
THE UNIVERSITY OF CALGARY 

Partitioning Trees 

by 

Laura Lianne Marik 

A THESIS 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF Master of Science 

DEPARTMENT OF Department of Mathematics and Statistics 

CALGARY, ALBERTA 

February, 1996 

© Laura Lianne Marik 1996 



THE UNIVERSITY OF CALGARY 

FACULTY OF GRADUATE STUDIES 

The undersigned certify that they have read, and recommend to the Faculty of 
41 

Graduate Studies for acceptance, a thesis entitled "Partitioning Trees" submitted 

by Laura Lianne Marik in partial fulfillment of the requirements for the degree of 

Master of Science. 

11 

Chairperson, Dr. Claude Laflamme 
Department of Mathematics and 
Statistics 

I 
Dr. Norb-ert Sauer 
Department of Mathematics and 
Statistics 

c2 e 
Dr. Robin Cockett 
Department of Computer Science 



Abstract 

This paper examines the variations of the Halpern-Lauchli theorem that have come 

into being since it was originally devised in 1966, with emphasis on the perfect 

tree formulation (LP) by Layer and Pincus. We begin by looking at improvements 

on the one-tree version of LP together with analogues to 'profusely-branching' and 

'perfectly-profuse' trees. A proof for the two-tree version of LP is presented, and 

combinatorial and analytical applications of LP are given. Finally, we look at the 

infinite formulations of LP and some remaining open problems in the field. 
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Chapter 1 

Introduction 

Intrinsic to the study of mathematics, and Ramsey theory in particular, is a search for 

order in structures. Ramsey theory could be described as the search for substructures 

which are more 'orderly' in some sense than the relational structures from which 

they are drawn, while retaining as much of the relational complexity of the original 

structure as possible. A simple Ramsey-esque exercise is to show that in a group 

of six people there is a clique, or an 'anticlique', of three people. The Hales-Jewett 

theorem, another mainstay of Ramsey theory, says that in a language that contains 

all words made up of an alphabet of t letters and in which there are r 'parts of 

speech', for any integer m a number n can be found so that there exists a word 

of length n with m variable letters, such that whatever letters in the alphabet are 

substituted, the word thus developed will be the same part of speech. 

In this thesis the search for order will be in trees, or finite sequences of trees. 

Upon coloring the nodes, or sequences of nodes, of these trees, we will seek subtrees 

having a similar structure to the original, but with greater chromatic organization. 

Before proceeding further, we will describe in greater detail the notions of 'tree' that 

we will be using in this thesis. 

1 
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1.1 Trees 

A relational structure is a set of elements, called vertices, together with a relation 

on this set. In a binary relational structure the relation is composed of ordered pairs 

of these nodes, referred to as edges. If G is a binary relational structure, then G can 

be represented by an ordered pair (V, :5), where V is the set of vertices and < is the 

relation. 

A tree, T = (T, :5), is a transitive binary relational structure with the following 

two distinguishing features: 

1. T has a ≤-minimal element, known as the root of T, and 

2. if x E V, then the set of predecessors of x, or {y E T : y x}, is well-ordered. 

In discussing trees certain set-theoretic notations will be useful: 

• n={O,1,2, ... ,n-1} 

• w is the set of all finite numbers 

• If A is a set and B is a cardinal, then [AlE is the set of all subsets of A of size 

B. 

Certain other terminology will be used throughout the thesis. If T is a tree, and 

x E T, then P(x) = {y E T: y < x} and S(x) = {y E T: y > x}. We refer to P(x) 

as the predecessors of x and 5(x) as its successors. For a set of nodes A, P(A) is the 

set of all predecessors of members of A, and S(A) is the set of their successors. The 

subtree T of T contains all nodes of T which are comparable to x. In other words, 

= P(x) U {x} U 5(x). 
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The level of a node x in T, or lev(x), is the cardinality of F(s). The nth level 

of T, or T(n), is the set {x E T icy(s) = n}. We call a set of nodes a level set if 

each of its nodes is found in the same level. The set of immediate successors of x, 

or IS(s), is the set of all nodes y in T with y > x and lev(y) =lev(x) + 1. A node 

X E T is called n-branching if IIS(x)I = n. A fork is a two-branching node. 

If A and B are sets of nodes in T, then A ≥ B, or A dominates B, if for all x in 

B, there exists y in A such that y ≥ s. If A C T(k) and B C T(m) for some Ic ≥ m, 
then A ≥" B, or A n-dominates B if for all s E B, there exist n successors of x in 

A. 

A finitistic tree is a tree T such that for all nodes x E T: 

• l≤IIS(x)I<w,and 

• icy(s) <w. 

This thesis focuses on three kinds of trees, all of which are finitistic. 

Our discussion of a subtree of a finitistic tree T will be restricted to 'closed 

downward' subsets of the vertices under the inherited ordering. When 'pruning' a 

tree T to find a monochromatic subtree, we will say that we remove a node s from 

T if we replace T with T', where T' is the largest finitistic subtree of T which does 

not include the node s. In Figure 1.1, the black dots represent the nodes remaining 

in 2<' upon removing x. 

If (A : i E d) is a sequence of sets, then fljEd Ai is the product of this collection. 

In other words it is the set of all d-tuples (a : i E d) such that for all i in d, ai E A. 

For trees, we will be interested primarily in sequences of same-level nodes, and so we 

adopt a different notation. Let L E [w]" and (T : i e d). Then the level product of 
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Figure 1.1: The removal of a node from the complete binary tree. 

x 

(T : i E d) over L, Ød T, is defined as follows: 

L / 
®T=U(flT(j) 
iEd JEL \iEd 

If no set L is specified, it will be assumed that the product in question is the level 

product over w. 

1.1.1 Perfect Trees 

The complete binary tree is the finitistic tree in which every node is a fork. It is also 

referred to as 2<c, as its nodes can be represented as finite sequences of Os and is. 

A perfect tree is a subtree T of 2<' in which S(x) contains a fork for all x E T. A 

perfect subtree of T is a perfect tree T' which is a subtree of T. We say, for short, 

ST. 
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1.1.2 Profusely-Branching Trees 

A profusely-branching tree is a finitistic tree T for which there is a sequence 

(a :71 E w) of natural numbers such that 

• for some b>O and all nEw,a≤ b•n, 

• lirn an = 00, and 

• all nodes in T(n) are as-branching. 

Let T be a profusely-branching tree, A C T(rn) and B C T(n) be level sets of 

nodes with A ≤ B, and (bk : Ic E w) be a sequence of natural numbers. Let 

C = P(B)/P(A). Then B is a (b)-extension of A if for all x E C fl T(k), m < k 

n - 1, x has bk many immediate successors in C. 

1.1.3 Perfectly-Profuse Trees 

A perfectly-profuse tree, intended as a compromise between perfect and profusely-

branching trees, is a finitistic tree in which S(x) contains a node whose branching is 

n or larger, for all n E w and all x E T. 

1.2 The Halpern-Lauchli Theorem 

1.2.1 The Boolean Prime Ideal Theorem 

If B is a Boolean algebra, then an ideal on B is a subset I of B such that: 

• OE I and i I, 

0 u,vEI=u+vEI,and 
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S u,vE B, uE I, and v≤ u= yE I. 

If I is an ideal on B such that either u or -ti is in I for all u E B, then I is 

called a prime ideal. The Boolean Prime Ideal Theorem (PIT) says that every ideal 

on B can be extended to a prime ideal. 

The proof of PIT depends on the Axiom of Choice (AC), and PIT can often be 

used in proofs in place of the AC, some examples being the proofs of the Hahn-

Banach Theorem, compactification theorems, and the Completeness Theorem and 

Compactness Theorem of first order logic. For these reasons a natural question to 

ask is whether PIT is equivalent to AC or weaker. 

A first step in solving this problem occurred when Halpern showed in [4] that PIT 

did hold in a model of set theory without foundation, constructed by Mostowski, in 

which AC did not. It was seen from this that PIT is not equivalent to the Axiom of 

Choice in ZF without the axiom of foundation. The proof that they are not equivalent 

in full ZF uses the original Halpern-Lauchil theorem; indeed it was concocted for use 

in this proof. Several different formulations of the Halpern-Lauchli theorem were 

derived after this, leading to many more applications. The formulations fall into two 

basic categories: the matrix theorems, from which the proofs are drawn, and the tree 

theorems, which are more conducive to combinatorial applications. 

1.2.2 The Matrix Theorems 

If T is a finitistic tree, then A C T is (h, k)-dense if there exists a node x E T(h) 

such that A dominates T-- (h + k). An example of a (1,2)-dense set in the complete 

binary tree is represented by the black dots in Figure 2.1. If (T : i E d) is a d-tuple 
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Figure 1.2: A (1,2)-matrix in the complete binary tree. 

of finitistic trees, and A1 C Ti, then flj€d A1 is an (h, k)-matrix if for each i, A1 is 

(h, k)-dense in Ti. 

The original formulation of the Halpern-Lauchli Theorem, which will be referred 

to as HL or HL(d) (where d is the length of the sequence of trees in the theorem), is 

as follows: 

Let (T1 : i E d) be a d-tuple of finitistic trees, and let fliEd T1 = Go U G1. 

Then one of the following must be true: 

1. for all k there exists a (0, k)-matrix in I1iEdTi fl G0, or 

2. there is an h such that for all Ic> h there exists an (h, k)-matrix in 

fliEd T1 fl G1. 

This was later improved upon by Layer (1969, unpublished) and Pincus [5] when 

they showed that fljEd T1 can be replaced in the theorem with ®iEd Ti. In other 
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words the 'monochromatic' (h, lc)-matrices can be found with the added property 

that all their nodes are in the same level. The Laver-Pincus subtree formulations of 

the Halpern-Lauchli Theorem follow from this level-cognizant version of the theorem. 

1.2.3 The Subtree Theorems 

The theorem usually referred to as the Laver-Pincus Theorem deals with strong 

subtrees. If T is a finitistic tree and S C T is a finitistic tree under the ordering 

inherited from T then S is a strong subtree of T if there is an increasing function 

f : w - w (the level function) such that S(n) C T(f(n)) and for each n, for all 

X C S fl T(n) and y C IS(x, T), there exists z in S such that y ≤ z. A level family 

is a sequence of strong subtrees of a sequence of trees all related to the trees from 

which they are drawn by the same level function. 

The Laver-Pincus Theorem says the following: 

Let d be finite and let (T : i E d) be a d-tuple of trees. Let 

®J T = G0 U G1. Then there exist a level family (Si : i C d) of 

strong subtrees of T, i E d, and lc C 2 such that Ød Si Gk. 

In this thesis we are more interested in a weaker version that is again due to the 

Laver-Pincus matrix formulation, and which will be referred to as LP, or LP(d): 

Let (T : i E d) be a d-tuple of perfect trees, and let Ø dTj = G0 U G1. 

Then there exist /c C 2 and L C [w]" and for all i C d there exists T' 9P Ti 

such that ®iEd Ti'c Gk. 

If 'perfectly-profuse' is substituted for 'perfect' in LP(d), the resulting theorem 

still follows from HL(d). We do not know if this is true for profusely-branching trees 
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though. We include a proof of LP(l) for profusely-branching trees; whether it is true 

for any d> 1 remains an open problem. 

1.3 The Structure of the Thesis 

The primary focus of this thesis is the perfect tree formulation of HL(d) by Layer 

and Pincus (LP(d)), which is concerned with finding perfect subtrees of finitely 

many perfect trees such that the level product of the subtrees over some A E [w ]w is 

monochromatic. In Chapter 2 we will look at the simplest version of this theorem: 

the fact that a finitely-colored perfect tree has a monochromatic perfect subtree. We 

will also examine the connection between the density of nodes of a certain color and 

the existence of a perfect subtree of that color. In Chapter 3 we look at analagous 

situations for profusely-branching trees. 

A constructive proof for the more difficult two-tree version of LP is presented 

in Chapter 4. Chapter 5 comprises the proofs of two applications of LP(d) for d 

finite. Finally, the sixth chapter consists of an overview of the infinite versions of the 

Halpern-Lauchli Theorem. The original contributions contained in the thesis include 

Theorem 3.3 and the proofs of Theorems 2.4, 3.5, and 4.3. 



Chapter 2 

Single-Tree Theorems: Perfect Trees 

In this chapter we present the proof of the most humble version of the Laver-Pincus 

theorem: that if the nodes of one perfect tree T are finitely-colored, then there exists 

a perfect subtree T' of T and a set [L]" such that T'(L) is monochromatic. Upon 

knowing this, it is interesting to look for ways in which the search can be restricted. 

First we explore the relation between a high density of nodes of a certain color with 

the existence of a pefect subtree of that color. To conclude our investigation of single 

trees, we look at an ultrafilter in which the set L, as described above, can necessarily 

be found. 

2.1 The Laver-Pincus Theorem: One Tree 

The proof that a finitely-colored perfect tree contains a monochromatic perfect sub-

tree, or LP( 1), is facilitated by the following lemma, the one-tree version of the 

Laver-Pincus matrix theorem: 

Lemma 2.1 Let T be a perfect tree with nodes colored red and green, and let L E [W]L 

be a set of levels. Then either: 

1. for all h there exists j E L and A C T(j) such that all nodes in A are colored 

green and A ≥ T(h), or 

2. there exists x e T such that for all h there exists j E L and A C T,(j) such 

that A is red and A ≥ T(h). 

10 
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Proof Assume that '1' does not hold. Then there exists h such that for all j E L 

there is no green subset of T(j) dominating T(h). In other words for all j E L, there 

exists x e T(h) with all nodes of T(j) colored red. As there are finitely many nodes 

in T(h), for one such node, say x0, there is an infinite subset of L, say L0, such that 

T0(j) is red for all j E L0. It is clear then that '2' holds. 0 

Theorem 2.2 (LP(1)) Let T be a perfect tree colored red and green and L be an 

infinite set of levels. Then there is a perfect subtree T' of T and an infinite set of 

levels L' E [L]' such that T'(L') is monochromatic. 

Proof We will assume that '1' holds in the statement of the Laver-Pincus matrix 

formulation, as the proof is analagous if '2' is true. We will define a nested sequence 

(Th)° o of perfect subtrees of T and a sequence of levels (€k)o such that T'(4) is 

colored green for all Ic E w, where T' = fl0 Tk. 

It follows from '1' that there exists to € L and A T(4) colored green such that 

A ≥ T(0). Remove all nodes in T(4) that are not in A. The resulting tree is To. 

Upon having defined levels 4 and perfect trees Tk for k E ii, we define Yn as fol-

lows. Since T_1 is a perfect tree, there is a level, say such that 

T.1(_1) ≥ 2 T_1(e_1). By '1', again, there exists a level 4 E L, and a set 

of nodes An C T.1(t) colored green such that An ≥ T_1(t.1). Then T is defined 

by UXEA(Tfl..1)x. 

Notice that no nodes in or below T_1(t_1) are removed to create T. This 

guarantees Yn retains all nodes in T_1(4..1) as well as two successors of each of 

these nodes, and thereby guarantees that flkE Tk will be a perfect tree. Notice also 

that for subtrees created in this manner, if x € T, lev(x) ≥ 4 and y > x in T_1, 
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then y E T, and so if '1' is true for T_1, it is also true for T. 

The intersection of these trees is a perfect tree with the desired properties, and 

so the proof of the theorem is complete in the case when '1' holds in Theorem 2.1. 

The proof is similar in the case when '2' is true. 0 

2.2 Density Theorems 

The Laver-Pincus Theorem tells us that any two-colored perfect tree contains a 

monochromatic perfect subtree. The next theorem, proved first in the doctoral 

dissertation of Olga Yiparaki (see [12]), shows that it probably contains perfect 

subtrees of both colors. More specifically, in order for a tree to have only green 

subtrees, the density of green nodes per level must approach 1 as you move up the 

tree. We present a new proof for this theorem here. 

The density of green nodes in a level is, as one might expect, the number of 

green nodes divided by the total number of nodes in that level. In the language of 

the following proofs, dg(T(n)) = g(T(n))/t(T(n)), where T(n) is the level at which 

we are looking. The limit of the density over a set of levels will be of interest, and 

shorthand for d0(T(a)) will be L(an) for a sequence (a : n E w). 

A node x in T is a called a start if L(n) 54 0. More specifically, an (a)-start is a 

start x for which L(a) exists and does not equal zero. The number of starts in T(k) 

is s(T(k)) and the number of (a)-starts in level k is specified by s(a, T(k)). The set 

of (a)-starts in T(k) will be referred to as S(a, T(k)). The density of (a)-starts in 

level k, d3(a, T(k)), like the density of greens, is the number of starts over the total 

number of nodes in T(k). Finally, a node which is both a start and green will be 
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referred to as a green start. The notation for these fruitful hybrids will be analagous 

to the start notation, replacing "s" or "S" with "gs" or "GS", respectively. 

Lemma 2.3 Let T = 2<" be colored red and green. If lirn d9(T(a)) = L and 

for all nodes x E T there is no subsequence (ba) of (as) with L(b) > B, then for 

each level k, there is a subsequence (ca) of (an) such that d3(c,, T(k)) ≥ LIB. 

Proof Let T(k) = {xj}1Et(T(k)). A subsequence (ca) of (as) exists such that 

dg(Txj (cn)) converges for all i E t(T(k)). Let S(c, T(k)) = {xj}jE3(C,T(k)). Then 

L = Jim dg(T(an)) 
n—too 

= urn dg(T( n)) 
n—too 

= urn EiEt(T(k)) d9(T1(c)) 
n—+oo t(T(k)) 

EiEt(T(k)) lim_400 dg (T., (cs)) 
t(T(k)) 

EiEs(cn,T(k)) limn-00 d9(T(c4) 
t(T(k)) 

< s(c,T(1c)).B 
- t(T(k)) 

We are left with the desired result - that is, that LIB ≤ d3(c, T(k)). 0 

Theorem 2.4 If T is the complete binary tree and d9(T(n)) 74 0 then there is a 

perfect subtree T' of T and an infinite sequence (an) for which d9(T'(a)) = 1 for 

nE'. 

Proof Let {x0,x1,.. .,xh_1} be (b)-starts in T(no) for some sequence (ba). Let 

jo E w be minimal such that there exist yo E T0 and a subsequence (c°) of (ba) 
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such that L0 (c°) > 1/(jo + 1). For m E {1,2,...,h - 1}, let j E w be min-

imal such that there exist Ym E Txn and a subsequence (c) of (cr') satisfying 

Lym (C) > 1/(jm + 1). 

Let (ct') = (cs). For all m E h, for any z E Tym there is no subsequence (zn) 

of (c,) such that L(z) > 1/j. We have, by Lemma 2.4, that for all Ic > no and 

m E h there is a subsequence (ctm) of (cs) such that d, (cm, Tym (k)) > jm Lym (Cn). 

As h is finite it is not difficult to see that we can find (ct) for which for all k > no 

and m E h, 

d8(c, Ty. (k)) >jrn Lym (Cn) >jra/(jm +1). 

Now since for all in in h, Lym (Cn) > 1/(j,, + 1), and h is finite, there exists a > 0 

and N E w such that for Ic > N, dg(Tym (Ck)) > 1/(j,, + 1) + a for all m E h. So for 

Ic > N, dg, (C,Tym (Ck)) ≥ a. For ic large enough, t(Tym (ck)) ≥ 2/a for all in E h, 

and 9S(C, Tv. (Ck)) ≥ 2. 

We have shown that there is a set of nodes which 2-dominates the set of starts 

we began with, and which contains only starts which converge to a nonzero limit on 

the same set of levels. Now it is easy to construct a perfect tree with infinitely many 

levels having only green nodes. As d(n, T) 71+ 0, the base node of the tree is a start, 

and so there is a level above it, say n1, and a set of levels (ci), such that T(ni) has 

at least two green (c,)-starts . Remove all other nodes in T(no). Let the resulting 

tree be T1. 

In the jth step, we start with Tj_i(n_i) containing only green (c')-starts. 

There is a level above n3_i which contains two green starts dominating each node 

in T(n_i). Call this level n3. Remove all nodes in T(n) that are not green starts, 

and call the remaining tree 1',. The intersection T' of the subtrees Tj created in each 
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step of the pruning, is such that \/j E w, d9(n, T') = 1. 0 

Note The above theorem does not hold for perfect trees in general. If the density 

of greens in a perfect tree does not converge to zero, it is not necessarily true that 

it contains a perfect green subtree, as the following example will demonstrate. One 

can prove, however, in a similar fashion to the above that any profusely-branching 

tree T for which limn d9(T) 54 0 has a perfectly-profuse green subtree. A more 

"symmetric" perfect tree, i.e. one in which the branching of a node depends only on 

its level, or a perfectly-profuse tree can also be shown to have a perfect or perfectly-

profuse (respectively) green subtree. 

Example 2.5 There exists a perfect tree T with lirn, d9(T(n)) 0 with no perfect 

green subtree. 

The example will be of a perfect tree T, a set of levels (a0), and a coloring of T 

such that limn-.O,, dg(T(an)) = 1 but T contains no green perfect subtree. We define 

the three objects of interest such that d9(T(a0)) ≥ n/(n + 1). 

Let the base of T be a fork, and let a1 = 1. Then t(T(ai)) = 2, and we color the 

left node green. Upon having chosen an and defined T up to that level and colored 

ft(T(a0)) . n/(n + 1)] nodes green, we continue building the tree, level by level, so 

that all nodes at level an are forks, and above level an only nodes which are not 

successors of green nodes are forks; the rest are one-branching. 

We stop when we reach a level where the ratio of all but one of the non-successors 

of green nodes to the total number of nodes at that level exceeds (n + 1)/(n + 2). 

We then color red all nodes which succeed green nodes and the rightmost node that 

doesn't, and the remaining nodes are colored green. Repeating this process infinitely 
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Figure 2.1: The perfect tree described in Example 2.5 

1ev a2 

1ev a1 

often gives us our tree and our levels, and upon coloring any extraneous node red, 

our coloring. As no green node is a successor of another green node, it is clear that 

there is no green perfect subtree. 0 

2.3 HLT Sets 

Up to this point we have been satisfied with finding any infinite set of levels of a 

tree whose nodes are monochromatic. We now look at restricting the range of our 

search. A subset £ of the power set of w is called HLT(K), where K can be one of P 

(perfect), PB (profusely-branching) or PP (perfectly-profuse), if given any tree of 

type K there exists a subtree of the same type which is monochromatic on a set of 

levels L E C. For example, in our proof of LP(1) we have shown that for any infinite 
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set A, the power set of A is HLT. We turn our attention now to a collection of sets 

called the Ramsey ultrafilter. 

A filter on w is a subset U of P(w) such that 

1. the empty set is not in U, but w is, 

2. if two sets A and B are in U, then A fl B E U, and 

3. ifAEUandAcB,thenBEU. 

An ultrafilter is a maximal filter. Equivalently, a filter on w is an ultrafilter if for 

all A w either A or ce/A is in the filter. The principal ultrafilter generated by the 

element a E W is the set of all subsets of w containing a. 

A Ramsey ultrafilter R.. on w can be defined by either of the following character-

izations: 

1. If w is partitioned into pieces Pk, k E w, then either one of Pk is in R. or there 

exists a set A E 1., the 'selector', such that IA fl PkI ≤ 1 for all k E w. 

2. If f: [w]2 -4 2, then there exists H E 1Z such that f is constant on [H]2. 

The following is another result from the dissertation of Yiparaki: 

Theorem 2.6 Every Ramsey ultrafilter is HLT(P). 

Proof Let 1?. be a non-principal Ramsey ultrafilter (the theorem is trivially true 

for principal ultrafilters), and T be a perfect tree colored red and green. For s E T let 

= In E w : s has 2 green successors in T(n)}. 

Case 1: G3 ER. for all sET. 
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Let Gk = flSET(k)G3, k E w. As a finite intersection of sets in IZ, Gk is also in 

Define a function f: [,] 2 - 2 as follows: 

1 iffl.EGm 
f(rn<n) 

0 otherwise 

As 1Z. is Ramsey, there exists a set H E R. such that f is constant on H. Let 

k e Hand tE GkflH. Then f(k,)= 1, and ask and l are both inH,f(m <n)= 1 

for all m and n in H. 

Let H = (h0, h1,...) (in increasing order). Choose so E T(h0). Let {3 o} = So. 

Upon having chosen S, a set of nodes in T(h1), choose two green successors in T(h +1) 

of each node in S. Let the set of nodes thus chosen be Let T = UiEw P(S). 

Then T is green on H/{ ho}, a set in 1. 

Case 2: There exists s E T such that C8 0 R. 

As C3 7?., we have that 1?, = w/G3 E 1?.. For every level n in R3, T3(n) has at 

most one green node. Let (an) be defined such that ao = 0 and T3(a) ≥ T3(a_i). 

As 7?. is Ramsey, the partition {[a, an+i) : n E w} must have a selector S in R. Let 

S fl 1? = (r : n E w). One of the sets Ro = {r2fl : n E w} and R1 = {r2+1 : n. E w} 

is found in w; without loss of generality, R0 does. Now each node in a level of R0 

has two red successors in each level of R0 above it, and the proof is completed as in 

Case 1. 0 



Chapter 3 

Profusely-Branching Trees 

The following is an analogue to the Laver-Pincus theorem, due independently to 

Laflamme and Shelah (see [11]), for profusely-branching trees. It is, in fact, analogous 

only to the one-tree case of the theorem, and it has not yet been determined whether 

the theorem holds true for any larger number of trees. 

Theorem 3.1 (Laflamme, Sbelah) Let T be a profusely-branching tree with nodes 

colored red and green. Then there exists a profusely-branching subtree T' of T and 

an infinite A C w such that UnEA T'(n) is monochromatic. 

Proof The proof consists of attempting to find a green subtree, and upon failing 

this, showing that a red subtree can be found. Let G1 be the set of nodes including 

only the root of the tree. In general, having defined in the previous step Gk, a same-

level set of nodes each of which has 2k-i immediate successors in T, we will look for 

a k-extension of Gk, satisfying: 

• for each node x € UYEGk+l T, IS(x) ≥ 2(k + 1) - 1, and 

• all nodes in Gk+1 are colored green. 

Let Gk 9 4 and let TA: be the profusely-branching subtree of T derived by removing 

all nodes in 4 that are not in Gk. 

i9 
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If this search is successful infinitely many times, the result is a set of subtrees 

{TA; : k E w} for which T' = flkE Tk is a profusely-branching tree and T'(ek) is green 

for all k € W. 

Assume instead that we have failed at some stage. Then there is a k E w and 

a level set Gk of nodes which has no green k-extension for which each node and its 

successors are (≥ 2(k + 1) - 1)-branching. In other words, for all n large enough 

so that an ≥ 2(k + 1) - 1, there exists x € Gk such that x has no k-extension into 

T(n). It follows that there is a node xo € T(lk) and an infinite set of levels A0 such 

that x has no green k-extensions into A0. We will find T', a red profusely branching 

subtree of T, in T0. We will first require a lemma. 

Lemma 3.2 Let T be a profusely branching tree. If x E T and all of its successors 

have £ ≥ 2k - 1 immediate successors and no green k-extensions into any level T(n) 

in A E [W]W, then for all n e A there exists a red £ - (2k - 2)-extension Rn of x to 

level n. Moreover, for each n € A there exists B € [A]w such that each node in R 

has no green k-extension to any level in B. 

Proof Let T be an (a)-branching tree, and let x E T(j). Let m € A; we will 

look for Rm C T(m) and B E [A]'' as described in the lemma. 

For each n € A, x has no green k-extension into T(n), and so there are at most 

k - 1 immediate successors of x with a k-extension into T(n), as any more would 

provide x with a k-extension into T(n). It follows that for some set Al € [A]" these 

will be the same k - 1 immediate successors, which we now remove, resulting in 

IS(x) containing no nodes with a green k-extension into T(n), for all n E A1. 
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As we are focusing specifically on we will also remove the at most k - 1 

immediate successors of x with a k-extension into T(m). This leaves x with at least 

a - (2k - 2) immediate successors. As a3 ≥ 2k - 1, x is left with at least one 

immediate successor. None of these successors have a green k-extension into T(m) 

or a level in A1. 

In the nth step, for n E m - j, we find, in the same way, at least a5 - (2k - 2) 

immediate successors of each of the remaining nodes in T(j + n) from the previous 

step, such that none have a green k-extension into T(m) or a level in An E If 

we let k, be the nodes remaining in T(m) after the m—j-1st step, and B = A,,_3_1, 

then they satisfy the requirements of the lemma. 0 

Upon applying the lemma to x, the resulting tree, without loss of generality, is 

(b)-branching, where 

f(a—(2k-2)) nE{j,j+1,...,m-1} 

a elsewhere 

We may now again use the lemma on the nodes in R, found in the first iteration of 

the lemma, as none have green k-extensions into T(n), for n E B. Upon infinitely 

many iterations of the lemma we are left with a tree that is 1-branching up to x and 

a - (2k - 2)-branching for all n ≥ j - in other words, a red profusely-branching 

subtree of T. 0 

Theorem 3.3 If T is a profusely-branching tree, then there exists a 2-coloring of T 

so that limn-,O,, d9 (n., T) = 1, but no green profusely-branching subtree of T exists. 

Proof Let T be a profusely-branching tree, whose branching is specified by the 

sequence (as) (i.e. each node in the nth level of T is an-branching). We define a 
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two-coloring /m of T (≥ m) as follows: 

. All nodes in T(m) are colored red. 

• If n > m and T(n) has been colored, then T(n + 1) is colored as follows. 

All immediate successors of green nodes in T(n) are colored green, as is the 

leftmost successor of each red node in T(n). All other nodes in T(n + 1) are 

colored red. 

We also define the coloring I(m ,n), ii > m, to be the restriction of Im to 

T ( ≥ ri). For future reference, note that under this coloring d9 (Ic, T) is increasing, 

and d9(k,T) = d9(Ic,T) fork > n and x E T(m). 

Claim: If x E T(m), and T(≥ n) is colored by (m,n), then d9(k, T) - 1. 

Proof of Claim: Above level n, (m,n) and Lm are equivalent, and so we show that 

limk_+ d9(k, T) = 1 under zm. It is easiest to look at the density of red nodes: 

dr tk T  x"j  

= (1 - 1/am ). (1 - 1/am+i) ... (1— 1/ak_i). 

This product converges to 0 as k approaches infinity if and only if 

= oo (see [2], page 196). As 1/at ≥ 1/b i for all i E w and some 

positive number b, this series does diverge, and so limk.. d, (k, T) = 0. It follows 

that limj_ d9(k, T) = 1, and the proof of the claim is complete. 

We can now inductively define a coloring of T which will satisfy the conditions 

of the theorem. We start by coloring T with Z(o,i). Note that under this coloring 

there are no green 2-extensions from a node in lev(1). Let 0 = Ico and 1 = k1. If 



23 

in the jth step we have colored the tree by the coloring we choose x, a 

red node in T(k3). Let k31 > k3 be chosen so that d9(k +1,T) > 1 - (l/2). Such 

a k+1 exists as limk_+ dg (k, T1) = 1. Also, for k larger than as the density 

is increasing under this coloring, d9(k, T) > 1 - (1/2)'. We rescind the previous 

coloring of T(≥ k 1) and recolor this part of the tree by +i) 

Upon completion of the induction a coloring has been constructed under which 

T contains no green subtree which above some level is 2-branching. It follows that it 

contains no green profusely-branching subtree. Also, as dg(kj, Tm,) = 1, we 

have that lim_ d9(k1) T) = 1 and finally that d9(n,T) = 1. 0 

The final theorem of this chapter will show that Ramsey ultrafilters, already 

shown to be HLT(P), are also HLT(PB). 

Lemma 3.4 Let T be a profusely-branching tree colored red and green whose 

branching is defined by (ak : k E w). Let s E T(m) and (bk : k E ci.) be such 

that 0 ≤ bk ≤ ak. Then if {s} has no green (bk)-extension to T(n), n > m, it must 

have a red (ak - bk + 1)-extension to T(n). 

Proof As {s} has no green (bk)-extension to T(n), it has at most bm - 1 imme-

diate successors with green (bk)-extensions to T(n). In other words, it has at least 

am - bm + 1 immediate successors without such extensions. By the same logic, each 

of these nodes has at least am+1 bm+i + 1 immediate successors which do not have 

green (bk)-extensions to T(n). 

By repeating this process, we get eventually to a set of nodes in T(n —1) with no 

green (bk)-extensions. In other words, at least an_i - b...1 + 1 
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immediate successors of each of these nodes are red. The set thus formed is a red 

(ak - bk + 1)-extension of {s}. 0 

Theorem 3.5 Every Ramsey ultrafilter is HLT(PB). 

Proof Let T be a profusely-branching tree colored red and green with branching 

defined by (ak) and let R. be a Ramsey ultrafilter. For s € T let 

G8 = {n E w : s has a green Lak/3j-extensi0n to T(n)}. If G3 E 1?. for all a € T, 

then the proof is similar to Case 1 of Theorem 2.6, and so we assume that there 

exists a' E T such that G3 R.. 

Let R. = w/G3 for all s E T. Then by Lemma 3.4 for each level n E R3 there 

exists a l2ak/31-extension from {a} into T(n). Let F = Is € T : R. € R}. 

Claim: If a € F, then at least 2/3 of its immediate successors are in F. 

Proof: We know that R3 is in 1., and so every level in R3 has an [2a/3]-extension 

from {s}. Each such extension must dominate a 12an/31-tuple of immediate suc-

cessors of a. As there are finitely many such f2a/3]-tuples, this creates a finite 

partition of R3. One of the parts of this partition must be found in R. (Otherwise 

the complements of the parts would be in 1?., and so would be their intersection, 

w/ R3.) The f2a/3] immediate successors of a corresponding to this part are all in 

F. 

Let R = fl8eT()nFRs. Define a mapping f: [w]2 - 2 as follows: 

f(m<n)= 
1 ifn,€R, 

0 otherwise 
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As 1?. is Ramsey, there exists H E 7?.. such that f is constant on H = {h0, h1, . . 

(in increasing order). Let M E H, and n E Rm fl H. Then f(m, n) = 1, and so 

f(k,) = 1 for all /c <t in H. As such, we can assume ho = lev(s'). 

If {s} has a 12ak/3] -extension of nodes in F to level n and a red l2ak/31-extension 

to level n, then it is easy to see that it has an lak/3] -extension to level n of red 

nodes in F. With this knowledge we can proceed to find a subtree of T which is 

(fak/3])-branching from level h0 up and which is monochromatic on H/{ ho}. 

Let {s'} = So. As {s'J. has a 12ak/3]- extension of nodes in F to level h1 and a 

red 12ak/3]-extension to level h1, it must have a fak/3]-extension to level h1 of red 

nodes in F. In the nth step, having chosen a set of nodes S,_1 g T3(h_1), each of 

these nodes, by the same reasoning, has a lak/31-extension to level hn of red nodes 

in F. Let the nodes thus chosen compose the set S,. 

The tree flflEWP(Sn) is (fak/31)-branching from level h0 up, and contains only 

red nodes in the levels in H/h0, which is a set in 1?. 0 



Chapter 4 

The Laver-Pincus Theorem for Two Trees 

In this chapter we will give a proof of LP(2) which uses the HLT-ness of a certain 

set. We begin with a Ramsey-like lemma for perfect trees. 

The proof also uses a simple kind of subtree called a path. A path p in a tree T 

is a totally-ordered subset of T such that ip fl T(n)I = 1 for all n € w. The highest 

level at which two paths p and q in a tree have a common node is called the forking 

level of p and q, or f(p, q). 

A set of paths P is said to generate a tree T if UP = T. For example, one count-

able generating set of the complete binary tree is the set of all paths representable 

by binary sequences which are eventually zero. We begin with a Ramsey-like lemma 

for perfect trees. 

Lemma 4.1 Let P be a set of paths generating a perfect tree T, and let A : P - r, 

for some r E w. Then there exist F' C P and T' C T such that F' generates T' and 

L is constant on F'. 

Proof It is sufficient, by the usual colorblindness arguments, to show that the 

lemma is true when L is a 2-coloring. Let P = {p E P : x € p}. If there exists 

x € T such that L 1(0) fl P, = 0, then P LT1(1). In this case P is colored '1' 

by A and generates T0, which is clearly a perfect subtree of T. 

If, on the other hand, for all x E T there exists p € LT1(0) fl P, then a path 

can be selected from each such set to create a denumerable subset P' of P which 
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generates T. 0 

If P = {p : i e w} is a set of paths generating a perfect tree, then let 

G(P) = {A E [W]W : Ipi E P : i E A} generates a perfect tree}. For £ and n in 

w, let Pt(n) = {k : f(pL,Pk) ≥ n}. 

Lemma 4.2 If  generates a perfect tree, then G(P) is HLT(P). 

Proof Let T be a perfect tree colored red and green, and let so, the root of T 

be colored red (without loss of generality). Let P = {po,pi .... } be a set of paths 

generating a perfect tree. We will look for a subtree of T that is red on all levels in 

a set in G(P). 

We begin by letting So = {S} and 4 = 0. In the nth step, having previously 

defined a set of red nodes S,_i C T(l...1) we look for S,-, such that S, ≥2 S,_i, 

S, T(t) for some in E P (n) (where 1c, <n is such that maxm<nf(pk,An) is 

minimal), and all nodes in S are colored red. If we are at no point impeded from 

continuing to the next step, then the tree UnEWP(Sn) is a perfect tree which is red 

on the set of levels It,, : n E W}. 

Say rather that there exists n and kn such that for all £ € Ptk (ii) there exists no 

set of red nodes Sn >2 S,_1 with S, C T(). Then for each level £ E Pik (n) there 

exists xj e Sn-i such that T() contains at most one red node. This induces a 

finite partition of P1,. As this set is in G(P), by Lemma 4.1 there exists a member 

of this partition, say K, which is also in G(P). 

In other words, there exists x E Sni such that T(k) contains at most one 

red node for all ic E K, and IN : k e K} generates a perfect subtree of the tree 

generated by P., Let k0 be the smallest element of K. Remove the red node, if it 
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exists, from T(k0). The remaining set is G0. In the nth step choose kn E K such that 

T(k) ≥ G,_1 and kn E P,,  (n) (where, again, j, < n is such that maxm<nf (Pin ,PM) 

is minimal). Remove the red node in T(k). Upon having completed this process 

we get UflEWP(Gfl), a perfect tree with only green nodes in any level in {k : ii E w} 

—a set inG(P). 0 

Theorem 4.3 (LP (2)) Let To and T1 be perfect trees, and let ® iE 2 T be two-

colored. Then there exist perfect subtrees T of To and T1' of T1 and a set of levels 

L e [w]" such that ®iE2 Ti'is monochromatic. 

Let ®4E2 T be colored red and green. Let P = {p : n E w} be a generating set 

for T1. Then by fixing a path Pk E P we can induce a coloring of To (i.e., if s E To(n), 

then s is given the coloring of (s,p(n)) in the original coloring). By LP(1) there 

must be a perfect subtree Tok of To and a set Lk E [W]w such that all nodes in T) 

for all £ E L have the same color under this coloring. If red, we write: 

p - r,Lk T k 
. 

The r is replaced with a g if the nodes are green. 

We will start by coloring the nodes in infinitely many levels of To, again red and 

green. Without loss of generality, let P0 ' T0° for some T0° C To. Color the root of 

T8 red. Let Li be minimal in L1 such that T(4) ≥2 T8(0). 

In the nth step, having in the previous step defined Ton and £,,, using LP(1), we 

will find a perfect subtree of Ton containing all nodes in T(L) and L +1 E 

such that for all s in T(L) either p, r,L1 (T'41)8 or p, (T 11)3 and color 

each s E T(t) accordingly. Let Ln+ 

'T'n+i(Dn+1) -. \ . 2 2 r7'0n+l(D 
A - 

be minimal in L 1 such that linebreak 
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Let T = flflEWTO. We will apply Lemma 4.2 to T and get a tree T and a set 

{ 4, : ri E w} on which this coloring is constant, say red. We can now find a subtree 

Ti' PC T and a set of levels L E [L']" so that Øf2 T' is colored red. To facilitate this 

process we will look at a coloring of all nodes of T1 in a level in {€k : n e w}. Color 

a node s '0' if its coloring with all nodes in T at the same level is red. Color it '1' 

if not. We know then that for n > m, ifs = Pkm (tkn) then s is colored '0'. 

We would like to find a perfect subtree of T1' colored '0' at infinitely many levels. 

This is not difficult to do: we will generate it, path by path. Let pkj. be the first 

path. All nodes of this path with a level in {lk : n ≥ jo} are colored '0'. Having 

chosen the nth path, we will choose the next one, pj', so that it branches with a 

previously chosen path with minimal highest fork. 

We end up with a tree T = UnEWPkJ and a set of levels L = {4, } such that 

T,! is colored red. 0 



Chapter 5 

Applications 

In this chapter we will look at two results, one in Ramsey theory, the other in analysis, 

which follow from LP. The first, due to Layer in [8], was originally a conjecture by 

Galvin dealing with products of the rationals. Two ordered sets have the same order 

type if there is an order-preserving isomorphism from one to the other. As such, a 

countable linearly ordered set has the order type of the rationals if it has no greatest 

or least element, and between each pair of elements it contains another. 

For example, the complete binary tree, under its 'left-to-right' ordering, has this 

order type. This ordering is defined as the lexicographic ordering of the ndoes as 

represented by their corresponding finite sequences followed by infinitely many is. 

The following lemma gives another example of how a set of this order type can be 

found. For the purpose of the proof, a left successor of a fork f is a successor of that 

fork which is itself a fork lexicographically smaller than f. 

Lemma 5.1 If the nodes of a perfect tree T are ordered lexicographically and L e 

then UflEL T(n) contains a subset with the order type of the rationals. 

Proof A set of nodes with the order type of the rationals is chosen by means of 

a nested sequence of sets: A0 c A1 C .... We choose one node which composes A0. 
Having chosen the nodes in A_1, we choose all of these nodes for An as well as other 

nodes so that in A none of the nodes in A...1 is minimal or maximal and if x <y 

are nodes in A_1 then there exists a node z in An such that x < z < y. The set 
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A = UflEWAfl has the order type of the rationals. 

Let a0 be a member of UflELT(n) with incomparable nodes to the left and right. 

Let A0 = {ao}. In the n - 1st step of the construction let A_1 have been chosen 

so that among the nodes incomparable to any of the nodes of A_1 there exist 

lexicographic lower and upper bounds of A_1 and nodes between every two nodes 

in A...1. 

If x and y are nodes in A....1, z' is incomparable to each, and x <z' <y, then 

we choose a node z between x and y such that z E UflELT(TI) and z succeeds the 

left successor of a right successor of a fork above z'. This guarantees that there exist 

nodes uncomparable to x, y, and z both between x and z and between z and y. 

Upper and lower bounds are found similarly. The set A = U EJAn has the order 

type of the rationals. 0 

Theorem 5.2 (Layer) If r is the order type of the rationals, then: 

n 

f\ 
77 77 

1 

—4 

In other words, for any finite coloring of Qfl there exist subsets Xi of Q, i <ii, with 

order type q, such that rhEn Xj receives no more than n! colors under the inherited 

coloring. 
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In the following lemma V<°° is to be read as "for all but finitely many." 

Lemma 5.3 If Zi has order type r for i <n and f : liEn Z1 — r <w, then there 

exist subsets Xi of Z1 with order type ij and m <r such that 

V<ooxo E X0.. . c/<0Oxn_i E X...1 f((xo. ... x,_)) = m. 

Proof of Lemma The lemma is proved by induction. It is true for n = 1. (It is 

easy to show that the rationals, when finitely colored, have a monochromatic subset 

of the same order type.) Assume, inductively, that we know that the lemma holds 

for n. We will prove that it is true for n + 1. 

Let Z0,. . . , Z, have the order type of the rationals, and let f: Z —+ r < W. 

Let 2<"' be ordered lexicographically. 

First we define an order-preserving function z : 2<w Z,. We will proceed to 

define order-preserving functions z : 2< Z, for i < n, satisfying a few other 

conditions, using the inductive assumption. 

Enumerate Ø 2<"' so that lev(.) <lev(.j) =' i <j. The ith coordinate of 

will be called s. For each E we will define order-preserving functions 

2<w Zi for i E n and in doing so both create a coloring for liEn 2<w and 

define functions z, i <n. In the following, let Zi,j = 

First let g, : 2<' — Z2 for all i E ii so that there exists rn0 < r such that 

V<oozo E ZO,0...V<00Zn_1 E Z0,...1 f((zo,. . .,z_,z(s))) = m0. 

Color So 'm0', and let zo(4) = g3 (s). 

For j > 0 and i E n, if si is in level h, then let g, : 2<"' - Zk,1, where k is 
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maximal such that 4 ≤ s, again so that there exists mj <r such that 

V<oozo E Z,o . . . V<00z,_i E Z_i f((zo,. . . , z,_j, z(s7))) = m. 

Color 1j 'mi'. Upon having defined functions g3i, i < n for all .' e ® iE i 2<A, define 

z(s) = g3 (s) where j is maximal such that si = S. 

By continuing this process, ad infinitum, we get a finite coloring of ® 2<", 

and by LP(n) we can find perfect subtrees T of 2<' and L E [w]" such that Øf T 

is monochromatic. By Lemma 5.1 we can find subsets Siof T(L) which have the 

order type 77 for each i E n. Their images under the functions zi therefore also have 

the order type of the rationals . It is the product of these images which satisfies the 

theorem. 0 

Proof of Theorem Apply the lemma n! times to get W1 g Zi for i <n each of 

order type 77 such that for each permutation 7r of n, there is m <r such that: 

V<Ww.(o) E Wir(0) . . . V<C&)Wlr(n_1) E W ir(n_1) f((wo.. .. W.—i)) = m,. 

Now we find Y c W with order type 77 satisfying the theorem. We do this by 
choosing {y, : j E w} successively. We choose yj such that: 

1. If y,, E 1'  for all i E n, and j,.(o) <2ir(i) <... <j 11.(_1), then f((y 0), ... y_1)) = 

mR., and 

2. {y : j E w} fl Wj has order type i. 

Notice that with the choice of y, the number of options for !Ij+i diminishes by 

a finite number (by 1). This is not sufficient to impede the choice of {y3 : j e w} 

satisfying 2. 
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If we let Yj = {y3 : j E w} fl W, then the theorem is satisfied. 0 

In the previous application, perfect trees were useful because of their connection 

with the rational numbers. In the following theorem of Harrington's, the isomor-

phism from the paths in the complete binary tree to a perfect subset of [0, 1] is 

utilized in an analytical application of LP. 

Lemma 5.4 Let (Q : i E d) be a d-tuple of perfect subsets of I = [0, 1] and for n 

in w let f and gn be continuous functions from fljEd Qi into I. Then for i in d there 

exist perfect P 9 Q, R E {<, =, >}, and a subsequence (g) of (gn) such that for 

each n and each fi'E fl1dPi, R(gt (p),f(p). 

Proof We will inductively define J1,3, for i E d and s E 2<', where J,, is a closed 

interval in Q, such that: 

1. s<t='.J,tC_J,3, 

2. s is incomparable to t = J,3 and Ji,t are disjoint, and 

3. .' E (DiEd 2<w and 1ev(i) = n = there exists a relation R e I<,=,>} such 

that for all E fliEd J,3, Rg(g(p, f()). 

We begin by enumerating ®d 2<" such that j <k if lv(á) <1ev(ái). The ith 

coordinate of sj will be called s. 

Define J3, for i < d, so that it is a closed interval for which there exists 

R3- E {<, =, >} such that for all j3 E fliEd J,, R3 (go (p), f()). (This is possible 

as go and f are continuous.) 

Having defined Ji for i in d, we define J51 where lev(1) = n, such that 
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1. ifk<j, then 4≤s=J31cJ8, 

2. if k <j and 4 is incomparable to s, then J fl = 0, and 

3. if sj € ®i 2<'' and lev(.) = n, then there exists a relation R € I<,=,>} 

such that for all € RiEd Js R,- f('))-13  

Upon finishing this induction, define J1,3 to be Ji. where j is maximal such that 

= S. 

This process induces a3-coloring (where the 'colors' are <, =, and >) of Ød 2<(. 

By LP(d), there exist perfect subtrees T1 of 2<', i E d, and A E [w ]& such that all n-

tuples in Ø 4 Ed Ti have the same coloring, say R. Let P1 = UPE(TI] flEA Ji,p(n) (where 

[Ti] represents the set of paths in T1). Then F1, (g,,, : n E A), and R satisfy the 

lemma. 0 

The following theorem was proved by Harrington (unpublished) and reformulated 

in [8]. 

Theorem 5.5 (Harrington) Let (f, n E w) be a sequence of continuous functions 

from 1d into I = [0, 1]. Then there are nonempty perfect subsets P1 of I and a 

subsequence (gn) of (f,) such that (gn) is monotonic and uniformly convergent on 

fIiEdP. 

Note In the original proof by Harrington, using a canonical version of LP, a single 

perfect subset P of I was found such that the sequence (g, : n e w) was uniformly 

convergent on pd 
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Proof To prove the theorem we will inductively choose an infinite subsequence 

(ga) of (fm) and perfect sets J,, for i E d and .s E 2<' such that 

1. ifs < t, then Jj,j ç j,3 C I, 

2. if s and t are incomparable then J fl J,t = 0, and 

3. if E ®iEd 2<'' and lev(') = n then there exists R3 such that for all n'> n, 

R<gni(p,gn()) for all p E fljEd 

We start by enumerating Ød 2<' as in the proof of the lemma. The first appli-

cation of the lemma is to It', fo and (f, : n > 0) to get perfect Ji Q, A E []( 

and a subsequence (fm) of (fm : n > 0) such that for all n > 0 and ' E liEd 4, 

R(f o (, fo(pl). 

Then we choose two disjoint perfect subsets of Ji for each i in d and call them 

Q3s and Qi, where j and k are minimal such that s and 4 are the two immediate 

successors of 4, thus completing the first step of the induction. 
In the mth step of the induction, we apply the lemma to perfect sets Q, i E d, 

or, where this has not been defined, J, defined in the £th step, where £ < m is 

to'tmaximal such that s,, = s. Through the application of the lemma we get perfect 

sets and subsequence (ft-+1 n € w) of (fm : n> 0) such that for all n and all 

P € fliEd Js, R(fm+i(p), ft- (p). We finish, if there is no k > m such that 4 s, 
by choosing two disjoint perfect subsets of J, which will be called Q3i and 

where j and k are minimal such that s and 4 are the immediate successors of s. 

When the induction is complete, we are left with a 3-coloring of ®jEd 2<, i —i R. 

By LP(d) we get A € [w]' and perfect subtrees Ti of 2<', i E d, such that ® 4 d T is 

monochromatic. 
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Let hm = g, and Pi UP E[T] flnEW Ji,p(n), a perfect set. Then we have that the 

sequence of functions (hm : m E A) is monotonic on flj€d P and therefore pointwise 

convergent, as I is bounded. Let lirnmEA h,,,() = h(x). 

It remains to show that there are perfect subsets of P on which (hm : m E A) 

converges uniformly. To this end we introduce some topological notions. A set has 

the Baire property if its symmetric difference with some open set is meager (the 

union of countably many nowhere dense sets). A function f has the Baire property 

if f 1(0) has the Baire property for every open set 0. 

Claim: The function h has the Baire property. 

Proof of Claim: We start by showing that for all open sets 0 I, h 1(0) is the 

countable union of G5 sets. Let (B : n E w) be the set of all closed intervals in 

0 with rational endpoints. Then h 1(0) = UNEW UkEW fln≥N{x : h(v) E Bk}. So 

h'(0) is the countable union of G6 sets. It is easily seen that all open sets are Baire, 

the union of countably many Baire sets is Baire, and the complement of a Baire set 

is Baire. It follows that a G6 set is Baire, as is the countable union of G5 sets, and 

so h has the Baire property. 

Claim: There exists a comeager subset H of flj€d F: such that h is continuous on H. 

Proof of Claim: Let (B : n E w) be a countable open basis for I. Choose M meager 

and U, open such that h 1(B)AU = M. Let H = fljEdt/ U M. Then H is 

comeager, and for each n, h 1(B) fl H = U, fl H which is relatively open. So ii is 

continuous on H, as suggested. 
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As H is comeager, it contains a subset fljEd P,!, where Fj is perfect, i E d. Finally, 

by Dini's theorem, a monotononic pointwise-convergent sequence of functions on a 

perfect set is uniformly convergent, and the proof is complete. 0 



Chapter 6 

Infinite Versions of the Halpern-Lauchli Theorem 

The most powerful subtree version of the Halpern-Lauchli Theorem deals with strong 

subtrees. A tree T' is called a strong subtree of a tree T if there is a function 

f : w - w such that for all x E T'(n), x is in T(f(n)), and for all x in T and 

y E IS(x, T) there exists a node z e T' fl S(!/, T). (These subtrees are "strong" 

when compared to the normal notion of subtree, which is that of any subset of a 

tree with its inherited ordering, and not in comparison to the 'closed-downward' 

definition of the subtree we have used in this thesis.) 

The Laver-Pincus strong subtree formulation of the Halpern-Lauchli Theorem 

says the following: 

If (T : i E d) is a finite sequence of finitistic trees, and øiEd T is r-

colored, r <w, then there exist strong subtrees Ti' 9 T, i <d, such that 

®iEd Ti'is monochromatic under the inherited coloring. 

This theorem cannot be extended to infinitely many trees, however. It is possible 

to partition ®, 2<"', topologized by the Tychonoff product of discrete topologies, 
iE 

into two pieces CO and C1 such that neither piece contains a perfect set of sequences. 

This is done using the Axiom of Choice. For all n E w, first give the perfect sets in 

/prodEW2<`(n) the well-ordering (P : i E 2'). Then put one element of P0 in Co(n) 

and one in Ci(n). Repeat this process, successively, with each perfect set, taking 

elements which have not been chosen previously (this is possible as each perfect set 

39 
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contains 2L elements). Now neither Co(n) nor CI(n) contains a perfect set. As such, 

neither contains a set fl1€ Ai such that IAI ≥ 2 for all i E W. We can then partition 

® iEw2<' into two pieces, Co = UnEw Co(n) and C1 = UflE Ci(n), and it is easy to 

see that there is no sequence of strong subtrees (Ti' : i e w) for which ØiE , Ti' is 

contained in one piece of the partition. 

It is seen from this example that the strong subtree version of the Halpern-

Lauchli theorem does not work for infinitely many trees, and that in order to find a 

infinite subtree version of HL it was necessary to sacrifice either the 'strength' of the 

subtrees or, if strong subtrees were to be retained, the existence of a monochromatic 

level product of the subtrees. In other words, the successful candidate would need 

either a weaker notion of the subtree or a less comprehensive product. 

The subtree formulation contrived by Halpern and Pincus weakened the idea of 

the product: 

Let (T1 : i E w) be a sequence of finitistic trees, and let ®, T = UjGp Pj, 

p < w. Then there is an f-level family of strong subtrees Ti' of T, i E 

and j <w, such that 

Vde W V°°mEw VEflT1'(n) tEflT1(f(n)) 
lEd i≥d 

Halpern and Pincus used this version to extend Theorem 5.2 in [5]. We will write 

Q for the weak infinite power of Q, that is to say all E Q' which are eventually 

zero. 

Let QW = Uj<p P3. Then there exists a sequence of sets of the order type 

of the rationals (X1 : i E w) and finite Ud g Q, for d < w , and j <p 
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such that 

Vd E W V °°Xd_1 E Xd_1 . . . V°°xo E X0 iZ E Ud such that X "il E P3. 

Two open problems exist with respect to this theorem: whether a singleton Ud can 

be found, and whether it is necessary to reverse the order of the X, i e d, in the 

last line. 

The Halpern-Pincus infinite version of the Halpern-Lauchli theorem seems to lack 

a certain esthetic appeal though. With a conjecture by Milliken in [10], the search 

for an infinite subtree version with a less awkward monochromatic level product 

continued. It was for this conjecture that the perfect tree was defined. The conjecture 

was that an infinite sequence of perfect trees, (T : i E w), with its sequences of same-

level nodes finitely colored, must have an infinite sequence of perfect subtrees Ti' of 

Tiwhose level product, for some infinite set of levels, is monochromatic. 

The conjecture, in other words, was what we have been referring to as LP(w), and 

it inspired the reformulation of the Laver-Pincus finite matrix version as LP(d). The 

infinite version was finally proved by Layer in [8]. It is not difficult to extend Har-

rington's application for LP(d) using this theorem. In fact, Layer extended Theorem 

5.5 to say the following. 

If (f : I' —f I)jEw is a sequence of measurable functions or a sequence 

of functions with the Baire property, then there exist perfect P2 C I for 
i < w and a subsequence (f) whose restriction to flEw P2 is monotoni-

cally and uniformly convergent. 

What is still lacking, though, at this point is an infinite matrix version. The 

counterexample to the posited infinite strong subtree version of Halpern-Lauchli 
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shows also that we cannot find a level product matrix version (as the subtree version 

is a corollary to the matrix version). It presents no imposition, though, to proving 

the infinite version of the theorem which was the first of this kind: the Halpern-

Lauchli theorem. We conclude our overview of this area with its most obdurate 

open problem: 

HL(w) Let (T1 : i E .ü) be a sequence of perfect trees, and let 

ME,, T = P0 U P1. Then must one of the following be true? 

1. For all k there exists a (0, k)-matrix in Po. 

2. There exists h such that for all k there is a (h, k)-matrix. in P1. 
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Notation 

Symbol Page Symbol Page  

® iEd Ti 4 IS(x) 3 

A>B .3 L(a) 12 

A>7LB 3 lev(x) 3 

(a)-start 12 n-branching 3 

(b)-extension 5 P(A) 2 

dg(T(n)) 12 F(s) 2 

d3(a,T(k)) 12 Ft(n) 27 

f(p, q) 26 S(A) 2 

G(F) 27 s(a,T(k)) 12 

g(T(n)) 12 S(a,T(k)) 12 

(h,k)-dense 6 s(T(k)) 12 

(h, k)-matrix 7 T(n) 3 

HLT(K) 16 T 3 
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