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Abstract 

Autonomous navigation systems used in Unmanned Aerial Vehicle (UAV) are mostly 

dependent on Global Positioning System (GPS) as a primary means of aiding Inertial Navigation 

Systems (INS) for accurate and reliable navigation. GPS, however, has limitations in terms of 

indoor availability and expected signal interference in the GPS-denied environments. 

The motivation of this thesis is to address the development of a low cost navigation system used 

onboard UAVs while maintaining accurate navigation. Motivated by the new advances in visual 

sensor solutions in combination with traditional navigation sensors, the proposed system is based 

on fusing visual measurements with INS measurements to achieve comprehensive, fast, real-

time, and low cost Vision Based Navigation (VBN) system for the UAV. 

VBN is based on localizing set of features (with known coordinates) on the ground and finding their 

matches in the image taken by an imaging sensor on the UAV using a scale and rotation invariant 

image matching algorithm. Through Collinearity equations, object space transformation parameters 

are then estimated such that these matches are transformed into position information. Detailed system 

design and performance analysis are presented where scenarios include high dynamics of the UAV 

and different GPS outage are introduced.  

To insure fast and robust image matching algorithm, modified Speeded Up Robust Features 

(SURF) is introduced. The proposed algorithm is implemented on General Purpose (GP) 

Graphics Processing Unit (GPU) using Compute Unified Device Architecture (CUDA). 

Moreover, the developed algorithm is compared against the traditional least square approach, with 

nonlinear least squares approaches for solving the collinearity equations where large tilted aerial 
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platform is expected, to overcome the expected nonlinearity of the mathematical model of 

Collinearity equations. 

The navigation solution is then achieved by fusing the vision measurements to the Extended 

Kalman Filter (EKF) as Coordinate UPdaTe (CUPT) update for the INS measurements. 

Performance assessments results demonstrate the enhanced performance of the proposed system 

against stand-alone INS solutions during a GPS signal outage. 
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 INTRODUCTION  Chapter One:

In recent years, the utility of the Unmanned Aerial Vehicle (UAV) has greatly increased in 

applications such as, surveillance, law enforcement and aerial mapping.   Furthermore, UAVs are 

quickly becoming an integral part of both military and commercial operations. For these classes 

of applications, accurate UAV navigation is considered a critical element for the safe operations 

of the vehicle. UAV payload is a critical factor which controls the mission capabilities of the 

UAV. UAV missions include infrastructure and asset management, aerial mapping, post disaster 

damage assessment, agriculture and environmental monitoring, construction and mining and 

reconnaissance and weapon delivery.  

In recent years there has been an explosion in the number, type and diversity of system designs 

and application areas of UAVs. However, generally speaking all UAVs typically share the 

following major component: 

(a) Navigation component. 

(b) Remote sensing component. 

Table 1.1 lists the characteristics and applications of some of the systems currently exist in 

the market.  

Table  1-1: Examples of existing UAVs and their hardware structure 

UAV model 

name 

Navigation sensors Remote Sensing 

Sensors 

Resolution 

(MP) 

Applications 

GNSS INS Other Camera Laser other 

Dragonflyer 

X8 

√ √ √ √ ---- --- 10 Aerial 

photography 

,law 
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enforcement, 

and military 

tactical 

surveillance 

Gatewing X-

100 

√ √ √ √ --- --- 10 Vegetation 

monitoring, 

infrastructure 

mapping, and 

topographic 

surveying 

MD4-1000 √ √ √ √ --- --- 12 Aerial 

photography, 

oil and gas 

pipeline 

inspection, fire 

scene 

inspection, and 

law 

enforcement 

LP960 √ √ √ √ --- --- 16 Aerial 

mapping, DEM 

generation, 
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reconnaissance 

and security 

Aerosonde 

Mark 4.7 

√ √ √ √ √ --- N/A Intelligence, 

surveillance 

and 

reconnaissance. 

 

To date, most UAV navigation systems rely mainly on the Global Positioning System (GPS) 

receivers as the primary source of information to provide the position of the vehicle. GPS is able 

to provide precise positioning information to an unlimited number of users anywhere on the 

planet. GPS, however, can provide these types of information only under ideal conditions which 

require an open environment (i.e. open space areas). In other words, the system doesn’t work 

very well in urban, canopy areas due to signal blockage and can be totally blocked if the signal is 

jammed. More recently, and accepting that these techniques must inevitably cost more than a 

GPS-based system alone, the concept of combining complimentary navigation systems has been 

accepted for UAV military and some commercial applications. 

1.1 Problem statement 

Positioning, location, and navigation are distinct processes in these systems. Positioning is 

determining coordinates in a fixed coordinate system (Krakiwsky and Wells 1971). Coordinates 

by themselves do little to tell the average person where they are. Location is the process of 

putting coordinates into a frame of reference that is more useful. Typically, a map with 

topographical features, navigational aids, roads, street addresses, etc. is used to determine 

location (Krakiwsky 1995). Navigation regards the provision of directional information on how 
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to travel from the vehicle’s present position to a given destination or a set of waypoints (Harris 

1989). 

The integration of INS with its Inertial Measurement Unit (IMU) and GPS provides a system that 

has superior performance than each individual system. For instance, GPS derived positions have 

approximately white noise characteristics over the whole frequency range. The GPS-derived 

positions and velocities are therefore excellent external measurements for updating the INS with 

position parameters, thus improving its long-term accuracy. Similarly, the INS can provide 

precise position and velocity data for GPS signal acquisition and reacquisition after outages. In 

general, the fact that redundant measurements are available for the determination of the vehicle 

trajectory parameters greatly enhances the reliability of the system (Nilsson 2005) specially 

during GPS signal jamming which typically happens in military environments. Although the 

INS/GPS configuration is considered as a complete navigation system, it has always a main 

drawback when GPS signal are blocked or jammed which occur during navigation. In this case, 

navigation is provided by the INS only until GPS signals are obtained again. Due to the known 

time-dependent error behavior of the INS, the obtained positions errors during such periods drift 

rapidly with time. This will be dominant in the case of low-cost inertial sensors. Therefore, 

although the INS can provide positions during GPS outages, the accuracy of such positions 

cannot meet the requirements of several navigation applications. Hence, methods for improving 

the navigation solution should be applied. 

Taking advantage of the already installed onboard visual sensors for the purpose of safely 

navigating the UAV, through Vision Based Navigation (VBN) to complete the mission is one of 

the options. 
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Emerging visual sensor solutions show a lot of promise in replacing or improving the traditional 

IMU or GPS system in many mission scenarios (Stepanyan 2006). The basic concept of VBN is 

to localize a set of features (with known coordinates) on the ground and find their matches in the 

image taken by the imaging sensor on the UAV. Then, through the use of photogrammetric 

techniques (e.g. the collinearity equations), this match is transformed into position information. 

Finally, this information is integrated with the INS measurements and work as a CUPT for the 

aerial vehicle.  This thesis aims to develop and implement a comprehensive fast and real-time 

low cost VBN methodology for UAVs. One of the critical components in VBN is the robustness 

of the matching algorithm between the images captured by the UAV and the set features on the 

ground. A robust scale and rotation invariant image matching algorithm is important for VBN of 

aerial vehicles. This will be done by the modified SURF algorithm, where matches between the 

geo-referenced database images and the new real-time captured ones are determined.  

Another important aspect of VBN is the proper estimation of the object space transformation 

parameters which improves the efficiency of the navigation process by the real-time estimation 

of transformation parameters used in aiding the inertial measurements data. Different methods 

are introduced to solve the collinearity equations which describes the 2D-3D transformation 

model. These methods are Trust region, Trust region dogleg algorithm and Levenberg-

Marquardt, Nelder-Mead Simplex Direct Search, Quasi-Newton Line Search.  

Finally, all the above information has to be integrated into an estimation filter which can 

accommodate the navigation sensors data and the position/coordinate update (CUPT) 

information from the image matching to provide the optimal navigation information for the 

UAV. This will be accomplished through fusing the vision measurements to the EKF as CUPT 

update for the INS measurements employing the residuals originating from the object space 
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transformation parameters estimation as the error covariance matrix in the EKF implementation. 

Consequently, the UAV position, velocity, and attitude are estimated during GPS outage from 

vision measurements when available.  

1.2 Background 

(Hagen and Heyerdahl 1992) proposed an approach for estimating an aircraft’s position and 

orientation using visual measurements for landmarks located on a known topographic map using 

an EKF. In this approach, landmarks, referred to as “tokens”, are detected based on maximizing 

a uniqueness measure that prevents such tokens from being too close to each other as the terrain 

around them is linear. The uniqueness measure detects the point of interest in the matching 

algorithm based on the spatial distance and feature distance between points of interest 

candidates. Then, those tokens are described based on circular integrals of pixel intensities: 

 

2

0

( ) ( cos , sin )i i ie P f x r y r d



      
 1.1 

Where P(x,y) is a point in the image (Hagen and Heyerdahl 1992). Such descriptors are invariant 

for translation and rotation. 

Another approach for estimating aircraft position and velocity from sequential aerial images was 

proposed by (Sim et al. 1996; Dong-Gyu et al. 2002). The method presented by (Dong-Gyu et al. 

2002) provides real-time implementation of a vision based navigation algorithm which 

accomplishes both accuracy and effectiveness (in other words, the low quality of the sensors 

used, computational load and complexity). The new algorithm is composed of two sections: 

relative and absolute position estimation, which are connected to each other through a switching 

scheme.  
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The relative position estimation section is essentially based on the stereo modeling of two 

sequential images where the feature point of a current and previous image is utilized for 

extracting the displacement of the aircraft. This is achieved by applying the Block Matching 

Algorithm (BMA) and Normalized Correlation Coefficient (NCC) where two levels of Gaussian 

based hierarchical matching are used to lower the computational load of the algorithm. 

Accumulation of the displacement calculation leads to a position measurement for the aircraft. 

The velocity of the aircraft is then obtained by dividing these displacements by the sampling 

interval time. However, accumulating these displacement measurements yields errors in 

navigation parameters estimation subsequently increasing with time as well.  

The next step involves estimating the absolute position which corrects the errors arising due to 

the accumulation of displacement measurements performed through relative position estimation.  

This is achieved through matching schemes using reference images (if the effective range from 

the reference position is 400 m and distinct artificial landmarks are available in the scene) and 

Digital Elevation Model (DEM) (if the effective range is 200m and areas where no artificial 

landmarks are available). 

Another approach for estimating aircraft position from image sequences was proposed by 

(Lerner et al. 2004). In this approach, aircraft position and orientation was estimated from 

combining optical flow measurements, acquired from two successive images, with DTM. The 

optical flow is defined as an array vector which includes the correspondence vectors between 

two successive images. The approach starts with calculating the optical flow vector and then 

compares it to the scene DTM. Velocity measurements from the optical flow can be integrated to 

provide position estimates. However, this is subject to error drift over time. To eliminate this 

drift, the optical flow measurements are integrated with the scene DTM to estimate the aircraft 
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position relative to the earth. The optical flow approach is considered a grid-based approach 

which divide the image into a grid of image patches while ignoring image intensity quality 

(Barron et al. 1992; McCarthy and Barnes 2004). This leads to difficulty in locating 

correspondence interest areas between image frames. 

(Olson et al. 2000) proposed incorporating stereo imaging sensor for navigation and obstacle 

avoidance. This approach starts with selecting initial landmarks necessary to start up the 3D 

position estimate. The initial landmarks are selected from the left image of the first pair of 

successive images. Stereo matching using correlation is then applied to the first pair. The 

previously calculated relative position between the two cameras is used to estimate the position 

of the landmarks with respect to the camera frame. However, the correlation based matching 

technique is scale and rotation variant which make it not suitable for navigation. 

Object detection and avoidance for aerial vehicles was addressed in (Bhanu et al. 1990; Roberts 

and Bhanu 1992). The proposed approach fused inertial measurements with information that 

originated from image sequences to calculate range measurements for estimating the object 

distance. 

The algorithm consists of the following steps based on two frames taken at times t1 and t2: 

1. For the two frames, calculate the navigation state of each image using the inertial data. 

2. Extract interest points from each frame. 

3. Locate the focus of expansion using the velocity vector from inertial measurements. 

4. Project the focus of expansion and interest points in the second frame onto an image 

plane parallel to the first frame. 

5. Match the interest points from the second frame to the interest points from the first frame. 

6. Compute the range to each interest point. 
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7. Create dense range maps using the computed range values to obstacles. 

Interest points are detected using the Hessian and Laplacian operators according to the 

following: 

  
2( ) xy xx yyI g g g g    1.2 

   

Where xxg is the gray level function and  is the second derivative in the x direction (Roberts and 

Bhanu 1992). 

This approach however, was just an initial solution for integrating inertial with vision 

measurements to help obstacle avoidance. It showed the importance of using inertial 

measurements to help solve the correspondence problem (Veth 2006). 

Another application that uses the augmentation of inertial measurements with image-based 

motion estimation was presented in (Roumeliotis et al. 2002). This approach was proposed for 

helping NASA missions achieve accurate and safe landing on planetary bodies. 

The sensors used in this algorithm are INS, laser altimeter, and image sensor. Additionally, the 

applied image-based motion estimation approach can be categorized as a two-frame feature 

based motion estimation. The measurements originating from those sensors are fused through a 

modified Kalman filter, which estimates the errors in the estimated states, for vehicle navigation. 

(Pachter and Porter 2004) proposed an approach for tracking unknown ground objects using INS 

aiding. Using the driftmeter concept, a mounted telescope with a gimbal onboard the aircraft is 

used to measure angles and angular rates with respect to fixed ground landmarks. The proposed 

algorithm has assumptions which include: constant angle of attack, constant speed, and straight 

flight path. Given these assumptions, initial deflection angle and angular rate from the driftmeter 
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are used to estimate the aircraft velocity. The aircraft angle of attack is then measured using the 

angle from the aircraft velocity vector to the initial Line Of Sight (LOS) to the target. The 

navigation solution is then estimated using the angle of attack measurements and INS 

measurements using weighted least squares. 

(Raquet 2003) proposed a tightly coupled, feed-forward Kalman filter approach to estimate the 

navigation solution for aircraft combining visual measurements of landmarks with inertial 

measurements and barometric altimeter measurements. The proposed algorithm assumes that 

landmarks registration algorithm, which identifies landmarks appearance in successive images, 

uses aircraft attitude and positions coming from the INS measurements. Such assumption cannot 

be used in the case of low cost INS. 

1.3 Research objectives and contributions 

1.3.1 Objectives  

The major objective of this thesis is to develop and implement real-time VBN technique for 

UAV. The implementation will be tested through simulated visual measurements combined with 

simulated GPS/INS paths at low altitude. 

The thesis will include several sub-objectives that will serve the major objective. The sub-

objectives will focus on the development of three main components that will be integrated to 

form the final VBN technique. The three components are:  (a) the development of fast image 

matching algorithm based on SURF, (b) the development of object space transformation 

parameters optimization algorithm for estimating the position of the vision sensor, and (c) the 

development of coordinate fusion through EKF for the optimal estimation of the UAV 

navigation state. To achieve the overall objective of this thesis, the following sub-objectives will 

be addressed: 
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1. Implementing a fast SURF-36 algorithm for image matching between the database 

images and UAV real-time captured images. 

2. Developing a fast SURF algorithm with short descriptor of 3×3 sub regions (SURF-36) 

for fast image matching of the VBN. 

3. Investigating and implementing a different samples count in the sub-divisions of the 

different types of SURF algorithm (SURF 36, SURF 64, and SURF 128) and to test the 

effect of the number of samples in each subdivision on the accuracy of the matching 

algorithm.  

4. Implementing the developed algorithms on CUDA platform. The use of CUDA satisfies 

the real-time processing requirements, while keeping the high accuracy which is suitable 

for VBN real-time implementation. 

5. Assessing different nonlinear optimization algorithms for estimating the object space 

transformation parameters to overcome the nonlinearity originating from the expected 

large transformation parameter. 

6. Developing an efficient EKF fusion approach to integrate the position estimated from the 

image matching with inertial measurement for the optimal estimation of the UAV’s 

navigation state. 

7. Developing a simulation software package for testing and assessing of the developed 

algorithms. 

1.4 Thesis outline 

The work in this thesis is structured as the following: 

 Chapter two focuses on the concepts and background necessary for introducing the 

INS/Vision measurement fusion problem. The chapter starts with the navigation 
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reference frames and the necessary transformation between these different frames. Next, 

based on the navigation frame, the inertial navigation equations are introduced. Finally, 

the INS mechanization equations are derived. 

 Chapter three reviews the concepts and background of image matching and its key role in 

the VBN. The chapter will also introduce the modified SURF algorithm as the image 

matching algorithm for VBN. The chapter starts with a literature review of the most 

important research work done in image matching techniques. Next, the SURF algorithm 

will be explained starting from the interest point detection to SURF descriptors building 

and finally implementation of the modified SURF algorithm using Graphics Processing 

Unit (GPU) Compute Unified Device Architecture (CUDA) to meet the real-time 

processing requirements of UAVs. 

 Chapter four introduces and investigates the estimation of the georeferencing parameters 

necessary for VBN of aerial vehicles for large values of the rotational angles, which will 

lead to nonlinearity of the estimation model. In this case, traditional least squares 

approaches will fail to estimate the georeferencing parameters, because of the expected 

nonlinearity of the mathematical model. Five different nonlinear least squares methods 

are presented which include four gradient based nonlinear least squares methods (Trust 

region, Trust region dogleg algorithm, Levenberg-Marquardt, and Quasi-Newton line 

search method) and one non-gradient method (Nelder-Mead simplex direct search). 

 Chapter five introduces an alternative method for UAV navigation based on visual 

measurements in GPS-denied environments. The system applies the concept of 

photogrammetric resection to update the IMU measurements, which is achieved by 

finding correspondences between real-time images captured during flight mission and 
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geo-referenced images in the database. Then, the collinearity equations are used to 

estimate the position of the perspective center of the camera through the concept of 

photogrammetric resection. The object space transformation parameters, the output of the 

photogrammetric resection, are used as the update for the INS kalman. 

 Chapter six concludes the results of this thesis and provide recommendations for future 

research and further improvements of the developed methodology in the thesis. 

 

 

  



 

14 

 

 NAVIGATION WITH INERTIAL NAVIGATION SYSTEMS  Chapter Two:

This chapter will provide the INS mechanization equations in the Local Level frame (l-frame) 

which can be applied to low grade IMUs. Different coordinate frames will be defined and the 

transformation between them is introduced in the first section. In the second section, an 

introduction of inertial positioning is introduced. Next, based on the navigation frame, the 

navigation equations are introduced. Finally, the INS mechanization equations are introduced. 

2.1 Coordinate reference frames and transformations 

Reference frames, their angular rates with respect to one another, and the transformations 

between them, will be frequently required throughout the navigation equations of inertial 

systems. INS development and analysis include many reference frames to properly express 

aircraft dynamic characteristics such as position, velocity, and orientation. The four coordinates 

frames most frequently used are: 

1. The operational inertial frame (i-frame). 

2. The conventional terrestrial frame (e-frame). 

3. The local-level frame (l-frame). 

4. The body frame (b-frame). 

2.1.1 Operational inertial reference frame (i-frame) 

The Operational inertial frame, denoted by ‘i’, is non-rotating and non-accelerating with respect 

to a true inertial frame within the accuracy of the measurements used to define it.  For the 

applications considered here, the definition of the operational inertial frame is as follows: 

1. origin : at the center of mass of the Earth,  

2. Z-axis: parallel to the instantaneous spin axis of the Earth.  
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3. X-axis: pointing towards the mean equinoctial colure,  

4. Y-axis: completing a right-handed orthogonal frame.   

Because of the definition of the origin, this system is strictly speaking an approximation to a 

quasi-inertial system. The physical realization of such a frame is given by a star catalogue 

system, a system of quasar sources, or, to a lower accuracy, by a system of gyroscopic axes. 

2.1.2 Conventional terrestrial frame (e for Earth-fixed frame) 

The Conventional Terrestrial Frame, denoted by ‘e’ in Figure  2.1, is an Earth-fixed Cartesian 

frame, defined as follows:  

1. Origin: Earth’s center of mass. 

2. Z-axis: parallel to the mean spin axis of the Earth. 

3. X-axis: pointing towards the mean meridian of Greenwich. 

4. Y-axis: orthogonal to the X and Y axes completing a right handed orthogonal frame. 

It will be assumed in the following that within the approximations given here, the i-frame 

and the e-frame differ only by a constant angular rate, equal to the mean rotation of the 

Earth  i.e., about a common z-axis. 
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Figure  2.1: Definition of the e-frame 

 

The vector of angular velocities describing the rotation of the e-frame with respect to the i-frame 

projected to the e-frame is written as follows: 
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 2.1 

 

where: 

e  
is the earth rotation rate. 

To describe a position vector in the e-frame 
eP with respect with the geodetic latitude ( ) , 

longitude ( ) , and height ( )h , the following formula is used (Jekeli 2001) : 
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 2.2 

where: 

e  is the first eccentricity of the reference ellipsoid. 

NR
 

is the radius of curvature in the prime vertical. 

2.1.3 Local level reference frame 

The local level frame (l-frame) is a local geodetic frame and is defined as follows: 

1. Origin: at a predefined point on the vehicle or the sensor onboard the vehicle. 

2. X-axis: is in the direction of the geodetic north. 

3.  Z-axis: perpendicular to the reference ellipsoid pointing down. 

4. Y-axis: completes the right handed orthogonal frame, i.e. the north-east-down (NED) 

system as shown in Figure  2.2. 
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Figure  2.2: the e-frame and l-frame representation (Jekeli 2001)  

 

The Direction Cosine Matrix (DCM) is used to describe the transformation from the l-frame to 

the e-frame in terms of the geodetic latitude ( )   and longitude ( )  according to the following: 
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  The quaternion corresponding to 
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lC  is described as: 
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To describe the Earth rotation rate vector in the l-frame, the following equation is used: 
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(Titterton and Weston 1997) described the rotation rate vector of the l-frame with respect to the 

e-frame in terms of the rate of change of the latitude and longitude as: 

 cos sin

T

l
el     

 
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 

  2.6 

2.1.4 The body reference frame 

The body frame (b-frame) is an orthogonal frame whose axes coincide with the axes of the IMU 

mounted on the aircraft. It is installed in such a way that it represents the forward (x), transversal 

(y), and downward (z) axes of an aircraft. It is defined as follows: 

1. Origin: at the center of the IMU. 

2. The axes are aligned with the nose, right wing, and bottom of the UAV as shown in 

Figure  2.3. 

 

Figure  2.3: UAV body frame. 

The transformation from the l-frame to the b-frame can be expressed as (Titterton and Weston 

1997): 
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 ( ) ( ) ( )b
l x y zC R R R     2.7 

where: 

   is the Euler angle roll. 

   is the Euler angle pitch. 

   is the Euler angle heading. 

Therefore, using orthognality, the DCM from the b-frame to the l-frame can be calculated as: 
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The Euler angels can then be extracted from the DCM 
l
bC  as follows: 
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 21 11tan 2( , )a c c   
 2.11 

where: 

ijc , 1 , 3i j  , are the DCM 
l
bC  elements. 
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2.2 Inertial navigation 

Inertial navigation is defined as the computation of position and velocity using initial position 

and velocity and the time change of the vehicle acceleration. The first integral of the vehicle 

acceleration plus the initial velocity are used to compute the vehicle velocity while the vehicle 

position is computed using the initial position plus the integral of velocity over time. The 

integration processes are computed in the Earth-fixed frame while measurements frame is 

defined by the IMU axes. In the following, the strapdown concept will be treated, where the 

Earth-fixed frame (chosen as l-frame) is established numerically inside the IMU. 

INS measurements are computed in the i-frame. Consequently, rotational dynamics between the 

b-frame of the IMU, the i-frame, and the Earth-fixed frame are necessary to derive the vehicle 

acceleration. 

Three accelerometers and three gyroscopes mounted on an orthogonal triad are used to determine 

the aircraft navigation states (position, velocity, and attitude). The accelerometers measure the 

specific force as: 

 kinematicA G f  
 2.12 

Where: 

f                is the specific force. 

kinematicA
   

is the kinematic acceleration. 

G               is the gravitational acceleration. 

The specific force measurements are expressed in the i-frame which is different from the frame 

which velocity and position are usually expressed (l-frame). Therefore, the IMU includes the 

gyro triad, which provide angular change with respect to the initial orientation, to transform the 
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measured specific force in the l-frame.Therefore, inertial positioning is achieved by combining 

rotation and specific force measurements, which provide estimates of velocity, position, and 

attitude of the moving aircraft with respect to the l-frame. 

Newton's laws can be used to design inertial sensors, which are devices that measure linear 

acceleration and angular velocity with respect to an inertial frame of reference.  Many of these 

sensors are rebalancing devices measuring either the force or the torque needed to maintain a 

given linear or angular momentum. They can therefore be viewed as realizations of the 

fundamental conservation principles of physics. 

2.3 Inertial navigation equations 

Considering a position vector 
iP , the gravity acceleration 

iG , the specific force
i

f , and 

Newton’s laws, we can deduce an equation for the kinematical acceleration: 

 i i iP G  f   2.13 

If two coordinate reference frames have rotational angular velocity   relative to each other, 

rotation matrix between these two frames is composed of a set of time variable equations. A set 

of differential equations is used to describe the time change of the rotation matrix. Assuming a 

position vector of a point fixed in the b-frame
bP , the transformation of its coordinates from the 

body frame to the inertial frame is given by: 

 ( ) ( )i i b
bP t R t P   2.14 

Considering 
bP  as constant and differentiating both sides of the above equation with respect to 

time will lead to: 
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( )

i i
b
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Using the method of rigid body rotation about a fixed axis, the time derivative of the position 

vector P can be computed as: 
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Since 0
dP

b
dt

  and i b i b
ib ibP P   , therefore equation  2.15 can be written as: 

 ( ) ( )i b b

b ibP t R t P    2.17 

From equations  2.15 and  2.17, the differential equations for the rotation matrix are given as: 

 
i

i b
b b ibR R    2.18 

Equation  2.18 expresses that the time derivative of the rotation matrix is related to the angular 

velocity vector  of the relative rotation between the b-frame and i-frame. 

Assuming the position vector 
bP is time dependent, the time derivative of the position vector is 

computed by differentiating both sides of equation  2.14: 
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The terms of the above equation can be arranged as follows: 

 ( )

i b
i b b
b ibP R P P    2.20 
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This equation describes the transformation of the velocity vector from the b-frame to the i-frame 

and called the Coriolis equation (after the mathematician Gaspard-Gustave Coriolis).  

The time derivative of the velocity vector in equation  2.20, is given as follows: 

 
( 2 )

i b b b
i b b b b b

ibb ib ib ibP R P P P P        2.21 

where: 

 

i

P   is the body acceleration in the body frame monitored by accelerometers. 

b

ib    is the body Angular velocities monitored by Gyroscopes. 

Solving the vector differential equations will result in a time variable state vector with kinematic 

sub-vectors for position, velocity, and attitude. Depending on the computational frame used, the 

results can be represented in the i-frame, the e-frame, or the l-frame, respectively. 

The aircraft motion modelling is preferred in the l-frame for the following reasons: 

1. L-frame axes are aligned to the local east, north, and up directions leading to 

computation of the attitude angles (pitch, roll, and azimuth) directly as the output of the 

mechanization equations. 

2. L-frame definition is based on the normal to the reference ellipsoid which leads to 

computation of the geodetic coordinate differences directly as the output of the system. 

3. The computational errors in the navigation parameters on the North-East plane are 

bounded due to the Schuler effect. 

To describe the aircraft motion in the l-frame, the coordinate states are described as the 

curvilinear coordinates as follows: 
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 ( , , )l TP h    2.22 

Where: 

, , and h  are the latitude, longitude, and height respectively. 

The earth-referenced velocity of the aircraft is defined in the l-frame as follows: 

 ( , , )

e
l l T

e e n uV R P V V V    2.23 

The time derivative of the position vector states 
lP is expressed with respect to the earth-

referenced velocity lV by differentiating equation  2.22 as follows: 

 1
l

lP D V   2.24 

Where: 
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 where M and N are the meridian and prime vertical 

radii of curvature. 

To describe the velocity vector in the l-frame, the accelerometers measurements in the l-frame 

are used. However, the accelerometers measurements in the l-frame cannot provide the velocity 

vector in the l-frame for the following reasons: 

1. The first reason is due to the Earth rotation rate ( 15 deg. /e hr  ). This Earth rotation 

rate will be expressed in the l-frame as an angular velocity vector 

(0, cos , sin )l e e T
ie     . 
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2. The second reason is the change of thel-frame orientation with respect to the Earth. This 

effect is expressed by the angular velocity vector as: 

tan
, cos , sin , ,

T n e e
l
el
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3. The third reason is the Earth’s gravity field given as (0,0, )l TG G  . 

Consequently, the rate of change of the aircraft velocity can be expressed in the l-frame as: 

 

 (2 )b
b ie eV R f V G       2.25 

Where  
ie  and 

e  are the skew-symmetric matrices corresponding to 
ie   and 

e   

respectively and they are expressed as follows: 
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Where: 
bR  is a direction cosine matrix used to transform the measured specific force vector into 

navigation axes. This matrix propagates in accordance with the following equation: 

 bR R
b b b
    2.27 

where: 
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 b
b

   is the skew symmetric form of b

b  , which is the body rate with respect to the l-frame. 

This is derived by differencing the measured body rates b

ib   and estimates of the components of 

l-frame rate
il  . The latter term is obtained by summing the Earth's rate with respect to the 

inertial frame and the turn rate of the navigation frame with respect to the Earth. Therefore, 
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It is instructive to consider the physical significance of the various terms in the navigation 

equation. From this equation, it can be seen that the rate of change of the velocity, with respect to 

the surface of the Earth, consists of the following terms: 

1. The specific force acting on the vehicle, as measured by a triad of accelerometers 

mounted within it. 

2. A correction for the acceleration caused by the vehicle's velocity over the surface of a 

rotating Earth, usually referred to as the Coriolis acceleration.  

3. A correction for the centripetal acceleration of the vehicle, resulting from its motion over 

the Earth's surface.  For instance, a vehicle moving due east over the surface of the Earth, 

will trace out a circular path with respect to inertial axes. To follow this path, the vehicle 

is subject to a force acting towards the centre of the Earth of magnitude equal to the 

product of its mass, its linear velocity and its turn rate with respect to the Earth. 

4. Compensation for the apparent gravitational force acting on the vehicle. This includes the 

gravitational force caused by the mass attraction of the Earth, and the centripetal 

acceleration of the vehicle resulting from the rotation of the Earth. The latter term arises 
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even if the vehicle is stationary with respect to the Earth, since the path which its follows 

in space is circular (Titterton et al. 2004). 

The previous navigation equations can be summarized in one equation describes the position, 

velocity, and attitude equations: 
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Equation  2.29 describes the input gyroscopes and accelerometers measurements input to the l-

frame mechanization and the output curvilinear coordinates, three velocity component, and three 

attitude components. 

2.4 Estimating the Navigation State 

Solving the vector differential equations, through integration, will result in a time variable state 

vector with kinematic sub-vectors for position, velocity, and attitude. In the literature, the 

integration algorithms are often called the mechanization equations. This term obviously dates 

back to the time when stable platform systems were the norm and a specific platform orientation 

was actually mechanized, as for instance in the local-level system or the space-stable system. 

The accelerometers mounted on the platform were isolated from rotational vehicle dynamics and 

the computation of the transformation matrix was replaced by a system of gimbals, supplemented 

by platform commands. Although the algorithms used for strapdown inertial systems can be 

considered as an analytical form of the platform mechanization, we will use the term integration 

equations in the following to distinguish between stable platform and strapdown systems. 

The integration algorithm can be summarized using Figure  2.4 
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Figure  2.4: Mechanization of the aircraft motion in l-frame 

The following table is a summary of the required parameters to implement the mechanization 

algorithm shown in Figure  2.4 for aircraft motion. 

Table  2-1: Summary of the required parameters for l-frame mechanization 

Parameter Computed from 

b
f  Accelerometers 

b
ib  Gyroscopes 

1D
 Reference ellipsoid and lattiutde 

lG  Gravity model 

M Known 

N Known 



 

30 

l
bR  Alignment 

e  Known 

 

2.4.1 Input measurements 

The input to computation process of the mechanization algorithm is: 

1. Scaled and compensated angular increments 

i

ib computed from the body-sensed 

angular rates. 

2. Velocity increments 

b

v f computed from the body-sensed specific force. 

Given that the gyroscope drift driftg and the accelerometer bias biasa are computed from the 

calibration process, the raw measurements are corrected as the following: 

 

b
b driftg tibib

b
b biasv v a tff

   

    
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2.4.2 Angular increment in the l-frames b
lb  

The aircraft angular rates with respect to the l-frame are given as: 

 b b b b b eR ielb ib il ib l
          2.31 

Where: 

b
ib

 
are the angular rates sensed by the gyroscopes. 

e
ie

 
is the earth rotation rate. 
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b
lR

 
is the transpose of the rotation matrix l

bR . 

Using the obtained roll, pitch and azimuth angles, the rotation matrix from body to l-frame is 

constructed: 
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are the roll, pitch, and azimuth angels respectively. 

The earth rate in the b-frame b
il in equation can be expressed as: 

 

( )

0

cos cos

sin
tan tan

sin

b b l b l l
il l il l ie el

n n

e e
b e b e

e
e e

e

R R

V V

M h M h

V V
R R

N h N h

V V

N h N h

   

   

 
 

 

  

     
    

      
     

         
      

     
    

         

 
 2.33 

 

The angular increments for the Earth rotation in the body frame are computed by integrating 

equation  2.33 as follows: 
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The angular increments of the body motion with respect to the l-frame are computed by 

integrating equation  2.31 as follows: 
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The first term in the right hand side of equation  2.35 is computed from the gyroscope 

measurements and the second term from the Earth rotation rate and the rotation matrix b
lR . 

2.4.3 Rotation matrix update 

The rotation matrix l
bR is updated by following the set of differential equations shown in 

equation  2.27. The Quaternion approach is used in the update because it deals with the 

singularity problems of the Euler angles at the 90
o
 angle.  The quaternion is a 4 elements vector 

represented in space and contains the amplitude in one element and the direction is described 

using the three remaining elements. 

The quaternion update can be described in terms of the angular increments in the l-frame 
b
lb as: 
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Where: 

The angular increments ( , , )b b b
x y z   are computed from equation  2.49. 

The incremental angle of the body rotation  is computed using 
2 2 2 2( ) ( ) ( )b b b

x y z      . 

The coefficients c and s are computed as: 
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2 4 192
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Therefore, the rotation matrix from the b-frame to the l-frame l
bR is updated as the following: 
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2.4.4 The specific force transformation to the l-frame 

The specific force sensed by the accelerometer is transformed to the l-frame by: 

 l l b
bRf f   2.38 

The strapdown accelerometers output is computed by integrating the specific force components 

over a small sampling period. Therefore, the velocity increments 
l
fv are computed as the 

following: 

 

1

( ) ( )

tk
l l b
f b

tk

v R t t dt


   f  
 2.39 

Since the rotation matrix 
l
bR is varying with time, it can be expressed in first order approximation 

as: 
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 ( ) ( )( )l l b
b b kR t R t S     2.40 

Where S is the skew symmetric form of the small incremental changes of rotation over the time 

epoch  ,kt t . The matrix ( )bS  is expressed as the orthogonal transformation between the b-

frame at time kt and the b-frame at time t, i.e. 
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Assuming constant angular rate and linear acceleration over small time epochs, the total velocity 

increments 
lv
f

 is computed by substituting equation  2.40 in equation  2.39 as the following: 

 

1( )( )
2

1( )( )1 2

l l b bv R t S vkf b
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l l b bv R t S vkf b
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Where ( )l
b kR t and 1( )l

b kR t  are the transformation matrix updated at time epoch (k) and (k+1) 

respectively. 

2.4.5 Velocity update 

The velocity update is computed by applying the Coriolis and gravity correction as follows: 

 (2 )l l l l l l
f ie elv v v t t             2.43 

Where: 

(0 0 )
Tl  , and  is the normal gravity at the geodetic latitude  and ellipsoidal height h 

given as (Heiskanen and Moritz 1967): 
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 2 4 2 2
1 2 3 4 5 6(1 sin sin ) ( sin )a a a a a h a h           2.44 

Where: 

1 4

2 5

3 6

9.7803267715 0.0000030876910891

0.0052790414 0.0000000043977311

0.0000232718 0.0000000000007211

a a

a a

a a

  

 

 

 

Using the modified Euler formula, the velocity at the current epoch is computed as the following: 

  )()(
2

1
)()( 11   kkkk tVtVtVtV   
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Where: 

 Tune VVVV   

2.4.6 Position update 

The position update is computed using the same approach for the velocity update.. The height 

component is directly mapped to the vertical velocity and it is updated using the following 

equation: 
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)()( 11   2.46 

The Latitude and Longitude components are not directly mapped to velocity components but 

calculated through the previously described equation  2.29 such that: 

 



























































u

n

e

V

V

V

hR

hR

h 100

00
cos)(

1

0
1

0











 
 2.47 

And using the same update trapezoidal rule they are calculated through the following equations: 
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2.4.7 Attitude update 

Using equation  2.37 for l
bR , the attitude angles roll, pitch, and azimuth updates are computed as: 
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Chapter Three: SPEEDED UP ROBUST FEATURES (SURF) ALGORITHM 

This chapter reviews the concepts and background of image matching algorithms which play a 

key role in the VBN. Because the UAV images can be oblique and at different scale from the 

database images, a robust scale and rotation invariant image matching algorithm is important for 

VBN of aerial vehicles. The chapter starts with the most important research work done in image 

matching along with the corresponding techniques used. Next, the modified SURF algorithm will 

be explained starting from the interest point detection to modified SURF descriptors building and 

finally implementation of the modified SURF algorithm using Graphics Processing Unit (GPU) 

Compute Unified Device Architecture (CUDA) to meet the real-time processing requirements, 

while keeping the high accuracy, which is is for the VBN real-time operations (Sheta  et al. 

2012e).  

3.1 Introduction 

Image matching algorithms play a basic role in many applications such as surveillance, law 

enforcement, aerial mapping, and navigation of unmanned land and aerial vehicles. Comparing 

images pixel by pixel (named as correlation) is one of the classical image matching technqiues 

(Johnson and Kotz 1997). However, this approach suffers from the high computation load and 

may result in wrong result due to scale and rotation variations in the matched images. To 

overcome the high computational load for the classic correlation, the concept of Bounded Partial 

Correlation (BPC) has been introduced (Di Stefano et al. 2005). In this approach, two sufficient 

conditions based on Cauchy-Schwarz inequality at each image position are introduced such that 

the computational load is reduced. Using Cauchy-Schwarz inequality, the upper bound of the 

correlation score is computed at each point instead of computing the correlation process, which 
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leads to lower computational load. However, it didn’t overcome the rotation and scale variation 

between the matched images. Block matching approach is another method that overcome the 

computational load problem through parallel processing of blocks (Alkaabi and Deravi 2005; 

Mattoccia et al. 2007). However, the Block matching approach did not cover the scale invariance 

problem. To address the texture features problem, (Jalil et al. 2006) introduced the Principal 

Component Analysis (PCA) and wavelet transform to overcome the rotation invariance 

challenge in texture feature problem. This approach estimates the principal component direction 

by the PCA and rotates the original image to the detected angle by the PCA. Then, the feature 

extraction is conducted by the wavelet transform. However, the use of wavelet transform in 

feature extraction doesn’t provide scale and intensity invariance. 

(Borgefors 1988) introduced the multiresolution matching approach. This approach reduced the 

computation load through the use of lower resolution images. However, experimental results 

indicates that the computation time achieved in the proposed approach (was 8 minutes for image 

size of 512 x 512 pixels) is too slow to be employed in real-time applications such as VBN. 

(Fitch et al. 2005) introduced image matching in the frequency domain. In this approach, the 

number of operations for matching surface generation computational load was reduced by a 

factor of 820 for image size of 512×512 pixels. To continue with image matching in frequency 

domain, (Essannouni et al. 2007) introduced L4 norm as an approach for computationally 

efficient approach for image matching. However, the proposed image matching in the frequency 

domain has a disadvantage coming from the overhead resulting from transforming back to the 

spatial domain which affects the real-time requirements for VBN. 

(Berg et al. 2005; Makarov 2006) introduced the shape matching approach. In this approach, 

descriptors are based on geometric blur point which calculates a cost function for the similarity 
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of point descriptors and the geometric distortion. (El Oirrak et al. 2002) investigated the same 

approach but through the use of Fourier descriptors to describe the shape features. 

In 2004, (Lowe 2004) introduced Scale Invariant Feature Transform (SIFT) which outperform 

other approaches for interest point detection and matching. SIFT approach is a rotation and scale 

invariant which is a crucial point to be considered when dealing with image matching 

algorithms. In addition, it is considered as relatively fast approach for real-time application. 

However, when (Lowe 2004) tried to speed up the algorithm performance in the matching step 

through the best-bin-first approach, more mismatches appeared which affect the matching 

process. 

In this thesis, matches between the geo-referenced database images and those captured in real-

time are found by employing the fast SURF algorithm. SURF, sometimes referred to as the Fast-

Hessian detector, is essentially based on the Hessian matrix with Laplacian based detectors such 

as Difference of Gaussian (DoG) (Bay et al. 2006). SURF descriptors describes the gradient 

information in the point of interest neighbourhood through Haar wavelet responses (Anqi and 

Dudek 2010). 

The algorithm consists mainly of two steps: the first is the detection of points of interest and the 

second is the creation of descriptors for each point. The integral image approach is used to 

improve the performance of the algorithm computational time prospective. The block diagram 

for the SURF algorithm is shown in Figure  3.1. 
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Figure  3.1: SURF block diagram (Sheta  et al. 2012b) 

 

3.2 Interest point detection 

Interest point detection includes three processes. The first process is integral image computation 

for fast implementation of the proposed methodology. The second process is Hessian detectors 

computation which includes creating Hessian based scale space pyramid to find the interest point 

candidates. Finally, the interest point is detected using 3D Non-Maximum Suppression algorithm 

for global interest point detection. 

 To achieve fast robust features, the SURF algorithm employs the integral images approach 

which reduces the computation time.  
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3.2.1 Integral images 

Occasionally, this approach is referred to the summed area table (Kruis 2010) and is based on 

forming an integral image       from the summing of pixels’ intensities of the input image I 

within a rectangular region formed around location x as follows (Bay et al. 2006): 

 
0 0

( ) ( , )
j yi x

i j

I x I i j




 

  
 3.1 

 

Figure  3.2 : Integral image basic idea 

The integral image computes a value at each pixel (x,y) that is the sum of the pixel values above 

and to the left of (x,y) as shown in Figure  3.2. With the recursive definition shown below, the 

integral image can be computed quickly in one pass through the image as shown in Equation  3.2 

and Figure  3.3. 
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Figure  3.3 Recurrsive definition for integral image 

The integral image utilizes three algebraic operations to compute the summation of the 

intensities in the sub-region of the image as shown in Figure  3.4. The summation of the pixels 

within rectangle 4 is computed with four array references. The value of the integral image at 

location A is the sum of the pixels in rectangle 1. The value at location B is 1+2, at location C is 

1+3, and at location D is 1+2+3+4. The summation within rectangle 4 is computed as D+A-

(B+C). 

 

Figure  3.4: The summation of the pixels within rectangle 4 
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3.2.2 Hessian detectors 

A Hessian matrix can be used as a good detector because of its high performance in 

computational time and accuracy. Scale selection can be achieved through the determinant of the 

Hessian (Bay et al. 2006) or Hessian – Laplace detector (Mikolajczyk and Schmid 2001). 

The Hessian matrix H(x,σ)  at a given point x=(x,y) in an image I where x   at scale σ is defined 

as: 
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 3.3 

 

Where          is the convolution of the Gaussian second order derivative  
  

         with 

image I in point x and similarly for           and          (Bay et al. 2006). 

    

Figure  3.5: Discretized and cropped Gaussian and Box filter approximation for interest 

point detection (Bay et al. 2006) 

 

 Figure  3.5 shows, from left to right, the Gaussian second order partial derivative in y direction 

(   ), the xy direction (   ) and the box filter approximation utilized in the SURF algorithm in 

the y direction (   ) and the xy direction (   ). 
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The box filter approximation was inspired by Scale Invariant Feature Transform (SIFT)’s 

success with the Laplacian of Gaussian (LOG). The Hessian matrix approximation can be 

expressed as: 

 
2det( ) ( )approx xx yy xyD D wD   

 3.4 

 

Where w is the relative weight of the filter response and is given by the following formula for a 

9×9 box filter and σ = 1.2 (Bay et al. 2006): 
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3.2.3 Scale space representation 

Scale space representation is defined as the convolution of a given image f(x,y) with a Gaussian 

kernel (Morita 1997): 
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Such that the resulting signal                          is a coarser scaled representation 

of the original signal. 

When dealing with images, scale space representation is implemented as an image pyramid, as 

shown in Figure  3.6. In this representation, images are smoothed with Gaussian kernels and 

subsampled so that a higher level of the pyramids is achieved. 
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Figure  3.6: Image pyramid for scale space representation of an image (Sheta  et al. 2012b) 

Interest points must be localized at different scales. As shown in (Lowe 2004), the SIFT 

approach uses Difference of Gaussians (DoG), where the pyramid layers are subtracted, to find 

the edges and blobs. However, in the SURF approach the scale space representation is achieved 

through up-scaling the filter size rather than changing the image size through the image 

pyramids. 

 

Figure  3.7: SURF implementation for scale space representation to the left where SIFT 

implementation is shown to the right (Sheta  et al. 2012b) 
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As shown in Figure  3.7, the advantage to using box filters and integral image principles is the 

high computational efficiency for the SURF approach compared to the SIFT approach since we 

only change the box filter size in the SURF approach while changing the image size and 

applying the filter to each image size in the image pyramid in the SIFT approach. 

In the SURF approach, the box filter starts off with a 9×9 size filter as the initial scale layer 

where it is referred as scale s=1.2 (the approximated Gaussian derivative with σ=1.2) and  

instead of having image pyramids, the original image will be filtered by larger masks. The scale 

space domain is represented by octaves which can be defined as the filter responses resulting 

from convolution of the original image with increased size filters. 

The first filter used in the scale space representation is of a 9×9 size. Through this filter, the blob 

response of the image for the smallest scale is calculated. To change the filter size between two 

successive scales, an increase of 2 pixels (one pixel at each side) is necessary such that the size 

of the filter is kept uneven. This yields an increased filter size with 6 pixels as shown in 

Figure  3.8. 
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Figure  3.8: Filters Dxy for two successive scale levels (9×9 and 15×15) (Bay et al. 2008) 

 

As mentioned earlier, the first filter size used for blob detection is 9×9 for the first octave and 

then filters of varying sizes, more specifically 15×15, 21×21, and 27×27, are applied to the 

image. 

3.2.4 3D non-maximum suppression for interest point localization 

Applying non-maximum suppression to a 3×3×3 neighbourhood localizes the interest points in 

the image over different scales as shown in Figure  3.9. In this figure, interest point localization is 

established both spatially and over the neighbouring scales of the pixels. 
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Figure  3.9: 3D non-maximum suppression concept for interest point localization (Sheta  et 

al. 2012b) 

Figure  3.9 shows that Non Maximum Suppression (NMS) can be defined as a process in which a 

candidate interest point (central dark pixel) is considered as an interest point if the intensities of 

the pixels around it are smaller than the intensity value of the candidate interest point within a 

certain neighbourhood around it. 

The neighbourhood around the interest point can be expressed as follows: for the 1D case, given 

M pixels to the left and right of the interest point, the neighbourhood is 2M+1. Consequently, in 

3D case, the neighborhood is expressed as a cubic region (2M+1) × (2M+1) × (2M+1) centered 

on the interest point. 

 Interpolation of the determinant of the Hessian matrix in scale and image space is then 

employed as discussed in (Brown and Lowe 2002). The interpolated location of the interest point 

is determined by finding the blob responses (denoted as Ν) of the 3D neighbourhood previously 

defined. Then, the interest point localization is improved through sub-pixel/sub-scale 
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interpolation by fitting a 3D quadratic polynomialto the scale space representation as shown 

in  3.7 
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is the scale space coordinate and N(X) is the determinant of the approximated 

Hessian matrix (blob response resulting from applying the filter) at point of interest location X. 

To determine the maximum of the sub-pixel/sub-scale interest point for this 3D quadratic, the 

derivative of Equation  3.7 with respect to X is computed and equaled to zero as shown in 

Equation  3.8 and Figure  3.10. 
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Figure  3.10: 3×3 maximum blob response to the left and parabolic fitting maximum value 

to the right 

3.3  Interest point description and matching 

Once the interest point localization has been completed, the interest points must be uniquely 

described by a descriptor such that the correspondences between two images can be evaluated. 
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The proposed method is based on the distribution of the blob response within the detected 

interest point neighborhood. 

Based on integral images technique for speed optimization, the blob response within the detected 

interest point neighborhood is based on the first order Haar wavelet response in x and y direction. 

The descriptor dimension can be varied between 36, 64, or 128 depending on the number of sub-

regions as will be described later. To achieve fast indexing during the matching process, the sign 

of the Laplacian is used in the indexing step. 

The SURF descriptor is based on two steps. The first step uses the information originating from a 

circular region around the point of interest which leads to reproducible orientation information 

(that determines the dominant orientation to help obtain rotation invariant features). Then, the 

SURF descriptor is extracted from a square region generated and aligned to the selected 

orientation (Bay et al. 2006). 

3.3.1 Interest point orientation assignment 

The purpose of interest point orientation assignment is to make the proposed method invariant to 

image rotation. The Haar wavelet responses are calculated in x and y direction in a circular 

neighborhood with radius 6s (this radius represents the neighborhood at which global maxima is 

detected) around the detected interest point. These wavelet responses are weighted with a 

Gaussian distribution at the center of the detected interest point and introduced as a horizontal 

vector along x direction and vertical vector along y direction. The Haar wavelets that were used 

are shown in Figure  3.11 where dark and light parts represent weights of -1 and 1 respectively. 

Convolution between these filters and the image represents the image gradient at locations where 

these filters are applied. Based on the integral image technique, the responses in x and y 

directions are calculated after six operations.  
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Figure  3.11: Haar wavelet filters used for computing the response in x direction (left) and y 

direction (right) 

A sliding orientation window at angle of π/3 is employed, as shown in Figure  3.12, to estimate 

the dominant orientation by calculating the sum of all responses within this window. A new 

vector is then generated by summing the horizontal and vertical wavelet responses within the 

window where the longest vector orientation is assigned as the interest point orientation. 

 

Figure  3.12: Sliding orientation window 

3.3.2 Descriptor building 

To establish descriptor building, a square region centered on the detected interest point with 

orientation along the dominant direction, is used. In the case of 64 descriptor length (SURF 64), 
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the square region is divided into equally 4×4 sub-regions. At each sub-region, a number of 

sample points are used to compute the corresponding features. The number of sample points that 

are used affects the accuracy of the matching algorithm. The higher the number of sample points, 

the better the matching will be.  

Tests were done with varying numbers of sub-regions and sample points in each sub-region. 

SURF 64 Descriptor length varied from 36 (where 3×3 sub-regions are used as shown in 

Figure  3.13), to 64 (where 3×3 sub-regions are used as shown in Figure  3.14), to 128 (where 

several of similar features are added to the descriptor as shown in Figure  3.15) are implemented 

through this thesis.  

 

 

Figure  3.13: Descriptor length 36 
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Figure  3.14: Descriptor length 64 

 

Figure  3.15: Descriptor length 128 

For each sub-region, the descriptor vector can be described as D_V, where this descriptor vector 

is four dimensional (in the case of 36 and 64 descriptor length) and presents the intensity 

structure. 

  _ , , ,x y x yD V d d d d      
 3.9 

This descriptor vector is normalized to achieve invariance to contrast. An example of the effect 

of this descriptor building on the intensity pattern within a sub-region is shown in Figure  3.16. 
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Figure  3.16: The effect of descriptor building on the intensity pattern (Bay et al. 2006) 

The implementation of different number of sample points in each sub-region is shown in 

Figure  3.17. 

 

Figure  3.17: Different number of samples in each sub-division from the left 5×5, 8×8, and 

10×10 respectively (Sheta  et al. 2012b) 

 

3.4 Indexing for correspondence points matching 

To achieve fast indexing during the matching process, the sign of the Laplacian is used (Bay et 

al. 2006). Minimal information is required to increase the speed at which matching occurs 

between correspondence points without reducing the descriptor performance. This minimal 
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information is the sign of the Laplacian. To differentiate between bright blob response on dark 

background and dark blob response in bright background, the sign of the Laplacian is employed. 

Correspondence points are found in the matching stage when comparing the points with the same 

type of contrast. As shown in Figure  3.18, the left image represents the traditional way of 

matching two images, where each interest point is compared to all the other interest points 

detected in the other image. However, if the information regarding the contrast of the interest 

point is included (whether it is a dark blob in light background or a light blob in dark 

background), as it is in the right image of Figure  3.18, then matching will be accomplished with 

the interest points maintaining the same type of contrast. 

 

Figure  3.18: Fast indexing based on the sign of the Laplacian (Sheta  et al. 2012b) 

The matching strategy is based on the Euclidean distance in descriptor space. This approach is 

referred to as similarity-threshold-based matching strategy. 
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3.5 Test set and results 

To test the developed modified SURF methodology, which include different numbers of 

descriptor length(SURF-36, SURF-64, and SURF 128) with different number of sample counts 

in each sub-region an airborne image data set, captured over the Vancouver area, will be used.  

Performance of the developed methodology against scale and rotation variation is investigated 

using the repeatability measure. Two data sets have been collected during the test. The first data 

set was collected during a flight test with vertical camera axis and the second data set was 

collected during a flight test with oblique camera axis (15°) cross track. The camera specification 

and the flight information are given in Table  3-1 and Figure  3.19. 

Table  3-1: Camera and flight specification 

Focal length 50 mm 

Pixel size 7.21 μm 

CMOS format 24×36 mm (3328×4992 pixels) 

Flying speed 100 knots 

Flying height 1000 m 

Data acquisition rate ≥ 3.5 sec 

Tilt angle 15° ( roughly) 

Area coverage 4km×3km 
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Figure  3.19: Flight area coverage where red triangles represent the GCP used during the 

test 

Tests were conducted using descriptor length (36, 64, and 128) with different number of sample 

points (5×5, 9×9, and 13×13) in each sub-region. These descriptors were applied to images with 

different scale and orientation to check the robustness of the developed algorithms. 

The repeatability measure is used to provide a measure on the reliability of the developed 

algorithms for detecting the same interest points under different scale and rotation variations.  

Tests were conducted using the original image as a representative of the database and a rotated 

and scaled image as representation of the real-time images captured from the UAV. 
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Figure  3.20: Descriptor length 64 with scale variation = 0.2 and rotation = 15 and number 

of sample points 5x5 

 

Figure  3.21: Descriptor length 64 with scale variation = 0.4 and rotation = 15 and number 

of sample points 5x5 
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Figure  3.22: Descriptor length 64 with scale variation =0.6 and rotation = 15 and number of 

sample points 5x5 

 

Figure  3.23: Descriptor length 64 with scale variation = 0.8 and rotation = 15 and number 

of sample points 5x5 
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Figure  3.24: Descriptor length 64 with scale variation = 1 and rotation = 15 and number of 

sample points 5x5 

 

Figure  3.25: Descriptor length 36 with scale variation =0.2 and rotation = 15 and number of 

sample points 5x5 
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Figure  3.26: Descriptor length 36 with scale variation =0.4 and rotation = 15 and number of 

sample points 5x5 

 

Figure  3.27: Descriptor length 36 with scale variation =0.6 and rotation = 15 and number of 

sample points 5x5 
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Figure  3.28: Descriptor length 36 with scale variation =0.8 and rotation = 15 and number of 

sample points 5x5 

 

Figure  3.29: Descriptor length 36 with scale variation =1 and rotation = 15 and number of 

sample points 5x5 
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Figure  3.30 : Repeatability measure for descriptor length 64 and scale 0.2 

 

Figure  3.31 : Repeatability measure for modified SURF 36 and scale 0.2 
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Figure  3.32 : Repeatability measure for descriptor length 64 and scale 0.4 

 

Figure  3.33 : Repeatability measure for modified SURF 36 and scale 0.4 
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Figure  3.34 : Repeatability measure for descriptor length 64 and scale 0.6 

 

Figure  3.35 : Repeatability measure for modified SURF 36 and scale 0.6 
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More test results for the proposed modified SURF algorithm are presented in Appendix A for 

descriptor length 128 with scale variation from 0.2 to 1 and rotation angle 15°. Also, in 

Appendix A, more results for the developed modified SURF algorithm with descriptor lengths 36 

ad 64 with scale variation from 0.2 to 1 and rotation angle 45° with 9×9 sample points I each 

sub-region. 

Four GCPs are matched between the original image, as a representative of the database images, 

and a rotated and scaled image as representation of the real-time images captured from the UAV. 

As shown in the previous figures (Figure  3.20 to Figure  3.29), the proposed algorithm, with 

different descriptor length, has a robust performance against scale and rotation variation. The 

figures (Figure  3.30 to Figure  3.35) demonstrate that the performance of the interest point 

detection algorithm is improved when the descriptor length condition is reduced such that the 

number of sample points in each sub-region is increased (Sheta  et al. 2012b). 

Results clearly show that increasing number of samples in each subdivision is effective in the 

developed matching algorithm with high repeatability score up to 99%. The repeatability 

measure is used to provide a measure on the reliability of the developed algorithms for detecting 

the same interest points under different scale and rotation variations.  

 

3.6 GPU CUDA implementation 

In recent years, and because of the vast advances in the geomatics field, speeding up the 

processing time and solving computationally data-intensive problems were challenging.  These 

challenges evolve, mainly, when we are dealing with some applications, that require real-time or 

near real-time processing. Organizing units of work into independent tasks and executing 

multiple tasks concurrently are traditional solutions for speeding up the process. For many years, 
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parallel processing was introduced as an efficient solution for this challenge using graphics 

processing unit (GPU). GPU is a specialized electronic circuit designed to rapidly manipulate 

and alter memory in such a way to accelerate the building of images in a frame buffer. However, 

traditional GPU development is based on graphics function library, for example OpenGL and 

Direct 3D, which makes the GPU used only by the professional people familiar with graphics 

API. 

Recently, (Compute Unified Device Architecture (CUDA) was introduced as a new technology 

of general-purpose processing on GPU. CUDA mainly use C programming tools and compiler, 

which help to have better compatibility and portability making the development of general GPU 

programs easier. 

In the coming sections, the image matching employed in the thesis will be implemented on GPU-

CUDA platform . The processing time will be compared with the CPU implementation of the 

same matching algorithm when applied for multiple cores in the same computer, computer 

cluster and GPU.  

3.6.1 General Purpose (GP) GPU principles 

The implementation of programmable graphic processing units (GPU) as an alternative 

computation platform to the traditional use of the central processing unit (CPU) has been 

increased in areas where real-time application is needed.  These GPUs performance is 

characterised with a peak performance of hundreds of GFLOPS which is an order of magnitude 

higher when compared to  that of CPUs (Bjorke 2006). Streams of vertices and fragments 

(pixels) are processed independently in parallel. The advantage of data parallel SIMD (single 

instruction multiple data) architecture available in the GPU provides an abstraction for 
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performing general purpose computations on GPUs (GPGPU) and for treating the GPU as a 

stream processor. 

In the GPGPU framework, the role of the computational kernels is performed via the fully 

programmable vertex and fragment processors while a memory model is employed for video 

memory (framebuffers, textures etc.). The CPU’s random read-only memory interface equals 

texture mapping on the GPU while a memory-write mechanism is provided through the ability to 

render directly into texture (which is called off-screen rendering) . 

Due to its specialized design, the GPU memory model is more restricted, where random memory 

writes are not allowed, when compared to a CPU. Texture memory caches design provides the 

necessary speed and prevention of concurrent read and write into the same memory address. 

Therefore, distinct read and write textures must be used allowing these operations to be 

exchanged after each render pass making the write texture available as input and vice versa. 

For each algorithm implementation on the GPU, different computational steps are often 

transformed to different fragment programs. For each computational step, the appropriate 

fragment program is tied to the fragment processor and a render operation is invoked. A stream 

of fragments is generated by the rasterization engine which provides a fast way of interpolating 

numbers in graphics hardware. Multiple fragment programs are executed within multiple off-

screen rendering passes by the GPGPU applications. A simple and efficient off-screen rendering 

mechanism in OpenGL is provided by Frame-Buffer Objects (FBOs), while pixel-buffers exist 

on older graphics cards.(Pharr and Fernando 2005) has more details about GPGPU 

programming. 
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3.6.2 Algorithm description 

The interest point detection and descriptor building for the proposed algorithm can be 

summarised as follows: 

1. Construct integral images through fast box filtering as introduced by (Viola and Jones 

2001). 

2. Create Hessian based scale space pyramid to find the interest point candidates. 

3. Detect interest point and extract it from the candidate interest points using 3D non 

maximum suppression.  

4. Determine a characteristic direction through orientation assignment to each interest point. 

5. Build the descriptor for each interest point based on the characteristic direction (to ensure 

rotation invariance). 

6. Normalize the description vector to achieve invariance to lighting conditions. 

3.6.3 Algorithm implementation 

3.6.3.1 Integral image computation 

As mentioned in  3.2.1, to achieve efficient and fast computation, integral images approach is 

employed, for box-type convolution filters implementation. The integral image represents the 

summation of all pixel intensities in the input image I above and to the left of the location (x, y) 

as shown in Equation  3.1. 

For the integral image computation on the GPU, it could be computed by two inclusive parallel-

prefix sums: one along the rows, and one along the columns. Therefore, four kernel calls are 

used to implement the integral image on the GPU. 
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3.6.3.2 Interest point detection 

Determinants calculation: this process is performed to each point in the image. This calculation 

is performed in parallel since the determinant calculation at one point is independent of the 

calculation at another point. One determinant calculation can be mapped to one GPU thread 

enabling more GPU threads to be available. 

Interest Point Localization: where each point is defined from 8 adjacent pixels on the same scale 

and 9 pixels on the above and lower scales. This process is done by one GPU thread and 

therefore enabling more GPU threads to be available. 

3.6.3.3 Interest point description 

As for the orientation assignment process, for Haar response calculation, all these calculations 

are independent with each other and can be processed in parallel. The interest points are loaded 

into shared memory to minimize the memory bandwidth. Then, the Haar response is calculated 

to produce the rotation angle for each interest point tan 2( , )y xa d d  . The result is stored as 

( , , )x yd d  and sorted using bitonic sort. 

As for the dominant orientation calculation, an orientation window with size 
3


 is used and all 

these windows are independent to each other and can be processed in parallel. After calculating 

the Haar wavelet response, the sum of magnitudes for xd and yd over the orientation window is 

calculated 
2 2( ) ( )x yd d   

such that the largest vector magnitude has the dominant 

orientation with value tan 2( , )y xa d d     . 

Descriptor Building: each interest point is described by the intensity distribution of its 

neighborhood and consequently these calculations are independent to each other and can be 
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processed in parallel. Two kernels are used for this step. The first one is assigned to the 

unnormalized descriptors and the other one to the normalized descriptors. 

As for the unnormalized kernel, the number of blocks and threads vary depending on the 

descriptor length (36, 64, or 128) and the number of sample points in each sub-region as 

discussed in  3.3.2. For example, 16 blocks per interest point and 25 threads per block are 

allocated in the case of _D V with length 64 and number of sample points equals 25. In the case 

of _D V with length 36 and sample points in each sub-region 64, the number of blocks allocated 

is 9 and the number of threads is 64 per interest point. 

As for the normalized kernel, one block and 64 threads are allocated for each interest point in the 

case of descriptor length equals 64 and one block and 36 threads in the case of descriptor length 

equals 36. 

A summary for the implementation is shown in Figure  3.36. 
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Figure  3.36: GPU CUDA SURF implementation (Sheta  et al. 2012e) 

 

3.7 Test set and results 

The same data set used in section  3.5 is used with the following characteristics: 

1. Images with sizes 640x480, 1024x768, and 1280x960. 

2. GPU: Nvidia Geforce GT 540M, 97 cores. 

3. CPU: Intel Core i7 Quad core 2760QM, 8G memory. 
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Tests were conducted using the proposed GPU CUDA approach and CPU based approach and 

the comparison is based on the computation time required to process all images of varying sizes 

with different approaches, percentage of time for computations feature point independent 

calculations using CUDA, and the overall speedup comparison between the CPU and CUDA 

implementations. 

Summary of the timing performance for each component of the developed methodology is 

presented. Table  3-2 shows the number of interest point detected in the input image with size 

1024 × 768 with the time taken for interest point independent processes computation. Results 

showed that the computational load is higher for interest point descriptor building because it 

includes the determination of the dominant orientation which is a high time consuming process. 

Figure  3.39 shows the time required to process different images with sizes 640×480, 1024×768, 

and 1280×960. Results showed that speed up of the process time is linearly increased with the 

image size increase. 

Table  3-4 shows the overall speedup comparison between different implementation of the 

developed methodology with different image sizes. Results clearly showed that GPU-CUDA 

implementation of the developed methodology speeded up the computation time with average 

99.57%.  
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Figure  3.37: Input image with size 1024×768 

 

 

Figure  3.38: Output image with interest points detected (Sheta  et al. 2012e) 
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Table  3-2: Number of interest points detected using GPU CUDA with time taken for each 

process (Sheta  et al. 2012e) 

No. of Interest Points Detected 1293 

Integral Image duration 6 msec 

Interest Point Detection Duration 11 msec 

Descriptor Building Duration 13 msec 

 

 

Figure  3.39: Computation time required to process all images of varying sizes with 

different approaches (Sheta  et al. 2012e) 

 

 

1

10

100

1000

10000

100000

307200 786432 1228800

Ti
m

e 
(m

s)
 

Pixel Count 

OpenSURF time (ms)

GPU CUDA time (ms)

Matlab (ms)



 

76 

Table  3-3: Percentage of time for computations feature point independent calculations 

using CUDA (Sheta  et al. 2012e) 

Image Size 640×480 1024×768 1280×960 

Integral Image 29.41% 20% 32.14% 

Interest Point 

Detection 

29.41% 36.66% 33.92% 

Descriptor Building 41.18% 43.34% 33.94% 

 

 

Table  3-4: Overall speedup comparison between the CPU and CUDA implementations 

(Sheta  et al. 2012e) 

Image Size 640×480 1024×768 1280×960 

Feature Count 564 1293 1893 

GPU CUDA 16 msec 28 msec 41 msec 

CPU 

implementation 

3257 msec 6926 msec 11237 msec 

CPU 

implementation 

Speed Up 

99.5 % 99.59 % 99.63% 
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3.8 Summary 

In this chapter, we have introduced and tested the matching algorithm with descriptor length 36 

as the matching algorithm for VBN depending on a lower number of interest point matches 

between real-time captured images and those from a database. Additionally, the samples count in 

the sub-divisions with the different descriptor length (36, 64, and 128) was changed to test the 

effect of the number of samples in each subdivision on the accuracy of the matching algorithm. 

Results showed that a number of samples are effective in the matching algorithm, which had 

previously not been investigated. 

The proposed algorithm in this chapter has been implemented on CUDA platform which showed 

a fast implementation employing on the shelf graphics card (Sheta  et al. 2012e). Implementation 

using CUDA satisfies the real-time processing requirements, while keeping the high accuracy 

which is suitable for real-time application such as VBN. The GPU can be manipulated into 

efficient image processing that is faster than the CPU, and also frees the CPU for other activities.  

Low parallelism computations can sometimes be faster than transferring back and forth to host. 

GPU can achieve superior results compared to CPU processing times providing that: 

1. Maximizing the independent parallelism in the implemented algorithm. 

2.  Applying more computation on the GPU to avoid costly data transfers time loss. 

3.  Partitioning the computation to keep the GPU multiprocessors equally busy. 

4.  Taking advantage of shared memory. 
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 NONLINEAR OPTIMIZATION APPROACHES FOR OBJECT SPACE Chapter Four:

TRANSFORMATION PARAMETERS ESTIMATION  

The main objective of this chapter is to investigate the estimation of the georeferencing 

parameters necessary for VBN of aerial vehicles with the assumption that the UAV experience 

large values of the rotational angles, which will lead to nonlinearity of the estimation model. In 

this case, traditional least squares approaches will fail or will take long time to estimate the 

georeferencing parameters, because of the expected nonlinearity of the mathematical model. Five 

different nonlinear least squares methods are presented for estimating the transformation 

parameters – this include four gradient based nonlinear least squares methods (Trust region, 

Trust region dogleg algorithm, Levenberg-Marquardt, and Quasi-Newton line search method) 

and one non-gradient method (Nelder-Mead simplex direct search) is employed for the six 

transformation parameters estimation process. 

4.1 Introduction 

Although a robust scale and rotation invariant image matching algorithm is important for VBN 

of aerial vehicles, the proper estimation of the object space transformation parameters improves 

the efficiency of the navigation process by the real-time estimation of transformation parameters. 

These parameters can then be used in aiding the inertial measurements data in the navigation 

estimation filter. 

A pose estimation problem can be investigated through the correspondence between the 3D 

Ground Control Points (GCP) and the corresponding 2D points in image coordinates (Lu et al. 

2000). Gauss-Newton and Levenberg-Marquardt, among other methods such as Trust Region 

method, are considered as classical iterative approaches for solving the nonlinear least square 

problem for pose estimation problem (Lowe 1991). 
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General unconstrained nonlinear optimization problem can be described by the following 

equation (Teunissen 1990): 

 min ( ), , :n nF x x R F R R    4.1 

where 

x       unknown parameters to be estimated (object space parameters) 

F(x)   objective function 

R
n 
    n unknowns belong to the Real number 

 

Iterative algorithms are implemented to solve for minimization of this problem. The main goal is 

to find a new value to the unknown parameters (vector x) that lead to minimizing the objective 

function value (Venkataraman 2002). 

General solution of the minimization problem can be reached through the following scheme: 

 1 , 0,1,2,...k k k kx x t d k      4.2 

where 

            Estimated unknown parameters at different iteration steps k+1, k respectively 

                 Positive scalar 

               Search direction vector 

For the purpose of the current study of the different optimization algorithms, the following steps 

can be followed (Teunissen 1990): 

1. Start the iteration at k=0 with initial values for the unknown parameters. 

2. Determine the search direction vector   . 

3. According to the line search strategy, determine   such that               
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4. Threshold is predefined such that the obtained solution must satisfy it. 

5. Stop the iteration when threshold condition is satisfied and       will be the solution for 

equation  4.1. Otherwise, k is increased by one and repeat the procedure from steps 2 to 5. 

Depending on this general procedure, the main difference between the optimization methods 

used is the choice of the search direction vector kd  and the scalar kt . 

When the objective function is the weighted sum of squares such that      
 

 
‖      ‖ , 

the least squares approach is used (El-Habiby et al. 2009) and the traditional Newton’s method 

provides a solution for the search direction    such that: 

 
1

( ) ( )k k k

k k k

J x d F x

x x d

 

 
 

 4.3 

where: 

( )kJ x  is the n by n Jacobian matrix 

1

2

( )

( )

( ) ...

...

( )

T

k

T

k

k

T

n k

F x

F x

J x

F x

 
 
 
 
 
 
 
  

  

However, this method has some difficulties especially when ( )kJ x
 
is singular. In this case, the 

Newton step kd
 
is undefined. Additionally, Newton’s method may not converge if the starting 

point is far from the solution. 

VBN is based on localizing set of features (with known coordinates) on the ground and finding 

their matches in the image taken by an imaging sensor on the UAV. Then, through Collinearity 
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equations, object space transformation parameters are estimated such that these matches are 

transformed into position information. 

Given the above, two challenges in VBN are addressed in this thesis. The first challenge is when 

large tilted aerial platform is used which leads to oblique images with large tilt angles leading to 

nonlinearity of the estimation model. In this case, traditional least squares approaches will fail or 

take very long time to estimate the object space transformation parameters, because of the 

expected nonlinearity of the mathematical model. The limitations in traditional least square 

approach for solving the collinearity equations to deal with this situation have been presented 

and the solution to this problem is introduced using five different nonlinear least squares 

methods. These methods are Trust region, Trust region dogleg algorithm, Levenberg-Marquardt, 

Nelder-Mead simplex direct search, and Quasi-Newton line search method.  

The second challenge is the number of matches necessary for solving the collinearity equations 

which is highly required to be minimal as possible meet the real-time requirements for the 

proposed UAV VBN approach.  

4.2 Mathematical model for Collinearity equations 

In a VBN system, 3D position and attitude of the aerial vehicle can be estimated by means of the 

conjugate features in the UAV aerial image and geo-referenced satellite image. Collinearity 

equations are used for mathematical transformation between 2D Image and 3D object space 

stored in the database. Assuming perspective geometry and neglecting the distortion parameters, 

this relation is expressed as shown in Figure  4.1and equation  4.4: 
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Figure  4.1: Collinearity equations model 

 

( ) ( ) ( )
11 21 31

( ) ( ) ( )
13 23 33

c X X c Y Y c Z Z
P PC P PC P PCx x f

p pc
c X X c Y Y c Z Z

P PC P PC P PC

    
 

    
 

( ) ( ) ( )
12 22 32

( ) ( ) ( )
13 23 33

c X X c Y Y c Z Z
P PC P PC P PCy y f

p pc
c X X c Y Y c Z Z

P PC P PC P PC

    
 

    
 

 4.4 

 

Where: 

( , )p px y               are the image coordinates. 

( , , )P P PX Y Z    are the object database ground coordinates of the conjugate points (can be 

determined after the matching procedure)  

( , , )pc pcx y f      are the camera coordinates of the principal point  and principal distance which are 

known as the Interior Orientation Parameters (IOP)s (can be determined by calibration of the 

camera before the mission) . 
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( , , )PC PC PCX Y Z  are the unknown parameters which define the  position of projection centre  of 

the camera body in ground coordinate system. 

11 33,....,c c  are the elements of the 3D rotation matrix R containing the rotation angles ω, φ, and κ 

between the camera axes and the mapping coordinate system, such that: 

cos cos cos sin sin

cos sin sin sin cos cos cos sin sin sin sin cos

sin sin cos sin cos sin cos cos sin sin cos cos

R

    

           

           

 
 

    
   

 

Using Taylor’s theorem to linearize equation  4.4, these equations can be rewritten as: 

 

pc p

pc p

m
F x f x

q

s
G y f y

q

  

  

 
 4.5 

where: 

31 32 33

11 12 13

21 22 23

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

P PC P PC P PC

P PC P PC P PC

P PC P PC P PC

q c X X c Y Y c Z Z

m c X X c Y Y c Z Z

s c X X c Y Y c Z Z

     

     

     

 

Applying Taylor’s theorem to equation  4.5, taking partial derivatives with respect to the 

unknowns, those equations are expressed as: 

0 0 0 0 0 0 0

0 0 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

PC PC PC

PC PC PC

P P P p

P P P

F F F F F F
F d d d dX dY dZ

X Y Z

F F F
dX dY dZ x

X Y Z

  
  

     
      

     

  
  

  

 
 4.6 
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0 0 0 0 0 0 0

0 0 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

PC PC PC

PC PC PC

P P P p

P P P

G G G G G G
G d d d dX dY dZ

X Y Z

G G G
dX dY dZ y

X Y Z

  
  

     
      

     

  
  

  

 
 4.7 

 

where: 

0 0,F G  are calculated at the initial values for the unknown parameters in the collinearity 

equations. 0 0( ) ,....., ( )
F G

 

 

 
 are calculated at the initial values for the unknown parameters in the 

collinearity equations. 

, ,...., Pd d dZ   are the corrections to be added to the initial values for the unknown parameters. 

If the least square approach is used, and noticing that 
px  and 

py  are measured values, residual 

terms should be added to the equations. Therefore, the linearized equations after adding these 

residuals can be expressed as: 

11 12 13 14 15 16 14 15 16PC PC PC P P P xpb d b d b d b dX b dY b dZ b dX b dY b dZ J v             
 4.8 

 

21 22 23 24 25 26 24 25 26PC PC PC P P P ypb d b d b d b dX b dY b dZ b dX b dY b dZ K v             
 4.9 

 

where: 

11 26,..., ,b b J and K are given as: 

11 33 32 13 122
[ ( ) ( )]

f
b m c Y c Z q c Y c Z

q
           
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12 2
[ (cos sin sin cos sin ) ( sin cos sin cos cos cos cos cos )]

f
b m X Y Z q X Y Z

q
                        

13 21 22 23( )
f

b c X c Y c Z
q


       

14 31 112
( )

f
b mc qc

q
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15 32 122
( )

f
b mc qc

q
   

16 33 132
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f
b mc qc

q
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m
J x x f

q
    

22 2
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b s X Y Z q X Y Z
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f
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q
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f
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q
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f
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q
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q
   
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s
K x x f

q
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P PCX X X    

P PCY Y Y    
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P PCZ Z Z    

From the previous equations, the number of necessary points (n) for the object space 

transformation parameters in the collinearity equations should satisfy 3n  . If 3n   is realized, 

the number of linearized equations to be solved is 2n with 6 unknowns to be estimated. These 

equations in the matrix form can be expressed as A x L V   , where 

 
T

PC PC PCx d d d dX dY dZ     can be calculated using least square approach from 

( ) ( )T TA A x A L  . 

The determination of parameters through minimization can be considered as the definition of a 

general optimization problem. Nonlinear least squares optimization algorithms can be 

investigated through two general approaches. The first one through linearization of the model, 

where corrections to the unknown estimated parameters are added during the iteration steps on 

the assumption of local linearity, as shown above. Linearization of the Collinearity equations for 

space parameters estimation requires repeated computations to improve the initial values 

assigned to the transformation parameters and this approach is clearly investigated in (Wolf and 

Dewitt 2000). However, nonlinear least squares optimization approaches are used in the general 

case where the aerial platform will lead to non-vertical images.  The second one is based on 

modifications made to the steepest descent approach, which is a gradient method. However, for 

optimal solution, an optimal interpolation between the two methods can be used for the 

representation of the nonlinear model (Marquardt 1963). 

4.3 Nonlinear optimization algorithms 

As mentioned before, five optimization methods will be used to estimate the object space 

parameters estimation (X, Y, and Z translation vector and rotation angles ⍵, φ, and к). 
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As mentioned in  4.2, the main difference between the optimization methods used is the choice of 

the search direction vector kd  and the scalar kt  
(El-Habiby et al. 2009) as well as the objective 

function itself or its derivative. 

4.3.1 Trust region algorithm 

The trust region approach for nonlinear optimization has been studied over 50 years (Conn et al. 

2000). This method is basically considered as one of the basic descent methods. 

At each iteration point kx , define a model ( )km x  to approximate the objective function within a 

suitable neighbourhood of kx . This neighbourhood is the trust region. The set of all points 

defining the trust region is found in the following equation: 

  ,n
k k kk

x R x x       
 4.10 

where: 

k  is the trust region radius. 

.
k

 is iteration dependent norm. 

The basic trust region algorithm can be summarized as follows (Conn et al. 2000) : 

1. Start with the initial point 0x  and initial trust region radius 0 .  

2. Define a set of constants 1 2 1 2, , ,and   
 
satisfying this condition 1 20 1     and

1 20 1    . 

3. Calculate 0( )f x  and set 0k  . 

4. Choose .
k  

and define the approximation model km
 
in k . 

5. Calculate a step ks to minimize the model km
 
satisfying k k kx s   . 
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6. Calculate ( )k kf x s
 
and define a parameter ( )  which is 

( ) ( )

( ) ( )

k k k
k

k k k k k

f x f x s

m x m x s


 


 
. If

1k  , then set 1k k kx x s   ; otherwise, set 1k kx x  . 

7. Update the trust region radius according to 

 

   

 

2

1 2 1 2

1 2 1

,

, ,

,

k k

k k k k

k k k

if

if

if

 

   

   



   


    
   

. 

8. Increment k by 1 and repeat the process. 

 

The trust region method is considered a gradient based method where the search direction will be 

evaluated using the gradient of the objective function. In this method, the model ( )km x is 

quadratic model of the objective (based on the second-order Taylor series of f at kx ).This helps 

to minimize the number of iterations required for the convergence (Sheta  et al. 2012d). 

4.3.2 Trust region dogleg algorithm 

At each iteration point kx , the trust region sub-problem where the quadratic model is used can be 

expressed as: 

 
1

( ) ( ) , ,
2

k k k k k k k k km x s f x g s s s     
 4.11 

where: 

kg is the gradient ( )kf x . 

k is the Hessian approximation matrix. 

This algorithm is based on computing the step d, which minimizes the model described above 

using the Powell dogleg procedure. For a detailed description about Powell method, see (Powell 

and Atomic Energy Research Establishment 1968).  
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The step d is found from a convex combination of a Cauchy step (a step along the steepest 

descent direction) and a Gauss-Newton step for f(x). The Cauchy step is calculated as: 

 ( ) ( )T
c k kd J x F x    4.12 

Where α is chosen to minimize the model described. 

The Gauss-Newton step is found by: 

 ( ) ( )k GN kJ x d F x    4.13 

The step d is chosen such that: 

 ( )c GN cd d d d    
 4.14 

where μ is the largest value in the interval [0,1] such that d   . 

The trust region dogleg method is a gradient based optimization method. The cost of computing 

the dogleg paths in addition to the Cauchy and the Gauss-Newton steps increases the number of 

iterations more than the trust region approach. 

4.3.3 Levenberg-Marquardt algorithm 

In this algorithm, a scalar α is introduced to help the choice of the magnitude and the direction of 

the descent such that the Gauss-Newton algorithm is modified using the trust region approach. 

Determination of using either the Gauss-Newton method direction or the steepest descent method 

direction is done by this scalar. The search direction is computed by (Luenberger 1984): 

 
1 ( )T

y k kJ C J I d JF x   
 

 
 4.15 

where: 

yC is positive definite observation covariance matrix 
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When 0  , the algorithm will be the Gauss-Newton approach and when α tends to have large 

values, it will require the steepest descent method. This factor α makes the algorithm moves 

smoothly between Gauss-Newton and steepest descent method. When the current estimate of the 

variables leads to minimization of the objective function, the algorithm continuously moves to 

the Gauss-Newton approach. This leads to a decrease in the number of iterations needed for 

convergence. 

Calculating the size of α, such that the algorithm is efficient in each iteration step, is the 

challenge in the Levenberg-Marquardt algorithm. The relative nonlinearity of the objective 

function ( )F x is estimated by a linear predicted sum of squares ( )lps kf x to control the step size 

(Sheta  et al. 2012c): 

 1 1 1( ) ( ) ( )lps k k k kf x J x d F x     
 4.16 

An estimate of the minimum ( )cif x  is cubically interpolated, where ( )cif x is calculated by 

cubically interpolating ( )kf x and 1( )kf x  (Marquardt 1963).  

When ( )lps kf x is greater than ( )cif x , reduce α or, to ensure that 1( ) ( )k kf x f x  at each iteration 

step, it is increased such that the descent algorithm towards the solution is maintained (Nocedal 

and Wright 1999; Fletcher 2000). 

4.3.4 Quasi-Newton line search algorithm 

The basic idea behind this method is that approximation of the Hessian matrix  of the 

objective function is achieved by a positive definite matrix. This positive definite matrix is 

initially computed by 0 . As the search continues, the approximating matrix is updated at each 

iteration step and consequently the second derivative information is updated and improved. The 
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Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update is calculated through the following 

(Broyden 1970): 

1. Start with an initial point ix  and an approximation Hessian matrix k .  

2. Calculate the search direction kd  by solving: ( )k k kd f x  . 

3. Find an acceptable step size k  in the search direction found in the previous step through 

a line search, then update 1k k k kx x d   . 

4. Let k k ks d . 

5. Let 1( ) ( )k k kv f x f x  . 

6. Calculate 1

( )T T
k k k k k k

k k T T
k k k k k

v v s s

v s s s
     

Practically, 0  
can be initialized with 0 I , so that the first step will be equivalent to a 

gradient descent, but further iterations are refined by k . 

In this method, instead of computing the true Hessian as in Newton’s method, an approximation 

that is based on the change in gradient between iterations will be used. The primary advantage is 

that there is no need to compute the exact Hessian at each point, which may be computationally 

expensive (Sheta  et al. 2012d). 

4.3.5 Nelder-Mead simplex direct search algorithm 

This algorithm was first published in 1965 and is used in multidimensional unconstrained 

minimization problems. Since this algorithm achieves minimization for the objective function 

based on the function values without any derivative information, it is categorized in the direct 

search methods (Lagarias et al. 1998). 
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A simplex in n-dimensional space is created and represented by n+ 1 distinct vector, where n is 

the length of unknown x to be evaluated to minimize the objective function. 

From the original paper of Nelder-Mead (Nelder and Mead 1965), the objective function f(x) is 

minimized through using four coefficients, where they should satisfy particular conditions. These 

parameters are reflection ( )r , expansion ( ) , contraction ( )c , and shrinkage ( ) . 

This algorithm can be described as follows: 

1. Order: based on the vertices values at: 1 2 1( ) ( ) ( )nf x f x f x   . 

2. Reflection: the reflection point is evaluated 1( )r r nx x x x
 

   where 
1

n
i

i

x
x

n





 is the 

centroid of all vertices except 1nx  . Evaluate ( )rf x . If 1( ) ( ) ( )r nf x f x f x  , the 

reflected point rx is accepted and the iteration is terminated. 

3. Expansion: 

a.  If 1( ) ( )rf x f x , the expanded point ex is evaluated. 

b. 1( ) ( )e r r nx x x x x x  
  

     . Evaluate ( )ef x . If ( ) ( )e rf x f x , replace the 

worst point 1nx  with the expanded point ex , and stop the iteration. 

c.  If ( ) ( )e rf x f x , change the worst point 1nx  with the reflected point rx , and stop 

the iteration. 

4. Contraction:  
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a. If 1( ) ( ) ( )n r nf x f x f x   , evaluate the contacted point ( )c c rx x x x


   . If 

( ) ( )c rf x f x , change the worst point 1nx   with the contracted point cx , and 

stop the iteration. Else go to step 5. 

b. If 1( ) ( )r nf x f x  , evaluate the contacted point 1( )c c nx x x x
 

   . 

c. If 1( ) ( )c nf x f x  , change the worst point 1nx   with the contracted point cx and 

stop the iteration. Else go to step 5. 

5. Reduction: evaluate f at n points 1 1( )i ix x x x   for all i=2,…,n+1. 

Since this method is basically a non-gradient optimization method, it is predicted that this 

method will fail due to its dependency on the objective function only without any derivative 

information. 

4.4 Test set and results 

Tests were conducted on the optimization algorithms using simulated data starting with the near-

vertical aerial photo assumption captured with a 152.916 mm focal length camera. The tests were 

done using three ground control points 1 through 3 listed in Table  4-2. Image coordinates and 

ground control coordinates of the three points are listed in Table  4-2. 

The real-time nonlinearity problem of the collinearity equations for proper estimation of the 

object space transformation parameters is investigated using the developed nonlinear 

optimization approaches. 

Five nonlinear optimization approaches were introduces for estimating object space 

transformation parameters, which are necessary for the process of pose estimation of UAV VBN 

approach. Convergence of these methods were introduced using the near vertical assumption and 
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with the general tilted photograph case. The developed nonlinear optimization approaches are 

tested with general tilted photograph with different values for angle φ varying from φ = 0° to 45° 

with step 5°. These methods are compared with respect to number of iterations and accuracy. 

The methods introduced are basically categorized as gradient methods (Trust Region, Trust 

Region Dogleg, Levenberg-Marquadrt method, and Quasi-Newton Line Search method) and 

non-gradient methods (Nelder-Mead simplex direct search method). 

Results show that Nelder-Mead method has failed due the dependency on the objective function 

only without any derivative information. 

As for gradient methods, tests showed different results in solving for the object space parameters 

based on the initial value for φ. As for trust region dogleg method, good results were achieved 

till φ = 20° and then the number of iterations increased and the algorithm didn’t converge since 

the degree of the nonlinearity was increased and the computed step d failed to minimize the 

model described in equation  4.11. As for the Levenberg-Marquardt approach, it is as a modified 

Gauss-Newton algorithm using the trust region approach where a scalar is used to help the 

choice of the magnitude and the direction of the descent. Depending on this scalar, either the 

Gauss-Newton method direction or the steepest descent method direction is determined. 

Therefore, the Levenberg-Marquardt method converged when φ = 0°. However, it didn’t 

converge once φ is increased from 0°. This was predicted since the relative nonlinearity of the 

objective function ( )F x , shown in equation  4.15, is estimated by a linear predicted sum of 

squares ( )lps kf x to control the step size which will fail to converge as φ increases above 0°. As 

for the Quasi-Newton method, it converged for all values of φ since this algorithm is based on 
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the Hessian matrix of the Collinearity equations which is updated using the Broyden, Fletcher, 

Goldfarb, and Shanno (BFGS) update .This update is function of the gradient.  

As for the number of GCP needed for convergence, the object space parameters were 

successfully estimated using three GCP, which will assess in the image matching approach for 

solving for the necessary points needed for convergence of the collinearity equations parameters 

estimation problem (Sheta  et al. 2012a). 

 

Table  4-1: Initial Values for the Object Space Parameters 

 

Omega 

(rad) 

Phi 

(rad) 

Kappa 

(rad) 

XL 

(m) 

YL 

(m) 

ZL 

(m) 

Value 0 0 1.7947 1009.923 1038.056 649.614 

 

Table  4-2: Image Points and Ground Control Points (GCP) Coordinates 

 Image coordinates (mm) Ground Control Coordinates (m) 

Point x y X Y Z 

1 86.421 -83.977 1268.102 1455.027 22.606 

2 -100.916 92.582 732.181 545.344 22.299 

3 -98.322 -89.161 1454.553 731.666 22.649 

 

 

Table  4-3: Performance of optimization methods with initial φ (deg) = 0 

Object Space 

parameters 

Trust Region 

Dogleg 

Trust Region 

Levenberg-

Marquardt 

Quasi-

Newton line 

Nelder-Mead 

simplex direct 
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errors search search 

δ⍵ (rad) 0.059 0.076 0.008 0.051 0.007 

δφ (rad) 0.021 0.003 0.021 0.050 0.021 

δК (rad) 0.004 0.011 0.0004 0.048 0.017 

δXL (m) 21.50 17.93 17.933 17.933 19.669 

δYL (m) 6.274 6.058 6.057 6.058 57.502 

δZL (m) 0.361 1.416 1.417 1.416 4.502 

No. of 

Iteration 

4 2 1 2 158 

 

Table  4-4: Performance of optimization methods with initial φ (deg) = 5 

Object Space 

parameters 

errors 

Trust Region 

Dogleg 

Trust Region 

Levenberg-

Marquardt 

Quasi-

Newton line 

search 

Nelder-Mead 

simplex direct 

search 

δ⍵ (rad) 0.065 0.059 0.029 0.049 0.007 

δφ (rad) 0.026 0.058 0.731 0.050 0.072 

δК (rad) 0.004 0.026 0.647 0.045 0.002 

δXL (m) 21.046 44.462 297.345 17.933 127.438 

δYL (m) 6.384 9.413 365.369 6.058 17.553 

δZL (m) 0.13 12.096 535.928 1.416 63.175 

No. of 

Iteration 

2 2 55 2 142 
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Table  4-5: Performance of optimization methods with initial φ (deg) = 10 

Object Space 

parameters 

errors 

Trust Region 

Dogleg 

Trust Region 

Levenberg-

Marquardt 

Quasi-

Newton line 

search 

Nelder-Mead 

simplex direct 

search 

δ⍵ (rad) 0.058 0.047 0.032 0.045 0.007 

δφ (rad) 0.030 0.109 0.728 0.050 0.148 

δК (rad) 0.008 0.063 0.644 0.037 0.018 

δXL (m) 23.233 78.689 297.885 17.933 166.201 

δYL (m) 6.672 14.67 362.236 6.058 11.388 

δZL (m) 1.262 31.887 532.772 1.417 33.672 

No. of 

Iteration 

3 3 48 2 153 

 

Table  4-6: Performance of optimization methods with initial φ (deg) = 15 

Object Space 

parameters 

errors 

Trust Region 

Dogleg 

Trust Region 

Levenberg-

Marquardt 

Quasi-

Newton line 

search 

Nelder-Mead 

simplex direct 

search 

δ⍵ (rad) 0.055 0.063 0.033 0.041 0.007 

δφ (rad) 0.036 0.097 0.725 0.050 0.235 

δК (rad) 0.021 0.068 0.641 0.025 0.006 

δXL (m) 31.988 78.031 298.405 17.933 228.742 

δYL (m) 7.493 18.594 359.337 6.058 12.639 
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δZL (m) 5.905 31.444 529.787 1.417 37.796 

No. of 

Iteration 

4 3 44 3 142 

 

 

Table  4-7: Performance of optimization methods with initial φ (deg) = 20 

Object Space 

parameters 

errors 

Trust Region 

Dogleg 

Trust Region 

Levenberg-

Marquardt 

Quasi-

Newton line 

search 

Nelder-Mead 

simplex direct 

search 

δ⍵ (rad) 0.053 0.049 0.035 0.032 0.007 

δφ (rad) 0.090 0.198 0.723 0.049 0.305 

δК (rad) 0.053 0.137 0.638 0.005 0.020 

δXL (m) 66.836 142.211 298.797 17.933 280.881 

δYL (m) 11.709 36.664 357.216 6.058 18.823 

δZL (m) 26.114 74.913 527.565 1.417 62.472 

No. of 

Iteration 

6 4 42 3 155 

 

More test results for the developed nonlinear optimization approaches are presented in Appendix 

B. The developed nonlinear optimization approaches are tested with general tilted photograph 

with different values for angle φ varying from φ = 25° to 45° with step 5°. 
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4.5 Summary  

Real-time nonlinearity problem of the collinearity equations for proper estimation of the object 

space transformation parameters (X, Y, and Z translation vector and rotation angles ⍵, φ, and к) 

has been investigated. Tests were conducted with general tilted photograph with different values 

for only angle φ varying from φ = 0° to 45° with step 5° as an example for high rotation angle 

which will lead to nonlinearity of the estimation model. The developed methods covered both 

gradient and non-gradient based nonlinear optimization approaches. As for the gradient based 

nonlinear optimization approaches, it covered both first order and second order gradient methods 

to achieve the fastest method for solving the collinearity equations nonlinearity problem.  

The object space transformation parameters were successfully estimated (in terms of accuracy 

and number of iterations) by the Quasi-Newton approach with three ground control points (Sheta  

et al. 2012a). This leads to reducing the number of matches needed for estimating the parameters 

mentioned above, which will assess in the image matching approach for solving for the 

necessary points needed for convergence of the object space transformation parameters 

estimation problem. 
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 INS/VISION MEASUREMENT FUSION USING EXTENDED KALMAN Chapter Five:

FILTER (EKF)  

This chapter introduces the general structure of EKF for UAV navigation based on INS and 

visual measurements in GPS-denied environments. The system applies the concept of 

photogrammetric resection to estimate the camera position which in turn can be used as an 

update to the IMU measurements in the navigation EKF. The camera position is estimated by 

finding the correspondences of common features exiting in the real-time images captured during 

flight mission and the geo-referenced images in the database of the area of flight. Then, the 

collinearity equations are used to estimate the position of the perspective center of the camera 

through the concept of photogrammetric resection. The object space transformation parameters, 

the output of the photogrammetric resection, are then used as an update to the INS in the 

navigation filter. 

5.1 Introduction 

UAV reliable navigation has been a subject for research for many years and still is. The work 

presented in this chapter is done in the context of UAV navigation systems. The most common 

navigation approaches for UAV applications are INS and GPS which can estimate the navigation 

parameters for the UAV in motion. However, both systems have their own limitations.. For 

example, INS alone is a dead-reckoning system which suffers from time dependent position error 

drift with time due to the integration of the acceleration and angular rate data for UAV 

navigation. On the other hand,  GPS provides absolute and drift free position measurements 

provided that line of sight condition is realized between the GPS receiver and four or more 

satellites. 
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The combination of INS and GPS systems bound the navigation error drift from the INS system 

by the GPS updates. However, GPS-aided navigation systems are not always guaranteed to be 

reliable especially in GPS-denied environments, where the GPS signal can be jammed. 

In order to overcome the main disadvantages of traditional methods (INS/GPS), vision-aided 

navigation systems are introduced to relieve the dependency on GPS in the integrated navigation 

system. Visual sensors have the advantages of low cost and weight compared to laser sensor. 

These advantages are crucial in the development of UAV navigation systems.  

New advances in visual sensor solutions, in combination with traditional navigation sensors, are 

proving to be highly effective replacements to traditional IMU or GPS systems for many mission 

scenarios.  

The primary objective of this chapter is to develop and implement a comprehensive, fast, real-

time, and low cost VBN technique for UAVs navigation. This will be achieved by fusing the 

vision measurements as CUPT update through the EKF for the INS measurements by employing 

the residuals originating from the object space transformation parameters estimation as the error 

covariance matrix in the EKF implementation. The implementation will be done through 

simulated visual measurements combined with simulated GPS/INS trajectories at low altitude. 

The proposed VBN approach is based on locating the correspondence points between a set of 

features in real-time captured images taken by the imaging sensor on the UAV and database 

images. These correspondence points between the geo-referenced database images and those 

captured in real-time are found by employing the fast modified SURF algorithm. 

The chapter starts with the mathematical model for the collinearity equations and 

photogrammetry resection as the core of the camera pose estimation approach. Then, the general 

structure for the developed VBN system is introduced with detailed description for the INS error 
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states, the EKF, and fusing visual measurements with INS measurements for UAV navigation 

during GPS signal outages. Detailed description for the Spirent simulator, which was used for 

testing the developed methodology, is presented. 

Finally, to test the developed VBN, simulated data set was used using the Spirent GNSS 

simulator to test the validity of the VBN through simulated GPS signal outages and compare the 

system performance to the simulator true trajectory.  

5.2 Collinearity equations and photogrammetric resection 

The relationship between the image points and the point features coordinate is described by the 

collinearity equations. In a VBN system, the position of a UAV can be estimated from the on-

board navigation system or by using the conjugate correspondence points from the matching 

between the UAV real-time images and the images in the database. As described in chapter 4, the 

camera Exterior Orientation Parameters (EOP) ( , , , , , )PC PC PCX Y Z    can be estimated through 

the collinearity equations. These parameters define the relationship between the camera frame (c-

frame) and the mapping frame (m-frame) shown in Figure 4.1. This is achieved using the proper 

optimization algorithm to ensure accurate and fast convergence of the parameters with the 

minimum required conjugate points necessary for the solution, as described in chapter 4. 

Based on the collinearity equations 4.4, one of the basic problems of photogrammetry, named 

resection, can be solved.  Space resection is a process which involves determining the position 

and orientation of a photograph, using measurements to features with known ground coordinates 

appearing on the photograph. The most common application is to aerial photogrammetry when 

the measured points are ground points, i.e. points which have known values in the object system 

of coordinates. Through the space resection, the EOP can be estimated when at least three GCPs 

are available. 
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5.3 Proposed vision and inertial fusion algorithm 

The VBN algorithm will begin by building a library of classes for the geo-referenced satellite 

images of the area of interest. This library will be built on the SURF with descriptor length 36 

(SURF-36) algorithm and will contain all descriptors for selected features that form the classes. 

Once a set of key points is detected in the real-time aerial images, they are matched with the set 

of SURF descriptors available in the database. This matching strategy is based on the Euclidean 

distance in descriptor space and is referred to as the similarity-threshold-based matching 

strategy. 

Given conjugate correspondence points between the real-time images and the images from the 

database, the object-space transformation parameters can be estimated through the mathematical 

model of the collinearity equations using the proper optimization algorithm to ensure accurate 

and fast convergence for those parameters with the minimum required conjugate points 

necessary for convergence. 

The vision aid for UAV VBN systems uses the image matching position to update the 

navigation- EKF, as shown in Figure  5.1. Rather than using the GPS positions to update the INS 

error states, the new proposed algorithm will add the image matching updates to that filter. The 

filter will then use two sets of observation to perform an update. 
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Figure  5.1: Vision aiding algorithm for UAV VBN 

5.3.1 INS error states 

The nonlinear state equations in chapter 2 describe a physical process, of relating the IMU 

measurement to the navigation states, by a deterministic dynamic system. Navigation parameters 

along a reference trajectory can be determined from the state equations using kinematic 

measurements. Due to sensor errors, solutions for the state equations in chapter 2 contain errors 

which can be deterministic or stochastic in nature. Thus, error models are required for analysis 

and estimation. Differential equations are used to describe the errors in dynamic systems because 

these errors are variable in time. Linearization of the nonlinear dynamic system is the most 
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common approach to derive a set of linear differential equations which define the error states of 

the dynamic system.  

Recalling equation 2.29 that represents a system of nonlinear first-order differential equations 

(mechanization equations) then kinematic measurements are used to solve it to provide positions, 

velocities and attitudes. It can be rewritten using the form: 

   1 1 1 2( ) ( ), ( );x t f x t x t t   5.1 

Where: 

1 2( ( ), ( ))f x t x t  are nonlinear functions, 1( )x t are physical parameters of the dynamic system 

(representing the navigation state) and 2( )x t  2( )x t are the the input forcing functions 

(representing the sensor error models).Usually, the true values of the navigation state 1( )x t  are 

not known and an approximation of 1( )x t   can be computed, based on a reference trajectory, by 

integrating the sensors output with respect to time as follows: 

   1 11 2 1 1 1 2( ) ( ), ( ); ( ) ( ), ( );x t f x t x t t f x t dx t x t t
   

    
     

 5.2 

Where: 

1x                                  is the approximation of  the navigation states 1x . 

11 1( ) ( ) ( )dx t x t x t       is the error states. 

Using a Taylor expansion to first order on equation  5.2, the linearized time derivative of the 

navigation error states will be: 
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 1
1 1 1 1

1

( ) ( ) ( ) ( )
f

dx t x t x t dx t
x


  


  5.3 

Equation  5.3 represents the navigation error state equations under the assumption that the input 

forcing functions 2( )x t are errorless and can be written in a general form as: 

 
1 1 1( ) ( )dx t F t dx   5.4 

Where 1F  is called the dynamic matrix. 

If the input forcing functions 2( )x t are not zero but are part of the sensor output, the navigation 

error state model in equation  5.4 is augmented by a set of error states to represent the random 

sensor noise. A set of stochastic differential equations are used to describe the sensor errors 

model as follows: 

 
2 2 2 2( ) ( ) ( ) ( )dx t F t dx t G w t    5.5 

Where: 

2G   is a coefficient matrix (usually called shape matrix). 

( )w t   is system input white Gaussian noise. 

The complete linearized INS error model is described by combining equations  5.4 and  5.5 as 

follows: 

 
1 1 12 1

2 2 2
2

0( )
( )

0
( )

F F dxdx t
w t

F dx G
dx t

 
      

       
       

 
 5.6 

The general form for the linearized INS error model can be described as follows: 

 ( ) ( ) ( ) ( )errorx t F t x t G w t    5.7 
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Where: 

1

2

( )
( )

( )

dx t
x t

dx t

 
 


 
  

           is the error states. 

1 12

2

( )
0

F F
F t

F

 
  
 

       is the dynamic matrix. 

( )errorG w t                   describes the system noise.  

 

The navigation error state vector ( )x t  in the navigation solution produced by the INS is 

composed of the position, velocity, attitude, accelerometer bias, gyroscope bias, accelerometer 

scale factor, and gyroscope scale factor and is represented as a vector of 21 elements as shown 

below (Eun-Hwan and El-Sheimy 2004). 

 ( ) b

b

s

s

P

V

x t a

g

a

g







 
 
 
 
 

  
 
 
 
 
  

 
 5.8 

Where: 

 P    is the position error vector. 

V    is the velocity error vector. 

    is the attitude error angles. 

ba    is the accelerometer bias error. 
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bg    is the gyroscope bias error. 

sa    is the accelerometer scale factor error. 

sg    is the gyroscope scale factor error. 

 

INS errors state ( 2dx ) can be categorized into three main types (El-Sheimy 2007): bias errors, 

scale factor errors, and noise, as shown in Figure  5.2. 

 

Figure  5.2: INS error types 

The bias error includes two parts, as shown in Figure  5.3: 

1. The bias offset which is a deterministic error that describes the error in the measurements 

of the inertial sensor (gyros and accelerometers). 

2. The bias drift which is a stochastic part that describes the error accumulation of the INS 

sensor error with time. 

The bias offset can be determined and removed through the proper calibration method where the 

bias drift is random and should be modeled as a stochastic process. 
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Figure  5.3: Bias offset and bias drift (El-Sheimy 2007) 

 

The scale factor error is defined as the ratio between the measured sensor output and the true 

sensor measurement. It is a deterministic error and is determined and removed by the proper 

calibration method. Scale factor stability can be described as the variation of the scale factor with 

the temperature and is expressed in part per million (ppm). 

As for noise error, it is a non-systematic error which cannot be removed using the deterministic 

model and is modeled by the stochastic process. The most common noise distribution is the 

white noise distribution, where the spectral density is the same at all frequencies. 

The white noise process characteristics are zero mean and at constant power spectral density 

when stationary (Anderson and Moore 1979). As a stationary process, it is defined by its 

autocorrelation function specifications (Brown and Hwang 1992). For stationary random process, 

the autocorrelation function is defined as: 
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  ( ) ( ) ( )bbR E b t b t     5.9 

where: 

( )bbR 
               

is the autocorrelation function of the signal b. 

The signal b       is the output sequence of the inertial sensor. 

Given that the white noise has zero mean and constant power spectral density, the 

autocorrelation function of the white noise indicates zero correlation for all time lag values 

except at time lag = 0, as shown in Figure  5.4. 

 

Figure  5.4: Autocorrelation function of white noise 

The effect of the above INS errors on navigation parameters can be summarized as: 

1. The accelerometer bias error introducing a linear error in velocity and a quadratic error in 

the position. 

2. The gyro bias error introducing a quadratic error in velocity and a cubic error in position. 

Therefore, for stand-alone low-cost INS, the aerial platform is unable to navigate correctly. 

Consequently, the low-cost INS will be aided by visual measurements for fast and accurate 

navigation. 
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5.3.2 Extended Kalman Filter (EKF) 

The pose estimation process through image matching can be described as a filtering problem, 

where noisy observations of the interest points are utilized to estimate the pose of the aerial 

platform at time t. 

The Kalman filter approach is considered one of the most efficient techniques for solving such 

problems. However, when the system models are nonlinear, like in the current case, the EKF is 

used. In this case, the EKF is established through linearizing such state models. 

The observation model is described in Figure  5.5, where matches between visual features 

detected in the real-time captured image and the corresponding features in the geo-referenced 

database images are used as observation data. 

 

Figure  5.5: The observation model 

The Kalman filter is introduced in the following according to (Brown and Hwang 1997). To 

derive the Kalman filter equations, a number of assumptions should be realized. The first 

assumption is discrete random process of the model given as: 
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   

1

0 ,
0

k k k k

kT
k k j

x x W

Q j k
E W k E W W

j k

   


   



 
 5.10 

Where: 

x   is the state space vector. 

   is the transition matrix which transforms initial state to its corresponding state at 

time k. 

W    is the process noise. 

The state space vector x is related to the observations by: 

 
   0 ,

0

k k k k

kT
k k j

u H x n

R j k
E n k E n n

j k

 


   



 
 5.11 

Where: 

u   is the measurement vector or observations. 

H   is the design matrix connecting the measurements and the state vector. 

n   is the measurement noise. 

The second assumption is that the initial estimate of the state vector at time kt is known based on 

the process prior to kt  which is called a priori information and denoted as 1kx


 . When the 

observations ku  occur, the current estimate kx


can be improved by the priori information 

according to: 

 
1kk k

x K x K uk k

 
    5.12 

Where: 
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K   is the Kalman gain to be determined. 

 The error between the estimate 1kx


 and the true value kx is given by: 

 
1 1k kke x x



     5.13 

 
1 1k kke x x



     5.14 

Using equations  5.11and  5.12 in equation  5.14 , the updated estimate error is given by: 

    

11

1

1

k k

k

k k

e K x K u xk k k k

K e x K H x n xk k k k k k k

K K H x K e K nk k k k k k




  

    

 
       
 

 
 5.15 

Given   0kE n  and  1 0kE e   , an unbiased estimate exists only if the following condition is 

realised: 

 
k

K K Hk k     5.16 

Therefore, the updated state space vector is given by: 

 

 1 1

1 1

k k k kk k

k k kk k

x K H x K u

x K u H x

 

 

 

 

   

 
   

 

 
 5.17 

Comparing equations  5.17 and  5.11 , a new term called innovation can be defined as the 

difference between the current and predicted measurements, 
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1 1

1

k kk k

k k

n u H x

u u

 

 





 

 

 
 5.18 

Therefore, equation  5.17 can be written as: 

 
1 1 1kk k kx x K n

  

      5.19 

Therefore, corrections to the predicted measurements are used to correct the predicted state space 

vector, which is the main idea of the Kalman filter. The Kalman gain K is used to determine the 

effect of such measurements corrections. The Kalman gain is defined as the mapping of 

measurements error and state space vector errors, as shown below: 

 1 1 1k kk k kx x K u u
  

  

 
   

 
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The error covariance matrix of the updated estimate is given by: 

 1 1 1 11

TT

k k kk k kk
P E e e E x x x x

   

   

        
        

        
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The error between the estimate of the updated state space and the current state space can be 

given as: 

 

 

1 1 1

1 1

1 1

1

k k k k kk k k

k k k k k kk k

k k k k k kk k

k k k k k

x x x K u H x x

x x K H x n H x

x x K H x x K n

K H e K n

  

  

 

 

 

 



 
     

 

   
       
   

   
       
   

   
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Therefore, the error covariance matrix 1kP   is given by: 
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    
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 

  

 

 

 

    
     

    

            

     

     
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Given the following two conditions: 

1. Uncorrelated measurement errors with the estimation error, i.e. 

   1 1 0T T
k k k kE e n E n e   . 

2.  1 1 1
T

k k kP E e e   and  1T
k k kR E n e   

The error covariance matrix is given as: 

  1 1( )
T T

k k k k k k k k kP K H P K H K R K         5.24 

To achieve optimality condition in the Kalman filter, the minimum mean squared error condition 

is used. Thus: 

 ( ) Tf e e e minimum    5.25 

The sum of the mean squared errors in the estimates of x can be computed by minimizing the 

trace of error covariance matrix 1kP  . Therefore, 

 
 1

12( ) 2 0
k T T

k k k k k k k

k

trace P
K H P H K R K

K






     


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Thus, the Kalman gain is given by: 

  
1

1 1
T T

k k k k k k kK P H H P H R


     5.27 
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The state space vector estimates and the error covariance matrix can be computed using 

equations  5.14,  5.24, and  5.27. To compute the update equations, the state space vector and the 

error covariance matrix should be projected to the observation time. Therefore, using 

equation  5.10 and ignoring the noise effect, 

 
1 kk kx x

 

     5.28 

To compute the error covariance matrix, the priori error is first computed as: 

 
 

1k k k

k k k k k

k k k

e x x

x w x

e w







 

   

  

  5.29 

Since kw is the process noise for a step ahead of kt , hence, the cross correlation between kw and 

ke equals zero. Therefore, the error covariance matrix is computed as: 

 
     1 1 1 1 1 1 1 1

1 1 1 1

TT
k k k k k k k k k

T
k k k k

P E e e E e w e w

P Q

       

   

     

   
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5.3.2.1 Nonlinear observation model 

Suppose the state of the UAV at time t is tx  and the observations coming from the vision 

measurements are tu . The model describing both the system state and observations can be 

represented as: 

State model: 1 ( )t t t tx F x W     5.31 

 

Observation model: ( )t t t tu H x n    5.32 

Where ( )tF  and ( )H        are nonlinear functions. 
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tW , and tn
                       

are the model and observation noise (Zhang et al., 2010). 

The covariance matrix of the system noise is represented as (El-Sheimy 2007): 

 
t

k k kE W W Q  
 

 
 5.33 

The covariance matrix of the measurement noise is represented as (El-Sheimy 2007): 

 
t

k k kE n n R  
 
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5.3.3 Coordinate UpdaTe (CUPT) for INS Aiding 

The position measurements from camera perspective center estimation using collinearity 

equations are merged with the INS measurements in the Kalman filter using state observation 

equations. Since both INS position and image derived position measurements use the same 

coordinate frame, then the CUPT equation is a straight parameter equivalency as follows:  

 
1 1 1image

image INS image

u u H x n

u Position Position

  

 
 

 5.35 

Where: 

1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H

 
 

  
 
 

 

Prediction stage: 

The Kalman filter will predict the states from epoch k-1 to epoch k using the transition matrix 

and the covariance matrix for system noise. This will estimate the states (x) and their covariance 

matrix (P). The following equations are identical to any GPS/INS loosely coupled integrated 

filter. 
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(0)

1, 1

(0)

1, 1 1, 1

.k k k

T

k k k k k k

x x

P P Q

 

   



  
  5.36 

Updates stage: 

Before predicting the second epoch, the states will undergo an update by the position 

measurements (image matched positions) and their covariance matrix (
1R obtained from the 

residuals originating from the object space transformation parameters estimation). 

 

(0) (0) 1

1 1 1 1 1

(1) (0) (0)

1 1 1

(1) (0)

1 1

( )

( )

( )

T TK P H H P H R

x x K Z H x

P I K H P

 

  

 

  5.37 

Operation of the proposed EKF is shown in Figure  5.6, where the EKF predict up to the time of 

CUPT and before the measurement update is done. 

 

Figure  5.6: Operation of the proposed EKF 

 

5.4 Data sets and experiments 

To test the developed VBN, a simulated data set was used. The simulation was based on a 

trajectory over the Vancouver area as shown in Figure  5.7. Four data sets are included in the test. 
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The first data set was collected during the flight test with vertical camera axis as a representative 

of the database images and the second data set was a rotated and scaled image as representation 

of the real-time images captured from the UAV. These two data sets represent the visual 

measurements to the developed VBN system.   

The camera specification and flight information for the data set of images taken from the 

Vancouver area are found in Figure  5.7. 

The third data set is the simulated INS measurements from the Spirent GSS8000 and SimInertial 

GNSS/INS simulators. The fourth data set is the GPS measurements during the test which is 

simulated from the Spirent GSS8000 and SimInertial GNSS/INS simulators. 

The validity of the developed VBN system is tested through simulated GPS signal outages and 

the system performance is compared to the simulator true trajectory. 

 

Figure  5.7: Flight trajectory with red triangles indicating GCP 
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The input to the EKF was obtained from simulated measurements using the Spirent GSS8000 

and SimInertial GNSS/INS simulators to generate the required GPS and INS data. The generated 

scenario was of the flight path for aircraft flying over the flight test area coverage. The simulator 

then provided IMU measurements with an output rate of 100 Hz that was synchronized with the 

GPS RF signals. Figure  5.8 (Www.Spirent.com) shows a schematic of the Spirent GSS8000 and 

SimInertial GNSS/INS simulators data flow while Figure  5.9 shows a picture of the system’s 

hardware.  

The SimGEN PC models the test trajectory for the UAV flight for the Vancouver area described 

in Figure  5.7. The simulated UAV flight data is transferred to the SimInertial via Ethernet. The 

SimInertial system simulates inertial sensor outputs while in the meantime simulating GPS RF 

signals thereby provide simulated GPS/INS measurements to test the developed VBN system. 

 

Figure  5.8: Simulator block diagram (Www.Spirent.com) 
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Figure  5.9: Hardware configuration for H/W simulator Spirent GSS 8000 used for flight 

scenario generation and testing. 

The main test to assess the proposed VBN was conducted using simulated GPS signals, which 

were processed with simulated IMU data processing. The proposed algorithm was first tested 

using the previously described simulator hardware. The simulator is capable of providing IMU 

measurements with a controllable output rate and perfectly synchronized with the GPS RF 

signals. According to the type of application adopted in this work, the IMU simulated 

measurements is collected using NATO StanAg-4572 via the supplied RS422 card. A bias error 

was introduced in the simulated IMU data according to the following table: 
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Table  5-1: Introduced error to the simulated IMU data 

Error source Gyro bias Accelerometer bias 

Units rad/sec g 

 0.00003 0.00003 

 

IMU simulated measurements are processed to calculate the INS solution through the strap-down 

mechanization process described in chapter 2 section 2.4 as shown in Figure  5.10. 

 

Figure  5.10: IMU mechanization block diagram 

 

The simulated IMU and GPS data are then loosely coupled integrated through the developed 

EKF to provide a corrected estimate of the INS solution. The tests were conducted with 

neglecting the boresight and distortion parameters. 

To test the effect of a GPS signal outage on the system performance, GPS signal outage was 

introduced on the GPS signal at specific times for 55 and 61 seconds in specific lines during the 

flight path. During this outage, the UAV travelled approximately 3 km (100 knots=51.44 m/sec x 
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60 sec = 3086 m). The navigation solution was then computed to determine the effectiveness of 

the VBN during GPS signal outages. 

As a result of the GPS signal outage in lines 10 and 13 (as shown in  Figure  5.11), the INS stand-

alone navigation solution experience positional drift, as shown in Figure  5.12, at the end of the 

GPS signal outages with the values listed in Table  5-2. 

Table  5-2: Maximum position error for navigation solution during GPS signal outage of 60 

seconds 

Maximum East Position Error 

(m) 

Maximum North Position Error 

(m) 

Maximum Up Position Error  

(m) 

157.601 200.603 10.5766 

 

 

Figure  5.11: Navigation solution with introduced GPS signal outages in the simulated flight 

data 
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Figure  5.12: East, North, and Up position errors during GPS signal outage 

 

Correspondences between real-time images captured during flight mission at Line 13 (tagged 

with red rectangle in Figure  5.13) and geo-referenced images in the database are found. Then, the 

collinearity equations are used to estimate the position of the perspective center of the camera 

through the concept of photogrammetric resection. The object space transformation parameters, 

the output of the photogrammetric resection, are then used as the update for the INS kalman for 

position updates. The navigation solution was improved as shown in Figure  5.13, Figure  5.14, 

and Figure  5.15, and Table  5-3. 
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Figure  5.13: Navigation solution with the image updates to line 13 tagged with red 

rectangle 

  

Figure  5.14 : East, North, and Up position errors after image updates 
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Figure  5.15: Navigation solution (blue) and truth flight path (yellow) 

 

Table  5-3: Maximum position error for navigation solution after image update 

Maximum East Position Error 

(m) 

Maximum North Position Error 

(m) 

Maximum Up Position Error 

(m) 

13.0381 28.9542 5.0829 

 

5.5 Summary 

This chapter introduced and tested the developed VBN system for UAV navigation during 

simulated GPS signal outages. The developed VBN system is based on detecting the matches 

between real-time images captured during the UAV flight mission and geo-referenced images in 

the database. Then, the camera perspective center is estimated through the concept of 

photogrammetry resection via the collinearity equations model. The object space transformation 
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parameters, which is the output of the photogrammetric resection, are used as the update for the 

INS kalman for position updates A navigation solution with stand-alone INS solutions during a 

GPS outage showed poor performance resulting in an east position error of 157.601m, a north 

position error of 200.603m, and an upward position error of 10.74 m. This was expected due to 

the INS errors explained in section  5.3.1 . The proposed vision-based updates to the INS 

measurements offered improvements to the navigation solution as shown in Table  5-3. 
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 CONCLUSIONS AND FUTURE WORK  Chapter Six:

The thesis investigates the design issues related to the implementation of VBN methodology 

using imaging and inertial system for navigation applications of UAV during GPS signal 

blockage. As shown in Figure  6.1 and Figure  6.2, the proposed approach will enable the UAV to 

navigate to the desired destination during GPS signal outage. The main conclusions derived from 

the thesis, and recommendations for future work are discussed in this chapter.  

 

Figure  6.1: UAV navigation in GPS signal outage 
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Figure  6.2: UAV VBN proposed approach 

6.1 Contributions 

The UAV industry is growing rapidly in an attempt to serve both military and commercial 

applications. A crucial aspect in the development of UAVs is the reduction of navigational 

sensor costs while maintaining accurate estimation of the UAV’s navigation state. Advances in 

vision sensor and inertial navigation sensors is a promising solution for navigating UAVs in GPS 

denied missions. 

This thesis contributes to the UAV research through the development of VBN approach for fast 

and accurate navigation in three main levels: 

Image matching contribution: fast implementation using modified SURF-36 to meet real-time 

operation of UAV VBN with accurate pre-surveyed geo-referenced database images. 

The image matching contribution includes: 
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1. Introducing and testing modified SURF-36 as the matching algorithm for VBN 

depending on a lower number of interest point matches between real-time captured 

image and images in the database. 

2. Investigating and implementing a different samples count in the sub-divisions of the 

different types of SURF algorithm (SURF 36, SURF 64, and SURF 128) to test the 

effect of the number of samples in each subdivision on the accuracy of the matching 

algorithm. Results, clearly, showed that increasing number of samples in each 

subdivision is effective in the matching algorithm with high repeatability score up to 

99%. This topic has not been previously investigated. 

3. Introducing and implementation of the proposed algorithms on CUDA platform which 

showed a fast implementation employing of the shelf graphics card. Implementation 

using CUDA satisfies the real-time processing requirements, while keeping the high 

accuracy which is suitable for real-time application such as VBN. 

Object space transformation parameters nonlinear optimization: Given the conjugate 

matched points between the real-time images and the images in the database, estimating the six 

transformation parameters (three for orientation and three for translation) for the Collinearity 

equations should be evaluated quickly and accurately. Linearization of the nonlinear 

mathematical model requires repeated computations to improve the initial values assigned to the 

transformation parameters. Although, in cases of near-vertical photography, ω and φ are usually 

small values and к can be estimated and given an initial value. This situation is not usually the 

case, whereby the aerial platform will lead to a general photography with large orientation angle. 

Therefore, the contribution in this area includes: 
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1. Improving the performance of the algorithm, computational load prospective, used to 

solve for the transformation parameters starting with different levels of inaccuracies in 

the initial approximations. 

2. Estimating the transformation parameters through the nonlinear model fitting using 

nonlinear optimization approaches.  

INS/Vision Measurement Fusion using EKF: the contribution in this area is in the 

development of vision measurements to the update EKF as CUPT update for the INS 

measurements. In this case, the residuals originating from the image matching will act as the 

error covariance matrix in the EKF implementation and developing a simulation software 

package that can be used in testing and assessing the above mentioned parameters and UAV 

navigation. 

6.2 Conclusions 

The objectives of the thesis listed in Chapter 1 are to develop and implement a fast real-time low 

cost VBN methodology for UAV. The implementation was accomplished through simulated 

visual measurements combined with simulated GPS/INS paths at low altitude. 

The thesis had met these objectives, whereby a complete package for UAV navigation based on 

visual measurements and emulates the processing onboard in real-time has been implemented 

and evaluated for UAV navigation. 

The conclusions for the proposed VBN approach architecture are listed below: 

Image matching proposed algorithm implementation 

Modified SURF 36 algorithm has been developed and implemented to benefit from fast 

implementation while the accuracy of the matching process will depend on the accurate pre-

surveyed geo-referenced database images and the number of samples in each sub-division in the 
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SURF 36 algorithm. Test results of the proposed image matching algorithm lead to the following 

conclusions: 

1. The proposed modified SURF algorithm effect on the navigation solution showed an 

improvement in the navigation solution with position update from vision measurements 

compared to the navigation solution during GPS signal outage with 91.72% in the east 

position error and 85.56% in the north position error. 

2. The proposed algorithm in this thesis has been implemented on CUDA platform which 

showed a fast implementation employing on the shelf graphics card. Implementation 

using CUDA satisfies the real-time processing requirements, while keeping the high 

accuracy which is suitable for real-time application such as VBN. 

3. The overall speedup after the GPU CUDA implementation for 1280×960 image size 

compared to the CPU implementation is 99.63%. 

Nonlinear optimization algorithms 

A robust scale and rotation invariant image matching algorithm is vital for UAV VBN, where 

matches between an existing geo-referenced database images and the real-time captured images 

are used to georeference (i.e. to estimate the six transformation parameters - three rotation and 

three translation) the real-time captured image from the UAV through the collinearity equations. 

The georeferencing information is then used in aiding the INS integration Kalman filter as 

Coordinate UPdaTe (CUPT). It is critical for the collinearity equations to use the proper 

optimization algorithm to ensure accurate and fast convergence for georeferencing parameters 

with the minimum required conjugate points necessary for convergence. Fast convergence to a 

global minimum will require nonlinear approach to overcome the high degree of nonlinearity 

that exist in case of having large oblique images (i.e. large rotation angles). 



 

133 

Five different nonlinear least squares methods were presented for estimating the transformation 

parameters. Four gradient based nonlinear least squares methods (Trust region, Trust region 

dogleg algorithm, Levenberg-Marquardt, and Quasi-Newton line search method) and one non-

gradient method (Nelder-Mead simplex direct search) is employed for the six transformation 

parameters estimation process. 

Test results of the proposed nonlinear optimization algorithms lead to the following conclusions: 

1. Failure of the traditional least squares approaches to estimate the georeferencing 

parameters, because of the expected nonlinearity of the mathematical model. 

2.  The research was done on simulated data and the results showed that the Nelder-Mead 

method has failed because of its dependency on the objective function without any 

derivative information. 

3.  The tested gradient methods succeeded in converging to the relative optimal solution of 

the georeferencing parameters. However, in trust region methods, the number of 

iterations was more than Levenberg-Marquardt because of the necessity for evaluating 

the local minimum to ensure if it is the global one or not in each iteration step. 

4.  As for the Levenberg-Marquardt method, which is considered as a modified Gauss-

Newton algorithm, employing the trust region approach where a scalar is introduced to 

assess the choice of the magnitude and the direction of the descent. This scalar 

determines whether the Gauss-Newton method direction or the steepest descent method 

direction will be used as an adaptive approach for both linear and nonlinear mathematical 

models and it successfully converged and achieved the relative optimum solution.  
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5. The object space transformation parameters were successfully estimated only by Quasi-

Newton line search method due to its dependence on the Hessian matrix of the 

Collinearity equations. 

INS/Vision Measurement Fusion using EKF 

The system applies the concept of photogrammetric resection to update the IMU measurements, 

which is achieved by finding correspondences between the real-time images captured during 

flight mission and the geo-referenced images in the data base. Then, the collinearity equations 

are used to estimate the position of the perspective center of the camera through the concept of 

photogrammetric resection. The object space transformation parameters, the output of the 

photogrammetric resection, are then used as the update for the INS Kalman. 

Test results of the proposed INS/Vision measurement fusion lead to the development of an 

efficient fusion approach to update the EKF with the position estimated from the image matching 

employing the residuals originating from the object space transformation parameters estimation 

as the error covariance matrix in the EKF implementation with inertial measurement for updating 

navigation for the UAV. The proposed algorithm led to improvement in the navigation solution 

with position updates from vision measurements compared to the navigation solution during GPS 

signal outage with 91.72% in the east position error and 85.56% in the north position error. 

6.3 Future work 

The thesis introduced an efficient navigation approach based on visual measurements taken from 

onboard camera mounted on the UAV. Some of the interesting research topics recommended for 

future work are as follows: 
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1. The work done in this thesis was based on simulated measurements. Following the 

previous conclusions, it is recommended to implement the proposed VBN system on real 

UAV with low cost sensors. 

2. Based on GPU CUDA efficient implementation, generating DEM models using onboard 

sensors should be investigated. Such DEM models are needed for matching with pre-

stored DEM models for the flying area which will help to extract the necessary 

information required for navigation where fewer landmarks are available. 

3. Based on GPU CUDA efficient implementation, the concept of optical flow should be 

investigated for pose estimation of the UAV. 
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APPENDIX A 

Results of the developed modified SURF algorithm for the proposed VBN system are shown 

below. Results show the developed modified SURF algorithm for descriptor length 128 with 

scale variations 0.2 to 1 with rotation angle 15°. Moreover, results for the developed modified 

SURF algorithm are presented for descriptor lengths 36 and 64 with scale variation 0.2 to 1 with 

rotation angle 45° and 9×9 sample points in each sub-region. 

Results clearly show the robustness of the developed modified SURF algorithm against scale and 

rotation variation which is a key element for the developed VBN system. 

 

Figure A 1: Descriptor length 128 with scale variation = 0.2 and rotation = 15 and number 

of sample points 5x5 
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Figure A 2: Descriptor length 128 with scale variation = 0.4 and rotation = 15 and number 

of sample points 5x5 

 

Figure A 3: Descriptor length 128 with scale variation = 0.6 and rotation = 15 and number 

of sample points 5x5 
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Figure A 4: Descriptor length 128 with scale variation = 0.8 and rotation = 15 and number 

of sample points 5x5 

 

Figure A 5: Descriptor length 128 with scale variation = 0.8 and rotation = 15 and number 

of sample points 5x5 
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Figure A 6: Descriptor length 64 with scale variation = 0.2 and rotation = 45 and number of 

sample points 5x5 

 

Figure A 7: Descriptor length 64 with scale variation = 0.4 and rotation = 45 and number of 

sample points 5x5 
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Figure A 8: Descriptor length 64 with scale variation = 0.6 and rotation = 45 and number of 

sample points 5x5 

 

Figure A 9: Descriptor length 64 with scale variation = 0.8 and rotation = 45 and number of 

sample points 5x5 
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Figure A 10: Descriptor length 64 with scale variation = 1 and rotation = 45 and number of 

sample points 5x5 

 

Figure A 11: Descriptor length 36 with scale variation = 0.2 and rotation = 45 and number 

of sample points 5x5 
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Figure A 12: Descriptor length 36 with scale variation = 0.4 and rotation = 45 and number 

of sample points 5x5 

 

Figure A 13: Descriptor length 36 with scale variation = 0.6 and rotation = 45 and number 

of sample points 5x5 
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Figure A 14: Descriptor length 36 with scale variation = 0.8 and rotation = 45 and number 

of sample points 5x5 

 

Figure A 15: Descriptor length 36 with scale variation = 1 and rotation = 45 and number of 

sample points 5x5 
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Figure A 16: Descriptor length 64 with scale variation = 0.2 and rotation =15 and number 

of sample points 9x9 

 

Figure A 17: Descriptor length 64 with scale variation = 0.4 and rotation =15 and number 

of sample points 9x9 
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Figure A 18: Descriptor length 64 with scale variation = 0.6 and rotation =15 and number 

of sample points 9x9 

 

Figure A 19: Descriptor length 64 with scale variation = 0.8 and rotation =15 and number 

of sample points 9x9 
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Figure A 20: Descriptor length 64 with scale variation = 1 and rotation =15 and number of 

sample points 9x9 

 

Figure A 21: Descriptor length 36 with scale variation = 0.2 and rotation =15 and number 

of sample points 9x9 
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Figure A 22: Descriptor length 36 with scale variation = 0.4 and rotation =15 and number 

of sample points 9x9 

 

Figure A 23: Descriptor length 36 with scale variation = 0.6 and rotation =15 and number 

of sample points 9x9 
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Figure A 24: Descriptor length 36 with scale variation = 0.8 and rotation =15 and number 

of sample points 9x9 

 

Figure A 25: Descriptor length 36 with scale variation = 0.8 and rotation =15 and number 

of sample points 9x9 
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APPENDIX B 

Results for the developed nonlinear optimization algorithms are presented below. Convergence 

of the developed nonlinear optimization algorithms is tested with general tilted photograph with 

different values for angle φ varying from φ = 25° to 45° with step 5°. 

Results clearly show that the Nelder-Mead simplex direct search method failed to estimate the 

object space transformation parameters because this method depends on the objective function 

only without any derivative information. However, the object space transformation parameters 

were successfully estimated only by Quasi-Newton line search method due to depending on the 

Hessian matrix of the Collinearity equations. 

Table B 1: Performance of optimization methods with initial φ (deg) = 25 

Object Space 

parameters 

errors 

Trust Region 

Dogleg 

Trust Region 

Levenberg-

Marquardt 

Quasi-

Newton line 

search 

Nelder-Mead 

simplex direct 

search 

δω (rad) 0.054 0.057 0.036 0.021 0.007 

δφ (rad) 0.039 0.417 0.722 0.049 0.367 

δК (rad) 0.028 0.297 0.636 0.021 0.081 

δXL (m) 32.591 269.341 299.053 17.933 317.632 

δYL (m) 8.382 110.221 355.848 6.058 12.676 

δZL (m) 6.332 207.172 526.124 1.417 96.331 

No. of 

Iteration 

5 6 41 1 145 

 



 

155 

Table B 2: Performance of optimization methods with initial φ (deg) = 30 

Object Space 

parameters 

errors 

Trust Region 

Dogleg 

Trust Region 

Levenberg-

Marquardt 

Quasi-

Newton line 

search 

Nelder-Mead 

simplex direct 

search 

δ⍵ (rad) 0.061 0.081 0.051 0.005 0.007 

δφ (rad) 0.049 0.605 0.701 0.049 0.372 

δК (rad) 0.031 0.496 0.611 0.061 0.032 

δXL (m) 38.772 327.116 303.414 17.933 303.152 

δYL (m) 8.963 252.292 335.329 6.058 72.918 

δZL (m) 9.808 396.564 502.321 1.417 9.056 

No. of 

Iteration 

7 7 35 2 152 

 

Table B 3: Performance of optimization methods with initial φ (deg) = 35 

Object Space 

parameters 

errors 

Trust Region 

Dogleg 

Trust Region 

Levenberg-

Marquardt 

Quasi-

Newton line 

search 

Nelder-Mead 

simplex direct 

search 

δ⍵ (rad) 0.054 0.08 0.064 0.008 0.007 

δφ (rad) 0.092 0.39 0.681 0.048 0.409 

δК (rad) 0.06 0.285 0.583 0.099 0.12 

δXL (m) 67.948 272.93 307.632 17.933 313.834 

δYL (m) 13.081 141.619 317.527 6.058 55.491 
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δZL (m) 27.114 204.52 478.298 1.417 43.651 

No. of 

Iteration 

8 7 31 3 145 

 

Table B 4: Performance of optimization methods with initial φ (deg) = 40 

Object Space 

parameters 

errors 

Trust Region 

Dogleg 

Trust Region 

Levenberg-

Marquardt 

Quasi-

Newton line 

search 

Nelder-Mead 

simplex direct 

search 

δ⍵ (rad) 0.061 0.093 0.068 0.022 0.007 

δφ(rad) 0.056 0.579 0.673 0.048 0.521 

δК (rad) 0.045 0.468 0.574 0.136 0.231 

δXL (m) 41.978 332.266 308.877 17.933 386.565 

δYL (m) 10.81 266.633 312.289 6.058 125.136 

δZL (m) 11.415 388.217 470.728 1.417 112.495 

No. of 

Iteration 

7 7 29 3 163 

 

Table B 5: Performance of optimization methods with initial φ (deg) = 45 

Object Space 

parameters 

errors 

Trust Region 

Dogleg 

Trust Region 

Levenberg-

Marquardt 

Quasi-

Newton line 

search 

Nelder-Mead 

simplex direct 

search 

δ⍵ (rad) 0.062 0.093 0.102 0.033 0.007 
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δφ (rad) 0.054 0.589 0.591 0.047 0.418 

δК (rad) 0.047 0.487 0.471 0.167 0.268 

δXL (m) 42.567 323.951 316.447 17.932 310.099 

δYL (m) 12.072 281.309 263.707 6.058 160.33 

δZL (m) 11.593 410.709 381.079 1.417 17.023 

No. of 

Iteration 

8 8 23 3 170 

 

 


