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Abstract

Sequential consistency is an intuitive consistency model that simplifies reasoning about concurrent multi-
processor programs. Most implementations of high-performance multiprocessors, however, utilize mech-
anisms that allow instructions to execute out of order, resulting in consistency models that are weaker
than sequential consistency and further complicating the job of programmers. This paper investigates
all possible combinations of re-ordering of read and write instructions and their effects on the correct-
ness of programs that are designed for sequential consistency. It shows that with certain combinations
of re-orderings, any program that accesses shared memory through only reads and writes and that is
correct assuming sequential consistency, can be transformed to a new program that does not use any
explicit synchronization, and that remains correct in spite of the instruction re-ordering. With other
combinations of re-ordering, such transformations do not exist, and even solutions to the mutual exclu-
sion problem are impossible without resorting to explicit synchronization.

Keywords: Instruction re-ordering, Sequential consistency, Critical Sections, Memory consistency mod-
els, Mutual exclusion, High-performance multiprocessors.

1 Introduction

Designers of concurrent algorithms typically assume sequential consistency, a consistency model that is
formalized by Lamport [20]. Sequential consistency requires that memory operations of all processors appear
to be “executed in some sequential order, and the operations of each processor appear in this sequence in
the order specified by its program” (program order). Sequential consistency is intuitive, but disallows many
possible hardware and software optimizations.

Adve and Gharachorloo [2] identify several optimization techniques that cause instructions to be re-
ordered so that they appear to execute out of program order. This is called instruction re-ordering. Write
buffers with read bypasses, overlapping writes, non-blocking reads, and optimizing compilers can lead to all
forms of instruction re-ordering. They also cite many commercial multiprocessors that utilize instruction
re-ordering, such as the AlphaServer 8200/8400, Cray T3D/T3E, and SparcCenter 1000/2000 (See Figure
1). Other examples include the Java Virtual Machine (JVM), IBM PowerPC, Intel Itanium, and .Net.
Instruction re-ordering aims at improving the system’s performance but it relaxes sequential consistency,
making the job of programming multiprocessors even harder.

As noted by Lamport [20], independent instructions applied to different (memory) locations cannot be re-
ordered without changing possible outcomes. Therefore, multiprocessor systems that incorporate instruction
re-ordering are also equipped with more powerful instructions than reads and writes, such as read-modify-
write and memory barrier instructions. These synchronization primitives can be used to enforce orderings
on instructions that otherwise might be re-ordered causing incorrect computation. Using these powerful
instructions, however, is expensive; excessive use can result in inefficient implementations, possibly defeating
the purpose of instruction re-ordering altogether.
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Figure 1: Examples of some commercial systems that utilize instruction re-ordering

We assume that multiprocessors are coherent meaning that execution order maintains program order of
instructions applied to the same memory location. If a read of one location precedes in program order a
write to a different location and this read appears after this write in execution order, this is called read-write
re-ordering. Reordering types write-read, write-write, and read-read are defined similarly. Call a shared
memory multiprocessor program whose shared memory consists of only atomic locations (that is, variables
that support only read and write instructions), a (shared-memory) multi-program. This paper answers a
fundamental question concerning shared-memory multi-programs and instruction re-ordering;:

Under what conditions is there a general transformation that transforms any shared-memory
multi-program that is correct under sequential consistency to another shared-memory multi-
program that is still correct in spite of possible instruction re-ordering?

The results of this paper are summarized in Figure 2 (Section 4). Let A be a shared-memory multi-
program that solves a given problem P under sequential consistency. This paper shows that:

1. For any combination of re-ordering types that excludes read-read re-ordering, there exists a (very
simple) transformation, which transforms A to another shared-memory program that solves P in spite
of the re-ordering. The transformation is general; it is correct for any shared-memory program under
any combination of read-write, write-read, and write-write re-orderings.

2. The exclusion of the read-read re-ordering is sufficient but not necessary. For any combination of
read-read and write-write re-ordering only, such a transformation still exists.

3. If both read-read and read-write (or both read-read and write-read) re-ordering combinations are
possible, there is no shared-memory solution to mutual exclusion without using stronger objects than
shared locations.

4. Since mutual exclusion using only shared locations is solvable under sequential consistency, a corollary
is that there does not exist a general transformation that uses only shared locations and that guar-
antees correctness when both read-read and read-write (or both read-read and write-read) re-ordering
combinations are possible.

Some of our previous work focused on addressing similar, but less general, questions concerning specific
memory consistency models. Previously, we studied the possibility of implementing different coordination
patterns on state-of-the-art multiprocessor systems [13, 14, 16]. We also derived necessary and sufficient
condition for critical section coordination in a special form of processor consistency [15] and showed that
even expected wait-free test-and-set is possible with this consistency model [17].

Other related studies [5, 7, 1, 4, 3, 6, 11, 21] provide programming strategies for high performance
multiprocessors most of which rely on the wise usage of synchronization.

Before we target the posed questions in Section 3, Section 2 provides the definitions and a more precise
model and other machinery used in this paper. Section 4 summarizes the paper and discusses further
research.



2 Model and Definitions

2.1 Multiprocessors, programs and computations

We think of a multiprocessor as a set of processors that asynchronously accesses a bank of shared (mem-
ory) locations. Each processor executes a shared-memory program and consequently generates instruction
invocations, each of which atomically reads from or atomically writes to one of these locations. The order
of these instructions as specified by each processor’s program is called program order.

For this paper, we consider multiprocessors whose execution of read and write instructions is indistin-
guishable from an execution in which all the instructions of each of its processors are performed in some total
order, but this total order does not necessarily extend program order. We are interested in such machines
because some optimization techniques permit instructions to be re-ordered so that they appear to execute
out of program order. Typically, such re-orderings are designed so that they do not alter the outcome of a
single processor computation. When more than one processors is executing, however, these re-orderings can
corrupt the computation [20].

In order to facilitate our proofs in Section 3, we formalize the preceding intuition as follows. Processor
p assigns a value v to location z with the instruction write,(z,v). The instruction read,(z) = v returns
to processor p the value v for location x. Both of these instructions are applied to x. The subscripts in
instructions write,(z, v) and read,(z) = v will be omitted when the processor executing the instruction is
clear or irrelevant to the discussion. The invocation component of the instruction read(z) = v is read(z)
and the response component is v. For a write instruction, the invocation component is the same as the
whole instruction and the response is an acknowledgment, which is ignored for this paper. A processor
computation is any sequence of read and write instructions applied to a collection of shared locations, where
the instruction invocations in the sequence arises from the processor’s program and are in program order.
A (multiprocessor) computation of multiprocessor P, is a collection of processor computations, one for each
processor p € P. The collection of shared-memory programs of its processors is the multiprocessor’s (shared-
memory) multi-program.

2.2 Consistency Guarantees

According to these definitions of a processor computation and a multiprocessor computation, the responses of
read instructions are entirely arbitrary. But in practice we expect the responses of reads to somehow “make
sense”. This is captured with constraints on the computation which restrict the values that read invocations
can return. A sequence of read and write instructions is walid if each read in the sequence returns the
value of the most recent preceding write to the same location. We will require that for any multiprocessor
computation there exists some valid sequence of all the instructions in the computation and this sequence
bears some relationship to program order.

The strongest requirement considered in this paper is sequential consistency. A computation satisfies
sequential consistency if there exists a valid sequence of all its instructions that extends program order.

Sequential consistency is weakened by relaxing the requirement that aell instructions must appear in
program order. We consider all classes of instruction re-ordering, except when the instructions are applied
to the same location. (The property of maintaining program order between instructions that are applied to
the same location is called coherence, and multiprocessor machines are typically coherent [2, 10].) Specifically,
let C' be a multiprocessor computation and O be all the instructions in C. Let (0,%) denote the program
order relation on O. Let 01,00 € O such that 0;>30,, and 0; and 0, are applied to different locations.
Define the following four basic relations on O.

e if 0, and o0, are both read instructions then they are read-read related, and (O, ) denotes this

relation.

e if 0; is a read instruction and oy is a write instruction then they are read-write related, and (O, —)

denotes this relation.



e if 0; is a write instruction and o is a read instruction then they are write-read related, and (O, —)
denotes this relation.

e if 0; and o, are both write instructions then they are write-write related, and (O, %) denotes this
relation.
Unions of these relations are denoted by (O, Eﬂ") where z;,y; € {r,w}. For example, (0, *%") abbreviates
(0,=%) U (0,~%). We are primarily concerned with the 16 relations induced by removing combinations
of these basic relations from the program order relation. We denote the transitive closure of the relation

0,72\ (0, i ) by (O, . "). For example, (0, ™) is the transitive closure of the relation formed by
removing from program order all pairs that are applied to different locations where the first instruction in
the pair is a read.

Each of the basic relations are partial orders, but combinations might not be. For example, (O, m—“)”) is
not transitive. Since program order is antisymmetric, any subset of program order is antisymmetric, and thus

i XTiyiy . . . i . .
the transitive closure of (0,%Z%)\(0, 2¥) is antisymmetric and transitive. Hence, each possible relation

(0, Eﬂ) is a partial order. Given a total order (O, i)) on a finite set O, there is exactly one sequence S
satisfying: a precedes b in S if and only if (a,b) € (O, i>) So we sometimes abuse terminology and use
interchangeably a total order and the sequence that realizes that order.

Definition 2.1 Let O be all the instructions of a computation C' of a multiprocessor. Then, C satisfies

consistency model Ms;— if there exists a valid total order (O, i)) such that (O, i Y C (0, i)) A valid

sequence of the instructions O that realizes any such total order is called a Mm—verifying sequence for C.

Observe that (O, l)) = (0,”%) so Mg is sequential consistency.

A multiprocessor guarantees a given consistency model if all its possible computations satisfy that con-
sistency model. A shared-memory multi-program, P, together with its consistency model, C'M, is called a
multiprocessor system, and is denoted by (P, CM). For example, the computations of the system (P, M)

consists of each of the computations of the multi-program P for which there is a valid sequence of the com-

putation’s instructions that extends the partial order (O, T”—wfv)

0 Szou.
A consistency model Ms—-is stronger than My if (O,Em’ ) C (O, M’) and Mg is strictly

stronger than Ms—— if (0, o N c (0, Eﬂj). The terms weaker and strictly weaker are defined similarly.

2.3 Tools and definitions for results

Consider a shared-memory multi-program P that is correct assuming sequential consistency. That is, any
computation of the system (P,sequential consistency) meets a given specification S. Our objective is to
answer the question: “For what instantiations of ¥Xz;y; is it possible to transform P to a new multi-program,
7(P), that still uses only shared locations such that any computation of 7(P) satisfying the weaker consistency
model My —- meets the same specification 577

Call a transformation of a shared-memory multi-program that only inserts additional read and write
instructions and otherwise leaves the original multi-program intact a simple transformation. Let P be a
multi-program and 7 be a simple transformation. A computation of P and a computation of 7(P) corre-
spond if every read in P returns the same value in both computations. A transformed system (7(P), MC")
implements a system (P, MC) if every computation of (r(P), MC") corresponds to some computation of
(P,MC). Clearly, if every computation of (7(P), MC") corresponds to one of (P,MC), and all compu-
tations of (P, M C) satisfy a given specification, then every computation of (7(P), MC") also satisfies the
specification. Thus our question becomes, “For what instantiations of X.a;y;, is there a simple transforma-
tion 7 such that for any shared-memory multi-program P, the system (7(P), Ms; ;) implements the system
(P, sequential consistency).”



2.4 The critical section problem

The mutual exclusion problem is the most famous and well-studied problem in concurrency. Following
Silberschatz et. al. [25], we refer to this problem as the critical section problem to distinguish the problem
from the mutual exclusion property. In the critical section problem, a set of processors coordinate to share
a resource, while ensuring that no two access the resource concurrently. Solutions to the critical section
problem for memories that satisfy sequential consistency have been known since the 1960s; Raynal [23]
provides an extensive survey.

Some of our results concern the possibility or impossibility of a shared-memory solution to the critical
section problem under the weak consistency models introduced earlier. Each critical section processor p has

the structure:
repeat
(remainder)
(enter)
(critical section)
(exit)
until done
The critical section problem is to provide code for (enter) and (exit) so that:
mutual exclusion: For any processor executing its (critical section) code, the outcome is indistinguishable

from that processor executing in isolation.

progress: If any processor is executing (enter), then eventually some processor will execute (critical section).
Typically a fairness property is also required, but will not be needed in this paper.

3 Effects of Instruction Re-Ordering

3.1 Overview

Our proofs take two forms. For the re-ordering cases when an implementation exists, we provide a general
purpose simple transformation and prove that this transformation implements any sequentially consistent
shared-memory system. For the re-ordering cases when an implementation does not exist, we establish this
by proving that under these possible re-orderings there is no solution to mutual exclusion that does not
exploit something stronger than reads and writes. It follows that there is no general purpose implementation
in this case since mutual exclusion does have such a solution under sequential consistency.

3.2 Possibilities

Define transformation 7(P) on a multi-program P as follows. Each write instruction, write(z,-), in P is
replaced by the sequence of instructions (read(z)); write(z, -); read(z)) in 7(P). That is, each write instruction
is replaced by itself, immediately preceded and followed by a read invocation to the same location. Read
invocations are left unchanged.

Theorem 3.1 For any shared-memory multi-program P, the system (7(P), Mrzzwrsww) implements the
system (P, sequential consistency).

Proof: It suffices to show that any computation C' of the system (7(P), Mrzzwrrww) corresponds to
some computation of the system (P, sequential consistency). Define C' to be the computation C' with every
read inserted by 7 removed. Then C' is clearly a computation of P. We will show that C’ is sequentially
consistent. Let S be a Mygrmrrww-verifying sequence for C. Define S’ to be the sequence S with every read
inserted by 7 removed. First, S’ is clearly valid because S is. Second, we show that S’ preserves program
order. Let 0,2%05 in computation C'. If both o; and oy are reads, then o, precedes oy in S because S
extends the read-read order. If o; is a read and o, is a write, 7 inserts a read, r, before 0; to the same
location as oo writes. Therefore, in S, 0; precedes r because S extends read-read order, and r precedes o0,
because Migrmrrww 1S stronger than coherence. A similar argument holds if o, is a write and o» is a read.
If both 07 and os are writes, then 7 inserts a read, r1, after o; to the same location as 0, writes and another



read, r3, before 0, to the same location as o, writes. Therefore, again because S extends read-read order
and coherence, in S, 0 precedes r; which precedes r» which precedes 0,. Thus in all cases 0; precedes 0z in
S and hence in S’. Thus S’ is a sequentially consistent-verifying sequence for C' implying computation C
of (7(P), Mrwrwrrww) corresponds to computation C' of (P,sequential consistency). |

By Theorem 3.1, transformation 7 will map any sequentially consistent program to a new program
that meets the same specification for any consistency guarantee that is at least as strong as Myprwrrww-
Of course, if the target consistency guarantee is strictly stronger than Myyrwrrww, T may add excessive
additional read instructions. However, the same idea can be specialized to any such consistency model C M
as follows. Say that a write instruction invocation, w = write(z, -), is left (respectively, right) vulnerable if
there exists an instruction invocation o; (respectively, o) such that

1. 01" %w (respectively, w”30,), and
2. CM does not guarantee that program order is maintained between w and o0y (respectively, 02), and

3. there does not exist a read(z), where 0, >—Sread(z)"Sw (respectively, w”Sread(z) Z30,).

If w is left (respectively, right) vulnerable then the invocation w is transformed to (read(z); w) (respectively,
(w,read(z))). That is, w is replaced by itself, immediately preceded (respectively, followed) by a read
invocation to the same location.

Using an argument essentially the same as that used in the proof of Theorem 3.1, such a transformation
is easily seen to preserve program order for all the instructions in the original program, and will produce
only computations that correspond to the sequentially consistent ones of the original program. Furthermore,
observe that any write instruction that is vulnerable to re-ordering and is not protected with the additional
read(s) invocations, could be re-ordered in the execution. Consequently the resulting computation could not,
in general, be guaranteed to correspond to a sequentially consistent one. Hence we conclude that this imple-
mentation will produce the minimum number of additional instructions among all simple transformations to
consistency model Mryrwrrww that are guaranteed correct for all shared-memory multi-programs.

Theorem 3.1 establishes that as long as read-read order is maintained, any multi-program can be trans-
formed to tolerate any loss of any combination of the other three basic orders. The next theorem shows
that the read-read re-ordering can also be tolerated provided it is not combined with either read-write or
write-read re-ordering.

For any multi-program P, define transformation v(P) as follows. Let v be a new shared location not
used by P.

e For every write instruction w such that the instruction immediately following w in program order is
another write to a different location, w is transformed in v(P) to the sequence (w;read(v)). That is,
each such write instruction is replaced by itself immediately followed by a read invocation of the new
location v. Other write instructions are not altered.

e For every read instruction r such that the instruction immediately following r in program order is
another read of a different location, r is transformed in v(P) to the sequence (r; write(wv,0)). That is,
each such read instruction is replaced by itself, immediately followed by a write invocation of the new
location v. Other read instructions are not altered.

Theorem 3.2 For any shared-memory multi-program P, the system (v(P), Myzzw) implements the system
(P, sequential consistency).

Proof: The proof strategy is the same as that of Theorem 3.1. It suffices to show that any computation C'
of the system (vy(P), Mmrww) corresponds to some computation of the system (P,sequential consistency).
Define C' to be the computation C' with every read and write to v removed. Then C' is clearly a computation
of P. We will show that C’ is sequentially consistent. Let S be a Mz=mm-verifying sequence for C. Define
S’ to be the sequence S with every read and write to v removed. First, S’ is clearly valid because S is.
Second, we show that S’ preserves program order. Let 012%0, in computation C’. If one of 0, and o, is
a read and the other is a write, or they are both applied to the same location, then o; precedes oy in S
because S extends read-write and write-read orders and coherence. Otherwise they are both of the same
instruction type (read or write) applied to different locations. In this case, either there is an instruction of




the opposite type between them in program order or one is inserted by . So, again, program order in S is
enforced because S extends both read-write and write-read orders. Thus in all cases o precedes o2 in S and
hence in S’. Thus S’ is a sequentially consistent-verifying sequence for C’. This implies computation C of
(v(P), Mzzww) corresponds to computation C' of (P,sequential consistency). |

As was the case for 7, transformation v could introduce excessive instructions if the consistency guarantee
is strictly stronger than Mzrww. But it is easily adapted so that only the necessary read and write instruction
to the new location are added. For example, if the consistency model is stronger than Mz, all the read
instructions introduced by + are unnecessary.

Recall that the critical section problem has several well known solutions in sequentially consistent systems.
Therefore, the following is an immediate corollary of Theorems 3.1 and 3.2.

Corollary 3.3 Critical sections can be implemented using only read and write instructions to shared loca-
tions provided the consistency guarantee is at least as strong as either Mygrmrsow 07 Mrrww-

3.3 Impossibilities

Theorem 3.4 There is no shared-memory solution to the critical section problem for any number of proces-
sors greater than or equal to 2 when the consistency model is weaker than or equal to Mygr or weaker than
or equal to M.

Proof: Assume for the sake of contradiction that a solution to the critical section problem exists under
either consistency model Mrgr or M. Consider any (critical section) code that contains at least one
shared location share, and two processors, p and ¢, such that:

e p and ¢ write different values, say v, and v, respectively, to share while in (critical section), and

o (critical section) is finite, and
e share is only used in (critical section), and

e each of p and ¢ read share immediately after its first write to it in (critical section).

Clearly, the first three items hold for most critical sections since they are intended to prevent interference
of one processor by another while writing critical data. The last assumption can be made without loss of
generality because any critical section satisfying the first three items can be augmented with these reads
without effecting the semantics of the critical section.

Consider computations of the system when processors p and ¢ are participating and all remaining proces-
sors are in (remainder). If processor p is executing its (enter) while ¢ also stays in (remainder), then
by the progress property, p must subsequently execute (critical section), and then execute (exit), because
(critical section) is finite. Let Computation 1 be a computation that is produced in this case. The sequence
of, 05, ..., 0% is the sequence of read and write instructions produced by p’s program from the beginning of
(enter) up to the instruction preceding the first write to share in p’s (critical section); of 43 ,o? is the
sequence of instructions produced from the rest of p’s (critical section) following the read of share that
immediately follows p’s first write to share up to the end of (exit). Observe that read(share) must have
response Vp.

p: 0f,0h,...,00; write(share, v, ); read(share) = vp; 0}, 5, ..., 0%

i J
Computation 1 { ¢: (remainder)

Similarly, if processor g is executing (enter) while p stays in (remainder), Computation 2 is produced,
where read(share) has response v,. The program for (enter) up to the instruction preceding the first write
to share in ¢’s (critical section) produces the sequence of instructions of, 03, ...,0]; the program from after

the read of share to the end of (exit) produces the sequence of instructions o/ g, ..., 0%,.

p: (remainder)

Computation 2
. T — . o
q: 01,03,...,0];write(share, v,); read(share) = v4; 0/, 4, ..., 0f,



Case 1, M7 Consider Computation 3 where both p and ¢ are participating but where v, is returned
for the value of share to both processors. The sequences after read(share) = v, are elided because they are
not needed for this case.

o}, 0%, ...,04; write(share, v,); read(share) = vy; ...
q

p
Computation 3
q: o

,05,...,0f; write(share, v,); read(share) = vy; ...

Clearly, this is not a correct computation of a critical section program because it violates the mutual
exclusion property. To achieve the desired contradiction, we prove that Computation 3 satisfies Mrrrwr,
given that Computations 1 and 2 do.

Since the Computations 1 and 2 satisfy Mzprrwr, each has a Mprgr-verifying sequence. Let S, =
ob, - -0k, ,write(share,v,) be a verifying sequence for Computation 1, up to but not including p’s read of
share. Since S, extends read-write and write-write order the write to share must occur at the end of the
sequence. Similarly, let S, = 0} ,--- 0} , write(share, v,) be a Mmrzz-verifying sequence for Computation 2
also excluding everything after ¢’s write of share.

Build a sequence of instructions S as follows. Initially, S is empty. Examine each o in S, in order from
i = f1 to B;. If o is a read that is not preceded by a write to the same location, append o] to S and remove
it from S,. When there are no such reads left in S, append S, to S. Finally, append the updated S, (with
the above reads removed) to S, then append the two reads of share to S.

S can be partitioned into four segments. The first consists entirely of reads by ¢ returning initial values,
the second consists entirely of S, the third consists entirely of S, minus instructions in the first segment,
and the fourth segment consists of the reads of share in any order.

To see that S is valid, note that the reads in the first segment necessarily return initial values because in
Computation 2 only ¢ is participating. So, the first segment is valid. The second segment is valid because
it is .S, and the first segment does not contain any writes. The construction guarantees that each read left
in the third segment returns the value written by the most recent write to the same location that precedes
the read in the same segment. The reads in the fourth section return v, and this is the most recent write to
share, by construction. Therefore, S is valid.

Let O be all the instructions in Computation 3. (O, ™3") is maintained in S, and in S,. The splitting of
S, only moves forward reads that are not preceded in S, by any writes to the same location. So the moved

Tr+WT TT+WT

reads do not violate (O, —"). Therefore, S preserves (O, — ). So S is a Mpgrverifying sequence for
Computation 3.

Case 2, Myt Assume that Computations 1 and 2 satisfy Mzrr7. Consider a computation, Computation
4, where both p and ¢ are participating but where v, is returned for the value of share to both processors.
In this case, we will make use of (exit).

p: 0],05,..,0p; write(share, v,); read(share) = vy; 0}, 3, ..., 0}
Computation 4

.0 p— . — .
q: o0f,05,...,0; write(share, v,); read(share) = vy; 0/, 5, ..., 08,

Again, this is not a correct computation of a critical section program because it violates the mutual
exclusion property. As before, we prove that Computation 4 satisfies Mrrrwr, given that Computations 1
and 2 do.

Let O be all the instructions in Computation 4 and let S, and S; be Mzr7-verifying sequences re-
spectively for Computations 1 and 2. Let S, be S, minus read,(share) = v, and let S be S, plus
read, (share) = v, inserted immediately after write(share, v,).



[ single type T two combinations I three combinations i

write-write, write-read
write-write, read-write

read-read Vi read-read, write-write V4 read-read, write-write, write-read X
write-write Vi read-read, read-write X read-read, write-write, read-write X
read-write Vi read-read, write-read X read-read, write-read, read-write X
write-read Vi read-write, write-read v/ || write-write, read-write, write-read \/
v
v

Figure 2: Summary of results

Define S = S,; ;. Sequence S is valid: share is only written in (critical section) implying the moved
read(share) = v, by p is valid, and the rest is obviously valid. S corresponds to the scenario where p
completes one cycle ({enter), (critical section), and (exit)) in isolation; then, ¢ starts and completes a similar
cycle. After p completes (exit), the state for ¢ must be indistinguishable from Computation 2 where it ran
in isolation. Hence S, is valid.

All the instructions, except read(share) = v, by p, occur in their original orders in the verifying sequences.

Moving this read to the end is permitted by (0, =%"). Thus, Computation 4 satisfies M.
In both cases, our assumption of a solution leads to a contradiction. Thus, there is no shared-memory
solution to the critical section problem under either consistency model Mz or Mg

None of the arguments in Theorem 3.4 depended on fairness, nor on the size of the locations; so the
impossibilities apply to unfair solutions and to locations of unbounded size.

4 Conclusion

This paper investigated the effect of instruction re-ordering on programs that are correct when no instructions
are re-ordered. The paper conclusions are summarized in Figure 2. The possibilities (represented by +/) in
Figure 2 indicate the existence of a general transformation for any sequentially consistent program to a
program that is still correct in spite of the indicated instruction re-ordering combination.

The simple implementations provided in this paper are general. They are also optimal for general
transformations — these that apply to any multi-program that is correct for sequential consistency. However,
optimality for general transformations does not necessarily imply optimality for individual multi-program
instances. When given a fized instance, it may be possible to apply further optimizations that exploit
information from the given multi-program and the problem it solves. Such information (from both programs
and problems) is unavailable to general transformers.

The impossibilities of Figure 2 (represented by x) indicate that there is no shared-memory implementation
of the critical section problem with the indicated combinations of instruction re-orderings. Since shared-
memory solutions to the critical section problem exist for sequential consistency, general transformations
that do not augment the specified program with explicit synchronization operations do not necessarily
generate correct transformed programs. Hence in these cases, synchronization instructions must be inserted
to the transformed program. Our results imply that the IBM PowerPC, DEC Alpha, JVM, and SPARC
TSO, PSO, and RMO (Figure 1) require the use of explicit synchronization to correctly implement mutual
exclusion. Hence, one of our future research directions is to augment the target program with memory
barrier instructions and to minimize the number of such instructions.

References
[1] S. Adve. Using information from the programmer to implement system optimizations without violating sequential

consistency. Technical Report ECE 9603, Department of Electrical and Computer Engineering, Rice University,
March 1996.



(2]
(3]

[20]
[21]

[22]
[23]
[24]
[25]
[26]

S. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial. IEEE Computer, pages 6676,
December 1996.

S. Adve, K. Gharachorloo, A. Gupta, J. Hennessy, and M. Hill. Sufficient system requirements for supporting
the PLp. memory model. Technical Report 1200 (or CSL-TR-93-595), University of Wisconsin-Madison (or
Stanford University), 1993.

S. Adve and M. Hill. Sufficient conditions for implementing data-race-free-1 memory model. Technical Report
1107, University of Wisconsin-Madison, 1992.

M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto. Causal memory: Definitions, implementations, and
programming. Distributed Computing, 9:37-49, 1995.

H. Attiya, S. Chaudhuri, R. Friedman, and J. Welch. Shared memory consistency conditions for non-sequential
execution: Definitions and programming strategies. SIAM Journal of Computing, 27(1):65-89, February 1998.

H. Attiya and R. Friedman. Programming DEC-Alpha based multiprocessors the easy way. In Proc. 6th Int’l
Symp. on Parallel Algorithms and Architectures, pages 157-166, 1994. Technical Report LPCR 9411, Computer
Science Department, Technion.

F. Corella, J. Stone, and C. Barton. A formal specification of the PowerPC shared memory architecture. Technical
Report RC18638, IBM, 1994.

C. C. Corportaion. The Alpha Architecture Handbook. Compaq Computer Corporation, 1998. Order number:
EC-QD2KC-TE.

M. Frigo. The weakest reasonable memory model. Master’s thesis, Department of Electrical Engineering and
Computer Science, MIT, 1998.

K. Gharachorloo, S. Adve, A. Gupta, J. Hennessy, and M. Hill. Programming for different memory counsistency
models. Journal of Parallel and Distributed Computing, 15(4):399-407, August 1992.

L. Higham, L. Jackson, and J. Kawash. Specifying memory consistency of write buffer multiprocessors. Technical
Report 2004-758-23, Department of Computer Science, The University of Calgary, August 2004. Submitted for
publication.

L. Higham and J. Kawash. Critical sections and producer/consumer queues in weak memory systems. In Proc.
1997 IEEE Int’l Symp. on Parallel Architectures, Algorithms, and Networks, pages 56—63, December 1997.

L. Higham and J. Kawash. Java: Memory consistency and process coordination (extended abstract). In Proc.
12th Int’l Symp. on Distributed Computing, Lecture Notes in Computer Science volume 1499, pages 201 215,
September 1998.

L. Higham and J. Kawash. Bounds for mutual exclusion with only processor consistency. In Proc. of the 14th
Int’l Conf. on Distributed Computing, Lecture Notes in Computer Science volume 1914, pages 44-58, October
2000.

L. Higham and J. Kawash. Memory consistency and process coordination for SPARC multiprocessors. In Proc.
of the 7th Int’l Conf. on High Performance Computing, Lecture Notes in Computer Science volume 1970, pages
355-366, December 2000.

L. Higham and J. Kawash. Implementing sequentially consistent programs on processor consistent platforms. In
Proc. 2004 Int’l IEEE Symp. on Parallel Architectures, Algorithms, and Networks, pages 56 63, May 2004.

Intel Corporation. Intel Itanium architecture software developers manual, volumes 1-3. 2002.

J. Kawash. Limitations and Capabilities of Weak Memory Consistency Systems. Ph.D. dissertation, Department
of Computer Science, The University of Calgary, January 2000.

L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE
Trans. on Computers, C-28(9):690 691, September 1979.

L. Lamport. How to make a correct multiprocess program execute correctly on a multiprocessor. IEEE Trans.
on Computers, 46(7):779-782, July 1997.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley, 1997.

M. Raynal. Algorithms for Mutual Ezclusion. The MIT Press, 1986.

A. D. Robison. Memory consistency and .Net. Dr. Dobb’s Journal, pages 46-50, April 2003.

A. Silberschatz and P. Galvin. Operating System Concepts. John Wiley & Sons, Inc., 1999.

D. Weaver and T. Germond, editors. The SPARC Architecture Manual version 9. Prentice-Hall, 1994.

10



