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Abstract 

An Implementation of Ray Tracing Using Multiprocessing and Spatial 

Subdivision 

Abstract 

Ray tracing is an image synthesis algorithm which produces highly realistic 

pictures. The ray tracing algorithm is very CPU intensive, but fortunately, ray tracing 

lends itself easily to parallel implementations. As a result, research into a multi-

processor ray tracing algorithm has been undertaken to speed the ray tracing process. 

A first implementation of a multi-processor algorithm is described and the 

results examined. The space of the scene to be ray traced is divided between the 

processors and rays are passed as messages between the various processors mimicing 

their traversal through scene space. To determine when the multi-processor array has 

completed ray tracing, a new method for determining when all processors are idle is 

presented. As well, an original method of overlapping processor subvolumes is 

presented to balance the load between the multi-processor nodes. 

In addition to multi-processing, each processor element subdivides it's own 

space to further speed the ray tracing process. Space is subdivided into uniform 

subvolumes and an implementation of a fast algorithm for sequentially accessing 

these subvolumes is discussed. Since a uniform subdivision approach uses significant 

amounts of storage, the effects of storing the subvolumes using a new, fast hash table 
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method are examined. A method for saving space by sharing object references 

between subdivisions is also introduced. 

This is the first implementation which uses a combination of both multi-

processing and spatial subdivision on each processor to speed up the process of ray 

tracing. 
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CHAPTER 1 

Introduction 

Ray tracing is an image synthesis algorithm which has become popular in 

computer graphics because it can produce highly reJistic images incorporating 

reflections, transparency and shadows, as natural aspects of the rendering process. 

The main drawback to ray tracing is that it requires enormous amounts of processing 

time. This has prevented ray tracing from becoming the standard rendering algorithm 

in industry. 

In recent years, researchers have been investigating ways of reducing the 

processing time required to ray trace an image. These methods focus on two main 

areas, multi-processor algorithms and space sub-division. This thesis will detail an 

implementation which uses both of these approaches. 

1.1. Realism in Computer Image Synthesis 

The aim of computer image synthesis, or computer graphics, is to take a 

geometric description of a surface or an object and produce a realistic image. There 

are many applications for the end products of computer graphics., such as training 

simulations for aircraft and ships, viewing design prototypes, architecture, and 

animation. 

The more realistic an image, the more understanding the viewer gains of the 

scene being depicted. But in producing realistic images, there are two main 

difficulties; accurately modelling the surfaces and accurately 'modelling the effect of 
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light sources on these surfaces. Since increasing the accuracy of the model causes an 

increase in computational expense, there is usually be some tradeoff between 

execution time and image realism. 

In recent years the complexity of the object models has increased to a point 

where very few objects cannot be modelled. A fractal [Mandeibrot 1983] approach 

has been used to model mountains and clouds. Particles have been used to model fire, 

grass, leaves, smoke, hair and water [ Reeves 1983; Reeves and Blau 1985; Novacek 

1985]. objects which deform constantly because of forces imposed on them by their 

surroundings, such as bouncing balls, flowing liquids or skin [Wyvil, Wrvill and 

McPheeters 1985]. but it is the rendering process and the lighting model that will 

determine how realistic these surfaces look. 

Most rendering algorithms use a perspective transformation on the objects in a 

scene before rendering to reduce the 3-D sorting problem to a 2-D sort and to utilize 

some form of coherence. This ôperatioii basically projects the objects onto a two 

dimensional plane as a function of the viewing position and the viewing direction. 

The visibility of objects is then determined by sorting the objects based on a modified 

depth value produced by the perspective transformation. This modified depth value is 

not linear with the actual distance of the the object from the view point, and the 

amount of depth information decreases the further the object is from the view point. 

This means that it is difficult to determine the order of (and thus the visibility of) 

objects which are far from the yiew point. 

The perspective transformation also makes it very difficult to model reflection, 

refraction and shadows. These are all effects which occur in 3 dimensions. The 

perspective transform, while reducing visible surface determination to a sorting 

problem, also reduces the ability of the lighting model to determine light interaction 
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between objects within the scene. In general, approaches which project the surfaces 

into 2-D before rendering use very approximate lighting models [Newman and 

Sproull 1973]. Shadows and specular effects are treated as a special case and can 

require a large amount of extra code. 

In order to render these complex surfaces convincingly, a different approach 

should be taken. Ray tracing provides an alternative. The ray tracing model does not 

project surfaces into 2-D, it operates in 3 dimensions. Imaginary "rays" of light are 

traced backwards from the view point into the scene. The visible surface is 

determined by identifying the object that the ray strikes first. The lighting model is an 

integral part of the rendering process in ray tracing; to determine the shading and 

intensity of the object struck by the ray, new rays are generated and the tracing 

routine is called recursively. These rays determine ambient light, diffuse 

illumination, specular reflection, refraction and shadows. Of the rendering algorithms 

available, only ray tracing calculates these lighting effects elegantly and consistently. 

1.2. The Ray Tracing Algorithm 

Ray tracing of a sort was first introduced by [Appel 1968] and [MAGI 1968] 

for rendering engineering designs, but the algorithm did not come into widespread 

use until [Whitted 1980] and [Kay 1979] introduced ray tracing models which 

incorporated specular reflections from other surfaces, refractions, and shadows. This 

simple addition allowed for extremely realistic modeling of light interactions within a 

scene. 

These additional effects did not mean that ray tracing became practical. It 

required an enormous amount of computation. If the algorithm is very naive, every 

ray traced is tested for intersection with every surface in the scene. Whitted pointed 
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out that for simple scenes 75% of the total CPU time is spent testing for intersections 

between rays and surfaces. As the scene increases in complexity, this figure can jump 

to 90%. Before discussing techniques used to reduce the number of intersection 

calculations, let us examine ray tracing more closely and see why it is so 

computationaly expensive. 

A simple way to visualise the ray tracing process is to imagine a rectangular 

screen grid some distance between the view point and the scene. A primary ray is 

sent through each hole in the rectangular screen grid, originating at the view point 

.and continuing out into the scene. Each of these holes correspond to a pixel on the 

raster screen. At some point after passing through the pixel, the ray may intersect 

with a surface. At such a time, depending on the properties of the surface, several 

new rays may be generated which are used to calculate the intensity of that surface. 

The Lighting Model 

The intensity equation has three components; diffuse, reflected and refracted 

intensities. Once a primary ray has struck an object in the scene, secondary rays are 

spawned from the ray's point of intersection with the object. The processing of each 

of these rays is described in this section. 

To compute the intensity of the diffuse illumination and determine if the 

intersection point is in shadow, a shadow ray is traced from the point of intersection 

to each light source in the scene. If a shadow ray reaches a light source without 

striking another surface, then the intensity contribution from that light source is 

computed. However, if a shadow ray hits another surface before it reaches a 

particular light source, then the point of intersection is in shadow with respect to that 

light source. The shadowed light source will not contribute to the intensity of the 
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intersection point. Note that this type of ray tracing does not take into account 

intensity from reflected or refracted light sources. 

In addition to the diffuse intensity, the intensity of specular reflections and 

refractions must be calculated. This is done by spawning a secondary ray in each of 

the reflected and refracted directions. The algorithm is recursively applyed to these 

secondary rays. The only time a ray will not spawn secondary rays is when a light 

source or a completely diffuse surface is hit, or when the ray leaves the object space 

entirely. Once all of the reflected, refracted and shadow rays have been traced to 

completion, their intensities are summed and the result is the intensity of the pixel 

which the primary ray passed through. 

This process is repeated for each pixel of the frame being rendered. Typical 

image sizes range from 512 x 512 pixels to 2048 x 2048 pixels. This means that for a 

single image anywhere from + million to 4 million primary rays alone must be 
traced. Even if only half of these rays generate secondary and shadow rays the 

number of rays grows quite quickly to be in the order of 10's of millions. 

A diagram of the ray tracing process for a primary ray is presented in Figure 1-

1. 

Recently researchers have expanded on Whitted's lighting model to account for 

more accurate diffuse reflections {Dubetz 1985], , soft edged shadows, depth of field 

and motion blur [ Cook, Porter and Carpenter 1984]. While these effects serve to 

increase the realism of the picture, they also increase the amount of computation that 

is needed to render an image. 

Even more recently a very accurate method for calculation of lighting 

environments has been presented [Goral, Torrance, Greenberg and Battaile 1984] 
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tight source surface A 

surface B 

shadow rays refracted ray 

reflected rays pnnsary ray 

surface C 

Figure 1-1. Ray tree generated by a single ray. 

The technique has been termed radiosity. Instead of simply point sampling the 

specular, diffuse and ambient terms, radiosity performs an integration of all light 

arriving at the patch from all directions to produce the intensity reflected. This has 

produced highly realistic images [ Kajiya 1986; Immel, Cohen and Greenburg 1986; 

Nishita and Nakamae 1986; Rushmeier and Torrance 1987] but it is 

computationally more expensive than ray tracing. In fact ray tracing is being 

employed in tandem with this technique to compute the view dependent information 

[Wallace, Cohen and Greenberg 1987] so the speed of ray tracing remains an 

important issue. 

Aliasing 

When an image is completed, the ray tracing algorithm has effectively point 

sampled the scene space, which introduces the problem of aliasing. 
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Aliasing is the result of low frequency sampling of a high frequency signal. As 

an example, aliasing usually occurs along the edge of a surface, resulting in the 

jagged, staircase-like artifacts demonstrated in Figure 1-2. There is no way to 

eliminate aliasing completely, but the amount of aliasing can be greatly reduced by 

sampling the scene at a higher frequency than the screen resolution, then passing the 

image through a filter before displaying it. This process is called super-sampling and 

Aliased picture Anti-aliased picture 

Figure 1-2. Aliasing. 
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is usually implemented by tracing more than one ray per pixel, with the rays having 

just slightly different orientations from each other. The filter is then applied to the 

multiple intensity values in order to produce the single pixel intensity. Super-

sampling increases the number of rays anywhere from 4 to 64 times the number of 

pixels, depending on the frequency of over sampling. 

Summary of the Ray Tracing Process 

Ray tracing determines which surface is visible from the view point by 

determining which surface the ray strikes first. Those surfaces which are intersected 

by the ray are sorted based on the distance of the intersection point from the origin of 

the ray. The intersection point nearest to the origin of the ray is determined. From 

that point, a ray is traced to each of the light sources to determine shadow 

information, a ray is traced in the reflected direction (if the surface is reflective) and a 

ray is traced in the refracted direction (if the surface is transparent). The secondary 

rays themselves may spawn secondary rays to compute the intensity of surfaces hit by 

the first secondary rays, and so on. The intensities determined by tracing these 

secondary rays are added to the pixel intensity, scaled by the reflective or transmittive 

properties of the surface, and the final pixel intensity is place in the frame buffer. 

In this manner, each primary ray can spawn a tree of secondary rays in order to 

calculate the intensity of a pixel. Since the naive algorithm tests every ray for 

intersection with every surface, more objects in the scene means a slower throughput 

of rays. With the number of rays possibly being in the order of millions, it is desirable 

to have rays processed as quickly as possible. 
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1.3. Improving Ray Tracing Algorithm Performance 

When ray tracing was first introduced, Whitted noted that the intersection 

calculation was the most time consuming aspect of the algorithm. To speed 

processing, reducing the number of intersections is of great importance. At the time 

ray tracing was introduced, Whitted used bounding spheres to limit the number of 

fully detailed intersection calculations per ray. A bounding sphere fully encloses and 

surrounds a surface. There are two good reasons for using a bounding sphere; the test 

for intersection with a sphere is fast, and it is a simple matter to find a sphere which 

completely and tightly surrounds any fully defined surface. If a ray does not intersect 

a surface's bounding sphere, then it cannot possibly intersect the surface itself. 

However, even simple sphere checks can consume a great amount of time when there 

are a large number of objects in the scene. 

Ray B 

Ray A is rested for intersection with the object, while ray B is not. 
Figure 1-3. A bounding sphere. 
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Image coherence has been exploited to speed up the rendering of images in 

algorithms such as the depth buffer [Watkins 1970] and Warnock's algorithm 

[Warnock 1969]. Image coherence is the observation that most scenes will be 

locally similar; that is, if a given pixel is covered by a surface, then the neighbours of 

that pixel will likely be covered by the same surface. These same principles can be 

expanded to three dimensions and recently researchers have been applying spatial 

coherence to ray tracing. Spatial coherence refers to the fact that only those surfaces 

in close proximity to a ray's path will have any possibility of being intersected by the 

ray. Surfaces which are distant from the path of the ray are ignored when testing for 

ray/surface intersections. 

1.4. Spatial Coherence 

To exploit spatial coherence, Rubin and Whitted [Rubin and Whitted 1980] 

suggested using arbitrarily oriented rectangular parallelepipeds as bounding boxes 

(see Figure 1-4). Every surface in the scene is fitted with one of these bounding 

boxes. Spatial clusters of these bounding boxes are enclosed in higher level bounding 

boxes, recursively, until some arbitrary upper limit is reached. Once the object space 

is hierarchically decomposed in this manner, rays are tested for intersection with the 

top level bounding boxes. If a bounding box is intersected, the bounding boxes 

contained within it are tested. Eventually, the ray will either pass.through all of the 

bounding boxes or the ray will intersect a surface at the lowest level. 

Due to the reduced number of surfaces considered for intersection, the speedup 

over bounding spheres is great when there are a large number of surfaces. Rubin and 

Whitted noted that for a bi-cubic surface display, the improvement is about one 

hundred to one. 
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Figure 1-4. Two dimensional hierarchical bounding boxes. 

Octree Space Subdivision 

The main drawback to bounding boxes is that the expense of determining the 

next bounding box is quite great. A large number of the boxes may have to be 

examined and tested for intersection at each level. To improve on this, Glassner 

[Glassner 1984] proposed instead that the object space be recursively subdivided 

into subvolumes or voxels using an octree structure. Spatial decomposition begins 

with a bounding box orthogonal to the three axes. This bounding box contains all of 

the surfaces in the scene. If more than some fixed small number of surfaces (5) are 

contained within the box then it is subdivided into 8 equally sized subvolumes. The 

process is recursively applied at each subdivision until all subvolumes have at most S 

surfaces or until an arbitrary recursion limit is reached. The algorithm focuses on 

areas of the scene with a large number of surfaces, allowing empty space to be 

described by a single subspace. A two dimensional example of this type of 

subdivision is presented in Figure 1-5. 
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recursive subdivision uniform subdivision 
Figure 1-5. Two dimensional subdivision. 

Rays are traced thiough these subvolumes by determining the subvolumes the 

ray passes through and examining them in the order encountered. The ray is only 

tested against the surfaces contained within the current subvolume. Determining the 

next subvolume is done by generating the ray's intersection with the three most 

distant defining planes of the current subvolume. The intersection closest to the origin 

of the ray is chosen, and computation continues in the next subvolume in that 

direction. Since all subspaces are orthogonal to the three axes, the intersection 

calculation is quick, but still requires several floating point operations. 

Since it is not known in advance how deep any subdivision branch of the octree 

will become, storage for each subdivision must be allocated dynamically. During ray 

tracing, pointers in the octree must be traversed to find the address at which the next 
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voxel is stored, and this slows the process of moving to the next voxel. The 

computational cost of determining and finding the next voxel is high, however, this 

method requires very little extra memory for storing the octree structure since large 

empty volumes can be described in a single subspace. 

Uniform Space Subdivision 

At nearly the same time, another approach was presented by Vatti [Vatti 1984]. 

Vatti decomposes space into a three dimensional array of equally sized subspaces, or 

voxels, regardless of the density of surfaces in any particular area. The advantage of 

this method is the speed with which the actual memory address of any voxel can be 

found. Since the number of voxels (nxnxn) is known before hand, the array of voxels 

can be allocated in contiguous memory, and finding the next voxel is simply a matter 

of adding (or subtracting) 1, n or n2 to the current index, once the direction of the 

next voxel has been determined. Since space is subdivided to the maximum 

granularity, regardless of the number of surfaces in a volume, this method uses much 

more memory than the octree if there are large empty volumes within the scene. 

Fast. Octree Voxel Movement 

Fujimoto [Fujimoto, Tanaka and Iwata 1986] improved the speed of octree 

addressing by using a hybrid of octree and uniform subdivision methods. Although 

traversal of the octree still requires pointer traversal, the name (distinct from it's 

address) of the next subspace is generated quickly using an incremental method based 

on a technique for drawing arbitrarily oriented lines on a raster display. Each ray is 

traced through a regular three dimensional grid the size of the subspaces at the 

current level of the octree. When it comes time to traverse the octree vertically 
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because of differing levels of subdivision, the parameters of the incremental equation 

are halved or doubled, depending on the direction of traversal. Since integers are 

used, this halving or doubling can be done very quickly using a low level shift 

instruction. According to Fujimoto, this next voxel method is 13 times faster than 

Glassner's. There still exists the problem of finding the actual memory address of the 

next voxel through a variable number of memory references during the traversal of 

the octree. Fujimoto implemented both an octree and a uniform subdivision and 

compared the two. Although his results are fairly ambiguous, they do seem to favour 

a uniform approach. 

The incremental next voxel method used by Fujimoto, is similar to, but distinct 

from the one implemented in this thesis. The differences will be further detailed in 

Chapter 2. The method used in this thesis is based on the regular subdivision method 

presented in [ Cleary, Wyvill, Vatti and Birtwistle 1983; Cleary, Wyvill, Birtwistle 

and Vatti 1986] and uses the fast incremental next voxel calculation proposed in 

[Cleary and Wyvill 1987]. To reduce the amount of storage needed for regular space 

subdivision, a hash table representation of the voxels is also implemented and the 

same fast next voxel calculation is modified to produce the correct hash index 

iteratively [ Cleary and Wyvill 1987]. This thesis describes the first implementation 

of these methods. 

1.5. Multi-processing 

In addition to using spatial subdivision, a multi-processor algorithm also offers 

advantages over the naive algorithm. In most ray tracing algorithms, the results of 

the rays are independent of each other, making them ideally suited to a parallel 

implementation. Even algorithms which do exploit ray to ray coherence, such as 
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beam tracing [Heckbert and Hanrahan 1984; Hanrahan 1986], still have a large 

amount of parallelism and can benefit from a multi-processor approach. 

Image Space Division 

There are several methods for applying multiple processors to the ray tracing 

problem. The simplest to implement is a simple division of image space. Each of N 

processors is assigned *th of the pixels, and the whole of object space. The method 

is simple because the, only inter-process communication required is the controller 

process sending every processor a description of object space and a block of pixels to 

trace. When the ray tracing is complete on all processors, the blocks of rendered 

pixels are sent back to the controller for placement in the frame buffer [Sequent 

1985]. The method has a slight variation for animation sequences, wherein each 

processor is assigned a different frame of the sequence, rather than a portion of a 

single image [Whitted 1985]. 

A rudimentary form of load balancing can be effected by having the pixels of an 

image divided into S sections, where S>N. When a processor is done it's current 

section, it asks the controller for another, until the sections are exhausted. This almost 

guarantees that all •processors will do a similar amount of work, since those 

processors which receive simple sections of the image will eventually render more 

pixels than those processors with more complex sections. This method is so simple 

and effective, it has been implemented many times [ Sequent 1985; Peterson 1983; 

Williams, Buxton and Buxton 1985]. 

The main draw back is that each processor requires a large amount of memory 

to be able to store the entire object space description. In-order to have a large number 

of processors available, and hence a larger speed up, the cost of each processor 
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should be relatively low. In terms of current technology, this means that each 

processor might have less than 1 megabyte of RAM. Average scenes currently being 

rendered at the University of Calgary range from 1 to 3 megabytes for object space 

descriptions alone, with the largest being near to 24 megabytes. Since this number is 

not likely to decrease, neither here nor in industry, an alternate approach must be 

taken. 

Pipelined Processors 

A multiprocessor approach that has received a lot of attention is the use of 

pipeline arrays. The Toyo LINKS project [Nishimura, Ohno, Kawata, Shirakawa and 

Omura 1983] uses an array of 64 processors with subgroups of processors linked 

together to form pipelines, each pipeline working in parallel with the others. A 

pipeline is formed out of three processors which perform ray tracing, sorting 

intersections, and shading respectively. Each pipeline contains all of object space 

and is responsible for a subset of the image space. Again, this limits the complexity 

of the scene since every object in the scene must be able to fit into every processor. 

Vectorization 

Pipelined vector computers, such as the CDC Cyber 205, have also been applied 

to ray tracing [Plunkett and Bailey 1985]. A large number of rays are stored in a ray 

queue and sent down the pipeline to be intersected against an object using vector 

code. The results are stored and the process is repeated for every object in the scene. 

Once every object has been tested, the intersection points are sorted, the first 

intersection points for each ray determined, and any new rays (for shadows, 

reflection, refractions, etc.) are placed in the ray queue. This continues until there are 
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no more rays to be traced. While the speedups obtained are impressive, the ray 

tracing algorithm used is very naive. A pipelined processor's power comes from 

doing a large number of identical operations very fast, such as intersecting a large 

number of rays against a single object. Better algorithms, such as spatial subdivision, 

do not translate well since their purpose is to reduce the number of objects which rays 

are tested against. By reducing the number of rays tested against each object, the ray 

vector becomes shorter, and the algorithm becomes limited by the speed with which a 

vector operation can be started. Further, the availability of such high speed 

supercomputers is severely limited due to their high price. 

Processor Array with Object Space Subvolumes 

Ullner [Ullner 1983] examined several parallel algorithms and parallel 

architectures for ray tracing. Beyond vectorization of the code and hardware, Ullner 

suggested a different approach to ray tracing. In his approach, every processor is 

assigned some sub-volume of the scene being rendered. Algorithms based on this 

method require a more sophisticated inter-process communication than ones 

previously described because a ray being traced will pass out of the current 

processor's subspace at some point. It is then possible that the ray will enter the 

subspace of a different processor, and the ray must be passed to that processor. 

This algorithm and the nature of ray tracing dictate to a certain extent the 

required physical layout of a ray tracing processor array. Each processor in the array 

need only communicate with those processors which have been assigned 

neighbouring sub-volumes of scene space. While this ignores the problems of 

inputting information into the array and getting pixel intensities out, it does strongly 

suggest a parallel architecture for the processor array. Since each processor must 
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communicate with the processors containing adjacent subvolumes, the physical 

layout should have these logically neighbouring processors close to each other with 

direct communication channels between them. A two or three dimensional mesh suits 

this requirement well. Each processor has short physical distance to it's neighbours, 

making the hardware implementation relatively simple. A broadcast network is 

undesirable since as the number of processors grows, it will become the bottleneck. 

Indeed, with the microprocessor network used to simulate this mesh implementation, 

network collisions were a major problem with only 4 nodes. With an actual mesh, the 

communication channels can be dedicated to the machines they are connected to, 

making for more reliable and faster communication. 

An implementation of this sort is described by Dippe and Swensen [Dippe and 

Swensen 1984]. They chose a three dimensional mesh and an adaptive subdivision 

algorithm for allocating subspaces to the processors. The algorithm attempts to 

subdivide scene space so that an equal number of surfaces are assigned to each 

processor much like the octree method. Further, as ray tracing continues, if any 

processor becomes too busy, boundary shifting is initiated so that the less busy 

neighbouring processors can take over some of the work. To avoid having to 

redistribute the load on many processors (as would happen if the subvolumes were 

constrained to be orthogonal parallelepipeds) they allow the processor's subvolumes 

to become general cubes. In that way, only one corner of a subspace has to be moved, 

involving only that processor and the 7 neighbours which share that corner. 

Two-dimensional versus Three-dimensional Processor Arrays 

The reason that Dippe and Swensen chose a three dimensional processor mesh is 

not clear, both Cleary [ Cleary, Wyvill, Birtwistle and Vatti 1986] and Uilner [IJllner 
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1983] favour the two dimensional mesh. Cleary shows that the three dimensional 

2 

mesh will provide a speedup of N 3 for N processors, however the two dimensional 

array initially provides a speedup of N and approaches N 2 as N increases. The two 

dimensional array initially performs better, but eventually will lose to the three 

dimensional array at some N. Cleary then shows that the N where this occurs is at 

least 10,000. Uliner points out that with the three dimensional case, "the number of 

processors in the array increases as the cube of the number of subdivisions...". 

However he also shows that the number of non-empty subvolumes increases only 

quadratically. This means that with a large N most of the processors in a three 

dimensional mesh will have only empty space and thus be wasted. A three 

dimensional mesh also provides physical difficulties with cooling the central 

processors and accessing the central processors for repair. 

Load Balancing 

A further difficulty with Dippe and Swensen's method is the adaptive 

redistribution process. While load distribution is an important consideration, with a 

three dimensional mesh the .load will initially be shifted towards where the rays enter 

the scene, as ray tracing continues, the load will once again have to be shifted back 

towards where the rays are leaving the scene. All this shifting requires processing 

time which takes away from the ray tracing process. 

The issue of load balancing is an important one, even when considering a two 

dimensional mesh. The busiest processor will determine the amount of time taken to 

ray trace a scene fully. To keep the speedup as close to N as possible, it is desirable to 

keep each processor equally busy. Load balancing is an area that requires attention. 

The results presented in Chapter 4 support this. With 9 processors, the difference in 
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node completion times can vary as much as 75%. There is no reason why Dippe and 

Swensen's redistribution algorithm could not be adapted to two dimensions with 

good results. The problem with the initial load shifting to the front and subsequently 

to the rear of the mesh would not occur in two dimensions. However the use of 

general cubes makes space subdivision on each node difficult. 

To avoid this difficulty, Chapter 5 presents a new load balancing algorithm that 

uses overlapping subvolumes to even the load between the nodes. 

1.6. Summary 

A uniform subdivision approach was choosen because of the slight bias towards 

it shown in Fujimoto's work and because the voxel passing algorithm presented by 

Cleary was faster than Fujimoto's. It was thereby hoped that this implementation 

would fair even better. 

A 2 dimensional mesh approach to multi-processing was choosen because it was 

one of the few methods with any sort of theoretical study done on it. A 2-D mesh has 

a better intial speedup predicted, and has less empty space processors as the number 

of nodes increase. 

1.7. Current Work 

This thesis presents an implementation on a square two dimensional torus mesh. 

Uniform subdivision is used on each node of the mesh to enhance performance 

further. The mesh approach was chosen because the processor nodes are relatively 

inexpensive and readily available in today's market. Processors such as the Motorola 

68000 series can be used in sufficient numbers to produce reasonable speedups and 

their co-processor facilities allow for high individual node performance. A full 
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discussion of the multiprocessor algorithm used is presented in Chapter 3. 



CHAPTER 2 

Object Space Subdivision 

In my work, the uniprocessor ray tracing algorithm on each node of the multi-

processor uses equally sized subdivisions to form voxels through which rays will be 

traced. This chapter will consider only a uniprocessor implementation of this 

algorithm. It is then applied to each individual node of the multi-processor array as 

discussed in Chapters 3 and 5. This chapter will detail the algorithm used to 

subdivide object space, the structures used to store the voxels, and the method used to 

determine the next voxel. Two separate methods of voxel storage were implemented 

in this thesis; an array structure and a hash table structure. Both are described in this 

chapter, and a comparison based on results from actual scenes is presented in Chapter 

4. 

Spatial Coherence 

As was described in the previous chapter, the number of intersection tests 

performed on each ray can be drastically reduced by exploiting spatial coherence. 

This means that only surfaces which lie near the ray's path are tested for intersection, 

and the surfaces which are nearest to the origin of the ray are tested first. This is 

effected by using a uniform subdivision of object space in 3 dimensions. 

The division of object space begins by determining the scene extents. The scene 

is assumed to lie within some finite bounds in X, Y and Z which can be determined 

by examining the extents of each object. This is an 0(N) operation for N objects, but 

this examination can be paired with the input of the surfaces, incurring minimal 
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overhead. 

Once the scene extents are known, the number of subdivisions in each of the X, 

Y and Z direction will dictate the size of the voxels. The current implementation 

allows the number of divisions to be chosen by the user, but there is no reason why 

some form of heuristic based on object distribution could not be used to arrive at 

these numbers. However, such a heuristic is beyond the scope of this thesis and was 

not investigated. 

After the voxel size is fixed, the surfaces in the scene must be assigned to the 

voxels through which they pass. Although the algorigthm used to do this is not 

detailed in this thesis, it is important to note here that only the surface of an object is 

assigned to the voxels. For example, those voxels which are inside a sphere, but 

which do not contain part of the sphere's surface, will not contain a reference to the 

sphere. If an object's surface area is small in comparison to it's volume, this can save 

an enormous amount of storage. 

2.1. Using an Array for Voxel Representation 

The voxels themselves are represented by an array of pointers to chains of 

object references. An empty voxel is represented by a NIL pointer. If the pointer is 

not NIL then it will point to an object reference, which consists of an object identifier 

and a pointer to another object reference. If there is more than one object in the 

voxel, then the objects hang off the voxel in a linked list. No special ordering of 

multiple object references is performed. 
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Tracing Rays Through the Voxels 

When a ray is traced through the scene, it will travel through some sequence of 

voxels. A ray travelling through uniform voxels will generally encounter more voxels 

than if it were travelling through an octree simply because of the manner in which 

object space is partitioned by each algorithm. So to outperform the octree method, 

identifying and referencing each voxel must be a fast operation. To do this, two 

versions of the next voxel calculation presented in [ Cleary and Wyvill 1987] are 

used. The next voxel calculation is similar to the one described in [ Fujimoto, Tanaka 

and Iwata 1986] in that it is incremental. However, Fujimoto checks and updates 

two error terms on two separate planes, using a modified Digital Differential 

Analyser (DDA) originally developed for drawing lines on a raster display. While 

this method is fast, it is coupled with an octree subdivision, and referencing the next 

voxel may require an octree traversal to another node. Checking for the traversal 

condition, and the octree traversal itself make the number of instructions for the next 

voxel calculation much larger than the number of instructions needed for uniform 

space subdivision. The method presented in [ Cleary and Wyvill 1987] is also 

incremental, but requires many fewer instructions. 

Initializing the Next Voxel Calculation 

Using uniform subdivision, the distance a ray travels between intersections of 

voxel walls in any one of the three directions (X,Y or Z) is a constant for that ray. For 

example, if we consider the voxel divisions in the X direction, each one is equally 

spaced, so a ray will travel a constant distance between each intercept of a voxel 

division in the X direction (and similarly in Y and Z). Since this number is a constant, 

but different for each ray, it can be calculated at the outset of each ray (see Figure 2-
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1). Let us call these distances i.j, where i can take on a value of x, y, or z. 

Since the origin of the ray is necessarily known at the outset, the distance to the 

next intercept of a voxel wall from the origin of the ray is easily calculable. Let these 

values be labeled dist, where i can take on a value of x, y, or z. See Figure 2-2. 

If we then let (i,j,k) be the indices into the voxel array, then each time a next 

voxel is picked, we can increment or decrement (depending on the ray's direction of 

travel) the appropriate voxel index by ±1 depending on the direction of the ray's 

travel. 

However, this requires that the index to voxel [1] [1] [k] be decoded each time 

voxel is referenced. Since three dimensional arrays are kept in contiguous memory, 

the real index is determined by iv 2 + jv + k where voxel is declared as an v x v x v 

array. Speed can be gained if voxel is declared as a single line.ar array, voxel [V] 

where V = vv*v. To step to the next voxel, the voxel index is incremented by 2, 

Figure 2-1. Initializing "delta" values. 
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Figure 2-2. Initializing "dist" values. 

±v or ±1 depending on which index must be updated. Let these values be labeled p1, 

where I can take on a value of x, y, or z. The value of small is set simply by 

determining the smallest dist. 

Calculating the Next Voxel 

Once these values have been initialized, determining the next voxel is done by 

determining the smallest dist, incrementing it by the appropriate Aj, and 

incrementing the voxel index by the appropriate pi. The array next voxel algorithm is 

presented in Figure 2-3. 

A further speedup may be gained by noting that once the dist1 and Ai values 

have been determined, they are used only to compare with each other, so they can be 

converted to integer values by normalizing them. 
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{ "small" has been initialized to the index of the smallest dist1 } 

{ update the voxel index and increment the next voxel variables } 
voxel index = voxel index + pii; 
dist,,,ii = dist,i, + L5,,11; 

(now reset small } 
if (dist < dist) small = x; 
else small = y; 
if (dist < dist 1z) small = z; 

(and finally, check the voxel to see if there is anything in it } 
voxeijull = voxel (voxel—index 1; 

Figure 2-3. The array next voxel calculation. 

Using the C programming language, the next voxel calculation can be reduced 

to 4 lines of code, or about 12 VAX assembler instructions. A more detailed account 

on how this can be achieved is presented in [ Cleary and Wyvill 1987]. More 

elaborate assembler instructions can further reduce this to an average 7-

instructions. 

2.2. Using a Hash Table for Voxel Representation 

The spatial subdivision method presented achieves it's goal of reducing the 

number of intersection calculations per ray as presented in Chapter 4. However, 

uniform space subdivision uses a large amount of memory storing empty voxels. In 

[Cleary and Wyvill 1987] a hash table voxel representation is presented to reduce 

the storage requirements of a uniform subdivision approach. The hash table method 
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was also implemented in this thesis, and this section describes the differences from 

the array version. 

Instead of using a V length voxel array, a hash table of length M is used (where 

M < V). When a voxel is accessed, it's index (idx) is hashed to create a hash table 

index. By using a simple hashing function such as (idx mod M), the next voxel 

operation is only slightly changed. After each next voxel operation, idx is hashed 

into M. In this implementation, M is chosen to be a power of 2 so that a simple (and 

fast) masking operation can replace the mod operation. The results from using this 

type of hashing function are presented in Chapter 4. 

Initializing the Next Voxel Operation 

The values of pi discussed in the last section must be modified to pi mod M if 

the ray is travelling in a positive direction in that dimension, or M - (p1 mod M) if 

travelling in a negative direction. This produces only positive numbers as hash 

increments (h1) and so no check for hash index underfiow is needed in the next voxel 

calculation. The other values, zq and d1st1, are left unchanged from the array version. 

The modified algorithm, with the additional check needed for hash index overflow, is 

presented in Figure 2-2. 

Using a Bit Table to Assist the Next Voxel Operation 

When tracing a ray through the voxels, each time a non-empty hash table entry 

is encountered, the next voxel loop is left and the object references in the hash table 

entry are examined. But since each hash table entry has multiple voxels hashed to it, 

there may not be an object reference which is in the current voxel. All of the 

references may just be in the same hash table entry by coincidence. To avoid leaving 
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the next voxel loop until there actually are objects in the current voxel, a bit table is 

employed. There are V bits in this table, one bit for each voxel. When a voxel 

contains a reference to an object, the corresponding bit representing that voxel is set 

to 1 and an object reference is placed in the hash table. When tracing the rays, both 

the bit index and the hash index are updated, but instead of checking for a NIL 

pointer in the hash table, the bit table is examined. Only when a 1 is found in the bit 

table is the next voxel loop left. Extra code is added to the next voxel calculation, but 

since the bit table index is identical to the voxel index, the extra code consists of 2 

shifts and 2 mask operations. 

Using the hash table method, each object reference contains an extra field which 

identifies the voxel which it was hashed from. When a 1 is found in the bit table, the 

actual voxel index is used to check the object references in the current hash table 

entry. In this way only the objects which are in the current voxel are tested for 

intersection, the objects which are coincidently hashed to the same hash table entry 

are ignored. 

The Next Voxel Operation Using the Hash and Bit Tables 

The hash table next voxel calculation is given in Figure 2-4. In the figure, 

SHIFT—RIGHT and SHIFT—LEFT mean the bit patterns on the left of the operand 

are shifted right or left (respectively) the number of bits indicated on the right of the 

operand. The instruction, AND, means do a logical "and" on the two operands. The 

bit pattern, M MASK, is the appropriate mask for the hash table. This mask operation 

takes the place of a mod operation since the length of the hash table is chosen to be a 

power of two. 
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( "small" has been initialized to the index of the smallest d1st1 ) 
hash _index = hash _index + hjj; (increment hash index } 
hash index = hash index AND M_MASK; { do the hash function } 
voxel index = voxel index + pii; { increment the bit index } 
dist5, 11 = dist 11 + (update the distance to next voxel wall) 

(reset small) 
if (dist < dist) small = x; 
else small = 
if (dist < dist.,,,,ii) small = z; 

(calculate the bit table index) 
bit shift = voxel index AND 07; ( get value of lower 3 bits } 
bit_mask =01 SHIFT LEFT bit shift; (make bit_mask point at correct bit } 
bit—index = voxel—index—,SHIFT—RIGHT 3; { divide by 8 } 

{ and finally, check the bit table } 
voxeijull = bit—table (bit—index 1 AND bit—mask; 

Figure 2-4. Next voxel operation using the hashing function. 

2.3. Determining When a Ray Leaves Object Space 

When using spatial subdivision it is important to determine when a ray has left 

the volume which are described by the boundaries of the voxels. Failure to identify 

when a ray leaves object space will cause the voxel (or hash) index to indicate an 

erroneous voxel or be outside of the voxel array bounds all together. Since it is 

undesirable to add extra code to the next voxel calculation, an extra layer of voxels is 

placed around the scene and bounding polygons are placed in these extra voxels so as 

to fully enclose the processor's subvolume. When a ray enters a voxel containing a 

bounding polygon, that ray is terminated. 



31 

The algorithm presented in this chapter can be used not only on a uniprocessor, 

but it may be used on each node of a processor array as well. In the multiprocessor 

approach, the ray is leaving the object space of the current processor and it is passed 

on to the next appropriate processor (if any) to continue being traced. If there is not a 

processor responsible for the subvolume that the ray is entering (it has left all of 

scene space), the ray is tested to see if it intersects a light source and any colour 

contribution it carries is returned to the appropriate pixel. 

This particular approach does not require any extra code within the next voxel 

calculation and adds very little code elsewhere. When a ray is in a voxel containing a 

bounding polygon, no intersection calculation with the bounding polygon is needed 

since it is guaranteed to be leaving the processor's space. This means that care must 

be taken when starting the ray, it must be started within the processor's subvolume, 

past any initial bounding polygons. This simply requires a small number of next 

voxel calculations (usually one) at the outset of tracing a ray which is entering the 

subvolume from outside. 

Determining the Next Processor 

With a multi-processor approach, when a ray encounters a bounding polygon, it 

is leaving the subvolume of the current processor. The next subvolume (and thus the 

next processor) which the ray enters is determined using the bounding polygon 

references. Each bounding polygon reference contains a unique id number. This id 

number identifies which bounding polygon is encountered by the ray, and the 

direction of the next processor is easily determined. 

An alternate method of determining the next processor is to use the values in the 

next voxel calculation. The bounding polygon that the ray encountered can be 
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determined from the state of the next voxel calculation variables. The voxel wall 

through which the ray has just passed can be reconstructed by subtracting Lj from 

disti for all three directions (x, y and z). This produces three values, the largest of 

which will indicate the direction that the ray just moved. 

2.4. Avoiding Multiple Intersection Tests 

Spatial subdivision reduces the number of intersection calculations that are 

performed, but it introduces the possibility of testing an object for intersection more 

than once. This can occur because, with any significant number of voxels, there will 

be surfaces which are assigned to more than one voxél (see Figure 2-5). To avoid 

testing a ray against the same object in multiple voxels, it must be determined if a 

particular ray has been previously tested against an object. To do this, each ray is 

41  

Figure 2-5. A surface assigned to multiple voxels. 



33 

assigned a unique identifying number, with each reflected, refracted and shadow ray's 

number being different from it's parent's. When a ray is tested for intersection with a 

surface, the unique ray number is stored in that surface descriptor. At each voxel, the 

ray's unique number is checked against the number stored in each of the surface 

descriptors in that voxel. If the numbers match, then the ray has already been tested 

against that surface and no further processing on that surface is performed. This 

requires an extra field be stored with each object descriptor. 

Intersections Which Do Not Occur in the Current Voxel 

Since a ray is tested against an object only in the first voxel where it is 

encountered, a case can arise where an intersection is found, but that intersection 

occurs in a different voxel. The processing of the ray cannot stop at this point because 

a nearer intersection may be found in the intervening voxels between the voxel where 

the intersection was calculated and the voxel where it actually occurs. Figure 2-6 

shows such a case. The ray is tested for intersection with surface 1 in the first voxel 

where it is encountered, voxel A. An intersection is found, but that intersection does 

not occur until voxel C. If the processing of the ray is halted in voxel A, then the real 

nearest intersection with surface 2, in voxel B is not found. To avoid this, the voxel 

where the intersection actually occurs and the intersection point are stored in global 

variables. Only one set of these global variables is needed because only the nearest 

intersection point has to be stored. If a nearer intersection point is found in the 

intervening voxels, then the saved intersection point can be over-written. 

Once the voxel and intersection point are stored, tracing of the ray continues 

until the ray either arrives in the voxel where the intersection occurs, or a nearer 

intersection is found. Upon arriving in the intersection voxel, all of the surfaces in 
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Figure 2-6. A ray finding an intersection that is not in the current voxel. 

that voxel are checked (unless already checked) and if no nearer intersection is found, 

the stored intersection point is used. This means a ray will be intersected against any 

particular object a maximum of one time. 

2.5. Reducing the Storage Requirements Further 

As presented, the hash table representation for the voxels reduces the storage 

requirements for this algorithm significantly. There are further, storage savings 

possible for both the array representation and the hash table representation. This 

section details the space saving methods used for both of these approaches. 
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Saving Space on Object Array Voxel Assignment 

Cleary and Wyvill [ Cleary and Wyvill 1987] have analysed the storage 

requirements for uniform space subdivision. They assume that every voxel is 

assigned a unique object reference for each object which intersects it. However, 

space can be saved at some small speed cost during assignment of objects to voxels. 

If an object reference does not point to another object reference, then it can be shared 

with all of the voxels which also contain that object reference, but do not yet point to 

other object references. To do this, initially only one object reference is created for 

the current object. If a voxel already contains an object reference, then a new object 

reference must be allocated and prepended to that voxel' s list. Otherwise, if the voxel 

is empty, the initial object reference may be used, since no other object reference is 

yet pointed to from this voxel. Since this algorithm is followed for every object, the 

first object reference assigned to every voxel will be shared with every other voxel 

where that object is the first assigned, and space is saved since an object reference is 

not allocated for every voxel. This "shared" algorithm can be extended to perform 

the same operation for voxels which contain the same multiple objects, (such as cases 

where two or more polygons meet through many voxels) but the algorithm becomes 

quite difficult and slow. The single object reference method is presented in Figure 2-

7. The results from this method are presented in Chapter 4, and they show a large 

reduction in the number of object references stored. 

However, this method will not work with the hash table. A single hash table 

entry has multiple voxels hashed to it, so each object reference must have an extra 

field which identifies which voxel it is really in, thus making it impossible to share 

object references between voxels. 
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shared_ object_reference = NIL; 
for (all voxels intersected) do 

if (voxel[i][jJ[k].pointer=_ NIL ) 
{ There is no object in this voxel yet so use the } 
(shared object reference. } 
if (single _object_ reference NIL) 

{ The shared object reference has not been } 
{ allocated yet, so create it. } 
allocate (single_object_reference); 
single_object_reference.id = current id; 
single_object_reference .pointer NIL; 

endif; 
{ Put the shared object reference in the voxel. } 
voxel [i ][jJ [k ].pointer = single_object_reference; 

The voxel already has an object reference in it, } 
f so a new one must be allocated.) 
allocate (new_ object_ reference); 
new_object_reference.id = current id; 
new_object_reference.pointer = voxel [i ] [J] [k ].pointer; 
voxel [1 ] [j] [k ].pointer = new _object _reference; 

endif; 
enddo; 

else 

Figure 2-7. Assigning object references to voxels. 

Reducing the Storage Required for Bounding Polygons 

The drawback to bounding polygons is the extra memory required to store both 

the references to the bounding polygons and the extra voxels themselves. While 

storage for the extra voxels must be allocated, it is possible to save some space by 

having all the non-edge voxels on each side point to the same bounding polygon 

descriptor (6 references, one for each bounding polygon). The edge and corner voxels 

where more than one bounding polygon meet are a more difficult case. However, 
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since rays can not move to a next voxel diagonally, the edge and corner voxels do not 

need to have accurate bounding polygon references. There needs to be some 

bounding polygon reference in these voxels to allow rays entering the scene to 

determine when they have passed all of the initial bounding polygons, but so long as 

there is at least one reference, it does not matter which bounding polygon is 

referenced. Thus only 6 references are used to represent all of the bounding polygons 

in the voxels regardless of the size of v. Further, since processing of the ray stops 

once a bounding polygon reference is encountered, there does not have to be an 

actual bounding polygon allocated. 

Eliminating Bounding Polygons with the Bit Table 

Using the hash table method, each bounding polygon reference needs to be 

unique, so that the original voxel from which it was hashed can be identified. Yet 

this means that v2x6 references to bounding polygons must be used. To avoid this 

extra storage, the bit table, can be manipulated so that no bounding polygon 

references need to be used at all. When assigning the bounding polygons to voxels, 

only the bit table entry is modified to be 1, and nothing is placed in the hash table. 

When tracing the rays, if the bit table is set to 1 but there is no corresponding 

reference for the current voxel in the hash table, then a bounding polygon has been 

hit and the appropriate action is taken. The bit table was intended to speed up 

processing, however in this case it helps save space as well. 

While the bit table requires extra storage, if each object reference is 12 bytes 

using the hash table method, the size of v where the bit table starts to cost more than 

the number of object references is: 
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T(1 2 x6)x12 
that is: 

(2.1) 

v = 576 (2.2) 

Since results indicate that the best v for most scenes is less than 100, it is unlikely that 

the bit table will ever use more storage than the bounding polygon references. 

2.6. Summary 

Both the hash table and the array method of representing voxels have been 

introduced and discussed. The hash table and the space saving assignment reduce the 

amount of storage needed for a uniform subdivision approach. This spatial 

subdivision method is used to improve the individual node performance of the multi-

processor array as discussed in the next chapter. 
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CHAPTER 3 

Multi-processor Ray Tracing 

The idea of using a multi-processor approach to ray tracing was discussed in the 

first chapter, this chapter will detail the algorithm and hardware used in this 

implementation. There are new difficulties introduced when using 'a multi-processor 

approach which are also examined in this chapter. One of the most notable problems 

is changing the state of the processor network. A new distributed synchronization 

state changing algorithm is presented to overcome the state change problem in an 

elegant way. 

The multi-processor algorithm assigns each node of a two dimensional 

processor network some subvolume of total object space, and each node "knows" 

about every object which intersects it's assigned subvolume. That node is then 

responsible for tracing every ray which passes through it's subvolume. Once a ray is 

terminated, pixel intensities are returned to a host processor for addition to a frame 

buffer. The processor network consists of low cost processors with fast 

communication channels to their neighbours. Since none of the nodes have backing 

store, one of the nodes is connected to a host processor which has backing store, but 

is not part of the processor network. All of the computed pixel values are sent to the 

host via the one processor connected to the host. The host processor is also 

responsible for downloading the scene description to the nodes. 
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3.1. Dividing Object Space 

To subdivide object space between the nodes, the host processor starts by 

assigning each node a roughly equal number of pixels. If the size of the pixel array is 

P = R x C, where R stands for 'row' and C stands for 'column', then each processor 

is assigned an -- x pixel rectangle, where the number of nodes is K = k x k. The 

number of pixels will not always be evenly divisible by k, so a processor may be 

assigned one extra row or column of pixels, but if P is large, this difference should 

not be significant. At the outset of ray tracing, every node will have a nearly equal 

load, that is, an equal number of rays to trace. 

Once the number of pixels for each node is determined, the master process on 

the host subdivides object space into K subvolumes. The sizes of the subvolumes are 

determined by the L x C pixel rectangles in the following manner. The primary 

rays which pass through a pixel rectangle must all enter the same subvolume, VK so 

that they are all traced by the same node. This is because creating rays which will 

immediately be passed to a node with the appropriate subvolume creates more 

overhead. To avoid this unwanted overhead, the pixel rectangles are paired with the 

subvolumes so that all primary rays enter the subvolume of the node they are 

assigned to. So to determine the size of the subvolume for a processor, a test ray is 

traced to the front of object space from the four corners of the pixel rectangle. The 

intersection points generated from the intersection of these test rays with the front of 

object space define the (X, Y) extents of that processor's subvolume. 

To provide a margin for error, these subvolumes are grown by 1% in each 

direction to allow a slight overlap between node subvolumes. This overlap avoids 

floating point precision problems near subvolume boundaries. The idea of growing 
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the subvolume boundaries is extended further in Chapter 5 to provide a load 

balancing algorithm. 

To choose which node is assigned a particular subvolume, the master process 

determines which nodes are neighbours and then assigns the subvolumes to the nodes 

so that neighbouring nodes contain contiguous subvolumes. This allows rays to pass 

through the entire object space with minimum communication overhead. 

Downloading Objects 

Once the subvolumes have been assigned to the nodes, objects are transmitted 

from the host to the primary processor. The current implementation only "knows" 

about three types of objects; polygons, spheres and sources. However, adding further 

object types could be done with relative ease. 

When a node receives an object, it must determine if the object intersects the 

subvolume of space assigned to it. If the object is a polygon, it is clipped against the 

node's subvolume, and anything clipped off is sent to the processor in the appopriate 

direction. Any portion of the polygon that is left after clipping is kept on the node. 

Spheres cannot be clipped, so if the sphere intersects the processor's subvolume, 

the entire description is kept. If any of the sphere extends beyond the node's 

subvolume, the full description of the sphere is sent to the processor(s) assigned to 

the neighbouring subvolume(s). 

Since the possibility of an endless loop exists with this, type of algorithm, object 

start in the lower left corner of the processor array and once clipped, they can only be 

passed up or right until they reach the upper right corner of the processor array. In 

addition, each object has an associated and unique identifying number with to prevent 

a node from receiving a single object twice. 
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Light sources are the only objects which are not clipped. It is necessary to keep 

all of the light sources on each node so that the direction of shadow rays can be 

determined. There are usually less than 10 light sources so this poses minimal storage 

overhead. 

There is a drawback to downloading objects in this manner. The primary 

processor must clip every object in the scene regardless of which node(s) the object 

will eventually be stored on. This creates a bottleneck at load time. However, the 

startup time for scenes in this implementation was so small in comparison to the trace 

time (less than 1%) that a more optimal algorithm was not investigated. A better 

method is presented in [ Vatti 1984]. 

Once all of the polygons, spheres and sources have reached the proper nodes on 

the mesh, ray tracing begins. Determining when the mesh has finished clipping the 

objects is a difficult problem, but it is resolved by using a distributed synchronization 

state change which is described in Section 3.4. 

3.2. The Ray Model 

After the objects have been downloaded, ray tracing starts by creating primary 

rays through the pixels assigned to each node,. To keep the storage requirements as 

low as possible, only one primary ray is created at a time. The ray is then placed in a 

ray queue to await processing. If a ray arrives from another processor it is also 

placed in this queue. 

Tracing the rays is then very simple. This process is detailed in Figure 3-1. The 

messages queues are checked for any incoming messages. If any rays are received 

they are placed in the ray queue. Should the ray queue still be empty after checking 

the message queues, then a new primary ray is created and placed in the ray queue. 
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while (there-are-still-busy-nodes) do 
check_messages 0; 
if (ray_queue_is_empty) 

make_new_ray 0; 
(this function does nothing if there are no more new 
(rays to be made } 

endif; 
current_ray =get_ray_off _queue 0; 
if (current_ray :t- NIL) 

trace_ray (current_ray); 
endif; 
if (shadow_ray_queue_is_not_empty) 

shadow ray = get shadow __ray_off_queue 0; 
trace_shadow_ray_( shadowray); 

endif; 
enddo; 

Figure 3-1. Main ray tracing loop. 

} 

The first ray of the queue is then removed and traced through the node's subvolume, 

and the process is repeated. The condition "there-are-still-busy-nodes" is 

determined by using the state change algorithm described in Section 3.4. 

Shadow rays are slightly different from other rays, both in structure and in the 

way they are traced. For this reason they are maintained in a separate ray queue. 

Carrying Colour Information With the Rays 

This section deals with how rays carry colour intensity information with them as 

they travel through the processor mesh. The collection of colour information once the 

ray is finished being traced is detailed in Section 3.3. 
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To carry the colour information, a ray has several fields in addition to the origin 

and direction. These fields and their function are shown in Table 3-1. The colour 

intensity (Cr,g,b) of a primary ray is initially set to 0. When a ray intersects an object, 

colour information from the object is added to the ray. This colour information 

consists of 3 terms; ambient, diffuse, and specular (reflected and refracted light). 

Pseudo-code for this method is presented in Figure 3-2. The intensity of the surface 

due to ambient light is calculated first and this value is placed in the ray. Then the 

diffuse intensity is determined. This may happen in two ways. If shadows have not 

Ray Structure 
Field Function 

Pj.m.n The ray's direction vector. 
The ray's origin. 

Pixel, The ins ex of the pixel through which the primary ray 
passed. If it is a secondary ray, this field is 
copied from the ray that spawned it. This field 
indicates where the colour intensity from the ray 
will be placed in the frame buffer. 

Cr,g,b The colour intensity accumulated by the ray so far. 
(initially 0) 

Contributionr,g,b A floating point value describing what percent of 
total pixel intensity will be contributed by any 
object which the ray hits. (initially 100%) 

Level The number of predecessors that this ray has. 
Allows for a limit on the number of secondary 
rays spawned. (initially 0) 

Medium Describes the medium in which the ray is travelling 
(ie. inside an object or outside in the ' air'). 
Important for calculating the direction of the 
refracted ray. 

Table 3-1. The ray structure. 
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trace_ray_through_voxels (ray); { as described in chapter 2 } 
if (ray—hits—an—object) 

calculate_ambient_lighting (ray.Cr,g,b, object—hit); 
create shadow rays 0; { shadows and diffuse intensity } 
if (object_is_reflective) 

create_reflected_ray (reflected ray); 
(transfer the colour to the reflected ray } 
reflected_ ray.C,g b = ray.C,g b; 
and set the incident ray's colour to 0 so that it is } 
not also transferred to the refracted ray (if it exists) } 

rày.Cr,g,,, = 0; 
reflected_ray.Contribution = ray. Contribution x object—reflectivity; 
(transfer other information...) 

endif; add_ray_to_queue (reflected_ray); 

if (object_is_refractive) 
create_refracted_ray (refracted_ray); 
if (ray.C,2, # 0) 

(if the colour was not transferred to the reflected } 
(ray, transfer it to the refracted ray } 
refracted_ray.C,g, b = ray.Cr,g,b; 

endif; ray.Cr,g,b = 0; 

refracted_rczy.Contribution = ray. Contribution x object refractivity 
(tr ansfer other information...) 
add_ray_to_queue (refracted_ray); 

endif; 
if (ray.C,5,, # 0) 

(there was not a reflected or refracted ray, the object was a) 
(total diffuser so return the colour information to the host } 
send—colour—to—host (ray.Cr,g, b); 

endif; 
endif; 

Figure 3-2. Transferring ray information. 

been requested by the user, then the diffuse contribution from each light source is 

simply added to the ray. If shadows have been requested by the user, then a shadow 
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ray is spawned towards each light source. If this occurs, then there is no colour 

information added to the ray, since the shadow ray will carry the diffuse contribution 

to be made by the light source. The tracing of shadow rays is detailed later in this 

section. 

Once the ambient and diffuse intensities have been calculated, the specular 

component of the ray is determined. If the object struck is reflective or refractive, 

then reflected and refracted secondary rays are spawned. In the serial implementation 

the algorithm recurses on each of these secondary rays. Upon return from the 

recursion, the colour values of these secondary rays have been determined. The 

intensities of the secondary rays are summed with the colour intensity of the incident 

ray and the resultant intensity returned. However, a subvolume based multi 

processor algorithm can not use this method. The secondary rays can leave the node's 

subvolume and continue to be traced on another processor. During this time the node 

which spawned the secondary rays would be idle, waiting for the colour values of the 

secondary rays to be returned. Since having idle processors wait for results while 

there are still more rays to be traced is nonoptimal, and bound to cause dead-lock 

(processors waiting for results from processors waiting for results, etc.), a different 

tack must be taken. 

In this multi-processor implementation, when ,a ray hits a surface, the colour 

information which the incident ray carries is transferred to one of the secondary rays 

and the primary ray is discarded. The colour is only transferred to one of the 

secondary rays. If the object is both reflective and refractive, then the reflected ray is 

arbitrarily chosen to receive the incident ray's colour information. The secondary 

rays are then added to the ray queue and treated identically to primary rays. Using 

this method, the processor does not have to wait for the secondary rays to be traced. 
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Any colour which was carried in the primary ray is passed to the secondary rays. Any 

further colour which is determined by the secondary ray is added to the colour it 

carries, scaled by the amount of contribution this secondary ray makes to the final 

pixel intensity. 

The serial algorithm uses a recursion cut-off to limit the number of secondary 

rays produced, the reasoning being that past some limit, creating further secondary 

rays will add little to the the final image. The same is done with the multi-processor 

algorithm. The Level field is incremented for each secondary ray. For example, if a 

ray with a level of 4 hits an object and spawns secondary rays, their level will be 5. 

Rays which exceed an arbitrary limit (eg. 8) are terminated and any colour intensity 

carried is returned to the host processor. The rays are also terminated if the 

Contributionr,g,b becomes too small. 

If the object struck is neither reflective nor refractive, or if no object is struck at 

all (ie. it first strikes a bounding polygon), then the ray is terminated and it's colour 

intensity is returned to the host processor in much the same manner as rays which 

exceed the recursion limit. 

Shadow Rays 

A shadow ray is a special case of a ray. When an object is intersected, a shadow 

ray is created in the direction of each light source. If there are L light sources in the 

scene, then L shadow rays are generated from each intersection of a ray with an 

object. The colour information carried in a shadow ray is based on the intensity and 

colour of the light source it is directed towards. If the shadow ray reaches the light 

source without intersecting an object, then the colour information in the shadow ray 

is returned to the host processor. A shadow ray will terminate immediately if it hits 
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an object before reaching the light source. The shadow ray is then discarded, since 

the point of intersection is in shadow with respect to that light source. 

The amount of processing needed to trace a shadow ray will generally be less 

than that needed for a primary or secondary ray since no other rays must be spawned 

and no lighting calculation is involved when the ray hits the light source. 

Shadow rays are traced through the processors in the same way that primary and 

secondary rays are, but they are maintained in a separate shadow ray queue since 

their structure and processing is slightly different from that of the other rays. 

Passing Rays Between Processor Nodes 

A ray may not strike any of the objects in the node's subvolume. At that point, 

the ray is either leaving object space, or entering the subvolume of another node, if 

the ray is leaving object space, the ray is checked for intersection with the light 

sources and then the colour information is removed from the ray and returned to the 

host processor for placement in the frame buffer. However, if the ray is just crossing 

a subvolume boundary, the ray is passed, unmodified, to the node in charge of the 

next subvolume. 

When a processor receives a message containing a ray, the ray is placed in a ray 

queue. The incoming ray is placed at the head of the ray queue. This is done for two 

reasons. The incoming ray has been partially traced on another node which means it 

will likely terminate sooner, or at least produce fewer secondary rays, than a primary 

ray. The second reason is that it gives incoming rays precedence over primary rays 

so that the incoming message queues (the shared memories) are less likely to become 

full. When a message queue becomes full, a node which tries to send to that queue 

will block, causing processing time on the sending node to be wasted. When the 
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nodes begin to block on sends, deadlock may occur. By attempting to finish existing 

rays before creating any new primary rays, the nodes avoid the deadlock problem. 

This approach appears to work well, since no deadlocking occurred durring all of the 

test runs. 

3.3. Returning Pixel Values 

Up to this point, when discussing the termination of a ray, I have done some 

hand-waving and said that the ray's colour intensity is returned to the host processor. 

This section will describe the method used to send pixel values back to the host. 

Pixel values consist of two fields, a colour field (Cr,g,b) and a home pixel 

address field These are extracted from the ray once the ray has been 

terminated. However, sending every pixel value individually causes a plethora of 

messages in the mesh. To avoid this, a number of pixel values are accumulated by 

each node before sending them to the host. These groups of pixel values are called a 

pixel packet. The number of pixel values in a pixel packet is limited by the 

maximum size of a message, 21 pixel values in this implementation. 

When a pixel packet is received by a node, it is forwarded to the primary 

processor by the shortest possible route. The primary processor is the processor 

which has the connection to the host. The primary processor, upon producing or 

receiving a pixel packet sends it to the host. Rays whose colour is black (0,0,0) are 

not placed in the pixel packet since they do not contribute anything to the final pixel 

intensity. 
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3.4. Changing State 

To determine when an image is finished, and the rendering of a new scene can 

begin, it is important to determine when there are no more rays in the processor array. 

The ray tracing of a scene is complete when all nodes report that they have no more 

rays in their queue, and no more initial rays to compute. As with any multi-processor 

approach, determining and changing the state of the processor array is a difficult 

problem. This is an area that has not received a great deal of attention with respect to 

this type of ray tracing. 

If nodes send idle messages to the host when they become idle, the information 

in the message may become obsolete by the time it reaches the host. For example, 

after a node reports that it is idle, it may receive rays from another node, and become 

busy again. An idle message method requires a complex and repeated handshaking to 

ensure that all of the nodes are indeed idle. In [Dippe and Swensen 1984] this. 

problem is avoided by allowing new frames to be started while old ones are not yet 

complete. However, this assumes that the available memory on each node is quite 

large since multiple versions of object space have to be stored. This extra memory 

requirement increases the cost of individual nodes and therefore limits the number of 

processors which can be applied to the problem. Further, if a large number of frames 

are being computed, the least loaded processors may become far enough ahead that 

there may be more than 2 frames being stored simultaneously. 

Alternatively, a token value can be associated with each primary ray [Vatti 

1984]. When the ray spawns secondary rays, the value in the token is divided 

between them. As ray values are returned, the host sums the token values into a 

corresponding token buffer. When all of the entries in the token buffer are equal to 

the initial ray value, then all of the rays have been traced to completion and the frame 
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is finished. However, each ray and pixel packet must have an extra token value field 

which increases the size of the messages. This also means that every ray must 

produce a pixel packet, regardless of whether it has anything to contribute to the final 

pixel intensity or not. This method increases both the size and number of messages 

which must be passed through the mesh. 

Distributed Synchronization Method 

This thesis uses a new method for determining the end of ray tracing. It is 

related to a tight time driven distributed synchronization scheme presented in 

[Peacock 1979] It was suggested to me by John Cleary. Peacock suggested this 

distributed synchronization scheme for use with simulations that run on multi-

processors. Each node executes for some length of time independently of any other 

node, he calls this length of time a 'tick'. When a node has completed a tick, it must 

stop and wait until all of the nodes have completed the current tick before advancing 

to the next tick. This type of synchronization is needed for the ray tracing network 

which, before it can start or stop ray tracing, must be certain that all of the other 

Field 
Currentstate 
Last—busy—node 

The current state of the processor array. 
The ID of the last busy node which 
the state packet encountered on the 
path around the processor array. 

Figure 3-2. The state packet. 
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processors are ready to change state as well. 

Peacock presented a two phase method for synchronization. However, the two 

phase method assumes that each node has a fixed amount of work, and will not 

become busy again once it has reported that it is idle. This is not the case with the ray 

tracing algorithm. A node can receive a ray from a neighbour at any time and thus 

oscillate between busy and idle. This problem can be resolved by noting that the 

speed of the multi-processor algorithm will be limited by the speed of the busiest 

node. By taking advantage of this fact, a state change algorithm which incurs very 

little overhead can be implemented. 

The state change algorithm implemented in this thesis uses only one state 

packet. The fields of the state packet and their function are presented in Table 3-2. 

The state packet is sent around the nodes in a fixed loop, so that it touches each 

processor once on each pass. Each node maintains an "activity" flag which indicates 

if the node has had any activity. In this case, activity is defined as doing anything 

other than handling the state packet. When a node receives the state packet, the 

activity flag is examined. If there has been activity on the node, the Last_busy_node 

field in the state packet is updated to indicate the current node. The activity flag is 

reset to zero and the state packet is kept until the node becomes idle. When the node 

eventually becomes idle, the state packet is sent to the next node in the loop. 

Should the node's activity flag be zero when the state packet is received, then 

the Last—busy—node field is compared with the node's ID. If the two fields do not 

match, then the state packet is passed to the next node, unmodified. If the 

Last—busy—node and the node's ID do match, then the state packet has been passed 

around the entire loop without encountering a busy node. This means that all of the 

nodes are idle, and a state change can be initiated. 
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if (my_ID = PRIMARY_PROCESSOR) start_state_packet 0; 
waitjor_stare_packet 0; 
while (my state # END-OF-RAY-TRACING) do 

have_state_packet = TRUE; 
read state_packet (State_packet); 
if (no-activity _= TRUE) 

if (State_packetLast_busy_node my D) 
The state of the array can now be changed. } 

State_packet.Current_state = State_packet.Current_state + 1; 
endif; 
if (my _state # State_packet.Current_state) 

f The state of the node should be changed. } 
State_packet.Last_busy_node = my ID; 

endif; 
my_state = State_packet.Current_state; 
send _state_packet ; 
have_state_packet = FALSE; 

else 
{ Activity has occurred, do not change state. } 
no-activity = TRUE; 
State_packet.Last_busy_node = my_ID; 

endif; 
flag = TRUE; 
while (flag =TRUE)do 

switch (my- state) 
{ These functions only return when receiving the State_packet, 
or if this node has the State-packet and is now idle. } 
{ They also set no activity to FALSE if they do any work.) 
case CLIPPING: clip_objects 0; 
case RAY7'RACE : trace_rays 0; 
case FLUSHPJX: flush_remaining_pixel_values 0; 
case END _0F_ RAY _TRACING: wait jor_ state_ packet 0; 

endswitch; 
if (have_state_packet = TRUE) 

(Node has held the State-Packet, and now it is idle. ) 
State_packet.Last_busy_node = my_ID; 
send _state_packet 0; 
have _state_packet = FALSE; 
flag - TRUE; no-activity TRUE; 

else 
{ This node just received the State -packet. } 
flag = FALSE; 

endif; 
enddo; 

enddo; 
Figure 3-3. The state packet algorithm. 

} 
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The state change is effected by incrementing the Current—state field. The state of 

the node which initiates the state change is modified, and then the state packet is once 

again sent around the loop. 

When a node receives the state packet and the Current—state field does not 

match the state of the node, the node changes state and forwards the state packet. 

When the node which initiated the state change receives the state packet again, the 

process of holding the state packet until the node becomes idle is repeated. This 

process is presented in Figure 3-3. 

It should be noted that a node can be idle and still have activity. For example, 

with this implementation, a node is considered idle when its ray queue is empty and it 

has no more pixels to trace. At that point it may still have activity due to rays being 

passed to it from neighbouring nodes. A node will only forward the state packet 

when it has traced a ray through each of its assigned pixels. From this it can be seen 

that when nodes begin to become idle, the state packet will eventually arrive at the 

busiest node. The busiest node in this case will be the one which is slowest at 

creating it's primary rays through the pixels. Due to the way primary rays are created 

on a node, as was described in Section 3.2, this node will have had the most rays 

passed to it from other nodes (or the slowest clock). The busiest node will retain the 

state packet until it becomes idle. The state packet will then be sent around the loop 

again. Since the state packet should not encounter any nodes which have not yet 

completed their primary rays, the state packet should only have to travel around the 

loop a few times per state. This is well supported by results from the actual 

implementation. Over all of the test runs, each node received the state packet a 

maximum of 4 times in each state. 
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This method has a disadvantage. When the number of nodes becomes large, the 

propagation of the state change through the processor array will be slow. This can be 

remedied by allowing a node to change to the next state if it receives a message that 

could only come if the sending node was already in that next state. Of course, if the 

node has had any activity since the last state packet, some sort of error has occurred 

with the state packet, or with the sending node, but this did not occur with this 

implementation. This method allows the new state to propagate through the mesh as 

quickly as possible, which may be faster than the state packet can propagate through 

the mesh. 

3.5. Message Passing 

The number of messages in the processor network is large. Therefore the 

communication channel must be reliable, and fast. The mesh in this thesis uses shared 

memories to implement an asynchronous communication channel. Each shared 

memory is logically broken into 2 sections, half for incoming messages, and half for 

outgoing messages. There are two outgoing message calls, open and send. The open 

call allocates a variable sized buffer in one of the outgoing shared memories. 

Information is placed in the buffer and send is called to signal that a message is 

waiting for the processor at the other end of the shared memory. This signal interrupts 

the receiving processor only long enough to set a bit to register the send, unless the 

receiving processor is waiting for a message. If there is not enough space in the 

shared memory when open is called, then the process may request to either block 

until enough space becomes available, or to fall immediately. 

The two incoming message calls, get and release, act in a similar manner. The 

get call gets the next available message out of the shared memory in the requested 
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direction, information is taken out of it and release is called to remove that message 

from the shared memory. When release is called, if there is a process blocked on an 

open, it is signaled to continue if there is now enough space. As with open, get can be 

requested to block until a message arrives, or requested to fail if there are no 

messages. Further, get can be called without specifying a shared memory, 

whereupon all 4 of the incoming shared memories are examined and the first message 

found is returned. 

This method of using the shared memory for communication has several 

advantages. The communication channel is dedicated to the two nodes which it links. 

A broadcast communication channel would suffer from contention problems as the 

number of nodes increased. Shared memory is also more reliable as communication 

channels, since noise levels during transmission of the message are greatly reduced. 

Another feature is that the communication can be asynchronous, assuming the shared 

memories do not become full. To send a message to a node, the message is simply 

placed in the appropriate shared memory, and unless the receiving node is explicitly 

waiting for a message, it only executes a small interrupt routine to note that there is a 

message waiting in that shared memory. The main drawback is the limited global 

communication. Sending a message to a node which is not a neighbour becomes 

more difficult. 

Message Routing 

• The shared memory allows for fast, reliable communication between 

neighbouring nodes. There is, however, only one communication line to the host. A 

node which is distant from the primary processor must route pixel packets through 

other nodes to send them to the host. To do this a fast and simple routing algorithm 
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was developed by Murray Peterson and myself. 

The routing 'algorithm sets up a shortest path table at the outset of the ray tracing 

process. The table contains one entry for each node of the mesh. Each entry contains 

the address of one of the four shared memories. When a message must be sent to a 

specific processor, the corresponding entry in the table is consulted, and the message 

is sent to the indicated shared memory. When a node receives a message that is to be 

sent to another node, it consults its unique shortest route table. 

Since the processor network used in this thesis is a two dimensional mesh, the 

shortest route to a destination node, Drow,coim, from the sending node, 5r0w column' is 

calculated by comparing the row and column indexes of S and D. The row indexes, 

Srow and Drow, are compared, if they differ the algorithm decides which row should 

be sent to. This decision is made more difficult because the mesh is a torus. This 

means that if the mesh is n x n, nodes in row 0 and row n are connected to one 

another. Because of this, the shortest route to a node with a smaller row index may be 

to send it to a row with a higher row index. The method to determine the shared 

memory to send to for differing rows is presented in Figure 3-4 and it is trivially 

extendible to columns. 

Since this procedure is followed on every node, when a message is received 

which is not for the receiving node, the route table is consulted to find the shortest 

route to get the message to the intended node. A further enhancement was made so 

that if there is more than one shortest route to a certain destination node, the routing 

algorithm alternates sending messages between the different shortest routes. Based on 

the test results, the message loads were much more balanced using this alternating 

message routing methods 
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f (Srow = Drow and S0i = Doi,) 

endif; route to liD row,column] = ME; 

if (Srow # Drow) 
diffA = Drow - Srow; 
if (diffA < 0)diffA = diffA + n; 
dzffB = Srow - Drow; 
if (dfJB <0) dzffB = dfjB + n; 
if (dzffB < dffA) route— to [Drow, 

endif; coiu,vjz] = Down_a_Row; 
else route—to {Drow,coimI = Up_a_Row; 

Figure 3-4. Calculating the shortest route to a processor. 

3.6. The Multi-processor Array 

The algorithm presented in this thesis was designed to run on a toroidal, 4-

connected processor mesh. Inter-processor communication is effected via 4KB blocks 

of shared memory between the processor and its neighbours. 

One node in the processor mesh is connected to a host machine. This machine is 

known as the primary processor. The only distinction between this node and the 

others is this connection to the host. Figure 3-5 shows a conceptual diagram of a 

3 x 3 toroidal mesh. The primary processor is pictured in the bottom left corner. 

Processor Array Hardware 

The nodes of the mesh consist of M68000's with 512KB DRAM, 2 on-board 

4KB dual-ported memories for communication with neighbours, an independent 

clock, and interrupt lines from each of the 4 neighbours. One of the nodes has a 

iMbit/second connection for communication with the host processor (VAX 11/780 
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Figure 3-5. A 3 by 3 processor mesh. 
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running UNIX 4.2b5d). 

The shared memory provides a high speed, highly reliable, asynchronous 

communication channel between neighbouring processors. Unfortunately the 

hardware was not complete at the time of this writing so a network of workstations 

was used to simulate the hardware. Shared memory was not available using the 

workstation network, so the asynchronous communication was simulated using a 
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synchronous protocol, JIPC, part of the JADE project, developed at the University of 

Calgary [ Unger, Birtwistle, Cleary, Hill, Lomow, Neal, Peterson, Witten, Wyvill 

1984]. 

Since JIPC is a synchronous protocol, and the algorithm calls for asynchronous 

communication, the simulation requires that each process have an associated memory 

process. The memory process only receives get and release requests from its parent 

processor, open and send requests from the four neighbouring processors. Since the 

memory process is dedicated to its task, and independent of the actions of the ray 

tracing process, the communication between any two neighbouring ray tracers 

becomes asynchronous. 

The network used for simulating the mesh consists of 9 Corvus Concept 

workstations, each having an M68000 processor, 512KB DRAM and a 1 Mbit/second 

net connection. Since dedicated communication channels were not available, 

broadcast collisions were a major source of difficulty during testing runs. End to end 

acknowledgement at the software level had to be implemented before the simulation 

could be run to completion without losing message packets. The end to end 

acknowledgement caused the simulation to run much slower than the actual mesh 

hardware would. This extra overhead is examined more thoroughly in Chapter 5. 

Accuracy of the Simulation 

The workstation's multi-tasking kernel uses a little under half of the available 

memory leaving about 300K free for the ray tracing process. The required memory 

simulation process uses about 40K, leaving close to 260K free for the ray tracer. The 

amount of memory is slightly less than will be available on the mesh hardware. The 

mesh's multi-tasking kernel is obstensibly the same as workstation's, although 
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slightly smaller, because the nodes on the mesh do not need screen and keyboard 

code. On the mesh itself, the memory simulation process will not be present which 

further increases the available memory. So the simulation will use more memory and 

will have a slower speed of communication. 

The ray tracer itself is approximately 90K in size, so 170K is left for the objects 

and voxels. The ray tracer knows of only three types of objects. These types and their 

sizes are summarized in Table 3-3. The listed size of a polygon assumes that a 

polygon will have only 4 vertices, the number of bytes for a polygons is 

88 + (13 x V) where V is the number of vertices. The column labeled "Approximate 

Maximum Number refers to the number of that object type which will fit into 170K 

if all of object space is contained in one voxel and no other objects are used. In 

practice the maximum number of objects will be much less because of the space 

needed for the voxels and the object references. 

Objects Sizes 
Approximate 

Maximum Number 
of objects 

Object 
Number, 

of Bytes used 
for storage 

polygon 140 1200 
sphere 60 2800 
light source 28 6050 

Table 3-3. Size of objects used in the ray tracer.. 
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Summary 

This chapter has presented a multi-processor algorithm which has been coupled 

with the spatial subdivision method presented in Chapter 2. The results from 

simulating this algorithm are presented in the next two chapters. 



CHAPTER 4 

Results from Uniprocessor Spatial Subdivision 

The spatial subdivision algorithm presented in Chapter 2 was implemented on 

both a multi-processor and a uni-processor system. This chapter will present the 

results obtained from using the spatial subdivision algorithm on the uni-processor, 

although the results are equally applicable to the performance of the individual nodes 

in the multi-processor array. Chapter 5 will present results from the multi-processor 

algorithm along with discussion of how the results relate to spatial subdivision. 

The purpose of a spatial subdivision algorithm is to reduce the number of 

intersection tests performed and thereby speed the process of ray tracing. This 

chapter examines the effect a regular subdivision has on reducing this number. 

A regular subdivision requires a large amount of space to represent the voxels in 

memory. The use of a hash table was introduced in Chapter 2 to reduce this 

requirement. The quality of the hashing function used, the amount of memory saved 

and time used are also examined. 

The Test Scenes 

To test the effectiveness of the spatial subdivision algorithm, three scenes were 

ray traced: 40 randomly placed, reflective spheres; a barroom corner with a table and 

two stools made entirely of polygons; and a human face described by a polygonal 

mesh. The scenes were chosen because they are fairly typical of the scenes being 

rendered at the University of Calgary. The scenes which could be rendered were 

limited in size by the available memory on the individual nodes of the processor 
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array. Photographs of these scenes are presented in Chapter 5. 

The three scenes have different features which are worth pointing out before 

discussion of the results. The sphere scene has very few objects in it, which means 

that the time needed to ray trace it without spatial subdivision is relatively small. 

However, due to the large number of reflections, rays are well distributed throughout 

scene space. 

The barroom scene has three conical "lamp shades" which are formed by 78 

polygons, all of which meet at a point. The voxel which encompasses this point will 

contain at least 78 objects regardless of the level of voxel subdivision. 

The "face" scene does not contain such irregularities but the polygonal mesh 

which defines the face is more complex towards the centre of the scene, due to the 

eyes, nose and mouth areas. The total number of objects in each scene is detailed in 

Table 4-1. 

Scene Number of 
Objects 

Spheres 40 spheres 
Barroom 367 polygons 
Face 954 polygons 

Table 4-1. Number of objects in each scene. 
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4.1. Speedup Provided from Spatial Subdivision 

The main advantage provided by a spatial subdivision algorithm is that the 

number of objects tested for intersection is reduced. Provided that the cost of moving 

between voxels is not great, the reduced number of intersection tests should increase 

the speed with which each single ray can be traced, and thus increase the total overall 

speed of ray tracing an image. This section will examine the speedup gained as the 

number of voxel subdivisions increases. The term voxel subdivisions is used to refer 

to the cube root of the total number of voxels, or more intuitively, the number of 

voxel boundaries in each of the 3 major axis directions. 

The X axis of every graph presented in this section is the number of voxel 

subdivisions. They are increased in steps of 4, starting with a 1 x 1 x 1 voxel array, 

and ending with a voxel array of 97 x 97 x 97 in 25 steps. The hash table graphs are 

the only exception to this, the number of voxel subdivisions for the hash table graphs 

were increased in steps of 2, from 17 to 97 since any number smaller than 17 took so 

little space, it seemed inefficient to use a hash table. 

The speedup from using spatial subdivision on the three scenes is presented in 

graph form in Figure 4-1 (the ratio speedups obtained over the naive algorithm are 

presented later in Table 4-2). In all cases, the time to ray trace the scenes is initially 

reduced as the number of voxel subdivisions is increased. Eventually, increasing the 

number of voxel subdivisions increases the trace time. This turn around occurs when 

the number of ray/object intersection tests is not reduced significantly by increasing 

the number of voxel subdivisions. Increasing the number of voxels past this point 

increases the amount of computation neded for each ray by adding more next voxel 

calculations without reducing the other times significantly. The number of 

intersection tests will still decrease slightly as more voxel subdivisions are added, but 
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Figure 4-1. Average time per ray with increasing voxel subdivisions. 

the time to perform the additional next voxel calculations will outweigh any benefits 

from the reduced number of intersection tests. 

The sphere scene suffers most noticeably from this added cost. The trace time 

for the spheres eventually climbs so high that the time needed to trace the spheres at a 

voxel subdivision of 97 is greater than the time needed with only 1 voxel subdivision 

(which is equivalent to the naive algorithm). This is a result of the ñ,l1 number of 

objects in the scene. The initial speedup due to spatial subdivision is nearly 200% for 

the spheres, but the turn around point is reached almost immediately as N increases 

above 5. 
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The Reduction in the Number of Intersection Tests 

The spatial subdivision technique was introduced in order to reduce the number 

of intersection tests performed and thus speed up the tracing of each individual ray. 

As can be seen in Figure 4-2, the number of intersection tests per ray decreases 

quickly as the number of voxel subdivisions is increased. As expected, the number of 

ray/object intersections are not greatly reduced beyond the level of voxel subdivision 

where the trace times start to increase again in Figure 4-1. Since the number of 

intersection tests are not being greatly reduced, the time spent travelling through the 

additional voxels becomes the dominant cost. 

The level of voxel subdivision which produced the fastest times are presented in 

Table 4-2. The table also shows the average number of intersection tests per ray at 

3 
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Figure 4-2. The reduction in the number of intersection tests. 
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Scene 
Approximate 

optimal number of 
voxel subdivisions 

Average number of 
intersection tests 

per raj 

Percentage 
speedup 

over single voxel 
Spheres 5 2.29 198% 
Barroom 41 6.00 2223% 
Face 25 4.39 .' 3267%. 

Table 4-2. Approximate optimal number of voxel subdivisions. 

this level of subdivision. At the point where the trace time begins to increase the 

number of intersection tests is relatively small. This point will be called the optimal 

number of voxel subdivisions since that number of voxels produces the fastest timings 

for that screen resolution. 

Speed of the Next Voxel Calculation 

When using spatial subdivision, the time cost of moving between voxels is 

added to the ray tracing process. The time cost of this operation should be small 

enough to allow a large number of subdivisions before significant time penalties are 

incurred. If the time cost is too large, then a ray which does not intersect an object 

will take longer to process than a ray which does simply because it must traverse, 

more voxels. 

The spatial subdivision implementation in this thesis was presented in Chapter 

2. The average speed of the next voxel operation is presented in Table 4-3. For 

interest, the times for the floating point 3DDDA given in [Fujimoto, Tanaka and 

Iwata 1986] are also presented. These results are not directly comparable since 
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Voxel 
Representation 

Next Voxel 
Operation (per voxel) 

Next Voxel Operation 
Initialization (per ray) 

Array 0.059 C 0.684 
Hash Table 0.090 0.807 
Octree 
(3DDDA VAX 11/750) 

0.072 0.591 

timings taken on a VAX 11/780, times are in milliseconds 

Table 4-3. Average speed of the next voxel operation. 

different machines types were used and it is not known if floating point hardware was 

used in the 3DDDA implementation. The timings taken on this implementation did 

not use floating point hardware. Only the 3DDDA floating point timings are presented 

here since the next váxel operation implemented uses floating point and not integer 

arithmetic. The times in this table were averaged over all the test runs, with a 

maximum deviation of 0.02 milliseconds, which is near to the difference between 

these an Fujimoto's results. The times may be slightly slow due to the presence of the 

timing mechanism in the next voxel code, which will reduce the chance of a cache 

loop. 

In determining which method is faster, several factors must be considered. The 

speed of moving from one' voxel to another is slightly better for the uniform array 

subdivision, and the actual memory address is found with one integer addition to add 

the array offset to the array base, but a higher startup cost is incurred. The cost of 

finding the actual memory address of the next voxel using the octree approach is 

much higher since anywhere from 2 to log (N) pointers must be chased (assuming a 
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balanced tree), where N is the number of voxels. This address calculation cost is not 

included in the times for the octree, whereas it is for the uniform method. On the 

other hand, the octree method will likely have to perform fewer next voxel 

operations. To compare the two methods would require an equitable implementation 

on identical hardware. 

The times needed for an intersection test and a full intersection calculation are 

given in Table 4-4. These timings were not carried out on the multi-processor nodes, 

but similar ratios are expected. 

The Average Number of Voxels Encountered per Ray 

The length of each ray remains constant as the number of voxel subdivisions 

increases. This means we should expect the average number of voxels which a ray is 

traced through to increase linearly with the number of subdivisions. This in fact did 

occur. The graphs in Figure 4-3 depict the average numbr of voxels encountered per 

ray. 

Object Average Time 
Intersection Test 

Average Time 
Intersection Operation 

Sphere 0.218 1.301 
Polygon 0.320 1.362 

timings taken on a VAX 11/780, times are in milliseconds 

Table 4-4. Speed of the intersection operations. 
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Figure 4-3. The average number of voxels encountered per ray. 

4.2. The Quality of the Hashing Function 

The hashing function is a simple "modulus" based function. The use of this 

function ideally would produce a random distribution of the number of full voxels 

hashed to a given location in the hash table. To test the quality of the hashing 

function, the predicted and actual results where compared. 

If the hashing function is random, the mean number of full voxels hashed to a 

given location is given by: 

F 
(4.1) 

where H is the number of hash table locations, and F is the total number of full 

voxels. 
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Of interest is the time spent searching for the correct voxel once a hash table 

location has been identified. If this search time is too great, then the hash table 

representation will suffer greatly in terms of speed when compared to the array 

representation. With the array representation, the search time is 1 since there is 

always only one voxel at any given location. The search time for a hash table 

representation should be close to 1 as well. 

If a bit table is used to screen out searches for empty voxels, then the expected 

or average search time (E (time)) for a voxel in the hash table is given by: 

E (time) = j jfl + (4.2) 

where ni is the number of full voxels hashed to the ith location, F is the total number 

of full voxels and H is. the number of hash table locations. 

Of interest is the result of this function compared to the expected search time for 

a completely random distribution which is given by: 

E(time)=1+--p (4.3) 

Figure 4-4 plots these two functions. The two functions match well, with the 

exception of some odd spikes in the curves. These spikes are due to our hashing 

function which is not completely random. At certain levels of voxel subdivision, the 

hashing function ends up assigning a more than average number of full voxels to a 

single hash table location. To guard against this, a useful preprocessing step may be 

to assign objects to voxels and test the distribution in the hash table. The relative 

merits and trade-offs to this method are presented later in this chapter. 

Table 4-5 shows the expected (from equation 4.3) and real (from equation 4.2) 

average search time at the optimal level of subdivision. The real average search times 

are slightly larger than the expected times, but they are still very close, which means 
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Figure 4-4. Expected vs. real search times for full voxels. 

Expected Search Times for a Full Voxel 

Scene 

Spheres 
(17 3) 

Expected average 
search time (4.3) 

1.11 

Real average 
search time (4.2) 

1.18 
Barroom 1.34 1.35 
Face 1.13 1.24 

average number offull voxels checked before the correct voxel is found 
Table 4-5. Expected vs. real average search times. 

that our hashing function is not unacceptably worse than truly random hashing at 

these levels of subdivision. It is encouraging that the search times are very near to 1, 

since this means that the hash table representation will not spend too long searching 

for the correct full voxel in the hash table. As mentioned earlier, the search time for 
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the array representation will be exactly 1. Because of the small search times, the hash 

table representation will deliver only slightly slower times than the array 

representation. 

The Cost of the Bounding Polygon Search in the Hash Table 

As mentioned earlier, the bit table screens out searches for empty voxels. 

However, the voxels containing the bounding polygons are indicated as full in the bit 

table yet they do' not have a corresponding entry in the hash table. A ray can 

encounter such a case exactly once, since upon hitting a bounding polygon it leaves 

scene space and all processing on the ray is terminated. In complex scenes, a large 

number of rays will terminate by intersecting an object rather than encountering a 

bounding polygon. So px, (where 1i is the time needed to check if the voxel in the 

hash table is the one we are searching for), is an upper bound on the time added for 

unsuccessful searches per ray. In the test scenes, p never exceeded 10.9 and it never 

exceeded 0.7 at the optimal level of subdivision. 

So long as space is a more important consideration than speed, the hash table 

representation will provide reasonable results, since the hashing function is well 

distributed and it is not much slower than the array representation. Table 4-6 shows 

the speed of the hash table representation versus the array representation at the 

optimal level of subdivision. Only the face and the barroom scene are shown since 

the sphere scene required only 125 voxels (5x5x5) and using a hash table is 

inefficient for such a small number. 
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Scene Hash table 
representation 

Array 
representation 

Barroom 844 744 
Face 317 301 

timings taken on a VAX 11/780, times are in seconds 
both scenes traced at optimal level of subdivision 

Table 4-6. Hash table vs. array representation speed. 

Overhead in Assigning Objects to Voxels 

In practice voxel assignment is substantially faster than the ray tracing process. 

For the three test scenes used, the maximum percentage of time spent assigning 

objects to voxels was 13.6%, but at the optimum level of subdivision, the maximum 

was only 5.6%. 

It should be noted, however, that the number of pixels was relatively small in 

the scenes from which the voxel assignment statistics were taken (150 x 150). If high 

quality images are to be rendered, the time taken to ray trace will increase, but the 

time taken to assign objects to the voxels will remain constant since it is a function of 

the voxels and the objects, not the number of rays. This means that the percentages in 

the previous paragraph are high. As a test, the barroom scene was rendered at high 

quality (512x512 pixels, or more than 3/4 million rays) and the percentage time taken 

to assign the objects, to the voxels was0.01%. The time taken to assign the objects to 

the voxels was constant. From these figures, assigning objects in a pre-pass test for 

quality of the hash table distribution is feasible without a large speed degradation. 



77 

4.3. Storage Requirements for the Scenes 

In Chapter 2, the amount of storage which uniform spatial subdivision required 

was discussed. To reduce this requirement, two techniques were presented. With the 

array representation of the voxels, it was noted that voxels with a single object 

reference could share that reference with all of the other voxels which also had only 

that one object reference. A hash representation was also presented to reduce the 

amount of space needed to store the voxels themselves. This section will examine the 

space that can be saved with both methods, and then compare the two methods. 

Shared Object References 

The simple "shared" object reference method produced substantial space 

savings over the straight forward method of using a separate object reference for each 

voxel the object is assigned to. These results can be seen in Figure 4-5. In these 

charts the upper curve is the straight forward method of assignment, while the lower 

curve is ,the new "shared" reference method presented in Section 2.5. It can be seen 

that the savings, in the number of references are substantially better than the straight 

forward reference assignment as the number of voxel subdivisions is increased. 

Each object reference consumes 8 bytes, so for every 128 references saved, 1K 

bytes are saved. At the optimal level of voxel subdivision this amounts to 39K at best 

(for the face scene) or about 5% of th6 total space required by both program and data. 

The other two scenes saved less than 4%, so while the graphs are impressive, the 

actual savings provided using the "shared" reference method are not yery 

significant. 
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Figure 4-5. Number of object references in voxels. 

• Space Savings with the Hash Table versus the Voxel Array 

As was mentioned in Chapter 2, the hash table method was introduced in order 

to reduce the amount of space needed for storing the voxels. This subsection 

examines the space used in the hash table representation versus the space used when 

the "shared" object reference method is used with the array representation. 

The number of bytes (B) needed for the array representation is given by: 

B = [(n3) x 4] + [(a refs - shared refs) x 8] (4.4) 

where: 

n3 is the number of voxels. 

a_refs is the number of object references in voxels (there may be 

more than one reference per object). 
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shared re is the number of times a reference is not allocated 

because of sharing between voxels. 

The 4 and the 8 represent the number of bytes required for each voxel, and each 

object reference, respectively. 

The number of bytes needed for the hash table representation is given by: 

B = (M x 4) + (a refs x 12) (4.5) 

where: 

M is the length of the hash table. 

a_refs is the number of object references in voxels. 

Note that the byte size of an object reference ( 12) in the hash table representation is 4 

more than for the array representation since the ID of the actual voxel must be stored 

to distinguish between voxels which may have been hashed to the same hash table 

location. 

From (4.4) and (4.5) we can write: 

13= 4[ (n3 - M) + ((a refs - shared refs) x 2) - (a_refs x 3)] (4.6) 

where: 

0 is the number of bytes difference between the two methods. 

If 13 is positive, then using the hash table representation is more economical, if it is 

negative, the "shared" object reference array representation should be used. Since 

these values can be determined without ray tracing, deciding on the best 

representation to use can be done by assigning objects to voxels using both methods, 

and comparing. As mentioned earlier, this incurs less cost than ray tracing, but the 

hash table representation will be more economical in most cases. 

Applying this formula to the three scenes at the optimal level of voxel 

subdivision, we get the figures in Table 4-7. The hash table size was held constant at 
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4096 hash table locations. 

The table shows that except in the' case of the spheres, using the hash table 

method is more economical in terms of storage. The sphere scene is exhibits a poor 

because the hash table was larger than needed to represent such a small number of 

voxels. 

4.4. Summary 

The spatial subdivision algorithm provides significant speedups over the naive 

ray tracing algorithm by reducing the number of tests for intersection significantly. 

The optimal level of subdivision is a function of the scene and the number of rays. No 

method for choosing the optimal ntimber of voxel subdivisions before ray tracing the 

scene exists, but the speedups are large enough that a reasonable level of subdivision 

should provide good results. Based on the results a uniform spatial subdivision can 

provide a speedup of 1 to 3 orders of magnitude for reasonably complex scenes. 

A trade-off between speed and storage can be made if a hash table 

representation is used for storing the voxels. While the hashing function used in this 

Scene 13 v3 hash 
a refs 

array 
a refs 

% space saved 
over array 

Spheres -4123 125 70 29 N/A 
Barroom 52676 68921 5591 2312 55% 
Face 4001 15625 5400 4336 9% 

Table 4-7. Difference in storage space - Equation (4.7). 
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implementation is not random, the expected search time for a full voxel is well 

behaved and the time cost incurred by the search does not appear prohibitive. The 

hash table access and performance is only slightly slower than the array 

representation. 



CHAPTER 5 

Results from the Multi-processor Algorithm 

The multi-processor algorithm was described in Chapter 3. This chapter will 

examine the results from tracing the 3 test scenes using this algorithm on a varying 

number of nodes. 

When using a multi-processor algorithm, the primary area of interest is the 

speedup attained, which is ideally close to or greater than N for an N processor array. 

A primary reason for not achieving this result is an unbalanced workload between the 

processors. A new load balancing scheme is presented with some preliminary results. 

This chapter will examine the speedups obtained from several runs and try to 

identify why the speedup was or was not close to N. 

The Simulation Procedure 

Before discussion of the results a brief description of the simulation procedure is 

in order. The multi-processor algorithm was simulated on both a single processor 

using multi-tasking to simulate multi-processors, and a small network of 

workstations. The uni-processor had a process limit which restricted the number of 

simulated processes which could be run. The workstations were limited in physical 

availability. Due to this, the multi-processor simulations were limited to a maximum 

dimension of 3 x 3. Further description of the hardware and run-time environment is 

provided in Chapter 3. 

Each scene was run with a varying number of processors, or processes on the 

uni-processor simulation. The processor arrays are constrained by the current 
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implementation to be square, so the number of procesors on the various runs were 1, 

4 and 9. 

5.1. The Speedup as the Number of Processors is Increased 

A multi-processor ray tracing approach takes advantage of the lack of ray to ray 

coherence in most ray tracing algorithms. Since each ray can be traded independently 

of the others, each node of the processor array may process rays in parallel. This 

seems to indicate that if N processors are applied to the task, a speedup of N should 

be attained. However, even assuming that each node processes an equal number of 

rays, the amount of time needed to process a ray is not constant. The factors which 

contribute to this are: 

the length of the ray 

• the number of voxels passed through in the node's subvolume 

the number of objects tested for intersection 

the complexity of the surface struck 

• the surface characteristics of the surface struck 

In addition there are "per ray" variables introduced by a spatial subdivision 

approach to multi-processor ray tracing: 

the number of processor subvolumes which the ray passes through 

the time needed to pass a ray between processors 

These "per ray" variations mean that even if each node has an equal number of 

rays to trace, the time needed to trace these rays will not be equal. This will tend to 

reduce the speedup possible. To further complicate the issue, it is likely that each 
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Figure 5-1. The speedup gained via the multi-processor algorithm. 
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a difference in the number of primary (pixel) rays assigned 

• a difference in the number of secondary rays spawned 

• a difference in the number of rays received from other nodes 

Some combination of these factors will conspire to create an uneven workload 

across the nodes. The graphs in Figure 5-1 show the timings obtained from ray 

tracing the three test scenes on 1, 4 and 9 processors. The speedups gained are 

presented as ratios in Table 5-1. These ratios are based on the time taken to ray trace 

the scenes on a single processor. 

The "face" scene was too large to be ray traced on a single (1) workstation and 

so the ratios have been estimated based on the time taken to ray trace it on the uni-

processor. However, all other timings for the "face" are real. 

The ratios in the table show that the mainly diffuse scenes (the barroom and the 

face) achieved very good speedups, while the sphere scene did not. Table 5-2 shows 

Scene 2 x 2 processors 3 x 3 processors 
Wrkstn. Uni Wrkstn. Uni 

Spheres 1.64 1.40 3.61 1.66 
Barroom 5.11 3.43 4.93 3.09 
Face 
*(workstation ratios 
estimated, see text) 

*6.04 6.05 *9.88 11.50 

ratios based on the busiest processor compared to single processor 

Table 5-1. Speedup gained using the multi-processor algorithm. 



86 

the difference between the busiest and least busy nodes. The processing times for the 

sphere scene vary wildly between nodes indicating that the cause of the poor speedup 

is an uneven workload. 

The test runs with the largest discrepancy between the busiest and least busy 

node times are the test runs which exhibit the least amount of speedup. When the 

difference between the busiest and the least busy node is slight, the speedups are 

much better. By balancing the load, better performance can be gained. A new 

algorithm for load balancing, along with some results, is presented at the end of this 

chapter. 

Scene 
2 x 2 processor 

% of rays 
array 

Total time 
wrkstn. uni 

3 x 3 processor 

% of rays 

array 
Total time 

wrkstn. uni 
Spheres 
Busiest 27.2% 7139 289 14.9% 3253 243 
Least busy 22.8% 2994 222 8.2% 954 101 
Barroom 
Busiest 25.0% 3244 217 14.0% 3364 241 
Least busy 25.0% 2095 120 8.4% 486 33 
Face 
Busiest 25.3% 2855 196 10.5% 1747 103 
Least busy 24.9% 2134 150 10.5% 755 65 

Table 5-2. Busiest and least busy nodes. 
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Concerning the Busiest Node 

The amount of work done by a node will be determined by the number of rays 

which enter it's subvolume as well as the number of objects within the subvolume, 

but the number of objects should not affect the amount of work as much as the 

number of rays. This is especially true since spatial subdivision is being used on each 

node. With the appropriate level of voxel subdivision, the number of intersection 

tests performed on a ray is greatly reduced, as discussed in Chapter 4. 

In general, then, it is expected that the load on each node will strongly depend 

on the number of rays it has to trace, assuming that the time spent forwarding pixel 

packets is small. Table- 5-3 pairs the busiest node with the number of rays it traced, 

and compares that to the largest number of rays traced by any node in the array. In 4 

of the 12 cases, the node with the greatest number of rays was also the busiest 

processor. In all but 2 of the cases, the busiest node had more than the average 

number of rays. The discrepancy between the node with the greatest number of rays 

and the busiest is due to a poor level of voxel subdivision for the number of objects 

on that node. 

The Number of Objects per Node 

The optimal number of subdivisions is dependent upon the number of objects, 

the object's placement, the speed of the next voxel calculation, the speed of other 

operations such as intersections, the number of rays and the distribution density of the 

rays. Since the actual optimal number is a complex function of these factors, it is very 

difficult to calculate. However, to provide the fastest trace time, the number of 

voxels will increase as the number of rays and the number of objects do. Using this 

assumption, if the busiest processor does not trace the most rays, then it will likely 

have a poor level of subdivision for the number of objects which it contains. 
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Number of 

nodes 

Percent of rays 
on busiest node 

Largest percent 
of rays traced 
on a node 

4 (uni) 
spheres 26.4 27.3 
barroom 25.0 25.0 
face 25.3 25.3 
9 (uni) 
spheres 14.9 14.9 
barroom 14.4 15.3 
face 10.5 12.2 
4 (multi) 
spheres 27.2 27.2 
barroom 25.0 25.0 
face 25.0 25.3 
9 (multi) 
spheres 14.9 14.9 
barroom 12.6 13.4 
face 10.5 12.2 

percent refers to the percentage of the total number of rays 

Table 5-3. Busiest node vs. the largest percentage of rays. 

Table 5-4 shows the number of objects contained on the busiest nodes. Only 4 of 

the 12 busiest processors did not correspond to either having the most objects or the 

most rays. In all 4 cases the nodes had more than the average number of rays and 

more than the average number of objects. 

Discussion of the Results 

The barroom scene, is slower with 9 processors than it is with 4. This is, due to 

the fact that few rays were passed when 4 nodes were used. Using 9 nodes, the central 
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Number of 
nodes 

Number of 
objects 

Most 
objects? 

Most % 
of rays? 

Nodes with 
more objects 

4 (uni) 
spheres 7 no no 1 
barroom 73 no no 2 
face 352 yes yes 0 
9 (uni) 
spheres 7 no yes 1' 
barroom 70 no no 2 
face 356 yes no 0 
4 (multi) 
spheres 7 no yes 1 
barroom 74 no yes 2 
face 352 yes yes 0 
9 (multi) 
spheres 7 no yes . 1 
barroom 70 no no 2 
face 356 yes no 0 

Table 5-4. Number of objects and rays on the busiest node. 

processor passed numerous rays to the outside processors and the number of rays 

which outside nodes had to trace increased. Since these processors had more rays to 

trace, an uneven load resulted. 

The timings for the barroom and the face are quite surprising. The speedups 

obtained are greater than N in some cases. However the timings should only be taken 

as a strong indication of the speedups to be gained. The timing methodology contains 

many inaccuracies as discussed in Section 5.2. 
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The Level of Voxel Subdivision on Each Node 

The multi-processor algorithm uses spatial subdivision on each of the nodes to 

further increase the performance of the processor array. The number of voxel 

subdivisions through out the scene was held relatively constant regardless of the 

number of nodes. With one processor, a voxel subdivision level of 32 was used, with 

4 processors a level of 16 was used on each processor and with 9 processors a level of 

8 was used. This should serve to limit the effects of voxel subdivision on the multi-

processor results so that they may be examined separately. In practice it will be 

desirable to subdivide the subvolume on each node by a different amount, based on 

the number of objects which intersect the subvolume. 

If each processor has an optimal number of voxel subdivisions for its 

subvolume, then the ray tracing process will be at its fastest. The results in Chapter 4 

show only a weak time dependency on the number of voxel subdivisions beyond 

some initial level of subdivision. However, it is still desirable to keep the speed as 

fast as possible. Even small differences in the average amount of time to trace a ray 

can become significant when the number of rays is in the order of millions. 

Object space is not evenly divided between the nodes when 9 processors are 

used. As was mentioned in Chapter 3, each node is assigned a nearly equal number of 

pixels. However, object space will generally extend beyond the boundaries defined by 

the pixels to be traced (see Figure 5-2). This means the outside nodes will be 

assigned more of object space since the pixels are generally focused on a subsection 

of the scene. Scenes which are more centrally complex will exhibit a greater speedup. 

This is because the central nodes have less space assigned, but have the same number 

of voxel subdivisions as every other node. Therefore, the volume of the voxels on the 

central processors will be smaller than the voxel volumes on the outside processors of 
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Eye 

Top processors' 
space 

Center 
processors' 
space 

Bottom 

processors' 

space 

Scene Extent 

Side view 

• even pixel space division, uneven physical space division 

Figure 5-2. Object space boundaries resulting from pixel boundaries. 

the array. This creates an octree-like situation where object space is subdivided finer 

in areas of greatest complexity. Since the face is centrally complex, it exhibits a 

speedup due to this effect. 

This occurrence indicates that by choosing a good subdivision of object space 

between array nodes, greater than N speedups may be achieved. This idea was not 

pursued further in this thesis due to time constraints. 

5.2. The Timing Methodology 

As was mentioned in Chapter 3, the actual mesh hardware was not yet complete 

at the time of this writing, so a simulation of the mesh was run on a network of 

workstations. The shared memories for message passing were simulated by a separate 
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process running on each of the workstations. These "shared memory" simulations 

had the same interface as the functions on the actual mesh hardware. Unfortunately, 

they did not act in the same way. The only communication channel between the 

workstations was, a packet based network. This caused significant amounts of time to 

be spent doing collision detection and sending re-tries on the network. 

The mesh hardware would not have this difficulty due to it's use of shared 

memories for a communication channel. The amount of time to send a message 

would be small and nearly constant; the time needed to write the message to the 

shared memory and generate an interrupt. The results presented in this chapter ignore 

the communication overhead introduced by the network. The time each node spent 

ray tracing is calculated by taking the amount of time spent sending messages and 

subtracting it from the total amount of time spent in the ray tracing state. Then a 

small time penalty is added, based on the number of calls to the shared memory. This 

time penalty is an estimation of the amount of time needed to write 100 bytes to 

memory, generate an interrupt and do 2 M68000 context switches. This was 

estimated to be 2 milliseconds. 

This procedure is not wholely accurate but it should provide an upper bound on 

the length of time the mesh hardware will take. It is an upper bound because the time 

the workstation spent receiving messages is not known. The underlying 

communication channel on the workstation has to actively participate in receiving a 

'message by pulling it off of the packet network, copying it into an internal buffer, and 

sending an acknowledgement to the sender. All of these actions may precipitate 

retries on both ends. The time spent doing a locally initiated " send" or "receive" 

was timeable; but the time the underlying communication channel spent doing 

physical receives from the network was hidden from the ray tracing program, and the 



93 

timing mechanism on the workstation was not sophisticated enough to filter this 

processing time out. 

5.3. Pixel Communication Overhead 

A major concern when implementing this thesis was that the communication 

overhead from forwarding pixels would degrade the performance of the primary, 

processor since it must forward every.pixel packet computed by the mesh back to the 

host. Fortunately, this overhead did not significantly affect the performance of the 

primary processor. This can be seen in Tables 5-3, and 5-4 where the primary 

processor (node 0) was only the busiest node when it had the largest number of rays, 

the largest number of objects or some combination of both. This is due to the 

relatively small amount of time it takes to forward a pixel packet compared to 

starting and tracing a ray. 

Time Spent in Other States 

The ray tracing process consists of several states: 

• downloading scene space and clipping objects against subvolumes 

• assigning objects to voxels 

ray tracing 

flushing any remaining pixel values not yet returned 

collection of timing information and statistics 

The assigning of objects to voxels was included in the time taken to ray trace the 

scene, and in all cases the time spent in states other than ray tracing was less than 

0.3% of the total time. Due to message propagation and other factors, this figure will 
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Figure 5-3. A node with a 100% grown subvolume. 

increase as the number of processors grows, but not significantly. 

5.4. A Proposed New Load Balancing Algorithm 

Based on the idea of "growing" the subvolume boundaries to avoid floating 

point precision problems (presented in Chapter 3), John Cleary suggested that the 

subvolumes might be grown by significantly more than 2% of their initial volume. 

This means that each node's subvolume will overlap its neighbour's subvolumes by 

some amount (see Figure 5-3). While this requires more storage on each node, it still 

does not require that the entirety of object space be stored. 
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With the grown subvolumes the load will become more balanced. Rays can 

then be traced further on each individual node, meaning that fewer rays will be 

passed between nodes. Further load balancing can be achieved by having each node 

start tracing primary rays from the centre of its pixel array, and spiraling outwards. 

An idle node asks it's neighbours if there are any primary rays which they have not 

yet traced. The queried node examines the pixels it has yet to trace and if there is an 

unstarted row of pixels that enter the overlapped subvolume, the row of pixels is 

passed to the asking node. 

This algorithm was implemented late in this thesis, so very few test runs were 

done. However, based on the results presented in Table 5-5, this algorithm looks very 

promising. The table shows the results from runs with the subvolumes grown by 24% 

Pr Processor Processor Processor 
2 

Processor 
3 

Processor 
4 

Speedup 

Workstation 
2% 3683 3124 7139 2945 1.64 
24% 3410 2758 3772 2823 3.11 
100% 2931 2403 3236 2674 3.63 
Uni-processor 
2% 241.1 190.7 211.1 172.1 1.40 
24% 245.5 198.8 226.9 195.6 1.65 
100% 
simulation 

194.3 166.7 183.1 159.4 2.09 

Sphere scene on a 2 x 2 processor array 
Times shown are in seconds 

Table 5-5. Load balance using the proposed load balancing algorithm. 
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and 100% over their initial volume allocation. There were no ñnstarted pixels passed 

to neighbouring nodes in any of the test runs. This is due to each node being able to 

trace each of its rays further. Table 5-6 shows how the number of rays leaving each 

processor is reduced as the subvolume is grown. Since a more equal load 

distributions is achieved, there is no need for untraced pixels to be transferred 

between nodes. The load is more evenly balanced between the nodes and the speedup 

approaches N. 

As the number of processors used is increased, the likelihood of a node being 

assigned an ,empty subvolume increases. By growing the node's subvolume with this 

method, these nodes will relieve some of the workload from neighbouring processors. 

In this manner a more efficient utilization of the available processor nodes can be 

achieved. 

This serves as a good indicator that a 2 dimensional processor array can perform 

at a speedup of close to N as predicted by Cleary and by Uliner. 

Growth 
percentage 

Processor 
1 

Processor 
2 . 

Processor 
3 

Processor 
4 

2% 1794 763 2427 1926 
24% 1079 513 1470 1472 
100% 440 212 583 964 

Sphere scene on a 2 x 2 processor array 

Table 5-6. Number of rays passed from each processor. 
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Summary 

The multi-processor algorithm does provide a speedup over a uni-processor 

algorithm. The resultant speedup is determined by the distribution of the load and the 

communication overhead. Since the communication overhead is small, at least with a 

small number of nodes, the main problem with the approach presented in this thesis is 

the varying loads which the nodes receive. However, the proposed load balancing 

method indicates that these problems can be overcome to provide a fast, practical ray 

tracing algorithm. 

With the load balancing method presented, it seems likely that a 2 dimensional 

architecture can perform at a speedup of close to N. 
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Figure 5-4. Random spheres. 
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Figure 5-5. Barroom scene. 
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Figure 5-6. Face scene. 
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