THE UNIVERSITY OF CALGARY

OBJECT ORIENTATION IN ROUTE GUIDANCE SYSTEMS

SHUI LIU

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN
PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE
OF MASTER OF SCIENCE

DEPARTMENT OF GEOMATICS ENGINEERING
CALGARY, ALBERTA

SEPTEMBER, 1996

© SHUI LIU 1996



L |

National Library Bibliotheque nationale
of Canada du Canada
‘B\:%?g;g%ﬁcaggwim mm%?:ﬁﬁtgmphiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON§ Ottawa ON K1A ON4
Canada Canada
Your fie Votre nélérence
Our fie Notre réfdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of his/her thesis by any means vendre des copies de sa thése de
and in any form or format, making quelque maniére et sous quelque
this thesis available to interested forme que ce soit pour mettre des
persons. exemplaires de cette thése a la
disposition des personnes intéressées.
The author retains ownership of the L’auteur conserve la propriété du
copyright in his/her thesis. Neither droit d’auteur qui protége sa thése. Ni
the thesis nor substantial extracts la thése ni des extraits substantiels de
from it may be printed or otherwise  celle-ci ne doivent étre imprimés ou
reproduced with the author’s autrement reproduits sans son
permission. autorisation.

0-612-20876-1

Canadi



ABSTRACT

The value of Route Guidance Systems (RGS) has been recognized since the
nineteen seventies, but only recent technological advances in computer science, positional
devices, and geographical information systems have made the practical implementation of
RGS possible.

Two of the basic issues in route guidance systems, the objectives of this research,
are road network modeling and optimal path searching.

Unlike many other kinds of data handled routinely by most information systems,
geographical data in road networks are complicated by the fact that they are encapsulated
with rich internal attributes and structural relations between components, which implies
that higher requirements for data handling mechanism are necessary. The relational data
model, which is the dominant data model used in commercial GIS, has proved to be
inadequate for road network modeling. In this research, the applicability of the object-
oriented data model is investigated, and the basic classes defined. As was expected, this
model shows its efficiencies in terms of data manipuiation, model extensibility, data

semantics, and reducing data redundancy.

Optimal path searching algorithms are here studied. In particular, the searching
spaces of D*(Dijkstra’s algorithm), A* , and BA*(Bi-directional A*) algorithms are
investigated. The relationship between the number of nodes involved in the searching
process and the accuracy of the solution in A* algorithm are examined. Finally, a new
optimal path searching algorithm is proposed and the results will demonstrat the
reliability and efficiency of this algorithm.
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CHAPTER 1

INTRODUCTION

The value of Route Guidance Information Systems (RGIS) has been recognized
since the nineteen seventies. Since then, numerous navigation related technologies have
been developed, but only the recent technological advances in computer science,
positioning devices, and geographical information systems, have made the practical
implementation of RGIS possible.

Some of the reasons for the high demand of route guidance information systems
are for the protection of human life, economy, security, and travel time management.
Some studies have shown the benefits gained by using such systems. For example, the
Organization for Economic Cooperation and Development [OECD, 1988] published a
study report on the benefits of route guidance systems which indicates that billions of
dollars are lost annually by the industrialized nations due to the lack of appropriate route

guidance systems.

A number of other studies have shown that drivers often take routes which are
longer then the optimum routes, due to a lack of knowledge of those optimum routes.
These studies conclude that on average, 6% of the total mileage driven and 12% of the
total travel time are excess travel beyond the optimum route [Yuval, 1989). In the light of
such findings, it is clear that substantial reductions in travel can be achieved, if drivers are

assisted in their route selection.

1.1 Route Guidance Information Systems

Route Guidance Information Systems can provide drivers with information
regarding the road network. They produce a sequence of routing instructions and suggest
the recommended routes to reach specific destinations.



Among many definitions of route guidance systems, Krakiwsky [Krakiwsky,
1987, Bullock, 1995 ] presented that a RGIS allows a driver to:

@ position a vehicle using signals from satellites and information
from on-board positioning devices;

(b)  plot the position on a CRT or flat panel display;

© call up a digitized electronic map of the area and see the

vehicle’s position relative to a desired location(s); and,

(d)  obtain instructions (visual and/or audio) using an expert system
on how to proceed from the present location to the desired

location.

Generally speaking, the RGIS consists of four primary modules, namely
positioning and locating module, database on road network, best route calculation, and
route guidance modules [Reginald, 1991, Lapalme, 1992].

Positioning and locating modules give answers to the question of “where am I
7. Positioning and locating are the two key technologies behind any route guidance
systems. Positioning technologies - such as GPS and dead reckoning, positioning
(coordinates) in a defined coordinate space, and establishing a vehicle’s position relative
to a particular environment, in most cases the digitally defined street network.

In order to locate the vehicle on the digital map, two map-related functions,
address matching and map matching, should be provided. Address matching determines a
street address from given coordinates, or vice versa. This step is necessary because most
people know the address of their destination rather than the coordinates. To navigate to an
address the navigation system must convert the address to coordinates in navigation

systems.



The purpose of map-matching algorithms is to find the nearest link and *“snap” the
vehicle onto that link when a positioning system outputs coordinates that are not exactly
on a road link in a digital road map.

Databases on the road network contain all the necessary environmental
information. The most common data models for the management of such data are
hierarchical, network, relational and object-oriented models. The data model used for
modeling road networks should be carefully considered because the data model, which
will be discussed in detail later, has great effects on the efficiency of the database, and
once implemented, is difficult to change. In other words, an improper data model would
have long lasting effects on the performance of the RGIS. Selecting an appropriate data
model has been one of the major concerns for the designers of route guidance information

systems.

Best-route calculation modules can provide an optimal path based on the criteria
such as shortest distance, minimum travel time, or minimum cost. Best-route calculation
requires high levels of functions provided on the road network database. The database
must at least know the directionality of each road link and turn restrictions so that the
route selected does not include any impossible or illegal turn, or travel the wrong way on
one-way roads. For the calculation of the best route, some other factors should also be
considered, which include, but are not limited to, the classes of road, speed limits,

number of lanes, and so on.

Route guidance modules provide turn-by-turn driving instructions from the
initial location to the destination once the user inputs the destination of the trip through
the user interface. As the vehicle travels, the driver knows where the vehicle is in the
route and as a turn or maneuver approaches, the algorithm alerts the driver and indicates

when the maneuver should be performed.

In brief, route guidance information systems provide the functions of positioning,
locating, best-route calculation, and guide the driver to his/her destination in the most

efficient way.



1.2 Conventional Approach and Problems

It is not the intention, in this research, to discuss all the problems related to route
guidance information systems. Instead, only two issues are going to be studied. They are
data models for road networks and optimal path searching algorithms, which are
considered to be the basic problems in route guidance systems and are still open.

a) Modeling road networks

Unlike many other kinds of data handled routinely by most information systems,
geographical data in road networks are complicated by the fact that they are encapsulated
with rich internal attributes and structural relations between components. The relational
data model is currently used for modeling road networks. This model has been widely
accepted in GIS and other information management systems because of its simplicity and
the availability of a standard language (the structured query language, SQL) for the
manipulation of the database.

Relational data model and relational database management systems were
originaily developed for conventional business data processing applications, such as
inventory control systems, hotel management, ticket reservation, accounting systems, and
so on. They are found to be effective in managing structured data found in these cases.
Attempts to make use of relational database in a variety of other applications, where data
are not conceptualized or are logically complex, have quickly exposed several serious
shortcomings of relational database technology. The reported shortcomings of relational
data model include { Taylor, 1990; Worboys, 1990, 1994]:

¢ Inadequate support for the treatment of complex objects.

The number of data types provided by a relational data model is limited. It is however
possible to represent complex objects by using this model. The First Normal Form (1NF),
which is considered the fundamental requirement of this model, forces the complex
objects to be decomposed into their component elements, until they can be described
directly by the built-in data types, or when objects are queried from the database. Those



elements have to be reassembled to construct meaningful entities. This procedure of
decomposing and reassembling complex objects to and from its elements introduces a

large overhead in both construction and query processing.
e Data redundancy

To represent complex objects using the relational data model, two or more tables
are needed. The relationships between tables are established by virtue of common data
values contained in the corresponding tables. This approach introduces great data
redundancy.

Data redundancy is one of the problems associated with relational databases. Not
only does it waste storage space and slow down processing, but it can lead to serious data
corruption. If the same details are stored in two different tables in a database, it may be
possible for the item in one of those tables to be changed, while the corresponding item in
the other table remains the same. This generates discrepancy, and there may be no way of

telling which version is correct.
o Unacceptable performance for various types of computing-intensive applications.

A relational data model tends to split data into multiple tables of files in order to
cut down on duplicated data, the tables being manually linked together using artificial
keys. The relational design process of ‘normalization’ usually means that each table can
only hold a small number of fields. Consequently, the information pertaining to a record
may be spread out over a large number of tables. For this reason, response time for
queries is weak, due to the need to access multiple tables and ‘join’ them in order to

obtain information.

To overcome the problems mentioned above, two technologies have been
proposed, namely, the extended relational data model and the object-oriented data model.

The fundamental differences between them are the basic model and the database
language. The extended relational approach starts with the relational model of data and a



relational query language, and extends them in various ways to allow the modeling and
manipulation of additional semantic relationships and database facilities.

The object-oriented approach starts with an object-oriented data model and a
database language that captures it, and then extends them in various ways to allow
additional capabilities.

One important point that must be recognized is that an object-oriented data model
is a more natural basis than an extended relational model for addressing some of the
deficiencies of the relational database technology. Object orientation has been adopted in
system analysis/design, computer programming, and information systems. These
applications have the same characteristics of being logically complex and requiring
sophisticated data modeling [Garvey, 1989; Kim, 1990 and 1995; Hughes, 1991, Olajide,
1995]. Advantages of an OOM include rich typing, inheritance, object identity, and the
encapsulation of data and operations which can be used to model road networks.

b) Optimal path searching algorithms

Finding the optimal path in a street network can be abstracted to the mathematical
problem of finding the minimum-cost path in a weighted graph. There is extensive
literature on graph-search algorithms and, in particular, algorithms to determine the
optimal paths together with their applications (Gibbons, 1985; Kuipers, 1992, 1988;
Lapalme et al., 1992; Johnson, 1977, Frederickson, 1994, Gallo, 1984, Gopal and Smith,
1990].

Generally speaking, there are two kinds of algorithms used for finding the optimal
route in a network. One is following strict mathematical steps by which the best route can
be obtained. Dijkstra’s algorithm is one of the most widely used algorithm for shortest
path searching [Dijkstra, 1959). The advantage of this approach is that the best solution
can be obtained. The negative side of this algorithm is that the running time is
unacceptable when applied to very large road networks. This is one reason why so many

alternatives exist.



Other approaches use so-called heuristics. The basic idea is to try to simulate the
methods people use when they are given the task of finding the best route. Humans can
figure out the solution quickly using a very large and complex network based on common
sense (knowledge). The characteristics of this method are that the solution obtained is not
100% guaranteed to be the best one, but close to it. However, the searching time can be
greatly reduced because it reduces the number of nodes involved in the searching process.

A* algorithm, Bi-directional A* algorithm, window-based searching, and
hierarchical structure-based searching algorithms are the typical heuristically-informed
searching algorithms.

All the algorithms mentioned above involve arc-based searching. Although these
algorithms have advantages over the Dijkstra’s (D*) algorithm, the computation time is
still a problem when these searching algorithms are applied to very large road networks.
This is because during the searching process, each algorithm creates a tree which
branches out, iteration by iteration, growing each time, extending the search from the
source node to the destination node. The major difference between the D* algorithm and
heuristically-informed algorithms is in the searching space. In heuristically-informed
algorithms, the searching space becomes elliptical in shape rather than the circular shape
associated with the D* algorithm.

Now let us examine how humans look for the best route. Generally, when a
human is given the task to identify the best route between two points on a road map, one
of the first steps performed is to look at roads which lie between the source node and
destination node, neglecting all roads which seems to take you further away from the
destination goal. Here at least two things can be learnt from this procedure: The searching
is road-based searching. So firstly, people find the best road by examining and connecting
different roads rather than different arcs or segments. Secondly, all the information,
positional and non-positional such as the class of the road, and speed limits, is used in the
searching process. This is why people can figure out the best solution in a very short time
no matter how complex the road networks are. If there is one algorithm that performs this



way, it can be sure that the computation time for optimal path will be significantly
reduced.

1.3 Objectives of the research

This research aims to solve some of the problems presented in the current route

guidance information systems. In detail, the research objectives are:
e to investigate various existing data models of spatial information systems;

s to demonstrate the advantages of the object-oriented data model over relational or
other data models when used in modeling road networks;

e to study the characteristics of the currently used optimal path searching algorithms,
especially, the road-based searching algorithm, which is based on the object-oriented
data model and knowledge-based reasoning, is proposed to reduce the computation
time for optimal path searching.

e to analyze some experimental results with simulated data. The efficiency and
accuracy of optimal path searching algorithms will be investigated.

1.4 Thesis Overview

There are five chapters in this thesis. The principal contents of each chapter are

described as follow:

Chapter 1 gives an introduction to the entire research initiative. It provides some

background information on the topic and development work covered in the later chapters.

Chapter 2 focuses on the principles and methodologies for modeling road
networks. First, a brief introduction to data models is given, and then the relational data
models and the problems of relational models when they are used for modeling road
networks are examined. Following that, the object-oriented data model will be discussed,



explaining why it is more suitable. Finally, the objects involved in road networks are
defined.

In Chapter 3, typical algorithms used for finding the optimal path in road
networks will first be reviewed and compared, and then new algorithms will be proposed,
which try to combine the advantages of existing methods and use knowledge-based
reasoning to calculate the optimal path more efficiently.

In Chapter 4, the results obtained by different algorithms will be given and
compared. Especially, the searching space of each algorithm will be studied, and the
relationship between the number of nodes involved in the searching process and the
accuracy of the “optimal path” discussed. Result analysis on road-based searching
algorithm will be given.

Chapter 5 summarizes the main conclusions and contributions of the thesis and

recommends directions for further work.
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CHAPTER 2

MODELING ROAD NETWORKS

This chapter will discuss the data models used for RGIS. It proceeds with a brief
introduction on road networks, followed by a review of the purpose and concepts of data
models so as to provide context for the following discussion of the object-oriented data
model. After a general discussion of the data models, the chapter will examine the
disadvantages of the relational data model, the dominant data model currently used in
RGIS. It then reviews the most representative approaches for improving the relational
model. Following that is the introduction of the object-oriented technology. It concludes
by describing the characteristics of the data model - object-oriented data model for road

networks.
2.1. Road networks
2.1.1 Road networks: elements and their attributes

A road network is a system of connected roads through which traffic flows. The
rate of flow is controlled by several factors such as the type of street, speed limit,
congestion, presence of traffic control devices, and so on. All of these factors can be

added to networks to realistically model movement through a network.
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a) Elements in a network:

ST TR

Figure 2.1: Elements of road network

As shown in Figure 2.1, each network contains a number of elements, among
others, links, barriers, turns, and bus stops.

b) Attributes associated with network elements:

Most of the network elements have one or more characteristics that are an
important part of the network. For example, in an urban street network, each street has a
name, speed limit and width; turns may include overpasses with either unobstructed flow
or traffic control devices; and a bus stop might have a number of people to be picked up
or dropped off.
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Impedance measures resistance to movement. Impedance is attributes of arcs and
turns. Arc impedance is the amount of resistance required to traverse the arc from one end
to the other. For example, the length of arcs can be used as the impedance; longer arcs
having a larger impedance than shorter arcs. A larger impedance indicates more resistance

to movement.

Turns also have impedance attributes. They measure the amount of resistance in
moving from one arc, through a node, onto another arc. Turn impedance will vary
according to the conditions at the intersection of the two arcs. For example, impedance of
traffic flow passing through a stop sign and moving onto another arc is greater than if

there were no stop sign.

The possible number of turns at any node is equal to the number of connecting
arcs multiplied by itself. So if two arcs connect, there are four possible tumns; if three arcs

connect at a node, turns can be made in nine directions.

All arc and turn impedance in a network must always be in the same units for

accurate calculation.

The purpose of impedance is to simulate the variable conditions along lines and
turns in real networks. The results of a route will differ according to the impedance you
assign to elements in a network data set. The optimum path is the path of least resistance.

2.1.2 The problems with the currently used data model for road networks

The database on road networks serves two purposes in Route Guidance Systems:
providing information to calculate the optimal route and giving enough information -
turn-by-turn instructions guiding the user in travel from a given point to another specified
point.

The data models currently used for modeling road networks are the hybrid
(relational) data models, which means that the relational data model is used to handle the

thematic information, while a separate subsystem is included to store and retrieve
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geometric information. The linkages between the thematic and geometric data regarding
the same object are established by unique identifiers.

In this model, the network is composed of two basic elements, links and nodes.
Nodes terminate links, links always join two nodes, and links that terminate at the same
node can be considered connected.

The drawbacks of this representation can be summarized as follows:

No intelligence: Links in this model represent road segments from one
intersection to the next. One critical characteristic of links in this model is that they are
completely independent of each other. Each segment of State Street does not “know” that
it is a part of the same street as the link connected to it. While these implicit relationships
may be derived from the data in the model, such independence makes manipulation and
analysis of the entire entity State Street less efficient. Intelligence is very important in
spatial reasoning, especially in road guidance systems whose main tasks are to search for
the optimal path and provide users with turn-by-tumn instructions. In addition, this sort of
representation necessitates redundancy ‘in the attribute data and requires more explicit

procedures to maintain integrity of the data over the entire road and network.

Architecture is not elegant: In this model, an object that has both a thematic and a
spatial component, has parts in both subsystems. In order to retrieve an object, the two
subsystems have to be queried and the answer composed. The existence of two storage
subsystems implies that query optimization is not possible to the full extent, because the
two storage managers each have their own locking protocol. Another drawback of this
dual architecture is that integrity constraints of the system can be violated. For example,
an entity’s geometric information can still exist in the geometric storage subsystem while
its thematic information has been deleted from the relational DBMS.

Route Guidance Information Systems (RGIS) are being considered internationally
as a means of managing traffic flow. The basis of this technology is a spatial database to
support the applications on which RGIS are built. While there is ongoing work
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progressing regarding the technical aspect of RGIS, such as the most effective technology
for positioning, and transmitting positional or traffic flow information, there is little
exploration of the most appropriate structure of the database.

This chapter will discuss the data models used for RGIS. It proceeds with a brief
review of the purpose and concepts of data models in order to provide context for the
following discussion of the object-oriented data model. After a general discussion of the
data models, the chapter will examine the disadvantages of relational data model, the
dominant data model currently used in RGIS. It then reviews the most representative
approaches for improving the relational model. Following that is the introduction of the
object-oriented technology. It concludes by describing the characteristics of the data
model - object-oriented data model for road networks.

2.2 Data Models

The choice of an appropriate representation for the structure of a problem is
perhaps the most important component of its solution. For database design, the means of
representation is provided by the data model. A data model provides a tool for specifying
the structural and behavioral properties of a database and ideally should provide a
language which allows the user and database designer to express their requirements in
ways that they find appropriate, while being capable of transformation to structures
suitable for implementation in a database management system [Tsichrizis, 1982]. Data
modeling is among the first stages of database design. The purpose of data modeling is to
bring about the design of a database which performs efficiently; contains correct
information (and which makes the entry of incorrect data as difficult as possible); whose
logical structure is natural enough to be understood by users; and is as easy as possible to
maintain and extend. Of course, different problems require different means of
representation and a large number of data models is described in database literature
[Chen, 1976, Data, 1990, Frank, 1989, Herring, 1992, Hull, 1987, Goodchild, 1992,
Usery, 1993].
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Among many definitions of a data model, Codd [1981] presented that a data

model consists of three components:

1. A collection of data object types ( essentially the entities that form the database
structures).

2. A collection of general integrity rules, which constrain the set of instances of those
object types that can legally appear in a database. A data model often requires
integrity constraints because the components defined in the data model are usually
application specific.

3. A collection of operators, which can be applied to such object instances for retrieval

and other purposes.

A database system can be distinguished from others by the data structures and the
operators it presents to the user. The user of a relational system sees the data as tables.
Operators within and among tables are supported by relational algebra. Basic operations
include table union, difference, intersection, selection, projection, etc. The user of non-
relational systems sees other data structures. Those other structures, in turn, require other
operators to manipulate them. For example, in IMS, which is a hierarchical system, the
data are presented to the user in the form of a set of tree structures, and the operators
provided for manipulating such structures include operators for traversing hierarchical
paths up and down the tree.

The spatial database represents real world objects as seen by an application. Its
design often evolves through the hierarchical processes of conceptualization of reality in a
data model - conceptual model, which incorporates only these properties thought to be
relevant to the application or applications at hand; the structuring of this model being in a
computer-representable format - logical model; and the design of a file structure for the
storage of the structured data - physical model.

While logical designs of databases depend very much on different application
situations, actual designs have been dominated by a single model: the relational model.
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During the past three decades, DBMS have evolved from hierarchical, network to
relational databases [Lee, 1990]. Today’s most popular commerciai DBMS, namely,
Oracle, Sybase, Ingres, Arc/Info, etc., are all based on relational data models [Ullman,
1988].

2.3 Relational data model and its limitations
2.3.1 Relational data model

The fundamentals of the relational model were presented by E.F. Codd in a classic
paper [Codd, 1970]. The mathematical formalism underlying the relational model is
based on set-theory.

From the point of view of a user or database programmer, a relational data model
consists of named tables (relations). Rows of these tables are called tuples, while columns
are called attributes. Entities are represented by tuples of attribute values. Associated

entities have attribute values in common.

Tables are always normalized, that is, the construction of relational tables is
guided by the so-called normalization rules, in order to restrict redundancy, so that each
entry in a table is a single value, never a set of values. Thus information is represented in
a simple, general, and uniform way, which greatly simplifies the tasks of updating,
factoring out redundancy, finding inconsistencies, and generating reports.

The manipulation language of relational tables, called SQL, has been standardized
and is now commonly used for specifying reports from relational databases. There are

two different kinds of notations for expressing operations on relations:

a) Algebraic notation, called relational algebra, where queries are expressed in a
procedural manner by applying specialized operations to relations. The relational algebra
consists of a collection of eight operations that can be grouped in two categories [Data,

1990]: (i) the basic operations on sets that apply to relations: union, intersection,
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difference, and cartesian product, and (ii) the special relation operations: select, project,

join, and division.

b) Logical notation, called relational calculus, where queries are expressed in a
declarative manner by writing logical formulas that the tuples in the answer must satisfy.

2.3.2 Problems with relational models

The relational model of representation has been most widely accepted because of
its simplicity and the availability of the standard query language (SQL) for the
manipulation of the database. Various commercial systems are also available in the
market (e.g., DB2, Oracle, Ingres, dBase, etc), but this model is more suitable for the
management of non-spatial data and conceptual information, such as business
applications. However, when they were applied in type-rich applications, where data are
not conceptualized or logically complex, they began to show insufficiencies in terms of
manipulation efficiency, model extensibility, data semantics, and architecture [Lee,
1992].

Manipulation Efficiency

Efficiency refers to the speed by which data can be manipulated. There are several
reasons why a relational database is slow under certain circumstances. One of them is
due to the requirement that all relations must be in the INF: nested relations are not
allowed and the value of any attribute must be atomic (simple, indivisible) and a single

value.

The INF assumption is fundamental to relational models, and the separation of
related data into different tables is dictated by rules for good design in relational
databases, mainly to avoid problems in updating. As a result, complex objects with rich
information have to be decomposed into elementary items in order to fit into the entries
of a relational table. When these objects are queried from the database, the system has to
reassemble those items to construct meaningful entities. This nature of operation can

negatively affect the efficiency of the system. Complex spatial objects are encapsulated
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with rich internal attributes and structural relationships between components.
Decomposition introduces a large overhead in both construction and query processing.

Data Semantics

Semantics in a database refer to the meaning of data attributes and relations. A
data model that can relate data together but does not maintain the meanings of these
linkages lacks semantics.

A data model rich in semantics must distinguish between different types of
relations, which is particularly important for providing useful integrity constraints and an
environment for database browsing. In spatial data modeling, three relationships, namely
classification, generalization, and aggregation, are of particular interest to us.
Classification is a form of abstraction that groups several objects, according to their
structural and behavioral properties, into a common class. Generalization is the grouping
of several classes, which share common properties, into a higher order class. This process
highlights the similarities of several classes and hides their differences. This mechanism
is very useful when there is a need to store properties common to several classes.

Aggregation is the forming of complex objects from its component objects.

The different types of relationships required in spatial data modeling are more
than the above three. The relational data model cannot distinguish these relationships
because it provides only two constructs for representing relationships; one within a table
and the other across tables through common values. This leads to semantic overloading
[Hull and King, 1987] indicating that a single construct must support several types of
relationships thus causing an ambiguity in meaning.

Model Extension

" A data model that provides a limited number of data types and does not allow the
creation of new types by the user is called inflexible. In a relational database, several
built-in data types such as integer, real numbers, and character strings, are usually
provided. Above them are the relations, the only type-like constructs that a user can
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define. They are however not true types because they cannot be used in the same way as
the built-in types. For example, relation can reference an atomic value but cannot

reference another relation.

The INF assumption is directly responsible for this deficiency because it does not
allow nested relations. For this reason, aggregations are expressed in the form of queries
which require the users to “navigate” or jump from one relation to another. The problem
with this schema is that the user must possess complete knowledge of the relations in

order to form the queries, a task often difficult for the general user.

Architecture

The relational model lacks appropriate mechanisms for data structuring so that
data concerning a single object are not decomposed into different structures, e.g.,
thematic data in relational structure and geometric data in another structure, leading to the
use of different database management systems for the same object, which, in tum, first
makes the query optimization to the extent of the whole system impossible, and secondly,
may violate the integrity constraints of the system.

It can be seen that spatial information systems exemplify the situations where rich
object type and complex data items present challenges. The discovery of the
shortcomings of conventional database has provided impetus for people to search out
better models for improving expressive power and structural flexibility. The new data
model must incorporate solutions to many of the problems outlined above in order to

meet the requirements of current and newly emerging database applications.

To meet the requirements of new complex database applications, two approaches:
evolutionary approach (extended relational data model) and revolutionary approach
(object-oriented data model) have been suggested. The evolutionary approach is to extend
the relational model with a set of fundamental OO concepts (complex objects, abstract
data types, access methods, and the encapsulation of data with methods), found in most
object-oriented programming languages. The database language that embodies the united
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object-relational paradigm should be an extension to SQL. The database language should
then be embodied in a wide variety of host programming languages. This type of
OODBMS integrates well with existing relational database and provides a smooth flow of

data between engineering and business applications.

The revolutionary approach is to extend object-oriented programming languages
by allowing programming language objects to be persistent and sharable, that is, stored as
a database, as well as permitting other database functions, such as transaction,
management, and limited query facilities. The result is an object data model for which
there exists no unique formal proposal but a variety of system-dependent data models.

Compared to extended relational data model, object-oriented data models,
according to Won [Won, 1990], are more natural for addressing some of the deficiencies
of the relational database technology previously outlined; for example, support for
general data types, nested objects, and support for compute-intensive applications. The
basic concepts of object-orientation will be discussed in detail in the following section.

24  Object-Oriented Data Models -

Object-oriented approaches originated in programming languages such as Simula
and Smalltalk. The application of object-oriented ideas to databases was spurred on by
the apparent limitations of traditional technology when used in some of the newer
applications. Typical examples are the applications of databases in computer-aided design
(CAD), office information systems (OIS), software engineering and geographical
information systems (GIS). A common difficulty in all of these application areas is the
gulf between the richness of the knowledge structures in the application domains and the
relative simplicity of the data model in which these structures can be expressed and
manipulated. Object-oriented models have the facilities to express more readily the
knowledge structure of the original application.

2.4.1 Basic Concepts in Object Orientation
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Object orientation offers a number of new concepts and techniques, not available
in conventional data models. Object orientation concepts such as object classes, functions
encapsulation, inheritance and polymorphism greatly facilitate spatial modeling,
including the relationships among the components, objects and tasks to be performed and
conditions to be met [Blais et al., 1996].

Objects

In object-oriented modeling, all conceptual entities are modeled as objects. An
object has state, exhibits well-defined behavior, and has a unique identity. The state of an
object is defined or described by properties or attributes, but unlike a relational structure,
such properties are not restricted to non-decomposable data types and may in fact be

objects themselves. The behavior of an object is defined as a set of operations.

The data and operations are encapsulated within an object. It is usually important
to associate the appropriate functions with the entities to avoid logical complications in
the information processing. Data encapsulation is also called data hiding because access
to a given set of data structures is restricted to a list of functions explicitly specified by
the designer [Blais e al., 1996].

What makes objects powerful is that they can contain other objects as well.
Objects that contain other objects are known as composite objects. Objects can be as
simple or as complex as the application demands; more complex objects can be
constructed from combinations of existing objects which can, in tum, be simple or

complex objects.

Because objects can be composed of other objects, object-oriented languages can
represent information in the way one naturally thinks about it. Even a complex, deeply
nested structure can be treated as a single, unified object. Since that complex object can
have its own behavior, other objects can use it with very little awareness of its internal
complexity. This approach not only keeps things simple, it can also make complex things

simple as well.
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The way objects interact with each other is to send each other messages asking
them to carry out their methods. A message is simply the name of an object followed by
the name of a method the object knows how to execute. The object that initiates a
message is called the sender and the object that receives the message is called the

receiver.

From this point of view, an object-oriented system, then, consists of some number
of objects interacting with each other by sending messages to one another. Since
everything an object can do is expressed by its methods, this simple mechanism supports

all possible interactions between objects.

Polymorphism is the ability to produce different responses by different objects to
the same method. It is so important that it’s considered one of the defining characteristics
of object-oriented technology. The key benefits of polymorphism are that it makes objects
more independent of each other and allows new objects to be added with minimal
changes to existing objects. These benefits, in turn, lead to much similar systems that are

far more capable of evolving over time to meet changing needs.
Classes

A class encapsulates the methods and variables to be included in a particular type
of object. The descriptions of the methods and variables that support them are included
only once, in the definition of the class. The objects that belong to a class, called
instances of the class, contain only their particular values for the variables.

Inheritance is a mechanism whereby one class of objects can be defined as a
special case of a more general class; automatically including the method and variable
definitions of the general class. Special cases of a class are known as subclasses of that
class; the more general class, in tumn, is known as the superclass of its special cases. In
addition to the methods and variables they inherit, subclasses may define their own
methods and variables and may override any of the inherited characteristics.



23

Classes can be nested to any degree, and inheritance will be automatically
accumnulated down through all the levels. The resulting tree-like structure is known as a
class hierarchy.

Data Abstraction

The process of creating new data types is known as data abstraction. Object-
oriented technology provides extensive support for data abstraction. The technology not
only allows a programmer to create new data types on the fly, it actually treats these new
types as though they had been built into the language.

In a conventional data model, the entities of interest and their relationships are
defined at the record or tuple level. For instance, a tuple is related to another tuple
through a foreign key. These are not very useful concepts in describing geometric
features. The object-oriented data model provides concepts closer to an application
domain. The five basic concepts of abstraction upon which the object-oriented data model
is built are: object definition, classification, generalization, association, and aggregation.

Object definition is the fundamental abstraction needed in the object-oriented data
models. Each object has a type which may be referred to as object type or abstract data
type. Defining objects is perhaps the most important task in object orientation data
modeling, as everything else is based on this abstraction.

Classification is a form of abstraction that groups several objects, according to
their structural and behavioral properties, into a common class. Generalization is the
grouping of several classes, which share common properties and operations, into a higher
order class called superclass. Specialization is the reverse of the generalization
abstraction mechanism, and it specializes a class (superclass) into a subclass. Subclasses
will have all the properties of their superclasses and can have their own propertes.
Inheritance could be single or multiple. Single inheritance is when a subclass is derived
only from one superclass, while multiple inheritance is when a subclass is derived from

more than one superclass.



24

Aggregation is the forming of complex objects from its component objects.
Association describes the logical relationship between classes. In this case, the associated
objects are referred to as members. An example of an association of objects which is not
a classification of them might be: the set of all things which are red or the set of things

which weigh more than one ton.

Utilizing the above techniques, complex problems in GIS can be modeled much
easier and their relationships can be represented in a more natural way than can be done

using conventional data models.
2.4.2 Object-oriented data model

Object-oriented data model in GIS is designed using some object-oriented
methodology. It is an object-oriented DBMS with Abstract Data Types (ADT). Compared
to relational data model, this approach is more complex but more flexible and extendible
[Blais, 1996]. In this architecture, objects are the basic operating units which encapsulate
both the spatial and non-spatial data, as well as all the functions related to the objects.
Under this structure, spatial data and nén-spatial data are directly handled by a general
purpose DBMS. There is no question about the function of data storage, retrieval,
integrity or maintenance. Developers of object-oriented GIS concentrate only on spatial
data specific functions like graphics rendering, position-based query and interpretation,
which are usually part of the user/development layer. While there is a lack of standards in
general-purpose object-oriented information systems, which is partly responsible for the
fact that standard OO query language (comparable to SQL) is not yet available; therefore
making a true object-oriented implementation difficult at the moment; people have
already started testing these systems for geographic applications. Two great
characteristics in this model are summarized as follows:

a) A real-world entity, no matter how complicated it is, can be represented by exactly
one object; implying that no artificial decomposition into simpler parts should be

necessary due to some technical restrictions.



25

As shown in Figure 2.2 the mapping of real world objects is 1:1 to objects in the
object-oriented data model, whereas it is 1:N to conventional data models. This is to say,
one object in real world corresponds directly to one object in the object-oriented model,
while to represent the same real world object in conventional data models, several
computer records and files may have to be used. In this way, the object-oriented data
model captures the semantics of real world objects more directly in a database [Karimi
and Lee, 1995].

object
object-oriented
1:1
Real world
record-oriented
I:N
-
file, record

Figure 2.2: Object-oriented vs. Record-oriented data models

b) Object-oriented data models consist of individual objects that collaborate,
following well-defined patterns of interaction, to produce the desired behavior. It
is analogous to a human organization, in which each member assumes certain
responsibilities, and the members cooperate with each other to perform activities
[Qian, 1996].
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The key benefits of object technology are: a better representation of the user’s real
world, reuse, uniformity, and increased productivity with enhancement of software
quality. These benefits can contribute significantly to the successful exploitation of GIS.

Elegant architecture

Objects can be used to describe the user’s real world. This facilitates the
understanding of the user requirements. The OO approach emphasizes a more intuitive or
natural representation of the data, i.e. one that mirrors the user’s view of their
information. It helps to close the semantic gap between real world objects and concepts
and their representation in the system. Through the use of composite objects, class
hierarchies, and other structures, object-oriented technology can effectively represent the
increasingly complex information. The fact that object-oriented structures reflect the way
people naturally organize and understand the real world means that the richer structures

make information more accessible, not less.

Faster development and high quality

Object-oriented technology can speed development because of the following three
separate techniques: building software out of standard objects, reusing existing models of
corporate processes, and replacing conventional development phases with rapid
prototyping. High quality stems mostly from the fact that the programs are assembled out
of existing, proven components rather than being written from scratch every time.

Better performance

Object-oriented systems generally give better performance when complex objects
and complex relationships must be dealt with. This is because object-oriented technology
supports the treatment of complex objects. In an object database, complex structures are
represented by composite objects, that is, objects which contain other objects. These
component objects can contain other objects in turn, and so on, allowing structures to be
nested to any degree.
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Composite objects do not literally contain other objects in the sense that one
object is physically stored inside the other. Rather, composite objects contain the address
of their component objects, allowing them to be accessed quickly when needed. There is
no need to break up large objects for storage in normalized tables and then reassemble
them at run time via slow joining operations. This is especially true when objects have
complex geometry. It is claimed that the graphics performance can be 10 to 1000 times
faster than its relational equivalents [Graham, 1991].

Compared with an object database, storing complex objects in a relational
database is tedious at best. It is like having to disassemble your car each night rather than
just putting it into the garage!

Potential concerns about object-orientation

While object-oriented technology promises many benefits, there are some valid
concerns about its ability to deliver those benefits.

Even though it has been around for over twenty years, object-oriented
programming is not yet stable technology. While some of the basic principles are clear -
built for reusability, model real-world systems, and maximize modularity, to name three -
the actual techniques and procedures for applying these principles are not well
established. A body of rules comparable to structured programming will be required in
order to provide guidance and discipline in object-oriented development efforts.

There is also a shortage of good tools for supporting object-oriented development
efforts. These tools include programs to assist in the design of objects, manage libraries
of reusable objects, and also design and maintain data-input forms and reports.

A standard OO query language comparable to SQL is not yet available, and
current query languages for object-oriented systems are more complex than standard
SQL, which makes true object-oriented implementation difficult at the moment. From a
development point of view, C++ is definitely qualified to be a query language, but it is
not appropriate for general users of the system. Object Management Group (OMG) is
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targeting the establishment of Object SQL (OSQL), which is a database programming
language that combines an expression-oriented procedure language with a high-level,
declarative, and optimizable query language.

Other problems with object-oriented systems include concurrency, schema

evolution and object integrity, etc.
2.5 Modeling Road Networks

This section describes the data models for a navigable database to support Route
Guidance Systems. The basis of this technology is a spatial database that supports the
applications on which RGIS are built. While there is ongoing work progressing regarding
technical aspects of RGIS, there is little exploration of the most appropriate structure of
the database.

This section proceeds with a brief review of the purpose and concepts of data
models to provide the basis for the following general discussion of the data models, and
then the object-oriented data model is introduced, and finally, the objects defined in road
networks will be described in detail.

2.5.1 Description of the currently used data model

The data model is an abstraction of the real world, and it reflects decisions about
what features and relationships are necessary to represent in a database. It must
effectively replicate the way that users of the database conceptualize the road network. In
this case, the database and data model refer to the geographic database that represents
spatial entities, e.g. roads, and relationships between them, and how to relate non-spatial
attribute information to the spatial objects.

The data models currently used for modeling road networks is the relational data
model. In this model, the network is composed of two basic elements, links and nodes.
Each link starts and ends at a node while nodes only occur at the ends of roads or road

intersections. They can also represent a change in attributes between intersections. This



29

might occur, for example, if a road name changes along its route. Figure 2.1 illustrates the
link-node structure.

One critical characteristic of links in this model is that they are completely
independent of each other. Each segment of State Street does not “know™ that it is a part
of the same street as the link connected to it. While these implicit relationships may be
derived from the data in the model, such independence makes manipulation and analysis
of the entire entity State Street less efficient. In addition, it necessitates redundancy in the
attribute data and requires more explicit procedures to maintain integrity of the data over
the entire road length.

In summary, it is too simple, as a model, to represent road networks. This is
because it is very difficult to describe the complex relationships between objects defined
in the road networks without data redundancy. When the road network is very large, data
redundancy is a major concern in the design of the data model. The second problem is
that a lot of useful information for calculating the best route is not included in this model.
That information is very important for improving the efficiency of an algorithm. It will be
seen that in the object-oriented model, all the information and relationships between the
objects, no matter how complex they are, can be expressed in a natural way, and therefore

has a positive effect on the search time for the best route.
2.5.2 Object-oriented model for road networks

In an object-oriented system, every element of a feature can be perceived as an
object. Objects must contain, embedded within the instance variables and methods,
sufficient information, relations, and functionality to support spatial analysis and query.

Components of an object

In the object-oriented model, an object may contain the six elements represented
in Figure 2.3 [Tang, 1992].
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Figure 2.3: Representation of object in object-oriented data model

The inclusion of these six elements in an object can enhance the holistic
representation schema for real world phenomena. The unique identifier is system-
generated for each object in the database. Explicit object identifiers are not required.
Object identifiers listed in tables and figures in this research are used for illustration and
descriptive purposes. The positional or geometric information is usually represented by
coordinates. Non-spatial attributes data is characteristic of features such as the name and
number of lanes of a road. Topological relations are relations among geometric objects
such as boundaries, neighbors, and interior. Non-topological relations are non-geometric
links between features (Rugg, 1988) such as is_a, a_kind_of, above and part_of relations.
For example, a highway is above a river; and a river is part_of the county boundary.
Methods embedded in each object are used to perform actions such as creation of new

object instances, queries, computation, and display.
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Object types defined in road networks

Based on the analysis of the functions provided by Route Guidance Systems, six
fundamental geometric objects have been defined in this data model. They are point,
node, arc, road, Master_node, and Master_edge.

The data part of point is described by a single x, y coordinate and a sequence

number or PointID.

node_4

O O O node_3
node_1 node_

node_2

Figure 2.4: Structure of object node

Nodes indicate the endpoints and intersections of arcs which connect a sequence
of segments (e.g., intersections connecting street segments). A node is an endpoint of an
arc. The from-node is the first vertex in the arc, the to-node is the last vertex. Together
they define the direction of the arc. A node is shared by the set of arcs which connect to
each other at the node. The data part of the node object should include at least the
following information: NodelD, Node_name, spatial data related to this node,
relationships with other nodes (topology), the number of nodes connected to it, and their
NodelDs, classes and speed limits as well as the directionality of the road segments
connected to node_i. It also should include the times taken to pass by this node from
different directions; an important factor to be considered in searching out the optimal path
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(minimum travel time), as well as the method part of the node object which includes all
the functions that can be applied to the data. The graphic representation of the node object
is drawn below.

Arcs form the basic unit from which route systems are built. An arc is a
continuous string of x, y coordinate pairs beginning at one location(starting node) and
ending at another(ending node).

vertex_n

F_node T_node

Figure 2.5: The structure of object arc

Arc-node topology defines connectivity-arcs that are connected to each other if
they share 2 common node. This is the basis for many network tracing and path-finding
operations. Object arc inherits some of the data and behaviors defined in the object node
in addition to the data structure and behavior defined uniquely for itself. The arc object
can be viewed as a complex object composed of objects point and object node. It is an
aggregated object.

Road is a collection of arcs. It is a complex object constructed from the objects mentioned

above. As an object, road has its own data structure and built-in methods.

/am\ -
(=g —- :p/ \d:

Figure 2.6: Road as a composite object of arcs
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Master_node and Master_edge are objects which are collections of the roads
related. They are actually the abstraction of a sub_networks. Master_nodes are connected
by Master_edge. The super_network which consists of Master_nodes and Master_edges
is represented graphically in Figure 2.7.

LA

S —————  Master_node
- Master_edge

Figure 2.7: Object super_network consisting of Master_nodes and Master_edges

The definition for any classe includes two parts: variables and methods, or
functions. For example, an arc class includes the following variables: arcID, arcname,
representing the ID, name, and number of lanes this arc has; startnodeID, endnodelD,
representing the IDs of the two end nodes for this arc; arcbelongID, and arcindex_num,
representing the road this arc belongs to, and the number of points included in this arc.
The main functions include: Read( ), Write( ) for reading and writing data about the arc;
GetTdis( ), GetTtime( ) for calculating the length of this arc and caiculating the time
taken to travel along this arc from the startnode to the endnode. The basic structure of

class arc is represented in Figure 2.8.

class arc : public node

{
public:



int arclD;

char arcname[m];
int arclanes;

int arcarcindex_num;
int arclist{fmm];
int arcbelongID;
int startnodelD;
int endnodelD;
void Display(void);
void Read();

void Write( );
double GetTdis( );
double GetTtime( );

------

Figure 2.8: The basic structure of class arc.

Listed in the following are the basic structures for class point, node, road,
master_node, and master_edge.

Class point
{
public:
int pointID;
double X_COor;
double y_coor;
int GetpointID(void);
double Getx(void);
double Gety(void);
double Getd(point * ptl);
}
Class node : public point
{
public:

int nodelD;
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char nodename[m];
double X_coor;
double y_coor;
int index_num;
int index_list[n];
int arcclassID[n];
int Mtime[mm][nn];
void Read(void);
void Write(void);
double Getd( node * ptl);
double Getnpd( point * pt2);
}
class road : public node
{
public:
int roadlD;
char roadname[m];
int roadindex_num;
int nodelistID[n];
int arcindex_num,;
int arclistID[mm];
void Display(void);
void Read(void);
void Write(void);
double Road_k( node * pt1, node * pt2);
double Road_alfa( node * ptl, node * pt2, node * pt3, node * pt4);
double Road_pd( node * pt1, node * pt2, node * pt3, node * pt4);
double Road_od( node * ptl, node * pt2, node * pt3, node * pt4);
node * Searchnode(node * ptr);
double Roadparameter(node * ptl, node * pt2);
}

class M_node : public road

{
public:



class M_edge : public road

{

------

public:
int
char
int
int
int

......

M_nodelD;
M_nodename[m];
M_nodeindex;
M_nodelistID;
M_exitnodeindex;
M_exitnodelistifmm];
M_roadindexnum;
M_roadindexlistiD[n];

Display(void);

Read(void);

Write(void);

D*algorithm(node * ptl, node * pt2);
A*algorithm(node * ptl, node * pt2);
BA*algorithm(node * ptl, node * pt2);
R*algorithm(node * ptl, node * pt2);

M_edgelD;
M_edgename[m];
M_edgeindex;
M_edgelistID{mm];
M_exitnodeindex;
M_startnodelID;
M_endnodelD;

Display(void);

Read(void);

Write(void);

D*algorithm(node * ptl, node * pt2);
A*algorithm(node * ptl, node * pt2);
BA*algorithm(node * ptl, node * pt2);
R*algorithm(node * ptl, node * pt2);

36
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All the objects defined above communicate with each other to perform activities
according to the patterns defined within the objects. From the description above it can be
seen that any entity in the real world, no matter how complex it is, can be described by
just one object in the object-oriented data model, which captures the semantics of the
complex objects and also simplifies the query process of the complex objects. This is
because any information related to the complex object can be obtained without carrying
out the reassembling procedure which is a necessary step in the relational data model
when complex object query problems have to be dealt with.

Hierarchy and relations of fundamental geometric objects

The hierarchy and representation of the primitive geometric vector objects in an

object-oriented data model are shown in Figure 2.9.

A Master_node , which is a complex object, consists of a set of roads. A road is a
sequence of non-intersecting arcs. Each contains a begin node, an end node, and a series
of points. The begin_node or end_node is a node. A node is a topological junction
specifying the geometric location of one or more arcs. In this model, a node has a node
identifier and inherits the properties and methods of a point, where a point is a zero-
dimensional object that specifies the geometric location and unique identifier within the
map. This facilitates the construction of topological relations between objects. A point
has a point identifier and stores the x and y coordinates of the point. The z coordinate of
an object is optional depending on the type of object and application.
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lPoint_ID l lX_coord l LYr_cootdj | Z_coord |

Figure 2.9: Hierarchy of fundamental objects in networks

Compared to the currently used data models, the object-oriented approach has
positive advantages by providing a model for real world feature representation. Apart
from the topological relations among geometric elements, an object in the OO model also
includes non-topological and semantic relations among objects which are missing in the

traditional GIS model. This model enhances the representation of features in a holistic
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way since each object can describe the total information about a location and the relations
with other features for a specific application. This enhancement can ensure a more
complete digital representation and spatial description of geographical phenomena. More
meanings of geographical features can be captured in this sort of database because the
mode] allows incorporation of complexities of spatial data and relations in the database.
With the use of an object-oriented approach, the design of user-defined types and
encapsulation of data and functions within the object make the digital representation of
complex spatial features possible and practical.
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CHAPTER 3

OPTIMAL PATH SEARCHING ALGORITHMS

In recent years there has been a great deal of interest in minimum path algorithms.
This is especially true in the field of in-vehicle route guidance systems (RGS) where there
is a definite necessity to calculate the minimum path route from an origin to a destination

quickly and accurately.

Due to the time constraints inherent in in-vehicle RGS, the minimum path
algorithms used tend to be of a heuristic nature, having no guarantee of finding the
optimal solution. The objective of this chapter is to illustrate the principles behind

proposed RGS minimum path heuristics.
3.1 Introduction

The implementation of route guidance systems (RGS) has renewed interest in
algorithms that identify minimum paths. One of the key components of RGS operational
tests is the ability to calculate minimum path routes from an origin to a destination in an
efficient and timely manner. Over the past thirty years, a number of researchers have
studied minimum path algorithms for applications in such diverse fields as transportation
models and circuit board design (Pohl, 1971, Van Vuren, 1988, Rilett, 1994]. Although
all minimum path algorithms have the same basic structure, the wide variety of objectives
and constraints for each application has resulted in a number of different algorithms and

heuristics for solving the minimum path problem.

The issue faced by RGS developers is how to identify the best route from one
origin to one destination given the underlying constraints of the traffic network. The
definition of “best” is subject to interpretation, and this chapter addresses problems in
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which travel links are defined exclusive of road type. As evidenced by current RGS field
tests in North America, Europe and Japan, a number of researchers have recently
investigated the theoretical and application issues involved in implementing computer
algorithms in solving the above problem. However there has not been a complementary
increase in the published research on the techniques used. Though there have been some
papers discussing empirical results, no corresponding information has been provided on
the algorithms themselves [Kuznetsov, 1992].

This chapter discusses the standard algorithms that are applicable to RGS and
illustrates some of the trade-offs faced by the RGS path selection developers. The first
section of this chapter examines the structure of the standard minimum path algorithm,
that is, Dijkstra’s algorithm, while the second part of this chapter examines the so-called
heuristics-informed searching algorithms; considered the most suitable for RGS
applications. This is followed by an introduction to a new algorithm - Road-base
searching. Examples will also be given to show the features of different algorithms.

3.2 Dijkstra’s algorithm (D* algorithm)

The traffic network through which minimum paths are to be found is defined by a
directed graph G(N, A) that consists of a set of nodes N (n elements) and a set of arcs A
(m elements). Each directed arc connects a node i with a node j and has an associated cost
Cij. For traffic networks this arc cost is always positive and finite. In this research it will
be assumed that arc (or link) cost refers to the arc travel time, although any generalized

cost may be used.

Dijkstra’s algorithm assumes that the graph is connected; that is, each origin-
destination (O-D) pair has at least one directed path connecting the nodes, and this path is
of finite length.

The main decision variables are the arcs that make up the minimum path for a
particular O-D pair and the associated minimum route travel cost. The route cost from the

origin to a particular node n is defined as L(n) and this route cost is referred to as the
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“label” of a particular node. The inputs to the algorithm include, among other attributes,
the directed graph and the positive, finite travel time cost for each arc.

Dijkstra’s algorithms can be used to find the minimum distance from the origin
node to all the nodes of the network. If there is a need to find the optimal path, one node u
to another node v, the best way is to run Dijkstra’s algorithm with u as the origin node
and stop when we deduce the distance to v.

Figure 3.1: Intermediate stage during the execution of Dijkstra’s algorithm.

The essence of Dijkstra’s algorithm is that the minimum distance from the source
to other nodes in the order of minimum distance, that is, closest nodes are discovered
first. As Dijkstra’s algorithm proceeds, a situation like what is demonstrated in Figure 3.1
happens. In the graph G there are certain nodes that are settled, that is, their minimum
distance is known; this set always includes s, the source node. For the unsettled nodes v,
the length of the shortest special path is recorded, which is a path that starts at the source
node, travels only through settled nodes, then at the last step jumps out of the settled

region to v.

A value L(u) for every node u is mmntamed. If u is a settled node, then L(u) is the
length of the shortest path from the source to u. If u is not settled, then L(u) is the length
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of the shortest special path from the source to u. Initially, only the source node s is settled,
and L(o) = 0, since the path consisting of s alone surely has distance 0. If there is an arc
from s to u, then L(u) is the label of that arc. Notice that when s only is settled, the only
special paths are the arcs out of s, so that L(u) should be the label of the arc 0—> u if there
is one. INFTY serves as an “infinite” value and indicates that no special paths have yet
been discovered, that is, initially, if there is no arc s--> u, then L(u) = INFTY.

Now let us suppose we have some settled and some unsettled nodes, as suggested
by Fig. 3.1. We find the node v that is unsettled, but has the smallest L(v) value of any
unsettled node. v will be settied by:

e accepting L(v) as the minimum distance from s to v.

o adjusting the value of L(u), for all nodes u that remain unsettled, to account for the

fact that v is now settled.

The adjustment required by step(2) is done as follows. The old value of L(u) with
the sum of (v) and the label of the arc v--> u will be compared, and if the latter sum is
smaller, we replace L(u) by that sum. If there is no arc v—->u, then we do not adjust L(u).
For the convenience of programming, listed below are the details for each step in finding
the shortest path by using this algorithm. The algorithm proceeds in the following
manner:

o STEP 1: Set Lo =0, Ln = infinity (for all nodes rather than the origin)

o STEP 2: Place the nodes that have been examined (finite labels) in ascending order.

o STEP 3: Select the node with the lowest label (travel time). This is node i. Note
that by definition there cannot be a faster route to get to node i from the origin

node o. Set the node i.

e STEP 4: Identify the arcs emanating from node i identified in step 3.

e STEP 5: For each arc ij identified in step 4, calculate the cost of traveling to node
j from node i.
Ly =Li+Cjj
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This algorithm was run on a simulated network which consisted of 75 links and
56 nodes . As seen in Figure 3.2, the origin is located at node 12 and the destination is
located at node 32. The dark nodes represent the nodes where their minimum path from
the origin to them have been found before the minimum path to node 32 was found, and
the red line connecting the origin and the destinations represents the optimal route. There
are a number of points worth noting about the algorithm.

The algorithm, although guaranteed to identify the optimal route, is somewhat
inefficient in that the minimum paths to many nodes are calculated which are not on the
minimum path from node 12 to node 32.

The logic of the node selection step in which the node with the lowest estimated
travel time is chosen results in the search fanning out equally from the origin in all
directions. Techniques to increase the efficiency of the algorithm and its speed will be the

focus of the next section.
3.3 Heuristically-informed searching

The application of heuristics implies using additional knowledge which will aid in
solving a problem. The goal in many instances is to speed up the time it takes to arrive at
a solution as compared to using strict algorithmic approaches. This of course is of

paramount importance, considering the patience levels of most potential users.
3.3.1 A* algorithm

The Dijkstra’s algorithm is inefficient when operating in a one-to-one mode, due
to having to search outwards in all directions from the origin. This inefficiency was
recognized very early by a number of researchers who developed techniques to help
constrain the search.[Hart, Nilsson and Raphael, 1968, Nicholson, 1966]. The general
strategy was to change the order in which nodes were examined such that the nodes that
had a higher “likelihood” of being on the minimum path were given priority over those
with a lower “likelihood”. The algorithm developers attempted to quantify the likelihood
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of a particular node being on the minimum path by “not only considering how far the
node was from the origin but also its direction from the origin”.

As an example of this last point, consider the previous problem of finding the best
path from node 12 to node 32. Intuitively, a node that is 3 km east of node 12 should be
examined before a node that is 2.5 km west of node 12. The challenge is to develop a
method whereby this likelihood is antomaticaily reflected in the labels that the nodes are

assigned during the minimum path search.

The A* algorithms have basically the same structures as the D* algorithm. The
difference lies in step 5 where the label for a particular node is calculated. The modified
step is illustrated below.

STEP 5: For each ij identified in step 4, calculate the estimated cost of traveling to

the destination node k from node i using node j.

Lj’ =Li + Cij + e(.k)

If Lj’ < Lj then place arc ij on the minimum path to node j and update the label of

node j Lj =Lj").

where e(j, k) = the estimated cost of travel from node j to destination node k.

These A* algorithms require a good estimate of the cost from a particular node j
to the destination node k. This projected cost is then combined with the calculated cost of
traveling from the origin node i to node j. The result is an overall estimate of the
minimum travel time from the origin node i to the destination node k using the
intermediate node j. Intuitively, nodes that lie between the origin and destination would
then be examined before any nodes that do not. The general result is that the search area
becomes elliptical in shape rather than the circular shape associated with the D*
algorithm.

There are a number of ways to estimate the travel cost in step 5 above. It can be
shown that if the estimated cost of travel calculated within the A* algorithm is a lower
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bound (i.e. it always equals or underestimates the true cost of travel), then the A*
algorithm will always find the minimum path.

The logic of the A* algorithm is best demonstrated with respect to Euclidean
networks (those where the arc lengths are equal to the Euclidean distance between the
two nodes) and where the objective is minimum travel distance. As discussed above, the
label of a node calculated in step S is comprised of the calculated distance from the origin
to the end node and an estimated distance from the node to the destination node. In the
A¥* algorithm the estimated distance from node j to the destination node k is set to the
Euclidean distance from node j to the destination node k as shown in equation [1] below.

E(j.k)=\/(x j‘xk)2+(y _;“'Yk)z ........... (1)

where: E(i, j)is the cost of travel from node j to destination node k (the Euclidean
distance), Xx;.X; are the x coordinates of nodes j and k; )’,-' Y, are the y coordinates of

nodes j and k, respectively.

Note that by definition e(j, k) is a lower bound (there will not be a path from node
j to the destination node k that can be shorter) and therefore the algorithm is guaranteed to

converge.
Objective: Identify minimum path from node A to node B
Given: Link distance, minimum path from A to Cand from A to D
Node D A C B
o O~ O 9
Distance 0 10 22 40
Label( for D*) 10* 0 12 infinity
Label (for A*) 50 0 30* infinity
* Next node to examine

Figure 3.3: A* example network
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Figure 3.3 demonstrates this step graphically. The objective of the search is to find
the minimum path from node A to node B. It may be seen that the label of node D has
been identified as 10 km (distance from A to D) and the label of node C (distance from A
to C) has been identified as 12 km. In the standard D* algorithm the label of nodes C and
D would be 12 and 10 km, respectively. Node D would be therefore be examined next
because it has the smaller label.

However, in the A* algorithm the label of node D would be 50 km, which is
calculated by adding the distance of 10 km from node A to node C and the estimated
distance of 40 km from node D to node B. The Iabel of node C would be 30 km (12 + 18).
In the A* algorithm node C would be examined next even though it is farther from the
origin than node D. Selecting node C over node D intuitively makes sense because node
C would appear to have a higher likelihood than D of being on the minimum path from A
to B. The end result is that the algorithm tends to search outward from the origin in a
more elliptical, rather than circular manner, where the major axis of the ellipse is the

straight line between A and B.

Figure 3.4: Example of A* algorithm

Figure 3.4 represents the results of the A* algorithm for the same O-D pair (origin
12 to destination 32) in the simulated road network that was shown in Figure 3.2. It may
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equally between both searches would be the simplest method, it is not the most efficient.
The best strategy involves identifying the minimum path search that has the fewest nodes
which have been examined but has not had the minimum path identified. That is to say,
the computational effort is concentrated on the search having the least nodes to examine
and sort during each iteration. Intuitively, the search that is in a sparse area of a network

will get priority.

boowarrpsacpoayans

behocetocebosonce

Figure 3.5: Example of BA* algorithm

Figure 3.5 represents the results of the Bi-directional A* algorithm for the same
O-D pair (origin 12 to destination 32) in the simulated road network that was shown in
Figure 3.1. It may be seen in Figure 3.5 that the number of nodes involved in the
searching process is greatly reduced.

3.3.3 Searching within a window

This method is conceived by imagining how humans might attempt to solve a
particular problem based on the common sense. A good example related to route
determination is utilizing the additional information of how the crow flies (i.e. Euclidean
distance) between s and t. Generally, when a human is given the task to identify the best
route between two points on a road map, one of the first steps performed is to look at
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roads which lie between s and t, neglecting all roads which seem to take you further away

from the destination.

Dijkstra’s algorithm, as described above, creates a tree which branches out,
iteration by iteration, growing each time, branch by branch, extending to the next closest
node to s and then the next closest and so on. As described above, it is strictly
algorithmic. In the context of graph search methodology, it is considered as a breadth first
searching procedure. In a directive sense, if one could narrow the search down to a
particular corridor (buffer) of possibilities, which has a high likelihood of containing the
optimal route, then the solution could be arrived at much more swiftly.

The idea of searching within a window was proposed in 1991 by Karimi [1991].
This method when applied will first examine the number of nodes in the road network. If
the number is less than, say 3000 (the time taken for searching the best route by using
Dijkstra’s algorithm, in this case less than 45 seconds, which is thought to be acceptable),
Dijkstra’s algorithm will be applied to the whole network; otherwise, a window will be
defined according to the distance and the direction of the two end points. Then, the D*
algorithm will be applied in the defined window.

The steps used to calculate the optimal path in window-based searching are as

follows:

1. Get n the total number of nodes

2.If n <H_value
{ -
Call D* algorithm; exit
}

else

{
Compute the straight line distance between the two given nodes (d);

Create a rectangular window (H_Window) with: width = 0.5d and length =
1.5d (the straight line between the two nodes lie on a line joining the mid
points of the widths).

}

3. Extract the sub_network nodes within the rectangle.
4. Create an an adjacency list of the sub_network.
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5. Call D* algorithm.

Window_based searching starts with comparing the size of the underlying
network with the H_value. (The H_value is a predetermined value of the number of
nodes. The network sizes below this number result in acceptable running times.) If n is
smaller than the H_value, the D* algorithm will be invoked. Otherwise, the H_window
will be defined according to the two given nodes.

The next step is to extract the sub_network within the H_window and its
adjacency list. In the extraction process, only the links which entirely lie within the
H_window will be considered. This method ensures that a smaller network is used in
real-time computation. The size of the H_window should be fixed in such a way that the

total number of intersection nodes inside the window does not exceed the H_value.

Figure 3.6:. Searching within a window.

In window_based searching, the number of nodes involved in the searching
process can be reduced by ignoring the nodes outside the defined window, and the
searching process is executed within the window. Window_based searching, like other
heuristic algorithms, connot guarantee the best solution but it ensures a good solution
within an acceptable computation time[ Karimi, 1991].

When using this approach, three problems should be considered and solved. The
first one is how to ensure that the total number of intersection nodes inside the H_window
does not exceed the H_value. The number of nodes within the H_window depends on two
factors: the distance between the two given nodes and the density of the roads in the road
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network. It is very difficuit to control the number of nodes covered by the H_window if
no further measure is taken. Another concern is the relative error of the solutions of this
approach. The relative error of the solutions depends on whether the fixed H_window
size of 0.5d x 1.5d contains an adequate subnetwork. Generally, the larger the window,
the better the solutions.

Finally, when this method is applied to the network each time, a temporal
database needs to be generated, so the total time taken to get the solution is the sum of the
time to generate the temporal database and the time to search for the best route. For larger
and more complex road networks, the process to generate the temporal database which
includes extracting the subnetwork and creating the adjacency list, will take a

considerable time.

Basically the principle of window-based searching is the same as that of D*
algorithms. The only difference is in the searching area. The searching area in window-

based searching is a rectangular window - a subnetwork of the original road network.
3.3.4 Hierarchical structure-based searching

The hierarchical structure is built by selecting a set of connected edges in the
graph, and then having them form a connected sub-graph representing the next higher
level [Car and Frank, 1993(a) and 1993(b)]. This process can be repeatedly applied to
form a multi-level hierarchy. The selection is based on the classification of the streets

according to levels like interstate highways, freeways, and local roads, etc.

Let us suppose the objective of the search is to find the optimal path between start

node a and end node b; the searching process is as follows:

First, the road network is organized into different levels. Adjacent levels have
nodes in common. These nodes are exits and entrances to the higher or lower level. The
first level is the subnetwork composed of the highways represented in Figure 3.7 by the
segments in bold lines, and the second level is the subnetwork composed of state



54

highways and freeways represented by solid segments, while the third level is the network
itself, which means that all the segments in this graph are included.

To start with, determine the level k. This is the highest level; aand b are in (k =
min(a, b)). Find the nearest node of node a and b in this level, which is a and c. Find path
a-->c by Dijkstra’s algorithm, and apply the D* to a lower level network to find the
optimal path from node b to node c. Finally, the best route from a to b can be obtained,
which is the combination of the optimal paths from a—>c and c—->b.

Figure 3.7. Searching using “Hierarchical Structure”.

To search for the optimal path between the two given nodes using this approach,
D* algorithm will be applied to different road networks. The searching time for the
optimal paths will be reduced by using the “hierarchical structure” approach because of
the classification of the road networks. The larger the networks, the more advantageous
this approach will be shown. The negative side of this approach is that different databases
corresponding to different kinds of road leveis should be established, which is definitely
not an appropriate way from the point of view of saving storage space, especially when

road networks are quite large.
3.4 Road-based searching

A new approach, named road-based searching, has been proposed recently in this
research. This approach is based on the object-oriented data model of the network and
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knowledge-based searching. In this model, several kinds of classes (objects) which
include point, node, segment, road, Master_node, and Master_edge for modeling the road
network have been defined. The major difference between this method and the methods
mentioned above is that in the searching process much more knowledge is used, which is
something badly needed for improving the efficiency of any kind of route searching
algorithms. The information which is used in the searching process includes, but is not
limited to, spatial related information such as position, direction, non-spatial information
of the roads (such as speed limits, number of lanes, classes of the roads) as well as all
kinds of relationships among nodes, segments and roads. The largest unit considered
when moving the search from the current node to the next node is “ a road” or “part of a
road” instead of “segment”, which is the largest unit in segment-based searching. It is the
first time a road is treated as a whole unit in the optimal path searching process. The

searching steps are summarized as follows:

1. Road selecting: The algorithm will first examine the positions of the given nodes
(relatively origin node and destination node), calculating the distance between the two
nodes and its direction. Secondly, it examines some of the roads in order to locate a
road (or part of a road) which best fits the distance and the direction of the given
nodes. The selecting process is based on the properties of the roads and the

information of the given end nodes.

Some of the factors that should be considered or the rules that should be followed in

the process of road selecting include:

Direction of the road: The smaller the difference of the directions between the
selected road and the straight line formed by linking the two given nodes, the more
priority the road will be given.

Average speed of the road: The larger the speed, the more priority will be given to the
road.
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Distance covered by the road: If two roads have the same direction and average speed,
the one with a longer projection on the line formed by the origin to the destination
node will be given more priority.

Straightness of the road: This value could be the ratio of the actual length of the road
to the Euclidean distance between the two selected points (which are closest to the
origin and destination node respectively) on the road.

Average distance between the selected road and the line formed by the two given
nodes.

Figure 3.8 gives an example explaining why road No.2 is chosen instead of No. 1 if
one road must be selected from the given two roads as a part of the optimal path from
node A to node B.

Road No.1

o destination

.....

......
-------
.......
........
......

origin D/_ / \

Road No.2

Figure 3.8: Some of the factors considered in the process of road selecting

2. Bridging the gaps: After the first step, a number of roads (or a number of parts of
roads) are selected. All these roads are not required to be connected to each other,
which means that a gap between neighboring roads is permitted. The gaps between



57

the roads are bridged by the optimal paths obtained by applying D* algorithm or A*
algorithm to the road network.

3. Combination: The resulting route is the combination of the selected roads and the
optimal paths connecting them.

When this algorithm is used to find the optimal route between two given points,

the “intelligence” and “better space reasoning” of this searching method will help to get

the right solution in much less time.

, C ting roads b
Road selecting is based on o&}'ﬁ pa%hs oblai:ed by
its properties and relative D* or A* algorithms

relationships to the origin
and destination nodes

Figure 3.9. Road-based searching

An example is given below just to illustrate the efficiency of this approach. To
find the optimal path between node O, and node 34, 42 iteration times are required by
using A* algorithm while only two iteration times are needed by using the road-based
searching method.

A number of examples will be given to show the features of the different
algorithms mentioned above and the results of the selected “optimal paths” are also
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compared with each other to demonstrate the relationship between accuracy and the
searching time.
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CHAPTER 4

IMPLEMENTATION AND RESULT ANALYSIS

The purpose of this section is to summarize the basic features for each algorithm,
and analyze their advantages and disadvantages. First, the data structure used in the
existing RGS systems to store the road network data will be illustrated, and then the
features of different algorithms will be summarized. The results of representative
algorithms for optimal path searching will be given and compared.

4.1 Data structure used in the existing road networks

Right now, the data structures used to store the road network data are rather
simple. Under this structure, only node and segment-related data are stored in the
database. Data used to caiculate the optimal path include spatial and non-spatial data such
as the coordinates of the node, the ID and type of road the segments belonging to, as
well as the topology of the nodes. Some data such as turn impediments and average speed
of the road, which are related to the calculation of the optimal paths - paths with the
minimum travel time are not included in this data structure. In other words, this kind of
data structure can only be used to calculate the optimal path - path with the minimum

distance.

The data structure used in the existing RGS system to store all the Calgary road
network data is illustrated in Figure 4.1. In this structure, feature head, feature segment,
and feature node are singly linked list structures with the following declarations [Karimi,
1991]:



Feature head Feature segment

— Feature node

Figure 4.1: The data structure for the storage of the road network RGS system

structure Feature_Segment

{

int Feature_code;

char Feature_type;

char Sub_feature_type;
char Name[m];

char Street_type{n];

char Feature_direction[n];

Feature_Segment * Next_Segment;

structure Feature_node

{

int Feature_code;

int Sequence_number;
int Section_number;

int Node_number;

char Node_type[m];

int X UTM;

int Y UTM;

int Address_before_left;

int Address_before_right;
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int Address_after_Jeft;

int Address_after_right;

int Cross_reference_feature_code;

int Cross_reference_sequence_number;

Feature_node *Next_node;

structure Feature_head

{
Feature_Segment * Next_Segment;
Feature_node * Next_node;

It is clearly seen from this structure that data related to the turn impediment are
not included. Actually, the type of intersection and the number of intersections of the road
are some of the major factors that should be considered in the shortest path ( path with the

minimum travel time) searching.

Considering that the objective of this research is to search for the optimal path -
path with minimum travel time rather than the path with minimum distance, more
information such as turn impediment, average speed and the number of lanes of each road
should be added to the database. Two simulated road networks are used here to
demonstrate the features of different optimal path searching algorithms.

4.2 Searching space in D* algorithm

As mentioned before, the D* algorithm can be used to find the optimal paths from
the origin node to any other nodes of the network. This section will point out the major
features of this algorithm by summarizing the results obtained in this research.

Let us first review the general structure followed by the standard D* minimum
path algorithms.

e STEP1 - initialization
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Set the label of the origin node to 0. The label of all the other nodes is set
to infinity.
Ln = infinity; LO=0

o STEP?2 - decision logic
Choose a node i. For all arcs ij emanating from node i:
Check arc ij, if
Li+cij<Lj thenLj=Li+cij.

Step 2 examines all of the arcs emanating from node i. If using these arcs allows
the vehicle to travel to any node j faster then the current “best” route to node j,
then arc ij is placed on the minimum path from the origin node o to node j and the
label of node j is updated.

e STEP 3 - stopping criterion
Repeat step 2 until no arcs satisfy the inequality.

The major variation between the different algorithms pertains to the manner in
which the nodes in step 2 are identified and selected for examination. It is this step

selection process that gives rise to the different algorithms and their respective attributes.

The basic premise of this algorithm is that during each iteration the “set” section
of the minimum path tree expands by one node. The reliance on selecting the node with
the lowest label is the reason that this algorithm is sometimes referred to as the shortest
first algorithm.

There are two important points to be noted regarding the operation of this
algorithm. The first point is that if only a particular minimum path route between an
origin and a single destination is required, the algorithm can be stopped as soon as the
label of that destination node is set. This type of operation is often referred to as one-to-
one mode. Consequently, this algorithm may be used in RGS where the objective is to
find a2 minimum path from a given origin to a single destination for an individual vehicle.
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The second point to note is that if the minimum path tree is required from one
origin to all possible destinations, then exactly n-1 iterations of the algorithm are
requireéd. This relationship arises because exactly one label is set at each iteration.

This algorithm, although guaranteed to identify the optimal route, is somewhat
inefficient because the minimum paths to many nodes are calculated which are not on the
optimal path from the origin node to the destination node. This is evidenced by the
circular nature of the solution. Two typical examples are given below just to show the

general case when D* algorithm is applied to a network to find the optimal path.

Figure 4.2 shows the searching area before the optimal path (minimum distance
path represented by the red line) from node 12 to 22 has been found. All the nodes with
the length of optimai path less than the optimal path length from node 12 to node 22 are
searched before the solution has been found.

32

Figure 4.2: Example of D* algorithm

Figure 4.3 shows the searching area and the nodes examined before the optimal
path (which is defined as the path with the minimum travel time represented by the red
line) from node 12 to node 22 was found. All the nodes with the travel time of the
optimal path less than the travel time of the optimal path from node 12 to node 22 are
searched before the solution has been found.
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Figure 4.3: Example of D* algorithm
A lot of computation has demonstrated that when this algorithm is applied to a
road network for optimal path searching, the searching area is “a circle” centered at the
origin node with the radius (L) equal to the cost of the optimal path from the source node
to the destination node, which means that all the optimal paths of the nodes with the cost
less than L will be calculated.

Destination node: D

: Cost of the optimal
path fromSto D

The area covered by
the road network

Figure 4.4:Searching space in D* algorithm
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Figure 4.4 demonstrates the feature of this algorithm graphically. It shows the
relationship between the searching area and the area covered by the road network. One
point that should be noted is that the cost of the optimal path could be the minimum
distance, minimum travel time or whatever cost defined by the user.

If the bi-directional searching method is appiied to the network, the searching
space will be limited to the smaller area shown in Figure 4.5, which suggests that the
efficiency has been improved a little bit by this approach.

Sourcenode S Destination D gearching space by Bi-
directional D* algorithm

L: cost of optimal
path in D* algorithm

Searching space
by D* algorithm

Area covered by road network

Figure 4.5: Relationship between the searching spaces in D* and Bi-D* algorithms

4.3 Result analysis on A* algorithms

4.3.1 Searching space in A* algorithm

A* algorithm is an improved approach to the D* algorithm, in which the
searching space is greatly reduced because of the fact that additional information is used
during the searching process. From the studies on A* algorithms, it can be concluded that
by using this algorithm the searching area becomes elliptical in shape rather than the
circular shape associated with the D* algorithm.
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Figure 4.6 is one of the typical examples showing this feature, where the objective
is to find the optimal path from node 12 to node 32. The searching space will be the
whole area covered by the network in the case where D* algorithm is used for the optimal
path. However, the searching space is constrained within the elliptical area
(approximately) in A* algorithm.

32

Figure 4.6: Example of A* algorithm

Searching space in
Source node: S A* algorithms Destination: D
Area covered by the road network

Figure 4.7: Searching space in A* algorithm

The studies have shown that when A* algorithm is applied to road networks, it
tends to search outward from the source node in more of an elliptical rather than circular

manner where the major axis of the ellipse is the straight line between the two end nodes.
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The relationship between the searching space and the area covered by the road network is
represented by Figure 4.7.

The relationship between the searching spaces in A* and BA*( Bi-directional A*)
algorithm is represented by Figure 4.8.

Searching areas in Siarchin_g space in
BA* algorithms A¥* algorithms

The area of the road network

Figure 4.8: Relationship between the
searching spaces in BA* algorithm and A*

These two figures show graphically the advantages of A* algorithms over the
corresponding D* algorithms when used in optimal path searching.

4.3.2 Relative error analysis on A* algorithm

When A* algorithm is used, the search spéce is much more limited than that used
in D* algorithm. One of the concerns of this approach is if it is possible to get the right
solution by searching the limited area using A* algorithm. A series of sensitivity analyses
were performed to illustrate some of the issues involved using A* and B_A* algorithms
to calculate optimal paths for RGS applications. In particular, the relationship between
the number of nodes involved in the searching process and the accuracy of the solution
was examined for A* algorithms as compared to the D* algorithm.

The challenge for RGS developers is to identify the appropriate functions to
estimate travel cost for their particular applications. As stated previously, the minimum
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paths required by most RGS are based on travel time. In this research the estimated cost
of travel is represented by equation [2] where the estimated travel cost to node k from
node j is in time units.

2 2
J(x--xk) +(y:~yy)
EGk)="V 3 ik / .............. @
€

where: y, = estimated speed.

Note that because link travel times in traffic networks are non-Euclidean (i.e. a person
can travel further on one route but arrive earlier than if a person had chosen an alternative
route) there is no guarantee that equation [2] gives a lower bound. However, as long as
v, is greater than any link travel speed on the network, then the estimated travel time
will be a lower bound - it may take longer but never shorter than the estimated straight
line travel time. This implies that the algorithm will be guaranteed to find the optimal

solution.

To formalize this, suppose we de;lote by L the actual cost from the source node S
to the destination node D and denote the estimated cost of the optimal path by L’; then
there is the theorem saying that “ if L S L’ for every node n, the A* algorithm will always
find an optimal path.

The appropriate value of y, is probably best estimated based on empirical tests
for each network. One could choose an unrealistic speed (i.e. 200km/h) that would
guarantee convergence but this could add significantly to the computation time. It should
be noted that as the value of , approaches infinity, the estimated travel time tends
toward O and the A* algorithm is effectively the same as the D* algorithm. As the value
of y, approaches O, the reverse occurs and the estimated travel time takes on greater
importance. The end result is that the solution space is significantly constrained and the

probability of finding the optimal solution is reduced. In the latter case, however, the
algorithm is computationally faster because of the constrained search space.
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Two figures are given below to show the relationships between the number of
nodes involved in the searching process, the average speed used in A* algorithm, as well

as the accuracy of the solution.

No. of nodes involved
in the searching
60 d
so +
40

30

20 Average speed used

10 in A* algorithm
] | 1 ! ] L
10 40 70 100 130 160

Figure 4.9: Relationship between the number of nodes involved in
the searching process and the average speed used in A* algorithm

Figure 4.9 shows a graph of the number of nodes involved in the searching
process as a function of the average travel speed used in the estimated travel time. The
number of nodes involved in the optimal path searching process by D* algorithm is 56,
which is the special case where the average speed is equal to infinity. It can be seen from
this figure that the number of nodes increases as the travel speed used to estimate travel

time increases. This pattern would be expected because as the value of average speed

increases, so does the search area.

Although the A* algorithm heuristics are superior to the D* algorithm in terms of
computation time, it should be remembered that they are not guaranteed to find the
optimal solution.
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Figure 4.10 shows a graph of relative error versus average travel speed used in A*
algorithm. In this context, the relative error is defined as the increase in O-D route travel
time, as identified by the A* algorithm, as compared to the optimal O-D route travel time,
as identified by the D* algorithm.

Relative error(%)

60 —
50 T

40
30

20 Average speed used

in A* algorithm

10

10 4o 70 100 130 160

Figure 4.10: The relationship between relative
error and average travel speed used in A*

The relative error in travel time ranges from O to 58%. As would be expected, the
relative error decreases as ), increases and this decrease seems subject to exponential
function. The reduction in relative error is due to the fact that the search area increases as

average speed increases and therefore, the probability of finding the optimal route also

increases.

From an analysis of Figures 4.9 and 4.10, it may be seen that for the simulated
road network an average speed of 70 km/h is appropriate for the A* algorithm. This
would result in an approximate 60% decrease in computation time, as compared to the D*
algorithm, and a relative error of approximately 1.0%.

4.4 Result analysis on road-based searching
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In this section, the road-based searching algorithm is applied to the road network
shown in Figure 4.10 to calculate the optimal paths. The relationship between the
iteration times and relative error was examined for the road-based searching algorithm as
compared to the D*, A*, and BA* algorithms. Considering that window-based searching
and hierarchical structure-based searching methods, which are derived from D*
algorithm, have the same characteristics as that of D* algorithm in terms of searching
space and efficiency, the results of these two methods are not listed in the following
tables.

4 9 14 19 24 29
34
38
A
3 4 gt 33
8 53/ 5556 |13 |18 23 28
7
2 32
12 17 22 27
1 6 31
11 16 21 26
0
5 10 15 20 25 30
Speed Limits: =~ -—=—————— ———— e
90 km/h 50-km/ 30 km/h

Figure 4.10: First simulated network
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Listed in the following four tables are the results by D*, A*, BA* and road-base
searching algorithms for different routes. One thing that should be mentioned here is that
the average speed used in A* and BA* algorithm is 70 km/h, which is considered the
most appropriate speed making A* algorithm get to the right solution with minimum
examined nodes. The relative error of the result for A* algorithm is dependent on the
selected average speed.

Table 4.1: Result comparison for route from 10 to 29

Algorithms i—;sé;;";i;sjn “he | arion times (Tl;f::sl)ﬁme Relative error
23,24,29
A* algorithm Same as above 24 0.21667 0%

10, 15, 20, 21, 22,
BA* algorithm | 23, 24,29 8 0.21667 0%

Road-based | Same as the result of
searching D* algorithm 3 0.21667 0%




Table 4.2: Result comparison for route from 6 to 28

. List of nodes in “the Travel ti
Algorithms opt;:lalnp ath"m Iteration times (hr:::s)ume Relative error
23,28
A* algorithm | Same as above 17 0.21750 0%
BA* algorithm | Same as above 8 0.21750 0%
Road-based 6,7,12,17,22,
searching 27,28 3 022583 | 3.8%
Table 4.3: Result comparison for route from 2 to 34
. List of nodes in “the L. Travel time | Relative error|
Algorithms optimal path” Iteration times (hours)
. 2,3,4,9,14, 19
D+ algorithm ? 92" 7y BT BT 0.21944
gori 24,2934 50 0%
A* algorithm | Sameasabove 19 021944 | o%
BA* algorithm Same as above 10 0.21944 0%
Road-based 2,7,12,17,22, 2
27,32,33,34 0.22778 3.8%

searching

73
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Table 4.4: Result comparison for route from 46 to 32

Algorithms gpf“ﬁ;;";f,m "B | Lteration times Eh':,‘:sl)ﬁme mm;
D* algorithm ;g: 23 ;g el B 0.18478 | 0%

A* algocithm | Same as above 16 0.18478 | 0%
BA* algorithm | Same as above 9 0.18478 | 0%

Road-based 46,52, 13,12,17,

searching 2227 32 2 0.20200 | 9.3%

It can be seen from these examples that in some cases the “optimal path” using
different algorithms is the same; the only difference is in the iteration times for different
algorithms. Iteration times for D* algorithm are much more than those of A* and BA*
algorithm.

The BA* algorithm is more effective than A* algorithm. This is evidenced by the
number of nodes examined in the searching process. A lot of calculations have shown
that the computation time in BA* algorithms is usually reduced up to 50% when
compared to the A* algorithm. Although these examples show that the relative error for
BA* algorithm is 0%, it does not mean that the optimal paths are always 100%
guaranteed using this algorithm. An example shown in Table 4.5 is given to show this

case.
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Figure 4.11: Second simulated network
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Table 4.5: Result comparison for route from 60 to 29

Algorithms List of nodes in “the . Travel time Relarive error
g optimal path” Iteration times (hours)

60, 59, 58, 57,0,

D*algorithm | 12,7, 12,17, 18, 69 0.3472 0%
19, 24,29

Atalgorithm | game a5 above 26 03472 | 0%

‘BA* ithm

A* algorithm | . 59,58, 57,0,

5. 10, 15, 20, 21,
.23, 24.20 16 0.3680 6.0%

60, 59, 58, 57,0, 1,
Road-based 2,3,4,9, 14,19,
searching 24,29 2 0.3597 3.6%

Compared with the results obtained by using other algorithms, road-based
searching algorithm always has the least iteration numbers. The larger the network, the
larger the difference of iteration times w111 be. Here the number of iteration times is the
measurement of efficiency for different algorithms. The D*, A* , and BA* algorithms
will examine all the nodes involved in the road network once during each iteration and
the road-based algorithm will examine all the roads included in the road network. The
computation time will approximately be the same in both situations. Compared to D¥,
A*, and BA* algorithms, road-based searching algorithm is more efficient in terms of

searching time.

The optimal paths are not 100% guaranteed in using the road-based searching
algorithm. However, the solutions are always close to the best ones. This is evidenced by

the accuracy of the road-based searching, which ranges from 0% to 9.3%.

Road-based searching process is guided by spatial and non-spatial information,
which is the major feature that distinguishes it from others. It integrates all the beauties of
other methods. During the searching process it examines “roads” rather than “‘segments”
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because of the adoption of object-oriented data model, which significantly reduces the
number of nodes involved in the searching process, and thus reduces the searching time.
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CHAPTER S

CONCLUSIONS AND RECOMMENDATIONS

The main purpose of this research is to investigate the applicability of object-
orientation in road network modeling and to examine the relative errors and efficiency of
the A* algorithm, BA* algorithm, and the newly proposed algorithm - the road-based
searching algorithm. This chapter summarizes the main conclusions and

recommendations obtained from this research.
5.1 Conclusions

Road network modeling benefits from the object-oriented technology in terms of
elegant architecture, faster development and high quality, better performance as well as

reducing data redundancy.

An object-oriented data model is appropriate in modeling road networks where
the data is complicated by the fact that it is encapsulated with rich internal attributes and
structural relations between components. Conventional approaches separate spatial and
non-spatial information, which reduce efficiency and endanger data integrity. Object-
oriented models show their suitability by providing important features such as data

abstraction and specifications in constructing complex objects.

1. As a basic unit in object-oriented data modeling, an object encapsulates both state and
behavior features. Objects can be as simple or as complex as the application demands;
more complex objects can be constructed from combinations of existing objects
which can, in turn, be simple or complex objects. The mapping of real world objects
is 1:1 to objects in the object-oriented data model, whereas it is 1:N in conventional
data models. In this way, the object-oriented data model captures the semantics of real
world objects more directly in a database.
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2. The support for the treatment of complex objects and the mechanisms for data

structuring such that data concerning a single spatial is not decomposed into different
structures in object-oriented data model, makes the representation of complex objects
and the query to them much easier and efficient. There is no need to break up large
objects for storage in normalized tables and reassemble them at run time via slow
joining operations. Information access is usually achieved by navigation through
pointers and no physical operations are needed to reconstruct the information from
pieces as in the relational model. So information access become more direct and
straightforward both conceptually and physically, and manipulating efficiency is

improved.

The definition of classes and objects in the data model for road networks facilitates
the implementation of the road-based searching algorithm. With the object-oriented
data modeling, organization of the data related to the road network becomes much
more efficient with less storage space being used and much more information being
provided. All the optimal path searching algorithms, especially the road-based
searching algorithm, can benefit from this modeling.

From the implementation and testing of optimal path searching algorithms, the

following conclusions can be given:

1.

D* (Dijkstra’s) algorithm is a strict and standard algorithm for optimal path searching
upon which almost all the heuristics-based searches are built on. This algorithm can
be used to calculate the optimal path from source node to all the nodes of the road
network. The searching space is “a circle” centered at the source node with the radius
equal to the cost of the optimal path from source node to the destination node.
Computationally, this algorithm in the worst case, requires O(N ? ) operations. This
quantity is directly related to algorithm run time. For larger networks, the number of
operations is increased tremendously. The O(N * ) running time for larger networks is

not appropriate and not acceptable.
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2. The A* algorithm improves the D* algorithm by limiting the searching space into an
elliptical rather than circular shape associated with the D* algorithm. As expected, the
A= algorithm gave better results. Although not guaranteed to find the optimal route
when the average speed used in this algorithm is less than the real travel speed, the
relative error in route travel time was relatively small and the computation time was
faster than the D* algorithm. From an analysis of Figures 12 and 13, it may be seen
that for the simulated road network an average speed of 70 km/h is appropriate for the
A* algorithm. This would result in an approximate 60% decrease in computation
time, as compared to the D* algorithm, and a relative error of approximately 1.0%.

3. BA* (Bi-directional A*) algorithm also performs greatly in the simulated network in
terms of computation time and relative error. Theoretically, the searching space of
BA* algorithm should be smaller than that associated with A¥* algorithm. The only
problem with this approach, when applied to larger networks, could be the relative
error, because there is no guarantee of finding the optimal path. It may be beneficial
for the proposed RGS to have a number of algorithms available that could be used in

different situations.

4. Usually, the “optimal path” obtained from the road-based searching algorithm is
acceptable, with accuracy ranging from 0% to 10%. The advantage of this algorithm
over D*, A*, or BA* algorithms is that the computation time is greatly reduced; only
10% - 20% computation time is required as compared to A* algorithms.

5. The data set used in an actual RGS will be significantly more extensive than the
simulated network. Consequently, the optimal path calculation time will be higher. In
addition, the operating platform, and other factors relating to the implementation of
the algorithm, will all affect the results. However, the basic algorithms, issues and

relationships discussed here will remain the same.
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5.2 Recommendations

For this work to be integrated in real road guidance systems and provide users
with all the functions needed for route guidance, some further work needs to be done.
This includes: defining more object types such as place of interest, shopping center, and
park, improving the interface for information retrieval, and simplifying the query

procedure.

Currently, the input data for optimal path searching are the names or the IDs of the
source node and the destination node. For general users, what they have in mind is the
name or address of a specific place or an area, such as Chinatown. If this software is used
in situations like that, more functions should be developed and provided in addition to the
nodeID-based searching functions.

Query languages used in the RGS systems should be more friendly and natural
[Leung, 1993, Wang, 1994]. In any database systems, data retrieval is requested by a
query, and a query is coded in a query language. The currently used query languages are
artificially defined, and they have shortcomings when applied to retrieving geographical
data in RGS. Many concepts related to geographical data are vague whereas the query
languages were designed to express precise concepts only. For example, a user may want
to find a motel in the downtown area which is reasonably priced and is not very far from
the city center. However, currently used query languages are unable to express the vague
selection conditions ‘reasonable’, ‘very far’, and ‘city center’. They can specify precise
values and value ranges only. In expressing vague concepts the artificially-defined query
languages are inferior to a natural language. The applications of RGS can be facilitated if
natural query languages can be used.
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