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ABSTRACT 

A Static Var Compensator (SVC) controller used to control the output of the SVC to 

damp power system oscillations is developed in this dissertation. The proposed SVC 

controller is based on the discrete time filtered direct control theory by which a multi-layer 

neural network with the hyperbolic tangent activation function is derived. The Lyapunov 

stability technique and advanced weight tuning algorithm based on the modified delta rule 

and projection algorithm are used to design the neural network based controller to realize 

the objective of damping and to keep the stability of the entire closed loop system. 

Simulation studies with the proposed controller on a single machine infinite bus system 

show the damping effectiveness of the proposed controller. Results of the simulation 

studies show that the entire power system stability is greatly improved through the 

employment of the proposed SVC controller. 
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CHAPTER 1 

INTRODUCTION 

1.1 Power System Stability and Oscillations 

The electric power system is one of the most complex industrial systems in the 

world. It is usually comprised of hundreds of different generators, thousands of 

transmission lines at different voltage levels and millions of customers. As electricity is 

generated, transmitted and consumed simultaneously, the unique characteristic decides that 

the system dynamic stability is a very important factor for the security and reliability of a 

large scale power system. 

1.1.1 Bulk Electric Power System and SVC 

Modern electric power systems usually interconnect a large amount of power 

system components and cover vast geographical area. According to the definition of the 

bulk electric power system prescribed by the North American Electric System Reliability 

Council (NERC) in 1995, "The bulk electric system is a term commonly applied to that 

portion of an electric utility system, which encompasses the electrical generation resources, 

transmission lines, interconnections with neighboring systems and associated equipment, 

generally operated at voltages of 100 kV or higher. "[1]. 

The advantages of an interconnected power system are: 

• Improved stability of the entire system, because a larger system can reduce the 
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impact of losing a system component (components) and system faults. 

Shared spinning and unspimling generation capability reserve to reduce the total 

installation of generation capacity. 

With the rapid development of the power electronic technology in recent years, new 

equipment has been introduced in the power systems such as Flexible AC Transmission 

Systems (FACTS). FACTS including Static Var Compensator (SVC) or Static 

Compensation (STATCOM), Thyristor Controlled Series Compensator (TCSC), High 

Voltage Direct Current (HVDC) and Unified Power Flow Controller (UPFC) can provide 

more flexible and controllable transmission service than traditional AC transmission 

systems. 

Comparing the various FACTS technologies, SVCs have been widely employed in 

power systems to regulate the system voltage and improve the system stability. SVC has 

many advantages over traditional reactive power compensators. It is controlled by high 

voltage Gate Turn-off Thyristors (GTO) and Diodes based on the electronic power 

converter principles and can continuously adjust the output of the SVC to generate 

inductive or capacitive reactive power to the power system. Since the output of an SVC is 

dynamically adjustable, it has the potential to be used to damp power system oscillations 

similar to the function of a Power System Stabilizer (PSS) employed on generators. 

The common configurations of SVCs introduced in [2,3,4,5] include true pulse 

structures and multilevel cascading converter structures. The true pulse structure relies on 

zigzag transformers to shift the phase of the output of each group to create the sinusoidal 
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waveform in the output of the unit and eliminate the third harmonic pollution produced 

during the energy conversion. Fig 1.1[2] shows the typical true 48-pulse converter 

structure. 

Figure 1.1 Typical True 48-Pulse SVC [2] 



4 

Figure 1.2 Typical 7- Level Cascading Structure of SVC [2] 

The multilevel cascading converter structure is more popular these days, as it not 

only does not need the phase shift transformers but also saves space and investment. The 

typical seven-level structure is shown in Fig. 1.2 [2]. In practice, the firing angles of GTOs 

are adjusted dynamically to control the output of the SVC with leading current (capacitive 

mode) or lagging current (inductive mode) to realize reactive power compensation and 

voltage control. 
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In order to directly apply an SVC to a high voltage system bus such as a 500kV or 

240kV system bus, the common way is to connect the SVC through a step-up transformer. 

1.1.2 Power System Stability 

Power system stability [6,7,8] has always been an attractive research topic since the 

birth of modern electrical power systems. The stability of power systems is' generally 

defined as the ability of all synchronous generators of a system to move from one steady 

state to another steady state without loss of synchronism when the system is subjected to a 

disturbance (disturbances) or a contingency (contingencies). 

According to characteristics and the nature of disturbances in power systems, power 

system stability can be classified into two categories, steady state stability and dynamic 

stability [6,7,8]. 

• Steady State Stability - refers to a system operated around a relatively fixed 

operating point on which the system is only subjected to small and gradual changes. 

If the system is able to maintain synchronism after these changes in operating 

conditions, it is said that it has steady-state stability. 

• Dynamic Stability- refers to the system transient performance after a system is 

subjected to a disturbance (disturbances) or a fault (faults). Electric power system 

disturbance can cause electromechanical oscillations in generators. To analyze the 

transient stability, the swing equation of synchronous generators is commonly used. 

This equation is derived from the torque equation of generators in Eq (1.1). 
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d25.  

Tw. '= P, - D. -- S ' -  pli 
'dt2 dt 

where Tw1 is the "the impulse moment" of the rotor of the generator i, D, is the damping 

coefficient of the generator i, P1 and P,,, are the mechanical power and electrical power of 

the generator i ,respectively, and S. is the power angle of the generator i [9]. 

1.1.3 Oscillations in Power Systems 

Oscillations in power systems can be divided into two types, local oscillations and 

interarea oscillations. A local oscillation refers to a single generator oscillating against a 

large system. Its oscillation frequency is usually around 1-2 Hz. In contrast, the interarea 

oscillations refer to two areas oscillating against each other. The interarea oscillations are in 

the range of about 0.1 to 0.7 Hz. The larger system usually has a lower oscillation 

frequency compared with a smaller system. 

In order to make the system stable, the natural damping torque or the damping 

torque generated by damping controllers like PSSs must decay the magnitude of 

oscillations. If the magnitude cannot be reduced quickly enough, the generators would be 

disconnected or the system would collapse partially or even totally. 

1.2 Damping Control Strategies and Types of Power System Stabilizers 

After many years of research and development in the area of oscillation damping in 

power systems, many damping methodologies and control algorithms have been developed. 

Depending on the locations at which the controllers are installed, these methods may be 
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classified into two categories: damping in transmission paths and damping at generator 

locations. 

1.2.1 Damping at Generator Locations 

Utilizing the excitation of generators to directly damp the generator oscillations is 

the most common way to improve the power system transient stability. Currently, most of 

the new generating units in North America are equipped with PSSs to improve transient 

stability and provide effective damping. 

The PSS collaborates with the Automatic Voltage Regulator (AVR) to modulate the 

field excitation of the generator and provide a damping electrical torque on the generator 

rotor. The input to the generator PSS may use one of the below signals or a combination of 

them: 

• Deviation of angular speed 

• Deviation of system frequency 

• Deviation of electrical power 

• Rotor acceleration 

1.2.2 Damping in Transmission Paths 

Since FACTS elements in power systems are controlled by power electronic 

components, which are dynamically adjustable, FACTS equipment is also used for the 

system oscillation damping. 

HVDC and UPFC can directly control the power flow of the transmission paths, so 
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system oscillations cannot affect the output of these transmission paths. It means that 

system oscillations can be isolated in one system and will not transfer the system instability 

to another system connected through the HVDC or UPFC components. 

TCSC and SVC also have the ability to damp system oscillations described in 

[10,11,12,13,14,15]. TCSC usually connects into a transmission line to make the system 

connections tighter. The controller of a TCSC can adjust the power flow by changing the 

effective impedance of the transmission line and achieve the objective of damping. An SVC 

is more like the exciter of a generator. It can affect the system voltage through changing its 

reactive power output and then produce damping torque in generators. 

Although FACTS equipment can perform the damping function, its cost is the main 

obstacle for its wide application. However, as SVCs are already being used in power 

systems to compensate for the reactive power and provide voltage support, they have the 

potential to be used for oscillation damping, and work with generator PSSs to improve the 

overall power system stability. 

1.2.3 Types of Power System Stabilizers 

From the above analysis, it can be seen that the principle of SVC PSSs is almost the 

same as the control design for generator PSSs. So, the design methodologies and algorithms 

of generator PSSs can be directly used for the SVC controller design. According to the 

history of PSSs, the development of PSSs experienced three stages, conventional PSS, 

adaptive PSS and intelligent PSS. 

• Conventional Power System Stabilizer (CPSS) 
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CPSS described in [5] is the earliest PSS. It is based on the classical control theory 

to use a lead-lag compensation network to shift the phase of the output to damp the system 

oscillations. The transfer function of the commonly used CPSS is: 

ST,  ('+s1) ('+s7) 
G 5 (s) (l+s) (l+sT2) (l+sT4) 

(1.2) 

where K PSS is the gain of the PSS, T)is the washout time constant. 7 through T4 are the 

time constants used to adjust the phase shift of the output. By appropriately tuning these 

design parameters, it can produce a desired damping function for the system in a certain 

operating condition. 

However, the power system is highly nonlinear and uncertain, especially the power 

system parameters change as the system operating conditions change. The fixed parameter 

CPSS cannot track the variation of the system parameters, so it cannot provide fully 

effective damping function over a wide range of operating conditions. Hence, CPSSs are 

easy to design but the damping function is not flexible and effective enough. 

In order to solve these problems, extensive research has been carried out to develop 

new control theories and algorithms to design PSSs such as the adaptive control and 

intelligent control. 

• Adaptive Power System Stabilizer and Intelligent Power System 

Stabilizer 

Since 1970s, adaptive control has emerged as an effective control technique and 
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has greatly boosted the development of PSSs. The adaptive algorithm can update in real 

time the system parameters used in control computation. This can make the controller track 

system parameters on-line and tune the control output to provide more effective damping. 

Besides adaptive controllers, artificial intelligence based controllers, including fuzzy 

logic and neural network controllers [16,17,18,19], have been developed in recent years for 

the design of generator PSSs. These artificial intelligence based control theories can be 

more adaptive and robust for nonlinear uncertain systems than the adaptive control theory. 

Controllers based on these theories can universally approach most uncertain nonlinear 

system through self-learning of parameters. As an alternative to adaptive control, they also 

have better performance than the CPSS. 

The design of a fuzzy controller needs a knowledge base to do fuzzification of the 

system. The first step is to convert the crisp input signals to the corresponding fuzzy 

variables. The next step is to create rules for generating the desired fuzzy output according 

to the input signals and then do the defuzzification to get the desired non-fuzzy output. 

The difficulty of a fuzzy control design is to obtain a sufficient base knowledge of 

the controlled system to make the rules. In contrast, a neural network based control design 

learns the structure of the system through training procedure. Therefore, in this dissertation 

a neural network method is developed to design the proposed controller. 

1.3 SVC for Oscillation Damping 

Considerable effort has been devoted to the control design of SVCs to damp power 

system oscillations in recent years. Various control techniques and control logics 
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[10,11,12,13,14,15,18,20] were used to develop SVC controllers. Bulk electrical systems 

are highly nonlinear, system parameters are more uncertain than that of generators and most 

system variables cannot be measured locally [10,13,18,20,21]. These factors mean that the 

control design of SVCs is more challenging. 

So far, most SVCs that have already been put in service are only used for voltage 

control and reactive power compensation. From [10,18,20], SVCs with only voltage control 

mode do not improve the damping function and even in some certain conditions may have 

negative impact on system oscillations. Therefore, a supplementary control should be added 

on the voltage controller to allow the bus voltage to vary. The variation of the voltage 

should produce an accelerating or decelerating torque on the generator rotors. 

This additional control signal can be provided through a voltage loop control or can 

be added at the output of the voltage control loop. These signals control the firing angles of 

the GTOs of an SVC in a continuous or discontinuous manner. The discontinuous manner 

can use "bang-bang" control theory discussed in [10]. The damping results in [10] are not 

as good as the performance of continuous controllers. Especially, if the system oscillations 

at different frequencies are combined together, discontinuous control cannot provide robust 

and effective damping. 

Fuzzy and genetic algorithms were also studied in [18,20]. Variable gain fuzzy 

designs for SVC control have demonstrated improvement in the system damping. In fuzzy 

design, just like other fuzzy controllers, it is necessary to have a very good understanding 

of the controlled system. Based on the knowledge of the system, it is possible to fuzzify the 

input signals, make the rule table and defuzzify the output signals. However, the highly 
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nonlinear and uncertain parameters in power systems, especially at the middle bus on 

which the SVC is installed, make full understanding of the controlled system more difficult. 

It is seen from a review of the published literature that the simulation model used in 

verifying the performance of the controllers is a linearized generator model but not the 

more accurate and complex Park's seventh order model [7] shown in Appendix. Because 

power systems are highly nonlinear systems, they can only be linearized in a small domain 

around the current operating point. If the system shifts away from that domain, the 

linearized model cannot be valid. 

1.4 Artificial Neural Network Based PSS 

Neural network (NN) controllers have emerged as alternative to the adaptive control 

for decades. A neural network with sufficient number of hidden layer neurons has 

theoretical capability to represent most arbitrary mapping. Therefore, NNs can be used in 

many problems that are not easily handled by traditional analytic approaches. 

1.4.1 Neural Networks for Control 

Two classes of neural networks, which have received considerable attention in 

recent years, are 

• Multilayer feed-forward neural networks 

• Recurrent networks 

Multilayer feed-forward networks have proved extremely successful in pattern 

recognition problems while recurrent networks use the associated memory as well as the 



13 
solution of optimization problems [23]. From a system theoretic point of view, both 

networks can represent non-linear systems. 

There are many types of feed-forward neural networks (NN) introduced in the 

published literature like multilayer perceptron, radial basis function (RBF), cerebella model 

articulation controller (CMAC), etc. 

Control designs with multilayer neural network for both continuous and discrete time 

systems are treated in [2 1,22,24,25,26,27,28]. These designs use different networks and 

activation functions, and all of those algorithms got effective control effect. 

1.4.2 Neural Network Based PSS 

So far it is very rare that the neural network control theory is used in practice for the 

SVC controller design, but neural network based generator PSSs have been researched by 

many scholars [19,23,29,30] since 1990s. 

In [19], an adaptive indirect neural network control based PSS was designed. It 

used two neural networks in the controller. One network is used to work as an identifier to 

identify the system parameters. Another one is used to realize the system control. The 

identifier approaches the system parameters at each loop and sends them to the control 

network to correct the output and reduce the error between the desired output and the actual 

output. The simulation results show that the controller has better performance than CPSS. 

However this controller needs two neural networks that means more computational 

resource are needed to do the computation. 
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In [30], a Radial Basis Function (RBF) neural network was used to identify system 

control parametersKpss 27 and I. The transfer function, Eq(1.3 ), of the controller is the 

same as that of the CPSS. The inputs of the network are deviations of P real power, Q 

reactive power and V voltage. The input of the CPSS is the deviation of the generator 

angular speed Lw. This method is a simple approach for the real-time tuning of the 

conventional PSS. However, the control is still not a direct neural network control. In 

addition, in the literature, there is no mention of the performance of the RBF PSS in a 

major disturbance and no comparison between the CPSS and the RBF PSS is given. 

ST" (1+sT1)2  
Vpss (s) = K 5   

(1+sT) (1+sT2)2 
(1.3) 

A neural network to tune the fuzzy logic Power System Stabilizer (FPSS) is used in 

[23]. The neural network based on the variation of operating conditions of the power 

system tunes two scaling factors used on the outputs of the network and then introduces 

them into the FPSS. The neural network was trained off-line and the scaled network outputs 

are the FPSS inputs. The performance is also much better than the fixed CPSS. 

Comparing the results of the above literature, neural networks seem to have 

considerable advantages on the power system stability study. In this thesis, a hyperbolic 

tangent activation function is used to construct a multilayer neural network and the direct 

control theory is used to design a digital controller for an SVC to damp system oscillations. 

1.5 Dissertation Objectives 

The objective of this thesis is to present a systematic methodology for designing a 
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neural network based direct control algorithm. It is hoped that this research can make a 

contribution to the development of an SVC controller based on the neural network direct 

control theory. 

In order to develop the proposed SVC NN controller, the following topics are 

studied and discussed in the dissertation. 

• Investigate the theory and principle of neural networks, different network 

architectures and the learning algorithms. The determination of the appropriate 

type and structure for the network used for the proposed SVC controller should 

be made. 

Develop a framework for the design of an SVC controller based on a multilayer 

neural network. 

• Derive a discrete time direct control algorithm for the proposed SVC controller. 

The proposed neural network controller has self-learning ability and does not 

need a separate parameter identifier. On the other hand, it should have a stable 

performance for different operating conditions. All the parameters can be 

adaptively updated in real time. 

• The performance of the proposed NN controller is tested on a single machine 

infinite bus system. The results are also compared with that of the conventional 

design method. 
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1.6 Contributions of dissertation 

The main contributions of this dissertation are summarized below: 

• The proposed neural network structure uses a multilayer preceptron structure 

and the hyperbolic tangent function as the activation function of the network. 

The inputs of the proposed network employ the deviation of the generator 

angular speed and its delays. The modified Delta rule and projection algorithm 

are selected for the updating of the NN weights. 

• The filtered direct control theory is applied for the design of the SVC control. 

Comparing indirect control theories that usually need two neural networks to do 

identification and control, this theory only uses one network to realize both 

functions. Therefore, the computational complexity of the controller is greatly 

reduced. 

• The behavior of the proposed NN controller is simulated on a single machine 

infinite bus system with an SVC at the middle bus. The theoretical simulation 

results verify that the proposed NN controller has more effective damping 

function than the conventional PSS design. 

1.7 Thesis Organization 

In addition to the introductory chapter, this dissertation has four chapters as outlined 

below. 
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. An overview of the artificial neural networks is given in Chapter 2. Some 

fundamentals of different artificial neural networks are presented and compared. 

According to the comparison of the characteristics of different neural networks 

for the power system control design, the proposed discrete time NN is selected. 

• The nonlinear discrete time direct NN control theory is introduced in Chapter 3. 

The structure of the multilayer NN SVC controller is proposed and the stability 

proof of the proposed control algorithm is conducted based on the Lyapunov 

stability theories. 

• Computer sithulation results in Chapter 4 verify the effectiveness of the 

proposed controller on a single machine infinite bus system with an SVC at the 

middle bus. 

• Finally, conclusions and suggestions for future work are presented in Chapter 5. 
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CHAPTER 2 

ARTIFICIAL NEURAL NETWORKS 

2.1 Introduction 

Artificial Neural Networks (NNs) have seen an explosion of interest over the last 

two decades. They are being successfully applied across an extraordinary range of problem 

domains especially in the area of intelligent control. This sweeping success of neural 

networks for control can be attributed to a few key factors. 

• Powerful Modelling Ability: Neural networks are very sophisticated modeling 

techniques capable of modeling extremely complex functions. In particular, neural 

networks can approach most uncertain non-linear dynamic systems. For many years 

linear modeling has been the commonly used technique in most modeling domains 

since linear models have well-known optimization strategies. However, in some 

applications the linear approximation is not always valid. For instance power 

systems can be linearized effectively only in a very small domain around the current 

operating point. So using the linear theory to design controllers for power systems 

meets many problems such as having different performance in a wide range of 

operating conditions. Therefore, using neural networks is a very good choice to 

model non-linear power systems with large numbers of variables. 

• Ease of Implementation: Neural networks approach the nonlinear system by using 

a certain learning algorithm in an on-line or off-line environment. Although the user 

does need to have some knowledge of how to select an appropriate neural network 
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and how to select an effective and efficient learning algorithm, it is not necessary 

for users to actually reconstruct the plant structure in the NN. The network can learn 

its structure through the learning process. 

In this chapter, the structures of neurons and networks are reviewed. Several types 

of neural networks, learning algorithms and their applications are discussed. Based on the 

comparison of the structures and algorithms, the proposed neural network is chosen. 

2.2 Neuron Model 

Any complex neural network is built up of simple components - neurons. Typically, 

a neuron in a network has more than one input. A neuron with n inputs can be represented 

as a structure shown in Fig 2.1. 

Xi 

Xn 

Figure 2.1 Structure of Neuron with Multiple Inputs 
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In Fig 2. 1, W = [W W2 ••• W,Z]T is the scalar weight vector of the input 

vector x =1X1 x2 ••• x,,] T. A standard neuron has a bias b, which is usually neglected in 

practice. The node with is the adder, which sums all the products of each input and 

corresponding weight in Eq (2.1). 

A=Wx1+W2x2+••+W,x,,=WTx (2.1) 

, is the activation function of the neuron. The activation is a function used to 

transform the activation level of a neuron into an output signal. Typically, activation 

functions have a "saturating" effect. Usually the output of the activation function is 

normalized in a closed interval [0,1] or alternatively [-1,1]. 

Many types of activation functions are used in the literature. Only a few of these are 

used by default; the others are available for customization. The commonly used activation 

functions are given below: 

. Threshold Function 1: It refers to a step like simple function and but is non 

differentiable. Its rule is shown in Eq (2.2). 

- '0 otherwise 
(2.2) 

• Threshold Function 2: It also refers to a simple and non differentiable step like 

function Eq (2.3). The difference between the thresholds 1 and 2 is that the output of 

threshold 2 can be negative or positive. 
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Ii if x>O y =1 
- 1 otherwise 

(2.3) 

. Saturated Linear Function: It is also called piecewise linear and differentiable 

function shown in Eq. (2.4). 

1 if .x>1 

Y= x if —1≤x≤l 

—1 if x<-1 

• Sigmoid Function: It is positive and differentiable function shown in Eq. (2.5). 

(2.4) 

(2.5) 

• Gaussian Function: It is a differentiable function shown in Eq. (2.6). a is the 

variance of the function. 

y = e'° (2.6) 

• Triangular Function: It is a differentiable function shown in Eq (2.7). a, b and c 

are the design parameters. 

1 
x—a 

b—a 
y=< C-X 

c—b 
1 if 

0 otherwise 

if a = 

if a≤x≤b 

if b≤x≤c (2.7) 

C = co 
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Hyperbolic Tangent Function: It is a differentiable function shown in Eq. (2.8) 

and its characteristic is given in Fig (2.2). 

ex e' 

e +e 
x -x 

.1 

0-5 

I . . .1 . . I I I 

—15 —4 

—i 

4 15 

Figure 2.2 Hyperbolic Tangent Function 

(2.8) 

Among the above activation functions, sigmoid, hyperbolic tangent and gaussian 

are used more commonly in the multilayer structures. Triangular and rectangular functions 

were originally used in the fuzzy logic algorithm and have the advantage of computational 

efficiency. In recent years, these two functions are also used to construct CMAC 

networks. In order to approach high nonlinear systems, CMAC networks usually have to 

use tens to a hundred layers. 

By comparing the characteristics of the activation functions, the hyperbolic tangent 

function is more typical and common. Therefore, it is chosen for the proposed network. 
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After putting all the components of a neuron together, Eq. (2.9) can be used to represent the 

whole neuron. 

y=ço(WTx) (2.9) 

2.3 Architecture of Neural Networks 

Neurons can be constructed as a layer or a network. Using different network 

structures and activation functions yields different network behaviour. According to [22, 

24,25,27,28,31,32,33], neural networks can be divided into several categories. 

xi 

X2 

Figure 2.3 Layer with s Neurons 

Yi 

Y2 

YS 
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2.3.1 Single Layer Structure 

A single layer structure that has s neurons, n inputs and s outputs is shown in Fig. 

2.3. Each of the inputs is connected to each of the neurons; hence, the weight matrix is an n 

by s matrix. The dimensions of the input vector x and the output vector y are n by 1 and s 

by 1, respectively. Therefore, the whole layer can be denoted the same as Eq (2.9), only 

change the variables y, x and W to vectors and matrix, respectively. 

However, a single layer perceptron structure, no matter how many neurons it has or 

what the kind of activation function is chosen, can only model a linear function. It cannot 

fully approach a complex nonlinear system. The common way of approaching a nonlinear 

system is to use a multilayer structure. 

2.3.2 Multilayer Perceptron 

A multilayer perceptron neural network [21,33] is constructed through putting several 

single layers together and making the outputs of one layer to be the inputs of another layer. 

This structure actually is a first-order basis function. The net value is a linear combination 

of the inputs. Theoretically, this structure belongs to static structure because it only uses the 

present inputs to decide the current outputs. 

However, in the discrete time control design extra delayed signals can be added to 

cooperate with the current inputs to reinforce the memory of the past of the network. This 

method is easy to implement and efficient. Fig. 2.4 is a typical three-layer NN structure. 
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Input 
Layer 

First 
Layer 

 -'.- -Y-

Second 
Layer 

yn 

Third 
Layer 

Figure 2.4 Typical Three Layer Neural Network 

2.3.3 Other Neural Network Structures 

Besides the typical multilayer structure, many other neural network structures are 

also used in the control design. A brief introduction and comparison of these structures is 

given in the section. 

2.3.3.1 Radial Basis Function 

Radial-basis function (RBF) is a hypersphere-type function. This architecture 

involves a second-order (nonlinear) basis function. The net value represents the distance to 



26 

a reference pattern. An RBF NN [30,33] is equivalent to a multilayer feed forward network. 

It has an input layer, one hidden layer and one output linear layer. In the hidden layer, each 

node calculates the activation function J (x). In traditional RBF networks, I (x) is usually 

the Gaussian function given in Eq. (2.10), 

(x) = e _h1X_uh12/02 

where ct is the centre of the function. The entire network is described in Eq (2.12). 

(2.10) 

(2.11) 

The structure of RBF networks is simple and clear. For complex systems, the 

number of hidden layer nodes can be increased to reflect the increased complexity. But the 

modified Gaussian function involves more mathematical calculations than other activation 

functions. Therefore, RBF NN needs more resource to do the computation than the 

multilayer preceptron structure. 

2.3.3.2 Cerebella Model Articulation Controller (CMAC) 

CMAC network is a perceptron like associative memory that performs nonlinear 

function mapping over a region of the function space [17,35,44]. It usually uses triangular 

or rectangular functions as the activation function. CMAC has the advantage of learning 

fast and the ability to construct a large network. 

A multi—input multi-output CMAC with output y (x): R" -> R" is a nonlinear 

mapping defined as Eq (2.12). 
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Nm N1 

y1 (x) = • • W (f1 ... f) I J1 ...f (x) 
j11, =1 Ji =1 

where i = 1,2, •, n and N = 1,2, n. 

(2.12) 

CMAC has the advantage in the computational efficiency and it usually needs tens 

to a hundred layers to approach a nonlinear system. The structure means that the network 

has thousands to hundreds of thousands weights. Therefore, the hardware of the controller 

requires extensive storage space. 

2.3.3.3 Recurrent Architecture 

Recurrent neural network (RNN) [8] does not only utilize the input signals but also 

uses the outputs of the network itself. The configuration of a recurrent network is shown in 

Fig. 2.5. The advantage of the recurrent configuration is that the network has memory 

provided by the past inputs. Therefore, it is more dynamic than the feed forward structure. 

However, if a recurrent neural network has too many hidden nodes and does too 

much iteration on a data set, the network might start to memorize the input data. Therefore, 

the network might have 'learned' the data set, but will have poor results when it is presented 

with a totally new data set to evaluate. 

Another drawback of RNNs is that RNN is more difficult to train than a NN with a 

multilayer perceptron structure. As the outputs have impacts on the system computation, 

the training algorithm could become unstable; the error between the target and the output of 

the RNN may not be monotonically decreasing; the gradient computation is more 
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complicated; there may be long-range dependencies and the convergence times may be 

long. 

Xi 

X2 

Xn.l 

Xn 

Figure 2.5 Recurrent Architecture 

2.4 Learning Algorithms 

yi 

 No-

 ' Yn-1 

Yn 

According to the different structures of networks, an appropriate learning algorithm 

should be selected to improve the learning rate and keep the convergence of the system 

[45,46,47]. All learning methods can be classified as 

Supervised Learning: It refers to a process that incorporates an external teacher 

and/or global information. Examples of supervised learning algorithms are error 
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correction learning (Delta Rule), reinforcement learning, stochastic learning and 

internal control. Its structure is shown in Fig (2.6). 

Plant 

States 

Teacher 

  Learning 
System 

Desired Output 

/ 
Figure 2.6 Supervised Learning 

Actual Output 

• Unsupervised Learning. It, also referred as self-organization, is a process that 

incorporates no external teacher and relies upon only local information and 

internal control. 

There are a variety of learning laws and algorithms that are in common use to 

update the connection weights. Most of these algorithms are originated from the well-

known and oldest learning law, Hebbian Rule. 

2.4.1 Hebbian Learning Rule 
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Hebbian learning algorithm [36] is the first and the best known learning rule 

introduced by Donald Hebb. This basic rule is: If a neuron receives an input from another 

neuron, and if both are highly active (mathematically have the same sign), the weight 

between the neurons should be strengthened. Hebbian learning adjusts the network's 

weights such that its output reflects its familiarity with an input. On average the more 

probable an input, the larger the output will become. Unfortunately, plain Hebbian learning 

law continually strengthens its weights without bound unless the input data is properly 

normalized. There are only a few applications for the plain Hebbian learning. However, 

almost every unsupervised and competitive learning procedure can be considered Hebbian 

in nature. 

Mathematical description of the Hebbian learning algorithm is given in Eqs (2.13) 

and (2.14). 

LW(k) = ay(k)x1(k) (2.13) 

W(k+1) = W,(k)+zW(k) (2.14) 

where x1 and yj are the outputs of the neuron i and j, respectively, and a is the learning 

rate with a positive value between 0 to 1. 

2.4.2 Delta Rule 

The Delta rule [37,38] is a further variation of the Hebb's Rule, and it is one of the 

most commonly used algorithms for the weight updating of NNs. This rule is based on the 

idea of continuously modifying the strengths of the input connections to reduce the 
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difference (the delta) between the desired output value and the actual output of a neuron 

[37]. 

Delta rule changes the connection weights in a way that minimizes the mean 

squared error of the network. The error is back propagated into previous layers one layer at 

a time. The process of back-propagating the network errors continues until the first layer is 

reached. The network type called feed-forward, back-propagation derives its name from 

this method of computing the error term. This rule is also referred to as the Widrow-Hoff 

Learning Rule and the Least Mean Square (LMS) Learning rule. 

The error between the desired output and the actual output is the Delta in Eq (2.15), 

where des(k) is the desired signal at time k and y(k) is the actual output at instant time k. 

e(k) = des(k)—y(k) (2.15) 

The Lyapunov function (energy function) can be defined as: 

lV 2 E(k)=—e, (k) (2.16) 

The update function of the weight W,, can use the geometrical method to get Eq 

(2.17), where a is the learning rate with a value between 0 and 1 and x(k) is the input of 

the neuron. 

W,, (k + 1) = W, J (k) + ae, (k)x (k) (2.17) 
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2.5 Back Propagation Algorithm 

The back propagation algorithm [8,36,38,39,40,41] is a powerful and widely known 

algorithm for training multilayer neural networks to associate patterns. It is used for the 

learning of multilayer neural networks, which have one input layer, one output layer and at 

least one hidden layer. This algorithm is effective for the system approximation by 

reducing the energy function E(k), Eq (2.18), of the output corresponding to the desired 

plant output. 

(2.18) 

where 5' and y are the output of NN and the plant, respectively. 

The weight update function consists of three equations shown in Eq (2.19) through 

(2.21). Then substitute them back to Eq (2.14) to get the new weights. 

LW 1(k) = cco5', (2.19) 

= 5'(1 - S)(y - 5") Output layer (2.20) 

= Hidden layer (2.21) 

2.6 Selection of Neural Network for SVC Controller 

Comparing the above networks and learning algorithms, the multilayer preceptron 

structure with hyperbolic tangent function as the activation function is selected for the 

proposed NN and the modified Delta rule is used to update the weights of the NN. 
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Several different size neural networks were selected to do the comparison of the 

effectiveness and computational cost in the simulation system. At the beginning, a very 

large size network with four layers was chosen and put into the proposed controller in the 

simulation system to make it work. Then the number of layers and the number of neurons 

in each layer were gradually reduced and tested until the system performance cannot be 

sustained or deteriorated obviously. According to the comparison of the results, the size of 

the network with the acceptable performance and the relative small cost can be selected. 

The proposed NN shown in Fig. 2.7 has three layers and an input layer. There are 

10 neurons in the first and second layers. The hyperbolic tangent function was chosen as 

the activation functions for both the first layer and the second layer choose. In the third 

layer, the output layer, the activation function is selected as a linear function. W 1, W and 

W3 are weight matrix and vector corresponding to the hidden layers and the output layer, 

respectively. W1 is a 3 by 10 matrix, W2 is a 10 by 10 matrix and W3 is a 10 by 1 

vector. 

For given input (=- R , the proposed three-layer NN has a net output with 

mathematical relationship in Eq (2.22), 

'  y w3T J?(w (wiT Input)) 

where (.) is the hyperbolic tangent function. 

(2.22) 
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2.7 Summary 
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Figure 2.7 Architecture of the Proposed Neural Network 

In this chapter, some structures and algorithms of neural networks are introduced to 

do selection and comparison. The fundamental element of a neural network is a neuron, 

which includes a set of weights, an adder and an activation function. Through the 

discussion of different functions, the hyperbolic tangent function is a typical and wide used 

activation function, which is also selected for the proposed NN. 

Multilayer structure should be used for the proposed NN as a single layer NN is not 

sufficient to approach the complexity of nonlinear systems. Different feed-forward 

architectures and recurrent architecture are also introduced in the chapter. After comparing 

the characteristics of different network structures, the multilayer preceptron structure that is 

easy to construct and sample in computation is selected for the proposed NN. 
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The Delta rule is the most commonly used algorithm for the training of neural 

networks and back-propagation algorithm is employed for the updating of the weights of a 

multilayer NN. In this dissertation, these algorithms are also the fundamental algorithms for 

the, proposed NN. Based on a comparison of the network performance the size of the 

proposed NN is optimized and determined. 
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CHAPTER 3 

NEURAL NETWORK BASED CONTROL DESIGN 

3.1 Introduction 

Power systems are highly nonlinear, large scale, dynamic, continuous and time 

variant parameter systems. The nonlinearity and uncertainty of the power system makes it 

difficult to control. In the earlier phase of the research on PSSs, the power system was 

treated as a linearized system and linear control theories were used to design power system 

stabilizers. Because of the uncertainty and nonlinearity of power systems, linear solutions 

cannot fully satisfy the system requirements. 

Many control efforts have been devoted to the development of PSS with nonlinear 

control theories such as: adaptive control [10], fuzzy logic control [16,18,20] and neural 

network based control [8,19,30]. From the discussion in Chapter 2, neural networks have 

the potential to approach most nonlinear and uncertain systems. Therefore, neural network 

technique has the advantages to be used in PSS design. 

Comparing applications of neural networks in PSSs, using neural networks to realize 

SVC controls is rare in the published literature. In generator PSS design, various neural 

networks and control algorithms are used. The indirect control method, that includes two 

networks, one as a system identifier and another as a neuro-controller, is used in [8] and 

[19]. A neural network to identify system parameters and then self-tune a conventional PSS 
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is described in [30]. These PSS controls can be designed on both the discrete time model 

and continuous time model. 

In this chapter, several neural network based control methods are introduced. A 

comparison of these methods is conducted. Finally, the proposed control design method, 

the multilayer discrete time neural network based controller, is presented and proved. It 

only has one network and uses the direct control theory. 

3.2 Plant Model 

Modelling the objective system is a very important step to design an effective and 

stable control algorithm. According to the different characteristics of the objective system, 

the plant model can be classified as two categories, continuous time model or discrete time 

model. 

3.2.1 Continuous System Model 

An nth order nonlinear dynamic system [32] can be described in the following form, 

Eq (3. 1), or equivalent form, Eq (3.2). 

±1 - X2 

= X3 

(3.1) 
= f (x) + g(x)u + dis 

y = x1 
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x = f(x, . + g(x, '- --x (n-1 • x' )u + dis 

y=x 
(3.2) 

where f and g are unknown but bounded functions, u E R and y € R are the control input 

and output of the system, respectively, and dis is an external bounded disturbance. 

By converting the system to the state space form, the above system can be written as: 

where 

A= 

= Ax + B(f(x) + g(x)u + dis) 

Y = CTx 

0 1 0 0 0 1 

0 0 1 0 

000 1 

0 0 0 0-

) B= 

0 

0 

1 

,c= 
0 

0 

0 

and x = [x,, .,x(?3_1)]T = [x1,x2,. •,x,,f' € R"is a vector of states. 

3.2.2 Discrete Time System Model 

Corresponding to the continuous system the mnth-order discrete time nonlinear 

system [22,26] can be represented as Eq (3.4). 

x1(k+1) = x2(k) 

x2(k+1)=x3(k) 

x,, (k +1) = f(x(k)) + g(x(k))u(k) + dis(k) 

(3.3) 

(3.4) 
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where x(k) = [x1 (k), x2 (k),. •, x,, (k)]T with x1 (k) E R" : i = l,2,••, n , u(k) E R" and 

dis(k) E R" denotes a disturbance vector acting on the system at time k In addition, 

f : R" —> R" and 9: RI1IIIXI?J R">" are unknown smooth functions. Two assumptions are 

chosen asjj dis(k) II≤ disM and ≤II g(x(k)) II≤ umax V x. 

3.3 Control Applications 

Many control theories have been developed in recent years. From the published 

literature, the following control theories may be used to design the neural network based 

PSSs and SVC controllers. 

3.3.1 Model Reference Adaptive Inverse Control 

Command 
input 

10 , NN Controller 

Adaptive 
Algorithm 

Plant 

NN 
Plant Model 

NN Inverse 
Plant Model 

Tracking Error 

Reference 
Model 

Output 

lop 

Figure 3.1 Structure of the Adaptive Inverse Control System 
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The adaptive inverse control Fig 3.1 is proposed in [21,42]. The adaptive algorithm 

receives the error between the plant output and the reference model output. The controller 

parameters are updated to minimize the tracking error. The basic model reference adaptive 

control approach may be affected by the noise generated by the sensor. In order to cancel 

the noise, another NN plant model can be added as an alternative. 

3.3.2 Model Reference Adaptive Control 

Reference 
Model 

NN Controller 

NN Identifier 

Indices.,-

U 
Plant 

Output 

Figure 3.2 Architecture of the Model Reference Controller 

The model reference control architecture [8,21,43] shown in Fig. 3.2 has been 

widely used in the system control design. As the inverse control technique, this algorithm 

uses two sets of networks: a controller network and a model network. Many on-line or off-
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line algorithms can be employed to train the model network. In each iteration, the identifier 

will transmit the identified system parameter indices to the NN controller. The controller 

will adaptively force the plant output to track the output of the reference model. 

3.3.3 Model Predictive Control 

The structure of the Model Predictive Control [8,44] is shown in Fig. 3.3. The 

algorithm optimizes the plant response over a specified time horizon. This architecture 

requires a neural network plant model, a neural network controller with a performance 

function to evaluate system response and an optimization procedure to select the best 

control input. 

Reference 
Model 

Yr 
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Optimization 

NN Controller 

NN Identifier 
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Plant 

Yd 

Figure 3.3 Model Predictive Control 
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The control performance function is a quadratic criterion, J, subject to the 

constraints of the plant. 

N, N, 

[Yr(1 +f)Ym(1<±J)12 +E2 [u(k+j - l) - u(k+j - 2)J2 (3.5) 
j=N1 j=I 

where the constants N1 and N2 define the horizons over which the tracking error and 

control increments are considered. The advantage of the algorithm is that it does not need a 

training period. 

3.3.4 Neural Network Based Indirect Control Design 

This indirect control theory [8,19] also needs two networks but without the, 

reference model. The first network functions as a neural identifier, which will track the 

dynamic activity of the non-linear plant and will be a channel for the back propagation to 

train the controller network. The second one acts as a neural controller to provide proper 

control signals to the plant. The controller structure is similar to the model reference 

controller. The structure of indirect control is shown in Fig. 3.4. 

The cost function of the neuro-identifier is Eq (3.6) and the updating function of its 

weights is Eq (3.7). 

J(k) = -{$'(k) - (3.6) 

W(k + 1) = W(k) - aVJ(k) (3.7) 
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where W(k) is the weight of the identifier at time k, cc is the positive learning rate and 

VJ(k) is the instantaneous gradient of J . For the neuro-controller, the performance index 

is Eq (3.8). Its weight-updating algorithm is the same as Eq (3.7). 

J(k) = - R]2 

Conttp11 er 

U 

Indices 

PLANT 

(3.8) 

y 

Identifier 

Figure 3.4 Neural Network Indirect Control 

+ 

R 

3.4 Proposed Multilayer Neural Network Based Direct Control Design 

Comparing the control approaches discussed above, all these approaches need two 

neural networks as the system identifier and the controller. Two networks mean the 

controller needs more computational resources. In recent years the neural network based 
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direct control theory has emerged as an effective and efficient control design algorithm that 

only needs one neural network for both parameter identification and control. Since it only 

uses one network, the computation burden of the entire controller is greatly reduced. 

Therefore, the direct control theory described in [22,26,32] is selected to design the 

proposed SYC controller. Besides, the projection algorithm is used to improve the network 

learning speed compared to the above control theories that use the fixed learning rate. The 

passivity system design guarantees the entire closed loop system stability. 

3.4.1 Tracking Problem 

A given nonlinear system model described in Eq (3.4) may be changed to a tracking 

problem. This tracking problem can be described as: for a given desired trajectory in terms 

of X,,des (k) and its delayed values, a control input u(k) can be found so that the system 

tracks the desired bounded error in the presence of disturbances while all states and controls 

remain bounded [22]. The following assumptions are employed to keep the system valid. 

• g1 ≤I g(x(k)) II≤ g gmax > 0. 

• The desired trajectory and its delayed values are measurable and bounded. 

For each desired trajectory X,,dcs (k) and its delays, the tracking error e(k) is 

denoted as: 

e(k) = x(k) — Xndes (1c) (3.7) 

and the filtered tracking error r(k) with n-i delays is given as 
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r(k)=e (k)+21e(k—l)+..•+2,,_1e(k—n+l) (3.8) 

where e(k —1), •, e(k - n + 1) are delayed values of the error e(k), and ,• •, A1 are 

constant matrices selected so as z_1 + Al Z n-2 + + 2,,_ is stable. Using the same way of 

Eq (3.8), the filtered tracking error at time k+1 can be written as: 

r(k+1)=e(k+l)+21e(k)+...+2, 1e(k—n+2) 

= x,, (k + 1) - X,,des (k + 1) + ..Z1e(k) + + 2,1_1e(k - n + 2) (3.9) 

So far, the entire system control problem is changed to a tracking problem. 

Recalling the nonlinear system described in Eq (3.4), the tracking problem, Eq (3.9), can be 

changed to: 

r(k + 1) = f(x(k)) + g(x(k))u(k) + dis (k) 

—x,,dCS (k+1)+A1e(k)+•..+2,,_le(k—n+2) 

3.4.2 System Dynamics 

(3.10) 

The above tracking problem, Eq(3.10), can be further modified to the following 

form, Eq (3.11), by dividing by g(x(lc)) on the both sides and lumping all the mismatched 

parts with the system disturbance term, dis(k). 

g' (x(k))r(k + 1) = g 1 (x(k))f(x(k)) - g' (x(k))x fld (k + 1) + 

A1e(k)++ 2,,1e(k — n+ 2)+u(k)+dis(k) (3.11) 
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So the ideal control u(k) for the given tracking system can be derived by cancelling 

all the terms except the disturbance part on the right hand side of Eq(3.l 1): 

u(k) = —g' (x(k))f(x(k)) + g' (x(k))x,,dCS (k + 1) + kr(k) 

—21e(k)-22e(k-1)—...—)t,,_1e(k—n+2) (3.12) 

where k, is the m by m diagonal gain vector and the term of k,r(k) is employed to 

compensate for the system disturbance and make the entire closed loop system stable. 

Since f(x(k)) and g(x(k)) are unknown, a multilayer neural network is introduced 

to approach the nonlinearly uncertain part in Eq (3.12). The relationship of them can be 

described as: 

= g' (x(k))f(x(k)) + s(k) (3.13) 

T 
where i(x(k)) is the actual output of the NN and s(k) is the error between the output 

of the neural network and the actual value of the original system. The actual control u(k) of 

the closed loop system after employing the neural network can be changed to: 

u(k) = —Tf T (x(k)) + g 1 (x(k))x,,dCS (k +1) + kr(k) 

—21e(k) —22e(k —1)— ...—..Z,,_1e(k —n + 2) (3.14) 

Substituting Eq (3.14) back to the tracking system, Eq (3. 11), the closed-loop 

tracking error system can be expressed as 

g'(x(k))r(k+l) = k3,r(k)+s(k)+dis(k) (3.15) 
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Tthe closed-loop tracking error system Eq (3.15) is a state strict passive system if the 

following condition is satisfied. 

kTk <I/g2max (3.16) 

where k.1, is the in by in diagonal gain vector. 

Proof: 

The Lyapunov candidate function is chosen as: 

V = (g'(x)r(k))T(g(x)r(k)) 

The first difference of the candidate function is 

V = r" (k)k,Tkvr(k) + 2r  (k)k, (e(k) + dis(k)) + (8(k) + dis(k))T (e(k) + dis(k)) 

T -i 7' -1 —r (k)g (x)g (x)r(k) 

= —rT (k)[1 /(gT (x)g(x)) - Jr(k) + 2r  (k)k, (s(k) + dis(k)) 

+ (s(k) + dis(k))T (s(k) + dis(k)) 

(3.17) 

(3.18) 

(3.19) 

The term, e(k) + dis(k), is bounded by 6.. + dSmax. Hence, the system is a state 

strict passive system if the condition in Eq. 3.16 is satisfied. 

3.4.3 Selection of the Input for the Proposed NN 

The structure of the proposed NN has been selected in Chapter 2. It is a multilayer 

preceptron structure with one input layer, two hidden layers and one output layer. For the 

first and the second hidden layers, the hyperbolic tangent function is selected as the basis 

function. The output layer is a linear layer to adjust the magnitude of the output. The input 
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of the proposed NN can simply select the same delay order as that used in the control error 

filter. By using the delays of the system output to reinforce the relationship between the 

present and the past status, neither u(k) nor its delays are needed by the proposed NN. 

After selecting the input of the proposed NN, the structure of the entire closed-loop 

system with the neural network is shown in Fig 3.5. Note that the desired trajectory is a 

zero vector for the system oscillation damping. The output 1 of the error delay block added 

to e(k) equals r(k), the filtered error used to adjust the weights of the NN. Also, 

multiplying r(k) with the gain kv and adding at the output 2 of the NN (Eq 3.14) makes the 

closed system stable. The remaining part of Eq. 3.14, output 2 of the error delay block, is 

also added at the summing junction as shown in Fig. 3.5. 

3.4.4 Weight Update Functions 

The NN weight-tuning algorithm used in the proposed controller is developed from 

the Delta learning rule and the back propagation. The filtered error is back propagated to 

each layer by updating its weights. 

Based on the extension to Lyapunov theory for dynamic systems, theorem 3.3 in 

[26] is given as: For a given three layer NN, if the desired trajectory Xl,des (k), the NN• 

functional reconstruction error (k) and the disturbance dis(k) are bounded, the weight 

updating function for each layer can be denoted as: 

P(k+l) (3.20) 
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T (1) + 1) = !f2(k) - a2 c1) 2 (k) [Jfr2 (k)T &2 W  + /32k1,r(k)]T (3.21) 

'(k+l) =W(k)+a3cI?3(k)r(k+1) (3.22) 

where , Jk2 and Ŵ3 are the weights of the first layer, second layer and the third layer, 

respectively. dD, is the input vector of the network. dD 2 and 1)3 are the vectors of the basis 

functions of the second and third layer, respectively, a, i=1,2,3 is the positive constant 

learning rate for each layer in the algorithm. In addition, II ,8. II≤ Icy, i=1,2. 

According to [26], the following conditions are needed to make the system 

converge: 

• a, 2imax <2 for i=1,2 

• a3 23max <1 for layer 3 

(3.23) 

(3.24) 

Lemma 3.1 [26]: if A(k) __I_c4?(x(k))T(x(k)) in the system described in Eq 

(3.15), where 0 <a <2 and 1)(x(k)) is a vector of basis functions, then II fl['A(k) 11<1 is 

guaranteed. If there is an L >0 such that lc1)(x(Jc))T11)(x(k)) > 0 for all k, then the 

system is exponential stable. 

From the conclusion of Lemma 3.1 in [26], the algorithm requires a persistent 

excitation (PE) for the network to keep the system stable. This PE condition sometime is 

not easy to derive in dynamic systems. Another problem affecting the learning rate of the 

NN is the fixed learning rate a, and this problem is the major drawback of the Delta rule. 
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3.4.5 Projection Algorithm 

To make the learning rate a, variable is the main objective of this section. The 

projection algorithm introduced in [26] provides a way to improve the learning rate of the 

whole system. It modifies the fixed learning rate to a variable rate to satisfy the stability 

conditions listed in Eq (3.23) and Eq (3.24). The variable learning rate is: 

ai = 2 i=1,2,3 (3.25) 
ç1 + JJdD i (k)II 

where ç, is a positive small number to reduce the numerical difficulty when the norm of 

(k) is close to zero and 4 is the new adaptation gain of each layer. It is easy to prove 

that this modification can satisfy the stability conditions required in Eq (3.23) through Eq 

(3.24) if the following conditions are selected. 

• 0 < <2 i=1,2 (3.26) 

• 0 <, <1 i=3 (3.27) 

3.4.6 Modification of the Weight Tuning Functions 

A modification of the weight-updating algorithm described in section 3.4.4 is 

introduced in this section. The following two tuning algorithms overcome the need for 

persistent excitation in the case of a multilayer NN. This theorem also relies on the 

extension of the Lyapunov theory for dynamic systems given in [26]. 

The weight updating equations (3.20)-(3.22) are modified as shown as follows. 
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Wi(k+l)=(k)_aii (k)[p(k)Tc! i(k)+Bikr(k)]T 

—F I—a1&1(k)&Ti(k) Jf1 (k) 

W (k + 1) = W2 (k) - a2'2 (k)[W2(k) " &2 (k) + B2k,r(k)]T 

—F I—a2&2(k)&T2(k) 11 J'f'(k) 

—F II I—a33 (k) T3(k) 11 W(k) 

(3.28) 

(3.29) 

(3.30) 

where F is a positive design parameter with the value less than one. The last term of 

equations (3.28)-(3.30) is designed to relax the dependence on the PE condition required by 

the pure Delta rule [26]. 

Corresponding to stability conditions described in Eqs. (3.23)-(3.24), the filtered 

tracking error r(k) and the NN weights of all the layers in the modified updating algorithm 

are globally stable if the following conditions are satisfied. 

• a 1 2imax <2 for i=1,2 (3.31) 

• a3 t3max <1 for layer 3 (3.32) 

• 0<F<1 (3.33) 

• Kv max < lI7?( (334) 

where 

2 

8= f63 +flkv2 

with 

(3.35) 
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=a,T2imax + [(1 —a1 2imax)—FII I_ a1&1(k)&Ti(k) 1112 
2— a Ijmax 

,83 = 1 + a3 g2 max (1) 2 3max + g2max 

for 1=1,2 (3.36) 

[a3c123max + F II I - a3ct 3 (k)i T3 (k) 1112 for i=3 (3.37) 

1—a3 23max 

The effect of the adaptation of the learning rates on the weights estimation error and 

the tracking error can be observed through Lyapunov stability analysis. Larger values of 

learning rates in the first and second layers force smaller weight estimation errors whereas 

the tracking error is unaffected. On the other hand, a larger leaning rate in the output layer 

can force smaller tracking error and weight estimation errors [26]. 

3.4.7 Proof of Stability 

Based on [26], the Lyapunov stability theorem can be used to prove that the entire 

closed-loop system is uniformly ultimately Bounded (UUB). The Lyapunov function 

candidate of the closed-loop system can be defined as: 

V = (g 1 (x)r(k))T (g 1 (x)r(k)) + l fr(W T (k)J? (k)) 
a1 

+ --- tr( T(k)J?2 (k)) + --- tr (T (k)J?3 (k)) 
a2 a3 

(3.38) 

The Lyapunov function candidate V, Eq. (3.38), is positive definite. The first 

difference of V is 

LV = (g 1(x)r (k + 1))T (g' (x)r(k + 1)) - rT (k)g'T (x)g 1(x)r(k) 

h(W T + T (k + 1)W1(k + 1)— (k)W (k)) 
a1 
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+ (k + 1)J 2 (k + 1)— W2 (k)T 2 (k)) (3.39) 
a 2 

+ _tr (1PT (k + 1)T (k + 1)_ W T (k) (k)) 
a 3 

For the desired weights Wj, W2 and 1V3, the revised dynamics relative to weight 

estimation errors, W(k) = W, - Jf"(k) i=1,2,3, in the hidden layers and output layer are 

given by 

T (k + 1) = [I - a& (k)1Y'j (k)]W1(k) + (k){W1T (k) 1 (k) + B1k1,r(k)]T 

—F III—a11(k)ITi(k) 11 T'P(k) 

J (k + 1) = [I - a2 D (D2 (k)  ̂T2 (k)] (k) + a212 (k)[W2T (k) 2 (k) + B2k,r(k)]T 

—FIJ I— a2 2(k) T2(k) 

(3.40) 

(3.41) 

J (k + 1) = [I - a3cI 3 (k) T3 (k)]1' (k) - a3  ct 3 (k){g(x)[kr(k) + s(k) + dis(k)] - J T (k)&3 (k)]7' 

-Fl I—a3cI3(k)T3(k) 1'(k) (3.42) 

where &, and W, are the actual values oft 1 and W, respectively. Substituting Eqs.(3 .40) 

through (3.42) back to Eq. (3.39), the first difference of the Lyapunov candidate function V 

is changed to 

AV = —r(k)T(II(gT(x)g(x)) - kTO1k)r(k) + 2rT(k)ky1 + p1 

- - 

1=1 

[(1— aid) T1(k) 1(k))—F 11 1—a1d1(k) Ta(k) 11" (WT(k)51(k)+Bjkvr(k))]T 
2—a1T(k)1(k) 
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x[JT(k)$1(k) [(1—a&Ta(k) 1(k)) —F 11 1—a1d'1(k) T (k) II]  
2— a1 T (k)(k) 

x (W T(k)(k) + B1kr(k))]} 

—[1 - at T (k)f (k)J x [JT (k) 3(k) 

[a3cIY'3(k)3(k) + F I - a3(I 3 (k)T3(k) I][g(x)(k1,r(k) + s(k) + dis(k))] 

1_a3cJ3(k)cD3(k) 

X [T' 3T(k) 3(k) 

[a3 T3(k) 3(k)+F II I—a313(k)c$T3(k) II1[g(x)(k,r(k)+e(k)+dis(k))J1 
1— a3 (DT 3 (k)c$3 (k) 

+ Il l - a 1(k), (k) 112 xtr(T 2T (k)f'(k)) 
1=1 a, 

+2-Il I—a,,(k)c5?Ti(k) II 

where 

(3.43) 

1 = I+gT (x)g(x){a33T (k)&3(k)+ 11 1 I—a3c1 3(k)&T3(k) 1112} 
1 - a 3 3(k)4)3(k) 

+I{a, cT,(k)ci,(k)+ [(1—a, T1(k),(k))—F II I—a11,(k)d T1(k) 1112  
/=1 2—a,6 T(k)(k) 

} 

r =(s(k)+dis(k))+[a33T (k)&3(k)+ a33T(k)I3(k)+F 11I—a33(k)T3(k)II1 
1 - a3 J?3 (k) 3 (k) 

x g(x)(e(k) + dis(k)) + F 11 1 - a3'3 (k) T3 (k) II jfrT (k)&3 (k) 

(3.44) 

I—a&(k)T(k) I I W7iT(k),(k)}k, (3.45) 
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p1 =(e(k)+dis(k))T(s(k)+dis(k))+[a33T(k)&3(k)+  1  (a3 dD3 T 
1—a3t1 3T(k) 3(k) (k)1 3 (k) 

+ F11 1 - a33 (k) T3(k) II)] x [g(x)(e(k) + dis(k))JT{g(x)(e(k) + dis(k))] 

+ 211'11 I - a33 (k)d T3 (k) II (W3T (k) 3 (k))T g(x)(s(k) + dis(k)) 

+{B, +F 
1=1 

Using the inequality principles, AV, Eq. (3.43) can be further changed to 

iW ≤ —(I / g max —9 II r(k) 112 +2k1,maxY 11 r(k) II 

{[2—a, T1(k),(k)] II 

[(1 - a, (D (k)d,(k)) - F II I -  a?(k) T, (k) II] (W T (k), (k) + Bjk;,r(k)) Il2} 
2— (k), (k) 

—[1— a3c T (k) (k)]x II W 3T A (k) 3 (k) 

[a3 T T (k) 3.(k) + F I - a3t3 (k)d & 3 3 (k) II][g(x)(kr(k) + s(k) + dis(k))] 2 

a3CD  II 

+ {LIlI_ aj&;(k)T,(k) 112 (k)Wj  
1=1 a, 

where 

2cJ2 +g2 3()23m +F 11 1_a33 (k)cI T3(k) 1112 
0 = 1+a3g max 3 max max 

1—a3 23 max 

+ {a, ,2 imax + [(1— a, 2imax) - F 111 - a,cI,(k)ni(k) 1112 

1=1 2—a, 2 imax 
} 

(3.46) 
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y = [1+ + g(a3 3max 2 + Fl - a3I3 (k) c" T (k) II)  
1—a 2 ](-a.. + dlSm ) 

3 3max 

+FII I—a33 (k)1 T3 (k) II W3 max"3max 

2 

+{B1 +F I_a11(k)cITj(k) II 14' max (t) imax }1t;,i (3.49) 
1=1 

2 
2 2  max  

p=[1+a3gUWX 3max + ' 2 @ 33max2 +F II1_a3&3(1c)T3(jt)II)1 
1— a 3 t 3max 

x (8inax + dlSmax)2 + 2F I I I - a3c3(k)T3(k) II + dlSmax) 

2 

+{B, +FlII_aji (k)I TI(k)IIc1,max2W max2} 
1=1 

The maximum value [26] of the last term of Eq.(3.47) is: 

(3.50) 

1 [(1 - F'2 Amax + F2(2 - F)Amin 1W m- (3.51) )  
2—I' 

where Amax and A11 are the maximum and minimum singular values of the diagonal 

matrix given by Eq. (3.52). 

LllIaii (k) iT(k) 112 
a1 

0 

0 

0 0 

I a (k) 2T (k) 112 
a2 

0 

0 

Ill - a33 (k) 3T (k) 112 
C13 

(3.52) 

Wmax is the maximum value of the norm of W, where W = [II W II W2 II II W3 11]T 

W, i=1,2,3 is the desired weight of the layer i and II W II≤ W max • The requirements of Eq 

(3.31) and Eq (3.32), which can be satisfied by using the projection algorithm introduced 
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in section 3.4.5, can make the fourth and fifth terms of Eq (3.47) to be negative. The 

summation of the remaining terms of AV, Eq. (3.47), is negative with the upper bound on 

the tracking error given by 

11 r(k) II> 2 1 2 [y k,max +72ki,max 2 +(p+C)(lIg 2 9Kvmax2)] (3.53) 
(1/ umax _9 ) 

Hence, the entire close loop system is UUB. 

3.5 Summary 

In this chapter, plant models and several neural networks based control architectures 

are discussed. From the comparisons of these control theories, the NN based direct control 

with guaranteed performance algorithm is selected as the proposed control theory. The 

algorithm only needs one neural network to perform both the system identification and 

control functions. Hence, it can reduce the computation complexity and save the system 

resources. 

The modified Delta learning rule and projection algorithm are used in the derivation 

of the proposed algorithm to improve the learning rate of the network and relax the 

dependence for the PE, which is needed by most algorithms. Therefore, all the system 

weights can be simply initialized as zeros that can avoid the system oscillations during the 

initial iterations of learning. This characteristic improves the system overall reliability in 

practical applications. Furthermore, the mathematical proof by using Lyapunov stability 

theory is provided in the discussion and the result can keep the numerical stability of the 

entire closed loop system. 
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CHAPTER 4 

SIMULATION STUDIES OF NN SVC CONTROLLER IN A 

SINGLE MACHINE INFINITE BUS SYSTEM 

4.1 Introduction 

Considerable efforts have been devoted to using SVCs to damp system oscillations 

[10,12,13,15,18,45,46,47]. These references have demonstrated that a SVC PSS can 

provide a positive damping function for generator oscillations similar to that of a generator 

PSS. 

In this chapter, the multilayer neural network based direct control theory is used to 

develop the proposed NN SVC controller (NNPSS) and tests with the proposed NNPSS in 

a single machine infinite bus system are described. 

The traditional PSS control theory is also used to design a conventional SVC PSS 

(SCPSS) to control the output of the SVC. Comparison of the damping effectiveness 

between an SCPSS and the proposed NNPSS is done for different operating conditions. 

4.2 Modeling of the Single Machine Infinite Bus System with an SVC at 

the Middle Bus 

A schematic representation of the single machine infinite bus power system model 

with an SVC at the middle bus is shown in Fig. 4.1, where the SVC is composed of a 
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cascade multi-level inverter and an energy storage device. In practice, DC capacitors are 

usually used for the energy storage. 

Generator 

Tie Line Tie Line 

Constant 
Voltage Bus 

Coupling 
Transformer 

Multi-level 
Inverter 

Energy 
Storage 

Figure 4.1 Single Machine Infinite Bus System with an SVC 

This model is developed from the models described in [4,7,8,12,13,15]. The middle 

bus has two tie lines connected to the generator bus and the infinite bus, respectively. This 

configuration is easy to implement short circuit fault tests when a fault occurs on a 

transmission line. Concerning the generating unit, the Park's seventh order model [7,8] of a 

synchronous machine is used to represent its dynamics. The generator also has a standard 

IEEE ST1A AVR (GAVR) [8] to control the generator terminal voltage. 

The output of the supplementary controller [15,18] can be added to the system 

either after the voltage control loop or at the input junction of the voltage control loop to 
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damp system oscillations. In practice, most PSS designs [15] select the second alternative, 

as the system voltage performance is better. The proposed SVC controller shown in Fig 4.2 

is also designed to add the damping signal at the input junction of the voltage controller. Its 

structure includes two parts. One part is an AVR used to adjust the output of the SVC [15] 

to control the voltage at the middle bus. Ka and 2 are the gain and the time constant of the 

SVC AVR (SAVR). V4mAx and V,JN are the upper and lower limits of the SAVR output, 

Vref is the reference voltage of the middle bus and its actual voltage is measured as 

F 

I 

I 
I 
I 
I 
I 

Ka 

1+sTa 

Supplementary  Aca  
Controller 

áVc 

Vref A-

VM 
AVR 

'AMAX 

Figure 4.2 SVC Controller Configuration 

on 

The supplementary controller is a PSS used to generate the damping signals. VsTmAx 

and VsJN are the upper and lower hard limits of the output of the supplementary 

controller. In order to keep the system voltage variation at an acceptable level, in 

simulations the two limits are selected as ± 0.1. After applying the limits, the controlled bus 

voltage is limited within 10% around normal operating voltage. The entire mathematical 
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model and the parameters are given in Appendix. In order to illustrate the damping 

performance of the proposed NNPSS, during simulating one system has a conventional PSS 

and another system has the proposed NNPSS. 

In most of the published control designs of PSS, input signals of the supplementary 

controllers are usually selected as deviations of the angular speed of the generator or a 

combination of deviations of the angular speed and other signal (signals) that have already 

been introduced in Chapter 1. In the proposed NNPSS, the deviation of the angular speed of 

the generator is chosen as the input signal. In order to get the signal locally, the deviation of 

the frequency may be measured instead, because there is only a second order difference 

between the two. 

4.3 Conventional SYC Supplementary Controller 

The conventional SVC supplementary controller (SCPSS) [12] is a phase lead/lag 

type with the same control structure as that of the generator conventional PSS (GPSS) [5]. 

The transfer function Gpss(s) of the conventional controller is shown in Eq (4.1). 

FOO (s) = K 5 
l+s7, (1+s7)(l+sT3) 

Ts (l+sT2)(l+sT4) 
(4.1) 

In simulations, the SCPSS is designed for the operating condition of 0.7 p.u. and 

p.f =0.85 lag. A small system disturbance, 0.1 p.0 step increase in mechanical torque, is 

applied to the generator. Parameters of the SCPSS are tuned to make the middle bus 

voltage variation in phase with the deviation of the generator speed [13] and to provide the 

best damping performance for this condition. These parameters are kept fixed for all 

simulation studies. 
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4.4 Design of the Proposed SVC NNPSS 

The structure of the entire closed loop system with the proposed SVC NNPSS is 

shown in Fig. 4.3. The NNPSS consists of a multilayer neural network with the hyperbolic 

tangent function as the activation function and a filtered error direct control introduced in 

Chapter 3 

The error filter order of the controller is selected as a third order filter and the 

desired trajectory is an all zero vector, so the input error of the controller can be expressed 

as: 

e(k) = z\w(k) —0 (4.2) 

where &v(k) is the generator speed deviation estimated at instant k. The control output u 

(k) can be calculated according to Eq (4.3) 

u(k) = _WTc(La) + k,r(k) - ,%1e (k) - 22e(k —1) (4.3) 

where WT (iw) is the output of the proposed neural network. The update functions of the 

weights of each layer use Eq (3.28) through Eq (3.30) derived in Chapter 3. The sampling 

frequency is chosen as 40 Hz (The sampling interval equals to 25 ms). 

4.5 Control Simulation Studies 

A number of simulation studies have been conducted at different system operating 

conditions to evaluate the system performance of the proposed controller. For comparison, 

studies have also been conducted with a SCPSS designed by using the conventional 

methods. 
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4.5.1 Network Training 

The proposed NN is first trained in off-line. In the training period, the initial 

weights are selected as small random numbers between [-0.1, +0.1] and the controller is 

applied on the system. The training of the proposed controller can be conducted by 

applying one or a series of system disturbances on the system until the controller provides 

the desired damping effect in the simulation studies. 
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Figure 4.4 Training of the Network. Initial Condition P0.7p.u., p.f. = 0.85 lag 

The training of the controller in this dissertation is conducted by applying a 0.05 p.0 

step increase in the mechanical torque of the generator at the operating condition of P= 0.7 

p.u., and a power factor of 0.85 lag. The input torque is returned to the initial value at 3 s. 

From Fig 4.4, it can be seen that at the second disturbance, the system can provide good 

damping. The final weights are chosen as the initial weights for the following simulations. 
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4.5.2 Normal operating Condition 

The normal operating condition of the single machine power system is set at P= 0.7 

p.u. and the power factor equals to 0.85 lag. In the simulation, a 0.2 Pu step increase in the 

mechanical torque of the generator is applied at 0.1 s. A comparison of the angular speed 

of the system with the proposed SVC controller (NNPSS), with the conventional SVC PSS 

controller (SCPSS) and without control (NO PSS) is shown in Fig. 4.5. The voltage 

variation at the m'iddle bus, the output of the SVC PSS controllers and the outputs of 

SAVRs are shown in Figs. 4.6, 4.7 and 4.8, respectively. 

It is easy to see from Fig 4.5 that the proposed SVC controller can effectively damp 

the system oscillations. In the first peak, there is no difference between the SCPSS and the 

NNPSS, but from the second peak, the NNPSS can damp the system oscillation much faster 

than the SCPSS. In Fig 4.6, the voltage of the system without PSS is almost a constant. In 

contrast, the voltage of the system with the NNPSS has the larger variation especially in the 

first half cycle and the voltage has already hit the upper boundary. The voltage variation 

can cause an electrical power variation on the generator and further provides a damping 

torque on the generator rotor. It can be seen that the NNPSS causes a larger voltage 

variance at the middle bus compared to the SCPSS. 
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The output of the PSS in Fig. 4.7 and the output of the AVR in Fig. 4.8 show the 

difference of the response between the SCPSS and the NNPSS. It is obvious that the 

NNPSS has better response than the CPSS when the SVC capacity is sufficient. 

4.5.3 Leading Power Factor Condition 

This test is conducted at the condition of P=0.7 p.u. and p.f. =0.9 lead. The 

disturbance is applied at 0.1 s with a 0.2 p.u. step increase in the mechanical torque. The 

speed deviation of the generator and voltage variation at the middle bus are shown in Figs. 

4.9 and 4.10, respectively. 

The results show that the NNPSS has a better performance in the oscillation 

damping than the SCPSS. 
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Figure 4.10 Voltage at the Middle Bus in Response to a 0.2p.u. Step Increase in 

Torque. Initial Condition P0.7p.u., p.f. = 0.9 lead 

4.5.4 Light Load Test 

In this section, the generator operating condition is changed to P = 0.2 p.u. and p.f. 

= 0.85 lag, and a 0.2 Pu step increase of the input mechanical torque is applied at 0.1 s. The 

response of the system is shown in Fig. 4.11 and 4.12. 

It is seen that at this operating condition both the NNPSS and the SCPSS have 

better performance at the first peak than in the normal condition. After the first peak, the 

NNPSS can take full advantage of the SVC capacity to damp the system oscillations. 

Therefore, the NNPSS has better damping performance than the SCPSS. 
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4.5.5 Voltage Reference Change of the Generator Bus 

The voltage reference of the generator bus has a 0.03 p.u. step increase with the 

initial condition of P = 0.7 p.u. and p.f. 0.85 lag. Figs 4.13 through 4.14 show the 

generator speed variation and the voltage response at the middle bus. 

The variation of the generator angular speed shows that both the SCPSS and the 

NNPSS can improve the system stability and there is no obvious difference between these 

two types of PSSs. The improvement of damping function of the NNPSS in this case is not 

as obvious as that in a major disturbance. Considering the system oscillation in this case is 

very small, only 0.1 rad/s, the improvement is not important in the operating condition. 
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However, from the point of view of voltage, the NNPSS can make the middle bus 

voltage calm down much faster than the SCPSS and does not have any adverse impact on 

the damping function. Therefore, the NNPSS is better than the SCPSS. 

4.5.6 Voltage Reference Change of the Middle Bus 

The behaviour of the NNPSS and the SCPSS is shown in Figs. 4.16 through 4.18 

when the voltage reference of the middle bus has a 0.04 p.u. step increase in the condition 

of P = 0.7 p.u. and p.f. =0.85 lag. 

The result on the generator speed variation shows that there is no obvious difference 

between the NNPSS and the SCPSS. Just like the last test, the system oscillation caused by 
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voltage reference change is very small because two AVRs in the system also improve the 

system stability. 

As different AVR models are selected for the generator and the SVC, the voltage 

curve, which is different from that in the last test, is a step change rather than a gradually 

converged curve. In the GAVR, there is a feedback from the output of the GAVR back to 

the input. This characteristic can make the system voltage change more smoothly. The 

SAVR does not have the feedback, so its output changes very sharp. The result of the 

damping function is the same as in the last test. The NNPSS is better than the SCPSS only 

because the voltage response of the NNPSS converges faster. 

4.5.7 Different Sampling Intervals 

In this test, three different sampling intervals, 20ms, 25ms and 30ms, have been 

used to compare the system response to the same system disturbance. The system operating 

condition is set as P= 0.7 p.u. and p.f.= 0.85 lag. In the simulation, a 0.2 Pu step increase in 

the mechanical torque of the generator is applied at 0.1 s and the results are shown in Figs. 

4.19 and 4.20. 

The results show that all three sampling frequencies can provide effective damping 

and no obvious difference on the effectiveness of damping exists among them. All three 

settings can provide satisfactory result. 
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4.5.8 Three Phase Short Circuit Test 

Short circuit faults are the most common major disturbances in the power system 

operation. Among the different types of short circuits, three-phase short circuit fault usually 

is the most severe one. Therefore, three-phase short circuit fault is chosen to do this test. 

The fault is applied on one transmission line very close to the generator bus and the three-

phase short circuit fault lasts for O.ls. Figs. 4.21 and 4.22 show the performance of the 

system. Output of the PSS and SAVR is shown in figs. 4.23 and 4.24, respectively. 

Starting from the second peak shown in Fig 4.21, both the NNPSS and the SCPSS 

provide the effective damping of the system. A long as the output of the PSS does not hit 

the limits, which is obvious in Fig. 4.24, the NNPSS is more effective for damping than 

SCPSS. 

302 

301 

300 

377 

376 

375 

374w  

-. scp$ 
NO P66 

- NNPSS 

0.5 1.5 2 2.5 
Time s 

3 

Figure 4.21 Generator Angular Speed in Response to a Three Phase Short Circuit at 

a Tie Line Close To The Generator Bus. Initial Condition P0.7p.u., p.f. = 0.85 lag 



79 

Mi
dd
el
 B
us
 V
ol
ta
ge
 

1.15 -

1.05 - 

0.95-

0.9 - 

ass - 

0.0 

- . - scPss 
  NO PSS 
- NNPSS 

'S 

L 5. 

.1.5 

Time s 

2 0.5 2.5 3 

Figure 4.22 Voltage at the Middle Bus in Response to a Three Phase Short Circuit 

at a Tie Line Close to the Generator Bus . Initial Condition P0.7p.u., p.f. = 0.85 lag 

Ou
tp

ut
 o
f 
P
S
S
 

p.
u,
 

0.1-

0.08-

0.08 -

0.04 -

0.02 -

-0.02 -

- 0.04 -

-0.05 -

- 0.08 -

-01 -
0 0.5 

- NNPSS 
- - scpss  

3 

Figure 4.23 Output Of PSS in Response to a Three Phase Short Circuit at a Tie Line 

Close to the Generator Bus. Initial Condition P0.7p.u., p.f. = 0.85 lag 



80 

Ou
tp
ut
 o
f
A
V
R
 

p.
L 

3 

0 

- NNPSS 
- - scpSs 

NOPSS 

1.6 2 2.6 

Time s 

0.5 3 

Figure 4.24 Output Of SAVR in Response to a Three Phase Short Circuit at a Tie 

Line Close to the Generator Bus. Initial Condition P=0.7p.u., p.f. = 0.85 lag 

The middle bus voltage dip during the fault shown in Fig. 4.22 is greatly reduced by 

the strong output of the SVC AVR shown in Fig. 4.24. Neither the CPSS nor the NNPSS 

has any adverse impact on the function of the SAVR. 

• Three phase short circuit fault with successful reclosure 

A three-phase short circuit fault occurs at 0.1 s, is cleared at 0.2 s by disconnecting 

the tie line and the line is reclosed successfully at 5 •s. The result in Fig 4.25 shows that the 

transient performance of the NNPSS is more stable and better than that of the SCPSS. 
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4.5.9 Comparisons of the Damping Effectiveness between Generator PSS 

and the Proposed SVC Controller 

A comparison of the system responses to a 0.2 Pu increase in torque with different 

PSS configurations is shown in Fig 4.27 with the system operating at P0.7 Pu, 0.85 p.f. 

lag. It can be seen from the results that the GPSS is general provides more effective 

damping than the SCPSS as the GPSS can directly control the generator exciter. The 

damping function of the NNPSS in the first and second peaks is not as effective as the 

GPSS, but after that, the NNPSS is more effective. From the point view of the overall 

effectiveness, the NNPSS is the best among the three. 
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4.5.10 Test of the Coordination with the Generator CPSS 

In the practical system, SVCs usually are installed separately to improve the system 

voltage stability. It means that the SVC controller may work together with a generator PSS 

(GPSS). A test was performed to compare the performance of three PSS combinations, the 

system with only an NNPSS, the system with an SCPSS and a GPSS, and the system with a 

GPSS and an NNPSS, during a major disturbance of three-phase short circuit very close to 

the generator bus. The system performance is shown in Fig. 4.28. In order to make the 

comparison clearer, Fig 4.28 with the vertical scale enlarged is shown in Fig 4.29. 
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It can be seen from Fig 4.28 that SVC PSS can coordinate with the GPSS to damp 

the system oscillation faster and without any adverse impact. A combination of a GPSS and 

an SVC PSS is more effective than the system having only one of them. The combination 

of a GPSS with an NNPSS can stabilize the system faster than the combination of an 

SCPSS with a GPSS. The results in Fig. 4.29 show that the NNPSS can coordinate with a 

GPSS and the combination has the best performance among the three different 

configurations. 
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4.5.11 Test of the Stability Margin 

In the simulation, the inputs of the mechanical torque applied on the systems with 

different PSS configurations are continuously increased at a rate of 0.001 p.u. per second 



85 
and the initial condition is P=1.22 p.0 and p.f= 0.9 lag. From the results shown in Fig. 4.30, 

stability margin of the system with the NNPSS is greater than with the CPSS. 
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4.6 Summary 

Performance of the proposed neural network based SVC controller' has been tested 

in a single machine infinite bus power system with an SVC at the middle bus. Results of the 

simulation studies given in this chapter show that the proposed SVC controller has the 

following advantages: 

The proposed NNPSS is not .designed for any fixed operating condition. The 

NNPSS can operate at a wide range of operating conditions with a stable and 
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reliable performance. It can be seen from the results that the proposed NN controller 

can provide better performance than the traditional linearized control design method. 

• The design of the proposed controller and simulation studies are based on the 

seventh order generator model, which can closely simulate the complexity and the 

nonlinearity of the real power system. 

• The proposed NN controller only uses one neural network for both the system 

parameter identification and control, so the computational complexity is reduced 

compared to other neural network control design methods. 

• The proposed controller can coordinate with another PSS on the generator in the 

system and work together to make the system oscillation damping more efficient. 

In summary, the proposed controller achieves the design objective and has better 

performance than the conventional controller. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE STUDIES 

After many years of development to enhance power system stability, many kinds of 

power system stabilizers have been developed and applied in practical systems. The 

application of generator PSSs greatly improved power system stability. The fast 

development of Flexible AC Transmission System (FACTS) in recent years has provided 

the potential that these static components can be also used for the system oscillation 

damping. SVCs are widely used in power systems as dynamic reactive power compensation 

devices controlled dynamically by adjusting the firing angle of power electronic elements 

to adjust their output. 

The most widely used type of SVCs is the so-called multi-level cascading converter 

comP/sed of several levels of converters and storage devices. It can supply reactive power 

to the system or absorb reactive power from the system through SVC controllers. An SVC 

controller usually includes an automatic voltage regulator (AVR) and a supplementary 

controller, power system stabilizer (PSS). AVR is in charge of the voltage regulation to 

keep the system voltage in a certain level to support the power transmission and PSS is 

used to damp system oscillations if the system meets any disturbance. 

Conventional PSSs (CPSS) use the linearized system model to design the controller, 

so it usually has better performance for a certain system operating condition. As power 

systems are highly nonlinear and uncertain, CPSS cannot provide a stable performance for 
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various operating conditions. In order to solve this problem, advanced control design 

algorithms such as adaptive control and intelligent control are being investigated. 

In this dissertation, a neural network based SVC controller is developed on the base 

of direct control theory. Conclusions of the research and future studies are summarized 

below. 

5.1 Conclusions 

The purpose of the dissertation is to develop a design technique for the neural 

network based SVC controller with guaranteed performance. The mathematical analysis 

and simulation studies show that the controller can greatly improve the system stability 

during internal or external disturbances. 

• The proposed controller is based on a multilayer neural network, which has one 

input layer, two hidden layers and one output layer. There are ten neurons in 

each hidden layer and one neuron in the output layer. The neurons in the hidden 

layers use the hyperbolic tangent function as the activation function. The output 

layer is a linear layer to adjust the magnitude of the output. Simulation studies 

show that the network can closely approach the nonlinear system and can 

coordinate with the filtered direct control to damp power system oscillations. 

• The discrete time filtered direct control algorithm is used to design the proposed 

controller that has only one neural network to do both the system identification 

and control. The weights of the network are dynamically updated according to 

the filtered error of the entire closed-loop system. The projection algorithm and 
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the modified Delta rule are used to update the weights of the neural network. By 

using the Lyapunov stability theory, the stability of the entire control algorithm 

is verified. 

• The input signals of the supplementary controller and the network are selected 

as the deviation of the generator angular speed and its two delays. The filter 

order of the controller is three. The simulation results show that the selected 

filter order is sufficient for the system control to correct the error of the entire 

close loop system. 

• The proposed neural network based PSS (NNPSS) has been tested in a single 

machine infinite bus system. In the system, a seventh order generator model was 

used to test the effectiveness of the controller and an SVC was set at the middle 

bus of the system. The simulation studies were conducted at different operating 

conditions from light load to heavy load, lagging power factor to leading power 

factor. The simulation results show that the neural network based SVC 

controller has a very good performance at the different operating conditions. 

The controller can improve the stability of the power system and has achieved 

the expected damping objective. 

• Comparison studies between an SVC CPSS and the proposed SVC NNPSS have 

been conducted in different operating conditions. The results show that the 

NNPSS gives better performance in various operating and fault conditions than 

the CPSS. The damping effectiveness of the Generator CPSS, the SVC CPSS 

and the proposed SVC NNPSS was also compared through simulation studies. 
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The SVC NNPSS has better performance than the Generator CPSS in the test 

system whereas the Generator CPSS is better than the SVC CPSS. 

• The coordination of an SVC controller and a generator CPSS has been 

investigated. The simulation studies show that they can cooperate with each 

other very well without any adverse damping function and the coordination can 

further improve the system stability 

5.2 Future Studies 

In order to get the maximum benefits of the proposed neural network based SVC 

controller in the practical system, further studies may be carried out. Based on this 

dissertation, the following topics are recommended for future research. 

• The performance of the proposed control algorithm in a multi-machine system 

should be conducted in the future to verify the coordination between the controller 

and the generators. 

The proposed controller should be physically realized in a laboratory environment 

to verify the effectiveness of the control theory in a physical system. 

• In the dissertation, the proposed controller uses the multilayer preceptron neural 

network as the objective network. In the recent years, more neural network 

structures have been developed. These new network structures should be compared 

to find if any new network structure could have a faster learning rate and better 

performance to further reduce the computational complexity. 
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APPENDIX 

1. Generator 

The generator model is based on the Park's seventh order model [7] [8]. 

2 d = Vgd +1iJ..  + Cob (CO+l)Aq 

2q = Vgq + 1;iq —  Cob (CO +l)I;Ld 

2 kd = — rkdikd 

2kq = rkqikq 

)ij =Ef—rfif 

th=(Tm+gov+K5—Te) 

2. SVC 

According to [12,22], the SVC can be modeled as a voltage source behind a step up 

transformer. The voltage along d and q axis is a function of the magnitude and angle of the 

DC voltage. The value of m can be controlled to adjust the output of the SVC. 

=. (1+ m)Vdc cos(T) 

eq = (I+ m)Vdcsin(P) 

From the SVC voltage resource to the middle bus, the whole SVC unit can be 

expressed as: 

Vrnd = ed + rTiSd - XT sq 

Vrnq = eq + rTzsq + XTlSd 

3. Transmission System 

From the generator bus to the middle bus, the system can be written as: 
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Vgj = V md + - Xelq 

vgq =Vmq +1Zq +Xe d 

From the middle bus to the infinite bus, the system can be written as: 

Vmd = Vb sinS+re(id + id) Xe(lq +isq ) 

Vmq = Vb cosS+re(iq +lsd)+Xe(ld +i q) 

4. Governor Model 

The transfer function of the governor is selected as: 

b 
gov=[a + gTo, g 1+ 

5. IEEE Standard ST1A AVR Model 

The AVR and the exciter model used in the system is from the IEEE standard 

P421.5,1992, Type ST1A as shown in Fig A.1. 

EF-- 

Vc1 =I VN(RCXC)IT  00. 
1 

1+s7R 
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Figure A. 1 AVR and Exciter Model 
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6. Parameters Used In The Simulations 

• Generator and Tie Line parameters [8] 

r =0.007 

rkd = 0.023 

X,,,d = 1.126 

Xkd =1.1500 

Kd = -0.027 

r1 =0.00089 

Xq =0.743 

= 0.626 

Xkq = 0.625 

r =0.0 

rkq = 0.023 

Xd =1.24 

x1 =1.33 

H = 3.46 

xe 0.3 

• Governor Parameters ,Generator AVR and Generator CPS  

ag =-0.001328 

bg =-0.17 

Tg = 0.25 

K4 = 200 

Tr = 1.0 

T"1A47N = -999 

VIAMX = 999 

V N =-999 AM 

VS:IMAX = 0.1 

= 0.05 

Tb = 0.03 

K = 0.05 

T4 =0.01 

K 55 = 0.05 

VAA =999 

V N =-999 

VRWX =999 

• SVC, SVC AVR and SVC CPSS 

XT 1.0 

rT =0.0 

Ka =50 

Ta = 0.01 

VAM.4X =999 

V N =-999 

K 55 =0.1 

T1= 0.17 

= 0.01 

= 0.17 

= 0.01 

T =1.65 

= -999 

VOEL =999 

VS7M7N =-0.1 

T1= 0.05 

= 0.03 

7; = 0.05 
T4=  0.07 
Tw =1.65 

VSTMJN 0A 

VSTh,IAX 0.1 

All resistances and reactances are in per unit and time constant in seconds. 


