
UNIVERSITY OF CALGARY

On The Computation Of Ruin Probabilities

by

Lin Tan

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MATHEMATICS AND STATISTICS

CALGARY, ALBERTA

December, 2009

©Lin Tan 2009

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies

for acceptance, a thesis entitled "On The computation Of Ruin Probabilities" submitted by Lin

Tan in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE.

.&.

Supervisor

Dr. R. Ambagaspitiya

Department of Mathematics and Statistics

Dr. X. Lu

Department of Mathematics and Statistics

Dr. A. Pap ojuwo

Department of Electrical & Computer Engineering

L (D (03
Date

Abstract

In this thesis we study the of probability of ultimate ruin and the ruin-related quantities, includ-

ing the distribution of the severity of ruin, the distribution of the surplus immediately prior to

ruin, the joint distribution of the surplus immediately prior to ruin and the severity of ruin, the

moments of the time to ruin and the density of the time to ruin.

We implement three methods: recursive approximation algorithms; lower and upper bounds;

and simulation. The first method, based on a discrete model, uses a stable formula presented

by Dickson and Waters. The second method, derived from Goovaerta and De Vylder, uses the

connection between the probability of ruin and the maximal aggregate loss random variable,

and that the latter has a compound geometric distribution. For the third method one observes

that the probability of ruin is related to the stationary distribution of a certain associated pro-

cess allowing it to be determined by simulation of the latter.

Keywords: Probability of ultimate ruin, Ruin theory, Probability of ultimate survival, Sim-

ulation, Recursive calculation, Stable algorithm,

11

Table of Contents

Abstract ii
Table of Contents iii
List of Tables iv
List of Figures V

1 Introduction 1
1.1 The Classical Continuous-time Risk Model 2
1.2 The Discrete-time Risk Model 3
1.3 General Process 4
1.4 Ultimate Ruin Probability 5
1.5 Thesis Overview 6
2 Probability of Ultimate Ruin 8
2.1 Recursive Approximation Algorithms 8
2.2 Lower and Upper Bounds 10
2.3 Simulation 13
2.4 Numerical Illustrations 14
3 Distribution of the Severity of Ruin 18
3.1 Recursive Approximation Algorithm 18
3.2 Lower and Upper Bounds 19
3.3 Numerical illustrations 20
4 Distribution of the Surplus Immediately Prior to Ruin and Severity of Ruin 23
4.1 Distribution of the Surplus Immediately Prior to Ruin 23
4.2 Joint Distribution of the Severity of Ruin and the Surplus Immediately Prior to

Ruin 25
4.3 Numerical Illustrations 27
5 Moments of the Time to Ruin 30
5.1 Formulae for Moments 31
5.2 Diffusion Approximation 32
5.3 Numerical Illustrations 33
6 Density of the Time to Ruin 35
6.1 Approximation Algorithms 35
6.2 Diffusion Approximation 36
6.3 Inverse Gaussian Approximation fl . 36
6.4 Numerical Illustration's 37
7 Conclusion 39
A Matlab Codes I 41
B Matlab Codes II 60
C Matlab Codes III 67
Bibliography 70

111

List of Tables

2.1 6(u), Exponential(1) claims, p' = 1, c =1, 0 = 0.1 15
2.2 S(u), Exponential(2) claims, P1 = 2, c = 2, 0 = 0.25 16
2.3 8(u), Pareto(4,3) claims, P1=l, c= 1,0 = 0.25 16
2.4 8(u), Weibull(2,1)) claims, P1 = 2, c= 2, 0 = o.1 17

3.1 G(u,y), Exponential(l) claims, P1 = 1, c = 1, 0 = 0.1 21
3.2 G(u,y), Weibull(1, 0.5) claims, P1 = 2, c= 2, 0 = 0.25 22

4.1 F(u,x), Exponential(1) claims, P1 = 1, c= 1, 0 = 0.1 27
4.2 F(u,x,y), Bxponential(1) claims, p, = 1, C= 1, 0 = 0.1 28
4.3 F(u,x), Weibull(2,1) claims, P1 = 2, c= 2, 0 = 0.25 28
4.4 F(u,x,y), .Weibull(2,1) claims, p, = 2, c = 2, 0 = 0.25 28

5.1 Mean, Standard Deviation and Coefficient of Skewness of Tc, Exponential(1)
claims 33

5.2 Mean, Standard Deviation and Coefficient of Skewness of Tc, Exponential(1)
claims 33

5.3 Mean, Standard Deviation and Coefficient of Skewness of Tc, Weibull(10.5)
claims 34

5.4 Mean, Standard Deviation and Coefficient of Skewness of Tc, Weibull (1,0.5)
claims 34

iv

List of Figures

6.1 Exponential claims, u = 20, 0 = 0.25,V(20) = 0.015 38
6.2 Pareto claims, u= 10, 0 = O.1,y(1O) = 0.475194 38

V

1

Chapter 1

Introduction

It is difficult to assess the risk associated with a portfolio of insurance contracts. It is neverthe-

less important to attempt to do so in order to ensure theviability of an insurance operation. The

distribution of total claims over a fixed period of time is an obvious input parameter to such a

process. The common approach to follow the fortunes of the policy or portfolio is called ruin

theory in which the quantity of interest is the amount of surplus with ruin occurring when the

surplus drops to below zero.

In order to track the variations in amount of an insurer's surplus over an extend period

of time, we build a mathematical model by simplifying a real life insurance operation. This

idealized model includes the initial fund, premiums collected over claims paid and claims paid

as they occur.

Many ruin-related measures and quantities will be derived and calculated, including the

probability of ultimate ruin, the distribution of an insurer's surplus immediately prior to ruin,

the deficit at the time of ruin, the distribution of the first drop in surplus given that the drop

occurs, etc.

In the next two sections we introduce the basic continuous time surplus model as well as

the discrete model that approximates the basic model, including the definitions and notation. In

last section, we define the ultimate ruin probability based on the continuous model and discrete

model respectively.

2

1.1 The Classical Continuous-time Risk Model

An insurer's surplus is modeled as the result of two opposing cash flows: an incoming cash flow

of premium income collected continuously at the rate of c; and an outgoing cash flow due to a

sequence of insurance claims X that are mutually independent and identically distributed with

common distribution function P(x). The frequency of claims is assumed to follow a Poisson

process with intensity rate 2, which means that the number of incurred claims N(t) at time t is

governed by a Poisson distribution with mean 2t. Hence, the insurer's surplus U(u, t) at any

time t is given by

U(u,t) = u+c(t) —S(t) t ≥ 0 (1.1)

where u is the insurer's initial surplus. c(t) denote premiums collected through time t will

be a deterministic, not a stochastic process. S(t) = X denote aggregate claims occurred

through time t, called aggregate claims process.

To make this model simple, Dickson and Waters [8] assume

1. The distribution function of individual claim amounts P(x) = 0 for x < 0, so that all

claim amounts are non-negative.

2. The mean of individual claims X which we denote P1 is finite and that any other mo-

ments of X which we require are also finite.

3. The insurer's premium income is received continuously at positive rate c per unit time,

then c(t) = ct.

4. The insurer's premium income exceeds the insurer's expected aggregate claim amounts,

that is c> ApI. Relative security loading factor 0 is defined to be c = (1 + O)Api

Without loss of generality, we can set both c and P1 to be 1. We will refer to the process

described above as our "basic process". It can be written as

3

N(t)

U(u,t)=u+ct—X t≥O (1.2)
i=1

Later, we will remove the condition c = 1 and P1 = 1 and extend it to a general process.

1.2 The Discrete-time Risk Model

As, the continuous risk model tends to be difficult to analyze, we produce a discrete process to

approximate our basic process. A discrete time surplus process considers the values of U(u, t)

at only integer values oft, denoted by Ud (u, n) for n = 0, 1,2.....

We rescale the basic process by multiplying all monetary amounts by some positive scalar

/3 and taking a new time unit to be j3_1 times the original time unit so that the premium income

per unit time c for the rescaled process is still 1.

Let Xd,1 be a sequence of i.i.d random discrete variables whose common distribution is

approximately the same as that of /3X1 and which are distributed on the non-negative integers.

We denote the probability function of Xd,1 by f(k) so that fk = f(k) = Pr(Xd, = k), for k =

0,1,2.....Its common distribution function is Fd(x) = Pr(Xd, ≤ x) = Pr(/3X1 ≤ x) = Pr(X1 ≤

x/13) = P(x/13).

Let Nd(t) be defined to be N(/3't) so that {Nd(t)}1≥O is a Poisson process with parameter

. Now consider the discrete time surplus process {Ud (u, n) defined as

Nd(n)

Ud(u,n)=u+n — L Xd,j
i=1

(1.3)

so that the initial surplus is it and premium c is 1. The implied premium loading factor for

this discrete surplus process will be denoted ed and is given by the formula

1 = (1+ 0d)2131 E[Xd,i] (1.4)

4

If E [Xd,j] = /3pi, then 0d = 0. We will always choose /3 and the distribution of Xd,j to be

such that 0d is positive.

Let Sd denote the aggregate claims over the first time period for the discrete model. Its

common distribution function and probability function are denoted by Hd(k) and hd(k). So

that

k /Nd(1)

Hd(k)=Ehd(i)=Pr(Sd k)=Pr (Xd,i≤k) fork=O,1, 2,... (1.5)
j=o \i=1

Then it is clear that for any integer n, Ud(13 u, /3n) has approximately the same distribution

as Ud(U, n). It should also be clear that by increasing the value of /3 we ought to be able to

improve this approximation.

1.3 General Process

The general process is not restricted with the assumptions c = 1, pi = 1. If we still want to use

(1.3) to approximate (1.2), we need to amend our rescale procedure.

If Od = O,E(Xd,j) = then (1.4) can be rewritten as

1= (1+0) . j3 1 (1.6)

Move c to the left side of equation

c= (1+e).A.E(x1) = (l+O)2.'pi (1.7)

We can recognize this is our continuous process with general c and pl.

Our way to rescale the general process to an approximate discrete process is by multiplying

all the monetary amount by /3/c, and taking a new time unit to be 13l times the original

time unit. Then the discrete model has i.i.d claim amounts Xd,j whose common distribution

5

is approximately the same as that of 1-Xi and claim frequency Nd(t) is Poisson process with

parameter A.J3'.

1.4 Ultimate Ruin Probability

In this section, we will use the models built in prior sections to define the ultimate ruin proba-

bility.

As the surplus process involves two opposite cash flows - the incoming cash of premium

and outgoing cash of claims paid - the surplus might become negative at certain times. When

this first happens we speak of ruin having occurred. The ultimate ruin probability, denoted by

Vf(u) is written as

y(u) = Pr(T <oo) (1.8)

where T denotes the time to ruin, defined by

T = inf(t : t ≥ 0 and U(u,t) <0)

= ooifU(u,t)≥Oforallt>O

We write the survival probability ö(u) = 1 - Vf(u).

The aggregate loss process L(t) is defined by L(t) = S(t) - Ct and L denotes the maximum

of the aggregate loss process, so that y(u) = Pr(L> u).

We are interested in the probability of ruin ¶d(u) for the discrete process. Since we will

always take the initial surplus for the discrete process to be an integer we need to define "ruin"

carefully. Two definitions of ruin for the discrete process will be used, depending on whether

or not a surplus of zero (other than at time zero) is regarded as ruin. Accordingly we define

6

Td = min{n: Ud(u,n) <0 for some positive integer n}

= ooifUd(u,n)≥Oforalln

= min{n: Ud(U,fl) ≤ 0 for some positive integer n}

= ooifUd(u,n)>0f0ra11n

Then we have l/Jd(U) = Pr(Td <oo) and r(u) = Pr(T <co). The corresponding probabil-

ities of ultimate survival are 3d (u) = 1 - Yd (u) and 6(u) = 1— y(u).

Clearly, we have y(u)=d(u-1) and 67(u)=6d(u-1) for u=1,2,3,,..

1.5 Thesis Overview

In our later chapters, we present a few different methods to calculate the various ruin-related

quantities for the discrete surplus model, and use them to approximate the continuous surplus

model corresponding quantities.

In the second chapter we calculate the basic quantity - the ultimate ruin probability by

using three methods: a stable recursive algorithm; averaging the upper and lower bounds; and

simulation. At the end, we present some numerical examples by these three methods and

compare the results.

In the third and fourth chapters we study other quantities which include the distribution of

the severity of ruin, the distribution of the surplus immediately prior to ruin, the joint distribu-

tion of the surplus immediately prior to ruin and the severity of ruin. These calculations use

the output from chapter two. Some numerical examples show the results derived by different

methods.

7

Two more quantities will be introduced in chapter five. They are the moments of the time

to ruin and density of the time to ruin. Four methods will be used for the calculation.

Finally, we discuss some features of the methods used for the above chapters

All the programs used for the series quantities calculation will be presented at the Ap-

pendix.

8

Chapter 2

Probability of Ultimate Ruin

Since ruin theory, known as the classical compound-Poisson risk model, was introduced in

1903 by the Swedish actuary Filip Lundberg (see Dubourdieu [11]), many studies of evalu-

ating the probability of ruin have been explored. Seal [23] discusses numerical methods for

evaluating y(u). De Vylder [24] proposes a simple approximation for ¶(u) by approximating

the individual claim amount distribution with an exponential distribution.

Panjer and Willmot [22] developed the recursive methods for calculating the approximate

probability of ultimate ruin.

The focus of this chapter is the calculation of the probability of ultimate ruin in continuous

time for a general classical risk process. We shall present three methods: a stable recursive

approximate algorithm derived by Dickson and Waters [8]; a bounds algorithm proposed by

Dufresne and Gerber [13]; and simulation. The common feature of these three methods are

that they can be explained in elementary terms and be implemented numerically without any

difficulty.

2.1 Recursive Approximation Algorithms

Recursive algorithms for the probability of ultimate ruin have already appeared in actuarial

literature. However, not all of these algorithms are, numerically stable. An algorithm is nu-

merically unstable if small errors in individual numerical operations (as a result of machine

rounding for example) can combine to give uncontrollably large errors in the final results. For

example, Conte and De Boor [4]. In this section, we present a stable algorithm.

In Chapter 1, we introduce how to discretize and re-scale a continuous process. By choos-

9

ing a distribution for Xd, that is, a good approximation to that of Xi, 6d(.u) is a good ap-

proximation to 6(u).

Dickson and Waters [8] presents the following formulae for the calculation of öd(u).

6d(0) = (l Od
+6d)hd(0)

(2.1)

6d(u) = 6d(0) +gd(O,k)&d(u— k) for u= 1,2,3,... (2.2)

where gj (u, y) denotes the defective probability that, for given initial surplus u, ruin will

occur and that the deficit at the time of ruin will be less than y, which is defined as

gd(u,y) = Pr(Td <oc and Ud(U,Td) = —y) for u= 0,1,2.... and y= 1,2,3,...

g(u,y)=Pr(T<oc and U(u,T) —__y) for u=O,1,2,...andy=O,1,2,...,

It is clear that

g(u)y)=gd(u-1,y+1) for u=1,2,3, and y=O,1,2,...

g(O,y) can be calculated by (Dickson and Waters [9])

gd(O,y) = (1—Hd(y))/hd(0) for y= 1,2,3,... (2.3)

Since Hd(y) = Vk=l hd(k), it can easily be resolved by Panjer [191 recursion formulae

10

hd(0) = e ' (2.4)

AP—I k

hd(k) = i•fj .hd(k — i) fork=1,2,3,... (2.5)
1=1

and De Vylder and Goovaerts [25]

k+1

fo+fl+"fk=f Fd(x) .dx fork=0,1,2,... (2.6)

Starting from (2.1), and using (2.3), 3d(u) can be recursively calculated by (2.2).

As the claim amounts have a continuous distribution, and according the the definition of

8d(u), survival occurs as long as the surplus stays above the value —1, but it could be zero

at any time. 4 (.u) is the survival to occur where the surplus never goes below zero. Thus

5d(u) will tend to overstate 8(u), 50 57(.u) is usually a better approximation to 5(u) than is

5d(u). We use formulae to obtain

d

and by the relations between them

(2.7)

S7(u)=8d(u-1) foru=1,2,3... (2,8)

The important feature of formula (2.2) is that it is strongly stable which has been proved by

Panjer and Wang [21].

2.2 Lower and Uppef Bounds

In this section we shall present a method leads to the bounds algorithm presented by Dufresne

and Gerber [13] and attributed by them to Goovaerts and Devylder [16] and Panjer [20]

11

It is well known that iy(0) = 1/(1 + 6) (Bowers et al [1]). We can see that W(0) depends

only upon the relative security loading 0 and not on the specific form of the claim amount

distribution. For convenience we denote this quantity by q.

Recall that the maximal aggregate loss L = maxt≥o{S(t) - ct} is the maximal excess of

aggregate claims over premiums received. Since 6(u) = 1 - ¶(u) = Pr(L ii), for ii ≥ 0, i.e.

the probability of survival is the distribution function of L. It can be written as a random sum

L=Ll+L2+••+LN (2.9)

The random variables L1 , L2,. . . , LN and N are independent. The common distribution func-

tion of the L1's(See Bowers et al [1]) is

L(y) = -_f'[1— P(x)II .dx (2.10)

Two new random variables that are closely related to L are L1 and LIZ, they are written as

L' = tLii + tL2i + . . . + LLNJ (2.11)

LIZ FL, + [L21 +.. + fLu] (2.12)

where LLi are the largest integers less than L1, and fL11 are the smallest integers larger than

L. Clearly

L1 <L < LIZ

which implies for u > 0

i1(u) = Pr(L1 > u) ly(u) = Pr(L> u) ≤ Pr(L' > u) = 1J/'(u), for u> 0

12

We will use the average of the lower and upper bounds as an approximation value to ¶(u).

Let 1L denote the probability that a given summand in (2.11) is equal to k, i.e.,that a given

summand in (2.9) is between k and k+ 1. Thus

ij = L(k+1)—L(k), fork=0,1,2,...

Let 4' denote the corresponding probability for the summands in (2.12). Thus

ij = L(k+1)—L(k), fork=0,l,2,...

Here L(x) is given by formula (2.10). We want to calculate

4=Pr(L1=r), forv=0,1,2,...

= Pr(L" = ii), for ' 0,1,2,...

These can be calculated recursively by the following formulae

Then

to

1
tv

lz to

1—q

= q T
lkt._k,

l - qlk..

= 1—q

for i= 1,2,3,...

- i" Ii
- k t._k, for r= 1,2,3,...

U U-i

= t'≤ ô(u) ≤ 6"(u), for u=0,
T=O

13

The approximation of 6(u) is the average of lower and upper bound

61(u)+61(u)
6(u)— - 2 , for u=O,1,2,... (2.13)

2.3 Simulation

Thanks to the arrival of fast personal computers, simulation technique shows its advantage over

theoretical analysis in models. For extremely complicated models this may be the only way to

proceed. Just as the aggregate loss distribution can be simulated the process of surplus can also

be simulated.

The procedure of simulating 6(u) is described as below:

1. Set the simulation experiment repeats to be 10000

2. For each experiment, set the total number of claims n to be 4000

3. Initialize P1 the mean of X1,X2,..

4. Initialize the loading factor 0, and let 0 = Od

5. Simulate inter-arrival time t which follows exponential distribution with mean = 1/2 =

1/(c/((1 + 0) *PO)

6. Simulate individual claim amount X with mean = pi, for i = 1,2. ... n

7. Calculate accumulated claim amount X, for m = 1,2,. .. n

8. Calculate accumulated time t, form = 1,2,..

9. Set Lj = max(0, max(E 1 X - c i ti)), so that the maximal aggregate loss are not

negative

14

10. Repeat 10000 times from step 2 to 9, then get L1,L'2 L100

11. Calculate the empirical distribution of Lj which is the simulation result of 6(u)

We use Matlab to implement the simulation experiment. The codes are given in Appendix

A.

2.4 Numerical Illustrations

In this section we illustrate the approximation to 8(u). For the first two examples, we consider

exponential individual claim amount distribution, but with different mean P1, premium c and

loading factor 0. The final two examples are for Pareto and Weibull individual claim amount

distribution. We set the discrete scalor ,8 = 100 for all the examples.

Example 2.1 Let the individual claim amount distribution be exponential with mean P1 = 1.

So that P(x) = 1 - e, for x> 0. Let c = 1, 0 = 0.1. It is well known that the explicit solution

for 3(u) is

1 1 Ott 'I
6(u)=1_i+0exp pi(1+O)l'''' (2.14)

See Gerber [14]. Table 2.1 shows the exact value, approximate value, average value of

lower and upper bounds and the simulation value of the probability of the ruin 8(u). We

see from the table the approximation and average values are generally excellent. Although

the simulation values are not good as the previous two, it is a very good approximation. In

addition, we can make following observations:

• As the value of u increases from small to large, the approximation values are slightly less

than the exact value first; then they gradually converge to the exact value.

15

U Exact App Lower Avg Upper Sim

0 0.090909 0.090909 0.090909 0.090909 0.090909 0.089739.
2 0.242043 0.242041 0.241418 0.242044 0.242671 0.240559

4 0.368051 0.368049 0.367008 0.368053 0.369098 0.368185
6 0.473111 0.473108 0.471806 0.473113 0.474419 0.472933 .
8 0.560704 0.560702 0.559254 0.560706 0.562158 0.559600
10 0.633736 0.633733 0.632224 0.633737 0.635251 0.633474
20 0.852436 0.852434 0.851215 0.852434 0.853654 0.852401
40 0.976047 0.976047 0.975649 0.976045 0.976441 0.976019
60 0.996112 0.996112 0.996015 0.996111 0.996207 0.996145
80 0.999369 0.999369 0.999348 0.999369 0.999389 0.999428
100 0,999898 0.999898 0.999893 0.999897 0.999902 0.999932

Table 2.1: 6(u), Exponential(1) claims, P1 = 1, c = 1, 0 = 0.1

• The average values show different pattern. As the values of u increased from small to

large, the average values are less than the exact value; then they become larger than the

exact value.

o The simulation values don't show a pattern related to the change of u. But we observe

that it's very close to the exact value with errors less than 2%.

Example 2.2 Let the individual claim amount distribution be exponential with mean P1 =2.

so that the distribution function is P(x) = 1 - e/2, for x> 0. Let c = 2,0 = 0.25. As in

Example 2. 1, Table 2.2 shows the exact, approximation, average and simulation values of 6(u).

We see that while the approximation and average values are excellent, the simulation is a little

bit poorer but still very good, especially for large u.

Example 2.3 We now consider the situation when the individual claim amount distribution

is Pareto(4,3). So thatP(x) = 1 - ()4 P1 = 1, for >= 0. Let c = 1,0 = 0.25. For this dis-

tribution, an explicit solution for 6(u) does not exist. Table 2.3 shows the approximate, average

and simulation values. From it, we see the similar pattern as the previous two examples.

• The approximation values is slightly less than the average values for small value of u.

As the surplus increases, the approximation values become larger than average value.

16

U Exact App Lower Avg Upper Sim

0 0.200000 0.200000 0.200000 0.200000 0.200000 0.199470
2 0.345015 0.345014 0.344492 0.345016 0.345540 0.344758
4 0.463744 0.463742 0.462887 0.463745 0.464603 0.464548
6 0.560951 0.560948 0.559898 0.560952 0.562005 0.562591
8 0.640537 0.640534 0.639387 0.640537 0.641688 0.641449
10 0.705696 0.705694 0.7045 19 0.705696 0.706874 0.706600
20 0.891732 0.891730 0.890864 0.891730 0.892596 0.891864
40 0.985347 0.985347 0.985112 0.985346 0.985581 0.984588
60 0.998017 0.998017 0.997969 0.998017 0.998064 0.997767
80 0.999732 0.999732 0.999723 0.999732 0.999740 0.999721
100 0.999964 0.999964 0.999962 0.999964 0.999965 0.999962

Table 2.2: 8(u), Exponential(2) claims, p, = 2, c = 2, 9 = 0.25

it App Lower Avg Upper Sim

0 0.2000000 0.2000000 0.2000000 0.2000000 0.1976200
2 0.4257595 0.4251440 0.4257614 0.4263787 0.4231872
4 0.5661899 0.5654139 0.5661915 0.5669691 0.5625668
6 0.6662730 0.6654745 0.6662741 0.6670736 0.6639 189
8 0.7405717 0.7398112 0.7405724 0.7413336 0.7386563
10 0.7968496 0.7961539 0.7968499 0.7975459 0.7947224
20 0.9357567 0.9354095 0.9357563 0.9361031 0.9352955
40 0.9916746 0.9916129 0.9916744 0.9917359 0.9911388
60 0.9984501 0.9984394 0.9984500 0.9984606 0.9982739
80 0.9995639 0.9995618 0.9995639 0.9995660 0.9995483
100 0.9998249 0.9998244 0.9998249 0.9998254 0.9998303

Table 2.3: 8(u), Pareto(4,3) claims, P1 = 1, c = 1, 0 = 0.25

Although they are identical for the last three large u, we expect approximation values are

larger if more decimals show up.

o Simulation values do not look as good as the other two values, but considering the margin

of error, we still can say it's a good method.

Example 2.4 As for our final example, we consider the individual claim amount distribu-

tion to be Weibull(2,1). So that P(x) = (1 - e,/2), Let c = 2,0 = 0.1. Table 2.4 displays the

calculated approximate, average and simulation values of 6(0). We observe a similar pattern

17

U App Lower Avg Upper Sim

0 0.090909 0.090909 0.090909 0.090909 0.089730
2 0.169907 0.169566 0.169909 0.170252 0.168135
4 0.242041 0.241418 0.242044 0.242671 0.240559
6 0.307907 0.307053 0.307911 0.308769 0.307474
8 0.368049 0.367008 0.368053 0.369098 0.368 185
10 0.422964 0.421777 0.422969 0.424161 0.423239
20 0.633733 0.632224 0.633737 0.635251 0.633474
40 0.852434 0.851215 0.852434 0.853654 0.852401
60 0.940547 0.939808 0.940545 0.941282 0.940851
80 0.976047 0.975649 0.976045 0.976441 0.976019
100 0.990349 0.990149 0.990348 0.990548 0.990183

Table 2.4: 6(u), Weibull(2,1)) claims, P1 = 2, c = 2, 0 = 0.1

to that in the previous example.

We implemented the three approximate methods for four different examples. All the re-

suits suggest that the variance of the individual claim amounts distribution, the variance of

premium and the variance of loading factor have little effect on the quality of the stable re-

cursive approximation and average of the bounds approximation. They both provide excellent

approximation to 6(u). Simulation method is a very good alternative because it is very easy to

implement especially for complicated model. It's clear that the accuracy of simulation result

can be improved by increasing the number of repetition, with the cost of consuming much more

time.

18

Chapter 3

Distribution of the Severity of Ruin

When ruin occurs, we also want to know how serious the situation is, i.e. the severity of ruin

and its probability. Gerber et al [4] are the first ones to study the probability and severity of ruin

for the classical continuous time risk model. They obtain an integral equation which is satisfied

by the distribution of the severity of ruin. Since then more actuarial science researchers have

started paying attention to it.

Dickson and Waters [8] derive a stable recursive algorithm and also obtain lower and upper

bounds.

In this chapter, we will discuss these methods and illustrate them with some numerical

examples. For both methods, some of the results from previous chapter will be used.

3.1 Recursive Approximation Algorithm

For our continuous process, we define G(u, y) to be the defective probability that for given

initial surplus u, ruin will occur and that the deficit at the time of ruin will be less than y. This

is written as Dickson and Waters c04

G(u,y)=Pr(T<ooandU(u,T)>—y) foru≥Oandy>O

So that Gd(u,y) is its corresponding probability for the approximate discrete process:

Gd(u,y)=Pr(Td<ooaIidU(u,T)>_y) foru=O,1,2,... and y=1,2,3,...

19

G(u)y)=Pr(T2<ooandUd(u,T)>_y) foru=O,1,2,... and y=1,2,3,...

Gd(u,y) can be calculated recursively from the following formula:

Gd(u,y)= Gd(O,u+y)—Gd(O,u)+>gd(O,k)Gd(u_k,y) (3.1)

Where the starting point Gd (0, y) can be calculated from (2.3) in a recursive manner. Its stabil-

ity has been proved by Panjer and Wang [21].

Once Gd (u, y) is calculated, G (u, y) will be obtained by

y y

Gd(u,y)=gd(u,j)=g(u+1,j_1)=G(u+1,y) foru=1,2,3 and y=1,2,3,...
j=1 j=1

(3.2)

As explained in Chapter 2, we will use G(u, y) to approximate G(u,y).

3.2 Lower and Upper Bounds

In this section we illustrate lower and upper bounds for G(u,y) derived by Dickson and Waters

[8].

Let g(u,y) denote the derivative of G(u,y) with respect to y. Bowers et al. [1] tells us that

g(0,x) = (1—P(x))

We can integrate (3.3) numerically to any degree of accuracy to compute GAY).

(3.3)

(.y

G(0,y)= I 0 g(0,x)dx Al
J

20

Now let V/1 (u) and Wh (u) denote lower and upper bounds respectively for ly(u), calculated

by the lower and upper bounds method in previous chapter. G1 (u, y) is a lower bound for G(u, y)

1 11-1d(Illy) = {Lf1(u—r)[G(O,r+1)—G(0,r)]—

u-i

ji1(u—r)[G(0,r+y+1)—G(O,r+y)]+
r=O

G(0,u+y) - G(0, u) - 1FZ(u)G(0,y)} (3.5)

and G!z(u,y) is an upper bound for G(u,y)

u-i

G'(u,y) =

u—i

r=O

G(0,u+y) - G(0,u) - f1(u)G(0,y)} (3.6)

3.3 Numerical illustrations

Example 3.1 Let the individual claim amount distribution be exponential with parameter 1, so

P1 = 1. Let c = 1 and loading factor 0 = 0.1. Thus G(0,y) = I (1 - eY).

Table 3.1 shows exact values, bounds and approximations to G(11, y). Where the exact value

of G(u,y) was calculated from Dickson [7]

1 / Ou
G(u,y)= exp

1+0

The approximation and average of bounds'values are close to each other.

• For the smaller values of u, the average of bounds is slightly superior, the approximation

is slightly lower, but for large values of u both give values very close to the exact value.

21

y= 1 y= 3
u = 20 Exact 0.093278359 0.140217403. 0.146569912

Approx. 0.093033739 0.140119271 0.146549380
Lower 0.077090749 0.115883949 0.121134038'
Avg. 0.093279443 0.140219032 0.146571614
Upper 0.109468136 0.164554114 0.172009191

u=60 Exact 0.002457696 0.003694445 0.003861821
Approx. 0.0024513 19 0.003691962 0.003861387
Lower 0.001178609 0.001771702 0.001851968
Avg. 0.002458286 0.003695331 0.003862747
Upper 0.003737963 0.005618960 0.005873526

u = 100 Exact 0.000064755 0.000097341 0.000101751
Approx. 0.000064589 0.000097278 0.000101743
Lower 0.000008601 0.000012929 0.000013515
Avg. 0.000064803 0.000097413 0.000101827
Upper 0.000121006 0.000181898 0.000190139

Table 3.1: G(u,y), Exponential(1) claims, P1 = 1, c= 1, 0 = o.1

o The calculation of GI (u, y) and G1 (u, y) is not recursive so that each combination of u

and needs to be calculated separately. The calculation of Gd(u,y) is recursive in u, and

so is more convenient if values are required for several values of u.

Example 3.2 Let the individual claim amount distribution be Weibull with parameters (1,

0.5), so P1 =2. Let c = 2,0 = 0.25

Table 3.2 shows bounds and approximations to G(u, y). For this case, we can't calculate

the exact value. We can see that average of bound values and approximated values are very

close to each other with the average value is slightly higher than approximation. Therefore we

can conclude both methods provide good approximation

22

y=1 y= 5 Y= 10
u=20 Approx. 0.051532160 0.177977955 0.258712082

Lower 0.050708986 0.175850986 0.255966073
Avg. 0.051639040 0.178138754 0.258833073
Upper 0.052569095 0.180426521 0.261700073

u = 100 Approx. 0.004582348 0.016067124 0.023736517
Lower 0.004317243 0.015392090 0.022872553
Avg. 0.004591890 0.016081834 0.023747980
Upper 0.004866536 0.016771577 0.024623407

ii = 200 Approx. 0.000278469 0.000978 154 0.001448296
Lower 0.000250044 0.000905966 0.001356033
Avg. 0.000279053 0.000979062 0.001449014
Upper 0.000308061 0.001052158 0.001541994

Table 3.2: G(u,y), Weibull(1, 0.5) claims, p, = 2, c = 2, 0 = 0.25

23

Chapter 4

Distribution of the Surplus Immediately Prior to Ruin and

Severity of Ruin

When ruin occurs, there are two related quantities of interest: distribution of the surplus imme-

diately prior to ruin, and the joint distribution of the severity of ruin and the surplus immediately

prior to ruin.

Dufresne and Gerber [12] found explicit solutions for the distribution of the surplus im-

mediately prior to ruin in the classical compound Poisson risk model. Dickson [7] found the

relationship between the distribution function of surplus at ruin, the distribution function of

surplus prior to ruin, and the ruin probability.

In this chapter we study the approximate numerical calculation of these two quantities. We

will employ the stable recursive algorithms and lower and upper bounds presented by Dickson

and Waters [8].

4.1 Distribution of the Surplus Immediately Prior to Ruin

Given initial surplus u, let U(u, T) denote the surplus immediately prior to ruin for our basic

process. We define the probability that ruin occurs and that the surplus immediately prior to

ruin as less than x, as by F(u,x), then

F(u,x)=Pr(T <oo and U(u,D) <x for u≥O and x>O)

Similarly, for the discrete process, we have

24

Fd(U,X) =Pr(Td <00 and Ud(u,Td— 1) <x) for 't= 0,1,2,... and = 1,2,3,...

F(u,x) = Pr(T <00 and Ud(u, T - 1) <x) for it = 0,1,2,... and x = 1,2,3,...

We know for u= 1,2,3,... and x= 1,2,3,...

F(u)x)=Fd(u-1,x-1)

The approximation for F (u, x) is F (I u, ix); to obtain it, we need to calculate Fd (it, x) by

using the following formulae as suggested by Dickson and Waters [8].

1
Fd(0,x) = hd(0) j= 1 j=1 gd(O,j) (4.1)

U

Fd(u,x) = gd(O,j)Fd(u — j,x) for u— x,x+1,x+2,... (4.2)
j= 1

It It Fd(u,x) gd(0,i)Fd(u—J,x)+ E gd(0,j) for u= 1,2,3,... (4.3)
j=1 j=1

The lower and upper bounds for F(u,x) can be calculated by

F1(u,x) - 1—G(0,x) i y(0)—G(0,x)
Yf for 0 < it <x 1— iy(0) (u) 1— (0) - -

F"(u,x) - 1G(0x) Yf IZ() (0)—G(0,x) for O'< it <x
- 1— W(0) 1—iy(0)

F1(u,x) = G'(u—x,x) 1—G(0,x) 1Y/!z1O] for u≥x
1—(0)

Fh(u,x) = G"(u—x,x) 1G(0,x) [fl(_x)_fh()] for u≥x
1—iy(0)

25

4.2 Joint Distribution of the Severity of Ruin and the Surplus Immediately

Prior to Ruin

Define F (u, x, y) to be the defective joint distribution of the severity (the deficit at time of ruin is

less than y) of ruin and the surplus immediately prior to ruin (less than x) for our basic process.

F(u,x,y) = Pr(T <00, U(u, T) > —y and U(u, D) <x)

For the discrete approximation process, define

for u = 0, 1, 2, ... x= 1,2,3and y= 1, 2, 3,

Fd(u,x,y) = Pr(Td <00 , U((u, Td) ≥ —y and Ud(u, Td - 1) <x)

for u= 1,2,3,... x= 1,2,3,...andy= 1,2,3,...

F(u)x,y) =Pr(T7 <o0,Ud(u,T) > —y and Ud(U, Td* —1) <x)

and wehave for u=1,2,3,...x=1,2,3 and y=1,2,3,...

F(u,x)y) =F(u— 1,x— l,y)

Using the discrete approximation to our basic process, the approximation for F(u,x,y) is

F(I.u, .x, y). To obtain it, we calculate Fd(u,X,y) first through (Dickson and Waters {8]).

Fd(0,x,y) = 1 hd(0) (Hd(y+j)—Hd(j))
j= 1

Alternatively, we could write it as

Fd(0,x,y) = Fd(0,x) + Gd(0,y) - Gd(O,x±y)

26

for u=1,2,3, ... ,x=1,2,3, ... x-1

It x
Fd(u,x,y) = gd(O,j)Fd(u—j,x,y)+ E (gd(O,j)—gd(O,j+y))

jU+l

for u =x,x+ 1,x+2,...

It
Fd(u,x,y) =gd(o,j)Fd(u_j,x,y)

The lower and upper bounds of F(u,x,y) can be calculated by (Dickson and Waters [8]).

for 0 < u <x

F1(u,x,y) = G1(U,y)+ ö(") 8(0) (G(0,x) - G(0,x+y))

FIZ(u,x, y) = (G(0,x) - G(0,x+y))
5(0)

for u ≥ x

F1(u,x,y) = Gl(u,y)_GIZ(u_ x,x +y)+Gl(u_x,x)+

G(O,x)(y1(it—x) - h(u))/5(o) +

-

F"(u,x,y) = GIL(u,y) - G1(u—x,x+y) +Gh(u_x)x)+

G(O,x)(llfhl(u_x) - '1(u))/5(0) +

G(0,x+y)(qi'(u) - i/I1 (u—x))/8(0)

27

x=5 x=10 x=15
u=10 App. 0.347764352 0.365965777

Avg. 0.348173476 0.365975212

u=30 App. 0.056450100 0.059404607
Avg. 0.056518436 0.059408041

u-50 App. 0.009163141 0.009642725
Avg. 0.009175173 0.009644250

0.366264655
0.366260989

0.059452816
0.059454143

0.009650550
0.009651733

Table 4.1: F(u,x), Exponential(1) claims, P1 = 1, c = 1, 0 = 0.1

4.3 Numerical Illustrations

Example 4.1 Let the individual claim amount distribution be exponential with mean P1 = 1

with premium c = 1 and loading factor 0 = 0.1. Table 4.1 is the approximation of F(u, x).

Table 4.2 is the exact and approximations of F(u,x,y). Where F(u,x,y) is calculated by for

0<u<x

for ii ≥ x

F(u,x,y) = G(u,y) + G(0, x) - G(0,x+y))

F(u,x,y) = G(u,y)—G(u—x,x+y)+G(u—x,x)+

vf(u—x) - V(U) (G(0, x) - G(0,x+y))
6(0)

Example 4.2 Let the individual claim amount distribution be Weibull (2,1), so P1 = 2. We

let c = 2, and 0 = 0.25. Table 4.3 and 4.4 give the approximation of F(u,x) and F(u,x,y).

In each example, the approximations are close to each other and from the first example

we can see that the approximations are close to the exact values. As with the approximations

to G(u,y) when the individual claim amount distribution is exponential, approximations to

28

x=y=1 x--y=3
0.023039836
0.022661899
0.023041014

x=y=5
0.139330921
0.139146266
0.139332698

u=20 Ext.
App.
Avg.

u=60 Ext.
App.
Avg.

u=100 Ext.
App.
Avg.

0.000607053
0.000597112
0.000607297

0.000015995
0.000015733
0.000016011

0.109159143
0.108659224
0.109161026

0.002876123
0.002863030
0.002876883

0.000075780
0.000075437
0.000075839

0.003671088
0.003666324
0.003671988

0.000096726
0.000096603
0.000096798

Table 4.2: F(u,x,y), Exponential(1) claims, p, = 1, c = 1, 9 = 0.1

X=5 x=10 x=15
u=10 App. 0.190763919 0.274904362

Avg. 0.191787305 0.275283772

u=30 App. 0.0258 17441 0.037204775
Avg. 0.025957266 0.0372575 12

u=50 App. 0.003494057 0.005035 186
Avg. 0.003513386 0.005042836

0.292697582
0.292742314

0.039412741
0.039426045

0.005334006
0.005336336

Table 4.3: F(u,x), Weibull(2,1) claims, P1 = 2, c = 2, 0 = 0.25

x=y=1 x=y=3
0.032148949
0.032514150

x=y5
0.064360381
0.064764706

u=20 App. 0.003086679
Avg. 0.003 175054

u=60 App. 0.000056536
Avg. 0.000058 183

u=100 App. 0.000001036
Avg. 0.000001066

0.000588844
0.000595695

0. 0000 107 85
0.000010917

0.001178833
0.001186512

0.000021592
0.000021743

Table 4.4: F(it,x,y), Weibull(2,1) claims, p, = 2, c = 2, 0 = 0.25

29

F(u,x,y) based on the bounds are slightly better for small values of u. The cases use the

calculation result y(u). We know from chapter two that average of bounds for ly(u) give an

excellent approximation to ljf(u). When u <x the average of bounds for F(u,x) should be a

very good approximation to F(u,x) since these bounds are linear functions of the bounds on

ljf(u).

30

Chapter 5

Moments of the Time to Ruin

One particular question of interest in classical ruin theory is the moments of the time of ruin,

which has been studied in the literature in recent years.

Lin and Wilimot [18] extend the work of Gerber and Shiu [15] to obtain an explicit solu-

tion for the moments of the time to ruin provided that an explicit solution exists for the ultimate

ruin probability. Cheng et al [3] present expressions for the moments of the time to ruin for a

discrete time risk model. Egidio dos Reis [23] finds a recursion scheme to calculate the mo-

ments of the time to ruin for a discrete time risk model and uses this to approximate moments

of the time to ruin in classical risk model. Cardoso and Bgidio dos Reis [2] focus on the direct

calculation of the distribution of time to ruin by means of Markov chain application. Drekic

and Willmot [10] derive explicit results for the moments of time to ruin for exponential claims.

In this chapter, we study aspects of the time to ruin in the classical risk model. In particular,

we focus on the actual distribution of the time to ruin. By calculating values of both finite and

infinite time ruin probabilities, we can construct numerically the conditional distribution of the

time to ruin, and use this to create density function. We also show how Lin and Willmot's

[18] results can be used to calculate approximate values for moments of the time to ruin when

explicit solutions for the probability of ultimate ruin does not exist. At the end, we illustrate

the calculation of the moments of the time to ruin, given that ruin occurs.

In chapter 1, we define the time to ruin is denoted by T, Vi(u) denotes the probability of

ultimate ruin from initial surplus u, where iy(u) = Pr(T <oo). Now let's define the probability

of ruin by time t from initial surplus u, denote it as ly(u, t), where y(u, t) = Pr(T <t). Then,

we define the distribution function of the time to ruin given that ruin occurs as

31

Pr(T ≤ t) =Pr(T ≤ tjT <oo) = ly(u,t)/1y(u)

where T = TIT <co.

Let E(TIC) denotes the kth moment of time to ruin. Delbaen [6] proves that the kth moment

of T exists only if the (k + 1)th moment of the individual claim amount distribution exists. In

this chapter, we will calculate the first three moments of the time to ruin, so we assume that the

fourth moment of the individual claim, p4, exists.

5.1 Formulae for Moments

Lin and Wilimot [18] present a recursive scheme from which explicit solutions for the moments

of T can be found.

E(Tc) = 1Vic(u)/1J1(u)

where

(5.1)

1/lk(u) = (f's 1/1(u - x) V'k—i (x)dx + 8(u) V1k-1 (x)dx - V/k—i (x)dx) (5.2)

The value of 1/1(u) can be obtained from the formula (2.2). However the formula (5.2) in-

volves integration over an infinite range, so it cannot be used for numerical calculation. There-

fore, we use the formulae provided by (Dickson and Waters [5]) to calculate lyi (ii), 1/12(u), ¶3(u).

l/lj(u) =

¶2(U) =

1/13(U) =

1 (E(L)3(u) - f uVf(x)8(u_X)dx) (5.3) .xp10
2 (E(L2)3(u) U V'i x)6(u_x)dx) (5.4)

.Xpje 2A. 1e [

35(u)E(L)E(L2) + 6(u)E(L3) f1'(5 —5 (u (5.5)
(2p1 e)3 (A.pie)3 Aø

32

where

--
E[L] = I— yf(X)dX= P2

20pl

3
E[L2] = 2fo- xiy(x)dx= 3 Op, +2\epl)

E[L3] = f 3 xf(x)dx= P + - (P2 40pi 4 () P2P3
(Opi)2

5.2 Diffusion Approximation

(5.6)

(5.7)

(5.8)

The surplus process U(t) can be approximated by a diffusion process. We write it U(t)

u + W(t), where W(t) rJ N(O2pit, 2pzt) for all t > 0. It is well known that this diffusion

process U(t) has an Inverse Gaussian [17] distribution with density

f(t) = U (5 -3/2 exp - 1' (u - O2.p)2

 (2942) 1/2 j 22i.tp2

By choosing the parameters of the diffusion process appropriately, we can consider the

moments of the Inverse Gaussian distribution as approximations to the moments of T for

u>0.

E[T] V[T] Sk[T] 3 (122) 1/2 (5.10)
Pi

where Sk[T] denotes the coefficient of skewness of T.

We see that the approximations depend on the first two moments of the individual claim

size distribution. This is because the surplus process is being approximated by a diffusion

process and is matched via the first two moments. Thus calculation is simple.

It should-be remembered that if p4 does not exist then the third moment, and hence the

coefficient of skewness, of T does not exist.

33

Mean St.Dev Coef. Skewness
u Exact App. Diffusion Exact App. Diffusion Exact App. Diffusion
o io.00 10.00 - 45.83 45.83 - 13.74 13.74 -

10 100.91 100.91 100.00 148.66 148.66 141.42 4.24 4.24 4.24
20 191.82 191.82 200.00 205.18 205.18 200.00 3.07 3.07 3.00
30 282.73 282.73 300.00 249.20 249.20 244.95 2.53 2.53 2.45
40 373.64 373.64 400.00 286.53 286.53 282.84 2.20 2.20 2.12
50 464.55 464.55 500.00 319.53 319.53 316.23 1.97 1.97 1.90

Table 5.1: Mean, Standard Deviation and Coefficient of Skewness of Tc, Exponential(l) claims

Mean St.Dev Coef. Skewness
u Exact App. Diffusion Exact App. Diffusion Exact App. Diffusion
0 4.00 4.00 - 12.00 12.00 - 8.963 8.963 -

10 36.00 36.00 40.00 37.74 37.74 35.78 2.861 2.861 2.683
20 68.00 68.00 80.00 52.00 52.00 50.60 2.076 2.076 1.897
30 100.00 100.00 120.00 63.12 63.12 61.97 1.711 1.711 1.549
40 132.00 132.00 160.00 72.55 72.57 71.55 1.488 1.486 1.342
50 164.00 163.98 200.00 80.90 81.01 80.00 1.334 1.313 1.200

Table 5.2: Mean, Standard Deviation and Coefficient of Skewness of Tc, Exponential(1) claims

5.3 Numerical Illustrations

In the examples below, the discretizing scalar J3 = 1000 is used for all examples to calculate

Example 5.1 In this example, we let the individual claim amount distribution be exponen-

tial (1). Set c = 1. For this case, as the exact value and the approximate value of 1/1(u) can be

obtained from (2.14) and (2.2), respectively. Thus we can get the exact, approximate and dif-

fusion values of E(T), fork = 1, 2,3, showing in the Tables, 5.1, 5.2 for 0 = 0.1 and 0 = 0.25

respectively. We see that the diffusion values are poorer than approximate values.

Example 5.2 Now we consider the individual claim amount distribution is Weibull (1,0.5).

Let c = 2. For this case, the explicit solution does not exist. Tables 5.3, 5.4 show approximate

values and diffusion approximate values of the first three moments of T for 0 = 0.1 and 0 =

0.25, respectively. We observe that the approximate and diffusion, values are reasonably close

34

Mean St.Dev Skewness
u App. Diffusion App. Diffusion App. Diffusion
0 33.00 - 155.95 - 13.789 -

20 150.62 110.00 335.72 269.44 6.402 7.348
40 248.41 220.00 433.34 381.05 4.960 5.196
60 343.32 330.00 511.19 466.69 4.204 4.243
80 437.02 440.00 578.23 538.89 3.716 3.674

Table 5.3: Mean, Standard Deviation and Coefficient of Skewness of Tc, Weibull(1.,0.5) claims

Mean St.Dev Skewness
u App. Diffusion App. Diffusion App. Diffusion
0 15.00 - 48.22 - 9.132 -

20 62.62 50.00 100.33 77.46 4.384 4.648
40 99.53 100.00 128.16 109.54 3.433 3.286
60 134.07 150.00 150.23 134.16 2.929 2.683
80 167.26 200.00 169.21 154.92 2.600 2.324

Table 5.4: Mean, Standard Deviation and Coefficient of Skewness of Tc, Weibull (1,0.5) claims

to each other.

We see that the coefficients of skewness of the above tables are positive values. This indi-

cates that the distributions of T are far from normal. From formula (5.10), it indicates that

limSk[T]=0
u-,00

Thus for these examples the limit distribution of T is normal. In the next chapter, we plot the

distribution of the time to ruin from which we can clearly see the skewness of the distribution

of T.

35

Chapter 6

Density of the Time to Ruin

In this chapter we illustrate the shape of the density of T. Three different methods are used to

produce graphs of density functions.

6.1 Approximation Algorithms

We know the common distribution function of time to ruin given the ruin occurs is

H(t) = Pr(T <t) =

values of y(u) is calculated using the stable recursive algorithm (2.2). Values of yf(u,t)

are calculated using the algorithm presented in Dickson and Waters [9] which use the discrete

time probability of survival (1 + O)/3t) to approximate ô(u,t). 15d(u,t) is obtained by

the following formulae

ôd(0,t) = hd(0) j=oF(j,t+1) (6.1)

1 I8d(u— 1,t+ 1)— hd(i)öd(U—i,t)l (6.2) 6d(U,t) =

Td(0) L i=1]
ii

6d(Ul,t+1)= Ehd(i)5d(u — i,t) (6.3)
i=O

where hd (0) and hd(k) fork = 0, 1,2,.. .can be calculated from (2.4), (2.5). F (j, t) denotes

the common distribution of the aggregate claims up to time t for j = 0, 1,2,..., which can be

calculated using Panjer's [19] recursive formula.

36

Then we know

it_i

6(O,t) = —LF(j,t)
j=o

= 5d(U - 1,t)

We estimate the density of T at t = j/[(1 + 9)j3] as

fT ((1e)p) = (1+0) [H((10)$) H((10)]

for j= 1,2,3,...

6.2 Diffusion Approximation

As the continuous surplus process U (t) can be approximated by a diffusion process U (t) which

is the Inverse Gaussian distribution. The density of this distribution can be regarded as approx-

imations to the density of T. Formula (5.9) is used to approximate it.

Based on this exact result for the diffusion surplus process, we can say the distribution of

T can also be approximated by an Inverse Gaussian distribution with parameters determined

by the first two moments. This is our third method given below.

6.3 Inverse Gaussian Approximation

Using the formulation in Klugman et al (2004), the probability density function of Inverse

Gaussian distribution distribution is

1/2 (Oz 2

f = (2X3) exp) I where z (6.4)

E(x)=p Var(x)=- (6.5)

37

We calculated the first two moments of T, E(T') and E (I2) using formula (5. 1), then we

solve for ,u and U by matching the moments in formulae (6.2). Formula (6.1) can be used to

calculate the values of density directly. This is another approximation to the density of T.

6.4 Numerical Illustrations

Example 6.1 Let the individual claim amount distribution be exponential with P1 = 1. 0 = 0. 1,

/3 = 20, ii = 20, thus ¶(20) = 0.015. Using the exact values of the mean and standard deviation

from Table 5.1, we calculate the parameters of our approximating Inverse Gaussian density

as 68 and 116.28. In Figure 6.1, the densities calculated by three methods are reasonably

close to each other. A clear feature of the distribution of T is positively skewed as indicated

by the value of the coefficient of skewness in Table 5.1. The straightforward approach of

Diffusion and Inverse Gaussian approximation provides much better approximations than a

normal distribution does.

We use /3 = 20 as our scaling factor. This value is sufficient to calculate accurate approx-

imation to both finite and infinite time ruin probabilities. The larger value of /3, the better

approximations are, but such extra accuracy is of limited value to us to illustrate the shape of

the density T.

Example 6.2 Pareto(3,4),& = 0.1,u = 10, f(10) = 0.475194, parameters are 126.824 and

41. 1322.

Because the formulae (6.1) and (6.2) are not stable (Dickson and Waters [9]), when using it

to approximate 8(u, t) for the values of u greater than above 30 we experience difficulties. For

example, the values of 3(u, t) are outside the range zero to one.

38

Density of the Time to Ruin
0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

Figure 6.1: Exponential claims, u = 20, e= 0.25,iji(20) = 0.015

Density of Time to Ruin

of
0

Diffusion

Inverse Gaussion

Approximation

50 100 150 200 250

Figure 6.2: Pareto claims, it = 10, 0 = 0.1,V(10) = 0.475 194

300

39

Chapter 7

Conclusion

In this thesis we study the classical risk process. We use different methods to compute the ruin

probability for infinite time and its related quantities which include distribution of the severity

of ruin, the distribution of the surplus immediately prior to ruin, the joint distribution of the

surplus immediately prior to ruin and the severity of ruin.

As the continuous model is very difficult to calculate, a rescaled discrete model is built

to approximate it. Based on this discrete model, Dickson and Waters [8] present a recursive

algorithm to calculate the ruin probability and related quantities. By comparing its calculated

results to the other two methods (average of upper and lower bounds and simulation) we find

that the recursive algorithm and the bounds method both give an excellent approximation.

Secondly, by comparing the computing time for each example, we see the bounds method is

the fastest which only takes a few seconds; the recursive method is the second fastest which

takes about 30 seconds; and the simulation method is the slowest which takes about 2 minutes.

There is an important feature of the recursive method is that it is numerical stable.

When we rescale the continuous process, the choosing of scaler J3 determines the approx-

imation values. The larger J3 the more accurate values are. However it adds computing time.

In our examples, we set J3 = 100. From the observation this is good enough for approximation

and it doesn't take extra time to complete calculation.

When calculating the ruin probability for the infinite time, a direct simulation method is

presented as well. Results look poorer than other methods but it's still a good approximation.

It has some advantages: it is straightforward; it is easy to implement; it may be the only

way when encountering complicated problems. The quality of it can always be improved by

increasing the simulation replications or using new algorithms.

40

From investigating the shape of density of the time to ruin we find the distribution of T

is positively skewed. A simple approximation based on Inverse Gaussian densities can give

reasonable results whereas a normal approximation would be inappropriate.

A future work we would like to do is using the translated gamma approximation method

presented by Dickson and Waters [5] which is based on matching three moments. It should

perform better than Inverse Gaussian method which is based on matching just two moments.

41

Appendix A

Matlab Codes I

1. Main function of calculation of the ruin probability and its related quantities.

The following quantities are calculated: the probability of ultimate

survival Delta(u), distribution of the severity of ruin G(u,y),

distribution of the surplus immediately prior to ruin F(u,x), joint

distribution of the severity of ruin and the surplus immediately prior

to ruin F(u,x,y).

%%% -- Methods are used: Exact method (exponential distribution only), Stable
%°h% recursive alogrithm, Bounds and Simulation.

-- This program can calculate the claim distribution has:

7070% i-Experiential

°h%% 2-Pareto(2,1) or Pareto(2,2)

%%% 3-Weibull(O.5,O.5) or Weibull(1,O.5)

%%% 4-Gamma(2,O.5) or Gamma(2,1)

WI.'!. 5-Pareto(4,3)

%°h% 6-Weibull(i, 1) or Weibull(2, 1)

function main

format long

diary result

dist=5; %%% Chose a distribution 7,%%
beta=100; WI00!0 Set scalor °h%%
theta=O. 1; %%% Set security factor 7,'!,'!,
c'i; %%% Set premium collected °h%%
pl=i; %°h% Set the mean of distribution %%%
beta=beta/c;

 Rescale & Discrete the Continuous Process

umax=200; %%% Set the maxmiuin initial surplus u WI00!.
ymax=15; %%% Set the maxinium deficit 7,%%
xmax=15; %%% Set the maxmium surplus immediately before ruin %'/.%

HdHdy2(umax+ymax,beta,theta,pi, c,dist);

hdOo'Hd(i);

gd=(i-Hd)/hdO;

gd(1)=O;

GdO=cuinsum(gd);

42

Calculate Delta(u)

°h%% Example 2.1, 2.2, 2.3 & 2.4

ind=[0 2 4 6 8 10 20 40 60 80 100];

umax=200;

u0: 1:umax;

%%%'/,'I,X'/,°/i'%%%°h°h°h%%%°h°h°h°h--Recursive Algorithm--°h°h°h°h%%°h°h%%%°h%%°h%%%%%%%%%%%

7,%% Approximate delta(0), delta (0.01) ,delta (0.02),. . . ,delta(100),
appdelscl=appdelta3(umax,beta,theta, gd,hdo);

%%% Approximate delta(0), delta(1),delta(2) ,....delta(100),...
appde].=appdelscl (u*beta-i-1);

%%% Display delta(u) at initial u = 0 2 4 6 8 10 20 40 60 80 100
appdel (ind+1)

%%% Plot
plot(u,appdel,'b');

hold on;

o,,,o,o,QIO,/:/:/ ,,s,o/o,',' %%°h%%%%%%W/.7.,.,.,.,. ,,,,,,,i,i,/,%'/,%--Lower & Upper Bounds--%%%%°h%%%%%%%%%%7.%%%%%%%%

%%% Bounds of delta(0),delta(0.01) ,de].ta(0.02),. . . ,delta(100),
bounddel=bounddolta4(umax,beta,theta,dist ,pl);

de].tal&'bounddel(:,l); %lower bound

deltaud=bounddel (: , 2); %upper bound

deltalow=de].tald(u*beta+i); %lower bound at u=0,1,2,.. . ,100

deltaup=deltaud(u*beta+1); Yupper bound at u=0,1,2,.. . ,100

avg=(deltalow+deltaup)/2; %avg of lower & upper bounds

%°h% Display delta(u) at initial u = 0 2 4 6 8 10 20 40 60 80 100
avg(ind+1)

%%% Plot
plot(u,avg, 'g');
hold on;

%%%%%%%%%%'I,%%%%%%%%%%%°h--Exact Value, Exponential only--%%%%%%%%%%%%°A%%%'h%°h

if dist=1

%%% Exact delta(0), delta(0.01) ,delta(0.02), . . . ,delta(100)
exactdelscl=exactdelta2 (umax , beta, theta, p1)

43

°h%°I0 Excat delta(0), delta (1) , delta (2) . delta(100)
exactdel=exactdelscl(u*beta-l-1);

%// Display delta(u) at initial u = 0 2 4 6 8 10 20 40 60 80 100

exactdel (ind+1)

%°h% Plot
plot(u,exactdel, 'kO;

hold on;

end

sirndelta=simdelta3(c,theta,beta,pl,dist);

a=simdelta(:,1); %0h°h All simulation values of initial surplus %%%
Fa=simdelta(:,2); %%% All simulation results of Delta(u) %°h°h%

%%% Interplot to get delta(u) at u = 0 2 4 6 8 10 20 40 60 80 100 %%'h
simdel= [];
for 1=1: length(ind)

z=min(find(a > ind(i)));

if isempty(z)

simdel (i) =1;

else

simdel(i)=(Fa(z)*(ind(i)-a(z-1))+Fa(z-1)*(a(z)-ind(j)))/(a(z)-a(z-1));
end

end

%%% Display delta(u) at initial u = 0 2 4 6 8 10 20 40 60 80 100

[id' ,simdel']

%%% Plot
plot (a,Fa, '-r');

hold off

 Calculate G(u,y)

Yo%% --Example 3.1
if dist==1

ind=[20 60 100];
umax=100;

44

u=1:i:umax;

y= [1 3 5];

%°h% --Example 3.2
else

ind=[20 100 200];

umax=200;

u1: 1:umax;

y=[l 5 10];

end

7'/i'%h%'/,%%'/,%°h'/,'/,'h°h°h%%--Recursive Algorithm --%%'h%%7%%7,%%%%%%%%°h%%%%%%

%%°h approximation of G(0.01,1), G(0.02,3),. . .,G(100,5),...
appGd=appG2 (umax, y, gd,beta,pl);

7,%°I, approximation of G(u,i), G(u,3), G(u,5), at u=1,2 3,... ,100
appG"appGd(u*beta,:);

°h'/0% Display approximation G(u,y)
appG(ind,:)

%%%%%%%%,.,,,,,,,,,,,,,/.%'h%--Exact Value, Exponential only--%%%%'/.%%%%%%%'/,'/.%%%%%

if dist==1

exactGy=exactG(umax ,theta, y,pl);

%%% Display exact G(u,y)
exactGy(ind+1,:)

end

%'/,%%'h%%'h'h%%%%°h%%%%%%%%%%--Lower & Upper Bound--%%%%%%%%%%%%%%%%%%%%%%'h%%

boimdG=boundGd3(deltald,de].taud, ind,beta,thota,y,c,pl ,dist);

%%% Display
Glow=bou.ndG(i:3,:)

Gup"boundG(4:6,:)

GavgboundG(7:9,:)

 Calculate F(x)

%%'/. --Example 4.1 & 4.3

ind=[10 30 50];

x=[5 10 15];

45

%%°h°h%%/°h'/'/0%°h%%°h%-- Recursive Algorithm --Y%'/'h%%/%'/%

appFxd=appFx(gd, ind,beta,theta,pl,x);

I%h Display
appFx=appFxd(ind*beta,:)

Y%%%%%%°h%%%%%%°h-- Lower & Upper Bounds --%%%%%%%%%'/0%%0h%%%%°h%'/%%%%%%%%

boundFx=boundFx4(deltald,deltaud,ind,x,beta,theta,c,pl,dist);

%%% Display
Fxlow=boundFx(1 :3,:)

Fxup=boundFx(4:6,:)

Fxavg=boundFx(T:9,:)

 Calculate F(x,y)

%%% --Example 4.2 & 4.4
ind [20 60 100];

umax=100;

y=[l 3 5];

x=[1 3 5];

%Yo%°h°h%%%%%%%°h%%%%%%%%%%%Recursive Algorithm %°h%%%%'/00h%%%%%0/.%%Y0%%%%%%%%%

appFxyd=appFxyl(Hd,gd,beta,theta,pl,c,x,y,umax,dist);

°h%% Display
appFxy=[appFxyd(ind*beta, 1,1), appFxyd(ind*beta,2,2), appFxyd(ind*beta,3,3)]

%%h%'/,%%%°h%%%°h%%Y,'/,Y.Y.%%%Lower & Upper Bounds 'h%%%%%°I00I0%%%%%%%%70%%%%0I0%%%70

boundFxy=boundFxy2(deltald,deltaud,ind,x,y, beta, theta, c,pl,unax,dist);

%%% Display
Fxylow=boundFxy(1:3,:,:)

Fxyup=boundFxy(4:6,:,:)

Fxyavg=boundFxy(7:9,:,:)

%%%%%%7,%'/,'/,%%7,%%%%-- Exact Value, Exponential only --%h%W/%'/0%%%%%%70%

46

if dist==1

%%/ Exact delta(0), delta(O.O1),delta(O.02),. . .,delta(100)

exactdelscl=exactdelta2 (uinax,beta, theta,pl);

hh% Excat delta(0), delta(1),delta(2)delta(100)
exactdel=exactdelscl (u*beta+1);

exactGyexactG(umax,theta,max(x)+max(y) ,pl);

exactFxyd=exactFxyl(umax,x, y, exactGy, exactdel);

°h%°h Display
exactFxy=[exactFxyd(ind+1 ,1,1), exactFxyd(ind+1,2,2), exactFxyd(ind+1,3,3)]

end

diary off

47

2. The sub functions called by main

function out=Hdy2(max,beta,theta,p1, c,dist)
format long

x=1:1:max*beta;

s=length(x);

if dist==1

ptheta=pl; %%70----Exponential (p1) ----%Wh
pl=ptheta;

fO (-exp (1/ptheta/beta) -ptheta*beta+

ptheta*beta*exp (1/pt heta/beta)) /exp (1/ptheta/beta);
fk =ptheta*beta*exp (- (x+1) /ptheta/beta) -2*ptheta*beta*

exp (-x/ptheta/beta) +ptheta*beta*exp (- (x-1) /ptheta/beta);

elseif d1st=2

if pl==l

palpha=2; ptheta=1; °h°h°h ---- Pareto (2,1) ----'h'h%
elseif pl==2

palpha=2; ptheta=2; %'/.'/. ---- Pareto (2,2) °h%'h
end

f 0=1- (1/beta+ptheta) (1-palpha) * (pthotapalpha) *beta/ (1-palpha)+

ptheta*beta/ (1-paipha);

fk=beta. *(pthetapa1pha)/(1-palpha)*(2*(x./beta+ptheta) . '(1-palpha)-

((x-1) ./beta+ptheta) . (1-palpha)-((x+1) . /beta+ptheta) . (1-palpha));

elseif dist==3

if pl==l

ptheta=0.5; ptau=O.5; %%% ---- Weibull(0.5,0.5) ---- %%%
elseif pl==2

ptheta=1; ptau0. 5; %%°h ---- Weibull(1,0. 5)----%%%

end

fO =-(-2*ptheta*beta-exp((1/ptheta/beta)(1/2))-2*ptheta*beta*

(1/ptheta/beta) (1/2)+2*ptheta*beta*exp((1/ptheta/beta) -(1/2)))/
exp((1/ptheta/beta) (1/2));

fk =2*ptheta*beta*exp(-((x+1) ./ptheta/beta) . '(1/2)) .*((x+1) ./ptheta/

beta) . (1/2)+2*ptheta*beta*exp(-((x+1) ./ptheta/beta) .

4*ptheta*beta*exp(-(x./ptheta/beta) '(1/2)) . *(x. /ptheta/beta) .

4*ptheta*beta*exp(-(x./ptheta/beta) . (1/2))+2*ptheta*beta*

exp(-((x-1) ./ptheta/beta) . (1/2)) . *((x-1) ./ptheta/beta) .

2*ptheta*beta*exp(-((x-1) ./ptheta/beta) .

elseif dist==4

if pl==l

palpha=2; ptheta=0.5; %°/h ---- Ganma(2,0.5) ----°h°h'/.

fO -(-1-exp(1/beta)2-beta+beta*exp(1/beta)-2)/exp(1/beta)'2;

48

fk =exp(-2*(x+1) /beta) *x+exp(-2*(x+1) ./beta)+exp(-2*(x+1) ./beta). *beta-
2*x. *exp (-2*x . /beta) -2*exp (-2*x. /beta) . *beta+exp (-2* (x-1) . /beta)

exp(-2*(x--1) .Ibeta)+exp(-2*(x-1) .Ibeta) .*beta;

elseif pl==2

palpha=2; ptheta=1; °h%%---- Gamma(2, 1) ----7.711.

±0 =-(-1-exp(1/beta)-2*beta+2*beta*exp(1/beta))/exp(1/beta);

fk =exp(-(x+1) ./beta)+2*exp(-(x+1) .Ibeta) .*beta+exp(-(x+1) /beta)

4*exp (-x. /beta) . *beta-2*x. *exp (-x. /beta)+exp (- (x-1) /beta)
exp(-(x-1) ./beta)+2*exp(-(x-1) ./beta).*beta;

end

elseif dist==5 & pl==l

palpha=4; ptheta=3; %°h% ---- Pareto(4,3) %%%%

pl=ptheta/ (palpha-1);

±0=1- (1/betai-ptheta) (1-paJ.pha) * (pthetapalpha) *beta/ (1-paipha) +

ptheta*beta/ (1-paipha);

fk=beta. *(pthetapalpha)/(1-palpha)*(2*(x./beta+ptheta) (1-palpha)-

((x-1) /beta+ptheta) '(l-palpha)-((x+l) ./beta+ptheta) (1-palpha));

elseif dist==6

if pl==l
ptheta=1; ptau=1;

else pl==2

ptheta=2; ptau=1;

end

Y.%% ---- Weibull(1, 1) ----7.%%

h%% ---- Weibull (2,1) ---- %h°h

±0 = - (-exp(1/ptheta/beta)-ptheta*beta+ptheta*beta*exp (1/ptheta/beta)) I
exp (llpthetalbeta);

fk =ptheta*beta*exp (-(x+1) Iptheta/beta)-2*ptheta*beta*exp (-x Iptheta/beta) +

ptheta*beta*exp (- (x-1) . IpthetaIbeta);

end

laiubda=c/((1+theta)*pl);

lambda=lambda*(1-f0)/(beta*c);

fkfk/(1-fo);

h(1)=exp(-lambda); 7.h(1)=h_d(0)

for 11:1:s

h(i+1)=(lainbda/i)*(1:1:i).*fk(1:1:i)*h(i:-1:1)';

end

49

H=cumsum(h);

outH;

function out=appdelta3 (umax ,beta, theta, g ,ho)

format long

x=i: 1:umax*beta;

delta=[];

delta (1) =theta/ ((1+theta) *hO);
del=delta;

for i=2: L:length(x)

delta(i)=delta(1)+g(2: i)*del;

del'4de1ta(i) ;del];
end

delta'[theta/(1+theta) ,delta];

out=delta';

loll!, 10(0/I

function out'bounddelta4(umax,beta,theta, dist ,pl)

u=O:1:umax*beta;

xu/beta;

q=1/(1+theta);

size=length(x);

lambda--I;

if dist==1 %°h'h ---- Exponential ----%°h%
ptheta=pl;

H =(-ptheta*exp (-x/ptheta) -i-ptheta) *lambda/ptheta;

elseif dist==2

if pl==l

palpha=2; ptheta=1; %%°h ---- Pareto (2,1) ----°h%%
elseif pl==2

palpha=2; ptheta=2; %%°h ---- Pareto (2,2) ----°h%0/,
end

H=1-(ptheta./(x+ptheta)) (palpha-1);

50

elseif dist"=3

if pl==l
ptheta=0.5; ptau0. 5; %%% ---- Weibull(0. 5,0. 5)----%%'/,

elseif pl==2

ptheta=1; ptauo.5; %°h°h ---- Weibull(1,0.5) ----%%%
end

or ptau=0.5, any ptheta

H =1/2*(-2*ptheta*exp(-(x./ptheta) . (1/2)) .*(x./ptheta) .

2*ptheta*exp(-(x./ptheta) . '(1/2))+2*ptheta)*lainbda/ptheta;

elseif dist==4

if pl==l %%% ---- Ganma (2,0.5) ----%%%

elseif pl==2
x=x/pl; %%°h ---- Gainma(2, 1)----%%'/

end

H=1- (z+1) .*exp(-2*x);

elseif dist==5 %%'/, ---- Pareto (4,3) ----°h%%
palpha=4;

ptheta--3;

H=1-(ptheta./(x+ptheta)) . (pa1pha-1);

elseif dist==6

if pl==l
ptheta=1; ptau=1; '/.'/,'/. ---- Weibul].(l, 1)----%%%

elseif pl==2

ptheta--2; ptau=1; '/.%% ---- Weibul].(2,1) ---- %%%
end

or ptau=1, any ptheta

H = (-ptheta*exp (-x. /ptheta) +ptheta) *].ambda/ptheta;

end

h=diff(H); %hi,h2,

°h%%Calculate upper bound

fu(1)=1-q;

for t=1:1:size-1

k=1:t;

fu(t+1)=q*h(k)*fu(t:-1:1)';

end

psiu=1-cumsum(fu);

hl= [];
hio=h(1);

h(1)=D

fl(1)=(1-q)/(1-q*hlo);

51

for t=1:1:size-2

k=1:t;

fl(t+1)=q/(1-q*hlO)*h(k)*fl(t:-1: 1)';
end

psil=[q, 1-cumsum(fl)];

deltal=1-psiu;

deltau=1-psil;

0ut [deltal ; deltau] ;-

 %%%

function out=exactdelta(umax,beta,theta,pl)

u1:1:umax*beta; °hu1,2,3.

u=u/beta; %u=O.O1,O.02,O.03.

°h%% delta(O.O1) ,delta(O.02),. ,delta(iOO)
exact=1-1/(i+theta)*exp(-theta*u/(1+theta)/pl);

%%% delta(0);
exactO=1-1/ (1+theta);

exact= [exactO,

out=exact';

%%OI 00000!
0 blob

function out=simdelta(c, theta, beta, pl ,dist)

format long

lambda=c/ ((1+theta) *pi);

sim=100000;

L=[];

seed = 931316785;

rand('seed' ,seed);

no2OOO;

for s=1:sim

52

inttime=exprnd(1/lainbda,n, 1);

if dist==1

indamount=exprnd (p1, n, 1); %%% ---- Exp (pi) ----%%%

elseif dist==2

if pl==l
palpha=2; ptheta=1; °h%% ---- Pareto (2,1) ----%°h%

elseif p1=2

palpha=2; ptheta=2; %%°h ---- Pareto (2,2) ----%%°h

end

u=rand(n, 1);

indamoimt=ptheta* ((1-u). (-1/paipha) -1);

elseif dist==3

if pl==l

ptheta=O.5; ptau=O.5; %%% ---- weibull(O.5,O.5) ---- °h%%

elseif pl==2

ptheta=1; ptau=O .5; %%% ---- weibull(1,O. 5)----7,%°h
end

indainount=wblrnd(ptheta,ptau,n, 1);

elseif dist=4

if pl==l

palpha=2; ptheta=O.5;

elseif pi=2
palpha=2; ptheta=1;

end

indaniount=ganirnd (paipha , ptheta,n, 1);

%%% ---- Gainina(2 , 0.

%%'/, ---- Gamma(2, 1)-----%%%

elseif dist==5

palpha=4; ptheta=3; %%% ---- Pareto(4,3) ---- %°h%

u=rand(n, 1);
indamount=ptheta*((i-u) . (-1/pa1pha)-1);

elseif dist==6

if pl==l

ptheta=1; ptau=1;

elseif pi==2

ptheta=2; ptau=1;

end

indamoimt=wblrnd(ptheta,ptau,n, 1);

end

ainomit=cumsum (indainount);

time=cuinsum(intt1me);

%%% ---- weibull(1,1) ----'1'!'!

%%'/, ---- weibull(2, 1)-----%%%

m=alnount-time*c;

maxL=max(0,max(m));

L=[L,maxL];

end

53

[Fx,xJ=ecdf(L);

out=[x,Fx:1;

function out=appG2(umax,y,gdy,beta,pi);

format long

y=y*beta;

gdy(i)=IJ; %remove gd(O,O)

GO=cuinsuin(gdy);

G= 11 ;
G(1,:)=GO(y);

for u1:1:uinax*beta

for c1: 1: length(y)

sum=O;

for k1:1:u

suin=suin+gdy(k)*G(u-k+i , c);

end

G(u+1,c)=GO(1,u+y(c))-GO(1,u)+sum;

end

end

outG;

function out=exactG(umax,theta,ymax,pl)

format long

u=O: 1:umax;

y=1:1:ymax;

G=[];
for 1=1:1: length (u)

for j=1:1:length(y)

G(i,j)=i/(1+theta).*exp(-theta*u(i)/(i+theta)/pl).*(1-exp(-y(j)/pl));

end

end

54

outG;

function out=boundGd3(deltal,deltau, ind,beta,theta,y, c,pl ,dist);

format long

lambda=cl (1+theta) /pl;

psilow=[1-deltau]';

psiup= [1-deltal]';

Glow=[];

GupD;

for j=1:1:length(y)

for i1:1: length(ind)

xO: (1/beta) :ind(i)-1/beta;

s=ind(i) *beta+1;

if dist==1 %%% ---- Exponential ---- %%%
GOy=lambda/c*pl*(1-exp(-y(j)/pl));

Gr=laiabda/c*pl*exp(-x/pl)*(1-exp(-1/beta/pl));

Gry=laiabda/c*pl*exp(-(x+y(j))/pl)*(1-exp(-1/beta/pl));

Grt=lambda/c*pl*exp(-ind(i)/pl)*(1-exp(-y(j)/pl));

elseif dist==2

palpha=2; ptheta=1;

if pl==l

palpha=2; ptheta=I;

GOy=lmbda/c*p1*(1-(1+y(j)) . (-palpha+1));

Gr=lambda/c*pl*((1+x) (-palpha+1)-(1+x+1/beta) (-palpha+1));

Gry=lambda/c*pl*((1+x+y(j)) (-palpha+1)-(1+x+y(j)+1/beta) . (-palpha+1));

Grt=lan1bda/c*p1*((1+ind(i))(-palpha+1)-(1+ind(i)+y(j))(-palpha+1));

elseif p1=2 °h%% ---- Pareto(2,2) ---- Yh%
palpha=2; ptheta=2;

GOY = lainbda/c*pl*(i-2/(2+y(j)));

Gr = lambda/c*pl*(2./(2+x)-2./(2+x+1/beta));

Gry = lambda/c*pl*(2./(2+x+y(j))-2./(2+x+y(j)+1/beta));

Grt = lambda/c*pl*(2./(2+ind(i))-2./(2+ind(i)+y(j)));

end

elseif dist==3 %%% ---- Weibull(O.5,O.5), Weibull(1,O.5) ---- %%%

GOylambda/c*pl*(i-exp(-(2*y(j)/p1) -O.5)*(1+(2*y(j)/p1) -O.5));

Gr=lambda/c*p1*(exp(-(2*x./p1).O.5).*(1+(2*x./p1).O.5)-

exp(-(2*(x+1/beta)./p1).O.5).*(1+(2*(x+1/beta)./p1).o.5));

Gry=laJnbda/c*p1*(exp(-(2*(x+y(j))./p1).O.5).*(1+(2*(x+y(j))./p1).O.5)-

55

exp(-(2*(x+y(j)+1/beta)./pl).0.5).*(1+(2*(x+y(j)+1/beta)./pl).0.5));

Grt=lanthda/c*pl*(exp(-(2*ind(i)/pl) O.5) .*(1+(2*ind(i)/pl)

exp(-(2*(ind(i)+y(j))/p1).O.5).*(1+(2*(ind(i)+y(j))/p1).'o.5));

elseif dist=4

if pl==l %%% ---- Gainma(2,0.5) ----°h°h°h
GOy=lainbda/c*(i-(1+y(j))*exp(-2*y(j)));

Gr=lainbda/c*((1+x) *exp(-2*x)-(1+x+1/beta) .*exp(-2*(x+1/beta)));

Gry=lambda/c*((i+x+y(j)) .*exp(-2*(x+y(j)))-(1+x+y(j)+1/beta) .*

exp(-2*(x-l-y(j)+1/beta)));

Grt1ambda/c*((1+ind(i)).*exp(-2*ind(i)).-.(1+ind(i)+y(j)).*
exp(-2*(ind(i)+y(j))));

elseif pl==2 '/,'h% ---- Gainma(2,1) ---- %%%

GOy='lambda/c*(2-2*exp(-y(j))-y(j)*exp(-y(j)));

Gr=lambda/c*((2+x) .*exp(-x)-(2+x+i/beta) .*exp(-(x+1/beta)));

Gry=lambda/c*((2+x+y(j)) .*exp(-(x+y(j)))-(2+x+y(j)+i/beta) .*

exp(-(x+y(j)+1/beta)));

Grt'lambda/c*((2+ind(i)).*exp(-ind(i))-(2+ind(i)+y(j)).*

exp(-(ind(i)+y(j))));

end

elseif dist==5 %°h°h ---- Pareto (4,3) ----°h°h%
GOy=lambda/c*(i-(3/(y(j)+3))3);

Gr=lainbda/c*((3./(x+3)) 3-(3./(x+1/beta+3))
Gry=lambda/c*((3./(x+y(j)+3)) '3-(3.I(x+y(j)+llbeta+3))
Grt=Lambda/c*((3./(ind(i)+3)).3-(3./(ind(i)+y(j)+1/beta+3)).'3);

elseif dist6 °h%°h ---- Weibull(1, 1) Weibufl(2, 1)----%

GOy1anibda/c*pl*(1-exp(-y(j)

Gr1ambda/c*p1* (exp (-x. Ipl) -exp (- (x+1/beta) . /pl));
Gry=lainbda/c*pl*(exp(-(x+y(j)) ./pl)-exp(-(x+y(j)+1/beta) ./pl));
Grt=lambda/c*pl*(exp(-ind(i)/pl)-exp(-(ind(i)+y(j))/pi));

end

Gr1=psilow(s:-1:2)*(Gr-Gry)';

Gru=psiup(s-1:--1:i)*(Gr-Gry)';

Glow(i,j)=(Gr1+Grt-psiup(s)*GOy)/(1-psilow(1)); %'/,°hLower bound for G(u,y)

Gup(i,j)=(Gru+Grt-psilow(s)*GOy)/(1-psiup(1)); %%%Upper bound for G(u,y)

end

end

outCG1ow;Gup; (Glow+Gup)/2];

56

function out=appFx(gdy,u,beta,theta,pi,x)

sl=length(u);

s2=length(x);

uxnax=u(sl);

u=u*beta-1;

x=x*beta-1;

FO=cumsum(gdy);

F= [];
F(1, ;)='FO(x);

for r=1:1:u(sl)

for c=1:1:s2

sum--O;

if r<x(c)
for j1:1:r

sum=sum+gdy(j)*F(r-j+1,c);

end

suin2=O;

for j=r+1:1:x(c)

suxn2suni2+gdy(j);

end

F(r+1 c)=suin+sum2;

else

for j=1:1:r

sum=suin+gdy(j)*F(r-j+1,c);

end

F(r+1,c)=sum;

end

end

end

out=F;

G/70

function out=boundFx4(deltalow,deltaup,u,x,beta,theta,c,pl,dist)

format long

umax=max (u)

xmax=max (x) ;

lainbda=c/ (1-i-theta) /pl;

deltal=deltalow((O: i:umax)*beta-i-i) ;%delta u=0,1,2,..
deltau=deltaup((O: 1:umax)*beta-i-1);

57

posail=1-deltau;
posaiu1-delta1;

deltaO=theta/ (1+theta);

posaiO=1-deltaO;

if dist=1 %%% ---- Exponential ---- '/,Y,Y.
GOx=lambda/c*pl* (i-exp (-x/pl));

elseif dist==2

if p1=1
GOxlambda/c*(x./(x+1));

elseif pi==2 %%X ---- Pareto (2,2)----°h%%
GOx=lambda/c*pl*(x. /(x+2));

end

elseif dist=3 %%°h ---- Weibull(O.5,O.5), weibufl(1,O. 5)----%%7,
GOx=lambda/c*pl*(1-exp(-(2*x/pl) .O.5) .*(1+(2*x/pl)

elseif dist==4 %%% ---- Gamma ---- %%°h

GOx--lambda/c*pl*(I-exp(-2*x./pl)-x./pl.*exp(-2*x./pl));

elseif dist=5 %%% ---- Pareto (4, 3) ----'/,V,%
GOx=lambda/c*(1-(3./(x+3)) .

elseif dist==6 °h%% ---- Weibul1(1, 1) Weibufl(2, 1) ----7.%h
GOx=lambda/c*pl*(1-exp(-x. /pi));

end

Flow= D;

Fup=D;

for r=1:1: length (u)
for c=1: 1: length(x)

if u(r)<=x(c)
Flow(r,c)=(1-GOx(c))/deltaO*posail(u(r)+1)-(posaio-GOx(c))/de].tao;

Fup(r,c)=(1-GOx(c))/deltaO*posaiu(u(r)+1)--(posaiO-GOx(c))/deltao;
else

temp=u(r)-x(c);

out=boundGd3(deltalow,deltaup,temp,beta,theta,x(c) , c,pl ,dist);
Glout(1);
Ghout(2);

Flow(r,c)=Gl-(1-GOx(c))/(1-posaiO)*(posaiu(templ-1)-posail(u(r)+1));

Fup(r,c)Gh-(1-GOx(c))/(1-posaiO)*(posail(temp+1)-posaiu(u(r)+1));
end

end

end

out=[Flow;Fup; (Flow+Fup)/2];

%OIOO/ 01010? I Il/Ill

58

function out=boundFxy2(deltald,deltaud,ind,x,y,beta,theta,c,pi,umax,dist);

lainbda=c/ (1+theta)/pi;

s=length(ind);

u=O:1:umax;

deltal=deltald(u*beta+1) ;°hdelta u=0,1,2,..

deltau=deltaud (u*beta+1);

psil=1-deltau;

psiu=1-deltal;

deltaO=theta/ (1+theta);

psiO=1-deltaO;

boundGd=boimdGd3(deltald,deltaud,ind,beta,theta,y,c,pl,dist);

Glow=boundGd(1:s,:);

Gup=boundGd(s+1 : 2*s,:);

Flow=[];

FupL];

for r=1:1:s

for j=1:1:].ength(x)

for k=1 :1:length(y)

if dist==1 %°h°h ---- Exponential ---- %%%

GOx m lambda/c*pl*(1-exp(-x(j)/pl));

GOxy= lambda/c*pl*(1-exp(-(x(j)+y(k))/pl));

elseif dist==2 %%% ---- Pareto(2,i), Pareto(2,2) ---- %°h%

GOx = lainbda/c*pl*(x(j) ./(x(j)+pl));

GOxy= lambda/c*pl*((x(j)+y(k))./(x(j)+y(k)+pl));

elseif dist==3 %7,%---- Weibull(O.5,O.5) Weibull(1,O.5) ---- %%%
GOx = 1ambda/c*p1*(1-exp(-(2*x(j)./p1).O.5).*(1+(2*x(j)/p1).O.5));

GOxy= lambda/c*pl*(1-exp(-(2*(x(j)+y(k))./pl).0.5).

elseif dist==4 %%%---.- Gamma(2,O.5) Gamma(2,1) ---- %%'/,
GOx = lambda/c*pl*(i-exp(-2*x(j)./pi)-x(j)./pl.*exp(-2*x(j)./pi));

GOxy= lambda/c*pl*(1-exp(-2*(x(j)+y(k))./pl)-(x(j)+y(k))./pl.

exp(-2(x(j)+y(k)) ./pl));

elseif dist==5 '/,%%---- Pareto(4,3) ---- %%%
GOx = 1ambda/c*(1-(3/(x(j)+3)).3);

GOxy= lambda/c*(1-(3/(x(j)+y(k)+3)) .

elseif d1st6 '/,%% ---- Weibull(i , 1) Weibull(2, 1)----%%%

• GOx = lambda/c*pl*(1-exp(-x(j)./pi));

GOxy= lambda/c*pl*(1-exp(-(x(j)+y(j)) ./pl));

end

if ind(r)<=x(j)

Flow(r,j ,k)= Glow(r,k)+deltau(ind(r)+1)/deltaO*(GOx-GOxy);

Fup(r,j ,k) = Gup(r,k)+deltal(ind(r)+1)/deltaO*(GOx-GOxy);

else •
temp= ind(r)-x(j);

out = boundGd3(deltald,deltaud,temp,beta,theta, [x(j)+y(k) ,x(j)J ,c,

59

pl,dist);

Gl = out(1,:);

Gh =out(2;:);

Flow(r,j ,k)=

Fup(r,j,k) =

end

end

end

end

Glow(r,k)-Gh(1, 1)+G1(1,2)+GOx*(psil(temp+1)-

psiu(ind(r)+1))/deltaO+GOxy*(psil(ind(r)+1)-

psiu(temp+1)) /deltaO;
Gup(r,k)-G1(1, 1)+Gh(1,2)+GOx*(psiu(temp+1)-

psil(ind(r)+1))/deltaO+GOxy*(psiu(ind(r)+1)-

psil (temp+1)) /deltaO;

[Flow;Fup];

Fxylow = [Flow(: ,1,1) ,Flow(: ,2,2),Flow(: ,3,3)];

Fxyup = EFup(:,1,1),Fup(:,2,2),Fup(:,3,3)];

Fcyavg = (Fxylow+Fxyup)/2;

out= [Fxylow; Fxyup; Fxyavg];

function out=exactFxy(umax,x,y,G,del)

0/0/01
(010/0

Fxy=D;

for i=O:1:umax

for j=1: 1:length(x)

for k=1 :1: length(y)

if i<=x(j)

Fxy(i+1,j,k)=G(i+i,y(k))+de].(i+1)/del(1)*(G(1,x(j))-G(1,x(j)+y(k)));

else

Fxy(i+1,j,k)=G(i+1,y(k))-G(i-x(j)+i,x(j)+y(k))+G(i-x(j)+1,x(j))+

(del(i+i)-del(i-x(j)+i))/del(1)*(G(1,x(j))-G(i,x(j)+

y(k)));

end

end

end

end

out=Fxy;

60

Appendix B

Matlab Codes II

1. Code of calculating the moments of time to ruin.

function moments

format long

scalor=100;

theta:--O.1;

P1=1;

lambda--1;

c= (1+theta) *pl*lambda;

dist=5;

if dist==i % 0/.%---- Exponentail----%%%

ptheta=1;

p1=1;
p2=2;
p3=6;
p4=24;

umax=50;

u=0: 1:umax;

ind=E0 10 20 30 40 50];
elseif dist==3

if p1=i %%Y---- Weibull(0.5,O.5) ----%%%
ptheta=O.5; ptau=0.5;

p1=1;

p2=6;

p3=90;
p42520;
umax=80;

u=0: 1:umax;

ind=[0 20 40 60 80];

elseif p1=2 °h°//.---- Weibull(1,0.5) ----
p theta--I; ptau=0.5;

p1=2;

p224;

p3=720;

p4=40320;

nmax=80;

u=0:1:umax;

ind=[0 20 40 60 80];

end

elseif dist==5 %%%---- Pareto(4,3) ----%%%

61

palpha=4 ; ptheta=3;

p1=l;

p3=27;

°hp4 doesn't exist

umax=80;

u=0: 1:umax;

ind=[0,2 4 6 8 10 20 40 60 80;

end

if dist==1 %%'h ---- Exponential(l) ---- %%%

'1O'!% exact delta(0), delta(0.01) ,delta(0.02),. . . ,delta(100)
exactdelscl=exactdelta2(umax, scalor,theta,pl);

7,%7, excat delta(0), delta(1),delta(2)delta(100)
exactdelexactdelscl(u*scalor+1);

exactpsi=psi(umax,scalor,exactdelscl,tlieta,].ambda,dist);

exactpsilscl=exactpsi (1,:);

exactpsi2scl=exactpsi (2,:);

exactpsi3scl=exactpsi (3,:);

exactpsil=exactpsilscl(u*scalor+1); %psil(u), u--0,1,2, ...
exactpsi2=exactps12sc1(u*scalor+1); %ps12(u), u--0,1,2,...

exactpsi3=exactpsi3scl(u*scalor+1); %ps13(u), u0, 1,2,...

exactmean=exactpsil' . I(1-exactdel);
exactE2=exactpsi2' . /(1-exactdel);

exactstd=(exactE2-exactmean. 2) .

exactE3=exactpsi3' .I(1-exactdel);
exactsk= (exactE3-3*exactmean. *exactE2+2*exactme, 3) . /exactstd. 3;

plot (u' ,exactsk, 'r:');

hold on;

end

Hd=Hdy2(umax,scalor,theta,pl,c,dist);

hdo=Hd(1);

gd=(1-Hd)/hdo;

gd(1)0;

/00h% approximate delta(0.00), delta(0.01) ,delta(0.02),.. . ,delta(umax)
appdelscl=appdelta3(uinax, scalor,theta,gd,hdo);

%%% approximate delta(0), delta(1) ,delta(2)delta(umax)

appdel=appdelscl (u*scalor+1);

apppslscl=psi(uxaax, scalor,appdelscl,theta,lambda,dist);

apppsilscl=apppsiscl(1,:); %ps11(u),u=0,0.01,0.02,...

apppsi2scl=apppsiscl(2,:); %ps12(u) ,u=0,0.01,0.02,...

62

apppsi1apppsi1sc1(u*sca1or+1); %psii(u), u=0,1,2,...

apppsi2=apppsi2scl(u*scalor+1); °hpsi2(u), uO, 1,2,...

appmean=apppsil' ./(1-appdel);

appE2=apppsi2' ./(1-appdel);

appstd=(appE2-appmean.2).O.5;

difmean=difmeanl(uirtax,theta,pl,lambda);

difstd=difstddev(wnax,theta, lanibda,dist);

if dist'=1

apppsi3sclapppsiscl(3,:); %ps13(u) ,u=O,O.O1,O.02,...

apppsi3=apppsi3scl(u*scalor+1); %ps13(u), u0, 1,2,...

appE3=apppsi3' ./(1-appdel);

appsk=(appE3-3*appmean.*appE2+2*appmean. 3) .Iappstd. 3;

difsk=difskewness(unax,theta,laxnbda,dist);

plot(u' ,appsk, 'b: 0;
bold on;

plo(u' ,difsk, 'g:');

hold off;

and

if dist3 I dist==4
apppsi3scl=apppsiscl(3,:); %psi3(u),u=O,O.O1,O.02,...

appps13=apppsi3sc].(u*scalor+1); °hpsi3(u), u--0,1,2,...

appE3=appps13' ./(1-appdel);

appsk=(appE3-3*appmean.*appE2+2*appmean. 3) .Iappstd. 3;

difsk=difskewness(umax,theta, lambda, dist);

plot(u' ,appsk, 'b:');

hold on;

plot (u' ,difsk, 'g:');
hold off;

end

if dist1

mean=[exactmean(ind+1) ,appmean(ind+1) ,difmean(ind+1)]

std=[exactstd(ind+1) ,appstd(ind+i) ,difstd(ind+1)]

skeness=[exactsk(ind+1) ,appsk(ind+i) ,difsk(ind+1)]

elseif dist==3

mean= Cappmean(ind+1) , difmean(ind+1)1
std'=[appstd(ind+l) ,difstd(ind+i)]

skeness=[appsk(ind+1) ,difsk(ind+1)]

elseif dist==5

mean=Cappmeaii(ind+1) , difmeaii(ind+1)J
std=[appstd(ind+1) ,difstd(ind+1)1

end

63

64

2. Code called by moments function.

function out=psi(umax,scalor,delta,theta,lainbda,dist,pl)

u=O: 1:umax*scalor;

u=u/scalor;

s=length(u);

%u=O, 0.01,0.02 50

if dist==1

p1=1;

p2=2;

p3=6;

p424;

elseif dist==3

if pl==l %°h°h---- Weibull(0.5,0.5) ----%%%
ptheta=0.5; ptau=0.5;

p1=1;

p2=6;

p3=90;
p4252O;

elseif pl==2 %%'/---- Weibull(1,0.5) ----%°h°h
ptheta=1; ptau=0.5;

p1=2;

p2=24;

p3=720;

p4=40320;

end

elseif dist==5

p1=1;

p23;

p327;

end

L1=p2/(2*theta*pl);

L2=p3/ (3*theta*pl)+ (p2/theta/pi) 2/2;

delta=delta';

psil=[];

psi=(1-delta);

for 11:s

psil(i)=L1*delta(i)-trapz(psi(1:1:i).*delta(i:-1:1))/scalor;

end

psll=psil/(lambda*pl*theta);

ps12=D;

for i=1:s

ps12(i)=L2*delta(i)/(2*lambda*pl*theta)-trapz(psil(1 :1:1) .*

delta(i:-1:1))/scalor;

end
ps12=2*ps12/ (1ambda*p1*thta);

out= Cps11 ; ps12];

if dist==1 I dist==3 I dist==5

65

L3=p4/ (4*theta*pl) + (p2/theta/pi) 3*3/4+p2*p3/ (theta*pl) 2;

ps13=[];

for i=1:s

psi3(i)=3*delta(i)*L1*L2/(lanthda*pl*theta) -3+delta(j)*L3/

(lambda*pl*theta) 3-3/ (lanbda*pl*theta) *

trapz(ps12(1:1:i).*delta(i:-1:1))/scalor;
end

out= Cout;psi3J;

end

function out=difmeanl(umax,theta,pl,lambda);

u=0: 1:nmax;

rnearx=u/ (lambda*theta*pl);

out=mean';

function d=difstddev(umax,theta,lambda,dist,pl)

u=0: 1:uinax;

if dist==1 °h'/'h---- Exponential ----°h°h%
p1=1;

p2=2;

p3=6;

p4=24;

elseif dist==3

if pl==l '/,%%---- Weibull(0.5,O.5) ----'/%°h
ptheta=0.5; ptau=0.5;

p1=1; %pk= pthetak*gannia(1+k/ptau)

p2=6;

p3=90;
p42520;

elseif pl==2 °h%%---- Weibull (1,0.5) ----%'h°h
ptheta=1; ptau=0.5;

p1=2; %pk= pthetak*gainma(1+k/ptau)

p2=24;

p3='720;

p4=40320;

end

elseif dist==5 %%7,---- Pareto(4,3) ----%'/,%
p1=1;

p2"3;

p3=2T;

end

66

var=u*p2/ (lbda2*theta'3*p13);

d=var'.O.5;

7070%

function d=difskewness(umax,theta,lambda,dist,pl)

u=1: 1:uinax;
if dist==1 %Q/0/____ Exponential ----%%%

p1=1;
p2=2;

p3=6;

p4=24;

elseif dist==3

if pl==l %%%---- Weibull(0.5,0.5) -----%%%
ptheta=0.5; ptau=0.5;

p1=i;
p2=6;

p3=90;
p4=2520;

elseif pl==2 %%%---- Weibull(1,0.5) ----%%%
ptheta=1; ptau=0.5;

p12;

p2=24;

p3=720;

p4=40320;

end

elseif dist==5 %%%---- Pareto(4,3) ------%%%
p1=1;

p23;

p3=27;

end

skw=3*(p2./(theta*pl*u)) .

skw=[0,skw];

dskw';

000001

to to to

67

Appendix C

Matlab Codes III

Code of calculating and plotting the density of the time to ruin.

-- ThIs program calculates and plots the distribution of the time to ruin.
'1'!'!O -- Three methods are used: Approximation, myers Gaussion and Diffusion.

function density

format long

dist=5;

beta'20;
theta--0.1;

c1;

intu10; %initial surplu u

t=[10 20 200]*(1+theta)*beta; %E220,440,880]

ind=[5 10 20]*beta; %u1O0 200 800

x=1:i:max(t)+max(ind); %x=1,2,. ..220.....1680
s=length(x);

if dist==1 %%% ---- Exponential (1) ----%'/,%
pi=1;

p2=2;

pmu=68; ptheta=1i6.284; % for initial u20
fO=1-beta* (1-exp(-1/beta));

fk=beta*exp(-(x+1)/beta)*(exp(1/beta)-1) -2/(1-f 0);

elseif dist==5 '/,%%----Pareto (4,3) ----%%'/,

pi=1;
p23;

pmu=126.80414; ptheta=41.1322; 'I, for initial u=10

f0=1+beta* ((3/(3+1/beta)) '3-i);

fk=33*beta.*((3+(x+1) ./beta) (-3)--2. *(3+x./beta)

(3+(x-1) ./beta) (-3)) ./(i-fo);
end

laxnbdai=c/ ((1+theta) *pi);

%°h%lambda per unit time
lambda=lainbdal* (1-f 0)/beta;

g=11 ;

68

g(1)=exp(-lambda);

for i=1:1:s-1

g(i+1)(lanbda/i)*(1:1:i).*fk(1:1:i)*g(i:-1:1)';

end

tlainbdax*laxnbda; %lambda for time 0 to time t=1680

H=[];
h=0;

h(1,:)=exp(-tlambda); %h(l)=h-d(0) t1,2,...1680

for i=2:1:s

for j1:1:i-1

h(j+1,i)=(tlambda(i)/j)*(1:1:j).*fk(1:1:j)*h(j:-1:1,i);

end

H(i)=sum(cumsum(h(: ,i)));

end

delOstar=H. Ix;

%calculate delta(u), u*beta=i,2,...

delot=H.IxIg(1); %t=0,1,2,...,1680-1
de].Ot(1)=[]; °ht=1,2,...1680-1

delt=[];

delt(1, :)=delOt;

for u=1:1:max(ind)-1

for i=1:i:s-u-i

delt(u+1,i)(delt(u+i-1,i+1)-g(2:1:u+i)*delt(u:-1:i,i))/g(1);

end

end

doltintu=de].t (intu*beta);

if dist==1 °h%%---- Exponential(i) ----Y%%
apppsi=O.98534707373236; % for initial surplus u=20, delt(20)
exctpsi=0. 9834748888901;

elseif dist==5 %%%---- Pareto(4,3) ----°h%%
apppsi=0.475194; %f or initial surplus u=1O, delt(10)

end

%%°h Approximation method
áppf = (1+theta)*beta*(deltintu(1 : i:max(t)-i)-deltintu(2: 1:max(t)))/(1-apppsi);

plot((1: 1:max(t)-1)/(1+theta)/beta,appf, 'k');

hold on;

7/% Inverse Gaussion method
x = 0.1:1:300;
invf = (ptheta./(2*pi*x. -.3)). 0.5.*exp(-ptheta*((x-pmu)/pmu) .

plot(x,invf, 'g');

hold on;

%%°h Diffusion method
f = intu/(2*pi*lambda1*p2.0.5*x.(-3/2).*exp(-(intu-theta*lambda1*x*pi).2./

69

(2*lainbdal*x*p2));

plot(x,f,'b');

hold off;

7:10%

Bibliography

[1] N. L. Bowers, H. U. Geruer, J.C. Hickman, D.A. Jones, and C.J. Nesbitt. Actuarial

mathematics. Society of Actuaries, 2000.

[2] Rui M.R. Cardoso and Alfredo D. Egidio dos Reis. Recursive calculation of time to ruin

distributions. Insurance: Mathematics and Economics, 30, 2002.

[3] S. Cheng, H.U. Gerber, and E.S.W. Shiu. Discounted probabilities and ruin theory in the

compound binomial model. Insurance: Mathematics and Economics, 26, 2000.

[4] S.D. Conte and C. De Boor. Elementary numerical analysis. 1980.

[5] Dickson David C.M. and Waters Howard R. The distribution of the time to ruin in the

classical risk model. Astin Bulletin, 32(2):99-312, 2002.

[6] F. Delbaen. A remark on the moments of ruin time in classic risk theory. Insurance:

Mathematics and Economics, 9, 1988.

[7] David C.M. Dickson. On the distribution of the surplus prior to ruin. Insurance: Mathe-

matics and Economics, 11, 1992.

[8] David C.M. Dickson, Alfredo D. Egodio dos Reis, and Howard R. Water. Some stable

algorithms in ruin theory and their applications. Astin Bulletin, 25(2):153-175, 1995.

[9] David C.M. Dickson and Howard R. Waters. Recursive, calculation of survival probabili-

ties. Astin Bulletin, 21(2):199-221, 1991.

[10] S. Drekic and G.E. Willmot. On the density and moments of the time to ruin with expo-

nential claims. Astin Bulletin, 3, 2003.

70

71

[11] J. Dubourdieu. Thkorte mathomattque du risque dans les assurances de ropartttton,

gauth cr-viilars, paris. 1952.

[12] F. Dufresne and H.U. Gerber. The surpluses immediately before and at ruin, and the

amount of the claim causing ruin. Insurance: Mathematics and Economics, 7, 1988.

[13] F. Dufresne and H.U. Gerber. Three methods to calculate the probability of ruin. Astin

Bulletin, 19(1):71-90, 1989.

[14] H.U. Gerber. An introduction to mathematical risk theory. S.S. Huebner Foundation,

1979.

[15] H.U. Gerber and E.S.W. Shin. On the time value of ruin. North American Actuarial

Journal, 2, 1998.

[16] M. Goovaerts and F. De Vylder. A stable recursive algorithm for evaluation of ultimate

ruin probabilities. Astin Bulletin, 14(1):53-59, 1984.

[17] Stuart A. Klugman. Loss models. Wiley Interscience, 2004.

[18] X.S. Lin and G.E. Wilimot. The moments of the time of ruin, the surplus before ruin,

and the deficit at ruin. S.S. Huebner Foundation Insurance: Mathematics & Economics,

27:19 '1'1,2000.

[19] H.H. Panjer. Recusive evaluation of a family of compound distributions. Astin Bulletin,

12:22-26,1981.

[20] H.H. Panjer. Direct calculation of ruin probabilities. Astin Bulletin, 7(l):1-7, 1986.

[21] H.H. Panjer and S. Wang. On the stability of recursive formulas. Astin Bulletin, 23, 1993.

[22] H.H. Panjer and G.E. Wilimot. Insurance risk models. Society ofActuaries, Schaumburg,

1992.

72

[23] H.L. Seal. Survival probabilities. John Wiley and Sons, New York, 1978.

[24] F. De Vylder. A practical solution to the problem of ultimate ruin probability. Scandina-

vian Actuarial Journal, 1978.

[25] F. De Vylder and M.J. Goovaerts. Recursive calculation of finite-time ruin probabilities.

Insurance: Mathematics and Economics, 7:1-7, 1988.

