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Abstract 

Power system stabilizers are responsible for enhancing the power system sta- 

bility and for improving the dynamic performance of the system- .b adaptive 

power system stabilizer using on-Iine trained neurd networks is developed in 

this dissertation. The feed-forward multi-layer neural network dong with 

the back-propagation algorithm in on-line mode is used to design the neu- 

ral adaptive power system stabiIizer (NAPSS) - The structure and training 

procedure of the proposed NAPSS are discussed. 

The proposed NAPSS consists of an identifier to track and identify the 

non-iinear plmt in real-time and a controller to damp power pIant oscilla- 

tions. These two subnetworks aze trained in each sampling period employing 

the on-line version of the back-propagation dgorithm. The resulting NAPSS 

does not require any reference model or teacher and is trained directly based 

on output performance of the plant. It dso does not need the intemal states 

of the plant to be measured and just uses the output of the plant. The 

NAPSS is tested on a single-machine infinite-bus power system model for a 

&ety of disturbances. 

A multi-machine power system is used to e d u a t e  the performance of the 

XAF'SS in damping power system multi-mode osdations. The effectiveness 



of the NAPSS in damping multi-mode osciIIations and its self-coordination 

ability are a h  dernonstrated, A Digital Signal Processor (DSP) board is 

employed to impIement the XAPSS. The behavior of the NAPSS is then 

investigated using a physicai modd of a power system in the Power System 

Research Laboratory at the University of Calgary. Implementation steps and 

real-tirne test results are presented. 
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Chapter 1 

Introduction 

1.1 Power System Stability 

Electric power systems are highly complicated systems that contain non- 

linear and time-varying elements. Their dynamics cover a wide spectnim 

of phenornena, which are electricd, electremechanicd and themai in na- 

ture. Since interconnected power systems can encompass entire corntries 

and continents, they can involve a large number of interacting systems with 

an immense array of variables [1] [2], [3]. 

The highly interconnected nature of power systems makes their operation 

and control a complex process. Disturbances in some elements may affect 

the whole system operation and stability causing poor power quality or even 

the internption of power supply [4], [SI. 

The problem of power system instability first arose when generating units 

were tied together to improve power system reliability and to reduce the cost 

of generation [6]. It was noticed that the system damping was insacient. 

One of the first approaches to overcome this problem was to introduce darliper 
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windings in the synchronous generator [6]. 

Extensive research has been conducted to overcome power system stabil- 

ity problems. For anaIytica.1 studies, researchers have classified the power 

system stability into three categories [7], 181, [9]: [IO]: 

This corresponds to the stability of the power system around an oper- 

ating point. If the system is able to maintain synchronism after s m d  

changes in operating conditions, it is said that it has steady-state sta- 

bility. 

Dynamic stability 

Dynamic stability is the stability of the power system under s m d  and 

sudden disturbances- These type of disturbances can lead to Iong term 

sustained osciIlations fa]. 

a Transient stability 

Transient stability refers to the ability of the power system to regain 

stability after a sudden and severe disturbance. System fadts, line 

switching and large changes in loads can be considered as severe dis- 

turbances that lead to transient stability problems. 

.4 small signal perturbation model around an equilibrium point can be 

considered for dynamic stabiiity studies and the system can be described by 

linear differential equations. However, for transient stability analysis and 

control design, the power system must be described by non-hear differential 

equations. 
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Although there are several sources of positive damping [81 in a power sys- 

tem' there are also sources of negative damping, notably voltageregtdating 

and speed-governing systems. Furthermore, alt hough ordinarily the inherent 

positive damping predominates, in some c~cumstances the net damping can 

become negative. With net negative damping, angular swing of the machine, 

instead of deciining, increases either untii equilibrium ampIitude is reached 

or synchronism is lost. 

As power system stability is ultimately concerned with the quality of dec- 

tricity supply, it is one of the main research topics in power system studies. 

There are three means of improt-ing power system stability: 

Generator excitation control [Il], [12], [U], [l4] , [15], [l6], Cl?]. 

Generator input power control [l8], [Z9], [2O]. 

For a particular problem, one or more of the above rnethods can be used- 

However, excitation control is usudy preferred for the follonring reasons: 

the electrical system has much smaller time constants than the me- 

chanical system; 

an electrical control system is more economicd and easier to implement 

than a mechanical control system; 

a because of s m d  loop time constant, an electrical control system is 

effectively a continuously acting system. Consequently, it gives smooth 

system response. 
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Excitation Control 

Excitation controuers have been widely used in power systems since the e d y  

1960's 1261. The purpose of using excitation control is to achieve an accept- 

able voltage profile at the consumer termina and to effectively control the 

reactive power flow in the network. It is g e n d y  recopnized that high gain, 

short time constant and high ceiling voltage excitation usudy inaeases both 

the steady-state and transient stability limits of the system [U], [28]. AI- 

though it is dso found that this hi& performance excitation sometimes p r e  

vides negative damping, it does not seem to have caused any serious problem 

in its early applications [29]. 

-4s the hi& performance excitation systems became a large percentage 

in the generating capacity, it became apparent that thek actions had a 

detrimental impact upon the dynamic stability of the power systems. Low 

frequency oscillations ofken persisted br long periods of time and in some 

cases presented limitations on power t d e r  capability. It has been found 

that inappropriately chosen controller paameters greatIy decrease the sys- 

tem damping and even make it negative at times [19], [26]. A significant 

amount of research has been conducted on the development of compensating 

control to provide the requiied system stability and Msious methods have 

been proposed- Generdy these methods can be divided into two areas: 

Design new excitation controllen based on modem controI theory to 

replace old ones [30], [31], [32], [33], [34]. 

Improve the performance of the presently used excitation controllers 

by introducing a supplementary control signal [33], [36]. 
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Some examples of the first area are the utilization of optima1 control 

theory, sub-optimal control, bang-bang control and adaptive control- 

The typical method in the second area is to use a power system stabiier 

(PSS) to extend stability limits by modulating generator excitation to provide 

damping to the oscillations of synchronous machine rotors relative to one 

another. 

1.3 Power S ystem Stabilizers 

-4s mentioned in Section 1.2, the basic function of a PSS is to modulate the 

generator excitation to damp out the oscillations of synchronous generator 

rotors relative to one another. Oscillations of concern typically occur in the 

frequency rmge of approximately 0.2 to 3.5 Hz [37]. ImuEcient damping of 

these oscillations may limit the abiiïty to transmit power. The PSS input is 

one of the following signals or a combination of them: 

r Shaft speed deviation 

r Bus fiequency 

a Electric power deviation or accelerating power 

The PSS rnust operate through the "plantn which consists of the generator, 

the excitation system, and the power system. The basic characteristics of 

this plant which are si&cant to stabilizer applications are as foIlows: 

r phase characteristics of the plant are nearly identical to the phase char- 

act eristics of the closed loop voltage reguiator; 
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 gai^ of the plant increases with the generator load; 

gain of the plant increases as the AC system becomes stronger. This 

effect is simp&ed with hi& gain voltage regdators; 

r gain of the plant at the oscillation fiequacies of conceni is proportionai 

to the regulator gain and inversely proportional to the main generator 

open-circui t t h e  constant and the osdation frequency ; 

r phase lag of the plant incrases as the AC system becomes stronger. 

This has the greatest influence with hi& gain exciters, since the voltage 

regulator Ioop crossover fiequency approaches that of the oscillation of 

concem. 

1.4 Different Types of Stabilizers 

1.4.1 Conventional Power System Stabdizer 

The most commody used PSS, referred to as the conventional PSS (CPSS) 

is based on the linear mudel of the power system at some operating point 

191. [37]. Usualiy the operating condition where the control is needed most 

is chosen [37]. The classical control theory, based on transfer functions7 

was employed as the design tool for the CPSS. There have ben decades of 

theoreticd studies and field experiments. This type of PSS is wideIy used in 

power systerns and has made a great contribution in enhmcing power system 

dpamic stability [37]. Since the CPSS is designed based on the linear mode1 

of a fixed configuration of the power system for a specific operating point, 

it works weII for the configuration and operating condition for which it was 
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tuned. 

However, the CPSS performance deteriorates as the system operating 

conditions and configuration change. In addition, the highly non-linear power 

system with saturatkg elements and stochastic nature, makes the control 

task of the CPSS even more diflicult. Therefore, the CPSS faces a problem 

in the following areas: 

accuacy of the linear mode1 of the power system; 

a accuracy of the parameters for that model; 

effective tuning of the model; 

interaction between the various machines; 

O tracking of the system non-linearity and operating condition. 

Extensive research has been carried out to solve these problems. Dif- 

ferent CPSS tansfer functions associated with diffèrent systems have been 

proposed [27] [33], [37]. Vazious tuning techniques have been introduced 

to effectively tune CPSS parameters [38]: [39], [40]. Effective placement and 

mutud cooperation between the PSSs in multi-machine systems are also pre- 

sented 1411: 1421. To solve the parneter tracking problem, variable structure 

control theory was introduced to design the CPSS [43]. AU this research has 

resulted in great progress in understanding the operation of the PÇÇ and 

effectively applying PSS in the power systems. However, it c a ~ o t  change 

the basic fact, namely the conventional PSS is a fixed-parameter controller 

designed for a specific operating point which generdy cannot maintain the 

same quality of performance at other operating points [44]. It is for this 
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reason that adaptive control, "control" that adapts to changing system char- 

acteristics, has so much potential to irnprove power system performance. 

1.4.2 Fuzzy Logic Based Power System Stabilizer 

One of the modern methods which has recently been used is Fuzzy Logic 

Control (FLC). Fuzzy control systems are d e b a s e d  systems in whidi a set 

of fuzzy d e s  represent a control decision mechanism. FLC based controlIers 

have a number of advantages: 

iModel-free based algorithm 

This is a property of a larger group of modern control techniques cded  

artiücial intelligence (AI) based controllers. Unlike other dassical con- 

tiol techniques, AI based methods (including Neural Networks and 

Fuzzy Logic) do not require the exact mathematical mode1 of the sys- 

tem. 

knovledge bused algorithm 

Fuzzy logic control emulotes the strategy of a humm operator control- 

h g  the process. 

Srnail development time 

Since FLC iç a simple dgorithm, development time is relatively small. 

Research on FLC based PSSs is reported in (451, [46], [47]. The FLC based 

PSS, however, suffers from two important drawbacks; the parameter tuning 

and lack of adaptation- The latter is of great importance, since adaptation 

ability is one of the most important features that a PSS should have. 
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1.4.3 Adaptive Power System Stabilizer 

,4daptive control theory provides a possible way to solve the problems men- 

tioned for the CPSS. At each sampling instance, the input and output of 

the generating unit are sampled, and a mathematical model is obtained by 

some on-line identification algorithm to represent the dynamic behavior of 

the system at  that instant of time. It is expected that the mathematical 

model obtained at each sampling period can track changes in the system. 

Following the identification of the model, the required control signal for 

the generating unit is calcdated based on the identified model- There are 

various control strategies; among them are pole a s s i p e n t  (PA) and pole 

shift ing (P S ) methods. These control strategies are generally developed by 

assuming that the identified model is a very close approximation to the gen- 

erating unit [45], [49], [50]. However, since the power system is a high-order 

non-linear continuous system, it is hard for the low-order discrete identified 

model to precisely describe the dynamic behavior of the power system. Con- 

sequently, a hi&-order model is used to represent the power system, which 

consumes a sigdcant amount of cornputation time. This in turn limits the 

control effect, as the system is unable to act at higher sampling rates. This 

becomes more significant when the oscillation frequency is relatively high. 

For this type of controller, there is a compromise between the order of the 

discrete model and the computation time for parameter identscation and 

optimization. 
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1.4.4 Neural Network Based Power System Stabilizer 

1.4.4-1 Neural Networks 

Neural Networks (pj'i) attempt to achieve good performance via dense in- 

terconnection of simple computational elements. Their structure is based on 

the present understanding of biological nervous systems. 

In recent years, interest in studying the mechanism and structure of the 

brain has been increasing. Based on this biologicd backgroundt recent work 

has led to the development of new computationd models for solving problems 

such as pattern recognition, fast information processing and adaptation. 

In the early 1940s, pioneers of this field studied the potentid and Ca- 

pabilities of the adaptation laws involveci in neural systems [31]: [52]. In 

1950s and 1960s, the Perceptron architecture which has subsequently re- 

ceived much attention was developed and its properties and limitations were 

ânaiyzed [33] , [SI. In 1970s, and 1980s, the work reported in [55] and [56] 

and the parallel distributed processing (PDP) group [57] provided a strong 

impetus to the area and was the catalyst for much of the subsequent research 

in this field. Since then, much research on neural networks has been done 

ând today there are several well-dehed architectures to apply to a va.rîety 

of problems. 

Xeural networks enjoy a vàriety of advantages: 

a Capabilit y to synthesise complez mappings 

Neural networks can synthesize complex and transparent mappings 

which may be very difficult or even impossible to be expressed in math- 

ematical form. Since a neurd network is trained by input-output data, 
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a properly traîneci neural network can perform highly non-linear map 

pings [XI. 

High speed 

Due to the pa.r&eI mechanism, the BCN h a  the potentid to solve the 

rnapping problem much faster than conventional methods and other 

artificid intelligence methods, such as expert systems. 

Robustness and fault tolerance 

Xeurd networks are robust. Even if the input data is not complete or 

has some noise, the NN can still produce good resdts [ S I .  

a Adaptation ability 

Neural networks can be trained on-line by ushg their error perfor- 

mance. This d o w s  the 'iN to adjust to a new environment easily. 

Capacit y for generalization 

Xewd networks axe able to respond properly to the inputs they haven't 

corne across in training. If neural networks are trained properly they 

are able to generaIize the input space. 

1.4.4.2 Neural Network Applications in Power Systems 

Since the publication of the first paper on the application of NNs in power 

engineering in February 1989 1591, many papers have been pubLished in this 

area. Neural networks have been applied in the following fields of power 

engineering [60]: 

Load forecasting 
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O Harmonies Prediction 

0 Machine or plant control 

O Generation Expansion 

0 Capacitor allocation 

O Optimal power flow 

0 Unit cornmitment 

O Economic load dispatch 

0 State estimation 

0 Fault detection and diagnosis 

-4larm processiag 

Dynamic se&@ assessrnent 

0 Contingency analysis 

0 Machine modeling 

1.4.4.3 Why Neural Network Based Power Systems Stabilizer ? 

As mentioned before, the CPSS, which is based on deterrninistic control the- 

ory, has some limitations. It has to be designed for a partidar operating 

condition around which a hearized mode1 is obtained. UsuaJy this operating 

condition is chosen where the control is needed most [37], Le. the operat- 

ing condition at which the generating unit is most Iikely to operate. The 

high non-linearity, wide range of operating conditions and non-deterministic 
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properties of the &a1 power systems present problems to the CPSS. In ad- 

dition, tuning of the CPSS poses another drawbadc to CPSS. On the other 

band? neural networks have the ability to learn non-linear rnappings. They 

&O enjoy the very important feature of learning, enabiing them to acquire 

underlying knowledge fiom input-output data.. Using the on-line Iearning 

feature of neural networks, it is proposed that the tirne-vaqhg power plant 

can be tracked and control signal can be computed accordingly. Because of 

these inherent features of neural networks, they appear to b e  able to im- 

plement many functions essential to control systems with a higher degree of 

autonomy [61]. 

1.5 Dissertation Objective 

In this thesis a neural adaptive power system stabilizer (NAPSS) is proposed 

to replace the conventional PSS. In order to develop NAPSS, the following 

topics are discussed and studied in this thesis: 

a Investigation of the theory of neural networks and discuss the feasibility 

of each type of neural networks for application in power system control. 

Select one, among many types of NN which best fits the PSS design. 

a Design of an adaptive neural network based PSS. This PSS is directly 

trained from the output data in each sampling period and utilizes ody 

the input-output data of the generating unit. 

Simulation studies on the performance of NAPSS in a single-machine 

power system. Cornparison of the contro1 capacity of the NAPSS with 

that of the CPSS. 
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i Simulation studies on the performance of the NAPSS in a multi-machine 

power systems. Investigation of the cooperation of the XAPSS with 

CPSS in damping multi-mode oscillations. 

Hardware implementation and on-line experimental vedication of the 

proposed WAPSS in a laboratory environment. 

The aim of this dissertation is to perform studies on the abovementioned 

topics and investigate the feasibility of the NAPSS. 

1.6 Dissertation Organization 

This thesis is composed of 8 chapters divided into three parts: 

a Part 1 Theoretical development: 

Chapter 2 serves as a brief review of the basic concepts and theories 

relating to X X s .  The classification of neural networks and the structure 

of single neurons are introduced. Three most popular types of the 

XNs,the feed-forward multi-Iayer nettvork, the Hopfield network and 

the Kohonen self-optimizing feature maps are discussed. Based on a 

cornparison of the features of different types of NNs: the fd-forward 

multi-layer network is chosen to build the NAPSS. 

The indirect adaptive control method is described in Chapter 3. The 

controuer is trained on-line using back-propagatioz method. It is de- 

signed using feed-forward multi-Iayer neural networks. Using single- 

element error vector, the training algorit hm is simplifieci. 

0 Part I I  Simulation studies: 
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The neuro-identifier design and shda t ion  results are presented in 

Chapter 1. The plant Mode1 IV dong with series-paralle1 identifier 

is used to constnict the nemeidentifier. The simulation results for the 

neuro-identifier are also given in this chapter. 

The NAPSS structure and its application to a single-machine power 

system are presented in Chapter 5. The ability of the NAPSS to provide 

enough damping over a wide range of operating conditions is discussed. 

Then, in Chapter 6, detailed simulation studies of the proposed NAPSS 

under a multi-machine power system environment are given. A five- 

machine power system which exhibits both local and inter-ara modes 

of oscillations is used to demonstrate the effectiveness of the NAPSS. 

Self-coordination ability of the KAPSS with CPSS 

a Part III Ezperimentul tests: 

Laboratory implementation and experimentd tests of the proposed 

NAPSS on a physicrtl mode1 power system are desaibed in Chapter 

7. Real-time tests axe performed on this mode1 employing ABB PHSC 

Programmable Logic ControUer (PLC) acting as an Automatic Volt- 

age Regulator (AVR) and a Digital Signal Processor (DSP) acting as 

stabilizer. For cornparison, a digital type CPSS is also implemented in 

the same environment and tested under the same conditions. Behav- 

ior of the NAPSS and CPSS in an actual power system is observed. 

Details of implementation dong with the experimentd results are also 

described in Chapter 7. 
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Finally, conclusion and comments on further research topics in this area 

are summarized in Chapter 8. 

Dissertation Contribution 

The author believes that the work presented in this dissertation makes orig- 

inal contribution in the following respects: 

O development of an adaptive neural network PSS based on on-he  trained 

feed-forward neural networks which combines the inherent advantages 

of neural networks and good control performance of adaptive control. 

0 design of the NAPSS without any reference mode1 or teacher signal 

and without measuring the internd states, only using the output per- 

formance of the plant in rd-tirne. 

0 simplification of on-line training algorithm by making use of single- 

element error vector. 

0 verification of the NAPSS in damping multi-mode oscillations in a 

multi-machine power system. 

0 laboratory irnplementation of the proposed NAPSS and experimentai 

tests on a physicd mode1. Although many off-line simulation stud- 

ies using neural networks are reported in the Iiterature, rarely, if any, 

experimental real-time tests have been reported. 



Part 1 

Theoret ical Development 



Chapter 2 

Neural Networks 

2.1 Introduction 

Artificial neural network modeLs have been studied for many yeaxs in the hope 

of achieving human-Iike performance in the various tields of science. ?jeurd 

networks appear to be a recent development, although this field was estab- 

lished before the advent of cornputers. Inspired by neuro-physiologists such 

as Dondd Hebb [52] at McGill Gniversity, work in the neural network field 

began in the 1940s. During the 50s and 60s, researchers integrated biological 

and physiological insights to produce the first artificial neural network. The 

early success generated a burst of research activity. 

Then, foLlowing some failures, neural network research was eclipsed for 

neady two decades [62]. In 1983, increased research Eunding in n e 4  net- 

works opened the ffood gates for intense activity in this area. As an example 

of the Pace at  which this field has emerged, it is enough to Say that the n a -  

ber of identified neural networks grew £rom 6 in early 1987 to 26 in eady 1988. 

This field is especidy exciting today because neural network dgorithms and 
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architectures can be implemented in VLSI technoIogy. 

N e 4  networks and control systems community have a long history, 

which probably began with the Wiener's book Cybernetics [63]. The ht 

neurecontroller was developed by Widrow and Smith in 1963 [64]. A simple 

ADAptive LIEréar Element (ADALDE) was taught to reproduce a swÏtdiing 

curve in order to stabilize and control an inverted pendulum. This ADALDiE 

was one of the h t  neural networks (the Perceptron being the other [53]). 

It has a simple ardütecture that has been used extensively in other neural 

networks. 

During the 70s: Albus proposed the Cerebellar Model Arithmetic Corn- 

puter (CMAC) as a tabular model of the functioning of the cerebellum and 

used it to control robotic manipulation. Since the early 80s, the CMAC has 

been used extensively to model and controI highly non-linear processes [65]. 

During the 80s: many different neural networks and IC architectures were 

proposed for integrating and extending these algorithms. Reinforcement 

learning and adaptive critic schemes have been extensively researched [66] 

a d  new neural networks such as Multi-Layer Perceptron (MLP) [5ï]. Ra- 

dial Basis Function (RBF) [67], Functiond Link Networks (FLN) (681 and 

B-Spline [69] have been developed. 

2.2 Types of NeuralNetworks 

In recent years, research in the field of neural networks has achieved signifi- 

cant success. Detailed introduction and classification are given in [ S I ,  [?O], 

WI- 
In [58], the neural networks are classified into different groups according 
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to the data type of inputs and training procedures. These are: 

1) Binary inputs 

Supervised training 

- Hopfield net; 

- Hammbg net; 

r Unsupm-ised training 

- C -enter/ Grossberg dassik; 

2) Continuous-valued inputs 

r Supervised training 

- Perceptron; 

- Multi-layer percep tron; 

r Unsupervised training 

- Kohonen self-organizing feature maps. 

Among these six types, the Hopfieid net, the multi-layer perceptron and 

the Kohonen self-organizing feature maps have been widely used in power 

engineering. 

In this chapter, a brief review is given of the basic concept of neural 

network, the most popular types of neural networks and their potential ap- 

plication in power system control. 
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2.3 Basic Elements 

The basic processing element of a ne& network is called a neuron by 

andogy with neurophysiology, but other names such as Perceptron [53] or 

ADALINE [71] are also used. Fig. 2.1 shows a standard and modd 

of a neuron. It has three components: 

a weighted summer; 

O a hear  dynamic SIS0 system; 

Each of these components is considered in turn below. 

Figure 2.1: Basic model of a neuron. 

x .  
Linear 

2 - Non-Linear Yi 
Dynamics Funcüon 
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2.3.1 Weighted Summer 

The weighted summer is desnibed by: 

giving a weighted sum v; in terms of the outputs of aU elements y;, extemal 

inputs uk and corresponding weights vji and WL together with the constants 

Bi which is called a bias. A number n of these weighted summers can be 

conveniently expressed in vector-matrix notation. 

Stadung n weighted sums vi into a column vector v, the n outputs yj 

into a vector y and n inputs uk into a vector u and the n constants 0; into 

a vector 0, (2.1) may be written in vector matrix form as: 

where the jz-th element of the nxn matrix W is t o j i  and the ki-th element of 

the nxm mat& W' is w',. 

2.3.2 Linear Dynamic System 

The linear dynamic SIS0 system has input vi and output xi-  In transfer 

function form it is described by: 
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where the bar denotes Laplace t r d o m a t i o n .  In the time domain, (2.3) 

becomes: 

where H ( s )  and h( t )  fonn a Laplace trandonnation pair. Five common 

choices of H ( s )  are: 

corresponding to: 

where 6 is the Dirac delta function. In the time domain, the corresponding 

input-output rdations are: 
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&(t) = vi(t), (2.16) 

Tzi(t)  + xi ( t )  = vi(t), (2.17) 

a0i;(t> + arxi(t) = ~ ; ( t ) :  (2.18) 

xi(t) = vif t - 7') (3-19) 

The first, second and third versions are dearly specid cases of the fourth. 

Discrete-the dynamic systems are ako used. For example: 

where t is now an integer time index, 

2.3.3 Non-Dynamic Non-Linear Function 

The non-dynamic non-linear function g( . )  gives the eiement output y; in 

terms of the transfer function output x;: 

There are a number of twc+fold classifications of these functions: 

1) DSerentiable/non-Werentiable 

2) Pulse-like/steplike 

3) Positive/zeremeas 

Classificat ion I distinguishes smooth from shaq fundiuns. Smooth func- 

tions are needed for some adaptation algorithms such a s  back-propagation 
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[72j (Section 2.5.2), whereas discontinuous (e-g- signum) functions are n d e d  

to give a true b i n q  output. 

Classification 2 distinguishes functions which only have a significant out- 

put value for inputs near zero hom fundions which change si@cantIy only 

around zero. 

Class5cation 3 refers to steplike functions. Positive functions &ange 

from O at -oc to 1 at m; zero-mean changes fiom -1 at -oc to 1 at oc. 

Some standard functions are given in Table 2.1. Note that in the table 

there are strong relations between the given functions. The sigmoid and tanh 

functions are similar; sigmoid ranges hom O to 1 while tanh ranges fiom -1 

to 1. Secondly, the threshold hc t ions  correspond to the hi& gain limits of 

the sigmoid and tanh functions. 

2.4 Connections 

The neurons by themselves are not very powerful in terms of computation 

or representation, but their intercomection dows one to encode relations 

between the variables and gives different powerfui processing capabilities. 

The three components of the neuron disnissed in Section 2.3 can be combined 

in various ways. For example, if the neurons are aU non-dynamic ( H ( s )  = 1) 

then aa assembly of neurons can be written as the set of algebraic equations 

obtained by combining (2.2) and (2.3): aad (2.21): 
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where x is a vector of n xi elements and g(z) is a vector whose components are 

g(x i ) -  If, on the other hand, each neuron has fmt order low-pas dpami~s: 

Table 2.1: Non-linear funaions, g(z). 

Thres hold 

1 i f x > o l  
O otherwise 

+1 i f x > O ,  
-1 otherwise 

Non-differentiable, 
S teplike, 
Positive 

S teplike, 
Zerwnean 

DifFerentiable, 
S teplike, 
Positive 

S tep-like, 
Zerwnean 
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then an assernbly of neurons can be written as the set of differential equations: 

Clearly, the solutions of (2.22) and (2.23) form possible steady-state solutions 

of (3.35) and (2.26). 

Discret+time versions of (2.25) and (2.26) are: 

where t is the integer tirne index. 

The behavior of such a network ciearly depends on the interconnection 

rnatrix W aad on the form of H(s) .  The variations of W and H ( s )  lead 

to different types of neural networks. Three most popu1a.r types of neuraI 

networks are discussed in the following sections. 

2.5 Mult i-Layer Feed-Forward Network 

The multi-layer feed-forward network is also called the Multi-Layer Percep- 

tron (MLP) [sa], [62] or madaline [70]. It is widely applied in power engi- 

neering. Alrnost 60% of neural networks applications in power engineering 

are based on multi-layer networks, and almost 90% of the neural networks 

applications in control systems employ this type of neural network. 
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Generally the connection of several layers gives the possibility of more com- 

plex non-Iinear mapping between the inputs and the outputs- This capability 

c m  be used to implement class5er or to represent complex non-linear rela- 

tions among the variables. 

Such networks are typically non-dynamic; that is K(s)  = 1 in (2.3). The 

connection matrix W is such that the outputs are partitioned into layers so 

that a neuron in one layer receives inputs only from neurons in the previous 

layer (or, in the case of k t  layer, from the network input Iayer). The 

elements of the comection weight matrix W are derived hem the training 

process. There is no feedback in such networks. 

-4 four layer network (an input layer, two hidden Iayers and one output 

layer) is shown in Fig. 2-2- Neurons in the first hidden layer receive the 

inputs from the external inputs and send the outputs to the second hidden 

layer. The neurons in the second hidden layer receive the outputs of the 

h s t  hidden layer as their inputs, and send their outputs to the output Iayer. 

Xeurons in the output layer get the outputs from the second hidden layer as 

the inputs, and the outputs of the output layer are the outputs of the neural 

network. 

Each neuron i gets the weighted sum of the outputs of aIl the neurons j 

in the previous layer that connect with neuron i through weight 'wji, which 

is given as: 

If neuron i is in the first layer, the weighted sum is over all of the external 
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Figure 2.2: Multi-layer network with two hidden layers. 
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inputs k that connect with neuron i through weight wk as shown below: 

where Bi is a bias of the neuron i. 

This weighted sum is altered by a non-linear h c t i o n  to establish the out- 

put. Since the badr-propagation tltitiniag method, which will be discussed 

Iater in this section, requires differentiable non-heu functions, and the na- 

ture of control system requVes a zer-mean control signal, the most appropri- 

ate non-linear fundion iç a hyperbolic tangent-iike function, which is given 

as: 

where r is the maximum absoIute d u e  of the neuron output. 

2.5.2 Back-Propagation Tkaining Met hod 

Connecting weights between the newons must be determined before the neu- 

ral network CM be used in the application. The process of determining the 

weights is c d e d  the training or Iearning process. The multi-layer network 

employs the back-propagation method which was developed in [73] for its 

training. 

The leârning procedure proposed here involves the presentation of a set 

of pairs of input and output patterns. For each input and output pattern 

p, the system first uses the input vector to produce its own output vector 

and then compares this with the desired output, or target vector. If there is 
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no clifference, no learning takes place. If a difference &ts, the weights are 

adjusted to eliminate the total squared error, Ep7 which is the sum of the 

squared differences between the set of desired outputs and the set of actual 

outputs of the neural network: 

where dpj is the j-th desired output of pattern pl and ypj is the j-th actual 

output of pattern p. 

The weights wij can be adjusted to minimize Ep for the set of training 

patterns by a gradient descent method: 

where: 

where n is the iteration number, and 7 is the learning rate. If the neuron j 

is in the output Iayer: 

If the neuron j is not in the output layer: 

where Jpk is fiom the neurons in the layer following the Iayer where neuron 

j is located. 
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Better convergence can be achieved if a momentum term is added to 

(2.34) as: 

4wi j (n)  = &,ypi + a4wj;(n - 1) (3.37) 

where a is the momentum factor. In the above equations, the learning rate, 

11, and the momentum factor, a: are between 0.0 and 1.0 to be detemiined 

by experience. Some good discussion on selecting 7 and a is given in (741. 

The configuration of the multi-layer network has to be detennined by 

experience since there are no definite des to select the number of hidden 

Iayers and the number of neurons in each hidden layer. 

2.6 Hopfield Net 

The introduction of feedback produces a dynamic network with several stable 

points. The general equation can be- expressed as: 

Here, z represents the state, u the external inputs, and the parameters 

of the network. F is a function that represents the structure of the network 

and G is a function which represents the relation between the state variables 

and the outputs. 

Origindy, feedback (rement)  networks were introduced in the context 

of associative or content addressable memory problems for pattern recogni- 

tion. The uncorrupted pattern is used as a stable equilibrium point and its 
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noisy versions should lie in its basin of attraction. In this way, a dynami- 

c d  system associated with a set of pattern is created. If the whole working 

space is correctly partitioned by such a content-addressable memory, then 

any initial condition should have a steady-state solution corresponding to 

the uncorrupted pattern. The dynamics of such a classifier serve as a filter. 

The best-knom example of a content-addressable memory is the Elopfield 

net [75]. The structure of the Hopfidd net with n neurons is shown in 

Fig. 2.3. There are two models of the Hopfield net, the discrete model and 

the continuous model. 

2.6.1 Discrete Modelof Hopfield Net 

The discrete model assumes the steplike non-linearity : 

with: 

and works in the asynchronous mode, i.e. ody one neuron output is cal- 

d a t e d  at a tirne, leaving the others unchanged. The active neuron, p, is 

chosen randomly. The system evolves with weights vtji established earlier, 

which will be discussed below, and held fixed during output calculation. The 

update d e  is as follows: 

( yi(t), otherwise 
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Figure 2.3: The Hopfield net. 
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If w, = O and wji = wij, then the energy fuilction is given by 

will decrease with every asynchronous change of y, according to 

The network WU always reach an equilibrium because (2.43) and (2.44) are 

bounded and (2.45) is non-positive, and the system does not change when 

A E  = O. It will settle after a h i t e  t h e ,  since the domain of E is fiaite. 

The Hebbian r d e  is an attempt to encode P patterns, yk, k = 1,. . . , P, as 

equilibrium points of the system represented by (2.40) to (2.46) by choosing 

and 
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since E is within a multipIe and is a constant 

where i is a vector of 1s. If (tyk - ï) are aJl orthogonal, E will have a 

minimum at  each yk, and, hopefdy, the dynamics of the system wiU have a 

region of attraction about each yk that associates initial vdues of y that are 

n e z  yk. 

2.6.2 Contkuous Mode1 of the Hopfield Net 

The continuous mode1 is described by: 

where x; = x ; ( t ) ,  y; = y i ( t )  aad g(.) is sigmoid function. The system de- 

scribed by (2.50) and (2.51) is just a system of ordinary differential equations. 

Hopfield suggested the Lyapunov function: 

where pi > O are constants, gi(.) are monotone incleasing functions and 

wj; = wii for aII i and j. It is straigh~orward to show that Ë 5 0. 
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2.7 Kohonen Self-Organizing Feature Maps 

It is believed that the placement of neurons in the brain is orderly and reffects 

sorne physicd characteristic of the external stimulus being sensed. -Mthough 

much of the low-level organization is generally pre-determined, it is Uely 

that sorne of the organization at hÏgh level is created during learning by 

algorithms which promote self-organipng. Kohonen self-organizing featw 

maps [76] are sunilar to those that occur in the brain. 

Kohonen's algorithm creates a vector quantizer by adjusting weights fiom 

common input nodes to n output nodes ammged in a two dimensional grid 

as shown in Fig. 2.4. Output nodes are extensively intercomected with 

many local connections, Continuous-dued input vectors are presented se- 

Figure 2 A: Kohonen self-organizing feâture map. 
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quentidy in time without specifying the desired output to train the nets. 

Before the actual training, the weights from n inputs to the rn output nodes 

ore initialized to small random values. After the presentation of each new 

input, the distance dj between the input and each output node j is computed 

where ui(t) is the input to node i at time t asd w,(t) is the weight from 

input node i to output node j at time t. Then the weights for node J which 

h a  minimum dJ and the weights for the neighboa of node J are updated. 

The new weights are: 

2.8 Suitability of Different NNs in Control 

S y s t  em Applications 

In the previous sections, three most popular types of neural networks have 

b e n  discussed. Due to the different properties they have, these tkee  types 

of neural networks can be applied in control systems in different ways. 

HopfieId nets are mainly used as associative mernories or as classifiers. 

They can be used to memorize a control function required by a control sys- 

tem. The continuous mode1 is more appropriate in cont~ol systems. If the 

disnete mode1 is to be used, A/D and DIA converters are needed for contin- 
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uous input and output values. Hopfield nets have two major limitations in 

application as controllers. The first Iimitation is that the number of patterns 

of the control outputs that can be stored and accuratdy recalled is severeIy 

limited. Hopfield showed that the number of classes M must be less than 

15% of the number of nodes 1V [56]. For a fairly complicated system like a 

generating unit, an extremely large number of nodes in a Hopfield net wrll be 

required. One practicai method to overcome this limitation is to use a pre- 

processor to simpI3y the input and output patterns- The second limitation 

is that the time of convergence is unpredictable. For a red-time application, 

the longest NMing time must be considerd 

The properly trained Kohonen self-organizing feature maps will map dif- 

ferent inputs to difEerent output nodes and map the inputs with similar fea- 

tures into closer output nodes. Since the training of this type of neurd 

network is unsupervised, the self-organizing fature map cannot be used di- 

rectly as a controiler, but it can be used as a pre-processor for other neural 

network controllers. 

The feed-forward multi-layer network is the most commonly used neurd 

network in control systems. Such networks wi generate input/output maps 

which can approximate, under mild assumptions, aay static function with any 

desired accuracy. One may have to use a large number of neurons , but any 

desired approximation, if it can be accomplished at all, can be accomplished 

with a multi-Iayer network with only one hidden layer of neurons or two 

layers of weights [61]. 

Compared with other types of neural networks, the feed-forward multi- 

layer neural network is more appropriate for application in control systems. 
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In the proposed neural adaptive power system stabilizer (NAPSS) in this 

dissertation, the multi-layer network with on-line badc-propagation iearning 

is employed to build the adaptive neural network controller. 

2.9 Summary 

The basic concepts and theories of neural networks are introduced in this 

chapter. According to the data types of inputs, the architecture : and the 

training procedure, neurd networks aze ciassified into different groups. The 

basic processing element of a neural network, the neuron, has three comp* 

nents, i.e. weighted summer, linear d-vnamic SIS0 system, and non-dynamic 

non-linear function. The three components of the neurons can be combined 

in various ways, that distinguishes various n e d  networks from one another- 

Three most popular @es of neural networks, the feed-forward multi- 

layer network, the Hopfield net and the Kohonen self-organizing feature map 

are discussed in this chapter. 

The feed-forward multi-layer network is a non-dynamic network. It has 

an output layer, an input layer and several hidden layers. The information 

can only be fed forward between Iayers- There is no feedback information 

available during the operation. However, the feedbadc information is avail- 

able during the training by using the back-propagation training method. 

Hopfield net is a dynamic network with feedback. All of the neurons are 

interconnected into one layer. This net has two models, the discrete mode1 

and the continuous model. 

The Kohonen self-organizing feature maps are designed to simulate the 

low-level organization in the brain, and employ the unsupervised training 



algorithm. Properly trained Kohonen self-organizing feature maps will map 

different inputs to different output nodes and rnap the inputs with similar 

features into closer output nodes. 

Comparing the features of three neural networks, the feed-forward multi- 

layer neural network is more appropriate for appLication in control systems. 

Therefore, it is employed to build the neural network controlIer in this dis- 

sertation. 



Chapter 3 

Indirect Adaptive Control 

Using Neural Networks 

3.1 Introduction 

Studies over the past four decades have shown that power system stabilizer 

(PSS) is a very effective toof to damp out the low fkequency oscillations in the 

power system. Since power systems are highly non-iinear dynarnic systems, 

design of a PSS which can maintain the desired performance under different 

operating condit ions is a topic of continuing investigation. Conventional 

power system stabilizer (CPSS) is designed based on Lin- control theory [8]: 

[3'73. The parameters of the CPSS are usually fixed at a certain set of values 

which are determined based on a nominal operating condition Ml. Therefore, 

the k e d  parameter CPSS is a compromise between the best settings for 

light and heavy load conditions. -4s a result, it is impossible for this type of 

stabilizers to maintain the best damping performance when there is a drastic 

change in the system operating conditions, such as that resulting from a three 
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phase to ground fault. 

In order to overcome this problem, an adaptive stabilizer shodd be used 

in which. the parameters are adjusted on-line to automatically track the vari- 

ations in the operating conditions and system structure. For over 20 years, 

two distinct approaches have b e n  used to control a plant adaptively [77]. 

These are Direct Adaptiue Control and indirect Adaptiue Control. In direct 

control [78], [79], the parameters of the controIler are directly adjusted to 

reduce some n o m  of the output error. In indirect control 1781 , [SOI, [SI], 

the parameters of the plant are estimated as the dements of a vector j(k) 

at asy instant k and the parameters vector 6(k) of the controller is adapted 

based on that vector. Even when the pIant is assumed to be linear and 

the-invariant, both direct and indirect adaptive control result in overall 

non-lineu systems [BI. 

Most adaptive control methods require either a reference model or an 

extensive identifkation scheme. Use of the reference model is usudy avoided 

in power systems due to the dificuity invohed in choosing a proper model 

for a complex non-linear plant such as a power system. Identification of 

the power plant, on the other hand, as  studied in dàssical adaptive control, 

is also a computationaily extensive task which increases the complexity of 

the controller. Therefore, for the purpose of control of power systems, it 

is desirable to use a method which is neither mode1 reference based nor 

computationdy extensive. 

Neural networks have recently emerged as a successful tool in the fields 

of pattern classification: modeling and control of dynamical systems [w, 
[78], [82]. This is mainly due to the computational efEciency of the back- 
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propagation algorithm (721, [73] and the versatiIity of the three layer feed- 

forward neural network in approxïmating an arbitrary static non-linear func- 

tion [83]. A neurd network based controuer using an indirect adaptive control 

method is presented in this chapter. It combines the advantages of n e d  

networks wïth good performance of the adaptive control. The proposed con- 

trouer employs the learning ability of n e d  networks in adaptation process 

and is trained in each sampling period using the on-line version of the back- 

propagation algorithm [62], [84]. It consist of two subnetworks. The first 

one is an adaptive neureidentifier (LW) which identifies the power plant in 

terms of its intemal weights and predicts the dynamic characteristics of the 

plant; and the second one is an adaptive neurcxontroller ( M C )  which pro- 

vides the necessary control action to damp out the oscillations of the plant 

output . 

3.2 Adapt ive Neuro-Identifier 

To design an adaptive controller, a suitabIe identification algorithm m u t  be 

chosen. The required control signal is: then, computed based on the identifier 

parameters. Therefore, the identifier plays an important role in the control 

algorithm. 

Identification of a system has three major steps: 

a Selection of a suitable plant model; 

Selection of a proper identification model; 

a Adjustment of the parameters of the rnodel so as to  minimize a certain 

cost function. 
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In the following subsections, first: the issues of selecting the proper plant 

model and a neural network modei for the identifkation purposes are ad- 

dressed. In the first step, considering the nature of the dependence of the 

plant output on the past pIant inputs and outputs, a pIant modd is chosen. 

In contrast to the static systems which are described by dgebraic equations, 

dynamical systems are governed by differential or difference equations. It is, 

therefore, important to understand how a dynamic system can be modeied 

by feed-forward memoryIess neural networks. 

In the second step, a proper identification model should be selecteci based 

on the availability of the plant states. In general, a mode1 is based on the 

plant states. However, for the cases where ody outputs are available, it 

is possible, under certain assumptions, to predict the output from ddayed 

inputs and outputs [TB], [85] using a Multi-Layer Perceptron (MLP). In this 

dissertation, it is assumed that the states of the plant are not accessible and 

hence the identifier is based on the inputs and outputs of the plant. 

-And fiaally for the tbird step of identification, Le., parameter update, 

the weil-known back-propagation algorithm is used in an on-line mode to 

be suitable for adaptive control methods. To maintain the simplicity of the 

learning method, only a scalar error, as opposed to a vector of delayed errors, 

is back-propagated through the neural network. 

3.2.1 Plant Models 

In this subsection four models of the discrete-the plants are introduced ['BI, 

[86], [s'il. They can be described by the following equations: 
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Model 1: 

Model II: 

Model III: 

Model IV: 

where u(k) and y(k) represent the input and the output of the plant at time 

k respectively. The functions f: 72"+R, g: Rm+R and h: Vf"+7E are 

assumed to be difierentiable functions of their arguments. These fuactions 

along with a; and b; parameters are found by the identification process. In d 

four models, the output at time k+ 1 depends on both past n values of output 

and past m values of input. Models 1 knd II assume linear dependence on the 

past values of plant output and input, respectively, whde Model III assumes 

decoupled non-hear dependence on the system input and output. Model IV 
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is the most general and covers the other three models as a specid case. Thus, 

for an unknown system or a system which is neither separable nor h e a r  (in 

input or output), Model IV is use& Shce synchronous generator is neither a 

separable nor a hea r  system, Model N is employed for modehg the plant. 

3.2.2 Identacation Models 

There are two main categories for the identification modeis in system lit- 

erature [Ml; the State-Output modd and the Non-Iinear Auto Regressive 

Moving Average (NARML4) model- Their main difierence roots in the a d -  

ability of the states for mectsurement. The following subsections explain the 

basic procedure for each model. 

The State-Output Modd 

It is weH known in system theory that the state-output model, which relates 

the past and the present states, can represent a fairly large class of non-Iinear 

dynamical systems. The state-output mode1 is given by 

where u(k) and x ( k )  represent the input and the state of the system, î(k) 

is the state of the model, @(k) is the output of the model and k is the 

discretized t h e .  The non-linear functions @ and iE are static and hence 

can be modeled by feed-forward neural networks. If ail of the system states, 

along with the outputs, are measured, then the problems of building @ and 
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Figure 3.1: The state-output model. 

\E are decoupled. To train a n e d  network to approximate a, the inputs 

are x(k - 1) and u(k - 1) and the output is 2(k). The inputs to the iE block 

are 5(k) aad u(k) and the output is G(k) (Fig, 3.1). h y  supervised learning 

method can be used for training [72], 1731. 

The NARMA Model 

Since aU the states are not usually available for measurement, the state- 

output model, dthough quite general, is not a good candidate for the iden- 

tification model. in this case, a NARMA mode1 [78], [88], wbich relates the 

output of the plant to the pst inputs and outputs of the plant by means 

of a non-linear frrndion, is preferred. There are two approaches to use a 

%ARMA mod& namely the paralle1 model and the series-paralle1 model. In 

the pardel model, the governing equation of the identser is 

Y(k + 1) = Np[c(k), $(k - l), . . . , e(k - n + l), 
u(k):  u(k - I), - . . u(k - m + l)] (3-6 ) 

where Np: Rn-+% is a static mapping. This model uses the identifier 

output for autoregression (Fig. 3.2) which results in slow convergence and 

sometimes may even lead to instabiity. Hence, this mode1 is not genera.lly 
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Figure 3.2: The pardel  model. 

used. Instead, the following model, known as seriepardel model. is used. 

In this case the identifier equation has the form 

In contrast to the p d e l  model, in the series-pardel rnodel the output 

of the plant (instead of the model) is fed back to the identifier as shown in 

Fig. 3.3. In this dissertation, this model is used for the identification of 

synchronous generator. 
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Figure 3.3: The series-pardel model. 

Adapt ive Neuro-Controller and Control 

The structure of the controI system is shown in Fig. 3.4. It consists of two 

subnetworks. The first subnetwork is an adaptive neur~identiiîer (ANI) 

which tracks the dynamic behavior of the plant and identifies the plant 

in terms of its internd weights, and the second one is an adaptive neur* 

controller ( L W C )  to provide the necessary control action so as to damp out 

the oscillations of the plant output. This architecture was first introduced 

in [89J. However, the learning process ernployed in this dissertation is quite 

different . Here, a scalar error is used in each sampiing period to update the 

identifier and con t rok  weights coatinuously. The same architecture is also 

proposed in [78] and called as Indirect Adaptive Control. In that paper, the 
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Plant P 
- Adaptive .. 

Figure 3.4: Controller structure. 
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authors suggested the use of a reference modd that is avoided here owÏng 

to the difficdties in choosing a proper reference modd for a cornplex system 

such as power system. The next two sections describe the details of each 

subnetwork. 

3.3.1 Adaptive Neuro-Identifier 

The input vector to the -4BI is : 

where y(k) is the plant output and u(k) is the plant input (controuer output), 

both at time step k. The output of the identifier is the predicted plant output, 

i ( k  + 1)? at time step (k + 1). This is based on cons ide~g  a seriespardel 

identifier dong with the plant Model TV. 

As it is seen, this mode1 is the most general non-hem mode1 which 

considers coupled non-linear dependence between the plant output at the 

present time and past d u e s  of plant inputs and outputs. The seriespardel 

identifier, in lieu of pârallel identifier, iç considered here since the former has 

faster convergence and is more stable. 

The cost function used for the ANI is 

The weights are updated as 
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in which Wi(k) is the mattrix of identifier weights at t h e  step k and % is the 

leamhg rate for the ANI. The gradient VwiJi(k)  is computed by: 

Ging (3.10) and (3.11): the cost function Ji(k) is rninimined in each sampling 

period by badc-propagating the scdar error [ ~ ( k )  - Y(k)] .  

3 -3 -2 Adaptive Neuro-Controller 

The input vector to the ANC is: 

The output of the ANC is the control action, u(k), at time step k. The cost 

function for the k N C  is considered as: 

where yd(k) is the desired output at time step k, which is equd to zero in 

a regdatory setup, and h is a tuning parameter which is used to improve 

the plant output dynkmic characteristics. By taking h greater than zero, a 

penalty factor is applied to the control action generôted by the controller 

which helps in the tuning of the dynamic trajectory and in optimizing the 

overshoot and the settling time of the response m e .  The weights of the 
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controller, Wc(k), are updated a s  

where 7, is the controuer learning rate and the gradient Vw, Jc(k) is defined 

Using (3.14) and (3.15), Jc(k) is minimized in each sampling period. 

3.4 Training Process 

The success of the control algorithm presented in section 3.3 highly depends 

on the accuracy of the identifier in tracking the dynamic plant. For this 

reason, the A N  is iaitidy trained off-Iine before being hooked up in the h a 1  

configuration. The training data were coilected for operating conditions in 

the range of 0.1 pu to 1.0 pu power output and 0.7 pf iead ta 0.1 pf Tag. 

The disturbances used were the voltage reference and input torque reference 

disturbances as w d  as three phase to ground fauit. The batch mode of 

back-propagation algorithm with adaptive leamhg rate was employed. The 

training was iterativeiy done until a pre-specified tolerance is met. After the 

off-line training stage, the ANI is hooked up in the system. Further training 

of the ANI and ANC is done in every sampling period employing the on-line 

version of the ba&-propagation method [62], [84]. This enables the controller 

to track the pIant variations as they occur to yield the optimum performance. 

The on-line training process comprises the folIowing steps: 
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1) At tirne step k, y(k) is sampled. 

2) Using y(k) and rj(k), the weights of the A , ?  are updated, miai- 

mizing Ji(k). 

3)  The output of the controller, u(k), is computed, 

4) Using u(k), the predicted plant output, Y(k + l), is computed by 

the ANI. 

5 )  Based on jj(k + l), the weights of the ANC are updated: mini- 

m;z;ng J,(k). 

In step 2 above, the training is straightfomard since the error at the 

output of the ANI is known. However, in step 5 the h h n g  is not as 

easy, since the error at the output of the ANC is not known. In this case, 

first the weights of the XNI are frozen and the error between the desired 

and predicted plant output is badc-propagated through the ANI. Then, the 

back-propagated signal at the input of the -hW is further back-propagated 

through the ANC, making the necessary changes to the controller weights. In 

other words, for adapting the weights of the controlIer, the identifier acts as 

a channel to convey the error fiom the output of the identifier to the output 

of the controller. This justifies the need to have the identser. 

The error used to train the ANI and the ANC are both scalaz and the 

leaming is done ody once in each samphg period for each of the two subnet- 

works. This simplifies the training algorithm in t e m s  of computation time, 

which is of special importance in real-time implementation. 



In this chapter Mnous plant modeIs and identification models are discussed. 

Based on the discussion, a plant mode1 and identification mode1 are chosen 

to be used for the implementation of neural adaptive power system stabilizer 

presented in the next part. An indirect adaptive controller based on on-line 

trained neural networks is &O introduced in this Chapter. The proposed 

controller consists of two subnetworks; an adaptive neureidentÏfier and an 

adaptive neuro-controiler. These two subnetworks are trained in on-line mode 

using the back-propagation rnethod. Details of the training procedure are 

also explained. The on-line training process enables the controller to track 

the variations in control environment and act accordingly. It also considers 

the non-linear nature of the plant. USing the scalâr error vector is another 

advantage of this algorithm. This reduces the computation burden of the 

adaptive on-line algorithm. 



Part II 

Simulation St udies 



Chapter 4 

On-Line Identification of 

Synchronous Generator Using 

Neural Networks 

4.1 Introduction 

In the previous chapter, different plant and identiflcation models were stud- 

ied. In order to ver* the suitability of the plant and identifier models chosen 

for the identification of synchronous generator, a simulation study should be 

conducted. In this chapter, plant Mode1 IV and the series-pardel identifier 

modd are combined in order to b d d  an on-line trained neuo-identifier. The 

proposed identifier has a simple architecture and is trained using the back- 

propagation method in on-line mode. It is verified in a variety of operating 

conditions and disturbances. Simulation results confirm the suitability of the 

modeh used and demonstrates the effectiveness of the identifier in tracking 
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the synchronous generator. 

4.2 Identifier Structure 

The identifier structure is studied in this section. The popular MLF network 

with back-propagation learning has been used to develop the identifier. A 

variety of structures were tested for the identifier. DïfEerent number of in- 

puts (Le- from four to twelve), hidden Iayers (i.e. one and two) and hidden 

neurons (Le. from four to sixteen) were tested. The network with 4 inputs, 

which uses twa signds and their delays, did not generate good d t s ,  regaxd- 

Iess of the number of hidden neurons. The 6 x 8 ~ 1  network generated good 

results for different tests. The networks larger than that did not improve the 

resdt- Therefore, the 6 x 8 ~ 1  structure, as shown in Fig. 4.1, was chosen for 

the identiiier. Sigmoid non-linearity was used for the hidden neurons. The 

output neuron was chosen to have linear characteristics. The input vector to 

Figure 4.1: The nemeidentifier. 
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the neuro-identifier is 

[Au(k):Au(k - I) ,Aw(k - 2), u(k) ,u(k - 1)& - z)] (4-1) 

where 4 4 k )  is the generator speed deviation and u(k) is the power system 

stabilizer (PSS) control signal (gemrator input), both at the t h e  step k. 

The output of the identifier is the predicted speed deviation at the time step 

k + 1' 4&(k + 1). 

The inputs to the neureidentifier are scaled before being applied to the 

network to take a vdue in the ange of [-1, +II. This is because of the fact 

that the sigmoid non-Iinearity used changes between these two values. This 

also rnakes the weights of the first layer not to take very large values. The 

cost function dehed for the identifier is: 

The identifier goes through two stages of training, n d y  off-line and on-line 

training. h off-line training, Grst the identifier is trained using the input- 

output data for a Mnety of operating conditions and disturbances. The 

operating condition changes in the range of 0.1 pu to 1.0 pu power output and 

0.7 p f lead to 0.1 p f lag. The disturbances used were the voltage reférence 

and input torque reference disturbances and three phase to ground fault. 

The training was iteratively done until a pre-specified tolerance is met. 

After the off-line training, the network is further trained on-line. The 

cost function 4.2 is minimized using back-propagation method in the on-line 

mode. At each sampling instant, the input and the output of the generator 
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are sampled and the input vector to the identifier is formed as in (4.1). 

Then the enor between the output of the pIant, Le., desired output, and the 

identifier, which is a scalar value, is badc-propagated through the identifier 

to make necessary updates to the weights of the network. This process is 

repeated every sampling period making the training on-he, which in tum 

results in an adaptive approach to identify a plant. 

4.3 Simulation Results 

The performance of the proposed identifier is investigated on a synchronous 

generator connected to a constant voltage bus through two pardel transmis- 

sion lines as shown in Fig. 4.2. A non-hear seventh-order modd is used to 

simulate the dynamic behavior of the singlemachine idmitebus power sys- 

tem. The difkrential equations used to simulate the spchronous generator, 

the trançfer fundion of the goveniort AVR and CPSS dong with the system 

parameters are given in Appendix A. A sâmpling rate of 25 Hz is chosen 

for the digital system. The response of the identifier afte  training is corn- 

pazed to that of the plant for various disturbances under different operating 

conditions as explâined in the following subsections. 

4.3.1 Loaded Generator 

With the generator operating at P,=0.7 pu, pf=0.85 hg a 0.05 pu step 

inaease in input torque reference is applied at 1 S. The generator speed 

deviation and its predicted value are shown in Fig. 4.3. The figure clearly 

shows the effectiveness of the identifier in tradcing the generator. 
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Figure 4.3: Plant and identifier responses to a 0.05 pu step increase in 
torque. 



4.3.2 Light Load 

In light loâd test, the generator is operating at Pe=0.2 pu, p f =&KI Iag when 

a 0.15 pu step increase in input torque refmence is applied at 1 S. Fig. 

4.4 shows the response of the system under the new operating condition and 

disturbance. Again, very good tracking is achieved using the neuro-identifier. 

4.3.3 Leading Power Factor 

In this test, the generator is operating under a Ieading power factor condition. 

-4 0.10 pu step increase in input torque reference is applied at 1 s while 

generator is operating at Pe=0.3 pu, pf=0.9 Iead. Fig. 4.5 depicts the 

plant asd identifier responses to such a disturbance. 

4.3.4 Voltage Reference Change 

In this test? the ability of the identifier in tracking the generator when a 

voltage disturbance occurs is verified. -4 0.05 pu step increase in exciter 

reference voltage is applied at 1 s with the generator operating at Pe=0.2 

pu1 p f =O.85 Iag. Result given in Fig. 4.6: shows that the proposed identifier 

can track the plant satisfactorily. 

An on-he trained identifier to tradc synchronous generator is introduced 

in this chapter. The proposed identXer uses the feed-fornard multi-layer 

neural networks. Its structure is very simple and there is no need for a 



1 1 I 

t , I 1 1 

I 

O 1 2 3 4 5 
Time [s] 

Figure 4.4: Plant m d  identser responses to a 0.15 pu step inaease in 
torque. 



Figure 4.5: Plant and identifier responses to a 0.10 pu step increase in 
torque. 

0.60 , 
I 

1 1 

I 

1 

1 
I ! 

1 1 

I 

1 

I 

1 

I 

1 1 
I 1 l 

0.40 C --------  1 - - - - - - - L -_ - - - - - - J - -  I 
I l 1- P ~ L  /---l 

1 

1 
I 

1 1 - I 

I r 
J l 0.2Or -------- I - 

I - - - Identifier 

I 1 1 

1 

I I I i 
l 1 1 
1 - - -----------------  +--------&-------A 

1 = I 

S 1 .- 
f 1 I 

I 1 - 
eJ 

1 

*- 
> 

1 
1 

H 1 1 

z o*oo ; 
i 

U 
f 

l 
1 

V1 
1 

I 

I 1 

i 

1 
! 

I 

1 

--------A---------;-------- 7 - - - - - - - - - r - - - - - - - - -  ' t 

l 

I 

1 
l 

1 

I 
i 

! ! I 

I 

1 

I i 1 I 
7 

1 
l 
1 I 

I 1 

-0.40 I I l 
O 1 2 3 4 5 

fime [s] 



Figure 4.6: Plant and identifier responses to a 0.05 pu step increase in ex- 
citer teference voltage. 



large number of neurons in its impIementation. The training dgorithm is 

simplified by making use of a single dement error vector. The simulation 

results show the e6ectiveness of the tracking ability of the proposed identifier 

under various operating conditions and disturbances. 



Chapter 5 

NAPSS Application in 

Single-Machine Power Syst em 

5.1 Introduction 

Low frequency oscillations are a common problem in large interconnectecl 

power systems [go]. Power system stabilizer (PSS) can provide supplernen- 

tary control signal to the excitation system and/or governor system of the 

electric generating unit to damp out these oscillations and to improve gener- 

ator's dynamic performance [9], [91]- Conventional power system stabiizer 

(CPSS) is a lead-lag compensation-type device, based on linear control the- 

ory [8]. It has been adopted by most utility companies because of its simple 

structure, flexibility and ease of implementation, and it has made a great 

contribution in dancing power system damping and dynamic stability 137'1. 

The CPSS parameters are tuned ba.sed on the linear model of the power 

system. -4fter off-he tuning of the parameters, extensive field testing is 

doue at the tirne of commissioning. However, power systems are highly non- 
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linear systems. Moreover, their configuration and parameters change with 

t h e .  In fact, it has been found that the dynamic properties of the power 

system are quite different for different operating conditions [92]. This brings 

discrepancies between the mathematicd h e a r  mode1 of the power system 

and the physical non-liaear plant. Therefore, the parameters of the CPSS 

must be retuned so that it can continue to provide the desired performance. 

Even under nominal operating conditions, there is still some uncertainty due 

to the approximate knowledge of the power system parameters. Thus, to 

yield satisfactory control performance, it is desirable to develop a stabilizer 

which considers the non-linear nature of the plant and has the ability to 

adjust its own parameters on-line according to the environment in which it 

is working. 

With the development of power systems and the increasing demand for 

quality electricity supply, modern control techniques are being investigated. 

In recent y e n :  there have been new approaches to PSS design using modem 

control techniques f461, [50], [93]. Eaving a variety of advantages, n e d  

networks have also been applied to power system control problems. In [94, 

a neural network regulator for a turbogenerator was proposed to control 

the voltage and speed of the generator. Design of a PSS based on neural 

networks was also suggested in [95]. In that paper, the authors employed an 

external teacher (a non-Linear controLler based on variable structure control 

theory) to train the neuro-PSS. This way, the neural network is used to 

reaIize a complicated control algorithm in a comparatively easy way. In [96], 

a sophisticated training algorithm waç proposed for the neur-PSS. In [97], 

Zhang proposed a few off-line methods to design a rieur-PSS. First, he 



5.1 Introduction 71 

designed the n e u r d S S  by employing the pole-shifting adaptive PSS as a 

teacher. Then, he proposed an inverse 110 mapped NeurePSS to be traÏned 

diredy fkom plant I/O data. In the fînd design, he developed a mdti- 

input NeurePSS in which he used both speed deviation and electrical power 

deviation. But, as indicated earlier, all of his designs were off-Iine ând there 

was no on-line adaptation involved. An on-Iine trained neurcwontrol system 

for power system stabilization was also proposed in [98]. There, the authors 

proposed a neural-network based PSS using two feed-forward networks which 

needs the measurement of ail the generator states. The proposed PSS does 

not use tapped delay elements to consider dynamic characteristics of the 

generator. The authors then verified their PSS on a single-machine infinite- 

bus system employing a third-order mode1 for the geneator. 

In thk Chapter. the neural adaptive power system stabilizer (NAPSS) is 

presented. Shen, it is applied to the single-machine infinitebus power sys- 

tem. The control architecture consists of two neural networks; the adaptive 

neuro-identifier (kh1) to t a &  the plant, and the adaptive neuro-controuer 

(AXC) to damp out the output oscillations. Using the on-line training 

method, the NAPSS is able to tradc the plant Mnations as they occur and 

to provide the control signal accordingly. It has a simple structure and does 

not require the intemal states of the plant. It is trained directly from the 

output pedormmce and does not need any reference mode1 or teacher signal. 

The performance of the proposed NAPSS under dinerent load conditions and 

disturbances is investigated for the single-machine infinitebus system. 
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5.2 SingleMachine Power System Model 

.4 nonlinear seventh-order mode1 is used to simulate the dynamic behavior of 

the generating unit connected to a constant voltage bus tkough two p d e l  

tansmission lines. A schernatic diagam of the system is shom in Fig. 5.1. 

For cornparison purposes, the CPSS is also included in the studies. The dif- 

ferential equations used to simulate the synchronous generator, the t d e r  

function of the govemor, AVR and CPSS dong with the system parameters 

are given in Appendk A. Studies performed with various samphg rates 

show that the performance is practicdy the same for a sampling rate in the 

range of 20-100 Hz- Sampling fiequencies above 100 Hz are of no practical 

benefit and the performance deteriorates for sampling rates under 20 Hz- A 

sampling rate of 25 Hz has b e n  chosen to make sure that there is enough 

time a d a b l e  for weight update calculations. 

5.3 Controller Structure 

The structure of the controller for singlemachine studj- is shom in Fig. 5.2. 

It consists of two subnetworks. The first subnetwork is an adaptive ne- 

identifier (ANI) which tracks the dynamic behavior of the plant and identifies 

the plant in terms of its intemal weights, and the second one is an adaptive 

neurcxontroller ( ANC) to provide the necessary control action so as to damp 

out the oscillations of the plant output. 

The input vector tu the ANI is 
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Figure 5.2: Controller structure for single-machine study. 
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where &(k) is the genemtor speed deviation and u(k) is the PSS output 

(generator input), both at time step k. The output of the identifier is the 

predicted speed deviation, AG(k + I ), at t h e  step (k + 1). The input vector 

to the -4-2 is scaled before being applied to the network to take a value in 

the a n g e  of [- 1, +Il. The cost function used for the -4NI is 

The weights are updated as 

in which Wi(k) is the ma& of identifier weights at tirne step k and qi is the 

learning rate for the ANI. The gradient Vwi Ji(k) is computed by 

is a vector of partial derivatives of 4 4 k )  with respect to in whkh aw,(>c) 

each element of Wi(k). Using (5.3) and (5.4), the cost function Ji(k) is 

minimized in each sampling period by back-propagating the scalar error 

[4w(k) - 4W(k)]. 

The input vector to the A-NC is: 

where 4 P e ( k )  is the accelerating power at t h e  step k. The output of the 

ANC is the PSS control action, u(k), at time step k. The inputs to the ANC 

are also scaled in the range of [-1, +Il. The cost function for the ANC is 
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considered as: 

where 4wd(k)  is the desired speed deviation at t h e  step k, which is equd 

to zero in a regdatory setup, and h is a tuning parameter which is used 

to improve the plant output dynamic characteristics. By taking h greater 

than zero' a penalty factor is ôpplied to the control action generated by the 

NAPSS which helps the tunhg of the dynamîc trajectory and opthk ing  

the overshoot and the settling time of the response c w e .  The controller 

weights, W,(k), are updated as 

where qc is the controller leaming rate and the gradient Vw,Jc(k) is defbed 

as 

Using (5.7) and (5.8), &(k) is minimized each samphg period. As it is seen 

in (5.1) and (5.5), the generator states are not required for the implementa- 

tion of the ANI and ANC and only input-output data are used. This greatly 

simplifies the implementation of the NAPSS. 
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5.4 Training Process 

The success of the control algorithm presented in section 5.3 depends highly 

on the accuracy of the identifier in tracking the dynarnic plant. If the identi- 

fier is not sufEciently trained, the control si@ which is computed based on 

the identifier parameters can not be trusted and may result in unsatisfactory 

response. For this reason? the -4.N is initidy trained off-line before being 

hooked up in the final configuration. The training is performed over a wide 

range of operating conditions and a wide spectnrm of possible disturbances 

for the generating unit. It is further discussed in the next section. -Mer the 

off-line training stage, the ANI is houked up in the system. Further training 

of the ANI and ANC is done in every sampling period employing the on-line 

version of the back-propagation method [62]. This enables the NAPSS to 

track the plant variations as they occur to yield the optimum performance. 

The training of the NAPSS comprises the following steps: 

1) At time step k, h [ k )  and AP,(k) are sampled, 

2) C'sing hu(k) and AW(k), the weights of the are updated, 

minimizing Ji(-). 

3) The output of the controller, u(k)? is computed. 

4) Using u(k), the predicted speed deviation, AW(k+l), is computed 

by the ANI. 

5) Based on AW(k + l), the weights of the -4NC are updated, mini- 

mizing Jc(k). 
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In step 2 above, the training is straightforwâz~d since the error at the 

output of the ANI is known. However, in step 3 the training is not as easy, 

since the error at the output of the ANC is not h o m .  In this case, Iirst 

the weights of the MW are kozen and the error between the desired and 

the predicted plant output is badc-propagated through the A-NI. Then, the 

back-propagated signâl at  the input of the -4-NI is further badc-propagirted 

through the ANC, making the necessary changes to the controuer weights. 

The MATLAB function to perfonn the controller training is given in A p  

pendix B. The error used to train the ANI and the ANC are both scdar and 

the learning is done only once in eadi sampling period for each of the two 

subnetworks. This simpliiies the training algorithm in terms of computation 

time, which is of specid importance in red-time implementation. 

Moreover, in order to further simpw the training algorithm, the use 

of dynamic back-propagation method [99], [100], [101], which considers the 

tapped-delay elements present in the input of the MW, is avoided here due 

to the extra computation burden invohed. Static back-propagation [78] has 

been used instead, since it is accurate enough for the purpose of this appli- 

cation. The parameters of the identifier and controuer dong with those of 

the learning algorithm are discussed in next section. 

5.5 Simulation St udies 

5.5.1 Parameter Setting 

A variety of structures were tested for the ANC. Different number of inputs 

(Le. fiom four t O twelve) , hidden layers (Le. one and two) and hidden netnom 
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(Le. fkom four to surteen) were tested. The network with 4 inputs, w6ich 

uses two signais and their delays, did not generate good results, regardless 

of the number of hidden neurons. The 6 ~ 8 x 1  network generated good results 

for different tests. The networks Iârger than that did not improve the resdt. 

Therefore, the 6~8x1 structure was chosen for the ANC. The ANI structure 

is aho 6~8x1 as explained in the previous Chapter. For both networks, the 

hidden neurons have sigmoid nonlineady and the output neuron is hem.  

Initial weights of the AhiC lie between [-O& +O.l], chosen ra~domly at 

the beginning of the process. The initial weights of the ANI are set to those 

obtained from off-Iine training stage of the AM as discussed before. The 

learning rate for the ANI and the ANC is 0.0 1 and 0.03, respectively. The 

value of h, the tuning puameter: is set to 4.5. It is worth mentioning that 

d of the above mentioned parameters as weU as the network structure were 

found through simulation and trial and error. For off-line training, data 

were collected for operathg conditions in the range of 0.1 pu to 1.0 pu power 

output and 0.7 p f lead to 0.1 p f lag. The training was iteratively done until 

a pre-specified tolerance is met. The disturbances used were the voItage 

reference and input torque reference disturbances and three-phase to ground 

fad t . 

5.5.2 CPSS Parameter Tuning 

With the generator operating at a power output of 0.7 pu, 0.85 p f lag, a 0.05 

pu step inaease in input torque reference is applied at time 1 S. At time 5 

s, the change in torque reference is removed and the system retunis to its 

original operating condition. 
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Under the above conditions, the CPSS was carefidy tuned for the best 

possible performancel Le. the overshoot and the settling t h e  were mini- 

mized. The panmeters of the CPSS were then kept nnchanged for all of 

the tests performed. Resuits of the study with the XAPSS, the CPSS and 

without a stabilizer are shown in Fig, 5.3. It is seen fiom the figure that the 

NAPSS damps out the low frequency oscillations very quiddy. 

5.5.3 Loaded Generator Test 

In this test, a 0.10 pu step increase in input torque reference is applied at 1 s 

and removed at 5 S. The generator is operathg at 0.7 pu power, 0.85 p f lag. 

The system response given in Fig. 5.4 shows thzt the NAPSS can hande 

the disturbance better than the CPSS and the osdations settle d o m  more 

quickly. This test demonstrates the effectiveness of the NAPSS in damping 

the iow fkequency oscillations. 

5.5.4 Light Load Test 

The system condition is the same as in the previous case except that the gen- 

erator is now operating under a light load condition, Le. 0.2 pu power, 0.85 

pf lag. The disturbance is a 0.05 pu step decrease in the voltage reference. 

Fig. 5.5 shows the result of the system with the CPSS and the NAPSS. It is 

evident that, despite a large chknge in the operating conditions, the NAPSS 

still provides good result because of the adaptation process. 
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Figure 5.3: System response to a 0.05 pu step increase in torque and retum 
to onginal condition. 
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Figure 3.4: System response to a 0.10 pu step increase in torque and return 
to original conditio~i. 
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Figure 5.5: System response to a 0.03 pu step decrease in voltage reference 
and return to original condition in Iight ioad test. 
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5 -5.5 Leading Power Factor Operation Test 

When the generator is operating at a leadkg power factor, it makes the 

situation difEcult for the controller because the stabdity margin is reduced. 

Bowever, in order to absorb the capacitive charging current in a hi& voltage 

power system in iight load condition, it may sometimes become necessary to 

operate the generator at a Ieading power factor. Thus, it is desirable that 

the controller be able to guarantee stable operation of the generator under a 

leading power factor condition. 

A test is conducted with the generator at 0.3 pu power, 0.9 pf lead. A 

disturbance of 0.20 pu step increase in the input torque reference was a p  

plied. This disturbance is hi& enough to cause the system to operate in the 

nonlinear region. The results given in Fig. 5.6 show that the oscillation of 

the system is damped out quickly and demonstrates the effectiveness of the 

SAPSS to control the generator under leading power factor operating con- 

ditions. The control signals of both NAPSS and CPSS are given in Fig. 5.7. 

5.5.6 Fault Test 

To venfy the behavior of the proposed neural adaptive stabilizer under tran- 

sient conditions, a fault is applied to the system. For this study, the equiva- 

lent reactance of the double circuit transmission line was set at 0.4 pu instead 

of 0.6 pu. The response of the power system to a three-phase to ground short 

circuit at the middle of one transmission h e ,  cleared 200 ms later by the 

disconnection of the faulted line and successful reclosure after 4 s is shown 

in Fig. 5.8. It can be seen that the NAPSS minimizes the deviation of the 
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Figure 5.6: System response to a 0.20 pu step increase in torque and return 
to initial condition in leading power factor test. 
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Figure 5.7: Control signals of NAPSS and CPSS for a 0.20 pu step increase 
in torque and return to initial condition in leading power factor 
test. 
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4 6 
Time [SI 

Figure 5.8: System response to a threphase to ground fault at the middle 
of one transmission line. 
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power angle of the generator after the fadt and helps the system to reach 

the new operating point very quidcly. The test shows that the NAPSS not 

only improves the dynamic performance but also enhances the transient per- 

formance of the system- An important fact worth mentioning here is that 

the parameters of the NAPSS were not required to be tuned for dXerent 

test conditions. This indicates that the proposed stabilizer enjoys the hi& 

adaptability to the operating conditions. 

5.5.7 Different Line Impedances Test 

The parameters of the CPSS have to be re-tuned if the configuration and/or 

parameters of the power system change. Otherwise, its performance cannot 

be guaranteed. However, with the Neural Adaptive PSS, since the controller 

is adapted on-line based on the output performaace, the control algorithm 

can automatically respond to the variations. In this test, dXerent transmis- 

sion Iine impedances are used to investigate the adaptability of the proposed 

NAPSS. With the change of the transmission h e  irnpedance, the extent of 

the couphg of the controlled generator with the Exed bus can be simuiated- 

If the transmission line impedance becomes lasger, the generator becomes 

more unstable. A robust controller shouid be effective for this kind of con- 

dition too. In this test, the transmission h e  impedances of 0.2 pu and 0.6 

pu are used to simulate the tightly and Ioosely coupled systems. With the 

power system operating at 0.95 pu power, 0.9 p f hg, a 0.05 pu step decrease 

in voltage reference at 1 s is applied which is removed at 3 S. R d t s  are 

çhown in Figs. 5.9 and 5.10. 

It is seen that NAPSS can still provide a good response despite the 
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Figure 5.9: Response to a 0.05 pu step decrease in voltage reference and 
retum to initial condition with line impedknce of 0.2 pu. 
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Figure 5.10: Response to a 0.05 pu step decrease in voltage reference aad 
return to initial condition with line impedance of 0.6 p. 
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changes that happen in the system parameters. 

The introduction of the suppiementary controller for the power system not 

only improves the dynamic performance but also increases the stability mar- 

gin. To demonstrate this fact, a simulation study was conducted. With the 

initial operating conditions of 0.95 pu power, 0.9 pf Iag, the input torque 

reference was increased gadually. The dynamic stability margin can be 

described by the maximum power output at which the system loses synchro- 

nism. The results for the system without stabilizer, with the CPSS and with 

the NAPSS are given in TabIe 5.1. The NAPSS provides the largest output 

power, which indicates that the dynamic stability margin of the system is 

improved rnost by the NAPSS. 

Table 5.1: Dyaamic stability margin for different stabilizers. 

1 OPEN I CPSS 1 NAPSS 1 

Application of the neural adaptive power system stabilizer to single-machine 

infinite-bus power system is presented in this Chapter. The back-propagation 

network with on-he  learning is used in the proposed stabilizer. The stabilizer 

introduced here has the fouowing advantages: 

1 1 
-- - 

I 

Maximum Power 
hlaximum Rotor Angle 

2-65 pu. 
1.35 rad. 

3.35 p-u. 
2.14 rad. 

3.60 pu. 
- 2.36 rad- 
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O is able to track plant variations; 

O considers non-linear nature of the plant; 

does not need states of the plant; 

0 uses simple (scalar) error vector; 

has a simple structure consisting of 9 neurons in each of the two sub 

networks; 

does not require a reference model or teacher signal; 

O does not require exact mathematical model of the plant. 

Simulation resdts for various operating conditions and disturbances show 

that the proposed neural adaptive stabilizer can provide good damping over a 

wide operating range and sipiflcantly and adaptively improves the dynamic 

performance of the system. The stability rnargin is also increased by the 

proposed NAPSS. 



Chapter 6 

NAPSS Application in 

Multi-Machine Power System 

6.1 Introduction 

Simulation studies in Chap ter 4 dernonstrated that a properly designed NAPS S 

can provide effective dampmg of the power system [80], [81]. These studies 

were on the singlemachine infinite-bus environment. The effectiveness of the 

SAPSS to damp out multi-mode oscillations in mdti-machine environment 

needs to be venfied. 

The effectiveness of the NAP SS to damp out multi-mode oscillations in a 

mdti-machine environment is investigated in this Chap ter. A fivernachine 

power system is used in this study and its transient response to a lage 

disturbance is presented wit h the mdti-mode osdation phenornenon. 

Multi-mode oscillations appeai: in multi-machine power system in which 

the intercomected generating units have quite different inertia constmts 

and are weably connected by transmission lines. These oscillations are gen- 
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erdy  asalyzed in t h e  main oscillation modes, Le. local, inter-area and 

inter-machine modes. Depending upon their location in the system, some 

generators participate in only one osdation mode, while others participate 

in more than one mode [37]. 

6.2 Power System Multi-Mode Oscillations 

There axe three modes of osdations in a mdti-machine power system: 

a Local Mode 

Usually refers to oscillations occurring in plant transients stemming 

fkom geneator rotors osdating relative to the combined equivalent 

inertia of the system. This is also described as the generator swinging 

relative to an infinitebus formed by the combined equivdent inertia 

extemal to a particular generator as shown in Chapter 5. Frequency 

magnitudes are directly related to the equivalent rotationai inertia of 

the generator and the prime mover, and to the synchronous torque c e  

efncient linking the geneator to the fixed bus. L o d  mode oscillations 

are in the range of 0.8 to 2 Hz. 

Inter-Machine Ahde 

This describes frequencies related to closely coupled generators swing- 

ing relative to each other. This can occur at a plant that has a &- 

verse mix of generators and controllers or at neighboring plants that 

are Iinked with inter-ties such that the machines axe relatively closely 

coupled. Intra-plant frequencies are related to the equivalent machine 
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inertia of the dosely coupled generator groups and are in the ange of 

0.3 to 1 Hz. 

Inter-Area !Made 

These frequencies stem fkom coherent groups of generators in one area 

swinging relative to a number of 0th- coherent groups in other areas. 

Inter-area frequencies me in the range of 0.1 to 0.7 Hz and these fke- 

quenaes may overlap wÏth kequencies describeci under the other two 

modes- 

6.3 Mult i-Machine Power System Model 

.A five-machine power system without infinite bus, as shown in Fig. 6.1, is 

used to evâluate the performance of the proposed NAPSS. Five generating 

units are c o ~ e c t e d  through a transmission network. Generators GII G2 and 

G4 have much larger capacities than G3 and Gs. .AU five generators are 

equipped with governors, exciters and AVRs. Parameters of rJ1 generators, 

governors, exci ta ,  A\%: tra,nsmission lines, loads and operating conditions 

aze given in Appench C. Generators Gz, G3 and Gs rnay be considered to 

form one atea, and generators G, and G4 a second area The two ueas 

are connected through a tie-he comecting buses 6 and 7. h d e r  normd 

conditions, each area serves its own load and is h o s t  fully loaded with a 

s m d  load 0ow over the tie-line. 

Due to the different sizes of the generators and system configuration, 

multi-mode oscilIations o c m  when the system experiences a disturbance. In 

order to observe this fact a 0.10 pu step decrease in input torque reference of 
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G3 is applied at I s while the system is operating without any PSSs at the 

operating point #1 as given in Appendur C. At 10 s, the system returns to 

its initial condition. Oscillations in Fig. 6.2 show the local mode at about 

1.3 Hz and the inter-area mode at about 0.65 Hz. These two fiequencies 

differ si&cantly due to the Iarge difFerence in the inertia of the generators. 

The speed merence between Gz and G3 exhibits r n d y  the local mode 

oscillations, wMe the speed diffaence between Gi and Gz shows the inter- 

area mode oscillations. Both Iocal and inter-area modes of oscillations appear 

in the speed difference between 4 and 4. 

6.4 Controuer Structure 

The structure of the control system for multi-machine study is shown in Fig. 

6.3. The input vector to the ANI is 

where AP,(k) is the accelerating power and u ( k )  is the PSS output (genera- 

tor input), both at time step k. The output of the identifier is the predicted 

accelerating power, 4Pe(k + I), at time step (k + 1). The input vector to 

the ANI is scded before being applied to the network to take a d u e  in the 

range of [-1, +Il. The cost function used for the ANI is 

The weights axe updated as 
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Figure 6.2: Multi-mode oscillations of the five-machine power system. 
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Figure 6 3: Control systern structure for multi-machine study. 
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in which W;(k) is the mat& of identifier weights at thne step k and ~i is the 

iearning rate for the AM. The gradient Vw,J'(k) is computed by 

Using (6.3) and (6.4), the cost function Ji(k) is minimized in each samphg 

period by back-propagating the scalar error [AP.(k) - ~ & k ) ] .  

The input vector to the .4NC is 

where 4 w ( k )  is the generator's speed deviation at time step k which goes 

through a washout filter in order to remove its DC offset. The output of the 

ANC is the PSS cont~ol signal, 

axe dso scded in the range of 

considered as 

u(k) ,  at t h e  step k. The inputs to the ANC 

[-1: +Il. The cost fùnction for the AXC is 

where 4Pea(k) ,  the desired accelerating power at t h e  step kt is equd to 

zero in a regulatory setup, and h is a tuning parameter used to improve the 

plant output dynamic characteristics. The weights of the controuer, W,(k), 
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where % is the controk learning rate and the gradient Vw, Jc(k) is defined 

Using (6.7) and (64, Jc(k) is minimized each sampling period. As seen in 

(6.1) and (6.5), the states of the generator are not required for the imple- 

mentation of the .ANI and ANC and only input-output data are used. 

6.5 Training of NAPSS 

The training of NAPSS ha two steps, namely off-Iine training of the identifier 

and on-line training of the identifier and controuer. 

6.5.1 Off-Line Training of Identiner 

The success of the NAPSS in suppressing the output oscillations highiy d e  

pends on the accuacy of the identser in tracking the plant. This is the very 

reason to train the ANI off-line before using it in the control algorithm. The 

training data was gathered with the plant operathg over the range of 0.1 pu 

to 1.0 pu power output and 0.7 p f lead to 0.1 p f lag. Disturbances of voltage 

reference and input torque reference step dimges and thee phase to ground 

fault were applied to the system. Using this data, the ANI was trained in 

the off-line mode employing the badc-propagation algorithm [62]. 
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6.5.2 On-Line nainhg of Identifier and Controller 

Mter off-he training, the .M'NI is hooked up in the system for h t h e r  on-he 

training of both kW and ANC. The on-line training procedure is composed 

of the following steps: 

1) At t h e  step k, 4w(k)  and hP,(k)  axe sampled. 

2) Using 4P,(k)  and 4 Pe(k), the weights of the ANI are updated, 

minimizing Ji(k). 

3) The output of the controller, u(k) ,  is computed and âpplied to 

the generator. 

4) Iising u(k), the predicted accelerating power, AP#+ l), is corn- 

puted by the ANI. 

5 )  Based on 4 ~ ;  (k + 1) , the weights of the ANC are updated, min- 

imiUng Jc (k) . 

To train the controuer bâsed on hPe(k  + l), first the weights of the A N  

are fiozen and the error between the desired and the predicted plant output 

is ba&-propagated tkough the A N -  Then, this badc-propagated signal at 

the input of the ANI is further back-propagated tkough the .4NC to make 

the required changes to the controuer weights. 

The errors used to train the ANI and the ANC are both scalar asd the 

leamhg is done only once in each sampling perïod for each of the two subnet- 

works. This simplifies the training algorithm in terms of computation time, 

which is of specid importance in real-time implementation. A h ,  as it is 

dear £rom the above training procedure, the controller is updated based on 
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the output performance and there is no need for a desired controller (extemal 

teacher) or a reference model. 

6.6 Identifier and Controller Paramet ers 

Both the AiVI and the A?JC have 6 inputs. There is one hidden Iayer of 8 

neurons with sigmoid nonlineaity and an output layer with one linear neu- 

ron: both for the ANI and the ANC. Initial weights of the ANC Ge between 

[-0.1, +O.il ,  chosen randomiy at the begiming of the process. The initiai 

weights of the Ai?ii are set to those obtained from off-line training stage of 

the ANI as discussed before. The learning rate for the ANI and the -4iiC is 

0.02 and 0-01, respectively. The value of h, the tuning pazameter, is set to 

2.7. A sampling rate of 25 Hz has been chosen for the digital control system. 

6 .? Simulation Result s 

6.7.1 PSS on One Unit 

The proposed NAPSS is first inçtaIled on Ga while none of the other uni ts  

are equipped with PSS. A 0.10 pu step decrease in input torque reference of 

G3 is applied at 1 s which is later removed at 10 s. As shown in Fig. 6.4, the 

NAPSS damps out the local mode oscillations very dedively. However, as 

expected, it has Iittle influence on the inter-area mode oscillations. This is 

because of the fact that the smaU unit of G3 does not have enough power 

to control the inter-area mode oscillations introduced mairily by large units 

GL and Ga- For cornparison purposes, a CPSS with the following transfer 
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Figure 6.4: System response with NAPSS instded on generator G3. 
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function [IO21 was instded on G3: 

After carefd parameter tuning, the following parameter set was obtained 

for the CPSS on G3. 

Results of the study with no PSS (OPEN) and with CPSS instded on G3 

aze &O shown in Fig. 6.4- 

6.7.2 PSS on Three Units 

To damp out both Iocal and inter-area modes of oscillations, two 'TAPSSs 

are additiondy installed on Gl asd G2. Fig. 6.5 shows the response for 

the same operating conditions a d  disturbances as before. It can be seen 

that both modes of oscillations are darnped out very effectively. If CPSSs 

are to be installed additionally on Gl and G2 to damp out inter-area mode 

of oscillations, th& parameters have to be re-tuned. After careful parameter 

tuning, the following parameters are obtained for CPSSs on G1 and G2. 

The responses of the system with no PSS and with CPSSs instded on G1, 

Gz and G3 are shown in Fig. 6.5- 
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Time [s] 

Figure 6.5: System response with PSSs instded on Gi, Gz and G3. 
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67.3 Three-Phase to Ground Fadt Test 

Having the same operating condition as before, a three-phase to ground fault 

is appkd  at the middle of one transmission Line between buses 3 and 6 at 

1 s and cleared LOO ms later. At 10 s, the fauIted h e  is restored success- 

full>-. This disturbance is large enough to cause the -tan to operate in the 

non-linear region. Fig. 6.6 shows the response of the system with no PSS. 

3,APSSs ody and CPSSs only installai on Gr: Gz asid G. It is seen that the 

XAPSS improves the system response- This is due to the adaptive property 

of the XAPSS. 

6.7.4 Self-Coordination Ability of NAPSS 

One of the important features of the NPLPSS is its self-coordinating property. 

The NAPSS cm coordinate itself with the existing PSSs in the system au- 

tomaticaiIy due to its on-line learning property. To demonstrate this fact, 

the KAPSS is instded on Gz and G3 and CPSS with proper parameter set 

on Gz, G4 and Gs. Fig. 6.1 shows the response for 0.15 pu step decrease in 

torque reference of G3 at 1 s and return to initial condition at 10 S. It can 

be seen that all PSSs work cooperatively to achieve a good performance. 

6.7.5 New Operating Condition Test 

To test the performance of the NAPSS under other operating conditions, 

the operating point of the system is set to operating point #2 as given in 

Appendix C. Fig. 6.8 shows the response under a the-phase to ground 

fault having no PSS (OPEN), CPSS and NAPSS on G1, Gz and G3. It is 

shown that NAPSSs can damp out the oscillations very effectively even as 
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Figure 6.6: System response to a three phase to ground fadt with PSSs 
installed on generators G1, Ga and G3. 
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Figure 6.7: Çystem response with NAPSS instalIed on generators Gi and 
GJ and CPSS on Gz, Gq and G5. 
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Figure 6.8: System response to a three phase to ground fadt with PSSs 
installed on generators GI, G2 and G3 for the new operating 
point. 
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the operating conditions change. 

Multi-mode oscillations appear in a mdti-m&e power system in which 

the interconnected generating units have quite different inertias and they 

are weakly conneded by transmission lines, Application of a neural adaptive 

power system stabilizer (NAPSS) to a fivernachine puwer system is described 

in this chapter. The proposed NAPSS employs back-propagation network 

with on-line learning. Its structure is very simple and there is no need for a 

large nurnber of neurons in its implementation. The accelerating power and 

speed deviation of the unit are used as inputs to the NAPSS. The stabilizer is 

trained in each sampling period by input-output data using a simple single- 

elernent error vector. Due to its adaptability, the NAPSS can adjust itseff to 

different conditions to effectively damp out both bcal and inter-area modes 

of oscillations. The self-coordinating ability of NAPSS is &O demonstrated. 



Part III 

Experiment al Tests 



Chapter 7 

NAPSS Laboratory 

Implementat ion and Real-Time 

Test Results 

7.1 Introduction 

Results in the previous chapters have shom thât NAPSS exhibits very good 

control performance (801, [103]. Like most other neural network based con- 

trouer research, the results in the previous chapters are based on cornputer 

simulations. In these simulations, the power system was simulated by using a 

set of sirnult~i~~eous differentid equations, and NNs were simulated by using 

a sequential algorithm to sirnulate the pualle1 distributed nature of MNs. 

Since the power system simulation models represent faLly closely the physi- 

c d  system and the sequential algorithm can get the same output except for 

a longer computation t h e ,  the simulation results presented in the previous 
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chapters may be said to be close to those expeded in a physical system. 

Cornputer simulation is mixent from the red physicd system since the 

operating environment of the physicd system is not ideal and there ex& 

noise and saturation of elements as well as unexpected disturbances that 

cause the power system to operate under a continuous smaU perturbation- 

Therefore, after theoretical development and cornputer simulation, the next 

desirable step is to evaluate the control strategy on a physical mode1 of the 

controlled system. 

In general, it is necessary to implement a controller in hardware. Thus, 

the design of the NAPSS is not finished until the hardware implementation 

is hished. There are some practical considerations that need to be looked 

at in NAPSS implementation in the laboratory. These are: 

what type of physicai plant can be used in the laboratory; 

in what environment the XAPSS can be built; 

how to implement the parde1 distributed nature of NW. 

Because of the above considerations, very few laboratory implernentations 

of the neural network based controllers are reported in the litemture. -4.n 

early stage laboratory implementation of an NN based controller to simulate 

an adaptive trajectory controiler for a DC motor is described in [104- In 

this work, different NXs were trained to simulate the identiiication part and 

control part of the adaptive controlIer. An off-iine trained neural network 

based controller was also implemented in [105]. 

So far as is known, the fkst implementation of an on-line trained neural 

network based PSS in a Iaboratory environment is reported in this d i a p  
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ter. A Iaboratory physicd modd of a power system, which has the same 

characteristics as that of a real power system, is set up. Since the n e 4  

network hazdwaze capable of handIing on-he training was not avdable at 

the time of implementation, a sequential simulation method was employed 

to implement the NAPSS in soRware on a Digital Signal Processor (DSP) 

board mounted on a 80386 PC. For cornparison, a digital conventional PSS 

(CPSS) is implemented in the same environment on the DSP board. De- 

tails of implementation dong with the experimentd results are described in 

this chapter. Effectiveness of the NAPSS in response to various types of 

disturbances for a variety of operating conditions is demonstrated. 

7.2 Power System Physical Model 

Schematic d i a m  of the physicd mode1 of a single-machine infinite-bus 

power system a d a b l e  in the Power System Research Laboratory at the 

University of Calgary is shown in Fig. 7.1. It consists of a 3 phase, 3 kVA, 

220 V synchronous micmalternator driven by a 220V, 30 A DC motor. 

The dternator is comected to the ci@ power system (constant voltage bus) 

through two pardel transmission lines. The parameters of the physical sys- 

tem axe given in Appendix D. The lumped element physical mode1 of the 

transmission h e  simulates the performance of a 500 kV, 300 km long double 

circuit transmission h e  which consists of six x-sections. It has a frequency 

response which is close to that of an actual transmission line up to 500 Hz. 

A Time Constant Regulator (TCR) is used to change effective field t h e  con- 

stant of the generator in order to emulate a large generathg unit. Using this 

circuit, effective field time constant of the generator can be increased up to 



- 
Three Iriterlocked Breakers 
Adjustable Tima Sequence 

Figure 7.1: Stiiictiire of tbo power ~ y s t e ~ n  pliysical inodol. 
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10 S. 

The system is &O equipped with a commercial ABB PHSC AVR impk 

mented on a Progammable Logic Controller (PLC) to control the terminal 

voltage of the generating unit. It is programmed using a function block pr* 

gramming language called FUPLA. Tkee phase AC voltages and currents at 

the generator terminal are stepped down, rectsed ând filtered with a cut-off 

kequency of 8 Hz to form six DC input signds to the AVR. The PLC-based 

.4VR computes the required field control signal which is fed to the TCR The 

AVR also calculates the active power signal which is used as the PSS input. 

The NAPSS is implemented on a DSP board based on the TMS320C30 DSP 

chip. It computes the required control signal, CI,,, , to be fed to the AVR. 

Details of the DSP hardware and its connection to the .4VR are covered in 

the next section- 

.4 Mnety of disturbances cm be applied to the system. Using the switch 

shown in the excitation circuit of the DC motor, Fig. 7.1, a step change in 

input torque of the generator can be applied. Similady, the input reference 

voltage of the AVR can be stepped down or up. In addition, difEerent mes of 

faultç can be applied to simulate luge disturbances. The operating condition 

of the generator, Le. active power and power factor, can dso be changed by 

changing the armature m e n t  of DC motor and terminal voltage of the 

generator respectively. 
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7.3 Implementation of NAPSS 

7.3.1 Sequentid Implement ation of Par d e l  Mechanisrn 

Pardel processing is one of the most important properties of the neural net- 

works. The neurons in a layer operate in parallel. This results in hi& speed 

operation- Research on designing neurd networks by using VLSI t&ology 

is advancing very fast, Howeveq because NN hardware with on-Lne learaing 

capability was not available in the laboratory at the time of implementation, 

a sequential implementation method was designed to simidate the parallel 

mechanism. 

The sequential impIementation is very similar to the NN simulation used 

in the simulation studies in the previous chapters. hstead of allowing all 

neurons in the same layer to compute simultaneousiy, this method ody allows 

neurons to compute one after another. The computation starts from the k t  

neuron of the f is t  layer and ends with the Iast neuron of the output layer. 

The output of each neuron is held constant until the next cornputation cycle 

starts. This method can get the same output as that of a reai neural network 

chip except that the computation time is much longer here. 

7.3.2 Hardware Structure 

Structure of the digital control system is shom in Fig. 7.2. The NAPSS 

is developed on a DSP board supplied by SPECTRU'iM Signal Processing 

Inc. It contains a Texas Instruments TMS320C30 DSP chip. The chip is a 

32-bit floating point device with a speed of 16.7 million instructions per sec- 

ond. Its performance is further enhanced through its large on-chip mernories, 
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A86 PHSC (Ptogrammable High Speed Controller) System 
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Figure 7.2: Digital control system structure. 
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concurrent DMA controller, two extemd interface ports and an instruction 

cache. Two 200 kHz, &bit analog I/O chmels on board, coupled with 

direct access to all serial and parallel I/O ch-& of DSP chip, provide the 

exterior input-output functions. The 32-bit on-chip timer is programmed by 

softwaze to a resolution of 120 ns. The board is monnted inside a PC whch 

iç equipped with conesponding development and debugging tools. 

The AVR cdculates the generator active power, P,, based on the mea- 

sured instantaneous voltages and currents. The P, signal is then transfered 

to DSP board through the A/D channel. This A/D chme1 samples the 

signal at 200 Hz. The sampled signd goes through a flter, which limits the 

noise and provides anti-aliasing protection. The filtered signal is then stored 

in a buffer. The DSP chip reads the b d e i :  and computes the control signal, 

L .  The computed U,, is fed to the D/A chamel which filters the sig- 

nal for smoothing before sending it out. The AVR receives the PSS controi 

signal as  a supplementq input and adds it to the voltage reference signal. 

The cornbineci signal then goes through the .4VR biock in order to make the 

required field control signal to the TCR. 

7.3.3 Software Structure 

The NAPSS software, ruMing on DSP, is developed in C and AssembIy lm- 

pages. In addition, a Man-MachineInterface (MMI) routine, running on 

PC, is aIso developed to further improve the PSS development and impie- 

mentation environment. Flow chart of the MM1 routine is shown in Fig. 

7.3. This routine fixnctions as a supervisor monitor. It ftst initializes I/O 

vectors for DSP-PC communication. Then, it loads the DSP code into the 
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Figure 7.3: Flow chart of the Man-Machine-Xntehce (MMI) program. 
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chip. It then reads control parameters and sen& them to DSP chip through 

Dual Access RAM (DARAM). After the inception of main control lmp by 

DSP, the MM1 routine reads the input-uutput data of the c o n t m k  running 

on the DÇP board every 50 ms. These data are plotted on-line on the screen, 

and also can be forwarded to a fiIe for h h e r  d y s i s .  

Flow chart of the program running on the DSP board is shown in Fig. 

7.3. This program fkst initializes the I/O vectors for DSP-PC communica- 

tion, then reads control partrameters £rom DARAii1. After initializig A/D 

and D/A channels a.nd sampling time counter, it enters the main control 

loop. There, it iteratively reads the input signal, processes that signd, com- 

putes the controller output and sen& the output signal dong wïth the neurd 

network weights to DARAM. 

7.4 Control Strategy 

A schematic diagram of the controiler architecture is shown in Fig. 7.5. 

The input vector to the ANI is: 

where AP,(k) is the active power deviation and u(k) is the PSS output (gen- 

erator input), both at time step k. The active power deviation is obtained 

by removing the DC offset of the generator active power using a washout 

filter. The output of the identifier is the predicted active power deviation, 
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Figure 7.5: Control system architecture in implementation stage. 
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h&(k  + l), at t h e  step (k + 1). The input vector to the ANC is 

where 4 4 k )  is a signal proportional to the generator speed deviation. This 

signal is obtained by integrating the AP. signal. hgain, a washout filter is 

used to remove the DC o&et of this signal. 

7.5 Training Procedure 

The on-line training procedure is composed of the following steps: 

1) At thne step k, P.(k) is sampled and AP,(k) and 4 w ( k )  are 

computed. 

2) Using A P, (k) and 4 P + ( k ) ,  the ANI is trained. 

3) The output of the controller, u(k), is computed. 

4) Using u(k), the predicted active power deviation, ~ p , ( k  + l), is 

computed by the ANI. 

5 )  Based on A P = ( ~  + l), the ANC is trai~ed. 

To train the ANC, first the weights of the ANI are fkozen and the er- 

ror between the desired and the predicted plant output is back-propagated 

through the ANI. This back-propagated signal at the input of the .4NI is 

further back-propagated through the AWC to make the required changes to 

the controuer weights. 
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Since the sampling period can not be less than the time needed for back- 

propagation of error and updating the weights of the neural network, special 

care should be given to the selection of the network size and error vector size- 

If the network is big and/or the error vector is large, the on-line training 

algorithm can not be accomplished in one sampling period. Here, the errors 

used to train the ANI and the ANC are both scdar and the learning is done 

only once in each samphg period for each of the two subnetworks. This 

simplifies the training aJgorithm in terrns of computation time. Alsol the 

controller is updated based on the output performance and there is no need 

for a desired controller (extemal teacher) or a reference model. 

Both the Ahl and the ANC have a 6 x 8 ~ 1  structure, based on earlier ex- 

perience (see Chapter 5) [80]. This Ieads to a simple network with a total 

of 9 neurons in each of the two subnetworks. Having a simple network is 

very important in real-time implementation, since it involves less computa- 

tion which allows a s m d  sampling tirne. This in turn results in a better 

performance. The 8 neurons of hidden layer have sigmoid non-linearÎty and 

the single output neuron is a linear one. The Iearning rate for the -4NI and 

the ANC is 0.01 and 0.03 respectively. 

Using cornputer simulation and parameters of the system given in Ap- 

pendix D: both the A-NI and ANC are 6 s t  trained on a SUN Sparc Sta- 

tion platform employing the on-line version of the back-propagation alg* 

rithm [62j. After this stage, the weights of the neural networks are plugged 

into the real system for further on-line training. 
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7.6 Implementation of CPSS 

A CPSS is digi tdy implemented on the same digital control environment for 

cornparison purposes. Having the anaIog transfer hc t ion  of: 

the CPSS is discretized using the bilinear transformation, s = $z, where 

r is the samphg perïod. Since the washout filter is implemented in another 

block, ody the lead-lag element needs to be discretized. After applying this 

transformation, the digital CPSS wodd have the following trander function: 

where coefficients {d) and (f;') are explicit function of gain Ks and time 

constants Tl - T4. The samphg period for the digital CPSS is chosen to be 

7 = I ms* 

7.7 Experimental Results 

The performance of the proposed NAPSS has been investigated by a number 

of experimental tests for a variety of operating conditions and disturbances. 

For the sake of brevity, however, results of ody a representative set of studies 

axe presented here. For compazison purposes, results of the same tests using 

digital CPSS are also included. AU experimentd data are collected by the 

MM1 routine and saved automaticdy for firther onalysis. However, in order 

to make the disturbances seem to happen at the desired time point, the time 
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axis is adjusted. 

The inherent damping of the physicd mode1 power system used for exper- 

imental tests is quite high. However, to evduate the supplementary damping 

effect provided by PSS, a small system damping is desired. To achieve this 

goal, ody one transmission line is in operation for aD the tests except the 

three-phase to ground fault test. The sampling t h e  for the digital control 

system is 5 ms. 

7.7.1 Voltage Reference Step Change 

With the generating unit operating at 0.9 pu power, 0.85 p f lag and termi- 

nal voltage of 1.1 pu, a 0.10 pu step increase in voltage reference is applied 

at 1 S. At tirne 8 s, the change in input reference voltage is removed and 

the system retunis to its original opemting condition. The generator active 

power deviation with NAPSS and without PSS (OPEN) are shom in Fig. 

7.6. For the open-loop system, when the voltage reference drops, the oscil- 

Iations becorne more severe. This is because the stability margin is reduced 

nhen the voltage drops. Therefore, in Fig. 7.6, the generator is in a more 

stable situation at 1 s compared to its situation at 8 S. 

In order to make a cornparison between CPSS and NAPSS, the poram- 

eters of the CPSS âre carefdly tuned to give the best response for the o p  

erating conditions of this test. These parameters aïe given in Appendix D. 

The response of the system with the CPSS having these parameters is also 

given in Fig. 7.6. It is obvious fiom the figure that both NAPSS and CPSS 

are producing good results. 

To further test the performance of the NAPSS, the operating condition 



Figure 7.6: System response to a 0.10 pu step disturbance in voltage der -  
ence, P=0.9 pu and p f =O.83 lag. 



- -  - -- - 

is changed to 0.96 pu power, 0.96 pf lead and 1.0 pu terminal voltage. The 

same disturbance of 0.10 pu step change in input reference voltage is applied 

wïth the same timing. System responses to tbis disturbance having NAPSS, 

CPSS and no PSS are shown in Fig. 7.7. ,4lthough the stabiiity margin is 

reduced in the new operating condition, the NAPSS dl provides a good 

performance. 

7.7.2 Input Torqne Reference Step Change 

In this test, the generator is operating at 0.9 pu power, 0.85 pf lag and 1.1 

pu terminal voltage. A 0.23 pu step decrease in input torque reference is 

applied at I s and removed at 8 S. The s y s t e m  response is given in Fig. 7.8. 

For this new operating point and disturbance, the XAPSS still provides a 

qui& and wd-damped response- 

Another disturbance of 0.22 pu step decrease in input torque reference is 

applied to the system while the generator is operating in the leading power 

factor condition of 0.82 pu power, 0.96 p f lead and 1.0 pu terminal voltage. 

The response for this test is shom in Fig. 7.9. The figure clearly demon- 

strates the effectiveness of the NAPSS. The control sigais of both NAPSS 

and CPSS are given in Fig. 7.10. 

7.7.3 Three-Phase to Ground Fadt Test 

Even though the PSS is not specially designed for the purpose of improving 

stability under transient conditions, it does exert a positive influence during 

the recovery period after the disturbance. 

In order to evaluate the performance of the NAPSS under transient con- 
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Figure 7.7: System response to a 0.10 pu step disturbance in voltage refer- 
ence, P=0.96 pu a d  p f =U.96 lead. 
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Figure 7.8: System response to a 0.25 pu step disturbance in input torque 
reference, P=0.9 pu and p f =O.85 lag. 
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Figure 7.9: System response t o  a 0.22 pu step disturbance in input torque 
reference, P=0.82 pu and p f =O.% lead. 



Figure 7.10: ControI signals of NAPSS and CPSS to a 0.22 pu step dis- 
turbance in input torque reference, P=0.82 pu and p f =O.96 
lead. 



ditions, a tkee-phase to ground fa& test is conducted. The generator is 

operating at 0.9 pu power, 0.85 pf lag and 1.1 pu terminal voltage. At 1 st a 

three-phase to gronnd fadt  is applied at the middle of one tansmission Iine. 

The faulted h e  is isolated 100 ms Iater by relay action. An unsuccessful 

reclosure attempt is made 600 ms Iater, and the line is opened again 100 ms 

later due to a permanent fault. The second redosure is successfully appIied 

at 8 s by which the system retunis to its original condition. System response 

under above transient conditions is shown in Fig. 7.11. It is observed that 

in spite of a large disturbance in the system, the WAPSS manages to control 

the system properly and damp out the oscillations very ef5ectively. 

In asother test, the same disturbance is apphed with the new operating 

point of 0.9 pu power, 0.95 p f lead and 1.0 pu terminal voltage. The system 

response is shown in Fig. 7.12. It is dearly seen in Figs. 7.11 and 7.12 that 

the NAPSS produces much better results in response to short circuit. 

7.7.4 Stability Margin Test 

Power system stabilizers are primarily used to provide extra dâmping to 

generating units to damp out low fiequency osciuations, and thus increase 

the stability rnargin of the power system. With PSS in operation, a power 

system cm opeate in some ovedoad condition even if it is not stable without 

a PSS or with a poor PSS. The better the PSS, the more the stability margin 

is improved. The goal of this test is to observe the ability of NAPSS in 

enhancing stability rnxpin. 

The test starts with the geneating unit operating at a stable condition 

without âny PSS. The NAPSS is then switched on to the system. The load 



Figure 7.11: System response to a tkee-phase to &round fault, P=0.9 pu 
and p f =0.85 hg. 



Figure 7.12: Systen respome to a the-phase to ground fault, P=0.9 pu 
and p f =O.X lead. 
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is increased gradually to a 30% overload condÎtion, Le- 1-2 pu power, 0.9 

pf lag and 1.05 pu terminal voltage. Under this operating condition, the 

system is still stabIe as shown in Fig. 7-13. At 5 s, the NAPSS is replaced by 

CPSS. The system begins to osciuate without any external disturbance. This 

means that the CPSS is unable to maintain system stability for this operating 

conditions. At 18 s, the NAPSS is switched back by which the system is very 

quickly stabilized. The test proves that the NAPSS can provide a larger 

stability mugin than that of the CPSS. 

7.8 Summary 

Tmplementation of NAPSS in a labotatory environment and real-the test 

results on a physical model power systern are presented in this chapter. An 

experimentd physical power system was set up to model a simple power 

system. This system consists of a micro-alternator driven by a DC rnotor and 

a double circuit transmission line linking the micro-alternator to a constant 

voltage bus. The control strategy and digital control system setup are ais0 

discussed. 

A sequential implementation method is used to simulate the p d e i  

mechanism of a red multi-layer ne& network. The NAPSS is implemented 

in a real-time digital control environment which was developed ushg a DSP 

board and a PLC acting as an AVR. Using çystem parameters: the NAPSS 

is first trained using computer simulation. -4fter this stage, the weights of 

the neural networks are plugged into the r d  system for further training. 

The proposed NAPSS enjoys the adaptation property which is of great 

importance when operating conditions are chasged. The experimentai resdts 



Figure 7.13: Stability margin test. 



are compared to those of a digital CPSS. It is demonstrated that NAPSS 

outperforms the CPSS specidy for those operating points which axe far fiom 

the CPSS design point as well as for large disturbances. It is &O shown that 

using NAPSS, the stabiIity margin of the system is inaeased. 



Chapter 8 

Conclusions 

8.1 Summary 

As discussed in Chapter 1, power system stabilizers have been proven very ef- 

fective in enhancing st ability of power systems. Numerou theoretical studies 

and experimental tests have been conducted to better understand the behav- 

ior of the PSS and to make them more applicable in practice. DSerent mes 

of PSSs have been investigated, and their advantages and disadvantages have 

become more and more clear. Based on these studies criteria have been de- 

veloped to help the designer to choose the most suitable configuration for a 

particular application. 

The conventiond PSS has been s u c c e s ~ y  applied to the power industry 

in many cases. However, because of its inherent characteristics, it faces some 

serious problems. Fixed parameter and linear properties are the two most 

serious problems, since power systerns are non-linear tirne-varying stochastic 

systems. The stabilizer should be able to adapt itself to the varying system 

to produce better performaace. This has led to reseaxch on adaptive power 



system stabikers. 

This dissertation is devoted to the development of an adaptive power 

system stabilizer based on on-line trained n e d  networks. It has made 

systematic contributions to aU three stages of deveioping such a stabilizer 

namely theoretical development, simulation studies and experimentd tests. 

This dissertation begins with the classification and analysis of dïfferent 

types of neural networks. The suitability of ciifferrent types of N N s  for a p  

plication in power system stability control is investigated. The conclusion 

that the multi-layer neural network is the one that is most appropriate for 

application in power system stabity control has been reached. Details of 

the theory and structure of some of the well-known architectures of NN are 

discussed with the emphasis on the multi-Iayer neurd network and back- 

propagation learning algorithm. The advantages and disadvantages of using 

neural networks are presented. 

In the first stage, the NAPSS is designed using multi-layer neurd net- 

works. The back-propagation algonthm in on-line mode is used to give the 

powerful property of adaptation to the PSS. The training algorithm is sim- 

plified using a scalar error vector. Attempts have been made to make the 

structure of the NAPSS as simple as possible. Therefore, based on trial and 

error: two simple networks each having a total of 9 neurons have been ch+ 

sen, one acting as the identifier and the other acting as the controk. In 

order to further simplify the implementation of NAPSS in a real situation, 

the design procedure only uses the output of the generating unit and does 

not require measurement of the internai states of the plant. Moreover, there 

is no need for a reference mode1 or teacher signal in the system. The NAPSS 



is adapted bas& on the output performance of the systern. In other words, 

it is seIf-tuning and not model-based. Last but not the Ieast, the YAPSS 

considers the non-linear nature of the plant as opposed to the CPSS which 

is based on the linearized mode1 of the plant. 

B a d  on the proposed method, the NAPSS is designed and tested in the 

singIemachine infinitebus environment by cornputer simulation [SOI, [81]. 

The architecture and paxameters of the NAPSS are discussed. Steps of the 

on-line taining algorithm are &O explaineci. Simulation results show that 

the proposed XAPSS can provide good damping of the power system oscilla- 

tions over a wïde operating range, and sigdicantly and adaptively improve 

the system performance. 

Mdti-mode oscillations often occur in a multi-machine power system in 

which the interconnected generating u n i t s  have quite difEerent inertias and 

they are weakly connected by transmission lines. The effectiveness of the 

3AP SS to damp out mult i-mode oscillations in a multi-machine environment 

is verified in this dissertation. Test results show that each NAPSS c m  damp 

out the specific mode of oscillation introduced maidy by the generating unit 

on which it iç appIied. Severd NAPSSs working together c m  damp out both 

the local and the inter-area modes of osdlations. The tests also show that 

NAPSS can work coopeatively with other types of PSSs [103]. 

Neurd network applications have spread to many fields. M a y  th- 

retical investigations have been conducted on NN applications in control 

systems, but red-time applications are rare. The proposed on-he trained 

NAPSS is f k t  implemented in this dissertation. Using a micr*alternator, 

a PLC as AVR, and a DSP board, a real-time digital control environment 
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has been established to test the performance of the NAPSS on a physicd 

system in reai-the. A digital CPSS has also been implernented in order to 

make a cornparison between these two approaches. Experimentd tests have 

produced results consistent with simulation studies, proving that the NAPSS 

has a very gwd control performance in damping power system low frequency 

oscilIations [106]. 

8.2 Future Work 

Research on neural networks has advanced very fast in recent yeaxs, and so 

have neural network based control techniques- Based on the work of this 

dissertation, the foIlowing axe recommended a s  further research topics: 

Integrated adaptive control of the generating unit for both the excita- 

tion and the governor is an area worth Lookbg into. EIow to consider 

the interaction between these two signais, and how to use them to 

produce better results is an interesting topic. 

O Integration of the AVR and PSS control Ioops using neural networks 

is another topic which seems very prornising. The combined controller 

can get the terminal voltage dong with the power deviation as input 

and produce the field signal as output. 

O Laboratory implementation of the NAPSS was based on a sequential 

simulation method. Since this method uses a sequential rnethod to sim- 

date the parallel distributed nature of the neural networks, computing 

t h e  of this simulated NN was longer than that of a red NN chip. It 
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is mggesteci that the NAPSS be impiemented on a commercially avail- 

able NN chip. It will reduce the sampling t h e ,  and thus improve the 

performance of the WAPSS. 

As for the practicd appht ion,  there are still many aspects that need 

to be investigated More the NAPSS can be put into use. For instance, 

reliabili~ and ability to handle emergencies are the most important 

aspects to be considerd. 
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Appendix A 

Single-Machine Power System 

A. 1 Synchronous Generator Mode1 

The generating unit is modeled by seven first-order merential equations 
given below 

A.2 Governor 

The governor employed in the simulation study has the transfer function 



A.3 Power System Parameters 159 

A.3 Power System Parameters 

Power system parameters used in the simulation study are given below 

.AU of the resistances aad reactknces are in pu and the t h e  constants are in 

seconds. 
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A.4 Conventional PSS 

The CPSS used in the simulation study is Type PSSlA from IEEE Standard 

421.5 [102] with the fo11owing transfer fundion (no discontinuous excitation 

control is used) 

A.5 AVR and Exciter 

The AVR and exciter combination used in the s y s t e m  is from IEEE Standard 
421.5, Type ST1.4 [102] as shown in Fig. Al. 
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Appendix B 

MATLAB Function for 

Cont roller Training 

In order to train the controlIer, the error should be first back-propagated 

through the identifier to reach the controller. In this situation, one c m  

assume cascade of the controuer and identifier as one neural network in which 

the enor is &st badc-propagâted through the first block (identifier), assuming 

fixed weights, and then the back-propagated error is further badc-propagated 

through the second block (controller) updating its weights. 

The foUowing MATLAB function serves this purpose. The definition of 

the variables used is coming first. 

f 1-c = controller f irst layer neuroa function 

f2-c = controller second layer neuron function 

f l - i  = identifier fitst layer aeuron function 

f2-i = identifier second layer neuron function 
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ercn = control ler  e r r o r  

al-i = output of i den t i f i e r  f i rs t  l ayer  

a2-i = outpat of i den t i f i e r  second l a y e  (plant 's predicted 

output at next step) 

di- i  = delta-term of t h e  f i r s t  layes  of i den t i f i e r  

d2-i = delta-tenn of t h e  second layer  of i den t i f i e r  

w l - i  = i d e n t i f i e r  f irst layer ueights 

a2-i = i d e n t i f i e .  second layer weights 

dl-u = delta-term associated u i th  t h e  u(k) input line of iden t i f i e r  

n-del-ornega = total number of omega (speed) input l i n e s  f o r  

i d e n t i f i e r  (=3) 

ercn-eq = cont ro l l e r  equivalent e r r o r  (back-propagated through 

ident i f  ier) 

h = tuning parameter 

ai-c = output of control ler  f i r s t  l ayer  

a2-c = output o f  control ler  second layer  (control s ignal )  

dl-c = delta-term of t he  f i r s t  layer  of control ler  

d2-c = delta-term of t he  second layer  of control ler  

al-c = cont ro l l e r  f irst  layer weight matrix 

v2-c = cont ro l l e r  second layer weight matrix 

bl-c = cont ro l l e r  first layer bias vector  

b2,c = cont ro l l e r  second layer bias vector  

dwi-c = correct ion t o  control ler  first layer weight matrix 

du2-c = correct ion t o  control ler  second layer  weight matrix 

dbl-c = correct ion to control ler  first layer  bias vector  
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db2-c = correction to controller second l a y e  b i a s  vector 

inp-c = controller input vector 

Ir-c = controller learrring rate 

mc-c = controller momentun constant (=O) 

dfi-c = feval(fl,c, 'delta') ; 

df2-c = f eval (f 2,c, deltaJ ) ; 

df 1-i = f eval(f 1-i, JdeltaJ) ; 

df 2-i = f eval (f 2,i, 'delta' ) ; 

ercn = -a2,i; 

d2-i = f eval (df23, a2,i, ercn) ; 

dl-i = feval(dfi,i,al,i,d2-i,~2~i) ; 

dl-u = dl-i ~l,i(: , (n,del,omega+l) ) ; 

ercn-eq = dl-u + h.+a2,c; 
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Appendix C 

Mult i-Machine Power Syst em 

C .  1 Synchronous Generator Mode1 

The generating unit is modeled by five first order clifferentitial equations given 
below 

C .2 Governors Parameters 
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C.3 Parameters of the Generators 

C.4 Parameters of AVRs and Exciters 

Parameters of AVRs and simpEed STiA exciters Cl021 are 

The output of ail exciters is Iimited within -6.7 to 7.8 p. 
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C.5 Transmission Lines Parameters 

Bus No. 

1 - 7  

2 - 6  

3 - 6  

3 - 6  

4 - 8  

5 - 6 

6 - 7 
7 - 8  

C.6 Operathg Point #1 

Loads in admittance in pu 
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C.7 Operating Point #2 

Loads in admittance in pu 



Appendix D 

P hysical Mode1 Power System 

D .1 Micro- Alternator Parameters 

D.2 Transmission Line Parameters 

Each circuit of transmission line consists of six 50 km equident n-sections. 

Parameters of each section are 

D.3 Conventional PSS Parameters 

Ks =-9.6 Tl = 0-1 Tz = 0.08 

T3 = 0.1 T4 = 0.08 

.AU of the resistances and reactances are in pu and the t h e  constants are in 

seconds. 
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