responses to this disturbance having NAPSS,
CPSS and no PSS are shown in Fig. 7.7. Although the stability margin is
reduced in the new operating condition, the NAPSS still provides a good

performance.

7.7.2 Input Torque Reference Step Change

In this test, the generator is operating at 0.9 pu power, 0.85 pf lag and 1.1
pu terminal voltage. A 0.25 pu step decrease in input torque reference is
applied at 1 s and removed at 8 s. The system response is given in Fig. 7.8.
For this new operating point and disturbance, the NAPSS still provides a
quick and well-damped response.

Another disturbance of 0.22 pu step decrease in input torque reference is
applied to the system while the generator is operating in the leading power
factor condition of 0.82 pu power, 0.96 pf lead and 1.0 pu terminal voltage.
The response for this test is shown in Fig. 7.9. The figure clearly demon-
strates the effectiveness of the NAPSS. The control signals of both NAPSS

and CPSS are given in Fig. 7.10.

7.7.3 Three-Phase to Ground Fault Test

Even though the PSS is not specially designed for the purpose of improving
stability under transient conditions, it does exert a positive influence during
the recovery period after the disturbance.

In order to evaluate the performance of the NAPSS under transient con-
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ditions, a three-phase to ground fault test is conducted. The generator is
operating at 0.9 pu power, 0.85 pf lag and 1.1 pu terminal voltage. At 1l s, a
three-phase to ground fault is applied at the middle of one transmission line.
The faulted line is isolated 100 ms later by relay action. An unsuccessful
reclosure attempt is made 600 ms later, and the line is opened again 100 ms
later due to a permanent fault. The second reclosure is successfully applied
at 8 s by which the system returns to its original condition. System response
under above transient conditions is shown in Fig. 7.11. It is observed that
in spite of a large disturbance in the system, the NAPSS manages to control
the system properly and damp out the oscillations very effectively.

In another test, the same disturbance is applied with the new operating
point of 0.9 pu power, 0.95 pf lead and 1.0 pu terminal voltage. The system
response is shown in Fig. 7.12. It is clearly seen in Figs. 7.11 and 7.12 that

the NAPSS produces much better results in response to short circuit.

7.7.4 Stability Margin Test

Power system stabilizers are primarily used to provide extra damping to
generating units to damp out low frequency oscillations, and thus increase
the stability margin of the power system. With PSS in operation, a power
system can operate in some overload condition even if it is not stable without
a PSS or with a poor PSS. The better the PSS, the more the stability margin
is improved. The goal of this test is to observe the ability of NAPSS in
enhancing stability margin.

The test starts with the generating unit operating at a stable condition

without any PSS. The NAPSS is then switched on to the system. The load
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is increased gradually to a 20% overload condition, ie. 1.2 pu power, 0.9
pf lag and 1.05 pu terminal voltage. Under this operating condition, the
system is still stable as shown in Fig. 7.13. At 5 s, the NAPSS is replaced by
CPSS. The system begins to oscillate without any external disturbance. This
means that the CPSS is unable to maintain system stability for this operating
conditions. At 18 s, the NAPSS is switched back by which the system is very
quickly stabilized. The test proves that the NAPSS can provide a larger

stability margin than that of the CPSS.

7.8 Summary

Implementation of NAPSS in a laboratory environment and real-time test
results on a physical model power system are presented in this chapter. An
experimental physical power system was set up to model a simple power
system. This system consists of a micro-alternator driven by a DC motor and
a double circuit transmission line linking the micro-alternator to a constant
voltage bus. The control strategy and digital control system setup are also
discussed.

A sequential implementation method is used to simulate the parallel
mechanism of a real multi-layer neural network. The NAPSS is implemented
in a real-time digital control environment which was developed using a DSP
board and a PLC acting as an AVR. Using system parameters, the NAPSS
is first trained using computer simulation. After this stage, the weights of
the peural networks are plugged into the real system for further training.

The proposed NAPSS enjoys the adaptation property which is of great

importance when operating conditions are changed. The experimental results
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are compared to those of a digital CPSS. It is demonstrated that NAPSS
outperforms the CPSS specially for those operating points which are far from
the CPSS design point as well as for large disturbances. It is also shown that

using NAPSS, the stability margin of the system is increased.



Chapter 8

Conclusions

8.1 Summary

As discussed in Chapter 1, power system stabilizers have been proven very ef-
fective in enhancing stability of power systems. Numerous theoretical studies
and experimental tests have been conducted to better understand the behav-
ior of the PSS and to make them more applicable in practice. Different types
of PSSs have been investigated, and their advantages and disadvantages have
become more and more clear. Based on these studies criteria have been de-
veloped to help the designer to choose the most suitable configuration for a
particular application.

The conventional PSS has been successfully applied to the power industry
in many cases. However, because of its inherent characteristics, it faces some
serious problems. Fixed parameter and linear properties are the two most
serious problems, since power systems are non-linear time-varying stochastic
systems. The stabilizer should be able to adapt itself to the varying system

to produce better performance. This has led to research on adaptive power
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system stabilizers.

This dissertation is devoted to the development of an adaptive power
system stabilizer based on on-line trained neural networks. It has made
systematic contributions to all three stages of developing such a stabilizer
namely theoretical development, simulation studies and experimental tests.

This dissertation begins with the classification and analysis of different
types of neural networks. The suitability of different types of NNs for ap-
plication in power system stability control is investigated. The conclusion
that the multi-layer neural network is the one that is most appropriate for
application in power system stability control has been reached. Details of
the theory and structure of some of the well-known architectures of NN are
discussed with the emphasis on the multi-layer neural network and back-
propagation learning algorithm. The advantages and disadvantages of using
neural networks are presented.

In the first stage, the NAPSS is designed using multi-layer neural net-
works. The back-propagation algorithm in on-line mode is used to give the
powerful property of adaptation to the PSS. The training algorithm is sim-
plified using a scalar error vector. Attempts have been made to make the
structure of the NAPSS as simple as possible. Therefore, based on trial and
error, two simple networks each having a total of 9 neurons have been cho-
sen, one acting as the identifier and the other acting as the controller. In
order to further simplify the implementation of NAPSS in a real situation,
the design procedure only uses the output of the generating unit and does
not require measurement of the internal states of the plant. Moreover, there

is no need for a reference model or teacher signal in the system. The NAPSS
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is adapted based on the output performance of the system. In other words,
it is self-tuning and not model-based. Last but not the least, the NAPSS
considers the non-linear nature of the plant as opposed to the CPSS which
is based on the linearized model of the plant.

Based on the proposed method. the NAPSS is designed and tested in the
single-machine infinite-bus environment by computer simulation [80], [81].
The architecture and parameters of the NAPSS are discussed. Steps of the
on-line training algorithm are also explained. Simulation results show that
the proposed NAPSS can provide good damping of the power system oscilla-
tions over a wide operating range, and significantly and adaptively improve
the system performance.

Multi-mode oscillations often occur in a multi-machine power system in
which the interconnected generating units have quite different inertias and
they are weakly connected by transmission lines. The effectiveness of the
NAPSS to damp out multi-mode oscillations in a2 multi-machine environment
is verified in this dissertation. Test results show that each NAPSS can damp
out the specific mode of oscillation introduced mainly by the generating unit
on which it is applied. Several NAPSSs working together can damp out both
the local and the inter-area modes of oscillations. The tests also show that
NAPSS can work cooperatively with other types of PSSs [103].

Neural network applications have spread to many fields. Many theo-
retical investigations have been conducted on NN applications in control
systems, but real-time applications are rare. The proposed or-line trained
NAPSS is first implemented in this dissertation. Using a micro-alternator,

a PLC as AVR, and a DSP board, a real-time digital control environment
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has been established to test the performance of the NAPSS on a physical
system in real-time. A digital CPSS has also been implemented in order to
make a comparison between these two approaches. Experimental tests have
produced results consistent with simulation studies, proving that the NAPSS
has a very good control performance in damping power system low frequency

oscillations {106].

8.2 Future Work

Research on peural networks has advanced very fast in recent years, and so
have neural network based control techniques. Based on the work of this

dissertation, the following are recommended as further research topics:

® Integrated adaptive control of the generating unit for both the excita-
tion and the governor is an area worth looking into. How to consider
the interaction between these two signals, and how to use them to

produce better results is an interesting topic.

¢ I[ntegration of the AVR and PSS control loops using neural networks
is another topic which seems very promising. The combined controller
can get the terminal voltage along with the power deviation as input

and produce the field signal as output.

o Laboratory implementation of the NAPSS was based on a sequential
simulation method. Since this method uses a sequential methad to sim-
ulate the parallel distributed nature of the neural networks, computing
time of this simulated NN was longer than that of a real NN chip. It
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is suggested that the NAPSS be implemented on a commercially avail-
able NN chip. It will reduce the sampling time, and thus improve the
performance of the NAPSS.

@ As for the practical application, there are still many aspects that need
to be investigated before the NAPSS can be put into use. For instance,
reliability and ability to handle emergencies are the most important

aspects to be considered.
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Appendix A

Single-Machine Power System

A.1 Synchronous Generator Model

The generating unit is modeled by seven first-order differential equations

given below

§ = wow (A.1)
o= %(Tm +g+ Kb —T.) (A.2)
Ad = eq + raig +wo(w + 1)A, (A.3)
X, = e + Taiy —wo(w + 1)Ag (A.4)
Xf=ep—rpif (A.3)
Med = —Thatia (A.6)
’\;cq = —Thglkg (A.7)

A.2 Governor

The governor employed in the simulation study has the transfer function
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b .
g(s) = [ + sz;] 8(s)

A.3 Power System Parameters

Power system parameters used in the simulation study are given below

H = 3.46

e = 0.023
T4 =124

z, = 0.743

Ty =133

Rc =10.0

Tg =10.0

Tc =10

T4 =00
Tr=1.0
Varmrn = -999
Vimin = -999
Vamin = -6.7
e = —0.001328
T, =02

T, =0.045
K,=1131

r. = 0.007
Tk = 0.023
T = 1.15
Tk, = 0.652
z: = 0.6
Xc=0.0
T, =00
Ty = 0.0
K4 =190
Kr=0.0
Varmax = 999
Vimax = 999
Vamax = 7.8
b=-0.17
T, = 0.045
T5 =265

ry = 0.00089
re = 0.05
Tmd = 1.126
Img = 0.626
Ky =—0.027
K¢ = 0.08
Krp=10.0
Itr=10.0
Tr = 0.04
Voer = 999
Voer = -999

Vstmin = -0.1

Vstmax = 0.1

T, = 0.25
T3 = 0-2
Ts = 0.009

All of the resistances and reactances are in pu and the time constants are in

seconds.



A.4 Conventional PSS

A.4 Conventional PSS

The CPSS used in the simulation study is Type PSS1A from IEEE Standard
421.5 [102] with the following transfer function (no discontinuous excitation

control is used)

sTs; 1+sTi1+4+sT3 1

F = V. =04,
Upss(s) sT(s) = K 1+sT51+sTo 14+ 5T, 1+ sTs

w(s)  (A8)

A.5 AVR and Exciter

The AVR and exciter combination used in the system is from IEEE Standard
421.5, Type ST1A [102] as shown in Fig. A.L.
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A.5 AVR and Exciter
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Appendix B

MATLAB Function for

Controller Training

In order to train the controller, the error should be first back-propagated
through the identifier to reach the controller. In this situation, one can
assume cascade of the controller and identifier as one neural network in which
the error is first back-propagated through the first block (identifier), assuming
fixed weights, and then the back-propagated error is further back-propagated
through the second block (controller) updating its weights.

The following MATLAB function serves this purpose. The definition of

the variables used is coming first.

fi_c = controller first layer neuron function

f2_c = controller second layer neuron function
fi_i = identifier first layer neuron function
f2_1i = identifier second layer neuron function
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ercn = controllier error
al_i = output of identifier first layer
a2_i = output of identifier second layer (plant’s predicted

output at next step)

di_i1i

delta-term of the first layer of identifier
d2_i = delta~term of the second layer of identifier
wl_i = identifier first layer weights

w2_i = identifier second layer weights

di_u = delta-term associated with the u(k) input line of identifier

n.del_omega = total number of omega (speed) inmput lines for

identifier (=3)

ercn_eq = controller equivalent error (back-propagated through
identifier)

h = tuning parameter

al_c = output of controller first layer

a2_c = output of controller second layer (control signal)

di_c = delta-term of the first layer of controller

d2_c = delta-term of the second layer of controller

wl_c = controller first layer weight matrix

w2_c = controller second layer weight matrix

bl_c = controller first layer bias vector

b2_c = controller secornd layer bias vector

dwl_c = correction to controller first layer weight matrix
dw2_c = correction to controller second layer weight matrix
dbl_c = correction to controller first layer bias vector
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db2_c = correction to controller second layer bias vector
inp_c = controller input vector

1r_c = controller learning rate

mc_c = controller momentum constant (=0)

%

/A Controller Training Function i

4

fi_c = ’tansig’;

£f2_c = ’purelin’;

f1_1 = ’tansig’;

f2_1i = ’‘purelin’;

dfi_c = feval(fl_c,’delta’);

df2_c = feval(f2_c,’delta’);

df1_i = feval(fi_i,’delta’);

df2_i = feval(f2_i,’delta’);

ercn = -a2_i;

d2_i = feval(df2_i,a2_i,ercn);
di_i = feval(dfi_i,a1_i,d2_i,w2_i);
di_u = di_i’*wi1_i(:,(n.del_omega+l));

ercn_eq = di_u + h.*a2_c;
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d2_c feval(df2_c,a2_c,ercn_eq);

di_c feval(dfi_c,al_c,d2_c,w2_c);

(dwi_c,dbi_c] = learnbpm(inp_c,dl_c,lr_c,mc_c,dwl_c,dbl_c);

[dw2_c,db2_c] = learnbpm(ai_c,d2_c,lr_c,mc_c,dw2_c,db2_c);

wi_c=wl_c + dwl_c;
w2.c = w2_c + dw2_c;
bl_c = bl_c + dbl_c;
b2_c = b2_c + db2_c;



Appendix C

Multi-Machine Power System

C.1 Synchronous Generator Model

The generating unit is modeled by five first order differential equations given
below

8 = wow (C.1)
o= Q—II-I—(T,,, +g+Kib—T) (C.2)
T, = es— (Ta — Ty)ia — ¢, (C.3)

06 = (e — (g} — £)ia — €] + TLe, (C.4)
"6l = (g —2")ig — (C.5)

C.2 Governors Parameters

Gy G, Gs G4 Gs
T, 0.2500 0.2500 0.2500 0.2500 0.2500
a -l5e4 -1.5¢4 -1.33e-3 -l.5e-4 -1.33e-3
b -0.0150 -0.0150 -0.1700 -0.0150 -0.1700
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C.3 Parameters of the Generators

Gy

zg 0.1026
z, 0.0658
z;, 0.0339
zi  0.0269
z/  0.0335

e 9.6700
T7 0.6140
T, 0.7230
H 80.000

C.4 Parameters of AVRs and Exciters

G,
0.1026
0.0638
0.0339
0.0269
0.0335
5.6700
0.6140
0.7230
80.000

Gs
1.0260
0.6580
0.3390
0.2690
0.3350
5.6700
0.6140
0.7230
10.000

Gy
0.1026
0.0658
0.0339
0.0269
0.0335
3.6700
0.6140
0.7230
80.000

Gs
1.0260
0.6580
0.3390
0.2690
0.3350
3.6700
0.6140
0.7230
10.000

Parameters of AVRs and simplified ST1A exciters [102] are

G
K4 190.00
K¢ 0.0800
Ty  10.000
Tz 1.0000
Tp 0.0400

G,
190.00
0.0800
10.000
1.0000
0.0400

G
190.00
0.0800
10.000
1.0000
0.0400

G
190.00
0.0800
10.000
1.0000
0.0400

Gs
190.00
0.0800
10.000
1.0000
0.0400

The output of all exciters is limited within -6.7 to 7.8 pu.
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C.5 Transmission Lines Parameters

Bus No.
1-7

o IR S U R S U OO Y
| | I I } | I
W -1 ®» 0 O & >

Tt
0.00435
0.00213
0.01002
0.01002
0.00524
0.00711
0.04032
0.01724

Iy
0.01067
0.00468
0.03122
0.03122
0.01184
0.02331
0.12785
0.04153

C.6 Operating Point #1

G1
P.(pu) 5.1076
Q(pu) 6.8019
Vipu) 1.0750
d(rad) 0.0000

Loads in admittance in pu

Ly=75-j50

G,
8.5835
4.3836
1.0500
0.3168

Gs
0.8055
0.4354
1.0250
0.2975

L,=85—75.0

B,/2

0.01536

0.00404

0.03204
0.03204

0.01756

0.02732

0.15858

0.06014

G,
8.5670
4.6686
1.0750
0.1174

Gs
0.8501
0.2264
1.0250
0.3051

Ly=70-7j45
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C.7 Operating Point #2

Gy G G Gs Gs
P.(pu) 3.1558 3.8835 0.4055 4.0670 0.4301
Q(pu) 2.9260 1.4639 04331 2.1905 0.2575
Vi(pu) 1.0500 1.0300 1.0250 1.0500 1.0250
8(rad) 0.0000 0.1051 0.0943 0.0361 0.0988

Loads in admittance in pu

L1=376-j25 L[;=425-j2.5 L3=3.5—3225



Appendix D

Physical Model Power System

D.1 Micro-Alternator Parameters

H=4.75 re = 0.0026 r;=0.00073 =z;=1.27
Ted = 0.0083 20 =125 zZpe=1.129 z4=1.2
Thg = 0.0083 z4 =125 2z, =1129 z,=1.2

D.2 Transmission Line Parameters

Each circuit of transmission line consists of six 50 km equivalent w-sections.

Parameters of each section are

re =0.036 z.=0.0706 B;=18.779

D.3 Conventional PSS Parameters

K, =96 T =01 T=0.08
I3=01 T,=0.08

All of the resistances and reactances are in pu and the time constants are in

seconds.
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