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Abstract 

In this thesis we study the of probability of ultimate ruin and the ruin-related quantities, includ-

ing the distribution of the severity of ruin, the distribution of the surplus immediately prior to 

ruin, the joint distribution of the surplus immediately prior to ruin and the severity of ruin, the 

moments of the time to ruin and the density of the time to ruin. 

We implement three methods: recursive approximation algorithms; lower and upper bounds; 

and simulation. The first method, based on a discrete model, uses a stable formula presented 

by Dickson and Waters. The second method, derived from Goovaerta and De Vylder, uses the 

connection between the probability of ruin and the maximal aggregate loss random variable, 

and that the latter has a compound geometric distribution. For the third method one observes 

that the probability of ruin is related to the stationary distribution of a certain associated pro-

cess allowing it to be determined by simulation of the latter. 

Keywords: Probability of ultimate ruin, Ruin theory, Probability of ultimate survival, Sim-

ulation, Recursive calculation, Stable algorithm, 
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Chapter 1 

Introduction 

It is difficult to assess the risk associated with a portfolio of insurance contracts. It is neverthe-

less important to attempt to do so in order to ensure theviability of an insurance operation. The 

distribution of total claims over a fixed period of time is an obvious input parameter to such a 

process. The common approach to follow the fortunes of the policy or portfolio is called ruin 

theory in which the quantity of interest is the amount of surplus with ruin occurring when the 

surplus drops to below zero. 

In order to track the variations in amount of an insurer's surplus over an extend period 

of time, we build a mathematical model by simplifying a real life insurance operation. This 

idealized model includes the initial fund, premiums collected over claims paid and claims paid 

as they occur. 

Many ruin-related measures and quantities will be derived and calculated, including the 

probability of ultimate ruin, the distribution of an insurer's surplus immediately prior to ruin, 

the deficit at the time of ruin, the distribution of the first drop in surplus given that the drop 

occurs, etc. 

In the next two sections we introduce the basic continuous time surplus model as well as 

the discrete model that approximates the basic model, including the definitions and notation. In 

last section, we define the ultimate ruin probability based on the continuous model and discrete 

model respectively. 
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1.1 The Classical Continuous-time Risk Model 

An insurer's surplus is modeled as the result of two opposing cash flows: an incoming cash flow 

of premium income collected continuously at the rate of c; and an outgoing cash flow due to a 

sequence of insurance claims X that are mutually independent and identically distributed with 

common distribution function P(x). The frequency of claims is assumed to follow a Poisson 

process with intensity rate 2, which means that the number of incurred claims N(t) at time t is 

governed by a Poisson distribution with mean 2t. Hence, the insurer's surplus U(u, t) at any 

time t is given by 

U(u,t) = u+c(t) —S(t) t ≥ 0 (1.1) 

where u is the insurer's initial surplus. c(t) denote premiums collected through time t will 

be a deterministic, not a stochastic process. S(t) = X denote aggregate claims occurred 

through time t, called aggregate claims process. 

To make this model simple, Dickson and Waters [8] assume 

1. The distribution function of individual claim amounts P(x) = 0 for x < 0, so that all 

claim amounts are non-negative. 

2. The mean of individual claims X which we denote P1 is finite and that any other mo-

ments of X which we require are also finite. 

3. The insurer's premium income is received continuously at positive rate c per unit time, 

then c(t) = ct. 

4. The insurer's premium income exceeds the insurer's expected aggregate claim amounts, 

that is c> ApI. Relative security loading factor 0 is defined to be c = (1 + O)Api 

Without loss of generality, we can set both c and P1 to be 1. We will refer to the process 

described above as our "basic process". It can be written as 
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N(t) 

U(u,t)=u+ct—X t≥O (1.2) 
i=1 

Later, we will remove the condition c = 1 and P1 = 1 and extend it to a general process. 

1.2 The Discrete-time Risk Model 

As, the continuous risk model tends to be difficult to analyze, we produce a discrete process to 

approximate our basic process. A discrete time surplus process considers the values of U(u, t) 

at only integer values oft, denoted by Ud (u, n) for n = 0, 1,2..... 

We rescale the basic process by multiplying all monetary amounts by some positive scalar 

/3 and taking a new time unit to be j3_1 times the original time unit so that the premium income 

per unit time c for the rescaled process is still 1. 

Let Xd,1 be a sequence of i.i.d random discrete variables whose common distribution is 

approximately the same as that of /3X1 and which are distributed on the non-negative integers. 

We denote the probability function of Xd,1 by f(k) so that fk = f(k) = Pr(Xd, = k), for k = 

0,1,2.....Its common distribution function is Fd(x) = Pr(Xd, ≤ x) = Pr(/3X1 ≤ x) = Pr(X1 ≤ 

x/13) = P(x/13). 

Let Nd(t) be defined to be N(/3't) so that {Nd(t)}1≥O is a Poisson process with parameter 

. Now consider the discrete time surplus process {Ud (u, n) defined as 

Nd(n) 

Ud(u,n)=u+n — L Xd,j 
i=1 

(1.3) 

so that the initial surplus is it and premium c is 1. The implied premium loading factor for 

this discrete surplus process will be denoted ed and is given by the formula 

1 = (1+ 0d)2131 E[Xd,i] (1.4) 
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If E [Xd,j] = /3pi, then 0d = 0. We will always choose /3 and the distribution of Xd,j to be 

such that 0d is positive. 

Let Sd denote the aggregate claims over the first time period for the discrete model. Its 

common distribution function and probability function are denoted by Hd(k) and hd(k). So 

that 

k /Nd(1) 

Hd(k)=Ehd(i)=Pr(Sd k)=Pr ( Xd,i≤k) fork=O,1, 2,... (1.5) 
j=o \i=1 

Then it is clear that for any integer n, Ud(13 u, /3n) has approximately the same distribution 

as Ud(U, n). It should also be clear that by increasing the value of /3 we ought to be able to 

improve this approximation. 

1.3 General Process 

The general process is not restricted with the assumptions c = 1, pi = 1. If we still want to use 

(1.3) to approximate (1.2), we need to amend our rescale procedure. 

If Od = O,E(Xd,j) = then (1.4) can be rewritten as 

1= (1+0) . j3 1 (1.6) 

Move c to the left side of equation 

c= (1+e).A.E(x1) = (l+O)2.'pi (1.7) 

We can recognize this is our continuous process with general c and pl. 

Our way to rescale the general process to an approximate discrete process is by multiplying 

all the monetary amount by /3/c, and taking a new time unit to be 13l times the original 

time unit. Then the discrete model has i.i.d claim amounts Xd,j whose common distribution 
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is approximately the same as that of 1-Xi and claim frequency Nd(t) is Poisson process with 

parameter A.J3'. 

1.4 Ultimate Ruin Probability 

In this section, we will use the models built in prior sections to define the ultimate ruin proba-

bility. 

As the surplus process involves two opposite cash flows - the incoming cash of premium 

and outgoing cash of claims paid - the surplus might become negative at certain times. When 

this first happens we speak of ruin having occurred. The ultimate ruin probability, denoted by 

Vf(u) is written as 

y(u) = Pr(T <oo) (1.8) 

where T denotes the time to ruin, defined by 

T = inf(t : t ≥ 0 and U(u,t) <0) 

= ooifU(u,t)≥Oforallt>O 

We write the survival probability ö(u) = 1 - Vf(u). 

The aggregate loss process L(t) is defined by L(t) = S(t) - Ct and L denotes the maximum 

of the aggregate loss process, so that y(u) = Pr(L> u). 

We are interested in the probability of ruin ¶d(u) for the discrete process. Since we will 

always take the initial surplus for the discrete process to be an integer we need to define "ruin" 

carefully. Two definitions of ruin for the discrete process will be used, depending on whether 

or not a surplus of zero (other than at time zero) is regarded as ruin. Accordingly we define 
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Td = min{n: Ud(u,n) <0 for some positive integer n} 

= ooifUd(u,n)≥Oforalln 

= min{n: Ud(U,fl) ≤ 0 for some positive integer n} 

= ooifUd(u,n)>0f0ra11n 

Then we have l/Jd(U) = Pr(Td <oo) and r(u) = Pr(T <co). The corresponding probabil-

ities of ultimate survival are 3d (u) = 1 - Yd (u) and 6(u) = 1— y(u). 

Clearly, we have y(u)=d(u-1) and 67(u)=6d(u-1) for u=1,2,3,,.. 

1.5 Thesis Overview 

In our later chapters, we present a few different methods to calculate the various ruin-related 

quantities for the discrete surplus model, and use them to approximate the continuous surplus 

model corresponding quantities. 

In the second chapter we calculate the basic quantity - the ultimate ruin probability by 

using three methods: a stable recursive algorithm; averaging the upper and lower bounds; and 

simulation. At the end, we present some numerical examples by these three methods and 

compare the results. 

In the third and fourth chapters we study other quantities which include the distribution of 

the severity of ruin, the distribution of the surplus immediately prior to ruin, the joint distribu-

tion of the surplus immediately prior to ruin and the severity of ruin. These calculations use 

the output from chapter two. Some numerical examples show the results derived by different 

methods. 
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Two more quantities will be introduced in chapter five. They are the moments of the time 

to ruin and density of the time to ruin. Four methods will be used for the calculation. 

Finally, we discuss some features of the methods used for the above chapters 

All the programs used for the series quantities calculation will be presented at the Ap-

pendix. 



8 

Chapter 2 

Probability of Ultimate Ruin 

Since ruin theory, known as the classical compound-Poisson risk model, was introduced in 

1903 by the Swedish actuary Filip Lundberg (see Dubourdieu [11]), many studies of evalu-

ating the probability of ruin have been explored. Seal [23] discusses numerical methods for 

evaluating y(u). De Vylder [24] proposes a simple approximation for ¶(u) by approximating 

the individual claim amount distribution with an exponential distribution. 

Panjer and Willmot [22] developed the recursive methods for calculating the approximate 

probability of ultimate ruin. 

The focus of this chapter is the calculation of the probability of ultimate ruin in continuous 

time for a general classical risk process. We shall present three methods: a stable recursive 

approximate algorithm derived by Dickson and Waters [8]; a bounds algorithm proposed by 

Dufresne and Gerber [13]; and simulation. The common feature of these three methods are 

that they can be explained in elementary terms and be implemented numerically without any 

difficulty. 

2.1 Recursive Approximation Algorithms 

Recursive algorithms for the probability of ultimate ruin have already appeared in actuarial 

literature. However, not all of these algorithms are, numerically stable. An algorithm is nu-

merically unstable if small errors in individual numerical operations (as a result of machine 

rounding for example) can combine to give uncontrollably large errors in the final results. For 

example, Conte and De Boor [4]. In this section, we present a stable algorithm. 

In Chapter 1, we introduce how to discretize and re-scale a continuous process. By choos-
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ing a distribution for Xd, that is, a good approximation to that of Xi, 6d( .u) is a good ap-

proximation to 6(u). 

Dickson and Waters [8] presents the following formulae for the calculation of öd(u). 

6d(0) = (l Od  
+6d)hd(0) 

(2.1) 

6d(u) = 6d(0) +gd(O,k)&d(u— k) for u= 1,2,3,...  (2.2) 

where gj (u, y) denotes the defective probability that, for given initial surplus u, ruin will 

occur and that the deficit at the time of ruin will be less than y, which is defined as 

gd(u,y) = Pr(Td <oc and Ud(U,Td) = —y) for u= 0,1,2.... and  y= 1,2,3,... 

g(u,y)=Pr(T<oc and U(u,T) —__y) for u=O,1,2,...andy=O,1,2,..., 

It is clear that 

g(u)y)=gd(u-1,y+1) for u=1,2,3, .... and y=O,1,2,... 

g(O,y) can be calculated by (Dickson and Waters [9]) 

gd(O,y) = (1—Hd(y))/hd(0) for y= 1,2,3,... (2.3) 

Since Hd(y) = Vk=l hd(k), it can easily be resolved by Panjer [191 recursion formulae 
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hd(0) = e ' (2.4) 

AP—I k 

hd(k) =   i•fj .hd(k — i) fork=1,2,3,... (2.5) 
1=1 

and De Vylder and Goovaerts [25] 

k+1 

fo+fl+"fk=f Fd(x) .dx fork=0,1,2,... (2.6) 

Starting from (2.1), and using (2.3), 3d(u) can be recursively calculated by (2.2). 

As the claim amounts have a continuous distribution, and according the the definition of 

8d(u), survival occurs as long as the surplus stays above the value —1, but it could be zero 

at any time. 4 (.u) is the survival to occur where the surplus never goes below zero. Thus 

5d(u) will tend to overstate 8(u), 50 57(.u) is usually a better approximation to 5(u) than is 

5d(u). We use formulae to obtain 

d 

and by the relations between them 

(2.7) 

S7(u)=8d(u-1) foru=1,2,3... (2,8) 

The important feature of formula (2.2) is that it is strongly stable which has been proved by 

Panjer and Wang [21]. 

2.2 Lower and Uppef Bounds 

In this section we shall present a method leads to the bounds algorithm presented by Dufresne 

and Gerber [13] and attributed by them to Goovaerts and Devylder [16] and Panjer [20] 
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It is well known that iy(0) = 1/(1 + 6) (Bowers et al [1]). We can see that W(0) depends 

only upon the relative security loading 0 and not on the specific form of the claim amount 

distribution. For convenience we denote this quantity by q. 

Recall that the maximal aggregate loss L = maxt≥o{S(t) - ct} is the maximal excess of 

aggregate claims over premiums received. Since 6(u) = 1 - ¶(u) = Pr(L ii), for ii ≥ 0, i.e. 

the probability of survival is the distribution function of L. It can be written as a random sum 

L=Ll+L2+••+LN (2.9) 

The random variables L1 , L2,. . . , LN and N are independent. The common distribution func-

tion of the L1's(See Bowers et al [1]) is 

L(y) = -_f'[1— P(x)II .dx (2.10) 

Two new random variables that are closely related to L are L1 and LIZ, they are written as 

L' =  tLii + tL2i + . . . + LLNJ (2.11) 

LIZ FL, + [L21 +.. + fLu] (2.12) 

where LLi are the largest integers less than L1, and fL11 are the smallest integers larger than 

L. Clearly 

L1 <L < LIZ 

which implies for u > 0 

i1(u) = Pr(L1 > u) ly(u) = Pr(L> u) ≤ Pr(L' > u) = 1J/'(u), for u> 0 
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We will use the average of the lower and upper bounds as an approximation value to ¶(u). 

Let 1L denote the probability that a given summand in (2.11) is equal to k, i.e.,that a given 

summand in (2.9) is between k and k+ 1. Thus 

ij = L(k+1)—L(k), fork=0,1,2,... 

Let 4' denote the corresponding probability for the summands in (2.12). Thus 

ij = L(k+1)—L(k), fork=0,l,2,... 

Here L(x) is given by formula (2.10). We want to calculate 

4=Pr(L1=r), forv=0,1,2,... 

= Pr(L" = ii), for ' 0,1,2,... 

These can be calculated recursively by the following formulae 

Then 

to 

1 
tv 

lz to 

1—q 

= q T 
lkt._k, 

l - qlk.. 

= 1—q 

for i= 1,2,3,... 

- i" Ii 
- k t._k, for r= 1,2,3,... 

U U-i 

= t'≤ ô(u) ≤ 6"(u), for u=0, 
T=O 
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The approximation of 6(u) is the average of lower and upper bound 

61(u)+61(u) 
6(u)— -   2 , for u=O,1,2,... (2.13) 

2.3 Simulation 

Thanks to the arrival of fast personal computers, simulation technique shows its advantage over 

theoretical analysis in models. For extremely complicated models this may be the only way to 

proceed. Just as the aggregate loss distribution can be simulated the process of surplus can also 

be simulated. 

The procedure of simulating 6(u) is described as below: 

1. Set the simulation experiment repeats to be 10000 

2. For each experiment, set the total number of claims n to be 4000 

3. Initialize P1 the mean of X1,X2,.. 

4. Initialize the loading factor 0, and let 0 = Od 

5. Simulate inter-arrival time t which follows exponential distribution with mean = 1/2 = 

1/(c/((1 + 0) *PO) 

6. Simulate individual claim amount X with mean = pi, for i = 1,2. ... n 

7. Calculate accumulated claim amount X, for m = 1,2,. .. n 

8. Calculate accumulated time t, form = 1,2,.. 

9. Set Lj = max(0, max(E 1 X - c i ti)), so that the maximal aggregate loss are not 

negative 
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10. Repeat 10000 times from step 2 to 9, then get L1,L'2 .... L100 

11. Calculate the empirical distribution of Lj which is the simulation result of 6(u) 

We use Matlab to implement the simulation experiment. The codes are given in Appendix 

A. 

2.4 Numerical Illustrations 

In this section we illustrate the approximation to 8(u). For the first two examples, we consider 

exponential individual claim amount distribution, but with different mean P1, premium c and 

loading factor 0. The final two examples are for Pareto and Weibull individual claim amount 

distribution. We set the discrete scalor ,8 = 100 for all the examples. 

Example 2.1 Let the individual claim amount distribution be exponential with mean P1 = 1. 

So that P(x) = 1 - e, for x> 0. Let c = 1, 0 = 0.1. It is well known that the explicit solution 

for 3(u) is 

1 1  Ott  'I 
6(u)=1_i+0exp pi(1+O)l'''' (2.14) 

See Gerber [14]. Table 2.1 shows the exact value, approximate value, average value of 

lower and upper bounds and the simulation value of the probability of the ruin 8(u). We 

see from the table the approximation and average values are generally excellent. Although 

the simulation values are not good as the previous two, it is a very good approximation. In 

addition, we can make following observations: 

• As the value of u increases from small to large, the approximation values are slightly less 

than the exact value first; then they gradually converge to the exact value. 
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U Exact App Lower Avg Upper Sim 

0 0.090909 0.090909 0.090909 0.090909 0.090909 0.089739. 
2 0.242043 0.242041 0.241418 0.242044 0.242671 0.240559 

4 0.368051 0.368049 0.367008 0.368053 0.369098 0.368185 
6 0.473111 0.473108 0.471806 0.473113 0.474419 0.472933 . 
8 0.560704 0.560702 0.559254 0.560706 0.562158 0.559600 
10 0.633736 0.633733 0.632224 0.633737 0.635251 0.633474 
20 0.852436 0.852434 0.851215 0.852434 0.853654 0.852401 
40 0.976047 0.976047 0.975649 0.976045 0.976441 0.976019 
60 0.996112 0.996112 0.996015 0.996111 0.996207 0.996145 
80 0.999369 0.999369 0.999348 0.999369 0.999389 0.999428 
100 0,999898 0.999898 0.999893 0.999897 0.999902 0.999932 

Table 2.1: 6(u), Exponential(1) claims, P1 = 1, c = 1, 0 = 0.1 

• The average values show different pattern. As the values of u increased from small to 

large, the average values are less than the exact value; then they become larger than the 

exact value. 

o The simulation values don't show a pattern related to the change of u. But we observe 

that it's very close to the exact value with errors less than 2%. 

Example 2.2 Let the individual claim amount distribution be exponential with mean P1 =2. 

so that the distribution function is P(x) = 1 - e/2, for x> 0. Let c = 2,0 = 0.25. As in 

Example 2. 1, Table 2.2 shows the exact, approximation, average and simulation values of 6(u). 

We see that while the approximation and average values are excellent, the simulation is a little 

bit poorer but still very good, especially for large u. 

Example 2.3 We now consider the situation when the individual claim amount distribution 

is Pareto(4,3). So thatP(x) = 1 - ()4 P1 = 1, for  >= 0. Let c = 1,0 = 0.25. For this dis-

tribution, an explicit solution for 6(u) does not exist. Table 2.3 shows the approximate, average 

and simulation values. From it, we see the similar pattern as the previous two examples. 

• The approximation values is slightly less than the average values for small value of u. 

As the surplus increases, the approximation values become larger than average value. 
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U Exact App Lower Avg Upper Sim 

0 0.200000 0.200000 0.200000 0.200000 0.200000 0.199470 
2 0.345015 0.345014 0.344492 0.345016 0.345540 0.344758 
4 0.463744 0.463742 0.462887 0.463745 0.464603 0.464548 
6 0.560951 0.560948 0.559898 0.560952 0.562005 0.562591 
8 0.640537 0.640534 0.639387 0.640537 0.641688 0.641449 
10 0.705696 0.705694 0.7045 19 0.705696 0.706874 0.706600 
20 0.891732 0.891730 0.890864 0.891730 0.892596 0.891864 
40 0.985347 0.985347 0.985112 0.985346 0.985581 0.984588 
60 0.998017 0.998017 0.997969 0.998017 0.998064 0.997767 
80 0.999732 0.999732 0.999723 0.999732 0.999740 0.999721 
100 0.999964 0.999964 0.999962 0.999964 0.999965 0.999962 

Table 2.2: 8(u), Exponential(2) claims, p, = 2, c = 2, 9 = 0.25 

it App Lower Avg Upper Sim 

0 0.2000000 0.2000000 0.2000000 0.2000000 0.1976200 
2 0.4257595 0.4251440 0.4257614 0.4263787 0.4231872 
4 0.5661899 0.5654139 0.5661915 0.5669691 0.5625668 
6 0.6662730 0.6654745 0.6662741 0.6670736 0.6639 189 
8 0.7405717 0.7398112 0.7405724 0.7413336 0.7386563 
10 0.7968496 0.7961539 0.7968499 0.7975459 0.7947224 
20 0.9357567 0.9354095 0.9357563 0.9361031 0.9352955 
40 0.9916746 0.9916129 0.9916744 0.9917359 0.9911388 
60 0.9984501 0.9984394 0.9984500 0.9984606 0.9982739 
80 0.9995639 0.9995618 0.9995639 0.9995660 0.9995483 
100 0.9998249 0.9998244 0.9998249 0.9998254 0.9998303 

Table 2.3: 8(u), Pareto(4,3) claims, P1 = 1, c = 1, 0 = 0.25 

Although they are identical for the last three large u, we expect approximation values are 

larger if more decimals show up. 

o Simulation values do not look as good as the other two values, but considering the margin 

of error, we still can say it's a good method. 

Example 2.4 As for our final example, we consider the individual claim amount distribu-

tion to be Weibull(2,1). So that P(x) = (1 - e,/2), Let c = 2,0 = 0.1. Table 2.4 displays the 

calculated approximate, average and simulation values of 6(0). We observe a similar pattern 
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U App Lower Avg Upper Sim 

0 0.090909 0.090909 0.090909 0.090909 0.089730 
2 0.169907 0.169566 0.169909 0.170252 0.168135 
4 0.242041 0.241418 0.242044 0.242671 0.240559 
6 0.307907 0.307053 0.307911 0.308769 0.307474 
8 0.368049 0.367008 0.368053 0.369098 0.368 185 
10 0.422964 0.421777 0.422969 0.424161 0.423239 
20 0.633733 0.632224 0.633737 0.635251 0.633474 
40 0.852434 0.851215 0.852434 0.853654 0.852401 
60 0.940547 0.939808 0.940545 0.941282 0.940851 
80 0.976047 0.975649 0.976045 0.976441 0.976019 
100 0.990349 0.990149 0.990348 0.990548 0.990183 

Table 2.4: 6(u), Weibull(2,1)) claims, P1 = 2, c = 2, 0 = 0.1 

to that in the previous example. 

We implemented the three approximate methods for four different examples. All the re-

suits suggest that the variance of the individual claim amounts distribution, the variance of 

premium and the variance of loading factor have little effect on the quality of the stable re-

cursive approximation and average of the bounds approximation. They both provide excellent 

approximation to 6(u). Simulation method is a very good alternative because it is very easy to 

implement especially for complicated model. It's clear that the accuracy of simulation result 

can be improved by increasing the number of repetition, with the cost of consuming much more 

time. 
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Chapter 3 

Distribution of the Severity of Ruin 

When ruin occurs, we also want to know how serious the situation is, i.e. the severity of ruin 

and its probability. Gerber et al [4] are the first ones to study the probability and severity of ruin 

for the classical continuous time risk model. They obtain an integral equation which is satisfied 

by the distribution of the severity of ruin. Since then more actuarial science researchers have 

started paying attention to it. 

Dickson and Waters [8] derive a stable recursive algorithm and also obtain lower and upper 

bounds. 

In this chapter, we will discuss these methods and illustrate them with some numerical 

examples. For both methods, some of the results from previous chapter will be used. 

3.1 Recursive Approximation Algorithm 

For our continuous process, we define G(u, y) to be the defective probability that for given 

initial surplus u, ruin will occur and that the deficit at the time of ruin will be less than y. This 

is written as Dickson and Waters c04 

G(u,y)=Pr(T<ooandU(u,T)>—y) foru≥Oandy>O 

So that Gd(u,y) is its corresponding probability for the approximate discrete process: 

Gd(u,y)=Pr(Td<ooaIidU(u,T)>_y) foru=O,1,2,... and y=1,2,3,... 
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G(u)y)=Pr(T2<ooandUd(u,T)>_y) foru=O,1,2,... and y=1,2,3,... 

Gd(u,y) can be calculated recursively from the following formula: 

Gd(u,y)= Gd(O,u+y)—Gd(O,u)+>gd(O,k)Gd(u_k,y) (3.1) 

Where the starting point Gd (0, y) can be calculated from (2.3) in a recursive manner. Its stabil-

ity has been proved by Panjer and Wang [21]. 

Once Gd (u, y) is calculated, G (u, y) will be obtained by 

y y 

Gd(u,y)=gd(u,j)=g(u+1,j_1)=G(u+1,y) foru=1,2,3 .... and y=1,2,3,... 
j=1 j=1 

(3.2) 

As explained in Chapter 2, we will use G(u, y) to approximate G(u,y). 

3.2 Lower and Upper Bounds 

In this section we illustrate lower and upper bounds for G(u,y) derived by Dickson and Waters 

[8]. 

Let g(u,y) denote the derivative of G(u,y) with respect to y. Bowers et al. [1] tells us that 

g(0,x) = (1—P(x)) 

We can integrate (3.3) numerically to any degree of accuracy to compute GAY). 

(3.3) 

(.y 

G(0,y)= I 0 g(0,x)dx Al 
J 
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Now let V/1 (u) and Wh (u) denote lower and upper bounds respectively for ly(u), calculated 

by the lower and upper bounds method in previous chapter. G1 (u, y) is a lower bound for G(u, y) 

1 11-1d(Illy) = {Lf1(u—r)[G(O,r+1)—G(0,r)]— 

u-i 

ji1(u—r)[G(0,r+y+1)—G(O,r+y)]+ 
r=O 

G(0,u+y) - G(0, u) - 1FZ(u)G(0,y)} (3.5) 

and G!z(u,y) is an upper bound for G(u,y) 

u-i 

G'(u,y) = 

u—i 

r=O 

G(0,u+y) - G(0,u) - f1(u)G(0,y)} (3.6) 

3.3 Numerical illustrations 

Example 3.1 Let the individual claim amount distribution be exponential with parameter 1, so 

P1 = 1. Let c = 1 and loading factor 0 = 0.1. Thus G(0,y) = I (1 - eY). 

Table 3.1 shows exact values, bounds and approximations to G(11, y). Where the exact value 

of G(u,y) was calculated from Dickson [7] 

1 / Ou  
G(u,y)= exp 

1+0 

The approximation and average of bounds'values are close to each other. 

• For the smaller values of u, the average of bounds is slightly superior, the approximation 

is slightly lower, but for large values of u both give values very close to the exact value. 
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y= 1 y= 3 
u = 20 Exact 0.093278359 0.140217403. 0.146569912 

Approx. 0.093033739 0.140119271 0.146549380 
Lower 0.077090749 0.115883949 0.121134038' 
Avg. 0.093279443 0.140219032 0.146571614 
Upper 0.109468136 0.164554114 0.172009191 

u=60 Exact 0.002457696 0.003694445 0.003861821 
Approx. 0.0024513 19 0.003691962 0.003861387 
Lower 0.001178609 0.001771702 0.001851968 
Avg. 0.002458286 0.003695331 0.003862747 
Upper 0.003737963 0.005618960 0.005873526 

u = 100 Exact 0.000064755 0.000097341 0.000101751 
Approx. 0.000064589 0.000097278 0.000101743 
Lower 0.000008601 0.000012929 0.000013515 
Avg. 0.000064803 0.000097413 0.000101827 
Upper 0.000121006 0.000181898 0.000190139 

Table 3.1: G(u,y), Exponential(1) claims, P1 = 1, c= 1, 0 = o.1 

o The calculation of GI (u, y) and G1 (u, y) is not recursive so that each combination of u 

and  needs to be calculated separately. The calculation of Gd(u,y) is recursive in u, and 

so is more convenient if values are required for several values of u. 

Example 3.2 Let the individual claim amount distribution be Weibull with parameters (1, 

0.5), so P1 =2. Let c = 2,0 = 0.25 

Table 3.2 shows bounds and approximations to G(u, y). For this case, we can't calculate 

the exact value. We can see that average of bound values and approximated values are very 

close to each other with the average value is slightly higher than approximation. Therefore we 

can conclude both methods provide good approximation 
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y=1 y= 5 Y= 10 
u=20 Approx. 0.051532160 0.177977955 0.258712082 

Lower 0.050708986 0.175850986 0.255966073 
Avg. 0.051639040 0.178138754 0.258833073 
Upper 0.052569095 0.180426521 0.261700073 

u = 100 Approx. 0.004582348 0.016067124 0.023736517 
Lower 0.004317243 0.015392090 0.022872553 
Avg. 0.004591890 0.016081834 0.023747980 
Upper 0.004866536 0.016771577 0.024623407 

ii = 200 Approx. 0.000278469 0.000978 154 0.001448296 
Lower 0.000250044 0.000905966 0.001356033 
Avg. 0.000279053 0.000979062 0.001449014 
Upper 0.000308061 0.001052158 0.001541994 

Table 3.2: G(u,y), Weibull(1, 0.5) claims, p, = 2, c = 2, 0 = 0.25 
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Chapter 4 

Distribution of the Surplus Immediately Prior to Ruin and 

Severity of Ruin 

When ruin occurs, there are two related quantities of interest: distribution of the surplus imme-

diately prior to ruin, and the joint distribution of the severity of ruin and the surplus immediately 

prior to ruin. 

Dufresne and Gerber [12] found explicit solutions for the distribution of the surplus im-

mediately prior to ruin in the classical compound Poisson risk model. Dickson [7] found the 

relationship between the distribution function of surplus at ruin, the distribution function of 

surplus prior to ruin, and the ruin probability. 

In this chapter we study the approximate numerical calculation of these two quantities. We 

will employ the stable recursive algorithms and lower and upper bounds presented by Dickson 

and Waters [8]. 

4.1 Distribution of the Surplus Immediately Prior to Ruin 

Given initial surplus u, let U(u, T) denote the surplus immediately prior to ruin for our basic 

process. We define the probability that ruin occurs and that the surplus immediately prior to 

ruin as less than x, as by F(u,x), then 

F(u,x)=Pr(T <oo and U(u,D) <x for u≥O and x>O) 

Similarly, for the discrete process, we have 
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Fd(U,X) =Pr(Td <00 and Ud(u,Td— 1) <x) for 't= 0,1,2,... and  = 1,2,3,... 

F(u,x) = Pr(T <00 and Ud(u, T - 1) <x) for it = 0,1,2,... and x = 1,2,3,... 

We know for u= 1,2,3,... and x= 1,2,3,... 

F(u)x)=Fd(u-1,x-1) 

The approximation for F (u, x) is F (I u, ix); to obtain it, we need to calculate Fd (it, x) by 

using the following formulae as suggested by Dickson and Waters [8]. 

1 
Fd(0,x) = hd(0) j= 1 j=1 gd(O,j) (4.1) 

U 

Fd(u,x) = gd(O,j)Fd(u — j,x) for u— x,x+1,x+2,... (4.2) 
j= 1 

It It Fd(u,x) gd(0,i)Fd(u—J,x)+ E gd(0,j) for u= 1,2,3,... (4.3) 
j=1 j=1 

The lower and upper bounds for F(u,x) can be calculated by 

F1(u,x) - 1—G(0,x) i y(0)—G(0,x)  
Yf for 0 < it <x 1— iy(0) (u) 1— (0) - - 

F"(u,x) - 1G(0x) Yf IZ()  (0)—G(0,x)  for O'< it <x 
- 1— W(0) 1—iy(0) 

F1(u,x) = G'(u—x,x) 1—G(0,x) 1Y/!z1O] for u≥x 
1—(0) 

Fh(u,x) = G"(u—x,x) 1G(0,x) [fl(_x)_fh()] for u≥x 
1—iy(0) 
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4.2 Joint Distribution of the Severity of Ruin and the Surplus Immediately 

Prior to Ruin 

Define F (u, x, y) to be the defective joint distribution of the severity (the deficit at time of ruin is 

less than y) of ruin and the surplus immediately prior to ruin (less than x) for our basic process. 

F(u,x,y) = Pr(T <00, U(u, T) > —y and U(u, D) <x) 

For the discrete approximation process, define 

for u = 0, 1, 2, ... x= 1,2,3 ... .and y= 1, 2, 3, 

Fd(u,x,y) = Pr(Td <00 , U( (u, Td) ≥ —y and Ud(u, Td - 1) <x) 

for u= 1,2,3,... x= 1,2,3,...andy= 1,2,3,... 

F(u)x,y) =Pr(T7 <o0,Ud(u,T) > —y and Ud(U, Td* —1) <x) 

and wehave for u=1,2,3,...x=1,2,3 .... and y=1,2,3,... 

F(u,x)y) =F(u— 1,x— l,y) 

Using the discrete approximation to our basic process, the approximation for F(u,x,y) is 

F(I.u, .x, y). To obtain it, we calculate Fd(u,X,y) first through (Dickson and Waters {8]). 

Fd(0,x,y) = 1 hd(0) (Hd(y+j)—Hd(j)) 
j= 1 

Alternatively, we could write it as 

Fd(0,x,y) = Fd(0,x) + Gd(0,y) - Gd(O,x±y) 
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for u=1,2,3, ... ,x=1,2,3, ... x-1 

It x 
Fd(u,x,y) = gd(O,j)Fd(u—j,x,y)+ E  (gd(O,j)—gd(O,j+y)) 

jU+l 

for u =x,x+ 1,x+2,... 

It 
Fd(u,x,y) =gd(o,j)Fd(u_j,x,y) 

The lower and upper bounds of F(u,x,y) can be calculated by (Dickson and Waters [8]). 

for 0 < u <x 

F1(u,x,y) = G1(U,y)+ ö(") 8(0) (G(0,x) - G(0,x+y)) 

FIZ(u,x, y) = (G(0,x) - G(0,x+y)) 
5(0) 

for u ≥ x 

F1(u,x,y) = Gl(u,y)_GIZ(u_ x,x +y)+Gl(u_x,x)+ 

G(O,x)(y1(it—x) - h(u))/5(o) + 

- 

F"(u,x,y) = GIL(u,y) - G1(u—x,x+y) +Gh(u_x)x)+ 

G(O,x)(llfhl(u_x) - '1(u))/5(0) + 

G(0,x+y)(qi'(u) - i/I1 (u—x))/8(0) 
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x=5 x=10 x=15 
u=10 App. 0.347764352 0.365965777 

Avg. 0.348173476 0.365975212 

u=30 App. 0.056450100 0.059404607 
Avg. 0.056518436 0.059408041 

u-50 App. 0.009163141 0.009642725 
Avg. 0.009175173 0.009644250 

0.366264655 
0.366260989 

0.059452816 
0.059454143 

0.009650550 
0.009651733 

Table 4.1: F(u,x), Exponential(1) claims, P1 = 1, c = 1, 0 = 0.1 

4.3 Numerical Illustrations 

Example 4.1 Let the individual claim amount distribution be exponential with mean P1 = 1 

with premium c = 1 and loading factor 0 = 0.1. Table 4.1 is the approximation of F(u, x). 

Table 4.2 is the exact and approximations of F(u,x,y). Where F(u,x,y) is calculated by for 

0<u<x 

for ii ≥ x 

F(u,x,y) = G(u,y) + G(0, x) - G(0,x+y)) 

F(u,x,y) = G(u,y)—G(u—x,x+y)+G(u—x,x)+ 

vf(u—x) - V(U) (G(0, x) - G(0,x+y)) 
6(0) 

Example 4.2 Let the individual claim amount distribution be Weibull (2,1), so P1 = 2. We 

let c = 2, and 0 = 0.25. Table 4.3 and 4.4 give the approximation of F(u,x) and F(u,x,y). 

In each example, the approximations are close to each other and from the first example 

we can see that the approximations are close to the exact values. As with the approximations 

to G(u,y) when the individual claim amount distribution is exponential, approximations to 
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x=y=1 x--y=3 
0.023039836 
0.022661899 
0.023041014 

x=y=5 
0.139330921 
0.139146266 
0.139332698 

u=20 Ext. 
App. 
Avg. 

u=60 Ext. 
App. 
Avg. 

u=100 Ext. 
App. 
Avg. 

0.000607053 
0.000597112 
0.000607297 

0.000015995 
0.000015733 
0.000016011 

0.109159143 
0.108659224 
0.109161026 

0.002876123 
0.002863030 
0.002876883 

0.000075780 
0.000075437 
0.000075839 

0.003671088 
0.003666324 
0.003671988 

0.000096726 
0.000096603 
0.000096798 

Table 4.2: F(u,x,y), Exponential(1) claims, p, = 1, c = 1, 9 = 0.1 

X=5 x=10 x=15 
u=10 App. 0.190763919 0.274904362 

Avg. 0.191787305 0.275283772 

u=30 App. 0.0258 17441 0.037204775 
Avg. 0.025957266 0.0372575 12 

u=50 App. 0.003494057 0.005035 186 
Avg. 0.003513386 0.005042836 

0.292697582 
0.292742314 

0.039412741 
0.039426045 

0.005334006 
0.005336336 

Table 4.3: F(u,x), Weibull(2,1) claims, P1 = 2, c = 2, 0 = 0.25 

x=y=1 x=y=3 
0.032148949 
0.032514150 

x=y5 
0.064360381 
0.064764706 

u=20 App. 0.003086679 
Avg. 0.003 175054 

u=60 App. 0.000056536 
Avg. 0.000058 183 

u=100 App. 0.000001036 
Avg. 0.000001066 

0.000588844 
0.000595695 

0. 0000 107 85 
0.000010917 

0.001178833 
0.001186512 

0.000021592 
0.000021743 

Table 4.4: F(it,x,y), Weibull(2,1) claims, p, = 2, c = 2, 0 = 0.25 
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F(u,x,y) based on the bounds are slightly better for small values of u. The cases use the 

calculation result y(u). We know from chapter two that average of bounds for ly(u) give an 

excellent approximation to ljf(u). When u <x the average of bounds for F(u,x) should be a 

very good approximation to F(u,x) since these bounds are linear functions of the bounds on 

ljf(u). 
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Chapter 5 

Moments of the Time to Ruin 

One particular question of interest in classical ruin theory is the moments of the time of ruin, 

which has been studied in the literature in recent years. 

Lin and Wilimot [18] extend the work of Gerber and Shiu [15] to obtain an explicit solu-

tion for the moments of the time to ruin provided that an explicit solution exists for the ultimate 

ruin probability. Cheng et al [3] present expressions for the moments of the time to ruin for a 

discrete time risk model. Egidio dos Reis [23] finds a recursion scheme to calculate the mo-

ments of the time to ruin for a discrete time risk model and uses this to approximate moments 

of the time to ruin in classical risk model. Cardoso and Bgidio dos Reis [2] focus on the direct 

calculation of the distribution of time to ruin by means of Markov chain application. Drekic 

and Willmot [10] derive explicit results for the moments of time to ruin for exponential claims. 

In this chapter, we study aspects of the time to ruin in the classical risk model. In particular, 

we focus on the actual distribution of the time to ruin. By calculating values of both finite and 

infinite time ruin probabilities, we can construct numerically the conditional distribution of the 

time to ruin, and use this to create density function. We also show how Lin and Willmot's 

[18] results can be used to calculate approximate values for moments of the time to ruin when 

explicit solutions for the probability of ultimate ruin does not exist. At the end, we illustrate 

the calculation of the moments of the time to ruin, given that ruin occurs. 

In chapter 1, we define the time to ruin is denoted by T, Vi(u) denotes the probability of 

ultimate ruin from initial surplus u, where iy(u) = Pr(T <oo). Now let's define the probability 

of ruin by time t from initial surplus u, denote it as ly(u, t), where y(u, t) = Pr(T <t). Then, 

we define the distribution function of the time to ruin given that ruin occurs as 



31 

Pr(T ≤ t) =Pr(T ≤ tjT <oo) = ly(u,t)/1y(u) 

where T = TIT <co. 

Let E(TIC) denotes the kth moment of time to ruin. Delbaen [6] proves that the kth moment 

of T exists only if the (k + 1)th moment of the individual claim amount distribution exists. In 

this chapter, we will calculate the first three moments of the time to ruin, so we assume that the 

fourth moment of the individual claim, p4, exists. 

5.1 Formulae for Moments 

Lin and Wilimot [18] present a recursive scheme from which explicit solutions for the moments 

of T can be found. 

E(Tc) = 1Vic(u)/1J1(u) 

where 

(5.1) 

1/lk(u) = (f's 1/1(u - x) V'k—i (x)dx + 8(u) V1k-1 (x)dx - V/k—i (x)dx) (5.2) 

The value of 1/1(u) can be obtained from the formula (2.2). However the formula (5.2) in-

volves integration over an infinite range, so it cannot be used for numerical calculation. There-

fore, we use the formulae provided by (Dickson and Waters [5]) to calculate lyi (ii), 1/12(u), ¶3(u). 

l/lj(u) = 

¶2(U) = 

1/13(U) = 

1  (E(L)3(u) - f uVf(x)8(u_X)dx) (5.3) .xp10 
2  (E(L2)3(u) U V'i x)6(u_x)dx) (5.4) 

.Xpje 2A. 1e [ 

35(u)E(L)E(L2) + 6(u)E(L3) f1'(5 —5 (u  (5.5) 
(2p1 e)3 (A.pie)3 Aø 



32 

where 

--
E[L] = I— yf(X)dX= P2 

20pl 

3  
E[L2] = 2fo- xiy(x)dx= 3 Op, +2\epl) 

E[L3] = f 3 xf(x)dx= P  + - (P2 40pi 4 ()  P2P3  
(Opi)2 

5.2 Diffusion Approximation 

(5.6) 

(5.7) 

(5.8) 

The surplus process U(t) can be approximated by a diffusion process. We write it U(t) 

u + W(t), where W(t) rJ N(O2pit, 2pzt) for all t > 0. It is well known that this diffusion 

process U(t) has an Inverse Gaussian [17] distribution with density 

f(t) = U (5 -3/2 exp - 1' (u -  O2.p)2  

 (2942) 1/2 j 22i.tp2 

By choosing the parameters of the diffusion process appropriately, we can consider the 

moments of the Inverse Gaussian distribution as approximations to the moments of T for 

u>0. 

E[T] V[T]   Sk[T] 3 (122) 1/2 (5.10) 
Pi 

where Sk[T] denotes the coefficient of skewness of T. 

We see that the approximations depend on the first two moments of the individual claim 

size distribution. This is because the surplus process is being approximated by a diffusion 

process and is matched via the first two moments. Thus calculation is simple. 

It should-be remembered that if p4 does not exist then the third moment, and hence the 

coefficient of skewness, of T does not exist. 
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Mean St.Dev Coef. Skewness 
u Exact App. Diffusion Exact App. Diffusion Exact App. Diffusion 
o io.00 10.00 - 45.83 45.83 - 13.74 13.74 - 

10 100.91 100.91 100.00 148.66 148.66 141.42 4.24 4.24 4.24 
20 191.82 191.82 200.00 205.18 205.18 200.00 3.07 3.07 3.00 
30 282.73 282.73 300.00 249.20 249.20 244.95 2.53 2.53 2.45 
40 373.64 373.64 400.00 286.53 286.53 282.84 2.20 2.20 2.12 
50 464.55 464.55 500.00 319.53 319.53 316.23 1.97 1.97 1.90 

Table 5.1: Mean, Standard Deviation and Coefficient of Skewness of Tc, Exponential(l) claims 

Mean St.Dev Coef. Skewness 
u Exact App. Diffusion Exact App. Diffusion Exact App. Diffusion 
0 4.00 4.00 - 12.00 12.00 - 8.963 8.963 - 

10 36.00 36.00 40.00 37.74 37.74 35.78 2.861 2.861 2.683 
20 68.00 68.00 80.00 52.00 52.00 50.60 2.076 2.076 1.897 
30 100.00 100.00 120.00 63.12 63.12 61.97 1.711 1.711 1.549 
40 132.00 132.00 160.00 72.55 72.57 71.55 1.488 1.486 1.342 
50 164.00 163.98 200.00 80.90 81.01 80.00 1.334 1.313 1.200 

Table 5.2: Mean, Standard Deviation and Coefficient of Skewness of Tc, Exponential(1) claims 

5.3 Numerical Illustrations 

In the examples below, the discretizing scalar J3 = 1000 is used for all examples to calculate 

Example 5.1 In this example, we let the individual claim amount distribution be exponen-

tial (1). Set c = 1. For this case, as the exact value and the approximate value of 1/1(u) can be 

obtained from (2.14) and (2.2), respectively. Thus we can get the exact, approximate and dif-

fusion values of E(T), fork = 1, 2,3, showing in the Tables, 5.1, 5.2 for 0 = 0.1 and 0 = 0.25 

respectively. We see that the diffusion values are poorer than approximate values. 

Example 5.2 Now we consider the individual claim amount distribution is Weibull (1,0.5). 

Let c = 2. For this case, the explicit solution does not exist. Tables 5.3, 5.4 show approximate 

values and diffusion approximate values of the first three moments of T for 0 = 0.1 and 0 = 

0.25, respectively. We observe that the approximate and diffusion, values are reasonably close 
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Mean St.Dev Skewness 
u App. Diffusion App. Diffusion App. Diffusion 
0 33.00 - 155.95 - 13.789 - 

20 150.62 110.00 335.72 269.44 6.402 7.348 
40 248.41 220.00 433.34 381.05 4.960 5.196 
60 343.32 330.00 511.19 466.69 4.204 4.243 
80 437.02 440.00 578.23 538.89 3.716 3.674 

Table 5.3: Mean, Standard Deviation and Coefficient of Skewness of Tc, Weibull(1.,0.5) claims 

Mean St.Dev Skewness 
u App. Diffusion App. Diffusion App. Diffusion 
0 15.00 - 48.22 - 9.132 - 

20 62.62 50.00 100.33 77.46 4.384 4.648 
40 99.53 100.00 128.16 109.54 3.433 3.286 
60 134.07 150.00 150.23 134.16 2.929 2.683 
80 167.26 200.00 169.21 154.92 2.600 2.324 

Table 5.4: Mean, Standard Deviation and Coefficient of Skewness of Tc, Weibull (1,0.5) claims 

to each other. 

We see that the coefficients of skewness of the above tables are positive values. This indi-

cates that the distributions of T are far from normal. From formula (5.10), it indicates that 

limSk[T]=0 
u-,00 

Thus for these examples the limit distribution of T is normal. In the next chapter, we plot the 

distribution of the time to ruin from which we can clearly see the skewness of the distribution 

of T. 
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Chapter 6 

Density of the Time to Ruin 

In this chapter we illustrate the shape of the density of T. Three different methods are used to 

produce graphs of density functions. 

6.1 Approximation Algorithms 

We know the common distribution function of time to ruin given the ruin occurs is 

H(t) = Pr(T <t) =  

values of y(u) is calculated using the stable recursive algorithm (2.2). Values of yf(u,t) 

are calculated using the algorithm presented in Dickson and Waters [9] which use the discrete 

time probability of survival (1 + O)/3t) to approximate ô(u,t). 15d(u,t) is obtained by 

the following formulae 

ôd(0,t) = hd(0) j=oF(j,t+1) (6.1) 

1 I8d(u— 1,t+ 1)— hd(i)öd(U—i,t)l (6.2) 6d(U,t) = 

Td(0) L i=1 ] 
ii 

6d(Ul,t+1)= Ehd(i)5d(u — i,t) (6.3) 
i=O 

where hd (0) and hd(k) fork = 0, 1,2,.. .can be calculated from (2.4), (2.5). F (j, t) denotes 

the common distribution of the aggregate claims up to time t for j = 0, 1,2,..., which can be 

calculated using Panjer's [19] recursive formula. 
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Then we know 

it_i 

6(O,t) = —LF(j,t) 
j=o 

= 5d(U - 1,t) 

We estimate the density of T at t = j/[(1 + 9)j3] as 

fT ((1e)p) = (1+0) [H((10)$) H((10 )] 

for j= 1,2,3,... 

6.2 Diffusion Approximation 

As the continuous surplus process U (t) can be approximated by a diffusion process U (t) which 

is the Inverse Gaussian distribution. The density of this distribution can be regarded as approx-

imations to the density of T. Formula (5.9) is used to approximate it. 

Based on this exact result for the diffusion surplus process, we can say the distribution of 

T can also be approximated by an Inverse Gaussian distribution with parameters determined 

by the first two moments. This is our third method given below. 

6.3 Inverse Gaussian Approximation 

Using the formulation in Klugman et al (2004), the probability density function of Inverse 

Gaussian distribution distribution is 

1/2 ( Oz 2 

f  = (2X3) exp ) I where z (6.4) 

E(x)=p Var(x)=- (6.5) 
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We calculated the first two moments of T, E(T') and E (I2) using formula (5. 1), then we 

solve for ,u and U by matching the moments in formulae (6.2). Formula (6.1) can be used to 

calculate the values of density directly. This is another approximation to the density of T. 

6.4 Numerical Illustrations 

Example 6.1 Let the individual claim amount distribution be exponential with P1 = 1. 0 = 0. 1, 

/3 = 20, ii = 20, thus ¶(20) = 0.015. Using the exact values of the mean and standard deviation 

from Table 5.1, we calculate the parameters of our approximating Inverse Gaussian density 

as 68 and 116.28. In Figure 6.1, the densities calculated by three methods are reasonably 

close to each other. A clear feature of the distribution of T is positively skewed as indicated 

by the value of the coefficient of skewness in Table 5.1. The straightforward approach of 

Diffusion and Inverse Gaussian approximation provides much better approximations than a 

normal distribution does. 

We use /3 = 20 as our scaling factor. This value is sufficient to calculate accurate approx-

imation to both finite and infinite time ruin probabilities. The larger value of /3, the better 

approximations are, but such extra accuracy is of limited value to us to illustrate the shape of 

the density T. 

Example 6.2 Pareto(3,4),& = 0.1,u = 10, f(10) = 0.475194, parameters are 126.824 and 

41. 1322. 

Because the formulae (6.1) and (6.2) are not stable (Dickson and Waters [9]), when using it 

to approximate 8(u, t) for the values of u greater than above 30 we experience difficulties. For 

example, the values of 3(u, t) are outside the range zero to one. 
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Chapter 7 

Conclusion 

In this thesis we study the classical risk process. We use different methods to compute the ruin 

probability for infinite time and its related quantities which include distribution of the severity 

of ruin, the distribution of the surplus immediately prior to ruin, the joint distribution of the 

surplus immediately prior to ruin and the severity of ruin. 

As the continuous model is very difficult to calculate, a rescaled discrete model is built 

to approximate it. Based on this discrete model, Dickson and Waters [8] present a recursive 

algorithm to calculate the ruin probability and related quantities. By comparing its calculated 

results to the other two methods (average of upper and lower bounds and simulation) we find 

that the recursive algorithm and the bounds method both give an excellent approximation. 

Secondly, by comparing the computing time for each example, we see the bounds method is 

the fastest which only takes a few seconds; the recursive method is the second fastest which 

takes about 30 seconds; and the simulation method is the slowest which takes about 2 minutes. 

There is an important feature of the recursive method is that it is numerical stable. 

When we rescale the continuous process, the choosing of scaler J3 determines the approx-

imation values. The larger J3 the more accurate values are. However it adds computing time. 

In our examples, we set J3 = 100. From the observation this is good enough for approximation 

and it doesn't take extra time to complete calculation. 

When calculating the ruin probability for the infinite time, a direct simulation method is 

presented as well. Results look poorer than other methods but it's still a good approximation. 

It has some advantages: it is straightforward; it is easy to implement; it may be the only 

way when encountering complicated problems. The quality of it can always be improved by 

increasing the simulation replications or using new algorithms. 
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From investigating the shape of density of the time to ruin we find the distribution of T 

is positively skewed. A simple approximation based on Inverse Gaussian densities can give 

reasonable results whereas a normal approximation would be inappropriate. 

A future work we would like to do is using the translated gamma approximation method 

presented by Dickson and Waters [5] which is based on matching three moments. It should 

perform better than Inverse Gaussian method which is based on matching just two moments. 
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Appendix A 

Matlab Codes I 

1. Main function of calculation of the ruin probability and its related quantities. 

The following quantities are calculated: the probability of ultimate 

survival Delta(u), distribution of the severity of ruin G(u,y), 

distribution of the surplus immediately prior to ruin F(u,x), joint 

distribution of the severity of ruin and the surplus immediately prior 

to ruin F(u,x,y). 

%%% -- Methods are used: Exact method (exponential distribution only), Stable 
%°h% recursive alogrithm, Bounds and Simulation. 

-- This program can calculate the claim distribution has: 

7070% i-Experiential 

°h%% 2-Pareto(2,1) or Pareto(2,2) 

%%% 3-Weibull(O.5,O.5) or Weibull(1,O.5) 

%%% 4-Gamma(2,O.5) or Gamma(2,1) 

WI.'!. 5-Pareto(4,3) 

%°h% 6-Weibull(i, 1) or Weibull(2, 1) 

function main 

format long 

diary result 

dist=5; %%% Chose a distribution 7,%% 
beta=100; WI00!0 Set scalor °h%% 
theta=O. 1; %%% Set security factor 7,'!,'!, 
c'i; %%% Set premium collected °h%% 
pl=i; %°h% Set the mean of distribution %%% 
beta=beta/c; 

 Rescale & Discrete the Continuous Process 

umax=200; %%% Set the maxmiuin initial surplus u WI00!. 
ymax=15; %%% Set the maxinium deficit 7,%% 
xmax=15; %%% Set the maxmium surplus immediately before ruin %'/.% 

HdHdy2(umax+ymax,beta,theta,pi, c,dist); 

hdOo'Hd(i); 

gd=(i-Hd)/hdO; 

gd(1)=O; 

GdO=cuinsum(gd); 
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Calculate Delta(u) 

°h%% Example 2.1, 2.2, 2.3 & 2.4 

ind=[0 2 4 6 8 10 20 40 60 80 100]; 

umax=200; 

u0: 1:umax; 

%%%'/,'I,X'/,°/i'%%%°h°h°h%%%°h°h°h°h--Recursive Algorithm--°h°h°h°h%%°h°h%%%°h%%°h%%%%%%%%%%% 

7,%% Approximate delta(0), delta (0.01) ,delta (0.02),. . . ,delta(100), 
appdelscl=appdelta3(umax,beta,theta, gd,hdo); 

%%% Approximate delta(0), delta(1),delta(2) ,....delta(100),... 
appde].=appdelscl (u*beta-i-1); 

%%% Display delta(u) at initial u = 0 2 4 6 8 10 20 40 60 80 100 
appdel (ind+1) 

%%% Plot 
plot(u,appdel,'b'); 

hold on; 

o,,,o,o,QIO,/:/:/ ,,s,o/o,',' %%°h%%%%%%W/.7.,.,.,.,. ,,,,,,,i,i,/,%'/,%--Lower & Upper Bounds--%%%%°h%%%%%%%%%%7.%%%%%%%% 

%%% Bounds of delta(0),delta(0.01) ,de].ta(0.02),. . . ,delta(100), 
bounddel=bounddolta4(umax,beta,theta,dist ,pl); 

de].tal&'bounddel(:,l); %lower bound 

deltaud=bounddel (: , 2); %upper bound 

deltalow=de].tald(u*beta+i); %lower bound at u=0,1,2,.. . ,100 

deltaup=deltaud(u*beta+1); Yupper bound at u=0,1,2,.. . ,100 

avg=(deltalow+deltaup)/2; %avg of lower & upper bounds 

%°h% Display delta(u) at initial u = 0 2 4 6 8 10 20 40 60 80 100 
avg(ind+1) 

%%% Plot 
plot(u,avg, 'g'); 
hold on; 

%%%%%%%%%%'I,%%%%%%%%%%%°h--Exact Value, Exponential only--%%%%%%%%%%%%°A%%%'h%°h 

if dist=1 

%%% Exact delta(0), delta(0.01) ,delta(0.02), . . . ,delta(100) 
exactdelscl=exactdelta2 (umax , beta, theta, p1) 



43 

°h%°I0 Excat delta(0), delta (1) , delta (2) . delta(100) 
exactdel=exactdelscl(u*beta-l-1); 

%// Display delta(u) at initial u = 0 2 4 6 8 10 20 40 60 80 100 

exactdel (ind+1) 

%°h% Plot 
plot(u,exactdel, 'kO; 

hold on; 

end 

sirndelta=simdelta3(c,theta,beta,pl,dist); 

a=simdelta(:,1); %0h°h All simulation values of initial surplus %%% 
Fa=simdelta(:,2); %%% All simulation results of Delta(u) %°h°h% 

%%% Interplot to get delta(u) at u = 0 2 4 6 8 10 20 40 60 80 100 %%'h 
simdel= []; 
for 1=1: length(ind) 

z=min(find( a > ind(i))); 

if isempty(z) 

simdel (i) =1; 

else 

simdel(i)=(Fa(z)*(ind(i)-a(z-1))+Fa(z-1)*(a(z)-ind(j)))/(a(z)-a(z-1)); 
end 

end 

%%% Display delta(u) at initial u = 0 2 4 6 8 10 20 40 60 80 100 

[id' ,simdel'] 

%%% Plot 
plot (a,Fa, '-r'); 

hold off 

 Calculate G(u,y) 

Yo%% --Example 3.1 
if dist==1 

ind=[20 60 100]; 
umax=100; 
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u=1:i:umax; 

y= [1 3 5]; 

%°h% --Example 3.2 
else 

ind=[20 100 200]; 

umax=200; 

u1: 1:umax; 

y=[l 5 10]; 

end 

7'/i'%h%'/,%%'/,%°h'/,'/,'h°h°h%%--Recursive Algorithm --%%'h%%7%%7,%%%%%%%%°h%%%%%% 

%%°h approximation of G(0.01,1), G(0.02,3),. . .,G(100,5),... 
appGd=appG2 (umax, y, gd,beta,pl); 

7,%°I, approximation of G(u,i), G(u,3), G(u,5), at u=1,2 3,... ,100 
appG"appGd(u*beta,:); 

°h'/0% Display approximation G(u,y) 
appG(ind,:) 

%%%%%%%%,.,,,,,,,,,,,,,/.%'h%--Exact Value, Exponential only--%%%%'/.%%%%%%%'/,'/.%%%%% 

if dist==1 

exactGy=exactG(umax ,theta, y,pl); 

%%% Display exact G(u,y) 
exactGy(ind+1,:) 

end 

%'/,%%'h%%'h'h%%%%°h%%%%%%%%%%--Lower & Upper Bound--%%%%%%%%%%%%%%%%%%%%%%'h%% 

boimdG=boundGd3(deltald,de].taud, ind,beta,thota,y,c,pl ,dist); 

%%% Display 
Glow=bou.ndG(i:3,:) 

Gup"boundG(4:6,:) 

GavgboundG(7:9,:) 

 Calculate F(x) 

%%'/. --Example 4.1 & 4.3 

ind=[10 30 50]; 

x=[5 10 15]; 
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%%°h°h%%/°h'/'/0%°h%%°h%-- Recursive Algorithm --Y%'/'h%%/%'/% 

appFxd=appFx(gd, ind,beta,theta,pl,x); 

I%h Display 
appFx=appFxd(ind*beta,:) 

Y%%%%%%°h%%%%%%°h-- Lower & Upper Bounds --%%%%%%%%%'/0%%0h%%%%°h%'/%%%%%%%% 

boundFx=boundFx4(deltald,deltaud,ind,x,beta,theta,c,pl,dist); 

%%% Display 
Fxlow=boundFx(1 :3,:) 

Fxup=boundFx(4:6,:) 

Fxavg=boundFx(T:9,:) 

 Calculate F(x,y) 

%%% --Example 4.2 & 4.4 
ind [20 60 100]; 

umax=100; 

y=[l 3 5]; 

x=[1 3 5]; 

%Yo%°h°h%%%%%%%°h%%%%%%%%%%%Recursive Algorithm %°h%%%%'/00h%%%%%0/.%%Y0%%%%%%%%% 

appFxyd=appFxyl(Hd,gd,beta,theta,pl,c,x,y,umax,dist); 

°h%% Display 
appFxy=[appFxyd(ind*beta, 1,1), appFxyd(ind*beta,2,2), appFxyd(ind*beta,3,3)] 

%%h%'/,%%%°h%%%°h%%Y,'/,Y.Y.%%%Lower & Upper Bounds 'h%%%%%°I00I0%%%%%%%%70%%%%0I0%%%70 

boundFxy=boundFxy2(deltald,deltaud,ind,x,y, beta, theta, c,pl,unax,dist); 

%%% Display 
Fxylow=boundFxy(1:3,:,:) 

Fxyup=boundFxy(4:6,:,:) 

Fxyavg=boundFxy(7:9,:,:) 

%%%%%%7,%'/,'/,%%7,%%%%-- Exact Value, Exponential only --%h%W/%'/0%%%%%%70% 
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if dist==1 

%%/ Exact delta(0), delta(O.O1),delta(O.02),. . .,delta(100) 

exactdelscl=exactdelta2 (uinax,beta, theta,pl); 

hh% Excat delta(0), delta(1),delta(2) .....delta(100) 
exactdel=exactdelscl (u*beta+1); 

exactGyexactG(umax,theta,max(x)+max(y) ,pl); 

exactFxyd=exactFxyl(umax,x, y, exactGy, exactdel); 

°h%°h Display 
exactFxy=[exactFxyd(ind+1 ,1,1), exactFxyd(ind+1,2,2), exactFxyd(ind+1,3,3)] 

end 

diary off 
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2. The sub functions called by main 

function out=Hdy2(max,beta,theta,p1, c,dist) 
format long 

x=1:1:max*beta; 

s=length(x); 

if dist==1 

ptheta=pl; %%70----Exponential (p1) ----%Wh 
pl=ptheta; 

fO (-exp (1/ptheta/beta) -ptheta*beta+ 

ptheta*beta*exp (1/pt heta/beta) ) /exp ( 1/ptheta/beta); 
fk =ptheta*beta*exp (- (x+1) /ptheta/beta) -2*ptheta*beta* 

exp (-x/ptheta/beta) +ptheta*beta*exp (- (x-1) /ptheta/beta); 

elseif d1st=2 

if pl==l 

palpha=2; ptheta=1; °h°h°h ---- Pareto (2,1) ----'h'h% 
elseif pl==2 

palpha=2; ptheta=2; %'/.'/. ---- Pareto (2,2) °h%'h 
end 

f 0=1- (1/beta+ptheta) (1-palpha) * (pthotapalpha) *beta/ (1-palpha)+ 

ptheta*beta/ (1-paipha); 

fk=beta. *(pthetapa1pha)/(1-palpha)*(2*(x./beta+ptheta) . '(1-palpha)-

((x-1) ./beta+ptheta) . (1-palpha)-((x+1) . /beta+ptheta) . (1-palpha)); 

elseif dist==3 

if pl==l 

ptheta=0.5; ptau=O.5; %%% ---- Weibull(0.5,0.5) ---- %%% 
elseif pl==2 

ptheta=1; ptau0. 5; %%°h ---- Weibull(1,0. 5)----%%% 

end 

fO =-(-2*ptheta*beta-exp((1/ptheta/beta)(1/2))-2*ptheta*beta* 

(1/ptheta/beta) (1/2)+2*ptheta*beta*exp((1/ptheta/beta) -(1/2)))/ 
exp( (1/ptheta/beta) (1/2)); 

fk =2*ptheta*beta*exp(-((x+1) ./ptheta/beta) . '(1/2)) .*((x+1) ./ptheta/ 

beta) . (1/2)+2*ptheta*beta*exp(-((x+1) ./ptheta/beta) . 

4*ptheta*beta*exp(-(x./ptheta/beta) '(1/2)) . *(x. /ptheta/beta) . 

4*ptheta*beta*exp(-(x./ptheta/beta) . (1/2))+2*ptheta*beta* 

exp(-((x-1) ./ptheta/beta) . (1/2)) . *((x-1) ./ptheta/beta) . 

2*ptheta*beta*exp(-((x-1) ./ptheta/beta) . 

elseif dist==4 

if pl==l 

palpha=2; ptheta=0.5; %°/h ---- Ganma(2,0.5) ----°h°h'/. 

fO -(-1-exp(1/beta)2-beta+beta*exp(1/beta)-2)/exp(1/beta)'2; 
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fk =exp(-2*(x+1) /beta) *x+exp(-2*(x+1) ./beta)+exp(-2*(x+1) ./beta). *beta-
2*x. *exp (-2*x . /beta) -2*exp (-2*x. /beta) . *beta+exp (-2* (x-1) . /beta) 

exp(-2*(x--1) .Ibeta)+exp(-2*(x-1) .Ibeta) .*beta; 

elseif pl==2 

palpha=2; ptheta=1; °h%%---- Gamma(2, 1) ----7.711. 

±0 =-(-1-exp(1/beta)-2*beta+2*beta*exp(1/beta))/exp(1/beta); 

fk =exp(-(x+1) ./beta)+2*exp(-(x+1) .Ibeta) .*beta+exp(-(x+1) /beta) 

4*exp (-x. /beta) . *beta-2*x. *exp (-x. /beta)+exp (- (x-1) /beta) 
exp(-(x-1) ./beta)+2*exp(-(x-1) ./beta).*beta; 

end 

elseif dist==5 & pl==l 

palpha=4; ptheta=3; %°h% ---- Pareto(4,3) %%%% 

pl=ptheta/ (palpha-1); 

±0=1- (1/betai-ptheta) (1-paJ.pha) * (pthetapalpha) *beta/ (1-paipha) + 

ptheta*beta/ (1-paipha); 

fk=beta. *(pthetapalpha)/(1-palpha)*(2*(x./beta+ptheta) (1-palpha)-

((x-1) /beta+ptheta) '(l-palpha)-((x+l) ./beta+ptheta) (1-palpha)); 

elseif dist==6 

if pl==l 
ptheta=1; ptau=1; 

else pl==2 

ptheta=2; ptau=1; 

end 

Y.%% ---- Weibull(1, 1) ----7.%% 

h%% ---- Weibull (2,1) ---- %h°h 

±0 = - (-exp(1/ptheta/beta)-ptheta*beta+ptheta*beta*exp (1/ptheta/beta) ) I 
exp (llpthetalbeta); 

fk =ptheta*beta*exp (-(x+1) Iptheta/beta)-2*ptheta*beta*exp (-x Iptheta/beta) + 

ptheta*beta*exp (- (x-1) . IpthetaIbeta); 

end 

laiubda=c/((1+theta)*pl); 

lambda=lambda*(1-f0)/(beta*c); 

fkfk/(1-fo); 

h(1)=exp(-lambda); 7.h(1)=h_d(0) 

for 11:1:s 

h(i+1)=(lainbda/i)*(1:1:i).*fk(1:1:i)*h(i:-1:1)'; 

end 
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H=cumsum(h); 

outH; 

function out=appdelta3 (umax ,beta, theta, g ,ho) 

format long 

x=i: 1:umax*beta; 

delta=[]; 

delta (1) =theta/ ( (1+theta) *hO); 
del=delta; 

for i=2: L:length(x) 

delta(i)=delta(1)+g(2: i)*del; 

del'4de1ta(i) ;del]; 
end 

delta'[theta/(1+theta) ,delta]; 

out=delta'; 

loll!, 10(0/I 

function out'bounddelta4(umax,beta,theta, dist ,pl) 

u=O:1:umax*beta; 

xu/beta; 

q=1/(1+theta); 

size=length(x); 

lambda--I; 

if dist==1 %°h'h ---- Exponential ----%°h% 
ptheta=pl; 

H =(-ptheta*exp (-x/ptheta) -i-ptheta) *lambda/ptheta; 

elseif dist==2 

if pl==l 

palpha=2; ptheta=1; %%°h ---- Pareto (2,1) ----°h%% 
elseif pl==2 

palpha=2; ptheta=2; %%°h ---- Pareto (2,2) ----°h%0/, 
end 

H=1-(ptheta./(x+ptheta)) (palpha-1); 
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elseif dist"=3 

if pl==l 
ptheta=0.5; ptau0. 5; %%% ---- Weibull(0. 5,0. 5)----%%'/, 

elseif pl==2 

ptheta=1; ptauo.5; %°h°h ---- Weibull( 1,0.5) ----%%% 
end 

or ptau=0.5, any ptheta 

H =1/2*(-2*ptheta*exp(-(x./ptheta) . (1/2)) .*(x./ptheta) . 

2*ptheta*exp(-(x./ptheta) . '(1/2))+2*ptheta)*lainbda/ptheta; 

elseif dist==4 

if pl==l %%% ---- Ganma (2,0.5) ----%%% 

elseif pl==2 
x=x/pl; %%°h ---- Gainma(2, 1)----%%'/ 

end 

H=1- (z+1) .*exp(-2*x); 

elseif dist==5 %%'/, ---- Pareto (4,3) ----°h%% 
palpha=4; 

ptheta--3; 

H=1-(ptheta./(x+ptheta)) . (pa1pha-1); 

elseif dist==6 

if pl==l 
ptheta=1; ptau=1; '/.'/,'/. ---- Weibul].(l, 1)----%%% 

elseif pl==2 

ptheta--2; ptau=1; '/.%% ---- Weibul].(2,1) ---- %%% 
end 

or ptau=1, any ptheta 

H = (-ptheta*exp (-x. /ptheta) +ptheta) *].ambda/ptheta; 

end 

h=diff(H); %hi,h2, 

°h%%Calculate upper bound 

fu(1)=1-q; 

for t=1:1:size-1 

k=1:t; 

fu(t+1)=q*h(k)*fu(t:-1:1)'; 

end 

psiu=1-cumsum(fu); 

hl= []; 
hio=h(1); 

h(1)=D 

fl(1)=(1-q)/(1-q*hlo); 
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for t=1:1:size-2 

k=1:t; 

fl(t+1)=q/(1-q*hlO)*h(k)*fl(t:-1: 1)'; 
end 

psil=[q, 1-cumsum(fl)]; 

deltal=1-psiu; 

deltau=1-psil; 

0ut [deltal ; deltau] ;-

 %%% 

function out=exactdelta(umax,beta,theta,pl) 

u1:1:umax*beta; °hu1,2,3. 

u=u/beta; %u=O.O1,O.02,O.03. 

°h%% delta(O.O1) ,delta(O.02),. ,delta(iOO) 
exact=1-1/(i+theta)*exp(-theta*u/(1+theta)/pl); 

%%% delta(0); 
exactO=1-1/ (1+theta); 

exact= [exactO, 

out=exact'; 

%%OI 00000! 
0 blob 

function out=simdelta(c, theta, beta, pl ,dist) 

format long 

lambda=c/ ( (1+theta) *pi); 

sim=100000; 

L=[]; 

seed = 931316785; 

rand('seed' ,seed); 

no2OOO; 

for s=1:sim 
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inttime=exprnd(1/lainbda,n, 1); 

if dist==1 

indamount=exprnd (p1, n, 1); %%% ---- Exp (pi) ----%%% 

elseif dist==2 

if pl==l 
palpha=2; ptheta=1; °h%% ---- Pareto (2,1) ----%°h% 

elseif p1=2 

palpha=2; ptheta=2; %%°h ---- Pareto (2,2) ----%%°h 

end 

u=rand(n, 1); 

indamoimt=ptheta* ((1-u). (-1/paipha) -1); 

elseif dist==3 

if pl==l 

ptheta=O.5; ptau=O.5; %%% ---- weibull(O.5,O.5) ---- °h%% 

elseif pl==2 

ptheta=1; ptau=O .5; %%% ---- weibull(1,O. 5)----7,%°h 
end 

indainount=wblrnd(ptheta,ptau,n, 1); 

elseif dist=4 

if pl==l 

palpha=2; ptheta=O.5; 

elseif pi=2 
palpha=2; ptheta=1; 

end 

indaniount=ganirnd (paipha , ptheta,n, 1); 

%%% ---- Gainina(2 , 0. 

%%'/, ---- Gamma(2, 1)-----%%% 

elseif dist==5 

palpha=4; ptheta=3; %%% ---- Pareto(4,3) ---- %°h% 

u=rand(n, 1); 
indamount=ptheta*((i-u) . (-1/pa1pha)-1); 

elseif dist==6 

if pl==l 

ptheta=1; ptau=1; 

elseif pi==2 

ptheta=2; ptau=1; 

end 

indamoimt=wblrnd(ptheta,ptau,n, 1); 

end 

ainomit=cumsum (indainount); 

time=cuinsum(intt1me); 

%%% ---- weibull( 1,1) ----'1'!'! 

%%'/, ---- weibull(2, 1)-----%%% 

m=alnount-time*c; 

maxL=max(0,max(m)); 

L=[L,maxL]; 

end 
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[Fx,xJ=ecdf(L); 

out=[x,Fx:1; 

function out=appG2(umax,y,gdy,beta,pi); 

format long 

y=y*beta; 

gdy(i)=IJ; %remove gd(O,O) 

GO=cuinsuin(gdy); 

G= 11 ; 
G(1,:)=GO(y); 

for u1:1:uinax*beta 

for c1: 1: length(y) 

sum=O; 

for k1:1:u 

suin=suin+gdy(k)*G(u-k+i , c); 

end 

G(u+1,c)=GO(1,u+y(c))-GO(1,u)+sum; 

end 

end 

outG; 

function out=exactG(umax,theta,ymax,pl) 

format long 

u=O: 1:umax; 

y=1:1:ymax; 

G=[]; 
for 1=1:1: length (u) 

for j=1:1:length(y) 

G(i,j)=i/(1+theta).*exp(-theta*u(i)/(i+theta)/pl).*(1-exp(-y(j)/pl)); 

end 

end 
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outG; 

function out=boundGd3(deltal,deltau, ind,beta,theta,y, c,pl ,dist); 

format long 

lambda=cl (1+theta) /pl; 

psilow=[1-deltau]'; 

psiup= [1-deltal]'; 

Glow=[]; 

GupD; 

for j=1:1:length(y) 

for i1:1: length(ind) 

xO: (1/beta) :ind(i)-1/beta; 

s=ind(i) *beta+1; 

if dist==1 %%% ---- Exponential ---- %%% 
GOy=lambda/c*pl*(1-exp(-y(j)/pl)); 

Gr=laiabda/c*pl*exp(-x/pl)*(1-exp(-1/beta/pl)); 

Gry=laiabda/c*pl*exp(-(x+y(j))/pl)*(1-exp(-1/beta/pl)); 

Grt=lambda/c*pl*exp(-ind(i)/pl)*(1-exp(-y(j)/pl)); 

elseif dist==2 

palpha=2; ptheta=1; 

if pl==l 

palpha=2; ptheta=I; 

GOy=lmbda/c*p1*(1-(1+y(j)) . (-palpha+1)); 

Gr=lambda/c*pl*((1+x) (-palpha+1)-(1+x+1/beta) (-palpha+1)); 

Gry=lambda/c*pl*((1+x+y(j)) (-palpha+1)-(1+x+y(j)+1/beta) . (-palpha+1)); 

Grt=lan1bda/c*p1*((1+ind(i))(-palpha+1)-(1+ind(i)+y(j))(-palpha+1)); 

elseif p1=2 °h%% ---- Pareto(2,2) ---- Yh% 
palpha=2; ptheta=2; 

GOY = lainbda/c*pl*(i-2/(2+y(j))); 

Gr = lambda/c*pl*(2./(2+x)-2./(2+x+1/beta)); 

Gry = lambda/c*pl*(2./(2+x+y(j))-2./(2+x+y(j)+1/beta)); 

Grt = lambda/c*pl*(2./(2+ind(i))-2./(2+ind(i)+y(j))); 

end 

elseif dist==3 %%% ---- Weibull(O.5,O.5), Weibull(1,O.5) ---- %%% 

GOylambda/c*pl*(i-exp(-(2*y(j)/p1) -O.5)*(1+(2*y(j)/p1) -O.5)); 

Gr=lambda/c*p1*(exp(-(2*x./p1).O.5).*(1+(2*x./p1).O.5)-

exp(-(2*(x+1/beta)./p1).O.5).*(1+(2*(x+1/beta)./p1).o.5)); 

Gry=laJnbda/c*p1*(exp(-(2*(x+y(j))./p1).O.5).*(1+(2*(x+y(j))./p1).O.5)-
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exp(-(2*(x+y(j)+1/beta)./pl).0.5).*(1+(2*(x+y(j)+1/beta)./pl).0.5)); 

Grt=lanthda/c*pl*(exp(-(2*ind(i)/pl) O.5) .*(1+(2*ind(i)/pl) 

exp(-(2*(ind(i)+y(j))/p1).O.5).*(1+(2*(ind(i)+y(j))/p1).'o.5)); 

elseif dist=4 

if pl==l %%% ---- Gainma(2,0.5) ----°h°h°h 
GOy=lainbda/c*(i-(1+y(j))*exp(-2*y(j))); 

Gr=lainbda/c*((1+x) *exp(-2*x)-(1+x+1/beta) .*exp(-2*(x+1/beta))); 

Gry=lambda/c*((i+x+y(j)) .*exp(-2*(x+y(j)))-(1+x+y(j)+1/beta) .* 

exp(-2*(x-l-y(j)+1/beta))); 

Grt1ambda/c*((1+ind(i)).*exp(-2*ind(i)).-.(1+ind(i)+y(j)).* 
exp(-2*(ind(i)+y(j)))); 

elseif pl==2 '/,'h% ---- Gainma(2,1) ---- %%% 

GOy='lambda/c*(2-2*exp(-y(j))-y(j)*exp(-y(j))); 

Gr=lambda/c*((2+x) .*exp(-x)-(2+x+i/beta) .*exp(-(x+1/beta))); 

Gry=lambda/c*((2+x+y(j)) .*exp(-(x+y(j)))-(2+x+y(j)+i/beta) .* 

exp(-(x+y(j)+1/beta))); 

Grt'lambda/c*((2+ind(i)).*exp(-ind(i))-(2+ind(i)+y(j)).* 

exp(-(ind(i)+y(j)))); 

end 

elseif dist==5 %°h°h ---- Pareto (4,3) ----°h°h% 
GOy=lambda/c*(i-(3/(y(j)+3))3); 

Gr=lainbda/c*((3./(x+3)) 3-(3./(x+1/beta+3)) 
Gry=lambda/c*((3./(x+y(j)+3)) '3-(3.I(x+y(j)+llbeta+3)) 
Grt=Lambda/c*((3./(ind(i)+3)).3-(3./(ind(i)+y(j)+1/beta+3)).'3); 

elseif dist6 °h%°h ---- Weibull(1, 1) Weibufl(2, 1)----% 

GOy1anibda/c*pl*(1-exp(-y(j) 

Gr1ambda/c*p1* (exp (-x. Ipl) -exp (- (x+1/beta) . /pl)); 
Gry=lainbda/c*pl*(exp(-(x+y(j)) ./pl)-exp(-(x+y(j)+1/beta) ./pl)); 
Grt=lambda/c*pl*(exp(-ind(i)/pl)-exp(-(ind(i)+y(j))/pi)); 

end 

Gr1=psilow(s:-1:2)*(Gr-Gry)'; 

Gru=psiup(s-1:--1:i)*(Gr-Gry)'; 

Glow(i,j)=(Gr1+Grt-psiup(s)*GOy)/(1-psilow(1)); %'/,°hLower bound for G(u,y) 

Gup(i,j)=(Gru+Grt-psilow(s)*GOy)/(1-psiup(1)); %%%Upper bound for G(u,y) 

end 

end 

outCG1ow;Gup; (Glow+Gup)/2]; 
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function out=appFx(gdy,u,beta,theta,pi,x) 

sl=length(u); 

s2=length(x); 

uxnax=u(sl); 

u=u*beta-1; 

x=x*beta-1; 

FO=cumsum(gdy); 

F= []; 
F(1, ;)='FO(x); 

for r=1:1:u(sl) 

for c=1:1:s2 

sum--O; 

if r<x(c) 
for j1:1:r 

sum=sum+gdy(j)*F(r-j+1,c); 

end 

suin2=O; 

for j=r+1:1:x(c) 

suxn2suni2+gdy(j); 

end 

F(r+1 c)=suin+sum2; 

else 

for j=1:1:r 

sum=suin+gdy(j)*F(r-j+1,c); 

end 

F(r+1,c)=sum; 

end 

end 

end 

out=F; 

G/70   

function out=boundFx4(deltalow,deltaup,u,x,beta,theta,c,pl,dist) 

format long 

umax=max (u) 

xmax=max (x) ; 

lainbda=c/ ( 1-i-theta) /pl; 

deltal=deltalow((O: i:umax)*beta-i-i) ;%delta u=0,1,2,.. 
deltau=deltaup((O: 1:umax)*beta-i-1); 



57 

posail=1-deltau; 
posaiu1-delta1; 

deltaO=theta/ (1+theta); 

posaiO=1-deltaO; 

if dist=1 %%% ---- Exponential ---- '/,Y,Y. 
GOx=lambda/c*pl* (i-exp (-x/pl)); 

elseif dist==2 

if p1=1 
GOxlambda/c*(x./(x+1)); 

elseif pi==2 %%X ---- Pareto (2,2)----°h%% 
GOx=lambda/c*pl*(x. /(x+2)); 

end 

elseif dist=3 %%°h ---- Weibull(O.5,O.5), weibufl(1,O. 5)----%%7, 
GOx=lambda/c*pl*(1-exp(-(2*x/pl) .O.5) .*(1+(2*x/pl) 

elseif dist==4 %%% ---- Gamma ---- %%°h 

GOx--lambda/c*pl*(I-exp(-2*x./pl)-x./pl.*exp(-2*x./pl)); 

elseif dist=5 %%% ---- Pareto (4, 3) ----'/,V,% 
GOx=lambda/c*(1-(3./(x+3)) . 

elseif dist==6 °h%% ---- Weibul1(1, 1) Weibufl(2, 1) ----7.%h 
GOx=lambda/c*pl*(1-exp(-x. /pi)); 

end 

Flow= D; 

Fup=D; 

for r=1:1: length (u) 
for c=1: 1: length(x) 

if u(r)<=x(c) 
Flow(r,c)=(1-GOx(c))/deltaO*posail(u(r)+1)-(posaio-GOx(c))/de].tao; 

Fup(r,c)=(1-GOx(c))/deltaO*posaiu(u(r)+1)--(posaiO-GOx(c))/deltao; 
else 

temp=u(r)-x(c); 

out=boundGd3(deltalow,deltaup,temp,beta,theta,x(c) , c,pl ,dist); 
Glout(1); 
Ghout(2); 

Flow(r,c)=Gl-(1-GOx(c))/(1-posaiO)*(posaiu(templ-1)-posail(u(r)+1)); 

Fup(r,c)Gh-(1-GOx(c))/(1-posaiO)*(posail(temp+1)-posaiu(u(r)+1)); 
end 

end 

end 

out=[Flow;Fup; (Flow+Fup)/2]; 

%OIOO/ 01010? I Il/Ill 
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function out=boundFxy2(deltald,deltaud,ind,x,y,beta,theta,c,pi,umax,dist); 

lainbda=c/ (1+theta)/pi; 

s=length(ind); 

u=O:1:umax; 

deltal=deltald(u*beta+1) ;°hdelta u=0,1,2,.. 

deltau=deltaud (u*beta+1); 

psil=1-deltau; 

psiu=1-deltal; 

deltaO=theta/ (1+theta); 

psiO=1-deltaO; 

boundGd=boimdGd3(deltald,deltaud,ind,beta,theta,y,c,pl,dist); 

Glow=boundGd(1:s,:); 

Gup=boundGd(s+1 : 2*s,:); 

Flow=[]; 

FupL]; 

for r=1:1:s 

for j=1:1:].ength(x) 

for k=1 :1:length(y) 

if dist==1 %°h°h ---- Exponential ---- %%% 

GOx m lambda/c*pl*(1-exp(-x(j)/pl)); 

GOxy= lambda/c*pl*(1-exp(-(x(j)+y(k))/pl)); 

elseif dist==2 %%% ---- Pareto(2,i), Pareto(2,2) ---- %°h% 

GOx = lainbda/c*pl*(x(j) ./(x(j)+pl)); 

GOxy= lambda/c*pl*((x(j)+y(k))./(x(j)+y(k)+pl)); 

elseif dist==3 %7,%---- Weibull(O.5,O.5) Weibull(1,O.5) ---- %%% 
GOx = 1ambda/c*p1*(1-exp(-(2*x(j)./p1).O.5).*(1+(2*x(j)/p1).O.5)); 

GOxy= lambda/c*pl*(1-exp(-(2*(x(j)+y(k))./pl).0.5). 

elseif dist==4 %%%---.- Gamma(2,O.5) Gamma(2,1) ---- %%'/, 
GOx = lambda/c*pl*(i-exp(-2*x(j)./pi)-x(j)./pl.*exp(-2*x(j)./pi)); 

GOxy= lambda/c*pl*(1-exp(-2*(x(j)+y(k))./pl)-(x(j)+y(k))./pl. 

*exp(-2*(x(j)+y(k)) ./pl)); 

elseif dist==5 '/,%%---- Pareto(4,3) ---- %%% 
GOx = 1ambda/c*(1-(3/(x(j)+3)).3); 

GOxy= lambda/c*(1-(3/(x(j)+y(k)+3)) . 

elseif d1st6 '/,%% ---- Weibull(i , 1) Weibull(2, 1)----%%% 

• GOx = lambda/c*pl*(1-exp(-x(j)./pi)); 

GOxy= lambda/c*pl*(1-exp(-(x(j)+y(j)) ./pl)); 

end 

if ind(r)<=x(j) 

Flow(r,j ,k)= Glow(r,k)+deltau(ind(r)+1)/deltaO*(GOx-GOxy); 

Fup(r,j ,k) = Gup(r,k)+deltal(ind(r)+1)/deltaO*(GOx-GOxy); 

else • 
temp= ind(r)-x(j); 

out = boundGd3(deltald,deltaud,temp,beta,theta, [x(j)+y(k) ,x(j)J ,c, 
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pl,dist); 

Gl = out(1,:); 

Gh =out(2;:); 

Flow(r,j ,k)= 

Fup(r,j,k) = 

end 

end 

end 

end 

Glow(r,k)-Gh(1, 1)+G1(1,2)+GOx*(psil(temp+1)-

psiu(ind(r)+1))/deltaO+GOxy*(psil(ind(r)+1)-

psiu(temp+1) ) /deltaO; 
Gup(r,k)-G1(1, 1)+Gh(1,2)+GOx*(psiu(temp+1)-

psil(ind(r)+1))/deltaO+GOxy*(psiu(ind(r)+1)-

psil (temp+1) ) /deltaO; 

[Flow;Fup]; 

Fxylow = [Flow(: ,1,1) ,Flow(: ,2,2),Flow(: ,3,3)]; 

Fxyup = EFup(:,1,1),Fup(:,2,2),Fup(:,3,3)]; 

Fcyavg = (Fxylow+Fxyup)/2; 

out= [Fxylow; Fxyup; Fxyavg]; 

function out=exactFxy(umax,x,y,G,del) 

0/0/01 
(010/0 

Fxy=D; 

for i=O:1:umax 

for j=1: 1:length(x) 

for k=1 :1: length(y) 

if i<=x(j) 

Fxy(i+1,j,k)=G(i+i,y(k))+de].(i+1)/del(1)*(G(1,x(j))-G(1,x(j)+y(k))); 

else 

Fxy(i+1,j,k)=G(i+1,y(k))-G(i-x(j)+i,x(j)+y(k))+G(i-x(j)+1,x(j))+ 

(del(i+i)-del(i-x(j)+i))/del(1)*(G(1,x(j))-G(i,x(j)+ 

y(k))); 

end 

end 

end 

end 

out=Fxy; 
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Appendix B 

Matlab Codes II 

1. Code of calculating the moments of time to ruin. 

function moments 

format long 

scalor=100; 

theta:--O.1; 

P1=1; 

lambda--1; 

c= (1+theta) *pl*lambda; 

dist=5; 

if dist==i % 0/.%---- Exponentail----%%% 

ptheta=1; 

p1=1; 
p2=2; 
p3=6; 
p4=24; 

umax=50; 

u=0: 1:umax; 

ind=E0 10 20 30 40 50]; 
elseif dist==3 

if p1=i %%Y---- Weibull(0.5,O.5) ----%%% 
ptheta=O.5; ptau=0.5; 

p1=1; 

p2=6; 

p3=90; 
p42520; 
umax=80; 

u=0: 1:umax; 

ind=[0 20 40 60 80]; 

elseif p1=2 °h°//.---- Weibull(1,0.5) ----
p  theta--I; ptau=0.5; 

p1=2; 

p224; 

p3=720; 

p4=40320; 

nmax=80; 

u=0:1:umax; 

ind=[0 20 40 60 80]; 

end 

elseif dist==5 %%%---- Pareto(4,3) ----%%% 
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palpha=4 ; ptheta=3; 

p1=l; 

p3=27; 

°hp4 doesn't exist 

umax=80; 

u=0: 1:umax; 

ind=[0,2 4 6 8 10 20 40 60 80; 

end 

if dist==1 %%'h ---- Exponential(l) ---- %%% 

'1O'!% exact delta(0), delta(0.01) ,delta(0.02),. . . ,delta(100) 
exactdelscl=exactdelta2(umax, scalor,theta,pl); 

7,%7, excat delta(0), delta(1),delta(2) .....delta(100) 
exactdelexactdelscl(u*scalor+1); 

exactpsi=psi(umax,scalor,exactdelscl,tlieta,].ambda,dist); 

exactpsilscl=exactpsi (1,:); 

exactpsi2scl=exactpsi (2,:); 

exactpsi3scl=exactpsi (3,:); 

exactpsil=exactpsilscl(u*scalor+1); %psil(u), u--0,1,2, ... 
exactpsi2=exactps12sc1(u*scalor+1); %ps12(u), u--0,1,2,... 

exactpsi3=exactpsi3scl(u*scalor+1); %ps13(u), u0, 1,2,... 

exactmean=exactpsil' . I(1-exactdel); 
exactE2=exactpsi2' . /(1-exactdel); 

exactstd=(exactE2-exactmean. 2) . 

exactE3=exactpsi3' .I( 1-exactdel); 
exactsk= (exactE3-3*exactmean. *exactE2+2*exactme, 3) . /exactstd. 3; 

plot (u' ,exactsk, 'r:'); 

hold on; 

end 

Hd=Hdy2(umax,scalor,theta,pl,c,dist); 

hdo=Hd(1); 

gd=(1-Hd)/hdo; 

gd(1)0; 

/00h% approximate delta(0.00), delta(0.01) ,delta(0.02),.. . ,delta(umax) 
appdelscl=appdelta3(uinax, scalor,theta,gd,hdo); 

%%% approximate delta(0), delta(1) ,delta(2) .....delta(umax) 

appdel=appdelscl (u*scalor+1); 

apppslscl=psi(uxaax, scalor,appdelscl,theta,lambda,dist); 

apppsilscl=apppsiscl(1,:); %ps11(u),u=0,0.01,0.02,... 

apppsi2scl=apppsiscl(2,:); %ps12(u) ,u=0,0.01,0.02,... 
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apppsi1apppsi1sc1(u*sca1or+1); %psii(u), u=0,1,2,... 

apppsi2=apppsi2scl(u*scalor+1); °hpsi2(u), uO, 1,2,... 

appmean=apppsil' ./(1-appdel); 

appE2=apppsi2' ./(1-appdel); 

appstd=(appE2-appmean.2).O.5; 

difmean=difmeanl(uirtax,theta,pl,lambda); 

difstd=difstddev(wnax,theta, lanibda,dist); 

if dist'=1 

apppsi3sclapppsiscl(3,:); %ps13(u) ,u=O,O.O1,O.02,... 

apppsi3=apppsi3scl(u*scalor+1); %ps13(u), u0, 1,2,... 

appE3=apppsi3' ./(1-appdel); 

appsk=(appE3-3*appmean.*appE2+2*appmean. 3) .Iappstd. 3; 

difsk=difskewness(unax,theta,laxnbda,dist); 

plot(u' ,appsk, 'b: 0; 
bold on; 

plo(u' ,difsk, 'g:'); 

hold off; 

and 

if dist3 I dist==4 
apppsi3scl=apppsiscl(3,:); %psi3(u),u=O,O.O1,O.02,... 

appps13=apppsi3sc].(u*scalor+1); °hpsi3(u), u--0,1,2,... 

appE3=appps13' ./(1-appdel); 

appsk=(appE3-3*appmean.*appE2+2*appmean. 3) .Iappstd. 3; 

difsk=difskewness(umax,theta, lambda, dist); 

plot(u' ,appsk, 'b:'); 

hold on; 

plot (u' ,difsk, 'g:'); 
hold off; 

end 

if dist1 

mean=[exactmean(ind+1) ,appmean(ind+1) ,difmean(ind+1)] 

std=[exactstd(ind+1) ,appstd(ind+i) ,difstd(ind+1)] 

skeness=[exactsk(ind+1) ,appsk(ind+i) ,difsk(ind+1)] 

elseif dist==3 

mean= Cappmean(ind+1) , difmean(ind+1)1 
std'=[appstd(ind+l) ,difstd(ind+i)] 

skeness=[appsk(ind+1) ,difsk(ind+1)] 

elseif dist==5 

mean=Cappmeaii(ind+1) , difmeaii(ind+1)J 
std=[appstd(ind+1) ,difstd(ind+1)1 

end 
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2. Code called by moments function. 

function out=psi(umax,scalor,delta,theta,lainbda,dist,pl) 

u=O: 1:umax*scalor; 

u=u/scalor; 

s=length(u); 

%u=O, 0.01,0.02 .... 50 

if dist==1 

p1=1; 

p2=2; 

p3=6; 

p424; 

elseif dist==3 

if pl==l %°h°h---- Weibull(0.5,0.5) ----%%% 
ptheta=0.5; ptau=0.5; 

p1=1; 

p2=6; 

p3=90; 
p4252O; 

elseif pl==2 %%'/---- Weibull(1,0.5) ----%°h°h 
ptheta=1; ptau=0.5; 

p1=2; 

p2=24; 

p3=720; 

p4=40320; 

end 

elseif dist==5 

p1=1; 

p23; 

p327; 

end 

L1=p2/(2*theta*pl); 

L2=p3/ (3*theta*pl)+ (p2/theta/pi) 2/2; 

delta=delta'; 

psil=[]; 

psi=(1-delta); 

for 11:s 

psil(i)=L1*delta(i)-trapz(psi(1:1:i).*delta(i:-1:1))/scalor; 

end 

psll=psil/(lambda*pl*theta); 

ps12=D; 

for i=1:s 

ps12(i)=L2*delta(i)/(2*lambda*pl*theta)-trapz(psil(1 :1:1) .* 

delta(i:-1:1))/scalor; 

end 
ps12=2*ps12/ (1ambda*p1*thta); 

out= Cps11 ; ps12]; 

if dist==1 I dist==3 I dist==5 
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L3=p4/ (4*theta*pl) + (p2/theta/pi) 3*3/4+p2*p3/ (theta*pl) 2; 

ps13=[]; 

for i=1:s 

psi3(i)=3*delta(i)*L1*L2/(lanthda*pl*theta) -3+delta(j)*L3/ 

(lambda*pl*theta) 3-3/ (lanbda*pl*theta) * 

trapz(ps12(1:1:i).*delta(i:-1:1))/scalor; 
end 

out= Cout;psi3J; 

end 

function out=difmeanl(umax,theta,pl,lambda); 

u=0: 1:nmax; 

rnearx=u/ (lambda*theta*pl); 

out=mean'; 

function d=difstddev(umax,theta,lambda,dist,pl) 

u=0: 1:uinax; 

if dist==1 °h'/'h---- Exponential ----°h°h% 
p1=1; 

p2=2; 

p3=6; 

p4=24; 

elseif dist==3 

if pl==l '/,%%---- Weibull(0.5,O.5) ----'/%°h 
ptheta=0.5; ptau=0.5; 

p1=1; %pk= pthetak*gannia(1+k/ptau) 

p2=6; 

p3=90; 
p42520; 

elseif pl==2 °h%%---- Weibull (1,0.5) ----%'h°h 
ptheta=1; ptau=0.5; 

p1=2; %pk= pthetak*gainma(1+k/ptau) 

p2=24; 

p3='720; 

p4=40320; 

end 

elseif dist==5 %%7,---- Pareto(4,3) ----%'/,% 
p1=1; 

p2"3; 

p3=2T; 

end 
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var=u*p2/ (lbda2*theta'3*p13); 

d=var'.O.5; 

7070% 

function d=difskewness(umax,theta,lambda,dist,pl) 

u=1: 1:uinax; 
if dist==1 %Q/0/____ Exponential ----%%% 

p1=1; 
p2=2; 

p3=6; 

p4=24; 

elseif dist==3 

if pl==l %%%---- Weibull(0.5,0.5) -----%%% 
ptheta=0.5; ptau=0.5; 

p1=i; 
p2=6; 

p3=90; 
p4=2520; 

elseif pl==2 %%%---- Weibull(1,0.5) ----%%% 
ptheta=1; ptau=0.5; 

p12; 

p2=24; 

p3=720; 

p4=40320; 

end 

elseif dist==5 %%%---- Pareto(4,3) ------%%% 
p1=1; 

p23; 

p3=27; 

end 

skw=3*(p2./(theta*pl*u)) . 

skw=[0,skw]; 

dskw'; 

000001  

to to to 
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Appendix C 

Matlab Codes III 

Code of calculating and plotting the density of the time to ruin. 

-- ThIs program calculates and plots the distribution of the time to ruin. 
'1'!'!O -- Three methods are used: Approximation, myers Gaussion and Diffusion. 

function density 

format long 

dist=5; 

beta'20; 
theta--0.1; 

c1; 

intu10; %initial surplu u 

t=[10 20 200]*(1+theta)*beta; %E220,440,880] 

ind=[5 10 20]*beta; %u1O0 200 800 

x=1:i:max(t)+max(ind); %x=1,2,. ..220.....1680 
s=length(x); 

if dist==1 %%% ---- Exponential (1) ----%'/,% 
pi=1; 

p2=2; 

pmu=68; ptheta=1i6.284; % for initial u20 
fO=1-beta* (1-exp(-1/beta)); 

fk=beta*exp(-(x+1)/beta)*(exp(1/beta)-1) -2/(1-f 0); 

elseif dist==5 '/,%%----Pareto (4,3) ----%%'/, 

pi=1; 
p23; 

pmu=126.80414; ptheta=41.1322; 'I, for initial u=10 

f0=1+beta* ((3/(3+1/beta)) '3-i); 

fk=33*beta.*((3+(x+1) ./beta) (-3)--2. *(3+x./beta) 

(3+(x-1) ./beta) (-3)) ./(i-fo); 
end 

laxnbdai=c/ ( (1+theta) *pi); 

%°h%lambda per unit time 
lambda=lainbdal* (1-f 0)/beta; 

g=11 ; 
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g(1)=exp(-lambda); 

for i=1:1:s-1 

g(i+1)(lanbda/i)*(1:1:i).*fk(1:1:i)*g(i:-1:1)'; 

end 

tlainbdax*laxnbda; %lambda for time 0 to time t=1680 

H=[]; 
h=0; 

h(1,:)=exp(-tlambda); %h(l)=h-d(0) t1,2,...1680 

for i=2:1:s 

for j1:1:i-1 

h(j+1,i)=(tlambda(i)/j)*(1:1:j).*fk(1:1:j)*h(j:-1:1,i); 

end 

H(i)=sum(cumsum(h(: ,i))); 

end 

delOstar=H. Ix; 

%calculate delta(u), u*beta=i,2,... 

delot=H.IxIg(1); %t=0,1,2,...,1680-1 
de].Ot(1)=[]; °ht=1,2,...1680-1 

delt=[]; 

delt(1, :)=delOt; 

for u=1:1:max(ind)-1 

for i=1:i:s-u-i 

delt(u+1,i)(delt(u+i-1,i+1)-g(2:1:u+i)*delt(u:-1:i,i))/g(1); 

end 

end 

doltintu=de].t (intu*beta); 

if dist==1 °h%%---- Exponential(i) ----Y%% 
apppsi=O.98534707373236; % for initial surplus u=20, delt(20) 
exctpsi=0. 9834748888901; 

elseif dist==5 %%%---- Pareto(4,3) ----°h%% 
apppsi=0.475194; %f or initial surplus u=1O, delt(10) 

end 

%%°h Approximation method 
áppf = (1+theta)*beta*(deltintu(1 : i:max(t)-i)-deltintu(2: 1:max(t)))/(1-apppsi); 

plot((1: 1:max(t)-1)/(1+theta)/beta,appf, 'k'); 

hold on; 

7/% Inverse Gaussion method 
x = 0.1:1:300; 
invf = (ptheta./(2*pi*x. -.3)). 0.5.*exp(-ptheta*((x-pmu)/pmu) . 

plot(x,invf, 'g'); 

hold on; 

%%°h Diffusion method 
f = intu/(2*pi*lambda1*p2.0.5*x.(-3/2).*exp(-(intu-theta*lambda1*x*pi).2./ 
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(2*lainbdal*x*p2)); 

plot(x,f,'b'); 

hold off; 

7:10% 
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