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ABSTRACT

A number of proteins with diverse functions have been identified as substrates of the
tyrosine kinase, Src. One nuclear protein known as Sam68 (Src associated in mitosis) has
also been identified as a specific target of Src in mitosis in fibroblasts. The interaction of
Sam68 with Src is thought to occur upon nuclear envelope breakdown during mitosis.
However, the exact function of this interaction is currently unknown. A number of possible
roles have been proposed, which include regulation of RNA processing, RNA splicing or
possibly RNA trafficking through the nuclear membrane. Another protein with a molecular
weight of 70 kDa, p70, has been observed to be phosphorylated on tyrosine and associated
with SH2 domain of Src family member p56'* in T-cells stimulated with [L-2 or PHA. This
latter protein has been shown to have sequence identity to the published sequence of Sam68.

In our attempt to isolate novel Samé68-related proteins and gain a better understanding
of the function of Samé68 and its regulation by Src, two antibodies raised against the N- and
C-terminal region of Sam68 were used separately to screen a human T-lymphocyte cDNA
expression library. A number of cDNA clones were isolated and found to encode novel
proteins which were antigenically related to Sam68. One cDNA clone, called C-4.3,
possesses coiled-coil and proline-rich domains and exhibits a high degree of homology to
golgin-95 and the cis-Golgi matrix protein GM130, proteins that are part of the Golgi
complex. A protein with an apparent molecular mass of approximately 63 kDa was identified
in Western blot analyses of NIH 3T3 whole cell lysates using a polyclonal antibody raised
against a GST-C-4.3 fusion protein. C-4.3 was also observed to be localized to the Golgi
complex of NIH 3T3 fibroblasts and co-localized with Src in some of these cells.
Additionally, the GST-C-4.3 fusion protein associated with and was phosphorylated by
purified baculovirus expressed c-Src in vitro. In summary, a number of cDNA clones
encoding novel proteins and exhibiting antigenic relationship to Sam68 were isolated.
Further protein characterization of a cDNA clone, C-4.3, suggests that it may be a putative
target of Src that is involved in regulating certain events related to Golgi functions.
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CHAPTER ONE

INTRODUCTION

A. Src tyrosine kinase and some of its activation mechanisms

The cellular Src gene was the first molecularly-defined proto-oncogene, and its
product, c-Src (Figure 1), is known to be the source of the first detected tyrosine
phosphorylation event. As a model tyrosine kinase and because of its unique regulation and
functions, Src remains a primary focus of many investigations (Brown and Cooper, 1996).
Studies of the Src tyrosine kinase and its subtrates represent a major contribution to our
understanding of the role of protein phosphorylation in the control of normal cell growth and
differentiation as well as in the development of neoplastic disease (Cooper, 1990).

Phosphorylation of a regulatory site in the carboxy-terminal tail of Src at residues Tyr
527 in chicken Src, or Tyr 530 in human Src, by an enzyme known as carboxy-terminal Src
kinase (CSK) is thought to render Src to be inactive (Kmiecik and Shalloway, 1987; Cooper
et al., 1986; Tanaka and Fujita, 1986). This inactivation of Src is due to an intramolecular
interaction between the phosphotyrosine and a Src homology two (SH2) domain within the
amino-terminal half of the molecule (Superti-Furga et al., 1993). On the other hand,
dephosphorylation of the phosphorylated tyrosine 527 or 530, by tyrosine phosphatases is
thought to result in the activation of Src. The tyrosine phosphatases responsible for this
activation, however, have not yet been identified (Zheng et al., 1992).

Elevation of Src activity has been observed in cells undergoing mitosis. This

activation of Src is attributed to serine and threonine phosphorylations within the amino-
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Figure 1. Schematic representation of Src protein. The protein of chicken Src is drawn

approximately to scale, showing the positions and functions of the SH4 domain, unique

region, SH3 domain, SHI domain (kinase) which contains the autophosphorylation site

(Y416) and the tail region which contains the CSK phosphorylation site (Y527). (Based on

Brown and Cooper, 1996. Biochim. Biophys. Acta 1287, 121-149).
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terminal portion of Src, which is thought to enhance the dephosphorylation of Src carboxy-
terminal regulatory site (Morgan et al., 1989; Chackalaparampil and Shalloway, 1988).
Additionally, Src tyrosine kinase activitiy can also be elevated by growth factor stimulation,
such as by platelet derived growth factor (PDGF) (Kypta et al., 1990). This activation of Src
is due to the binding of the SH2 domain of Src to a phosphotyrosine in PDGF receptors,
which displaces the intramolecular interaction of the SH2 domain of Src with its regulatory
carboxy-terminal phosphotyrosine (Alonso et al., 1995). The binding of phosphotyrosine-
containing proteins to the Src SH2 domain and displacement of the regulatory carboxy-

terminus may be a general mechanism for Src activation (Bjorge et al., 1996) (Figure 2).

B. Localization of Src and the regulation mechanisms

Immunofluorescence and biochemical fractionation studies in fibroblast cells have
suggested that both c-Src and v-Src are localized to perinuclear and plasma membranes
(Courtneidge et al., 1980; Rohrschneider, 1979). In some other cell types, Src and its related
proteins, Fgr and Hck, were observed to be localized to the nucleus and cytoplasm
respectively (David-Pfeuty and Nouvian-Dooghe, 1995; Lowell ez al., 1994). Kaplan et al.,
(1992) demonstrated that in mammalian fibroblasts, a significant proportion of Src protein
was found at the microtubule organizing centre (MTOC) and co-localized with cation-
dependent mannose-6-phosphate receptor (CI-MPR), a marker of late endosomes.
Furthermore, during mitosis Src was observed to cluster at dividing centrosomes. These
distinct localization pattern of Src and its related kinases in different cells suggest that

localization is more complicated than simply targeting by the SH4 domain (an N-terminal
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region of Src that is thought to be critical for membrane localization) to a generic membrane
environment (Brown and Cooper, 1996).

Localization of Src family kinases seems to be regulated not only by SH4, but also
by SH2 and SH3 domains. Mutation of SH2 and SH3 domains differentially affect
localization to perinuclear and peripheral membranes (Kaplan er al., 1990). However, the
conformation of the Src molecule is also critical for its localization. It has been observed that
the SH2 domain of Src which binds to phosphotyrosines is unlikely to be needed for
localization of kinase-defective Src to adhesion plaques. This suggests that an activated-
'open' conformation of Src, is necessary for proper Src localization to adhesion plaques
(Kaplan et al., 1994). Lastly, Liebl and Martin (1992) reported that the translocalization of
activated Src to focal adhesion sites was critical for transforming activities. In contrast,
directing Src to the nucleus or perinuclear membranes (e.g. endoplasmic reticulum)

prevented transformation (Liebl and Martin, 1992).

C. Src substrates and the role of SH2 and SH3 domains

A number of proteins with diverse functions have been identified as subtrates of Src.
Some have been shown to associate with and become phosphorylated by Src and others only
display increased tyrosine phoshorylation levels in Src transformed cells (Hunter and
Cooper, 1986). In a review by Cooper and Brown (1996), Src substrates are grouped into two
classes. One class comprises the proteins that are also phosphorylated in cells stimulated
through receptor tyrosine kinases, such as PDGF and EGF receptors, and are implicated in

mitogenic signalling pathways. This class of substrates includes phospholipase Cy (PLCy),
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Figure 2. Schematic representation of Src activation and some responses that are
elicited by Src tyrosine kinase action. Binding of the SH2 domain of Src to a
phosphotyrosine in growth factor receptors results in activation of Src tyrosine kinase. The
activated Src mediates cell signaling of many cellular pathways leading to diverse biological

functions.
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RasGAP, the tyrosine phosphatase SHPTP2 or syp, the adaptor protein Shc, and the p85
regulatory subunit of PI3 kinase. The other one comprises the proteins that have been studied
primarily because they are phosphorylated in Src-transformed cells. Many Src substrates in
this class have also been shown to bind to Src through the Src SH2 and SH3 domains.
Therefore, these proteins may likely be direct substrates in the cell. This class of Src
substrates includes p110 (AFAP110), cortactin, Fak, paxillin, tensin, talin, vinculin, p130*
(Flynn et al., 1993; Kanner ef al., 1991; Wu et al., 1991; Kanner et al., 1990; Reynolds et
al., 1990a, 1990b) and Sam68, a new class of Src substrate that has the ability to bind to
RNA (Fumagalli er al., 1994; Taylor and Shalloway, 1994). These diverse substrates of Src
reflect its involvement in multiple functions (Brown and Cooper, 1996).

The selectivity of Src substrates, especially class two substrates is directed by SH2
and SH3 domains of Src (Brown and Cooper, 1996). SH2 domains have the ability to interact
with specific tyrosine-phosphorylated proteins (Anderson et al., 1990; Moran e al., 1990).
According to Songyang et al. (1993) the optimal peptide sequence that is preferred by Src
and its related kinases, Fyn and Lck, to bind to is pYEEI. This in vitro prediction of the
binding specificity is supported by the molecular nature of the two molecules. Src SH2
possesses deep hydrophobic pockets positioned to accept the I (isoleucine) at position pY +
3. Similarly, the acidic residues at pY + | and pY + 2 are spread apart on the surface of the
SH2 and point towards basic residues on the otherwise neutral surface. [ndeed, some Src -
binding proteins contain the predicted optimal binding sequence pYEEI, or similar
sequences. Hamster polyoma virus middle T and the focal adhesion kinase, Fak, are

phosphorylated and bind to SH2 domains of Src through Tyr 324 (pYEEI) (Songyang et al.,



1993) and Tyr 397 (pYAEI) respectively (Schaller et al., 1994; Mori et al., 1993).

Association of Src with the p85 subunit of PI3 kinase has been demonstrated to be
mediated by its SH3 domain (Liu et al., 1993; Vogel and Fujita, 1993). The sites responsible
for the binding to Src SH3 domains has been identified to be proline-rich sequences on p85
subunit of PI3 kinase (Kappeler et al., 1994; Liu et al., 1993; Prasad et al., 1993; Vogel and
Fujita, 1993). The structural analysis of Src SH3 revealed a globular domain, one side of
which has a slightly depressed hydrophobic surface with an acidic cluster at one end (Yu ez
al., 1994). Two consensus sequences known as class [ and II binding sites were identified
to bind with high affinity to SH3 domains. They are R-P-x-q-P-x-q and q-P-x-q-P-x-R,
where x can be any amino acid, but most often is a P (proline), V (valine) or L (leucine).
These two ligands have different polarity in their binding to SH3 domains, in which class I
ligands have the opposite orientation with the respect to class II ligands (Mayer and Eck,
1995; Feng et al., 1994). While the proline stretch contacts the hydrophobic surface of the
SH3 domain, the first arginine contacts the acidic patch. The prolines are separated by two
amino acids, such that it enables them to reside on the same face of the helix, which is
important for binding. Furthermore, specificity and affinity may be enhanced by the presence
of repeated SH3-binding sites in a single protein, since it raises the local concentration of
binding sites.

In the case of PI3 kinase, there are two SH3 binding sites in its p85 regulatory subunit
and the association complex is stable as shown by immunoprecipitation methods, implying
a slow disssociation rate (Liu et al, 1993). However, the SH3-polyproline-mediated

association of Src and its substrate, Shc, can only be proven in vitro, suggesting that this
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association may not be as stable. Since tyrosine phosphorylation of Shc in v-Src-transformed
cells is a likely cause of its activation, there is no doubt that Shc is a substrate of Src (Egan
et al., 1993; McGlade er al., 1992; Rozakis-Adcock et al., 1992). Presumably, there may be

many more Src substrates with this type of unstable binding that have not yet been identified.

D. Sam68, a Src target in mitosis

[n fibroblasts, Src family kinases are activated not only at the GO-G1 transition but
also at the onset of mitosis. Additionally, in the G2 phase, Src is observed to be translocated
from its plasma membrane location and is present in diffuse and patchy structure thought to
be endocytic vesicles, throughout the cytoplasm in mitosis (David-Pfeuty and Nouvian-
Dooghe, 1990). In a search for mitotic target of Src two groups identified a protein of
approximately 68 kDa, later known as Sam68, that was specifically phosphorylated on
tyrosine during mitosis, both in normal and in v-Src-transformed cells (Fumagalli er al.,
1994; Taylor and Shalloway, 1994). Not only was Sam68 shown to be a substrate of Src
kinase in vitro, it also associated physically with Src derived from mitotic lysate in vivo. The
nature of binding was shown by the use of GST fusion proteins containing parts of Src, in
which Samé68 bind to both the SH3 domain of Src and, when phosphorylated, to the SH2
domain of Src. Since Sam68 was identified as a nuclear protein, it was suggested that the
association with Src occurs when the nuclear envelope breakdowns during mitosis

(Courtneidge and Fumagalli, 1994; Fumagalli et al., 1994; Taylor and Shalloway, 1994).
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D.1. Samé8-related proteins

Based on antigenic cross-reactivity and sequence homology, Sam68 was thought to
be related to GAP-p62, or possibly a product of alternative splicing from the same gene
(Fumagalli et al., 1994; Taylor and Shalloway, 1994). GAP-p62 was first identified by Ellis
et al. (1990) as a protein that was phosphorylated on tyrosine in v-src-transformed cells and
several other types of transformed cells, and that associated with the Ras GTPase-activating
protein (RasGAP). However, both Sam68 and GAP-p62 showed distinct features; for
example, GAP-p62 was phosphorylated in the G1 phase during the response to particular
growth factors (also in cells transformed by several oncogenes) and associated with the SH2
domain of RasGAP in a phosphotyrosine-specific fashion (Moran ef al., 1991). In contrast,
Sam68 was phosphorylated on tyrosine only during mitosis, and associated with Src through
presumably an SH3-domain specific mechanism. It was finally confirmed that there was no
antigenic relation between the two proteins. Furthermore, Lock et al. found that GAP-p62
cDNA (Wong et al., 1992) encoded the Samé68 protein, not the GAP-p62 protein (Lock et
al., 1996; Courtneidge and Fumagalli, 1994). Therefore, Sam68 and GAP-p62 have been
characterized as unrelated proteins.

It is possible that there may be other proteins that are structurally or functionally
related to Sam68. Vogel and Fujita (1995) observed that a tyrosine-phosphorylated 70 kDa
protein associated with the SH2 domain of the Src family member p56'* in peripheral blood
lymphocytes stimulated by interleukin-2 (IL-2) or phytohemagglutinin (PHA), and partial
peptide sequencing of the isolated protein revealed a 100% identity to Sam68 in two peptides

of 20 and 15 amino acids. It is not clear whether p70 and Sam68 are the same protein, since
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unlike Sam68 which is phosphorylated only in mitosis, p70 becomes phosphorylated just 5
minutes after [L-2 stimulation (Vogel and Fujita, 1995). Furthermore, a natural isoform of
Sam68, known as Samé68 a KH, has been found in human tissues. This isoform contains a
deletion of 38 amino acid residues within the KH domain, suggesting that this isoform arises
from alternative splicing of a single pre-mRNA species (Barlat et al., 1997). Finally, our
laboratory observed that both monoclonal and polyclonal antibodies to Sam68 recognized
proteins of many sizes other than 68 kDa in Western blots of lysate from several cell lines
(unpublished data). These data suggest that several proteins antigenically related to Samé68

may exist.

D.2. Structure and possible functions of Sam68.

Sam68 exhibits a very interesting basic structure (Figure 3) which may reflect its
biological functions within the cell. First of all, it has RNA binding regions known as the KH
domain and RGG boxes within the N- terminal half of the protein (Gibson et al., 1993).This
RNA binding domain is an evolutionarily conserved sequence, which has been shown to be
important in the RNA binding ability of FMR-1 and hnRNP K (Siomi ez al., 1994). A single
point mutation in a conserved residue of the FMR-1 KH domain has been reported to be
associated with severe fragile X syndrome (Siomi ef al., 1993; Verkerk et al., 1993). The
ability of Sam68 to bind to RNA has been shown by Shalloway and coworkers, in which it
can bind to poly (U) RNA homopolymers in vitro (Taylor et al., 1995). Additionally, the
SELEX method was used to show that Sam68 binds with high affinity to specific RNA

sequences containing a UAAA motif, which is similar to the mammalian polyadenylation
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145 YLDLFSHKNMKLKERVLIPVKQYPKFNFVGKILGPQGNTIKRLQEETGAKISVLGKG

202 SMRDKAKEEELRKGGDPKYAHLNMDLHVFIEVPGPPCEAYALMAHAMEEVKKFLVP

| el

RGG P1P2 KH domain P3 P4 P> TYR-rich
domain

Figure 3. Schematic representation of Sam68 structure. Sam68 is composed of five
consensus proline-rich motifs (P1, P2, P3, P4 and P5), RGG boxes, a tyrosine-rich domain
and a KH homology domain (dotted box). Consensus residues in KH domain are indicated

in bold (based on Barlat et al., 1997. J. Biol. Chem. 272, 3129-3132).
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signal. These data suggest that Sam68 plays a specific role in post-transcriptional regulation
of RNA processing and gene expression. The fact that Sam68 is a substrate of Src tyrosine
kinase raises the possibility that that mechanisms may also be regulated by Src tyrosine
kinase or other related kinases (Lin et al., 1997). Indeed, in vitro data suggest that the
binding of Sam68 to RNA sequences is regulated by tyrosine phosphorylation, in which
phosphorylation of this protein inhibits its binding to RNA sequences (Wang er al., 1995).

The predicted sequence of Samé68 also has at least five proline-rich regions. The
proline-rich motif is known to have a potential to be a docking site for SH3 domain-
containing proteins (Pawson and Schlessinger, 1993). In vitro translated Sam68 was shown
to bind selectively to recombinant SH3 domains, with the highest affinity for the Src and p85
SH3 domains. Additionally, through peptide competition as well as deletion analyses it was
shown that proline-rich regions, especially at residues 289-306, were the binding sites for Src
(Taylor et al., 1995). However, the work of Taylor and Shalloway also suggests that once
Sam68 is phosphorylated, its association with c-Src is mediated largely by the SH2 domain
(Taylor and Shalloway, 1994). Several other SH2/SH3 proteins have been shown to associate
with Sam68 such as the adaptor protein Grb2, the p85 subunit of PI3 kinase and PLCy. This
suggests another possible function of Samé68, in which it may act as scaffolding protein for
¢-Src during mitosis (Richard et al., 1995; Taylor et al., 1995).

A possible role of Sam68 in cell cycle progression is demonstrated by a natural
isoform of Samé68 lacking of 38 amino acids within the KH domain, known as Sam68 aKH.
This isoform was shown to inhibit serum-induced DNA synthesis and cyclin D1 expression,

which could be overcome by Sam68 (Barlat et al., 1997). Other evidence that Sam68 may
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play a role in cell cycle regulation was shown in experiments using a Src tyrosine Kinase
inhibitor, known as radicicol. Mitosis-specific tyrosine phosphorylation inhibition of Sam68
by radicicol caused severe retardation of the exit of cells from mitosis (Pillay ef al., 1996).
Recently, Sam68 was also reported to be a direct substrate of Cdc-2 kinase, raising the
possibility that it may serve to integrate signals generated by both Cdc-2 and Src kinases
during mitosis. However, the exact mechanisms of these events need to be further identified

(Resnick et al., 1997).

E. The objective of the study

The discussion above suggests that, firstly, Sam68 may have related proteins;
secondly, the biological functions of Sam68 need to be further clarified; and, finally. the
mechanism through which Src tyrosine kinase regulates Sam68 functions also needs further
investigation. This research was primarily intended to isolate possible novel Sam68-related
proteins. It was also assumed that the identification and characterization of Sam68-related
proteins would further contribute toward the understanding of Samé68, in term of its
functions, and its regulation by Src tyrosine kinase. The approach chosen in this study was
by immunological screening of a cDNA expression library. Further studies involved the use
of a Glutathione S-transferase (GST) fusion-bacterial expression system (Pharmacia) to
express the proteins from isolated cDNA clones, and biochemical and immunohistochemical

analyses to examine their association with Src tyrosine kinase.
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CHAPTER TWO

MATERIALS AND METHODS

A. Immunological screening of Agtll cDNA library

A Agtl1 cDNA expression library derived from human T-lymphocytes (provided by
S. Orkin, Yale) was screened with two polyclonal antibodies of Sam68. They were a
polyclonal antibody raised against the N-terminal region corresponding to amino acids 103-
281 of Sam68 (Santa Cruz) and a polyclonal antibody raised against the C-terminal region

corresponding to amino acids 331-443 of Sam68 (Santa Cruz).

A.l. Plating Bacteriophage

Approximately 6 x 10°Agt11 pfu's for the screening with N-terminal Sam68 antibody
and 1.25 x 10° of Agtll pfu's for the screening with C-terminal Samé68 antibody were
plated. The E. coli strain Y 1090AsdR bacterial host was inoculated in LB medium pH 7.4-7.5
(Luria Bertani: 10 g bactotrypsin, 5 g yeast, 10 g NaCl in 1 L) containing 10 mM MgSO,and
0.2% maltose, and incubated overnight at 37°C in a shaker incubator to ODgy ~ 1.5. The
Agtl1 library with the required pfu's was then mixed with 500 pL of bacterial host. After 20
minutes incubation at 37°C, 8 mL of 0.75% top agar (7.5 g agarose in 1 L LB) was added,
and finally the mixture was plated on a 150 mm petri dish containing 1.5% bottom agar (15

g bactoagar in 1 L LB medium).
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A.2. Transferring bacteriophage and antibody screening

The plated library was incubated at 42°C for 6 hours and then a nitrocellulose
membrane (Amersham) impregnated with 10 mM Isopropyl-1-B-D-galactopyranoside
(IPTG) was laid on top of it. After 4 hours incubation at 37°C, the membrane was removed
from the plate, rinsed once in Tris-buffered saline (TBS), and incubated with blocking
solution (1% BSA and 0.05% Tween-20 in TBS) for 1 hour at room temperature. The
membrane was then incubated with 0.1 pg/mL of Sam68 antibody for 45 min at room
temperature. After 3 x 10 min washing in 0.1 % Tween-20 in TBS, the membrane was
incubated for 30 min at room temperature with the secondary antibody, a 1:2,000 dilution
(in TBS containing 0.1% BSA and 0.05% Tween-20) of donkey anti-rabbit Immunoglobulin
G (IgG) conjugated with horse radish peroxidase. An enhanced chemiluminescence (ECL,
Amersham) kit was used for detection of positive plaques. The membrane was incubated in
ECL solution for 1 min, dried with filter paper, and then exposed to X-ray film for

approximately 30 seconds.

B. DNA hybridization screening

In order to obtain the full length of cDNAs isolated from the immunological
screening, a DNA hybridization screening was carried out. The same cDNA library as above
was used for this purpose and approximately 1.25 x 10°pfu's were plated. As a probe, 25 ng
DNA obtained by PCR-amplification of the phage clone was radioactively labelled with [y—
32P] ATP using a random hexamer priming method (Megaprime, Amersham) following the

protocol provided by the manufacturer. Plating of the bacteriophage was carried out as
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described previously. After overnight incubation at 37°C, the plate was chilled at 4°C for 1
hour. A nylon membrane (Hybond-N, Amersham) was then laid on top of the agar for 1 min
at room temperature. The membrane was then peeled off the agar and incubated for 5 min
in denaturation solution (0.5 N NaOH, 1.5 M NaCl) and dipped into neutralization solution
(1.5 M NaCl, 0.5 M Tris-HCI pH 7.4). After washing in 2x SSC (3 M Na(l, 0.3 M sodium
citrate, pH 7.0 in 20x SSC), the filter was then dried at room temperature for 30 min. Cross-
linking of the denatured DNA was achieved by baking the membrane in an 80°C oven for
1 hour. The filter was washed in 2x SSC for 5 min and then incubated in prewashing solution
(5x SSC, 0.5% SDS, 1 mM EDTA, pH 8.0) for 1 hour at 37°C, and followed by incubation
in prehybridization solution (6x SSC, 0.5% SDS, 100 ug/mL denatured Salmon sperm DNA,
50% Formamide and 5x Denhardt's reagent) for 1 hour at 37°C. Subsequently, a **P-labelled
DNA probe was added and the hybridization mixture was incubated for 16 hour at 37°C. The
membrane was then washed 2 x 5 min at room temperature with 2x SSC and 0.1% SDS.
Finally, after washing once for 20 min in Ix SSC and 0.1% SDS, the membrane was dried

and exposed to an autoradiography film.

C. Southern blot analysis

The DNAs subjected to Southern blot analyses were resolved in 1% agarose gel
electrophoresis. The resolved DNAs were transfered onto a nylon membrane (Hybond-N,
Amersham) following the protoco!l described in the Current Protocols in Molecular Biology
(Ausubel et al., 1990). The DNA probes were synthesized using the random hexamer

priming method (Megaprime, Amersham) following the protocol provided by the
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manufacturer. DNA probe hybridization was carried out with the same conditions as
described previously.

Removal of probes from the hybridized membranes was carried out using moderate
treatment (Ausubel er al., 1990). The hybridized membranes were washed in 0.4 M NaOH
for 30 min at 45°C. Then the membranes were rinsed twice in several hundred millilitres of
moderate stripping solution (200 mM Tris-HC1 pH 7.0, 0.1% SDS) for 10 min at room
temperature. The result was monitored by autoradiography of the stripped membrane

overnight.

D. Cloning and subcloning

DNA cloning of the isolated Agtl1 phages was achieved by two ways. Firstly, by
PCR amplification the cDNA inserts and subsequent digestion of the PCR products with the
restriction enzyme Eco RI. The digested PCR products were then cloned into the Eco RI
restriction site of the plasmid pBluescript. Secondly, by PCR amplification of the cDNA
inserts and followed by cloning of the PCR products directly to a PCR cloning plasmids, TA-
2.1. The primers used for PCR amplification were Agtl1 forward and reverse primers. Each
PCR reaction contained 1x PCR buffer (Gibco), 0.2 mM dNTP (Gibco), 1.5 mM MgCl,
(Gibco), 4% Dimethylsulfoxide (DMSO), 20 pmol of each primer, 2 uL DNA template and
1U of Taq DNA Polymerase (Pharmacia). The Taq DNA polymerase was added after the
PCR reaction was heated on the thermocycler (Perkin Elmer) at 97°C for 5 min. The PCR
was programmed for 30 cycles, each cycle consisted of 1 min at 95°C, 3 min at 65°C and 3

min at 72°C.
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D.1. Nested deletion

A nested deletion approach was applied to a clone, C-4.3, that exhibited a molecular
size of 1.9 kb. This procedure was carried out using a double-stranded nested deletion kit
(Pharmacia Biotech) following the protocol provided by the manufacturer. A TA-2.1 plasmid
bearing the C-4.3 insert was digested with Bam HI to create the nuclease-susceptible end and
with Kpn I to generate the nuclease-resistant end. Based on the manual provided by
Pharmacia, the C-4.3 insert was fragmented into twelve pieces with intervals of 150-200 bp

and subcloned back into the TA-2.1 plasmid.

D.2. Sequencing

Manual sequencing was carried out using the double-stranded dideoxy termination
method (Sanger et al., 1977). For that purpose, a T7 sequencing kit (Pharmacia) was used

and sequencing of the clones was performed following the manufacturer's protocol.

E. Glutathione S-transferase (GST) fusion constructs

In order to be expressed as GST fusion proteins, the cDNA clones were recloned in
to pGEX- 4T-3 plasmid (Pharmacia). The full length of C-4.3 was inserted in-frame into the
Eco RI site of plasmid PGEX-4T-3. Similarly, the full length of clone C-2.4 was inserted in-
frame into the Bam HI and Xho I sites of plasmid PGEX-4T-3. Additionally, a cDNA
fragment of the N-terminal region of Sam68, corresponding to nucleotides 148-582, was
inserted into the Bam HI and Eco RI sites of pGEX-4T-3. This latter cDNA was obtained by

PCR amplification of a Agtll cDNA library using internal primers designed from the
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published sequence of Sam68 (Wong et al., 1992). They were primer Sam68-1 consisted of
S'CGCTTTCTCGCTCCTTGGAT3' and  primer Samé68-D, consisted  of
5'GCACCAGTCTCTTCCTGCA3'. All constructs were then partially sequenced in the

junction regions in order to verify the proper reading frame.

F. Expression and purification of GST-fusion proteins

XL1Bor BL21(DE3)pLysS E. coli strains containing GST constructs were inoculated
into 500 mL 2x TY medium, pH 7.3 (16 g tryptone, 10 g yeast extract, 5 g NaCland 2.5 g
disodium phosphate in 1 L). For constructs in XL1B, 100 pg/mL. Ampicillin was added into
the medium, whereas for constructs in BL21(DE3)pLysS, 100 ung/mL. Ampicillin and 25
pg/mL Chloramphenicol were added. The cultures were incubated overnight at 30°C in a
shaker incubator. Insoluble proteins were expressed upon induction with 0.2 mM Isopropyl-
1-thio-B-D-galactopyranoside (IPTG) and incubation for 2 hour at 30°C. Soluble proteins
were expressed upon 0.4 mM IPTG induction followed by 5 hour incubation at 30°C.

Purification of insoluble GST-fusion proteins was carried out following the protocol
described by Frangioni and Neel (1993). The bacterial culture was centrifuged for 20 min at
3,000 rpm at 4°C. The pellet was washed once with ice cold STE buffer (10 mM Tris, pH
8.0, 150 mM NaCl, 1 mM EDTA) then redissolved in 5 mL of STE buffer containing 100
pug/mL Lysozyme. After 15 min incubation on ice, 25 mL STE containing 10 pg/mL
Leupeptin, 5 pg/mL Aprotinin, 5 mM dithiothreitol (DTT), | mM phenylmethylsulfonyl
fluoride (PMSF) and 1.5% sarkosyl were added and the suspension was vortexed for 5

seconds. The cells were then sonicated for 3x 1 min with 50% output control. 1% Triton-X
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100 was then added into the suspension, followed by centrifugation at 15,000 rpm at 4°C for
20 min in an SS-34 rotor. The supernatant containing the GST-fusion protein was then mixed
with 5 mL of 50% suspension of glutathione agarose beads (Sigma) in PBS. After overnight
incubation at 4°C, the agarose was transferred into a column and washed with 100 mL cold
PBS. The GST-fusion protein was eluted using 10 mM reduced glutathione (Sigma), 75 mM
HEPES pH 7.4, 150 mM NaCl, 5 mM DTT and 2% N-octyl glucoside.

Soluble proteins were purified using a different method. After the cultures were
centrifuged, the pellet was resuspended in 30 mL of 1x PBS containing 1 mM PMSF, | mM
DTT and 2 mM EDTA. The cells were then sonicated for 3 x 30 sec with 50% output
control. Following addition of 0.2% Triton-X 100, the cell suspension was centrifuged for
20 min at 4°C at 15,000 rpm in an SS-34 rotor. The supernatant was incubated with 5 mL
of pretreated glutathione agarose overnight at 4°C. After transferring into a column, the

protein was washed with 100 mL of cold PBS containing 2 mM EDTA. The GST-fusion

proteins were eluted using 10 mM reduced glutathione and 2 mM EDTA in PBS.

G. Production of polyclonal antibodies

The production of polyclonal antibodies was carried out by immunizing male New
Zealand white (NZW) rabbits with the GST-fusion proteins. For the first immunization, 500
ng protein mixed with Freund's complete adjuvant (Sigma) was given intra-muscularly,
whereas, for the second and third immunizations, 250 pg protein was mixed with Freund's
incomplete adjuvant and was given sub-cutaneously. The interval between immunizations

was 3 weeks. To obtain the antibodies, blood was taken from the rabbit and the serum was
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separated by centrifugation at 3,000 rpm at 4°C for 10 min.

H. Purification of polyclonal antibodies

Rabbit antibody anti GST-fusion protein was purified using GST-fusion protein
bound to cyanogen bromide (CNBr)-activated sepharose 6MB (Sigma). To bind the GST-
fusion protein to the sepharose, the protein was dialyzed against coupling buffer (0.5 M
NaCl, 0.2 M NaHCO;, pH 8.5) overnight at 4°C. The protein was then mixed with pretreated
CNBr-activated sepharose for 2 hours at room temperature followed by overnight incubation
at 4°C. Following centrifugation, the supernatant was taken and the sepharose was washed
with coupling buffer. After incubation of the sepharose in 0.2 M glycine pH 8.5 at room
temperature for 2 hours, the sepharose was washed 3x using coupling buffer then 3x using
0.1 M sodium acetate and 0.5 M NaCl, pH 4.0. To purify the antibody, the sepharose
containing GST-fusion protein was incubated overnight at 4°C with rabbit antiserum. The
sepharose was then washed with 100 mL PBS. The antibody was eluted using 100 mM

glycine pH 2.8, and neutralized with 120 mM Tris pH 8.8.

L. Western blot analysis

To carry out the Western blotting analysis, purified proteins were resolved in 10%
sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The
electrophoresis was performed on Bio-Rad minige! apparatus with a current of 20 mA/gel
in a running buffer (2 L of 5x running buffer contains 30.25 g Tris, 142 g glycine and 10 g

SDS). Proteins were then transferred onto a 0.45 pm nitrocellulose membrane (Bio-Rad)
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using a Bio-Rad transfer apparatus in a transfer buffer (50 mL of 1 M Tris-HCI pH 8.3, 28.83
g glycine and 400 mL methanol in 2 L buffer) with a voltage of 50 V for 2 hours.

After proteins were transferred, membranes were incubated in blocking solution (1%
BSA and 0.05% Tween-20 in TBS) for 1 hour at room temperature. As a control, a duplicate
membrane was stained with 0.2% Ponceau S and 3% trichloro-acetic acid. A Polyclonal
antibody against the C-terminal region of Sam68 was used at 0.1pg/mL concentration as the
primary antibody. For the secondary antibody, 1:2,000 dilution of donkey anti-rabbit IgG
conjugated with horse radish peroxidase was used. ECL (Amersham) was used to detect the

reactivity of the antibody to the proteins.

J. Localization and co-localization experiments

To examine the localization and co-localization of c¢-Src and C-4.3, indirect
immunofluorescence was carried out following methods described by Kaplan et al., 1992.
Cells were grown on a cover slip, fixed with 3% paraformaldehyde, and permeabilized with
0.2% Triton-X 100. As primary antibodies, anti-Src 2-17 monoclonal antibody (1:50 dilution
in PBS containing 0.2% gelatin) and rabbit antiserum anti-C-4.3 (1:5 dilution) were used.
The cells were incubated in the antibodies for 30 min at room temperature. After 3x washing
with PBS, the cells were incubated in secondary antibodies. goat anti-mouse [gG labelled
with rhodamine (1:100 dilution in PBS) and goat anti-rabbit IgG labelled with fluorescein
(1:100 dilution in PBS), for 30 min at room temperature. Cells were then stained with 1
ug/mL bisbenzamide (Sigma) for 5 min (to stain the DNA) and washed 3x with PBS. The

cover slip was then mounted on a slide using mowiol (Calbiochem) as the mounting medium



and was examined under a fluorescence microscope.

K. In vitro binding assay

A 100 ng purified baculovirus-expressed c-Src (provided by Dr. J. Bjorge) was used
for the in vitro binding experiment. 10 pg GST-C-4.3 fusion protein and a control of 10 pg
GST protein were bound to glutathione agarose beads. After incubation for 30 min at 4°C
with purified baculovirus-expressed c-Src in binding buffer (25 mM Tris pH 7.5, | mM
DTT, 1 mM EDTA, 0.2 mM PMSF, 50 mM NaCl), the beads were washed 3 times with
washing buffer (0.1% Triton X-100 in binding buffer) and the proteins were resolved on 10%
SDS-PAGE gel, and were transferred onto a nitrocellulose membrane (Bio-Rad). The
membrane was stained with Ponceau S to visualize the transferred proteins. Subsequently,
the membrane was immunoblotted with 0.1 pg/mL of the anti-Src-327 monoclonal antibody

as described above in the western blot analyses section.

L. In vitro kinase assay

10 pL (10 pg) GST-C-4.3, GST-C-2.4 fusion protein and control GST were
separately incubated for 30 min at 30°C with 10 puL (25 ng) purified baculovirus-expressed
c-Src in 25 pL kinase buffer (100 mM HEPES, 10 mM MgCl,, 30 mM NaCl, 2 mM DTT)
and 30 uM cold ATP as well as 25 puCi [y—*2P] ATP. The solution was then resolved on a
10% SDS-PAGE gel and the gel was dried using a gel drier. The dried gel was then exposed

to an autoradiography film overnight.
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M. Immunoprecipitation

To carry out the in vivo binding assay, NIH 3T3 fibroblasts were grown on a 100 mm
tissue culture dish. Cells were washed once with 5 mL of cold PBS and lysed with 600 puL
of RIPA buffer (25 mM Tris pH 7.2, 0.1% SDS, 1% Triton X-100, 1% Nadeoxycholate, 150
mM NaCl, | mM EDTA and 100 pg/mL Leupeptin). Following incubation on ice for 10 min,
the lysates was then centrifuged at 10,000 rpm at 4°C for 15 min. Two hundred pg of
supernatant (quantitated using a Bio-Rad protein assay) was mixed with 2 pL. (100 pg/mL)
of anti-Src 327 and the mixture was incubated on ice for 1 hour. After addition of 2 puL of
rabbit-anti mouse IgG, the lysates were incubated on ice for 30 min, and 20 pL of protein A
sepharose was added. Following incubation on a rotator at 4°C for 30 min, the lysate was
centrifuged for 5 min at 4°C. The pellet was dissolved in SDS sample buffer and the
immunoprecipitates were resolved on a SDS gel and transferred onto nitrocellulose
membrane. Western blotting was performed using anti-C-4.3 polyclonal antibody. Detection

of the positive signal was done using an ECL kit.
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CHAPTER THREE

RESULTS

A. Polyclonal antibodies raised against specific regions of Sam68 reacted with

several proteins in Western blots from NIH 3T3 fibroblasts.

Our laboratory has previously demonstrated that a monoclonal antibody raised
against an N-terminal region of Samé68 (formerly known as GAP-associated p62) recognized
several protein bands in Western blots of various cell types. The size differences between
Samé68 and these protein bands, in some cases, were too large to be characterized as
phosphorylated forms of Sam68. Additionally, a polyclonal antibody raised against the same
region of Sam68 recognized multiple bands in Western blot analyses of various cell types
(unpublished data). These results indicated that Sam68 might be expressed as different
isoforms in other cell types and that it might be a member of a family of related proteins. A
polyclonal antibody raised against a peptide corresponding to amino acids 331-443 of the
Sam68 (Santa Cruz) was used to immunoblot lysates of NIH 3T3 fibroblasts. Five bands
with molecular mass ranging between 4G kDa and 110 kDa were observed (Figure 4). The
major band, exhibiting a molecular mass of 68 kDa, was apparently the Samé68 protein.
Together, these data support the hypothesis that Sam68 might have antigenically related
proteins.

In an attempt to isolate novel Samé68-related proteins and possible novel substrates
of Src tyrosine kinase, two polyclonal antibodies raised against both N- and C-terminal

regions of Sam68 (Santa Cruz) were used to screen a human T-lymphocyte Agtl1 cDNA
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- 110kDa
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- 40kDa

Blot with anti-C-Sam68

Figure 4. Anti-C-Samé68 polyclonal antibody reacted with several proteins in a Western
blot from NIH 3T3 fibroblasts. Whole cell lysates of NIH 3T3 fibroblasts were resolved
on a 10% SDS-PAGE gel and transferred onto a nitrocellulose membrane. Upon
immunoblotting the membrane with an anti-C-terminal specific Sam68 polyclonal antibody,
several bands with molecular masses ranging between 40 kDa and 110 kDa were identified.

The major band with a molecular mass of 68 kDa was apparently the Sam68 protein.
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expression library. The main focus of this project concentrated on screening a library using
the polyclonal antibody raised against the C-terminal region of Samé68, because the
polyclonal antibody raised against the N-terminal region of Sam68 was no longer
commercially available and an attempt to reproduce the antibody was unsuccessful. In
addition, the isolated cDNA clones obtained during the screening process with the N-
terminal Sam68 antibody only represented partial cDNAs, and the library used during this
screening process did not appear to content full length cDNAs of these clones. As a result,

a polyclonal antibody raised against the C-terminal region of Sam68 was used instead.

B. Library screening using an antiserum raised against an N-terminal region of

Samé8 resulted in the isolation of clones that have homology to RNA binding

proteins.

A polyclonal antibody raised against an N-terminal region of Sam68 corresponding
to amino acids 103-281 (Santa Cruz) was used to screen 7.5 X 10° plaques from a human T-
lymphocytes Agtl1 cDNA expression library. Six positive plaques were isolated during the
first screening. Secondary and tertiary screenings were performed in order to purify the
positive plaques. Finally, the remaining positive six A phage clones were isolated from the

agar plate. They were designated as N-1.1, N-1.2, N-5. N-6, N-10 and N-12 (Figure 5).

B.1. Cloning and sequence analysis of N-1.1, N-1.2, and N-§

Molecular cloning of the isolated clones was achieved through PCR-amplification

techniques, as well as restriction endonuclease digestions. PCR-amplification of the cDNA
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Figure 5. Schematic representation of the screening process of a T-lymphocyte cDNA
expression library using an anti-N-terminal specific Sam68 antibody. Approximately
600,000 Agtll pfu's were plated. After tertiary screening six purified phage clones were
isolated (N-1.1, N-1.2, N-5, N-6, N-10 and N-12) (A). PCR amplification of N-1.1. N-1.2
and N-5 using Agtl] reverse and forward primers resulted in identification of DNA products

with a molecular size of approximately 400 bp, 600 bp and 550 bp respectively (B).
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inserts was carried out using Agtll-forward and reverse primers. Subsequently, the PCR
products were digested with Eco RI restriction enzyme and were subcloned into pBluescript
vectors as described in materials and methods. The approximate molecular sizes of the
cDNA clones N-1.1, N-1.2, N-5 were 400 bp, 600 bp, and 550 bp respectively (Figure 5B).
These clones were then sequenced using the double-stranded dideoxy chain termination
method according to Sanger et al. (1977).

Clone N-5 contained 534 nucleotides that encoded 167 amino acids (Figure 6). A
start codon, ATG, was found at nucleotide positions 137-139. However, no stop codon was
found in the C-terminal region of this sequence, indicating that this cDNA clone did not
represent a full length transcript. Interestingly, analysis of the N-5 amino acid sequence using
PC GENE revealed some sequence similarity between N-5 and the KH domain of Sam68
(Figure 7B). Since this domain is found in the N-terminal region of Samé68, it is possible that
these amino acid residues within the KH domain form an epitope recognizeable by the
Sam68 antibody. N-5 also exhibited a high degree of homology to human ribosomal protein
S5 with 66.10% identity at the amino acid level (Figure 7A). Furthermore, it was found that
other RNA binding proteins, such as human hnRNP K; fragile-X mental retardation gene
product, FMR-1, and Halobacterium halobium S3 ribosomal protein, Hh S3, shared the same
conserved amino acid residues region with N-5 (Figure 7B). Another equally interesting
finding was that some other cDNA clones that were partially sequenced also exhibited some
degree of homology to RNA binding proteins. N-1.1 exhibited 62% identity at the nucleotide
level to the human small nuclear ribo-nucleoprotein gene, SNRP E, in its first 200

nucleotides, whereas, N-1.2 exhibited 51,6% identity to the human X-linked nuclear protein
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Figure 6. Sequence analysis of clone N-5. The sequence of N-5 contained 534 nucleotides,
which encoded 167 amino acids. A possible start codon at nucleotide position 137-139 was
indicated by box. No stop codon was found in the C-terminai region of this sequence,
indicating that this cDNA clone did not represent a full length transcript. The conserved

residues in KH domain were underlined.
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Figure 7. Alignments between N-5, human ribosomal protein S5 and several RNA
binding proteins. N-5 exhibited a high degree of homology to human ribosomal protein S5
with 66.10% identity at the amino acid level (A). Some conserved amino acid residues within
the KH region were found in N-5 and several RNA binding proteins, such as hnRNP K,

fragile-X mental retardation gene, FMR-1, and Halobacterium halobium S3 ribosomal

protein (B).
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(XNP) gene over a region of around 500 nucleotides.

B.2. Further ¢cDNA library screening in order to obtain the full transcript of clone

N-S.

In order to obtain the full length cDNA of N-5, Southern blot-DNA hybridization
method was utilized to screen the same human T-lymphocytes Agtl1 cDNA expression
library. The cDNA labelling of N-5 was carried out using random hexamer priming. After
performing primary screening on a population of 1.2 X 10° plaques and proceeding to
subsequent secondary and tertiary screenings, 14 clones of Agtl1 phages were isolated. The
molecular size of the inserts was revealed by PCR-amplification of the Agtl1 phage clones
using Agtl 1 forward and reverse primers. However, the PCR products of all fourteen isolated
clones exhibited the same molecular size. Four clones were randomly selected and
subcloned into pBluescript plasmid for DNA sequencing. The sequencing results revealed
that all four clones contained the identical sequence as N-5. These data indicated that the
Agtl1 cDNA library did not contain the full N-5 transcript. The cDNA expression library was
over ten years old and the phage titre had decreased by three logs. It is possible that the

library may have been amplified too many times. As a result, the project was terminated.

C. Library screening using an antiserum raised against a C-terminal region of
Samé68 resulted in the isolation of a clone, C-4.3. that exhibits proline-rich

regions and a coiled-coil structure.

A polyclonal antibody raised against the C-terminal region of Sam68 corresponding
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to amino acids 331-443 (Santa Cruz) was used to screen a population of 1.2 X 10°Agtll
plaques from a human T-lymphocytes cDNA expression library. Nineteen positive plaques
were isolated. However, after secondary and tertiary screening only eleven positive plaques
remained (Figure 8). The eleven phage clones were C-1.3, C-2.4, C-2.5, C-3.1,C-3.2, C-3.3,

C-4.1,C-4.2, C-4.3, C-5.1, and C-5.2 (Figure 9A).

C.1. Southern blot hybridization analysis of the isolated clones

To address whether the eleven isolated phage clones were related to each other on a
molecular basis, they were subjected to Southern blot hybridization analysis. The cDNA
inserts were PCR-amplified using Agtl1 forward and reverse primers. After resolution by
agarose gel electrophoresis, the DNA bands were transferred onto a nylon membrane. Two
cDNA fragments, C-2.4 and C4.1, were radioactively labelled as described in material and
methods and used as probes. In addition, a cDNA fragment generated by PCR-amplification
of the C-terminal region of Sam68 corresponding to nucleotides 691-1431 was also
radioactively labelled and used as a probe.

The probe synthesized from C-2.4 cDNA hybridized to two clones, C-2.4 itself and
C-2.5, suggesting that the C-2.4 and C-2.5 clones were related (Figure 9B). Similarly, the
C-4.1 DNA probe hybridized to seven clones including C-4.1 itself, suggesting that the seven
clones were related and could be categorized into one group. They were C-1.3, C-3.1, C-3.2,
C-3.3,C-4.1, C-4.2, C-4.3, and C-5.2 (Figure 9C). However, no positive hybridization signal
other than the positive control was observed when the probe from the C-terminal cDNA of

Sam68 was used (Figure 9D). These data indicated that there were no Sam68 cDNAs isolated
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Figure 8. Schematic representation of the screening process of a T-lymphocyte cDNA
expression library using an anti-C-terminal region specific Sam68 antibody.
Approximately 1,250,000 Agtl1 pfu's were plated. Twenty one plaques showed a positive
signal in the primary screening. However, after tertiary screening, only eleven purified phage

clones that reacted positively were isolated.
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Figure 9. Southern blot analyses of the cDNA clones isolated by screening of a T-
lymphocyte cDNA expression library using an anti-C-terminal specific Samé68
antibody. DNAs obtained from PCR amplification of the inserts of the isolated clones were
resolved on a 1% agarose gel (A) and transferred onto a nylon membrane. Hybridization with
radioactively labelled C-2.4 probes resulted in the detection of C-2.5 and C-2.4 following
autoradiography (B). Hybridization using radioactively labelled C-4.1 probes resulted in the
detection of C-1.3, C-3.1, C-3.2, C-3.3, C-4.1, C-4.2 and C-5.2 following autoradiography
(C). Hybridization using radioactively labelled C-Sam68 probes resulted in the detection of
control C-Sam68 only (D). Removal of probes was carried out using moderate stripping (as

described in material and methods).
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during the screening process. As a result, an attempt was made to re-screen the original
nineteen isolated phages obtained during the primary screening. However, no positive signals

were observed.

C.2. (Cloning, subcloning and sequencing of C-4.3, C-2.4 and C-4.1

The ¢cDNA inserts were PCR-amplified using Agtl 1forward and reverse primers and
then subcloned into a TA-2.1 cloning vector. They were also subcloned into pBluescript
plasmid, which contains more restriction sites, for subsequent manipulation. For the purposes
of sequencing, clone C-4.3 which had a molecular size of 1.9 kb was subjected to nested
deletion (see materials and methods). This clone was fragmented into twelve pieces with
intervals of 150-200 bp (Figure 10) and subcloned back into the TA-2.1 plasmid. Sequencing
of the first ~200 nucleotides of each clone indicates that they consist of three different groups
of cDNA clones. As a result, only three clones, C-4.3, C-2.4 and C-4.1, which each
represents a group of the cDNA clones were selected for complete sequencing. Internal

primers of these three clones were then synthesized for complementary sequencing.

C. 3. Structural and sequence analyses of C-4.3

The complete sequence of the cDNA and deduced amino acid sequence of C-4.3 are
shown in figure 11A. The nucleotide sequence of C-4.3 was comprised of 1901 bp and
contained an open reading frame (ORF) of 1380 bp. The ORF spanned an in-frame ATG
initiation codon at nucleotide position 130 and a TAA termination codon at position 1510.

This ORF encoded a putative polypeptide of 460 amino acids with a predicted molecular
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Figure 10. Nested deletion products of the cDNA clone C-4.3. For the purpose of DNA
sequencing, clone C-4.3, which had a molecular size of 1.9 kb, was subjected to a nested
deletion process. The DNA inserts were fragmented into 12 pieces with respective
differences of 150-200 bp, as shown by 1% agarose gel resolution (lane 1-12). Plasmid TA-

2.1 had a molecular size of 3.9 kb.
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Figure 11. Schematic representation of amino acid sequence and structural analysis of
clone C-4.3. The C-4.3 protein consisted of 460 amino acids residues. Amino acids from
positions 7-11 contained a possible phosphorylation motif (boxed); amino acids from
positions 70-260 contained coiled-coil region (underlined); amino acids from positions 143-
149 and 370-392 contained proline-rich regions (bolded) and amino acids from positions
457-460 contained a potential nuclear localization signal (NLS) (boxed) (A). C-4.3 displayed
sequence homology to Sam68 in a proline rich region at positions 143-149 (B). Amino acid
residues 70 to 260 of C-4.3 had a high probability of forming a coiled-coil structure. This
analysis was performed using Macstripe 2.0al software (C). The proline rich region at

positions 143 to 149 disrupts this structure.
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weight of 57,329 Da. The amino acid composition of this putative polypeptide is rich in
glutamate (14.8%), leucine (12.3%) and glutamine (9.5%). Using PC GENE alignment
analysis between the C-4.3 and Sam68 amino acid sequences, no extensive homology was
found. However, a proline-rich region of C-4.3 was found to be homologous to a proline-rich
region present in the C-terminal region of Samé68 (75% identity) (Figure 11B). Based on the
fact that anti-Sam68 polyclonal antibody was raised against the C-terminal region of Sam68,
it is possible that this proline-rich region forms an epitope recognized by the antibody.

A hydrophilic plot of the C-4.3 sequence showed that there were no stretches of
hydrophobic and neutral amino acids sufficient in length to span the lipid bilayer. Strikingly,
a large part of the protein, spanning from amino acid position 70 to amino acid position 260,
had a high probability of assuming a coiled-coil structure (Figure 11C). This structure was
stabilized by the heptad repeats of leucine known as a leucine zipper motif (Landschultz er
al., 1988). A proline-rich region present at positions 143-149, PLLPDAP, interrupted this
structure. Another proline-rich region, PAAPPSPGAPAP, was found within the C-terminal
region of this protein at positions 370-392 . Additionally, a nuclear localization signal (NLS)
consisted of RRRR (Jans and Hiibner, 1996) was found at the C-terminus, at positions 457-
460. Finally, a consensus motif, YFEE, resembling the substrate of epidermal growth factor
(EGF) (Songyang et al., 1995) and a consensus motif SPG, which is a proline-directed serine
phosphorylation site, resembling the substrate of Erk1 (Songyang et al., 1996) were also
found in C-4.3.

A BLASTX search for amino acid sequence homology revealed that C-4.3 possesses

a high degree of homology to golgin-95 (Figure 12) (Fritzler et al., 1993), and a cis-Golgi
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Figure 12. Schematic representation of sequence homology between C-4.3 and golgin-
95. Sequences within shaded boxes represent the homologous regions, whereas sequences
drawn with thick lines represent the non homologous regions (A). In golgin-95, an insertion
of 84 amino acid residues interupts the coiled-coil domain. The amino acid identity and

similarity between C-4.3 and golgin -95 are depicted in panel B.
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Matrix Protein GM 130 (Nakamura et al., 1997). Golgin-95 is a Golgi protein identified using
an antiserum from a patient with Sjérgren's syndrome (Fritzler et al., 1993), whereas GM130
is a protein reported to be involved in the docking of transport vesicles (Nakamura et al.,
1997). The homology between these proteins was found in several regions especially in the
coiled-coil motif region, in which C-4.3 exhibited 59% identity and 81% similarity to golgin-
95, and 53% identity and 75% similarity to GM130. In comparison to the coiled-coil motif
in C-4.3, the coiled-coil motif of golgin-95 contained an insertion of 84 amino acids, whereas
that of GM 130 contained a long N-terminal addition. The high degree of similarity between
these proteins could be indicative of alternative splicing or initiation of translation from
different start sites. No other proteins were found to be as highly homologous to C-4.3 as
were golgin-95 and GM130. Nevertheless, several proteins with predicted coiled-coil domain
known to be structural and motor proteins were found to be weakly similar to C-4.3 (~20%
identity and ~40% similarity). They were myosins, kinesin, plectin, dynein and a centromeric

motor protein CENP-F.

C.4. Structural and sequence analyses of clones C-2.4 and C-4.1

Amino acid sequence analysis of clones C-2.4 and C-4.1 revealed no stop codons,
indicating these clones did not represent the full transcript cDNA. Clone C-2.4 was
comprised of 485 nucleotides which encoded 161 amino acids (Figure 13). Interestingly, the
protein sequence contained many NLSs scattered along its sequence. PC GENE analysis
using the SOAP program showed that this protein was highly hydrophilic, with a hydrophatic

index of -21.14 (Figure 14B). Homology searches using BLASTX revealed that C-2.4 was
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Figure 13. Sequence analysis of clone C-2.4. Clone C-2.4 consisted of 485 nucleotides
which encoded 161 amino acids. Several nuclear localization signals (NLSs) were found
scattered along its sequence (underlined). No stop codon was found in the sequence of clone

C-2.4, indicating this clone did not represent the full cDNA transcript.
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Figure 14. PC GENE alignment between C-2.4 and the sequence of an annexin V
binding protein and a hydropathy analysis of C-2.4 sequence. C-2.4 exhibited a very
hydrophatic profile (A). C-2.4 exhibited a high degree of homology to annexin V binding
protein, ABP7, with 76.40% identity (B). Sequence alignment between C-2.4 and the C-
terminal region of Samé68 (S331), from which the anti-C-terminal specific Sam68 antibody

was generated, did not show a significant homology (C).
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highly homologous to a rat annexin V binding protein, ABP7, with an identity of 76.40 %
(Figure 14A). However, in alignments between C-2.4 and Sam68 sequences, no significant
homology was found. Clone C-4.1 consisted of 468 nucleotides, that encoded a stretch of
186 amino acids. The protein sequence was very rich in serine amino acid residues (18%).
Additionally, several proline-rich motifs were found scattered throughout its sequence
(Figure 15). BLASTX searches revealed no significant homologies to the C-4.1 sequence.

Therefore, this clone likely represents a novel class of protein.

C.5. Further library screening in order to obtain the full transcript of clones C-2.4

and C-4.1

In order to find the full length cDNA of C-2.4 and C-4.1, the same Agtll cDNA
expression library was screened using DNA probes synthesized from C-2.4 and C-4.1 (see
materials and methods). During the primary, secondary and tertiary screening process of 1.2
X 10% A phages, twenty four purified A phage clones were finally isolated. Southern blot
analysis, following PCR amplification of the clones, showed that 16 clones were specifically
hybridized to the C-2.4 probe and eight clones were specifically hybridized to the C-4.1
probe (Figure 16A). However, both groups of clones exhibited the same molecular size as
the original cDNA clones (C-2.4=~500 bp, C-4.1=~550 bp). Sequencing three randomly
chosen clones revealed the same nucleotide sequence in C-2.4 and C-4.1. Screening using
a PCR amplification method was also carried out using Agtl 1 forward or reverse primers and
internal primers of either C-2.4 or C-4.1 (Figure 16B). Cloning and sequencing of the

isolated PCR fragments revealed identical cDNA sequence to that seen in the original clones.
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Figure 15. Sequence analysis of clone C-4.1. Clone C-4.1 consisted of 558 nucleotides
which encoded 186 amino acids. This protein was very rich in serine amino acid residues
(18%). Two proline-rich motifs were found in its sequence. However, no stop codon was

found, indicating that this clone did not represent the full cDNA transcript.
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Figure 16. Southern blot analyses of the clones isolated from a DNA hybridization
screening using C-4.1 and C-2.4 probes. (A) C-4.1 probes detected 8 positive clones (lane
4,5,7,8,9,10, 11 and 12) that exhibited the same molecular sizes as the control C-4.1 (lane
1). Using C-2.4 probes detected a single band (lane 8) which was the same molecular size
as the control C-2.4 (lane 2). (B) PCR amplification screening using Agtll forward or
reverse primers and internal primers of either C-2.4 or C-4.1 isolated PCR products (lane 2

and 4) with the sizes identical to the controls, C-2.4 and C-4.1 (lane 1 and 3).
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D. Characterization of C-4.3 protein

The main focus of this project shifted to the protein characterization of clone C-4.3
for three reasons. First, only C-4.3 possessed a full length cDNA transcript. Second, Western
blot analysis of expressed GST-C-4.3 fusion protein showed antigenic relatedness to Sam68.
Finally, a rabbit antiserum of C-4.3 protein was succesfully synthesized. An attempt was
made to characterize the size of the protein, its localization within cells and its possible role
as a putative Src target.

For the purposes of expression, purification and characterization of C-4.3, glutathione
S-transferase (GST) constructs were synthesized. The full fragment cDNA of C-4.3 was
inserted in-frame into pGEX-4T-3 vector at the C-terminus of the GST gene (Figure 17A).
Additionally, a GST construct of the full fragment cDNA of C-2.4 (Figure 17B) and a GST
construct of a cDNA fragment of the N-terminal region of Samé68 corresponding to
nucleotides 148-582, called GST-N-Sam68 was synthesized (Figure 17C). This latter cDNA
was obtained by PCR amplification of a Agt11 cDNA library using internal primers designed
from the published sequence of Samé68 (Wong et al., 1992). The proper reading frame of all

constructs was confirmed by sequencirng on the junction regions.

D. 1. Expression and purification of the GST-C-4.3 protein.

The GST constructs were expressed in E-coli strain XL1B or BL21(DE3)pLysS.
Unlike GST-C-2.4 and GST-N-Sam68 fusion proteins that were expressed in the soluble
fraction of the cell lysates, GST-C-4.3 fusion protein was found in the insoluble fraction.

Therefore, certain culture conditions had to be altered in order to increase the solubility of
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Figure 17. Glutathione S-transferase (GST) fusion protein constructs. (A) Nucieotide
sequences from positions 1-1515 of clone C-4.3 were inserted into Eco RI sites at the
multiple cloning sites of plasmid PGEX-4T-3. (B) Nucleotide sequences from positions 1-
485 of clone C-2.4 were inserted into Bam HI and Xho I sites at the mutiple cloning sites of
plasmid PGEX-4T-3. (C) Sam68 sequences coresponding to nucleotide positions 148-152
(N-Sam68) were inserted into Bam HI and Eco RI sites at the multiple cloning sites of

plasmid PGEX-4T-3.
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the expressed GST-C-4.3 protein. GST-C-2.4 and GST-N-Sam68 were expressed inside the
E-coli strain XL1B, whereas GST-C-4.3 was expressed inside E-coli strain
BL21(DE3)pLysS. In addition, a purification approach described by Frangione and Neel
(1993) was applied to achieve better solubilization and binding of the C-4.3 fusion protein
to glutathione agarose beads. On average, a yield of approximately 3 mg of purified the GST-
C-4.3 fusion protein was obtained from 500 mL of bacterial culture (Figure 18A). In
contrast, a higher yield was obtained from GST-C-2.4 and GST-N-Sam68 constructs; for 500
mL of bacterial culture yielded around 5 mg of the purified GST fusion proteins (Figure 18B
and C). This was due to the fact that the latter constructs were able to be induced with higher

concentration of IPTG (0.4 mM) and for a longer periods of time (~5 hours).

D.2. Anti-C-terminal Samé68 polyclonal antibody reacted with GST-C-4.3 and GST-

C-2.4 fusion proteins.

In order to confirm that the isolated clones coded for proteins were recognizable by
the anti-C-terminal Samé68 polyclonal antibody, Western blot analysis was performed. GST-
C-4.3, GST-C-2.4 fusion proteins and a control GST protein were resolved on 10% SDS-
PAGE gel and were then transferred onto a nitrocellulose membrane as described in
materials and methods. Upon immunoblotting with anti-C-terminal Samé68 polyclonal
antibody, a band of approximately 100 kDa (GST-C-4.3 fusion protein) (Figure 19, lane 3)
and another band of approximately 52 kDa (GST-C-2.4 fusion protein) were detected (Figure
19, lane 2). In contrast, a 27 kDa GST protein alone was not detected (Figure 19, lane 1).

This result indicated that the anti-C-terminal Samé68 polyclonal antibody specifically
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Figure 18. Purification of the expressed GST-fusion proteins. The purified GST-fusion
proteins were all eluted through GST column, and the fractions were analyzed on 10% SDS-
PAGE gels stained with Coomassie blue. (A) The purified GST-C-4.3 fusion protein came
up primarily in fractions 8 and 9, and exhibited a molecular mass of approximately 100 kDa.
(B) Similarly, the purified GST-C-2.4 fusion protein came up primarily in fractions 8 and
9, and exhibited a molecular mass of approximately 52 kDa. (C) The purified GST-N-Sam68
fusion protein came up primarily in fraction 10, and exhibited a molecular mass of

approximately 45 kDa.
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Blot using anti-C-Sam68

Figure 19. Anti-C-terminal Samé68 polyclonal antibody reacted with GST-C-4.3 and
GST-C-2.4 fusion proteins. Two pg of GST-C-4.3 or GST-C-2.4 fusion proteins and a
control GST protein were resolved on a 10% SDS-PAGE gel and transferred onto a
nitrocellulose membrane. Upon immunoblotting with anti-C-terminal Samé68 polyclonal
antibody, a band of approximately 100 kDa (the GST-C-4.3 fusion protein) (lane 3) and
another band of approximately 52 kDa (the GST-C-2.4 fusion protein) (lane 2) were

detected. A band of 27 kDa (the GST protein alone) was only weakly detected.
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recognized proteins expressed from these isolated clones. Therefore, it was evident that the

isolated clones, C-4.3 and C-2.4, exhibited some antigenic identity to Samé68.

D.3. Production and purification of anti-C-4.3 polyclonal antibody

In order to characterize the biological properties of a protein, such as its molecular
mass, cellular localization and possible functions, an antibody is necessary. A polyclonal
antibody against C-4.3 was generated by immunizing a New Zealand White (NZW) rabbit
with the full length purified GST-C-4.3 fusion protein. Additionally, an attempt was also
made to synthesize polyclonal antibodies against the full length purified GST-C-2.4 and the
purified GST-N-Sam68 peptide. The rabbit immunized with GST-N-Sam68 peptide died
shortly after the first injection. The NZW rabbit antisera bearing anti-C-4.3 polyclonal
antibody was affinity purified using purified GST-fusion proteins linked to CNBr-activated
sepharose beads. For every mL of rabbit sera, around 125-150 pg purified anti-C-4.3

polyclonal antibody was obtained.

D.4. The C-4.3 protein exhibited a molecular weight of 63 kDa and was localized in

the Golgi complex.

Lysates of NIH 3T3 fibroblasts were resolved on 10% SDS-PAGE gel and transferred
onto a nitrocellulose membrane, as described in materials and methods. Upon blotting the
membrane with anti-GST-C-4.3 polyclonal antibody, a single band of approximately 63 kDa
was identified (Figure 20, lane 1). No bands of 95 kDa (golgin-95) or of 130 kDa (GM130)

were observed, indicating that in fibroblasts the antibody did not cross-react with golgin-95,
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Figure 20. A polyclonal antibody raised against a GST-C-4.3 fusion protein recognized
a 63 kDa protein in Western blot analysis of NIH 3T3 fibroblasts. 30 pg of NIH 3T3
whole lysate was separated by 10% gel SDS-PAGE gel, transferred onto a nitrocellulose
membrane and immunoblotted with newly synthesized anti-C-4.3 polyclonal antibody. A
band of molecular weight of approximately 63 kDa was identified (lane 1). Pre-incubation
of 10 pg of purified GST-C-4.3 fusion protein with the anti-C-1.3 polyclonal antibody,

competitively removed the 63 kDa band, as shown by Western blot analysis (lane 2).
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or GM-130. It is possible that the expression of these proteins is tissue specific. Furthermore,
addition of the purified GST-C-4.3 fusion protein into the immunoblot solution resulted in
the loss of the 63 kDa band (Figure 20, lane 2), indicating that in fibroblasts the antibody
reacted specifically to a protein with molecular weight of 63 kDa.

Mapping of the location of the protein inside the cell was performed with indirect
immunofluorescence method (IIF) in NIH 3T3 fibroblasts. Detection was achieved by
applying a secondary antibody of goat anti-rabbit IgG labelled with rhodamine. A discrete
signal was observed in the Golgi complex region in every cell (Figure 21A), indicating that
C-4.3 was localized in the Golgi complex. This result confirmed the sequence data that this
protein was related to golgin-95 and the cis-Golgi Matrix Protein, GM130. The C-4.3
localization in the Golgi complex was further confirmed using HepG?2 cells, prepared at
various stages of mitosis. However, to further confirm the precise localization of the protein,
a co-localization with antibodies specific for Golgi complex as well as an electron
microscope examination might be required. An interesting result observed in the localization
experiments with anti-C-4.3 antibody in NRK (newborn rat kidney) cells was that no protein

was observed. One possible explanation was that C-4.3 might not be expressed in NRK cells.

D.5. (C-4.3 associated with and was phosphorylated by c-Src in vitro

Samé68 was observed to be tyrosine phosphorylated in mitotically arrested Src-
transformed cells. Additionally, Samé68 also associated with activated c-Src in vivo, and the
SH3 domain of c-Src in vitro (Fumagalli et al., 1994; Taylor and Shalloway, 1994). Because

C-4.3 was isolated using anti-Samé68 antibody, it might be functionally related to Samé68.
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Figure 21. C-4.3 localized to the Golgi and co-localized with Src at the perinuclear
membrane in NIH 37T3 fibroblasts. (A) Indirect immunofluorescence (IIF) of anti-C-4.3
polyclonal antibody on NIH 3T3 cells mapped the localization of p63 to the Golgi complex
(arrows). (B and C) Double immunostaining of anti-p63 polyclonal antibody and anti-Src
monoclonal antibody (2-17) on NIH 3T3 cells. Co-localization was observed in some cells.
Arrows indicate co-localization; n = nucleus. (These pictures were taken with the assistance

of Dr. J.B. Rattner).
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Additionally, C-4.3 exhibited two proline-rich regions that could be potential binding sites
for the SH3 domain of Src protein-tyrosine kinase. As a result, it was thought that like
Sam68, C-4.3 could also be associated with and phosphorylated by Src protein-tyrosine
kinase.

A purified baculovirus-expressed c-Src was used for in vitro binding as well as
phosphorylation experiments. Purified GST-C-4.3 fusion protein and control GST protein
were bound to glutathione agarose beads. After incubation with purified baculovirus-
expressed c-Src, the beads were washed 3 times with 0.1% Triton X-100 and the proteins
resolved on 10% SDS-PAGE gel, after which they were transferred onto a nitrocellulose
membrane as described in materials and methods. Upon immunoblotting with the anti-Src-
327 monoclonal antibody, Src was identified as a 60 kDa band in lane two, which contained
the GST-C-4.3 fusion protein. On the other hand, no 60 kDa band was seen in lane one,
which contained the GST protein alone (Figure 22B). This result indicated that c-Src
associated specifically with the C-4.3 portion of the GST-C-4.3 fusion protein.

For the in vitro phosphorylation assay, MgCl, and [y—**P] ATP were added for proper
kinase activation and detection of protein phosphorylation. GST-C-4.3, GST-C-2.4 fusion
proteins and GST protein alone (control) were separately incubated with purified
baculovirus-expressed c-Src and then resolved on a 10% SDS-PAGE gel and the gel was
then dried. Autoradiography revealed a phosphorylation signal in lane three at around 100
kDa, the predicted size of the GST-C-4.3 fusion protein (Figure 23). The GST protein alone
(27 kDa) and GST-C-2.4 fusion protein (52 kDa) were not phosphorylated (Figure 23, lane

1 and 2). This indicated that c-Src tyrosine kinase specifically phosphorylated C-4.3 protein
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Figure 22. GST-C-4.3 associated with purified baculovirus expressed c-Src in vitro. Ten
ug of either GST or GST-C-4.3 fusion protein bound to glutathione sepharose beads was
incubated with 100 ng of purified baculovirus expressed c-Src in a binding buffer and
washed with 0.1% Triton X-100 three times. The precipitated proteins were then separated
by 10% SDS-PAGE gel and transferred onto a nitrocellulose membrane. (A). Ponceau S
staining of the membrane revealed a 27 kDa band (the GST protein) (lane 1) and a 100 kDa
band (GST-C-4.3) (lane 2). (B). [mmunoblotting with anti-Src monoclonal antibody (327)
showed that the GST protein alone did not associate with Src (lane 1), whereas the GST-C-

4.3 fusion protein did (lane 2).
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Figure 23. GST-C-4.3 phosphorylation by purified baculovirus expressed c-Src in vitro.

Ten pg of either purified GST, GST-C-2.4 or GST-C-4.3 fusion proteins were incubated with

30 ng of purified baculovirus expressed c-Src. [y-**P] ATP and MgCl, were added to initiate

the reaction. Autoradiography showed tyrosine phosphorylation of GST-C-4.3 (100 kDa) by

purified baculovirus expressed c-Src in vitro (lane 3), whereas neither GST (27 kDa) nor the

GST-C-2.4 peptide were phosphorylated (lanes 1 and 2, respectively). The 60 kDa band

observed in each lane was autophosphorylated c-Src.
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in vitro. The 60 kDa band that was observed in every lane was identified as the auto-

phosphorylated form of Src.

D.6. C-4.3 did not co-immunoprecipitate with Src in NTH 3T3 fibroblasts

In order to determine whether C-4.3 associates with and is phosphorylated by Src
tyrosine kinase in vivo, co-immunoprecipitation experiments using cell lysates of NIH 3T3
fibroblasts were carried out. For immmunoprecipitating purposes, anti-Src antibodies were
used because the anti-C-4.3 polyclonal antibody was not able to immunoprecipitate C-4.3
(Figure 24A, lane 2). However, both anti-Src 327 monoclonal antibody and anti-Src 2-17
monoclonal antibody (the latter was done by another graduate student in our laboratory)
failed to immunoprecipitate C-4.3 in association with Src from cell lysates of NIH 3T3
fibroblasts, as determined by Western blot analysis of the lysates with the anti-C-4.3
polyclonal antibody (Figure 24B, lane 3). This result, however, contradicted the in vitro data,

that C-4.3 associated with Src.

D.7. Srcwas co-localized with C-4.3 in the perinuclear region of NITH 3T3 fibroblasts

In addition to its localization at the plasma membranes, Src is also found in
perinuclear membranes, including endosomes and secretory vesicles of fibroblast cells
(Kaplan et al., 1992). There is an increasing body of evidence suggesting that in addition to
Src SH4, Src SH2 and SH3 domains play a key role in the cellular localization of this protein
(Brown and Cooper, 1996). Based on the in vitro data that C-4.3 associated with and was

phosphorylated by Src tyrosine kinase, and the idea that the binding might be mediated by
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Figure 24. Immunoprecipitations of C-4.3 and Src proteins from NIH 3T3 fibroblast
lysates. (A) 500ng of NIH 3T3 lysates were immunoprecipitated with anti-C-4.3 polyclonal
antibody or anti-Src 327 monoclonal antibody. The immunoprecipitates were resolved on
10% SDS-PAGE gel and transferred onto a nitrocellulose membrane. Upon immunoblotting
with anti-C-4.3 polyclonal antibody, no band with molecular mass of 63 kDa (the C-4.3
protein) was identified (lane 2). (Lane 1) Control Western blotting of NIH 3T3 fibroblast
whole cell lysates with anti C-4.3 polyclonal antibody identified a band with a molecular
mass of approximately 60-63 kDa. (B) Immunoblotting with anti-Src 327 monoclonal
antibody identified a band with a molecular mass of approximately 60 kDa (the Src protein)

(lane 2). Ig H = Immunoglobulin heavy chain, Ig L = Immunoglobulin light chain.
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SH2 and SH3 domains of Src, it was thought that Src might co-localize in cells with C-4.3.

Indirect immunofluorescence techniques were used to show co-localization of C-4.3

and Src (ITF) as described by Kaplan et a/, (1992). In NIH 3T3 fibroblasts, it was shown that

double immunostaining with anti-C-4.3 polyclonal antibody and anti-Src 2-17 monoclonal

antibody produced a similar pattern of staining at the perinuclear region of the cell (arrows)

(Figure 21B and 21C), indicating that C-4.3 and Src were most likely co-localized. Since this

co-localization between Src and C-4.3 was observed only in a few cells, it was possible that

this co-localization event might occur only at a specific stage of the cell cycle.

E.

Summary of the results

Screening a T-lymphocytes Agtl1 cDNA library using an antiserum raised against
an N-terminal region of Sam68 resulted in the isolation of several clones that had
homologies to RNA binding proteins, whereas using an antiserum raised against a
C-terminal region of Samé68 resulted in the isolation of a clone, C-4.3, that exhibited
some structural and antigenic relationships to Samé68.

The predicted sequence of C-4.3 possesses a coiled-coil motif and proline-rich
regions, which are potential binding sites for SH3-containing proteins. C-4.3 exhibits
a high homology to golgin-95 and cis-Golgi Matrix Protein, GM130.

C-4.3 exhibited a molecular weight of approximately 63 kDa and was localized to the
Golgi complex in NIH 3T3 fibroblasts.

C-4.3 associated with and was phosphorylated by Src protein-tyrosine kinase in vitro.

Finally, C-4.3 was observed to be co-localized with Src in the perinuclear region of



NIH 3T3 fibroblasts.
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CHAPTER FOUR

DISCUSSION

A. Structural and antigenic relationship between the isolated clones and Sam68

Based on antigenic cross-reactivity and sequence homology, Samé68 was thought to
be related to a GTP-activating protein (GAP)-associated protein, p62. Later, it was proven
that Sam68 and GAP-associated p62 were distinct proteins (Lock et al., 1996; Taylor et al.,
1995). Yet the existence of Sam68-related proteins cannot be ruled out. Vogel and Fujita
(1995) observed that a tyrosine-phosphorylated 70 kDa protein associated with the SH2
domain of p56' and that it possessed sequence homology to Sam68. In addition, a natural
isoform of Sam68, known as Sam68aKH, was recently identified (Barlat et al., 1997).

In our attempt to isolate Sam68-related proteins, two rabbit antisera generated against
both N- and C-terminal regions of Sam68 (Santa Cruz) were used to screen a human T-
lymphocyte cDNA expression library. Interestingly, N-5, a clone isolated using antiserum
raised against the N-terminal region of Sam68, exhibits high homology to an RNA binding
protein, human ribosomal protein S5. Additionally, N-5 possesses conserved residues within
the KH domain that are also found in Sam68 and other RNA binding proteins, such as human
hnRNP K; fragile-X mental retardation protein, FMR-1, and Halobacterium halobium S3
ribosomal protein, Hh S3. Because the KH domain of Sam68 lies within its N-terminal
region, against which the antibody was raised, it is possible that these RNA binding regions
share conserved epitopes that are recognized by the antibody. However, since the sequence

homology between N-5 and Samé68 is only restricted to few conserved residues within the
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RNA binding domain, it cannot be concluded that the two proteins are closely related.
Further analyses of the antigenic relationship between N-5 and Sam68 were not possible
since the rabbit antiserum was no longer commercially available and an attempt to generate
it was unsuccessful.

Screening the same cDNA expression library, using an antiserum raised against the
C-terminal region of Sam68, however, resulted in the isolation of eleven cDNA clones. A
Southern blot hybridization of these clones revealed that they represented three different sets
of clones, C-4.3, C-2.4 and C-4.1. The sequence data showed that one clone, C-4.3, exhibited
a complete open reading frame (ORF) consisting of 460 amino acids. This result was
confirmed by Dr. Edward Chan and co-workers in The Scripps Research Institute in La Jolla,
California, who cloned a similar cDNA, called G95-L1-1 (unpublished data). The six amino
acids difference between C-4.3 and G95-L1-1 probably due to the differences in the cDNA
libraries used. G95-L1-1 was isolated from a human placenta library, whereas C-4.3 was
isolated from a human T-lymphocytes library. Structurally, C-4.3 exhibits some similarities
to Sam68, especially with the C-terminal region of Sam68, the region against which the
Sam68 antibody was raised. One of the two proline-rich regions present in C-4.3 shows a
strong (75%) identity to a proline-rich region found in the C-terminal portion of Samé68. It
is possible that the epitope recognized by the antiserum could be proline-rich regions.
However, this can only be confirmed with an epitope mapping procedure. Furthermore,
similar to Sam68, C-4.3 also possesses a nuclear localization signal (NLS) right at the C-
terminus of the protein. In the case of C-4.3, however, this NLS is apparently non-functional,

because our immunofluorescence experiment using an antibody raised against a GST-C-4.3
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fusion protein showed that the C-4.3 protein was localized in the Golgi complex, not in the
nucleus, in NIH 3T3 fibroblasts. Finally, Western blot analysis with anti Sam68 antibody
confirmed that the expressed GST-C-4.3 fusion protein was antigenically related to Sam68.
Another isolated clone, C-2.4, also demonstrated an antigenic identity to Samé68. C-2.4
possesses many NLSs and exhibits a very hydrophatic sequence, suggesting that like Sam68,
C-2.4 may be a nuclear protein.

The data above, collectively, show that screening of a cDNA library using antisera
raised against both the N- and C-terminal regions of Samé68 result in the isolation of several
clones that exhibit structural and antigenic similarities to Sam68. However, the minimal
sequence homology between the isolated clones and Sam68 do not support a close
relationship between these proteins. Possibly, these proteins share more similarities in terms
of their biological functions in the cell. In the case of N-5, its functional relationship to
Sam68 may be in the regulation of RNA metabolism; whereas C-4.3, as suggested by our
data, may have similar biological functions as Samé68, such as being a target of Src tyrosine
kinase. Therefore, further studies on N-5 and C-4.3 functions are necessary in order to
confirm this hyphothesis, which may as well, contribute towards a better understanding of

Sam68 function and the role of Src tyrosine kinase.

B. Coiled-coil motif in C-4.3 and its possible functions

An interesting feature of C-4.3 is the presence of a coiled-coil motif in its sequence.
This motif, also known as leucine zipper, is characterized by six repeats of leucine residues

at every seventh position (Landschultz et al., 1988). Two amphiphatic a-helices form this
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motif so that structurally it resembles a coiled-coil (O'Shea et al., 1989). Many auto-antigens
that react with auto antibodies present in SLE (systemic lupus erythematosus) and Sjérgren's
syndrome have been noted to possess coiled-coil structures. These include 52-kDa SS-A/Ro
(Chan et al., 1991) and 80/86-kD Ku (Yaneva et al., 1989). Leucine zipper motifs have also
been described to be present in DNA binding proteins, such as c-fos and c-jun (Turner and
Tjian, 1989), as well as in structural and motor proteins, such as myosins and Kinesin (Mu
et al., 1995). The function of coiled-coil motifs, especially in structural proteins is believed
to play a role in the multimerization of the protein. However, a coiled-coil structures can also
be dynamic and play a central role in generating conformational changes, resulting in
dramatic movement of one part of a protein relative to another. This mechanism is implicated
in the translocation of the nonclaret disjunctional kinesin-related microtubule motor protein
on microtubules toward their minus ends which is required for proper chromosomes
segregation in Drosophila oocytes (Endow et al., 1994).

While it shares only weak homology with other coiled-coil-containing proteins such
as structural and motor proteins, C-4.3 exhibits a high degree of homology to two coiled-
coil-containing autoantigens, golgin-95 and cis-Golgi Matrix Protein, GM130. However,
compared to C-4.3, the coiled-coil region of golgin-95 has a long insertion consisting of a
stretch of acidic amino acids; whereas the coiled-coil region in GM130 has a long addition
to its N-terminal site. Additionally, the N-terminal region of GM130 exhibits many
phosphorylation motifs for various protein kinases, suggesting that it may have regulatory
functions in vivo. Amino acids 70-260 of C-4.3 exhibits a classical coiled-coil motif with a

high degree of confidence (calculated using a method according to Lupas et al., 1991), with
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the exception of a short region of amino acids 143-149 which causes a break in the coiled-
coil structure. Judging from the nature of the overall homology, it is likely that these three
proteins belong to the same family.

The function of golgin-95 is unknown. However, some possible functions have been
proposed based on its sequence analysis and its distribution upon brefeldin A (BFA)
treatment. BFA is known to cause microtubule-dependent retrograde transport of Golgi
element to the endoplasmic reticulum (ER) (Lippincott-Schwartz et al., 1989). Five and ten
minute BFA treatments into cells resulted in a remarkable reduction of staining of golgin-95
in the perinuclear Golgi complex and the appearance of vesicular and elongated microtubular
structures in HepG2 cells, as detected with the rabbit antisera raised against the recombinant
protein. Furthermore, 30 minute BFA treatment resulted in the complete loss of Golgi
staining. Consequently, golgin-95 is thought to have a role in the transport of vesicles from
the ER to the Golgi complex or within the Golgi stack. In addition, together with other Golgi
proteins, it may form cytoskeletal structure that is the framework for transport of Golgi
vesicles (Fritzler er al., 1993). Unlike golgin-95, some functions of GM130 have been
characterized. This protein, together with p115, a component needed for intra Golgi transport
(Waters et al., 1992), has been reported to be involved in the docking of transport vesicles.
Interestingly, it was also shown that the C-terminal region of GM130 which contains a
coiled-coil motif was critical for binding to Golgi membranes. Furthermore, a microinjection
of a cDNA encoding GM130 truncated at its coiled-coil regions into NRK cells, resulted in
cytoplasmic localization of the truncated protein and weaker binding to the Golgi apparatus

(Nakamura et al., 1997). Referring to this result, it is interesting to speculate whether the C-
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4.3 truncated at its coil-coiled regions will also behave the same. An NLS presents in C-4.3
sequence, yet it is apparently nonfunctional (our data indicated that C-4.3 localized to the
Golgi complex). It is possible that C-4.3 lacking the coiled-coil regions might localize to the

nucleus instead of the Golgi complex.

C. Proline-rich regions of C-4.3 and its pessible functions

It has been characterized that proline-rich sequences provide a relatively hydrophobic
region which is suitable for binding Src homology three (SH3) domain (Yu er al., 1994,
Mayer and Eck, 1995). Two consensus sequences called class I and class II proline rich
regions are known to be able to bind with high affinity to SH3 domains. They are R-x-q-P-x-
q-P and g-P-x-q-P-x-R, where x is any amino acid and q is any hydrophobic residue, often
it is a proline, valine or leucine. These two classes of ligands have different polarities with
respect to their binding to SH3 domains (Mayer and Eck, 1995). The P-x-x-P motif was
characterized to be a minimal consensus sequence that is essential for the binding to a SH3
domains. Because the two prolines are separated by two amino acids, it enables them to
reside on the same face of the helix, which is critical for binding (Cohen et al., 1995).

Two proline-rich regions are present in C-4.3, in which both have consensus
sequences required for the binding to SH3 domains. One proline-rich region, resembles the
class I binding site, R-x-P-x-q-P-P-x-P-x-q-P, is present in the C-terminal half of the protein.
The other proline rich region which contains a double minimal consensus sequence, P-x-q-P-
x-q-P, is present at the N-terminal portion of the protein. Interestingly, as in golgin-95 and

GM 130, this latter proline-rich motif lies within the coiled-coil domain. The disruption of
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this coiled-coil motif makes the proteins structurally more rod-shaped with a joint consisting
of a proline-rich stretch (Nakamura et al., 1995). In addition, these proline-rich regions
provide the proteins with a docking site for SH3 domain-containing proteins. Since it is
known that the Src family of protein-tyrosine kinases uses their SH3 domains to recruit their
specific subtrates (Mayer and Eck, 1995), C-4.3 may also be a candidate target of Src protein
tyrosine kinase. Our in vitro data in which C-4.3 associated with and was phosphorylated by
c-Src tyrosine kinase supports that hypothesis. However, to confirm whether the binding of
C-4.3 to Src tyrosine kinase is mediated by proline-rich regions, a deletion or peptide

competition assay needs to be performed.

D. C-4.3, a putative substrate of Src tyrosine kinase.

A number of Src substrates have been characterized. Some bind to and are
phosphorylated by Src directly, and others only interact indirectly with Src, yet show
increased phosphorylation level on tyrosine in Src transformed cells (Brown and Cooper,
1996). Shc, PI3 kinase, PLCy, ras-GAP are examples of Src substrates that are
phosphorylated both in Src transformed cells and in growth factor-stimulated cells (Pawson,
1993; Schlessinger and Ullrich, 1992; Cantley et al., 1991). Other Src substrates include
actin filament associated protein p110, cortactin, Fak, paxillin, tensin, talin, vinculin, p130*
(Wu et al., 1991; Kanner et al., 1990; Reynolds et al., 1989 a, 1989 b) and also Sam68/p70
(Vogel and Fujita, 1995; Fumagali et al., 1994; Taylor and Shaloway, 1994). These
particular substrates have been shown to interact with SH2 or SH3 domains of Src. Such

binding interactions make it likely that these proteins are direct substrates of Src in cells
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(Brown and Cooper, 1996).

As discussed previously, C-4.3 contains two proline-rich regions that may function
as binding sites for SH3 domain containing proteins, such as Src protein-tyrosine kinase.
Additionally, there are a few tyrosine residues that may serve as phosphorylation sites for
Src. Although no ideal Src phosphotyrosine binding motif (YEEI) as described by Songyang
et al. (1995) presents in C-4.3 sequence, a tyrosine residue at position 6 has adjacent acidic
residues which is the preferred environment for the kinase domain of Src to associate with
(Songyang et al., 1995). Once a tyrosine residue in C-4.3 is phosphorylated, it may probably
serve as a strong binding site for the SH2 domain of Src. In vitro data showed that C-4.3
associated with and was phosphorylated by c-Src protein-tyrosine kinase. Furthermore, Src
was also observed to be co-localized with C-4.3 in the perinuclear region of NIH 3T3
fibroblasts. These data, collectively, indicate that C-4.3 may be a true substrate of Src kinase
in the cell. It may also support the notion that SH3 or SH2 domains are involved in protein-
protein interactions that assist Src localization within the cell.

Immuno-precipitation (IP) experiments were unsuccesfull in showing in vivo
interactions between C-4.3 and Src. Our IP assays used asynchronous lysates of NIH 3T3
fibroblasts, and mainly relied on anti-Src monoclonal antibodies because the antiserum
generated against GST-C-4.3 fusion protein was unable to be used for IPs. It is possible that
the interaction of C-4.3 and Src within the cell only occurs at certain stages of the cell cycle
as is the case for Samé68. Due to its localization in the nucleus, Sam68 only associates with
and is phosphorylated by Src protein-tyrosine kinase when the nuclear envelope breaks down

at M phase (Fumagalli et al., 1994, Taylor and Shalloway, 1994). Our results indicate that
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C-4.3 is most likely localized to the Golgi. As a result, one can speculate that a similar type
of association occurs between C-4.3 and Src at some stage of the cell cycle, possibly upon
Golgi breakdown at mitosis. Interestingly, Nakamura et a/., (1997) found that incubation of
GM 130 with mitotic cytosol had a marked effect on the mobility of the protein, which could
be prevented by prior treatment of mitotic cytosol with a general kinase inhibitor,
staurosporine. This indicates that GM 130 may be regulated by some protein kinases in cell
cycle dependent manner. Similarly, C-4.3 might also be regulated in cell cycle dependent

manner by Src tyrosine kinase or possibly other kinases.

E. Future perspective on C-4.3

The finding that C-4.3, a putative golgi protein, associates with and is phosphorylated
by Src protein-tyrosine kinase in vitro; as well as co-localizes with Src in the perinuclear
region, deserves further attention. First of all, an effort should be made to prove in vivo
association and phosphorylation by Src tyrosine kinase. However, there is the possibility that
the association may occur at certain stages of the cell cycle. Consequently, co-
immunoprecipitation experiments should be applied on various stages of the cell cycle.
Another approach that may facilitate the co-immunoprecipitation of the two proteins is by
extracting the Golgi complex out of cells. It will minimize any competing substrates of Src
not found at the Golgi, such as Samé68. Peptide competition or deletion assay will be required
to determine the binding site of Src as well as the epitope sites recognized by the Samé68
antibody. In addition, cyanogen bromide or chymotrypsin cleavage of the protein may also

be required to map the phosphorylation site of C-4.3. Furthermore, a co-localization assay
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using anti-Golgi antibodies or an electron microscopy will help map precisely the
localization of the protein.

Although it may be a little too early to discuss the function of this protein, some
speculations can be made based on our data, as well as data reported by other research
groups. One can speculate that C-4.3 phosphorylation by Src may regulate the disassembly-
reassembly of the Golgi complex during mitosis. A proline-rich region in C-4.3 is positioned
such that it interrupts the coiled-coil motif. As a result, one may speculate that the interaction
of SH3 containing proteins with this region may disrupt the coiled-coil domain-mediated
protein multimerization (Endow et al., 1994). There is also a possibility that C-4.3 may
involve in certain physiological events related to Golgi functions in which Src tyrosine
kinase plays a role. Finally, Liebl and Martin (1992) have reported that directing Src to
perinuclear membranes (endoplasmic reticulum) prevented transformation. As a result,
another possible role of C-4.3 may be to regulate the transforming activity of the Src proto-
oncogene by sequestering it at the perinuclear region, away from the plasma membrane

where Src is likely to be activated by activated receptor tyrosine kinases.
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The complete sequence of C-4.3.
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