
THE UNIVERSITY OF CALGARY

CASE STUDIES IN ASYNCHRONOUS SYSTEM DESIGN

by

WANZHEN YU

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

DECEMBER, 1994

© WANZHEN YU 1994

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled, "Case Studies in Asynchronous

System Design" submitted by Wanzhen Yu in partial fulfillment of the requirements

for the degree of Master of Science.

Supervisor, Dr. G. Birtwistle,

Department of Computer Science

Dr. P. Kwok,

Department of Computer Science

Dr. L. E. Turner,

Dept of Computer&Electrical Engineering

Date

U

Abstract

As VLSI improves, the feature size of devices is getting smaller and the speed of

these devices is getting faster. These improvements allow much more complicated

systems to be packed into a single die. Along with these improvements, however,

synchronous systems are hitting limits associated with the distribution of the global

clock signal. This has rekindled the examination of unclocked asynchronous design.

A major problem in asynchronous design is deadlock, and it is very important to

check this and kindred properties such as livelock, safety and liveness, etc, before

an asynchronous system is sent for manufacture. Recently the mathematics and

mechanized support tools have been developed to check these properties. This thesis

presents two case studies in designing, specifying and verifying asynchronous systems,

which help bridge the gap between the formal method and engineering approach and

clarify the hierarchical methodology for developing asynchronous systems.

111

Acknowledgements

I would like to express my profound appreciation to my supervisor Dr. Graham

Birtwistle for his valuable guidance, help and financial support. Graham always had

time for me. He read and returned drafts quickly, always making insightful sugges-

tions. Finally, I would like to thank him for expressing confidence in my research and

encouraging me when I really needed it.

Thanks to Dr. Saul Greenberg, Dave Spooner and Barry Yee, who carefully read the

draft of my thesis. Their insights and suggestions helped me greatly in improving

the quality of this thesis. Thanks also to Dr. Robin Cockett for his insightful advice,

and to my thesis committee, Drs. Paul Kwok and Laurence Turner, for their careful

reading and constructive criticisms.

Thanks to fellow graduate students: Tom Fukushima, Fabian Gomes, Ying Liu, Ken

Stevens, Charles Tuckey who were always helpful and supportive; to my roommate

Winnie Ho; and to Mr & Mrs Kroeker whose kindness helped me through my first

year in Canada.

Finally, special thanks to my parents and my husband for their long lasting support

and encouragement.

iv

Contents

Approval Sheet

Abstract

Acknowledgements iv

Contents V

List of Tables viii

List of Figures ix

Chapter 1. Introduction 1
1.1. Motivation for Asynchronous Design 1

1.1.1. Synchronous Design and Its Limitations 1
1.1.2. Asynchronous Design 3

1.2. Methodology 5
1.2.1. CCS Specification Language 5
1.2.2. CCS Methodology 7
1.2.3. Hierarchical Methodology 8

1.3. Terminology 9
1.3.1. Timing Model 10
1.3.2. Communication Protocols 10

1.4. Structure of the thesis 19
1.5. Contributions of the thesis 21

Chapter 2. Approaches to Asynchronous Design 22
2.1. Silicon Compilation 22
2.2. Formal Approach 28
2.3. Engineering Approach 33
2.4. Summary 35

Chapter 3. Tools for Specification and Verification 36
3.1. CCS - Calculus of Communicating Systems 36

3.1.1. Syntax ofCCS. 36

V

3.1.2. Operational Semantics of CCS 37
3.1.3. Some Equivalence Relationships 40

3.2. Process Logics 42
3.2.1. Hennessy Milner logic 42
3.2.2. Modal /j- Calculus 43
3.2.3. Derived Operators of Modal t-calculus 45
3.2.4. Definable Interesting Modalities 45

3.3. The Workbench CWB 46
3.4. Summary 47

Chapter 4. The Move Machine 49
4.1. Typical Data Movement 50
4.2. Instruction Set 52
4.3. Abstract Specification of AMM 55
4.4. Summary 55

Chapter 5. AMM - An Asynchronous Move Machine 56
5.1. Abstract Level of Specification 56
5.2. Middle Level of Specification 59

5.2.1. Datapath 59
5.2.2. Basic Data Path Modules 60
5.2.3. Datapath composition 61
5.2.4. Instructions 62
5.2.5. Fetch Unit 68
5.2.6. Execute Unit 69
5.2.7. AMM 72
5.2.8. Property Checking 72
5.2.9. Equivalence Checking 76

5.3. Lowest Level of Specification 77
5.3.1. Basic Control Modules 77
5.3.2. Fetch Unit 78
5.3.3. Execute Unit 80
5.3.4. Call Box 81
5.3.5. Control Unit 82
5.3.6. AMM 84
5.3.7. Property Checking 84
5.3.8. Equivalence Checking 85

5.4. Summary 85

Chapter 6. PAMM - A Pipelined Asynchronous Move Machine 87
6.1. PAMM Architecture 87
6.2. 2-Phase Basic Modules 88

6.2.1. Control Modules 88
6.2.2. Datapath Modules 89

A

6.3. Fetch Unit 95
6.4. Execute Unit 102
6.5. PAMM 105
6.6. Environment 105
6.7. Property Check 106
6.8. Summary 106

Chapter 7. Conclusions 108
7.1. Summary 108

7.2. Future Work 110
7.2.1. Silicon Compiler 110

7.2.2. Faster Algorithms 110

Bibliography 111

Appendix A. 4 Phase Basic Data Path Modules 116
A.1. Wire 116

A.2. Register 116
A.3. Enable 117

A.4. Boolean register 118
A.5. Register file 120
A.6. Memory 121
A.7. ALU 123
A.8. van Berkel's S element 126

vi'

List of Tables

2.1 Comparison of AMULET and ARM6 34

5.1 Micro-operation, Resource and Control Signal 64
5.2 Micro-operations of IR' 64
5.3 Micro-operations of IF 65
5.4 Micro-operations of LOD 65
5.5 Micro-operations of STO 66
5.6 Micro-operations of MOV 66
5.7 Micro-operations of SCC 66
5.8 Micro-operations of INC 67
5.9 Micro-operations of JCC 67
5.10 Micro-operations of LDI 68
5.11 Datapath Accesses by Instructions 82
5.12 Resource Uses 83

List of Figures

1.1 A Possible Space Filling 2
1.2 Bubbled C Element 6

1.3 Toggle Element 7

1.4 Asynchronous Communication Interface 11
1.5 2-phase Communication Protocol 12
1.6 4-phase Communication Protocol 12
1.7 Converters from 4-phase to 2-phase 13
1.8 A 4-2 Example . 13
1.9 Converter From 2-phase to 4-phase 14
1.10 Dual Rail Data Communication 15

1.11 Bundled Data Communication 16
1.12 Conversion from Dual Rail to Bundled 17

1.13 Conversion from Bundled to Dual Rail 18

2.1 The initial circuit of single place buffer 24

2.2 The final circuit of single place buffer 26
2.3 A modulo-N counter 28
2.4 Implementation for CELL 31

3.1 Arbiter 38

4.1 Move and compact 51

5.1 AMM Datapath 59
5.2 Main Part of Fetch Unit 78
5.3 Implementation of Fetch Unit 79
5.4 Implementation of Execute Unit 80
5.5 AMM Architecture 81

6.1 PAMM 87
6.2 PAMM Fetch Unit 96

ix

6.3 PAMM EXECUTE UNIT 103

CHAPTER 1

Introduction

This thesis culminates in the specification and verification of a small pipelined asyn-

chronous microprocessor. In this chapter, we first motivate asynchronous design.

Then we introduce the terminology and methodology used throughout this thesis.

Finally, we give the structure of the thesis and summarize its contributions.

1.1. Motivation for Asynchronous Design

1.1.1. Synchronous Design and Its Limitations. Synchronous design has

been with us for 30 years. A wealth of experience is now supported by many case

studies and well-understood methodologies.

However, VLSI technology is still developing rapidly. The feature size of devices is

getting smaller and the speed of these devices is getting faster. These improvements

allow much more complicated systems to be packed into a single die. Along with these

improvements, however, synchronous systems are hitting limits because they perform

computations based on the successive pulses of the global clock. Major problems are

listed below:

(1) Clock Distribution: All devices in a synchronous system are supposed to fire

at the same time. The delay time of the global clock signal should be within a

small window from the clock source to every device in the system. This gives

rise to two distinct difficulties:

1

1. INTRODUCTION 2

(a) Area used: A significant part in a chip is used for the clock distribution,

e.g., approximately one third of the area [Fur93] in the DEC ALPHA is

occupied by the clock distribution circuitry.

(b) Tricky algorithms are required for layout: As feature size decreases by

n, the number of devices increases by n2. With dense chips, the clock

distribution network imposes strict conditions on where devices can be

placed.

TI IT TI T T T I 0 0 0 0

o 0 0 0 0 0 0 0

0• 0 0 0 0 0 0 0

0 0

0

0

0

0 0 0 0

0 0

0

0 0

0

0 0

0 0

0

0

0 0 0 0 0 0 0 0

FIGURE 1.1. A Possible Space Filling

For example, a possible space filling is given by Figure 1.1. It guarantees the

same delay time by connecting all devices to the clock source with the same

wire length. This means that devices can be placed only at locations marked

by white circles. The clock source shown as a black circle is in the middle.

(2) Power Consumption: In CMOS, the power dissipated is proportional to the

frequency of the clock. The reduction of power consumption offered by the de-

crease of circuit feature size is offset by the increase of the number of circuits

in a single chip. So as chips get faster and denser, removing the generated

heat becomes a real problem. The 2nd generation DEC ALPHA uses 60w.

1. INTRODUCTION 3

Furber[Fur93] has estimated the dissipated power of a 0.1 tm 5v CMOS pro-

cessor might reach 2000w by the year 2000!

(3) Performance: The correct operation of a synchronous circuit is established

by making the clock period larger than the worst case delay of any possible

subcomputation (e.g, the nth stage of a ripple carry ADDER) even though the

probability of the occurrence of the worst case may be very small.

(4) Metastability: Any computer circuit that has a number of stable states also

has metastable states. When a circuit gets into a metastable state, it can

remain there for an indefinite period of time before it resolves into a stable

state. Consequently, when a metastable phenomenon occurs in a synchronous

system, erroneous data may be sampled at the time of the clock pulse.

These problems motivate the re-examination of asynchronous design.

1.1.2. Asynchronous Design. In an asynchronous system, every component

works mostly independent and occasionally cooperating with others by communica-

tion. Asynchronous systems have the following potential advantages:

(1) No clock distribution problem: There is no global clock. The tradeoff is that

local communication primitives are now needed.

(2) Power consumption: There is no power consumption related to clock distri-

bution. Potential power reduction may be offered by asynchronous design

because the devices work only when needed. As yet, there are no good power

estimation tools for asynchronous design and an optimal solution is unlikely

at present.

(3) Performance: This should reflect the average case of performance. In asyn-

chronous design, as soon as a circuit finishes its computation, it informs the

requester that the result is available. The time used only depends on the spe-

cific case the circuit is working on. Hence there is no need to optimize a circuit

for speed if the likelihood of its worst case behavior is small.

1. INTRODUCTION 4

(4) Metastability: This is not a problem for an asynchronous system. When an

asynchronous circuit gets into a metastable state, it won't send an acknowledge

signal to its user until it settles. This means the result will be sampled only

after it settles. No matter how long it stays in a metastable state, it does not

affect the correctness of the system.

(5) Uniform interfaces between subsystems: Each subsystem may use 2-phase or

4-phase for signalling, and dual rail or bundled data protocols for data passing.

It is easy to switch from one to another, as shown in Section 1.3.2.

(6) The correctness can be established by two separate steps: The correctness of

the behaviour of the basic elements is proved by means of physical principles

only, and the correctness of the behavior of connections of the basic elements

is proved by means of mathematical principles only (i.e., composability).

While the advantages are clear, asynchronous design as a technique is immature.

Unlike synchronous design for which many mature techniques have been developed,

asynchronous design has been neglected for a long time. There are two main reasons

why asynchronous design has been neglected for decades. The first is that basic

elements are much more complicated and cost much more than their synchronous

counterparts. The second is that there were no nice mathematical tools to tackle the

complications of asynchronous designs, such as deadlock, livelock, liveness and safety.

The first problem is no longer so overwhelming due to the increasing capability of

VLSI fabrication technology. In academic circles asynchronous techniques have always

retained a niche since they provide a good test bed for mathematical techniques for

proving the correctness of asynchronous systems. Quite recently the mathematics has

matured and mechanized testing tools are now in place, e.g., CCS[Mil89] for specifying

asynchronous design, the modal u-calculus [Sti91],[JC9O], [5ti92b] and [Sti92a] for

property checking as mechanized in the CWB [Mol91] which we shall use in our

design, specification and verification. All these are sufficient to make the renewed

interest in asynchronous design viable.

1. INTRODUCTION 5

1.2. Methodology

Three methodologies will be used in this research: the CCS specification language,

the CCS methodology, and hierarchical methodology. Each is discussed below.

1.2.1. CCS Specification Language. CCS is a specification language for asyn-

chronous systems. It builds from the agent (process or object) 0 which can do nothing.

From this basic agent, there are four ways of building more interesting agents. Be-

fore we introduce them, we first explain the essential "actions" part of an agent. We

distinguish two types of actions: input action a and output action which are a pair

of actions on the same channel.

Prefixing.

For a given agent P and an action "a", a.P is an agent which first does "a"

then evolves into the agent P.

E.g., MATCH tf strike. burn. 0, this means that a match can be struck, respond

with a burn and then die.

Non-deterministic Choice +

For two agents A and B, and two actions a and b, a.A + b.B is an agent

which evolves into A if it receives a transition on a or into B when it receives

a transition on b.

E.g., VEND I 1p.smallcandy.VEND1 + 2p.bigcamdi.VEND2, this means

that a vending machine pops a small candy and evolves into VEND 1 if it ac-

cepts one penny, or pops a big candy and evolves into VEND2 if it receives a

two penny coin. Here we suppose VEND1 and VEND2 are two other prede-

fined agents.

Parallel Composition I

For two agents A and B, AJB is an agent which allows concurrent behaviours

and synchronizations between A and B. E.g.,

PROG (((compl.resu1t2.PROG1) I (comp2.resu1t2. PRO G2)) \ {result2}

1. INTRODUCTION 6

this means that PROG consists of two concurrent programs .which do their

computations concurrently and synchronize on the internal line resu1t2. Here

\{resu1t2} means that resu1t2 is an internal line in PROG which can not be

accessed by the outside. This composition allows us to build a large system

only by connecting basic modules.

Recursive Definition

By the above three constructors, we can only build agents which carry out

finite actions and then can do nothing. Hardware circuits are reusable - they

function forever. With these three basic constructors plus recursive definitions,

we are ready to specify the basic modules of asynchronous design.

Example 1: the C element is a rendezvous element which produces an out-

put after both inputs arrive regardless of the order they arrive. In CCS this is

written: C 1(a.b..0 + b.a..0

If the C element receives a transition on a first, it will evolve into b..0 which

waits for a transition on b, then causes a transition on z and finally evolves

back to C, and can repeat the actions again. Similarly, if b appears first,. it will

evolve into a.'.0 which waits for a transition on a, then causes a transition on

z and finally evolves back to C, and can repeat the actions again.

Example 2: the bubbled C element is a rendezvous element with one tran-

sition already fired. In CCS this s written: C,def = a.z.0

Here b is the input on *hich it is assumed a transition has happened at the

Z

FIGURE 1.2. Bubbled C Element

1. INTRODUCTION 7

beginning, see Figure 1.2. When C' receives a transition on a,.it will produce

a transition on z and then behave exactly the same as C.

Example 3: the Merge element produces an output after it receives a tran-

sition on any one of its two inputs. In CCS this is written:

M a..M + b..M

If M receives a transition on a or b, it will produce a transition on z and then

evolve back to M which can repeat forever.

Example 4: the Toggle element alternatively produces a transition on one of

two outputs after every transition arrives on its input, with the first transition

on the output marked by a dot as in Figure 1.3. In CCS, this is written:

dcf - a. - T = a.b.c.T

a T

b

C

FIGURE 1.3. Toggle Element

Here b is the output marked by a dot. When T receives a transition on a, it

will produce a transition on b. When the second transition on a arrives, it will

produce a transition on c and evolve back to T which repeats forever.

1.2.2. CCS Methodology. Modal /,t-calculus (Hennessy Milner logic plus fixed

point) is a companion logic for CCS specifications. It can express all the temporal

operators of temporal logic. Thus its expressiveness is strong enough to describe desir-

able properties for CCS specifications, such as liveness, safety, deadlock and livelock,

etc (see chapter 3). This is the logic we used to express properties for an asynchronous

1. INTRODUCTION 8

system.

The concurrency workbench CWB is a tool supporting CCS. It provides a very pow-

erful model checker to verify whether a system specified in CCS enjoys properties

expressed in the modal -calculus, and if two different abstract specifications are

equivalent. We checked properties and equivalences in the CWB as explained in

chapters 5 and 6.

1.2.3. Hierarchical Methodology. In the CWB, by using CCS and it-calculus,

asynchronous design allows us to develop complicated systems in a hierarchical way

from the very abstract level down to a Register Transfer Level implementation which

is a composition of basic modules.

We can prove whether an implementation conforms to its specification by checking

whether any two adjacent levels in the development towards the lowest level are

equivalent to each other on the CWB, and build the correctness of the whole system

by checking the correctness of its subcomponents and communications between these

subcomponents. When checking properties and correctness, we can use different

levels of abstraction for any component to avoid unnecessary details of a big system

in any particular design stage. The hierarchical methodology will help us to sort out

deadlock and other mistakes. Based on this idea, we can develop hardware designs

in the same way as we write software.

In this thesis, by using the tools CCS, the modal it-calculus and the CWB, we spec-

ify and test 2-phase and 4-phase asynchronous designs - two variants of Sutherland's

move machine:

(1) AMM (asynchronous move machine), Chapter 5

(2) PAMM (pipelined AMM), Chapter 6

based on the hierarchical methodology.

1. INTRODUCTION 9

CCS, the modal calculus and the CWB proved to be adequate for the following

reasons: CCS is a simple notation with a clean semantics for specifying asynchronous

systems. CCS naturally reflects the' behavior of asynchronous systems, E.g., the

agent a.b.R, this means that b will occur any time after a happens (without tim-

ing restriction). So it is delay insensitive. Finally CCS is expressive enough to give

coarse specifications of a large system (synchronizations but not data). It has been

found detailed enough to serve as a blue print for AMM, and PAMM. The modal

'u-calculus is certainly powerful enough to describe all interesting properties of asyn-

chronous systems, e.g., deadlock, livelock, safety and liveness, etc. When we use

general purpose macros, modal u-calculus formulae can be quite readable. The CWB

is an automated model checker with its automated equational checking capability

and automated property testing ability. The hierarchical methodology allows us to

abstract away some unnecessary detail at any particular design stage, which helps us

spot mistakes and property failures in our design as it unfolds level by level.

1.3. Terminology

In this section, we introduce the terminology in our asynchronous design. There are

several different timing models for asynchronous design. We introduce the three most

common models: speed independent model, delay-insensitive model and bounded de-

lay model. In our design the bounded delay model is used because it is much cheaper

than the delay-insensitive model and its delay requirements are not too hard to sat-

isfy. In asynchronous design, every component works independently and cooperates

with others by communication. As mentioned previously, communications are the

essential part in asynchronous systems. Commonly used communication protocols

are combinations of the following: 2-phase or 4-phase styles for signalling; and dual

rail or bundled data communication for data passing. In the following subsections, we

will define these communication protocols and give the circuits which convert from

one communication style to another one.

1. INTRODUCTION 10

1.3.1. Timing Model. Asynchronous design is based on one of several timing

models. The three most common are described next:

Speed Independent Model A system can function correctly regardless of any delay

within its components. This model assumes that no delay is associated with wiring.

Delay Insensitive Timing Model A system can function properly regardlessof

any delay within the components and in the wires which connect components as well.

Bounded Delay Timing Model A system can function properly if delays within

this system satisfy some predefined limits.

A delay-insensitive asynchronous system is guaranteed to work properly in the pre-

sense of arbitrary delays in circuits and wires. However it will be very expensive due

to the prohibitive number of connection wires needed for dual rail data communica-

tion. Some trade-offs need to be considered. Usually a bounded delay timing model

is used if the delay requirement is not hard to establish. For example, the bundled

data communication will save a significant number of wires. The delay requirement

is that the bundled data should arrive at all its destinations before raising the control

signal to inform these destinations to sample the data.

1.3.2. Communication Protocols. In asynchronous systems, a signal transi-

tion (a rising or falling edge) is used as a basic event. Commonly used communi-

cation protocols are one combination of the following: 2-phase and 4-phase styles

for signalling; dual rail and bundled data communication for data passing. In the

descriptions below, we assume all communication signals commence low.

1. INTRODUCTION 11

Signalling Communication Protocol

The interface for asynchronous request-acknowledge communication is shown in Fig-

ure 1.4.

req
Sender

ack

Receiver

FIGURE 1.4. Asynchronous Communication Interface

2-phase communication as shown in Figure 1.5 is a form of communication which

adheres to the following sequence of transitions:

(1) One communication is initiated by the sender making a transition on the re-

quest wire,

(2) The communication is ended by the receiver making a transition on the ac-

knowledge wire.

4-phase communication as shown in Figure 1.6 is a form of communication which

adheres to the following sequence of transitions:

(1) The communication is initiated by the sender raising the request wire.

(2) The receiver responds to the request by raising the acknowledge wire.

(3) When the sender senses the change on the acknowledge wire, it lowers the

request wire to indicate there is no request.

(4) When the receiver detects the change on the request wire, it lowers the ac-

knowledge wire and indicates the current communication has been finished.

Conversion between 2-phase and 4-phase Protocols: 2-phase and 4-phase

styles can be used within one system. 2-phase usually is used for control components

1. INTRODUCTION 12

Req

Ack

\

N
one transaction one transaction

FIGURE 1.5. 2-phase Communication Protocol

Req

Ack

one transaction one transaction

FIGURE 1.6. 4-phase Communication Protocol

due to its simplicity, and 4-phase is used for computation components because a

computational circuit needs to be restored to its predefined state before its next use.

We can easily convert from one regime to another as typified by:

(1) Conversion from 4-phase to 2-phase: Two versions of converters from 4-phase

to 2-phase are illustrated in Figure 1.7 where T is a toggle element and M is a

merge element, ri and al is a pair of request and acknowledgement signals of

1. INTRODUCTION 13

the 4-phase circuit, r2 and a2 is a pair of request and acknowledgement signals

of the 2-phase circuit.

In version 1 the sequence of signallings is - ri r2 a2 al ri al. In version 2 the

sequence of signallings is - ri -<r2 a2 I al r1- al. As the two subsequence

r2 a2 and al ri can go in parallel, it is obviously faster. However version 1

is perhaps safer because the called circuit has finished its work when the first

acknowledge signal is brought back to the 4-phase caller.

Sender
(4-phase)

II

Receiver
(2-phase)

a2

Sender

(4-phase)

ri

al
•IZ

T

M

r2

Conve ter I Converter 2

C

Receiver

(2-phase)

FIGURE 1.7. Converters from 4-phase to 2-phase

For example, a 2-phase FIFO gets data from a 4-phase source as in Figure

1.8. We need a converter from 4-phase to 2-phase between the data source

Source

(4-phase)

ri

al

4 to 2 converter

r2

FIGURE 1.8. A 4-2 Example

a2

FIFO

(2-phase)

1. INTRODUCTION 14

and the FIFO. In order for the data to be safely stored into FIFO, the data

has to remain valid before the FIFO sends its acknowledge signal. In this case,

version 2 has some problems. Consider the following scenario:

(a) the source sends request signal to the converter.

(b) the converter will send a request r2 to the FIFO and an acknowledge al

back to the source.

(c) FIFO can start sampling the data on the bus; at the same time the source

is tristating the bus. So the FIFO will not sample the correct data.

Therefore version 2 can not be used when data passing is involved. But if no

data passing is involved, version 2 is better because it is faster.

(2) Conversion from 2-phase to 4-phase: This converter as shown in Figure 1.9

ri

C
Sender

2-phase

a 2

Receiver
4-phase

FIGURE 1.9. Converter From 2-phase to 4-phase

passes the request signal from the 2-phase sender to the 4-phase receiver,

and then brings the first acknowledge signal back to both the sender as its

acknowledge and the receiver for lowering the request line, and finally takes

the transition of the acknowledge lowering signal to C element for its next use.

Data Communication Protocol

In dual rail data communication, two request wires (denoted as rF and rT)

1. INTRODUCTION 15

Sender

hOT
hOP
hiT
hIP

a
3.

Receiver

bOF

biT

b1F/

a

Transaction! Transaction2

FIGURE 1.10. Dual Rail Data Communication

are needed for passing each bit (rF is for the value 0 of the bit, and rT is for the value

1 of the bit). An additional wire is required for sending the acknowledge back. One

4-phase dual rail data passing transaction involves:

(1) the sender makes transitions in either rF or rT (but not both) for every bit,

(2) the receiver makes a transition in the acknowledge wire to indicate the data

has been accepted,

(3) the sender lowers all those wires it raised,

(4) the receiver lowers the acknowledge signal to finish off one transaction.

Without loss of generality, we illustrate a two-bit dual rail data communication in

Figure 1.10.

In a bundled data communication, as shown in Figure 1.11, a set of stan-

dard data wires (one wire per bit) and a pair of request-acknowledge wires are used.

In this protocol a delay requirement must be guaranteed by the data bundle and

control wires in order for the system to behave correctly. The requirement is that the

delay of the control wire (the request signal) should be longer than the longest delay

1. INTRODUCTION 16

Sender

Req

Ack

Receiver

Req

Ack

/ \.

one 'transaction

\

FIGURE 1.11. Bundled Data Communication

for the data bundle to arrive at all its receivers.

Conversion between dual rail and bundled data communication: Here we

give the conversion between 4-phase dual rail and 4-phase bundled data communica-

tion.

(1) Conversion from dual rail to bundled data communication as typified in Figure

1.12. EN is an element which usually shut off the data flow, let the data

through only when requested. Every bit bi on the dual rail bus is connected

to biT since the actual level of bi is the same as biT. This converter raises the

request signal r when each bit is raised on dual rail wires. This can be done by

ANDing all bits to the ENable unit which enables the data to flow from one

side to the other side. After the acknowledgement signal is raised, all raised

dual rail wires are lowered and therefore the output from the big AND gate

becomes low, which causes the EN to be shut off and then lower r. Finally the

acknowledgement signal is lowered and this transaction is finished off.

(2) Conversion from bundled data communication to dual rail as typified in Figure

1. INTRODUCTION 17

bOF

bOT

bO

EN
bIF

bIT
bi

a a

FIGURE 1.12. Conversion from Dual Rail to Bundled

1.13. This converter outputs rAbi as biF and rAbi as biT. So when is raised,

biT will be raised if hO is 1 and biF will be raised otherwise. When a is raised,

r will be lowered and therefore all dual rail wires become low again. Finally

the acknowledgement signal a will be lowered to finish off this transaction.

Therefore we can use the protocol most suited to each subsystem in a design and

convert between them easily when needed.

1. INTRODUCTION 18

bOF

bi

) bIF

bIT

FIGURE 1.13. Conversion from Bundled to Dual Rail

1. INTRODUCTION 19

1.4. Structure of the thesis

Chapter 2 surveys three major approaches of asynchronous design. First, silicon

compilation typically develops a high-level programming language for specifying asyn-

chronous circuits and builds a silicon compiler to automatically translate programs

to circuits that are correct by construction rather than verified. Second, the for-

mal approach focuses on finding suitable models for describing the behavior of asyn-

chronous systems, hierarchical specification techniques, and mathematical tools to

check correctness and important properties. Third, the engineering approach builds

large scale asynchronous designs using standard tools (for synchronous design) and

relies on insight and experience to "get it right". We illustrate these three approaches

by introducing one typical related work for each. Our main interest is in the formal

specification and verification of large asynchronous system.

Chapter 3 describes the CCS notations, the modal /.z-calculus (HML plus fixedpoint

operator), and CWB. Based upon transition systems, CCS semantics is given, the

interpretation of any formula of the modal it-calculus and the satisfaction relation

between a formula and an agent in a given transition system are defined, and various

equivalence relations are introduced. It is argued that the observational congruence

best fits our concerns for asynchronous system. Interesting temporal logic operators

are defined in terms of the modal i-calculus. The CWB commands we used in our

specification and verification are listed.

Chapter 4 introduces Sutherland's move machine and our variants. Sutherland's

move machine is a slave machine which helps the CPU to get rid of the work needed

for moving data between CPU and memory, and between two locations in the mem-

ory. Our variant is a slightly expanded version of Dave Spooner's original version

[BLS94a] with more consistent register usage and with the addition of a LDI in-

struction to facilitate the handling of exceptions. Our account is closely based upon

1. INTRODUCTION 20

[BLS94b].

Chapter 5 systematically presents a 4-phase AMM RTL (register transfer level) imple-

mentation through three different abstract levels of CCS specification. Our account

is closely based upon [BLS+94a] and is included for contrast and comparison with

the PAMM model of chapter 6. At the highest abstract level, we specify what AMM

does at the instruction level. At the next level, we give the RTL definitions of the

datapath and its control signals, but we keep the control unit quite abstract and do

not fix precisely where the control signals come from. At the lowest level, we specify

the control unit using basic control modules, and wire these modules and datapath

together to detail the control signal flow. This refined specification has served as a

blueprint for engineers. Property checks and equivalence checks are carried out on

these specifications. We show that AMM enjoys such desirable properties as deadlock

and livelock freedom, liveness, no bus contention, etc. Three different abstract levels

are proved to be consistent.

Chapter 6 covers PAMM design which includes a fetch unit and an execute unit.

These two units work independently of each other and communicate with each other

in the following cases: (i) interrupt raised by the execute unit when a JCC is met with

the condition code true, (ii) stop raised by the execute unit when a HALT instruction

is executed, and (iii) new instruction output raised by the fetch unit. In order to

improve the speed, we try to make this asynchronous machine maximally parallel.

It is very tricky to avoid deadlock in a design when too many components work in

parallel and communicate with each other. But we have verified that the pipelined

asynchronous move machine is deadlock free.

Finally, chapter 7 summarizes the thesis work and possible future work.

1. INTRODUCTION 21

1.5. Contributions of the thesis

This thesis presents two case studies in asynchronous design. In these case studies,

we present a systematic development of AMM through three abstract levels which are

shown to be consistent and down to a level which has served as an implementation

blueprint. This presentation is heavily based upon two technical reports [BLS94b]

and [BLS+94a] and is included for comparison and completeness. We also have de-

signed, specified and verified PAMM by carefully abstracting away regular structures.

At the time of writing, these case studies are some of the largest specifications given

and specified. These case studies are valuable in their own right and help clarify

methodology and bridge the gap between the formal method and engineering ap-

proaches.

CHAPTER 2

Approaches to Asynchronous Design

In this chapter we highlight three main approaches to asynchronous design. The first

approach is silicon compilation which typically develops a high-level programming

language suitable for specifying asynchronous circuits and then generates circuits di-

rectly from programs written in that language. Silicon compilers produce designs that

are correct by construction rather than verification. The second approach is formal

and focuses on finding suitable models for describing the behavior of asynchronous

systems, hierarchical specification techniques (e.g., composition) for large systems,

and mathematical tools to check important properties (e.g., liveness, safety, deadlock

and livelock and different equivalence relationships, etc). The third approach is the

engineering approach in which one goes ahead and builds large scale asynchronous

designs using standard tools and relying on insight and experience. We will illustrate

these three approaches by examples.

2.1. Silicon Compilation

Perhaps the main interest of researchers in computer science is to develop high-

level programming languages suitable for specifying asynchronous circuits and then to

build silicon compilers for them which generate circuits from programs automatically.

Brunvand [Bru91] chose a LISP-like variant of OCCAM as the source language for

specifying asynchronous systems and built a silicon compiler for translating an OC-

22

2. APPROACHES TO ASYNCHRONOUS DESIGN 23

CAM program into a 2-phase circuit. As an example of this methodology, Brunvand

specifies a single place buffer by:

input output

(Block ((char input<8> output<8>));a process with two 8-bit channels

(While True

(Seq ((Var temp<8>))

(input? teiip)

(output! temp))

;repe.t forever

;sequential composition with 8-bit

;local variable temp

;get value from channel input and

;store in temp

;send value in temp to channel output

and the silicon compiler translates such a description into a circuit with 2-phase and

bundled data passing protocol (the control part of which is delay-insensitive) in the

following steps.

(1) Initial replacement: Every OCCAM primitive and OCCAM construct will be

replaced by a corresponding circuit. This replacement is guaranteed to be

correct by construction. The initial circuit of the single place buffer generated

by the compiler is as shown in Figure 2.1, in which the circuits labelled "M"

are Merge elements.

(2) Optimization: A peephole-like technique is used to optimize the initial result-

ing circuits. The basic idea is to locate in a circuit a subcircuit matching some

template and replace it with a simpler part which conforms to the original one.

Replacement is repeated until the circuit can not be further modified.

2. APPROACHES TO ASYNCHRONOUS DESIGN 24

true
Ack

Start

A

Channel

Input
Seq

F
Sel

T

Call
Ca

 +l1N — Call

Reg

EN
£

YbLe
Output

B

Channel

Wiii1e

FIGURE 2.1. The initial circuit of single place buffer

The initial circuit of the single-place buffer is modified by the following replacement:

• Every call module with a single client will be replaced by a pair of wires con-

necting Ri (the request signal from the caller) to Rs (the request signal issued

by the call element), and As (the acknowledge from the called circuit to the

call element) to Al (the acknowledge issued by the call element to the caller)

because the trace structures are identical when the environmental constraints

present in the call module are applied to this pair of wires. Therefore all the

call modules in the initial circuit are replaced by pairs of wires.

• A Select module (asynchronous multiplexer) instantiated with constant True

or False conditions on their sel inputs will be replaced by a wire connecting A

and B (or C) because the trace structures are identical when the environmental

2. APPROACHES TO ASYNCHRONOUS DESIGN 25

constraints present in the Select module are applied to this wire. The Select

module in the circuit generated by step 1 is replaced by a single wire.

• Enable modules are designed to gate different signals onto a common bus. In

particular, they will drive signals onto a shared bus upon request and then

report that the values on the bus are correct. Given a request to disable, the

module will stop driving the bus and make sure the module outputs are in a

high impedance state before reporting the bus is available. The purpose is to

avoid bus contention. When there is only one source connecting to a bus, the

EN unit is superfluous and can be replaced by wires connecting Ren to Aen,

Rdis to Adis, and data-in to data-out. The circuit is changed by replacing two

EN modules with wires.

• The Start signal is a transition that is issued by the environment after intial-

ization to initiate action in the circuit. If Start is wired to a Merge module,

the Merge module produces an output transition upon the receipt of a Start

transition. In this case it is possible to remove the Start signal and replace

the Merge module with an inverter. This transformation depends on the fact

that modules respond to the master-clear signal by setting their control signal

outputs low, so the inverter will produce the effect of a Start transition issued

immediately after master-clear is removed. The Start signal in this circuit is

removed and the Merge element is replaced by an inverter.

• M-element with a single input is trace-equivalent to a wire connecting the input

to the output. This means that it can be replaced by a wire. One M-element

is replaced by a single wire.

After the above sequence of transformations, the final circuit is given in Figure 2.2.

The final circuit is internally presented as a graph with the basic modules as nodes

and the connection wires as arcs. Brunvand also built output drivers to print the

final circuit in the format of Netlist for simulation, and to print the final circuit in

the format of Fusion [Bru91] output for routing and placement.

2. APPROACHES TO ASYNCHRONOUS DESIGN 26

Input
Channel

RA

Reg

Output

Channel

FIGURE 2.2. The final circuit of single place buffer

2. APPROACHES TO ASYNCHRONOUS DESIGN 27

The VLSI circuits constructed using this technique have been mapped into CMOS,

FPGA and GaAs technologies. A simple RISC processor has been implemented on

multiple FPGA elements to demonstrate the practicality of the approach.

However, there is no support for verification, and the specification which could be

written in this frame is not really abstract since one only can design programs by

using operators predefined over data types. Although the rules of transformation are

well argued, they are not formally proved.

Similar work has been carried out at Eindhoven, Caltech, and Philips. In Eindhoven

University of Technology, Michiel Van der Korst[vdK92] has built a Silicon Compiler

VOICE which translates a specification written in a CSP-like language VOKEL into a

handshake circuit, an intermediate representation. Prototype tools for optimization,

simulation and visualization of handshake circuits are developed.

In California Institute of Technology, Martin and Burns[BM88] have described a

technique for automatically translating a concurrent program based on CSP and Di-

jkstra's guarded commands to a 4-phase delay-insensitive circuit. An asynchronous

RISC style microprocessor has been developed that demonstrated the feasibility of

this approach.

Van Berkel at Philips Research [vBNRS88], [vBKR91] also built a compiler which

translates programs written in CSP-like language Tangram in two steps.

(1) Produce a handshake circuit which is a network of components connected

together by point-to-point channels.

(2) Change this intermediate form into a netlist of standard-cell VLSI modules for

final silicon layout.

2. APPROACHES TO ASYNCHRONOUS DESIGN 28

The resulting VLSI circuits use a delay-insensitive, 4-phase, dual-rail protocol for

communication between components. The system has been used to generate a number

of VLSI circuits[vB92b].

2.2. Formal Approach

The formal approach focuses on finding suitable models for describing the behaviour

of asynchronous systems, hierarchical specification techniques (e.g., composition) for

large systems, and mathematical tools to check some important properties (e.g., dead-

lock, livelock and different equivalence relationships, etc).

For example, Jo Ebergen has developed a language ([Ebe89], [Ebe9ib] and [Ebe91a]),

based on trace structure, for specifying asynchronous systems. This language includes

variables, channels and guarded selections and can deal with data processing as well

as communication synchronizations.

r a= 0 or 1

FIGURE 2.3. A modulo-N counter

For example, here is a modulo-N counter, which outputs 1 after each of the first

N-i inputs and 0 after the Nth input. It can be specified by the following description.

ModC(N:int, r?:un, a!: bin)

= { by definition }

I[varn:int ::

initially n0

pref* [r?;

2. APPROACHES TO ASYNCHRONOUS DESIGN 29

n:(n+1) mod N;

if n>O then a:1

I n0 then a:0

fi;

a!;

]

II

The formal semantics of a command is its corresponding trace structure. For ex-

ample, the above specification has the trace structure:

E = < iE, oE, tE> where,

iE = Jr};

oE = {< a,O >,< a,1 >};

tE = pref * [(r?; < a!, 1 >)N_1; r?; < a!, 0>]

The definition of decomposition forma1izs the idea of "implementing a specifica-

tion by a network of components". The substitution theorem formalizes the modular

design method. A network, which is a decomposition of a specification, represents a

speed-independent circuit. If all constituent components are delay-insensitive, then a

speed-independent decomposition is also a delay-insensitive decomposition.

We can decompose this specification by using a divide and conquer approach: decom-

pose the modulo-2N counter into a modulo-N counter and a "small" subcomponent

which has a small number of states (we just show the even number case of N) . One

possible decomposition of this specification is:

CELL (r?:un,a! : bin,sr!:un,sa?:bin)

=f definition}

2. APPROACHES TO ASYNCHRONOUS DESIGN 30

[var k:bin::

initially sa=0,k=0::

pref*[r?;k:=(k+1) mod 2;

if k=0 then sr!;sa?Ik 54 0 then skip fi;

if sa 54 0 or k 0 0 then skip

I sa0 and k=0 then a:=0 fi; a!;]

II

ModC(2N,r! ,a!)

={ del. of weave}

I[chan sr: un,sa:bin:: CELL (r?,a!,sr!,sa?) 11 ModC(N,sr?,sa!) II

-+ { def. of decompostion}

(CELL(r?,a! ,sr! ,sa?), ModC(N,sr? ,sa!))

Figure 2.4 shows two implementations of the CELL. When N = 2k, k CELLs are

connected to implement the modulo-N counter.

Ebergen has given the analyses for response time, area complexity and power con-

sumption within the first order approximations with no reference to any specific physi-

cal implementation provided that certain conditions are satisfied by the network. The

measures of these three performances are given below.

(1) The area of a system is measured by the number of "basic" components in

the decomposition, where a basic component can be any component whose

number of states is bounded by a predetermined constant.

(2) The energy is measured by the number of communication actions in a be-

haviour. The power consumption is measured by the total number of com-

munication actions amortized over the external communication actions for a

2. APPROACHES TO ASYNCHRONOUS DESIGN 31

(a) Using dual-rail (b) Using bundled-data

sr!

sa?

FIGURE 2.4. Implementation for CELL

2. APPROACHES TO ASYNCHRONOUS DESIGN 32

worst-case environment which communicates with the implementation in such

a way that the total number of communication actions is maximized over the

long term.

(3) The response time is measured from the time the last input arrives that enables

the production of that output to the actual production of that output. In

calculating the response time, it is assumed that the response time of basic

components are bounded from above and below by fixed constants.

The above implementation for the modulo-N counter has an amortized constant

bound of response time and power consumption, and O(log(N)) area complexity.

This is optimal for a modulo-N counter.

However, the decomposition of specification is conducted by hand, and the imple-

mentation correctness criteria deduced by the definition of decomposition are not

strong enough since they are based on trace equivalence, e.g., an implementation

which deadlocks will not be detected.

There is some other work based on transitional semantics. Various equivalent re-

lationships have been given for different applications. We are most interested in

observational congruence which well characterizes the faithfulness of an implementa-

tion to its specification. A group of researchers in University of Edinburgh have done

extensive research work for formal verification [Mo191], [Sti92b], and [Sti92a]. Their

workbench CWB has automated the equivalence (various equivalence relationships)

checking and property (expressed in the modal t-calculus) checking of asynchronous

systems specified in CCS.

Other formal work can be found in [DNS92], [Ka186], [Sch85], [Udd86], and [UV88],

[BS87] and [BE92}.

2. APPROACHES TO ASYNCHRONOUS DESIGN 33

2.3. Engineering Approach

The engineering approach demonstrates the feasibility of asynchronous design by

constructing real asynchronous designs. The AMULET group in Manchester Uni-

versity has developed an asynchronous implementation [Fur93] and [PDF92] of the

ARM microprocessor as part of a broad investigation into lower power techniques.

Their first commercially realistic asynchronous product is named AMULET1. Their

methodology is based on Sutherland's "Micropipelines" [Sut89], a transition signalling

bundled data model.

The Manchester AMULET group has implemented the basic library of event control

elements proposed by Sutherland, and extra event control elements: a transparent

latch for blocking events, a decision-wait element for performing a rendezvous be-

tween one control line and either of a pair of event lines, an event control transparent

latch, and a capture-pass latch.

The datapath of AMULET1 [Fur95] is decomposed into 4 blocks: a data interface,

an address interface, an execution unit and a register bank.

• Data interface forwards instruction and data from, and returns data to the

memory.

• Address interface addresses to the memory. It autonomously increments PC

while new addresses (for branch or data access) can arrive asynchronously.

• Execution unit carries out arithmetic and logic operations. It takes register

operands from the register bank. Immediate operands are forwarded from

the execute unit. The result is usually returned to the register bank. It is

implemented as three pipelined stages to improve performance.

• Register bank holds current values of all the registers except the PC. It locks

the left hand side registers until the corresponding right hand side operation

2. APPROACHES TO ASYNCHRONOUS DESIGN 34

has been completed and assigned. It includes an arbiter-free locking mecha-

nism which enables efficient read operations in the presence of multiple pending

write operations.

First silicon returned from fabrications arrived in April 1994 (AMULET1 has now

been fabricated on two CMOS processes: a 1 1urn process at ES2 and a 0.7 jim process

at GEC Plessey Semiconductors). Both prototype devices are functional and execute

programs produced by standard ARM development tools such as the assembler and

C compiler. The comparison of AMULET1 and ARM6 [PDF92] is shown' in the

following table:

AMULET1/ES2 AMULET1/GPS ARM6

Process 1A 0.7 /1 1/L

Area(mm2) 5.5 x 4.1 3.9 x 2.9 4.1 x 2.7

Transistors 58,374 58,374 33,494

Performance 20 .5kDhry 40kDhry 3 lkDhry

Multiplier 5.3ns/bit 3ns/bit 25ns/bit

Conditions 5V,20° C 5V,20°C 5V,20MHz

Power 152mW ? 148mW

MIPS/W 77 ? 120

TABLE 2.1. Comparison of AMULET and ARM6

AMULET1 has demontrated the feasibility of designing a full functionality commer-

cial RISC architecture in asynchronous logic. While this design doesn't outperform

its synchronous counterpart, its performance is within a factor of two in all areas.

As this is a first attempt by this group at producing an asynchronous design of this

complexity, it is quite encouraging. Preliminary indications are that AMULET 2 will

be both faster and use less power than ARM6.

2. APPROACHES TO ASYNCHRONOUS DESIGN 35

At HP Laboratory, Bill Coates, Al Davis and Ken Stevens [Dav95],[DN95] devel-

oped an asynchronous, 300,000 transistor, full custom CMOS chip designed as the

communication coprocessor (named as Post Office) for the Mayfly scalable parallel

processor.

2.4. Summary

Asynchronous design has always retained a niche in academic circles because it

provides a good framework for mathematical techniques for proving the circuit cor-

rectness. By now there are some adequate mathematical tools available for specifying

and verifying asynchronous circuits. In turn these have awakened renewed interest

from industry. The VLSI group at Calgary specializes in the formal specification and

verification of large asynchronous hardware systems by using a coarse-grain model.

CCS is an appropriate tool, supported by the modal n-calculus for expressing desirable

properties and CWB for property checks and equivalence checks. This thesis contains

two case studies which demonstrate the application of CCS and the -calculus (as

mechanized in the CWB) to the specification and verification of a small microproces-

sor (variants of Sutherland's move machine). The goal is to bridge the gap between

formal and engineering schools, and show that coarse grain formal specifications are

pitched at the right abstract level to both establish the major deadlock, livelock, and

safety properties and to serve as an implementation blueprint for the engineers. Time

is too short to write a silicon compiler supporting our approach.

CHAPTER 3

Tools for Specification and Verification

This chapter introduces the notation and tools used to design and test our variants

of Sutherland's move machine. CCS is a specification language for asynchronous

systems. Its semantics is defined in terms of labelled transitional systems. It is

argued that observational congruence best fits our concern for asynchronous circuits.

The modal ri-calculus is a companion logic for CCS specification. It can be used to

express and test that certain desirable properties hold for our asynchronous systems.

Some important commands in the Concurrency Workbench (CWB) are listed and

used to check the equivalence between CCS specifications at different abstract levels

and the satisfaction of those properties we wish to hold. For complete accounts,

see [Mil89] for CCS, [Sti91] for the modal it-calculus and [Mol9l] for the workbench

CWB. For the necessary intuition and application, see also the theses of Liu [Liu92}

and Stevens [Ste94].

3.1. CCS - Calculus of Communicating Systems

In this section, we present the syntax of CCS in BNF and its operational semantics.

Both are illustrated by examples.

3.1.1. Syntax of CCS. CCS has a simple and clean syntax, as described below.

E ::= 0 Nil agent

A constant

Ia.E a prefix(o E Act)

36

3. TOOLS FOR SPECIFICATION AND VERIFICATION 37

El + E2 + ... + En summation

IElIE2I ... IEn composition

IE\L restriction (LC £)

E[f] relabelling

where £ is a fixed set of labels, T is an internal action, Act is £ U { T } and f is

a relabelling fuction.

The expressions in this language are called agent expressions, or agents for short. As

illustrations, we now give three example definitions of common asynchronous circuits.

Example 1: A fork element, which routes a transition at its input to its two outputs,

is specified by:

F= in.('outl.'out2.F+ ' out2.'outl.F).

Example 2: A call element, which serves a circuit with two users who never need

the circuit at the same time, is specified in CCS as:

call = rl.'r.a.'al.call + r2.'r.a.'a2.call

Example 3: An arbiter unit, which also serves a circuit with two user who may need

the circuit at the same time, is specified in CCS as:

Sem = 'g.p.Sem

Ui ri.g.'gl.'dl.'p.Ul

U2 = r2.g.'g2.'d2.'p.U2

Arbiter = (Ui I U2 I Sem) \ {g,p}

3.1.2. Operational Semantics of CCS. We give the CCS semantics as a la-

belled transition system: (E, Act, —*) where E is the set of all agent expressions, -*

is a triple relation over E x Act x E (when (El, a, E2) e - p, we write El - E2).

The transition relation is given by induction on the structure of agent expressions:

3. TOOLS FOR SPECIFICATION AND VERIFICATION 38

Act a
a.E—*E

Suml E14E1' Sum2 E24E2'
E1-I-E2-+E1' E1+E2—E2'

Coml E1*E1' Com2 E2+E2'

E1IE2 E1'IE2 E1IE24 4 E1IE2'

Res E4E' (a,'a L)
E\L4E'\L

RdI E4E'

E[f] 4 E'(f]

Con(A cg(F)

Com3 E1-E1',E2-*E2'
E1IE2- E1'IE2'

In example 3, we specified the arbiter in CCS. When both users request before

rl

1
r2

ARBITER

gi dl g2 d2

FIGURE 3.1. Arbiter

any grant has been made, one request will be granted and the other user has to wait

until the grantee is done. Let us prove this is what the arbiter can do according to

the above semantics.

Ecample 4: A verification of mutual exclusion via arbitration.

rl.g.'gl.dl.'p.Ul 4 g.'gl.dl.'p.Ul (Act)

r2.g.'g2.d2.'p.U2 -* g.'g2.d2.'p.U2 (Act)

3. TOOLS FOR SPECIFICATION AND VERIFICATION 39

Ui rl
-- g.'gl.dl.'p.Ul (A (F)

U2 -4 g.'g2.d2.'p.U2 (A 'I P)

(Ui IU2ISem) -- (g.'gl.dl.'p.UilU2ISem) (Comi)

(UiU2Sem)\{g, p} -- (g.'g1.d1.'p.U1jU2Sem)\{g, p} (Res)

Arbiter \{g,p} (g.'gi.dl.'p.U1IU2Sem)\{g,p} (A '(P)

r2
(g. gi.di. p.UlIU2ISem) \{g ,p} -

(g.'gi.di.'p.Ulg.'g2.d2.'p.U2 Sem) \{g, p} (Com2)

g. 'g2.d2.'p.U2 -4 'g2.d2.'p.U2 (Act)

'g.p.Sem .::4 p.Sem (Act)

Sem4p.Sem (A(P)

(g.'gi.di.'p.U1g.'g2.d2.'p.U2 ISem) \{g,p}

(g.'gl.di.'p.Ui 'g2.d2.'p.U2 p.Sem) \{g,p} (Com3)

(by now g.'gl.dl.'p.Ul cannot do anything since there is no 'g in Sem to synchronize

with g.)

'g2.d2.'p.U2 Ip.Sem - d2.'p.U2 Ip.Sem (Act)
d2

d2.'p.U2 1p.Sem — p.U2 1p.Sem (Act)

(g.'gi.di.'p.Ui 'g2.d2.'p.U2 p.Sem) \{g,p} 42

(g.'gi.di.'p.UlI d2.'p.U2 p.Sem) \{g,p} (Com2)

(g.'gi.dl.'p.Ui d2.'p.U2 1p.Sem) \{g,p} .

(g.'gi.di.'p.Ul 'p.U2 Ip.Sem) \{g,p} (Com2)

'p.U2 - U2 (Act)

p.Sem -4 Sem (Act)

('p.U2 I p.Sem) .4 (U2ISem) (Com3)

(g.'gl.di.'p.Ui'p.U2 I p.Sem) - (g.'gl.dl.'p.U1U2Sem) (Com2)

(g.'gi.dl.'p.Ui'p.U2 I p.Sem)\{g, p} -*

(g.'gi.di.'p.U11U2Sem)\{g, p} (Com2)

So the arbiter can evolve into (g.'gl.d1.'p.U1U2Sem)\{g,p} by a sequence of actions

ri, r2, T(g and 'g), 'g2, d2, and r(p and 'p). In this sequence r2 has been granted

3. TOOLS FOR SPECIFICATION AND VERIFICATION 40

first and ri cannot be granted until user 2 is done and releases the Sem by doing 'p

which synchronizes with p.

3.1.3. Some Equivalence Relationships. Various equivalence relationships

have been proposed in terms of the transition relation over the set of agent expres-

sions. This section introduces four equivalence relations (trace equivalence, strong

bisimulation, weak bisimulation and observational congruence). Observational con-

gruence is the one that best addresses our concerns about the equivalence between

asynchronous system specifications at different abstract levels.

Trace equivalence

Definition 1: The trace set of an agent E is { t E Act* I for some E', E E'}. We

use tE to stand for the trace set of E.

Definition 2: Two agents El and E2 are trace equivalent if and only if tEl = tE2.

This equivalence relation is too weak. For instance,

El = a.O + a.El and E2 = a.E2 are trace equivalent. El includes deadlock while E2

is deadlock free. Apparently we want to distinguish these two agents.

Strong bisimulation

Definition 3: A binary relation S ç 2 x 2 over agents is a strong bisimulation if

(P,Q) E S implies, for all c E Act,

a ,. . (1) Whenever P - P then, for some Q, Q - a Q/ and (P" ES
a / a (2) Whenever Q / F —* Q then, for some F, P —* P and (P',Q) ES

Definition 4: P and Q are strongly equivalent (or strongly bisimular), written P

Q, if (P,Q) E S for some strong bisimulation S. This may be equivalently expressed

as follows: i-' = U{s: S is a strong bisimulation}

3. TOOLS FOR SPECIFICATION AND VERIFICATION 41

is also a congruence, which means strong equivalence is substitutive under all

combinators. However, this equivalence relation is too strong because every r action

has to be matched. For example, the two agents El = a.T.O and E2 = a.O are not

strongly equivalent. Since the internal action r is unobservable, both agents have an

a action and then evolve into deadlock. These two agents don't make any difference

to us in this sense and they should not be distinguished.

Weak bisimulation

Definition 5: A binary relation S C P x P over agents is a (weak) bisimulation if

(P,Q) E S implies, for all a E L,

. a (1) Whenever P + P then, for some Q., Q(-)r * - (-r)* Q and (P', Q' -'-) cS
a , T a F Q - Q/ then, for some P, P(—.)* - (-i-(2) Whenever Q/) E

'7.
(3) Whenever P -1. P then, for some Q,, Q(-)* Q/ and (P', Q ') ES

(4) Whenever Q - Q' then, for some F', P(-) * F' and (F', Q') E S'

Definition 6: P and Q are bisimular, written P Q, if (P,Q) E S for some bisimu-

lation S. This may be equivalently expressed as follows:

= U{ S: S is a bisimulation}

From this definition, we can see the internal action r is totally ignored. Unfortu-

nately is not a congruence. For example, b.O T.b.O while a.O + b.O 0 a.O + r.b.O.

Observational congruence

Definition 7: P and Q are observationally congruent, written P = Q, if for all aE

Act,

(1) Whenever F - F' then, for some Q', Q(-*)* - (-.*) * Q' and P'cQ',

(2) Whenever Q - Q' then, for some F', F(--.)* -+ (-+) * P and P'Q'.

From this definition, we can see every T action has to be matched by at least one

r action between two observationally congruent agents. = is substitutive under all

3. TOOLS FOR SPECIFICATION AND VERIFICATION 42

combinators. If P Q and both are stable (a stable agent is one that cannot have any

immediate r action), P = Q. So the observational congruence check can be reduced

to bisimularity check if the two compared agents are stable. Also we can easily see

that two agents are not observationally congruent if one is deadlock and the other

one is not.

3.2. Process Logics

In this section, we introduce the process logics: Hennessy Milner Logic (HML) and

modal a-calculus. We use agents as their models. Thus we interpret formulae by

agents. The satisfaction relationship between an agent and a formula are defined.

Some examples are given to show how to express properties.

3.2.1. Hennessy Milner logic. This subsection gives HML syntax in BNF, its

interpretation by any given agent and the satisfaction relationship between an agent

and a formula by structural induction.

Syntax of HML in BNF:

A ::= T I -'A IA AB l[K]A

Where

T is the constant true,

1K is a subset of Act.

Models:

A labelled transition system is (i', A, - p) where

P is a nonempty set of agents,

A is an action set,

- is a relation over P X A x 7' for each a EA,

P1-*P2 stands for (P1, a, P2) E -.

3. TOOLS FOR SPECIFICATION AND VERIFICATION 43

Interpretation: Every formula in HML is interpreted with an agent of a given

labelled transitional system as its model, by structural induction:

(1) T is true under all agents,

(2) -'A is true under E iff A is false under E,

(3) A A B is true under an agent E if both A and B are true under E,

(4) [K]A is true under an agent E if for all E' and all aEK, if E - B' then A is

true under B'

Satisfaction: An agent E satisfies a formula A, written as EI=A if A is interpreted

as true under E. So the satisfaction relation is as follows:

(1) E = T for all models E,

(2) E-'Aiff not Ej=A,

(3)EAABiffE=AandEI=B,

(4) E I=[K]A if for all E' and all aEK, if E - B' then B' j= A

HML logic only can express properties about finite action sequences of agents. How-

ever the properties (e.g., deadlock and livelock) about infinite sequences of behaviors

are the most important part of asynchronous systems. For example, a simple clock:

Clock = tick.Clock ticks forever, but HML cannot express such a property. What we

need to cope are fixpoints, and these are supplied by the modal u-calculus.

3.2.2. Modalft-Calculus. The modal si-Calculus is HML plus a fixpoint oper-

ator.

Theorem: There will always be at least one solution to the fixpoint equation X

= FX provided that each fixed point variable is within the scope of an even number

of negations.

This is an easy syntactic check. From now on we assume all our modal ,a expressions

pass it. There may be several fixpoints, but the minimum fixpoint and maximum

3. TOOLS FOR SPECIFICATION AND VERIFICATION 44

fixpoint are unique. Fortunately these are the two fixpoints we are most interested

in. To interpret the minimum and maximum fixed points, we first need to associate

with a property expressed in HML the set of states (agents) satisfying it within a

given labelled transition system (, A, —*).

lITIlP

llFll

II All

llAABIIllAllflllBIl

[a]Al {P E 21VP' El', p - P1 and P' E IlAll}

Now we can calculate the sets of agents which satisfy minimum and maximum fix-

points as described below.

II uX.FX II: The set of agents satisfying the minimum fixpoint X.FX are computed

by:

(1) X0 = and i = 0

(2) Repeat i = i+1 and compute Xi =

until Xi X_1

(3) II pX.FX II = X

II vX.FX I: The set of agents satisfying the maximum fixpoint vX.FX are computed
by:

(1) Xo = l' and i = 0

(2) Repeat i = i+1 and compute Xi = FX_1

until Xi X_1

(3) II uX.FX II = X

Satisfaction relation between an agent and a formula in the modalit-calculus can

be fully defined by adding two statements for the minimum and maximum fixpoints:

E l= 1iX.FX if E E II tX.FX II
E = z'X.FX if E E vX.FX II

3. TOOLS FOR SPECIFICATION AND VERIFICATION 45

3.2.3. Derived Operators of Modal -calculus. Some important derived op-

erators are given below:

IlFil =

IIAVBII = II

II(K)IIA = II-'[K]-'AII

IIvX.FXM = II'(1uX.-'(FX))II

3.2.4. Definable Interesting Modalities. Some interesting modalities are de-

fined in terms of HML and the minimum and maximum fixed points.

BOX P def = uZ.P A [—]Z

CAN P vZ.P A ((—)Z V [—]F)

EVENT P (Z.P V ([—]Z A (—)T)

POSS P (pZ.P V (—)Z

where

S = BOX P if P holds in any state which S can evolve into.

S = CAN P if there is at least one path along which S can evolve and all states

satisfy P. The path can be finite and end with deadlock.

S 1= EVENT P if there exists one state satisfying P on every path along which S can

evolve. The pathes may not deadlock.

5 = POSS P if there exists one state satisfying P which S can possibly evolve into.

BOX P and POSS P are dual: - (BOX P) = POSS -'P,

CAN P and EVENT P are dual: -' (CAN P) = EVENT -'P

Examples of using these modalities

Safety means that something bad would never happen. This can be expressed

as: BOX -iP, where P stands for the bad thing.

3. TOOLS FOR. SPECIFICATION AND VERIFICATION 46

Example 1 a deadlock free system S:

S 1= BOX —i[-]F, where [-]F means that no action is possible (i.e., deadlock).

Liveness means good thing may happen.

Example 2 In the arbiter (see the definition in section 1.1.1), one desirable

property is that every request will eventually be able to get granted. For rl,

this can be expressed in the modalit-calculus as:

Arbiter = BOX([rl](EVENT((gl)T)))

But we cannot express fairness in the modal it-calculus. E.g., does the arbiter fairly

grant to user 1 and to user 2? This just reflects CCS, since we cannot specify a fair

arbiter in CCS.

3.3. The Workbench CWB

The Edinburgh Concurrency Workbench (CWB) is an automated tool which caters

for the manipulation and analysis of concurrent systems. Here are some functions we

used in our specification and verification.

Agent definition: to define behaviors given in the syntax of CCS.

bi: this command binds a given identifier to a given agent.

State space analyses and equivalence checking: to perform various analyses

on these behaviors such as analysing the state space of a given agent, or to check

various semantic equivalences and preorders.

sim: this command allows for interactive simulation of a given agent;

vs: this command takes an integer and an agent, and lists all possible observations

of the given agent of the given length;

3. TOOLS FOR SPECIFICATION AND VERIFICATION 47

size: this command prints the number of states of a given agent;

mm: this command takes an agent and an identifier, and binds to that identifier

the agent with the smallest state space which is bisimular to the given agent;

fd: This command takes an agent and tell you if there is any deadlock. If there is

a deadlock, it gives a sequence of actions which make the agent evolve into a deadlock.

eq: this command takes two agents and return a boolean value indicating whether

or not these two agents are weak bisimular; we only use this to do equivalence check

because all our agents are stable and the most interesting observational congruence

checking can be reduced to bisimularity checking.

Property definition: to define properties or propositions in the modal /J.- calculus.

bpi: this command binds a given identifier to a given proposition;

bmi: this command binds a given, identifier to a given propositional macro;

Model checking: to check whether a given agent satisfies a certain property.

cp: this command takes an agent and a property and return a boolean value repre-

senting whether or not the, agent satisfies the property.

3.4. Summary

In this chapter, we have introduced CCS syntax and semantics. Examples have

been given for illustrating how to specify basic circuit modules in CCS and how

to look at the meaning of a specification. We also have introduced its companion

modal p-calculus. and their mechanized model checker CWB. Basic temporal opera-

tors (macros) are defined in this modal p-calculus, therefore we can define desirable

3. TOOLS FOR SPECIFICATION AND VERIFICATION 48

properties using these basic macroes instead of directly using the minimum and max-

imum operators. This makes the specification of properties much easier and more

understandable. Examples have been given for showing how to express properties

such as deadlock and liveness. Some equivalence relationships have been discussed

and it is argued that the observational congruence is the best one for characterizing

asynchronous systems. We also have listed commands in the CWB which are used

for analyzing and checking our CCS specifications. In the chapter 5 and 6, we will

use CCS to specify AMM and PAMM, and the modal it-calculus to express desirable

properties of AMM and PAMM, and then CWB to do model-checking.

CHAPTER 4

The Move Machine

sE
MOVE

aF

MI

The MOVE machine was first suggested by Sutherland in a 1970's CalTech Report,

now presumed lost. Sutherland observed that CPUs spend much of their time moving

data back and forth between themselves and memory. Why not have a slave proces-

sor to do just that? When the CPU wants a block of data shifted from A to B, it

passes details of the request to the MOVE machine and fires it up. When the MOVE

machine has completed the move, it sends an acknowledgement back to the CPU and

awaits the next request.

It turns out that this small processor has sufficient variety that experimenting with

the various design styles is very instructive. This work in this thesis is based upon

it. In the later chapters, we shall give the specifications and verifications of variants

49

4. THE MOVE MACHINE 50

of an asynchronous move machine in CCS and the modal it-calculus, testing them

on the CWB. In this chapter, we follow the technical report [BLS94b] closely, and

display its instruction set by giving three example programs.

4.1. Typical Data Movement

We wanted our MOVE machine able to cope with three types of data movement:

(1) Clear: set a block of data starting at address a to zero. The program is as

follows.

L: while k ne n do

{ M[a] : 0;

a := a+1;

k

}

X: halt

(2) Copy: copy the data block starting at address a to address b. The program

is as follows.

L: while k ne n do

{ M[b] : M[a];

a := a+1;

b : b+1;

k : k+1;

}

X: halt

(3) Compact: copy-(and compact) a list starting at address a to address b. We

assume that list items are consecutive words with the data in word 2 and the

4. THE MOVE MACHINE 51

next pointer in word 1. Let a point to the head of the list and b point to the

head of the compaction area:

=21 10

"a"

15

nil

"C"

b = 100 -ø 102

"a"

104

nil

Initially Afterwards

FIGURE 4.1. Move and compact

The program is as follows:

L: p : M[a];

M[b+1] : MCa+1];

if p = nil then goto X;

nb : b+2;

M[b] : nb

b

a := p;

goto L;

X: M[b] : nil;

halt;

4. THE MOVE MACHINE

4.2. Instruction Set

52

David Spooner came up with a simple instruction set able to handle these programs.

We have this extended by the addition of LDI so that later we are able to record

exceptions such as memory failure and arithmetic overflow. We also change the

instruction format .from two operators to three operators. This makes it closer in

spirit to specifying AMULET .[BLP94a, BLP94b, BLGP94, BL94], another major

project within the Calgary VLSI group.

code name writeback

(addr)

reg1

(data)

reg2

(data)

action

(semantics)

000 LOD w ri w := M[rl]

001 STO ri r2 M[rl] := r2

010 MOV w r2 w:=r2

011 SCC 1 r2 cc := (rl=r2)

100 INC w rl w := rl+1

101 JCC r2 if cc then ip r2

110 LDI w constant w=:constant

111 HIT

With this instruction set, the above three data movement can be coded as following:

(1) Program Clear - Assume the following register initialization and aliasing:

rO = 0 aliased to constailt 0

ri - 0 aliased to counter K

r2 = N length of the block

r3 = A start address to be zeroed

r4 = L code start

r5 = X code end

4. THE MOVE MACHINE 53

and our program reads

L SCC ri r2 cc := k = n ?

JCC r5 % if cc then goto X

STO r3 rO % M[a] : 0

INC r3 r3 : a+1

INCri ri := k+1

SCC rirl

JCC r4 % goto L

X HLT

(2) Program Copy - Assume the following register initialization and aliasing:

rO = 0 aliased to counter K

ri = N length of the block

r2 = A start address of block to be moved

r3 = B start address of receiving area

r4 = L code start

r5 = X code end
and our program reads

L : SCC rO ri cc := k = n ?

JCC r5 % if cc then goto X

LOD r6 r2 % r6 : M[a]

STO r3 r6 % M[b] : r6

INC rO rO : k+1

INC r2 r2 : a+1

INC r3 r3 : b+1

SCC rirl

JCC r4 % goto L

X : HLT

4. THE MOVE MACHINE 54

Program Compact - Assume the following register initialization and alias-

ing:

rO = nil

ri = A start of the list to be compacted

r2 = P the pointer in this word

r3 = D the data in this word

r4 = L code start

r5 = X code end

r6 = B start address of this receiving pair of words

r7 = NB r6+1

The program is as follows.

L : LOD r2 ri % p : M[a]

INC rirl % a:a+1

LOD r3 ri % d := M[a+1J

STO r7 r3 % M[b+1J d

SCC rO r2 % if p = nil then

3CC r5 goto X

INC r7 r7 % nb := b+2

STO r6 r7 % M[b] := b+2

MDV r6 r7 h b : b+2

INC r7 r7 % nb : b+3

MDVr1 r2 % a

SCC rO rO

3CC r4 °h gotoL

X : STO r6 rO °h M[b] := nil

HLT

4. THE MOVE MACHINE 55

4.3. Abstract Specification of AMM

At this level of abstraction, we specify. what AMM is supposed to do but not how

to implement it. In 4 phase style, we expect AMM to work as the following:

(1) AMM is initiated by CPU which initializes AMM as required by a certain data

movement and then starts AMM by raising sF.

(2) AMM carries out the required data movement, and raises aF when it finishes

the current data movement.

(3) CPU checks registers to see if data movement was okay and then lowers sF.

(4) AMM lowers aF to be ready for the next data movement.

A very abstract specification of a 4 phase AMM is:

AMM4 = initia1ize'.sF.move'.,sF..AMM4

Similarly an abstract specification of the 2 phase AMM is:

AMM2 = initialize'.sF.move'..AMM2

4.4. Summary

This chapter presents the move machine, a small processor capable of dealing with

simple data movements such as setting an area of memory to zero, copying the data

from one location to another location, and copying and compacting list linked data

into a contiguous area. A set of instructions for carrying out data movements is

listed. With this instruction set, the possible code segments for these three data

movements are given. We specify AMM at a very abstract level in which we only

"black box" what AMM does. We look at register transfer level descriptions of AMM

in the following chapters.

CHAPTER 5

AMM An Asynchronous Move Machine

This chapter systematically presents a 4-phase AMM RTL (register transfer level)

implementation through three different abstract levels of CCS specification. Our

account is closely based upon [BLS94b] and [BLS94a] and is included for contrast

and comparison with the PAMM model of chapter 6. At the highest abstract level, we

specify what AMM does at the instruction level. At the next level, we give the RTL

definitions of the datapath and its control signals, but we keep the control unit quite

abstract and do not fix precisely where the control signals come from. At the lowest

level, we specify the control unit using basic control modules, and wire these modules

and datapath together to detail the control signal flow. This refined specification

would serve as a blueprint for engineers. Property checks and equivalence checks

are carried out on these specifications. We show that AMM enjoys such desirable

properties as deadlock and livelock freedom, liveness, no bus contention, etc. Three

different abstract levels are proved to be consistent.

5.1. Abstract Level of Specification

In chapter 4, we gave a top level 4 phase specification of AMM, namely

AMM4 = initialize'.sF.move'. 'aF.sF. 'aF.AMM4.

We now move down one level of abstraction, and detail the semantics of every in-

struction available for data movement. Looking at the instruction set introduced in

56

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 57

chapter 4, we see that the semantics of the JCC instruction depends upon the current

condition code. We distinguish these two cases at two stages in our specification:

• stage 0 (ready for a new data movement), SPECO is the state with the condition

code false, and SPEC1 is the state with the condition code true.

• stage 1 (starting the cycle of instruction fetch and execution), NEXTO is the

state with the condition code false, and NEXT1 is the state with the condition

code true.

We structure the specification by casing over the instructions. We assume the condi-

tion code is false when AMM is powered up (i.e., AMM is initiated in state SPECO).

Once started by CPU raising sF, it enters the state NEXTO for starting the cycle

of fetch instruction and execution. At this level of abstraction, Fetch includes two

steps: ir' (get the current instruction from the memory) and ip' (increment IP). LOD

modifies register file (denoted as rf') and then continues its NEXTi (i=0 or 1). 5CC

enters NEXT1 if its two operators are the same (denoted as ccT) or enters NEXTO

otherwise. JCC modifies IP (again denoted as ip') if the state is NEXT1 before this

cycle is started. Otherwise it does nothing (the PC is automatically incremented as

part of fetch). JiLT turns the AMM into a state in which AMM raises the acknowl-

edgement signal (aF) to CPU, and gets ready for the next data movement by lowering

aF after CPU lowers the sF.

Specification of AMM. The specification of AMM is structured as follows:

bi AMM

SPECO

bi SPECO

sF . NEXTO

bi SPEC1

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 58

sF.NEXT1

bi NEXTO

ir' . ip'.(lod.rf' . I'IEXTO

+ sto.mem'.NEXTO

+ mov.rf'.NEXTO

+ scc.(ccT.NEXT1 + ccF.NEXTO)

+ ihc.rf'.NEXTO

+ jcc.NEXTO

+ ldi.rf'.NEXTO

+ hlt.'aF.sF.'aF.SPECO)

\ **

\

\

**

**

cc = F

register file is updated.

mem' is memory-writing operation.

\ ** register file is updated.

\ ** case split on value in CC

\ ** register file is updated.

\• **

\

bi NEXT1 \

ir'.ip'.(lod.rf'.NEXTl \

+ sto.mem'.NEXTI \ **

+ mov.rf'.NEXTl \

+ scc.(ccT.NEXT1 + ccF.NEXTO)

+ inc.rf'.NEXTl \ **

+ jcc.ip'.NEXTl \

+ ldi.rf'.NEXTl \

+ hlt.'aF.sF.'aF.SPECl)

**

\

**

**

**

**

**

**

no jump happens.

register file is updated.

cc = T

register file is updated.

mem' is memory-writing operation.

register file

case split on

register file

is updated.

value in CC.

is updated.

jump occurs and IP is updated.

register file is updated.

Property Checking: Given a specification of AMM, the next step is to check its

behavior on the CWB.

Observable actions of AMM: the sort command lists all observable actions in the

tested system.

Command: sort AMM

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 59

{ccF,ccT,hlt,inc,ip',ir',jcc,ldi,lod,mem',mov,rf',sF,scc,sto,'aF}

Size of AMM state space: the size command gives us a measure of the complexity

of a specification.

Command: size AMM

AMM has 20 states.

Deadlock freedom: the fd command can check to see if a system can deadlock.

Command: fd AMM

No such agents.

5.2. Middle Level of Specification

We now unfold the design through one level and decompose it into a datapath and

a control unit. We further decompose the control unit into two parts: one responsible

for the fetch instruction, and the other one responsible for instruction execution.

w

'p

EN

IR

EN

RF ALU

MEM

EN EN

FIGURE 5.1. AMM Datapath

5.2.1. Datapath. There are three buses in the AMM datapath given in Figure

5.1 - the write back bus W, the data bus D and the address bus A. The memory

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 60

is shared by instructions and data. The register file has two output (read) ports and

one input (write) port. The three control wires indicate the two registers to be read

and one register to be written. The ALU carries out arithmetic and logic operations,

and passes the data D to W. An instruction pointer register IP maintains the address

of the next instruction. An instruction register JR keeps the current instruction.

Registers show their outputs strongly except when being written. The EN latches

shut off data flow to buses and prevent bus contention.

Our model departs slightly from the original [BLS94a] in that (i) data is moved

from busses A and D to W through the ALU rather than through separate enable

elements, and (ii) JR is wired to bus D via an enable element to faciliate the LDI

instruction.

5.2.2. Basic Data Path Modules. In this section we introduce the basic data

path modules. For the detailed CCS specification and explanations with diagrams

and usages, refer to appendix A. In our library of basic data path moduls we have

the wire, register, register file, boolean register, enable unit, memory and ALU.

WIREs are used to model control signals. The level (high or low) of a WIRE (or

WIREs) will determine which function should be carried out. The level of a WIRE

is changed when its controller makes a transition. Its current level can be sensed by

a stream down circuit.

REG is a register whose output is always strong. Its contents can be written upon

request, its value will then be replaced by the current input. It issues an acknowledge

signal when the new value is latched and shows strongly.

ENables are placed between registers and busses. In their quiescent state, they block

their input. In the enabled state, input passes through and shows strongly. They are

normally in their quiescent state. The enabled state is entered upon request and cut

off again upon acknowledgement.

BOOLJtEG can be set to 1 or cleared to 0, and be tested for its current value.

RF is a register file which has a block of registers. It has two output ports which are

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 61

chosen by two addresses ri and r2, and one input port which is chosen by the address

w. Two outputs always have strong data corresponding to RF[rl] and RF[r2]. The

register w can be written when requested.

MEM has two connected buses: address bus and data bus, and has a control wire

mrw connected to it. When mrw is high, MEM will put the content at the memory

location from the address bus on the data bus upon request. When mrw is low, the

content at the memory location from the address bus will be replaced by the data on

the data bus.

ALU is an algorithmic and logic unit which has two inputs (dm1 and dm2) and an

output. It can carry out the following functions: compare two inputs and set the

condition code boolean register, increase dm1 and pass to output, and pass dm2 to

its output. It has two connected control wires alul and a1u2 to determine which

function is actually carried out upon request.

5.2.3. Datapath composition. With all the basic modules introduced in the

last section and specified in Appendix A, we are ready to specify the AMM datapath

which is the collection of all its components connected by the three busses. We follow

the object oriented design style in the sense that every component is an independent

object and interacts with others through communication on busses and wires.

bi DATAPATH

REG [rwlP/rwR,awlP/awR, ip' /reg']

EN [relP/reE, aelP/aeE, sIP/sEN , zIP/zEN]

REG [rwlR/rwR,awlR/awR,ir' /reg']

EN [relR/reE, aelR/aeE, sIR/sEN , zIR/zEN]

RF \

EN[reRF1/reE,aeRF1/aeE,sRF1/sEN,zRF1/zEN \

EN [reRF2/reE, aeRF2/aeE, sRF2/sEN, zRF2/zEN] \

ALU

I BOOL_REG [testccltest ,noj/zero ,jmp/one] \

'P

ENABLE for IF

IR

ENABLE for IR

Register File

ENABLE for RF[rl]

ENABLE for RF[r2]

Arithmetic Unit

Condition Code Boolean Register

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 62

I WIRE [alul/in, aluiF/lo , alulT/hij

I WIRE [a1u2/in,alu2F/lo , alu2T/hi]

IMEM

I WIRE [mrw/ in, mrwT/hi , mrwF/loj

) \ DATAPATHlines

basi DATAPATHlines

testcc noj jmp alulT aluiF alu2T alu2F'mrwT mrwF

Some properties of the datapath:

Observable actions:

Command: sort DATAPATH

{alul,a1u2,rA,sA,zA, ' aA,

ccT,c.cF,testcc,'jmp,'noj, ** related to ALU

mrw,rM,sD,zD,mem','aM, ** related to memory

rwlP,ip','awlP, ** related to IP

relP,sIP,zIP,'aelP, ** related to EN_IP

rwIR,ir','awIR, ** related to IR

relR,sIR,zIR,'aelR, ** related to EN-IR

rwRF,rf','awRF, ** related to RF

reRF1,sRF1,zRF1,.'aeRFl, ** related to EN_RF1

reRF2,sRF2,zRF2,'aeRF2} ** related to EM_RF2

The number of states:

Command: size DATAPATH

DATAPATH has 449280000

ALU' s

Control Wires

Memory

MEM read/write Wire

5.2.4. Instructions. The datapath of AMM is composed of the following re-

sources: IP, ENJP, IR, ENJR, RF, ENRF1, ENJtF2, CC, ALU and MEM. All

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 63

instructions carried out use some of these resources. In a 4-phase design, these re-

sources are requested for a computation phase (ri at). The signals are lowered later.

There are two control wires alul and alu2 for the ALU and one mrw for MEM. These

wires are normally low and the actual function of their data module depends upon

their levels. ALU carries out three possible functions. One is to pass the value on

DBUS to WBUS when both alul and alu2 are low. The caller does not raise any of

these wires for requesting this function. The second one is to increase the value on

DBUS and passes the increased value to WBUS when alul is high and alu2 is lower.

The caller raises alul for requesting this function. The last one is to compare two

operators on ABUS and DBUS and set the conditional code register CC when alu2

is high and alul is low. The caller raises alu2 for requesting this function.

MEM carries out two possible functions read and write. Read operation when mrw is

high. The caller raises mrw for requesting this function. Write operation when mrw

is low. The caller does not raise mrw for requesting this function. For convenience,

we tabulate the signal names in Table 5.1.

Micro-operations of Each Instruction

Now we go through AMM instructions one by one. Each is a sequence of the above

micro-operations and each micro-operation is simply one use of a particular resource.

Once we have explained the AMM instructions, generating a description of the con-

troller is quite mechanical. Sequences of micro-operations corresponding to instruc-

tions are described as the following.

Fetching instruction (IR'): JR := MEM[IP] is carried out in the following steps:

(1) put the current instruction address on ABUS by enabling ENJP,

(2) read the instruction from the memory at the address on ABUS to DBUS,

(3) pass it from DBUS to WBUS by requesting ALU pass,

(4) modify JR with the instruction on WBUS.

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 64

Micro-operation Resource Used Req Ack COntrol

IP:=WBUS IP rwlP awlP

ABUS:=IP ENJP relP aelP

IR:=WBUS JR rwlR awlR

DBUS:=IR ENJR relR aeJR

RF[w]:=WBUS RF rwRF awRF

ABUS:=RF[rl] ENRF1 reRFi aeRFi

ABUS:=RF[r2] ENRF2 reRF2 aeRF2

WBUS:=DBUS ALU rA aA

WBUS:=ABUS+1 ALU rA aA alul

cc:=(ABUS=DBUS) ALU rA aA a1u2

DBUS:=MEM[ABTJS] MEM rM aM mrw

MEM[ABUS]:=DBUS MEM rM aM

TABLE 5.1. Micro-operation, Resource and Control Signal

Micro-operations Signals

ABUS := IP 'reJP.aeJP

DBUS := M[ABUS] mrw.'rM.aM

WBUS := ABUS 'rA.aA

JR := W 'rwlR.awlR

TABLE 5.2. Micro-operations of IR'

Incrementing IP (IP'): IP := IF + 1 is carried out in the following steps:

(1) put the address in IP on ABUS by enabling EN_IP,

(2) increase the address on ABUS and pass it to WBUS by requesting an ALU

increment,

(3) modify IF with the increased value on WBUS.

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 65

Micro-operations Signals

ABUS := IP 'relP.aelP

WBUS := ABUS + 1 alul.'rA.aA

IP := W 'rwlP.awlP

'ABLE 5.3. Micro-operations of IP'

LOD w ri: RF[w] := MEM[RF[rl]] is carried out in the following steps:

(1) put the memory address on ABUS by enabling EN..RF1,

(2) get the value from the memory at ABUS to DBUS by requesting memory read,

(3) pass the data on DBUS to WBUS by requesting ALU pass,

(4) store the data on WBUS into the register file by requesting a register file write.

Micro-operations Signals

ABUS := RF[rl] 'reRFl.aeRFl

DBUS := MEM[ABUS] mrw.'rM.aM

WBUS := DBUS 'rA.aA

RF[w] := WBUS 'rwRF.awRF

TABLE 5.4. Micro-operations of LOD

STO ri r2: MEM[RF[rl]] := RF[r2J is carried out in the following steps:

(1) put the memory address on ABUS by enabling ENJtF1,

(2) put the data on DBUS by enabling ENJtF2,

(3) store the data on DBUS into the memory at the address on ABUS by request-

ing memory write.

MOV w r2: RF[w] := RF[r2] is carried out in the following steps:

(1) put RF[r2] on DBUS by enabling ENJtF2,

(2) pass the data on DBUS to WBUS by requesting ALU pass,

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 66

Micro-operations Signals

ABUS := RF[rl] 'reRFl.aeRFl

DBUS := RF[r2] 'reRF2.aeRF2

M[ABUS] := DBUS 'rM.aM

TABLE 5.5. Micro-operations of STO

(3) store the data on WBUS into the register file.

Micro-operations Signals

DBUS := RF[r2] 'reRF2.aeRF2

WBUS := DBUS 'rA.aA

RF[w] := WBUS 'rwRF.awRF

TABLE 5.6. Micro-operations of MOV

SCC ri r2: CC := (RF[rl]==RF[r2]) is carried out in the following step:

(1) put the first operator on ABUS by enabling EN..RF1,

(2) put the second operator on DBUS by enabling EN..RF2,

(3) compare two operators and set the condition code register by requesting ALU

compare.

Micro-operations Signals

ABUS := RF[rl] 'reRFl.aeRFl

DBUS := RF[r2] 'reRF2.aeRF2

CC := (RF[rl]==RF[r2]) a1u2.'rA.aA

TABLE 5.7. Micro-operations of

INC w ri: RF[w] := RF[rl] + 1 is carried out in the following steps:

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 67

(1) put RF[rl] on the ABUS by enabling EN.JtF1,

(2) increase the value on ABUS and pass to WBUS by requesting an ALU incre-

ment,

(3) store the value on WBUS into the register file by requesting register file write.

Micro-operations Signals

ABUS := RF[rl] 'reRFl.aeRFl

WBUS := ABUS + 1 alul.'rA.aA

RF[w] := WBUS 'rwRF.awRF

TABLE 5.8. Micro-operations of INC

JCC r2: if cc is true then IP := RF[r2], and if cc is false it does nothing. This is

carried out in the following steps:

(1) check the condition code by testcc, if it is true it continues to do the following

steps, otherwise they are omitted.

(2) put the new address RF[r2] on DBUS by enabling EN..RF2,

(3) pass it from DBUS to WBUS by requesting ALU pass,

(4) modify IP with the data on WBUS by requesting IP write operation.

Micro-operations Signals

check condition code 'testcc.(jmp + noj)

DBUS := RF[r2] 'reRF2.aeRF2

WBUS := DBUS 'rA.aA

RF[w] := WBUS 'rwRF.awRF

TABLE 5.9. Micro-operations of JCC

LDI w i: RF[w] := i is carried out in the following steps:

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 68

(1) put the immediate value on DBUS by enabling ENJR,

(2) pass it from DBUS to WBUS by requesting ALU pass,

(3) store the value on WBUS into the register file by requesting register file write.

Micro-operations Signals

DBUS := ir 'reIR.aelR

WBUS := DBUS 'rA.aA

RF[w] := WBUS 'rwRF.awRF

TABLE 5.10. Micro-operations of LDI

5.2.5. Fetch Unit. The fetch unit organizes control signals for guaranteeing

the correct micro-operation sequence of fetching an instruction (IR'), incrementing

IP (IP'), activating the execute unit to execute the current instruction and finally

deciding to continue this cycle or terminate this data movement depending on the

signal from the execute unit which indicates whether a HALT instruction has been

executed. The specifications of IR' and IP' are simply sequences of the signals listed

in the tables in the last subsection:

bi IR'

rIR'.'relP.aelP.mrw.'rM.aM.'rA.aA.'rwlR.awlR.'aIR'.IR'

bi IP'

rIP'. ' relP.aelP.alul. ' rA.aA. ' rwlP.awlP. ' alP' . IP'

The fetch unit behaves as follows:

When the fetch unit is started by CPU raising sF, it first computes and flattens IR',

and then compute and flatten IP' for instruction fetch and IF increment as specified

in the following code:

bi FET

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 69

sF . READ...INST

bi READ_INST

'rIR' . aIR' . 'rIR' . aIR'. ' rIP' . aIP' . 'rIP' . aIP' . PRE_DEC

The fetch unit drives RF[rl] onto WBUS before decoding instruction during the

instruction execution because no other source needs to use WBUS during this period.

This makes instruction specifications simpler since we do not need to enable it later.

Then it activates the execute unit by sending sE.

bi PRE-DEC

'reRFl.aeRFl. ' sE.FET_END

Now the fetch unit waits for a signal from the execute unit. If the signal cF is raised,

this means the fetch unit will continue to read a new instruction. In this case it brings

down all raised signals and repeats READ_INST. If eP is raised, this means that this

data movement has been finished. Then it should send acknowledge signal aF back

to CPU, brings down all raised signals and get ready for the next data movement.

bi FET-END

cF. ' reRFl.aeRFl. ' sE.cF.READ_INST \

+ eP. ' reRFl.aeRFl. ' sE.eP. ' aF.sF. ' aF.FET

The fetch unit consists of IR', IP' and FET.

bi FETCH

(FET I IP' I IR')\{rIP',aIP',rIR',aIR'}

5.2.6. Execute Unit. The execute unit is used to issue all control signals for

ensuring the correct micro-operation sequence of instruction execution. It is further

decomposed into a decode unit and all instruction bodies. When the decode part

is started by the fetch unit raising sE, it will decode the current instruction. If the

current instruction is not HLT, it computes this instruction and informs the fetch

unit by raising cF when the computation is done, and then flattens this instruction

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 70

when sE is lowered. If the current instruction is HLT, it computes this instruction

and informs the fetch unit by raising eP when the computation is done, and then

flattens this instruction when sE is lowered. Its CCS specification is given as:

bi DEC-EXEC

sE.EXEC1

bi EXEC1

lod.'rLOD.aLOD.'cF.sE.'rLOD.aLOD.'cF.DEC_EXEC \

+ sto. 'rSTO . aSTO. ' cF. sE. ' rSTO .aSTO. 'cF.DEC_EXEC \

+ mov.'rMOV.aMOV.'cF.sE.'rMOV.aNOV.'cF.DEC_EXEC \

+ 5CC. 'rSCC.aSCC. ' cF,sE. ' rSCC.aSCC. ' cF.DEC_EXEC \

+ inc.'rINC.aINC.'cF.sE.'rINC.aINC.'cF.DEC_EXEC \

+ jcc.'rJCC.aJCC.'cF.sE.'rJCC.aJCC.'cF.DEC_EXEC \

+ idi. ' rLDI . aLDI. ' cF.sE. ' rLDI . aLDI. ' cF.DEC_EXEC \

+ hlt.'rHLT.aHLT.'eP.sE.'rHLT.aHLT.'eP.DEC_EXEC

Each instruction is responsible for carrying out its associated sequence of micro-

operations. We specify each instruction simply by sequencing all control signals in

its corresponding table in subsection 5.3.4. Here we should remember that ABUS

RF{rl} has been carried out before decoding. So we do not need to enable EN.RF1

for individual instructions any more.

For example,

bi LOD

rLOD. ' inrw. ' rM.aN. ' rA.aA. ' rwRF.awRF. ' aLOD.LOD

when rLOD arrives from the decode unit, the execution of LOD w ri starts with

mrw.'rM.aM to read the value from the memory at the address ABUS (which has

been driven by RF[rl] in advance) to DBUS, then 'rA.aA to pass the value on DBUS

to WBUS, and finally 'rwRF.awRF to store the value on WBUS into RF[w]. The

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 71

computation stage is finished off by 'aLOD. The decode unit will flatten this instruc-

tion by a second pass through the same signals.

The other instructions are specified in the same way:

bi STO

rSTO. ' reRF2.aeRF2. ' rM.aM. ' aSTO.STO

bi MDV

rMDV. ' reRF2.aeRF2. ' rA.aA. ' rwRF.awRF. ' a14OV.NDV

bi SCC

rSCC. ' reRF2.aeRF2. ' alu2. ' rA.aA. ' aSCC.SCC

bi INC

rINC. ' alul. ' rA.aA. ' rwRF.awRF. ' a.INC.INC

bi .3CC

rJCC. ' testcc.JCCl

bi JCC1

jmp.'reRF2.aeRF2.'rA.aA..'rwlP.awlP.'aJCC.JCC2 + noj.'aJCC.JCC3

bi JCC2

rJCC. ' testcc.jmp. ' reRF2.aeRF2. ' rA.aA. ' rwlP.awlP. ' aJCC..JCC

bi JCC3

r.JCC. ' testcc.noj. ' aJCC.JCC

biLDI

rLDI. ' relR.aelR. 'rA.aA. 'rwRF.awRF. ' aLDI.LDI

bi HLT

rHLT. ' aHLT.HLT

Finally the execute unit is given by wiring the decode unit and all instructions, and

hiding internal connections in Elines.

basi Elines

rLDD rSTO rMDV rSCC rINC rJCC rLDI rHLT \

aLDD aSTO aMDV aSCC aINC aJCC aLDI aiiLT

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 72

bi EXEC

(DEC_EXECILODISTOIMOVISCCI INC IJCCILDIIHLT) \ Elines

5.2.7. AMM. We have now specified the datapath, the fetch unit and the exe-

cute unit. AMM is merely their composition, hiding all internal signals.

bi AMM

(DATAPATHIFETCHIEXEC) \ Mimes

basi Mimes

rwlP rwlR rwRF rM rA relP relR reRFi reRF2 \

awlP awlR awRF aM aA aelP aelR aeRFi aeRF2 \

alul alu2 mrw testcc ccT ccF sE cF eP

5.2.8. Property Checking. Any asynchronous system is prone to deadlock,

progress and safety problems. We can express and check such properties using the

modal p-calculus, as mechanized in the CWB. This subsection provides checks for

some typical desirable properties.

Minimization: An asynchronous system is built by connecting subcomponents. To

check properties of a large system, we first generate an equivalent machine with the

minimized number of states. In general, an agent and its minimized version are

weakly bisimular. In our case, they are observationally congruent since all our agents

are stable.

We minimize AMM by first minimizing its components: the datapath to DATAP-

ATH', and the fetch unit to FETCH' and the execute unit to EXEC'.

Command: bi AMM

Agent: (DATAPATH' I FETCH' I EXEC') \ Mimes

Command: min AMM

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 73

Save result in identifier: AMM'

AMM' has 90 states.

Deadlock Freedom: If a system can always make a move, it is deadlock free. In

the modal -calculus, deadlock free can be expressed by: BOX (-)T.

Command: fd AMM'

No such agents.

Livelock Free: If a system never could get into a state from which it can do internal

actions forever, it is livelock free.

Command: cp AMM

proposition: BOX (max(X.<t>X))

false

Safety: Something bad never happens.

Safety 1: every driving source drives-buses in the following way: once it drives a

bus, it won't drive the bus again before tristating the bus. We use macro CYCLE2

to express this property. For example, CYCLE2 sIP zIP means that zIP has to occur

after one sIP has happened and before the next sIP will happen.

Command: cp AMM'

Proposition: CYCLE2 sIP zIP

true

Similarly, we have successfully tested this property for the following pairs: sIR and

zIR, sRF1 and zRF1, sRF2 and zRF2, sA and zA, SD and zD.

Safety 2: one cannot reach a state in which different sources may drive the same

bus.

Test bus A: There are two sources ENJP and ENRF1 which can drive bus A via

requests on sIP and sRFl.

Command: cp AMM'

Proposition: BOX ((<sIP> T & < sFtF1>T))

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 74

true

Test bus D: There are three sources EN_IR, EN_RF2 and MEM which can drive bus

D via requests on sIR, sRF2 and sD.

Command: cp AMM'

Proposition: BOX ((<sIR>T & <sRF2>T & <sD>T))

true

Command: cp AMM'

Proposition: BOX ((<sIR>T Sc <sRF2>T))

true

Command: cp AMM'

Proposition: BOX ((<sIR>T Sc < sD>T))

true

Command: cp AMM'

Proposition: BOX ((<sD>T Sc < sRF2>T))

true

Test bus W: only ALU drives this bus (via sA). So no bus contention is possible.

Safety 3: Once a bus is driven, it must be tristated before it will be driven again.

We can use macro NEC-FOR a P to express this property. This macro means that a

action is necessary for P to hold.

Test bus A: Once it is driven by sIP, it is necessary to be tristated by zIP before sIP

or sRF1 is possible. Similar test has been successfully carried out when it is driven

by sRF1.

Command: cp AMM'

Proposition: BOX ([sIP] (NEC-FOR zIP <sIP,sRF1>T))

true

Test bus D: Once it is driven by sIR, it is necessary to be tristated by zIR before

sIR, sRF2 or sD is possible. Similar tests are successful for sRF2 and sD.

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 75

Command: cp AMM'

Proposition: BOX ([sIR] NEC-FOR zIR <sIR,sRF2,sD>T)

true

Safety 4: AMM never acknowledges back to CPU before it executes a halt instruc-

tion.

Command: cp AMM'

Proposition: NEC-FOR hit ' aF

true

Liveness:

Strong liveness means that something eventually happens. This can be expressed as

BOX EVENT P.

Weak liveness means that it is always possible for something to happen. This can be

expressed as BOX FOSS P.

Liveness 1: the actions related to Fetch are strong live transitions. They always

eventually happen (every instruction requires to fetch JR and increase IF).

Command: cp AMM'

Proposition: BOX EVENT <ir'>T

true

Command: cp AMM'

Proposition: BOX EVENT <ip'>T

true

Liveness 2: the 8 instructions are all weak live transitions. For example, a LOD in-

struction is a weak live transition and can be tested below (a program may not contain

a LOD). Similar tests have been successfully carried out for all other instructions.

Command: cp AMM'

Proposition: BOX POSS <iod>T

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 76

true

5.2.9. Equivalence Checking. We have given two different abstract levels of

specification. When we systematically develop a system hierachically, we have to

make sure that a lower concrete level faithfully represents its higher more abstract

level. To check this consistency, we need to hide actions specific to the lower level

because these actions are not observable at the abstract level. We accomplish this

below by composing AMM with the agent R and hiding Runes.

bi R

'sA.R+ ' sD.R+ ' sIP.R+ ' sIR.R+ ' sRFl.R+ sRF2.R+ \

'zA.Ft + 'zD.R + 'zIP.R + 'zIR.R + 'zRFl.R + 'zRF2.R

basi Runes

sA zh sD zD sIP zIP sIR zIR sRF1 zRF1 sRF2 zRF2

Command: bi AMM_R

Agent: (AMM'IR) \ Runes

Command: min AMM_R

Save result in identifier: AMM-RI

AMM-R' has 20 states.

Command: fd AMM-RI

No such agents.

The consistency between two levels means that they are weak bisimular. In our case

they are also observationally congruent since all agents are stable.

Command: eq

Agent: SPECO

Agent: AMM-RI

true

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 77

5.3. Lowest Level of Specification

At the middle level of AMM specification, we specified a control unit by giving,

for each instruction, the order in which the control signals activate the datapath

resources. In this section, we go down one further level of abstraction and detail

where the control signals come from by wiring basic control modules and the datapath

together. The control unit consists of a fetch unit, an execute unit and a call box which

routes the datapath access signals between the fetch or execute unit and datapath

and enables datapath elements to be shared. We also check properties and prove that

it is consistent with the middle level of specifications and hence with the abstract

level.

5.3.1. Basic Control Modules. In this subsection we introduce the basic con-

trol modules. For their detailed specification and explanation, see chapters 1 and 3.

C is a rendezvous element which generates a transition after both of its inputs arrive

regardless of their order.

C' is a bubble C element which assumes one input transition has already arrived at

the beginning and will have the same behavior as C.

M is a merge element which generates a transition whenever it receives a transition

at either of its two inputs.

FORK is an element which produces transitions at both outputs once it receives a

transition at its input. The order of transitions at two outputs is arbitrary.

FASTFK is an element which is similar to FORK except that the order of transi-

tions at two outputs is fixed. This is used to reduce the number of states in CCS

specification.

CALL element is used to solve multi-user problem. When a resource is shared by two

or more users who never contend at the same time, CALL element is put between the

resource and its users. This ensures the acknowledge signal goes back to the calling

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 78

user.

S is van Berkel's S element. It is used to call a sub-circuit twice (once to compute,

once to flatten).

5.3.2. Fetch Unit. The fetch unit is implemented in Figure 5.2. IR' and IP'

in the fetch unit access datapath modules to carry out instruction fetch and IP in-

crement. Some modules are shared by IP', IR' and instruction executions. Every

datapath module, once activated by one certain user, should send the acknowledge

signal back to the calling user. We delay the analysis of IR' and IP' datapath ac-

cesses until subsection 5.3.4 where we will examine all datapath accesses by IR', IP'

and all instruction executions, and solve the resource sharing problem by using call

modules. Here the fetch unit specification doesn't include the real access to data path.

As shown in Figure 5.3, the fetch unit sequentially organizes the, activities: (i) IR',

(ii) IP', and (iii) instruction execution. These activities will be carried out through

CALL elements.

S

test

,nrw

Memory

si
30 S

S2
-

rIR'

11

AR'

IR'

BN
53

-

rIP' IP

'P.

S

A
reRFI aEX'

EXEC cF

eP

test zero

BOOLEAN

REGISTER

ackt)

auk

sett) one

set]

cF

done

FIGURE 5.2. Main Part of Fetch Unit

end

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 79

start M MAIN

done

FIGURE 5.3. Implementation of Fetch Unit

bi FETCHimp

(C' [sF/a, end/b, in/z J \

I M2 [zero/a, in/b, s/z J \

I FORK [one/a, aF/b, end/c] \

I S [s/s, sl/r, a3/a, test/d] \

I S [sl/s, setM/r, allY/a, s2/d] \

I FASTFK I setM/a, mrw/b, rIR'/c] \

I S I s2/s, rIP'/r, aIP'/a, s3/d] \

I S I s3/s, reRF1/r, aEX'/a, a3/d] \

I M2 I ackO/a, ackl/b, aEX'/z J \

I BOOL_REG I cF/setO, eP/seti J \

) \ Fetchlines

basi Fetchlines

in zero s end si s2 s3 a3 ackO acki aEX' test one setM

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 80

5.3.3. Execute Unit. The execute unit is to organize instruction execution, as

given in Figure 5.4. Instruction executions are carried out through CALL modules.

All datapath accesses will be dealt in the next subsection.

sE

bi M7

DECODE

rLOD_.
rSTO.._

..rSCC._

.rLOflL

rHLT

LOD STO

EXEC

MOV SCC INC JCC LODI

,-ULOD
,.—nSTO -

,_-n11Ov -

,-UINC
-

,-iLODI

M7
eF

eP

FIGURE 5.4. Implementation of Execute Unit

al. 'z.M7 + a2.'z.M7 + a3.'z.M7 + a4.'z.MT + a5.'z.M7 + a6.'z.M7 + a7.'z.M7

bi EXECimp

sE . EXECimpi

bi EXECimpi

lod. ' rLOD.sE.'rLQD.EXECimp \

+ sto. ' rSTO.sE.'rSTO.EXECimp \

+ mov. ' rMQV.sE.'rMOV.EXECimp \

+ scc. ' rSCC.sE.'rSCC.EXECimp \

+ inc. ' rINC.sE.'rINC.EXECimp \

+ jcc. ' rJCC.sE.'rJCC.EXECimp \

+ idi. ' rLDI.sE.'rLDI.EXECimp \

+ hit. ' rHLT.sE.'rHLT.EXECimp

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 81

aF
-C

sF

FETCH

'p.

sE
-

CF

DECODE
rJCC__.

jLODL

rHLT LOD STO

---x

EXEC

'Ov SCC INC CC OD

CALL BOX

M7

DATAPATh

FIGURE 5.5. AMM Architecture

5.3.4. Call Box. AMM architecture is given in Figure 5.5. Now we examine

the datapath accesses of the fetch unit (through IR' and IP'), and the execute unit

(through all instruction executions). Each instruction involves a sequence of micro-

operations. Each micro-operation accesses exactly one basic datapath module. Ac-

cording to the micro-operation tables of instructions in subsection 5.2.4, we can give

the data modules accessed by a particular instruction in Table 5.11. According to

this table, we can calculate how many users share a particular data module, as shown

in its reverse table 5.12. Having this resource use table, we can easily construct a call

element for each data module. For example, MEM is shared by three instructions

IR', LOD and STO, and CALL3 element will be put in front of the MEM for three

users to share. Therefore the call box is specified as:

bi CALLS

(C2IP I C4RF I C2EN...IP I C4EN_RF2 I C8ALU I C3MEM)

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 82

Instruction Resource

IR' ENJP, MEM,ALU,IR

IF ENJP, ALU, IP

LOD ENRF1, MEM, ALU, RF

STO EN- F1, ENRF2, MEM

MOV ENJtF2, ALU, RF

SCC EN.RF1, EN.RF2, ALU

INC ENRF1, ALU, RF

JCC if cc=T then ENRF2, ALU, IF

LDI ENJR, ALU, RF

HLT

TABLE 5.11. Datapath Accesses by Instructions

Where C2IP is a CALL2 element for IP, C4RF is a CALL4 element for RF, C2EN..IP

is a CALL2 element for ENJP, C4ENRF2 is a CALL4 element for EN...RF2, C8ALU

is a CALL8 element for ALU, and C3MEM is a CALL3 element for MEM.

5.3.5. Control Unit. The control unit is a unit by connecting fetch unit, execute

unit and their CALL box.

bi SETMRW

FASTFK [rLOD/a, mrw/b, rLODf/c]

bi SETALU1IP

FASTFK [ipl/a, alul/b, iplf/c]

bi SETALU1INC

FASTFK [rINC/a, alul/b, rINCf/c]

bi SETALU2

FASTFK [sccl/a, alu2/b, scclf/c J

bi WHLT

5. AMM — AN ASYNCHRONOUS MOVE MACHINE 83

Resource Instruction Calls

IP IT, JCC (cc =T) 2

JR IR' 1

RF LOD, MOV, INC, LDI 4

ENJP IR',JP' 2

ENJR LDI 1

ENRF1 LOD, STO, SCC, INC 4

ENJtF2 STO, MOV, SCC, JCC 4

ALU IR',IP', LOD, MOV, SCC, INC,JCC, LDI 8

CC JCC 1

MEM IR', LOD, STO 3

TABLE 5.12. Resource Uses

rHLT. ' eP.WHLT

bi MAJCC

M2 C jcc4/a, noj/b, aJCC/z J

bi McF

M7 C aLOD/al, aSTO/a2, aNOV/a3, aINC/a4, aSCC/a5, aJCC/a6, aLDI/a7, cF/zj

bi CONTROLimp

(FETCHimp I EXECimp I SETMRW I SETALU1INC I SETALU1IP I SETALU2 \

I CALLS I WHLT I McF I MAJCC) \ Contr].ines

basi Contrlines

rLOD rSTO rMOV rSCC rINC rHLT \

aLOD aSTO aMOV aSCC aINC aJCC aLDI \

jcc2 jcc3 jcc4 ipi ipif ip2 ldi2 rINC± mci \

movi mov2 rLODf lodi lod2 irl 1r2 stol scclf \

sccl nIR' aIR' aIR' rIP' alP'

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 84

5.3.6. AMM. The AMM is the composition of the datapath and the control

unit. Its CCS specification is given as the following:

bi AMMimpi

(CONTROLimp

I DATAPATHE rLDI/relR, aIR'/awlR, sE/aeRF1,rJCC/testcc]

) \ MOVElines

\

\

basi MOVElines

rA rM relP rLDI rwlP rwlR reRFi reRF2 rwRF \

aA aM aelP a.eIR awlP sE aeRFi aeRF2 awRF \

jmp noj rJCC mrw alul alu2 cF eP rwlR

AMMimpi is started by the signal start and finish off a data movement by issuing

the signal done. If we use start as sF and done as aF, a second sF can be accepted

before an aF is issued. Obviously it is not equivalent to our more abstract levels of

specification, which guarantee the order sF - 'aF - sF -+ 'aF. So we can not use

start as sF and done as aF. Some restrictions should be put on the order of sF and

aF, as below:

bi RES

sF. ' start.done. ' aF.RES

bi AMMimp

(RES I AMMimpi) \ -Cstart, done}

5.3.7. Property Checking. Here we minimize AMMimp and check it for dead-

lock.

Minimization:

Command: min FETCHimp

Save result in identifier: FETCHimp'

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 85

FETCHimp' has 716 states.

Command: min AMMimp

Save result in identifier: AMMimp'

AMMimp' has 90 states.

Deadlock Freedom:

Command: fd AMMimp'

No such agents..

5.3.8. Equivalence Checking. The equivalence of this level and the middle

level are checked in the following. Since we have proved the most abstract level and

the middle level are equivalent in the last section, three levels of AMM specification

are consistent.

Command: eq

Agent: AMM'

Agent: AMMimp'

true

5.4. Summary

This chapter systematically develops AMM through three abstract levels which are

proven consistent. It is a reworking [BLS94a] with a slightly modified instruction

set and datapath. The most abstract level only addresses what AMM is supposed to

do at the instruction level. The next level spells out its datapath and points out all

control signals and when they should be sent to the datapath by the control unit. The

lowest level details all the control signal flows by wiring basic control modules and

the datapath together. This level of specification is clean enough and clear enough

to serve as an implementation guide. T.Borsodi, a graduate student in ECE, took

a CCS description of AMM [BLS94b] and [BLS94a] and implemented it in Xilinx

FPGA technology in a matter of 2 or 3 weeks in 1993. In the manner of [BLS94a],

5. AMM - AN ASYNCHRONOUS MOVE MACHINE 86

we have also proved that AMM enjoys desirable properties such as deadlock freedom,

livelock freedom, no bus contention, liveness and safety.

CHAPTER 6

PAMM A Pipelined Asynchronous Move

Machine

This chapter gives the specification of a 2 phase pipelined asynchronous move ma-

chine. In the asynchronous move machine we designed in chapter 5, the operations

were sequential and did not overlap. One of the advantages of an asynchronous system

is that components usually work in parallel and only occasionally need to cooperate

with others by communication. We now consider a 2 phase pipelined move machine

which implements this inherent parallelism. We decompose PAMM to two modules:

a fetch stage and an execute stage. We also prove it to be deadlock free and possess

the required liveness properties.

6.1. PAMM Architecture

FIGURE 6.1. PAMM

87

6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 88

As shown in Figure 6.1, PAMM consists of two major modules: a fetch module and

an execute module separated by a FIFO. The fetch module expects code to be sequen-

tial. It speculatively generates sequential PC values, and pushes the corresponding

instruction into the FIFO buffer. The execute module takes instructions one by one

from the FIFO and executes them. We posit a Harvard architecture with separate

instruction and data memories.

What happens when the execute module meets a jump instruction which is taken? In

this case the sequential anticipation is wrong and none of the prefetched instructions

following the jump instruction should be executed. The halt instruction has similar

problems. These can be solved with a global arbiter and a colour register in each

module. The arbiter allows three contenders to arrive asynchronously: sequential

anticipation, instruction flow change, and stop. The colour registers indicate the par-

ity of the current instruction sequence. Each fetched instruction carries the current

colour when it is pushed into the FIFO. Once a jump or halt is taken, the execute

module flips its colour register and requests the arbiter. When this request gains

control, the sequential generation of PC values is blocked in the fetch module. The

colour register is flipped and the new value from theexecute unit becomes the current

PC. The fetch unit then generates instructions from the new PC base and with the

flipped colour. The execute unit automatically discards all unwanted instructions by

comparing the colour of the next instruction with its own current colour. We assume

that both colour registers (the one in the fetch stage and the one in the execute stage)

have the same colour after PAMM is powered up.

6.2. 2-Phase Basic Modules

This section introduces basic control modules and datapath modules.

6.2.1. Control Modules. In our library, we have FORK and FASTFK element,

C element and C' the bubbled C element, WAIT element, CALL and ARBITER.

6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 89

FORK, FASTFK, C and C' elements are the same as introduced in chapter 5. CALL

is basically the same as the 4-phase except that a 2-phase CALL element does not

have the flatten stage.

WAIT element is for holding an transition until a certain condition is satisfied.

The ARBITER element is put between a resource and its users who share this re-

source. The ARBITER allows exactly one user and blocks the others. Only after the

allowed user is done, the ARBITER will accept another waiting user.

6.2.2. Datapath Modules. In our library, we have register REG, incrementor

INC, memories IMEM and DMEM, a first-in-first-out queue FIFO, a counter WC

and ALU.

Register

A register is a one position buffer which can accept a new value when it is empty

nfl

data-in

am

REG

and can be read when it has a value.

Specification:

LR = rin.n.inc.'ain.LR

 rout

data-out

 aout

Co = 'inc.Cl + 'nf.CO

Cl = 'dec.CO + 'ne.Cl

RR = ne.'rout.aout.dec.RR

REG = (LR I CO I RR) \ {inc,dec,ne,nf}

6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 90

Its writer should follow the pattern:

WRITER = ...prepare data.'rin.ain...

Its reader follows the pattern:

READER = ... rout.process data.'aout...

Incrementer

An incrementer is a very trivial element which accepts an input d, produces d+1

data-in

I
INC

rinl

routl

aoutl
.<

I
data-out

and gets ready for repeating this procedure when d+1 has been used.

Specification:

INC = rinl.'routl.aoutl.INC

The caller follows the pattern:

caller = ...prepare data.'rinl.routl.latch new data.'aoutl...

IMEM

IMEM is a memory with reduced functionality. PAMM only reads instructions from

it. So we hide its write operation to reduce the complexity of PAMM.

Specification:

IMEM = rIM.'aIM.IMEM

The caller follows the pattern:

caller = ... prepare address.'rM.aM

DMEM

6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 91

address I I data

DMEM is a traditional memory with both write and read operations. We consider

rM rwaM

1'
data

address

DMEM

the control wire as a 1-bit local bus driven by its controller.

Specification:

DMEM = rM.(rw=1.'aM.MEM + rw=O.mem'.'aM.MEM)

Its caller follows the pattern:

Write = ... prepare data and address.drive rw with O.'rM.aM

Read = ... prepare address.drive rw with 1.'rM.aM

FIFO

FIFO is a first in and first out queue which can accept a new value when it is not full

and can output a data when it is not empty. The user can check how many positions

are occupied. Here FIFO have a signal "able" which indicates that there is two space

left. In our PAMM we need to leave a space for dealing with a jump instruction which

arrives asynchronously. Every time we need to check "able" before a new request for

the next sequential instruction is issued. This means that FIFO always leaves one

space dealing with the jump instruction.

6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 92

able

data-in

ainF

isO isi is2

routF

data-out

aoutF

Specification:

LF = rinF.nf.'inc.'ainF.LF

RF = ne. ' routF . aoutF. ' dec.RF

FO = 'able.FO + inc.F1 + 'nf.FO + 'isO.FO

Fl = 'able.Fl + inc.F2 + dec.FO + 'nf.Fl + 'ne.Fl + 'isl.Fl

F2 = inc.F3 + dec.F1 + 'nf.F2 + 'ne.F2 + '1s2.F2

F3 = dec.F2 + 'ne.F3

FIFO = (LF I FO I RF) \ {ne, nf, inc, dec}

Writer = ... prepare data.'rinF.ainF

Reader = ... routF.process data.'aoutF

WC counter

WC is a counter which can be set to a certain value, tested for its value and decreased

by one. This element is used for modeling the colour in our design. A counter with

1 as its maximal value is specified below.

bi WC

wcO

bi WCO

6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 93

setWCO.WCO + setWC1.WC1 + 'wcO.WCO

bi WC1

'wcl.WCl + minus.WCO

Boolean Register

2 phase boolean register is basically the same as the 4 phase one except that it does

not have the flatten stage.

Specification:

bi BOOL_REG

BOOL_REGO

bi BOOL_REGO

setO. ' ackO.BOOL_REGO +

seti. ' ackl.BOOL_REGl +

test. ' zero . BOOL_REGO

bi BOOL_REG1

setO. ' ackO.BOOL_REGO +

seti. ' ackl.BOOL_REGl +

test. ' one.BOOL_REGl

ALU

ALU is an arithmetic and logic unit. It has two inputs and one output. It also

includes a conditional code boolean register CC. We use a two-bit local traditional

bus as its control wires whichis driven by its controller. This ALU does one of three

basic functions depending on the current function code (fc).

(1) Passes opi through, if the function code is 00.

(2) Increases opi and output the increased value, if the function code is 01.

aoutA result routA

6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 94

opi op2 rinA

ccT

testcc
ccF

(3) Compares opi and op2 and sets CC to true (opl=op2) or to false (opiop2),

if the function code is 10.

Specification:

CC = BOOL.REG[setT/setl,setF/setO,

ackT/ackl,ackF/ackO,

ccT/one, ccF/zero , testcc/test]

ALU = rinA.(fc00.ALU1 + fc01.ALU1 + fc10.ALU2)

ALU1 = 'routA.aoutA.ALU

ALU2 = eq.'setT.ackT.ALUl + neq.'setF.ackF.ALUl

ALU-CC = (ALU I CC) \{setT, ackT, setF, ackF}

The caller follows the following pattern:

Pass = ... drive op1 and fc with 00.'rinA. rout A.process data.'aoutA

Increase = ... drive opi and fc with 01.'rinA.routA.process data.'aoutA

Compare = ... drive opi, op2 and fc with 10.'rinA.routA.'aoutA

Tester = ... (ccT.code for ccT + ccF.code for ccF)

With all these 2-phase basic modules, we are able to specify the PAMM.

6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 95

6.3. Fetch Unit

The fetch unit in PAMM is responsible for fetching instructions. Once a new data

movement is requested, the fetch stage gets the next instruction, pushes it with the

current colour into a FIFO. It repeats this procedure (called the main loop) unless

the following situations are met:

(1) An interrupt signal arrives when the execute stage executes a JCC instruction

with the condition code true. Both the fetch stage and the execute stage will

change their current instruction colours, and the fetch stage throws away the

address in PC and gets the current instruction address from execute stage.

Then the fetch stage will return to the main loop.

(2) A halt signal arrives when a halt instruction is executed. Both the fetch stage

and the execute stage will change their current instruction colours. The fetch

stage will acknowledge this current data movement to the CPU and halt to

the execute stage, and prevent the fetch unit from working until a new data

request comes.

The architecture of the pipelined asynchronous fetch unit is given in Figure 6.2. The

fetch unit consists of two parts: The top part is responsible for choosing and passing

a fetch request from different sources down to the bottom part. The bottom part

carries out the actual fetch operation, increases the current instruction address and

stores it into the program counter PC, which are in parallel. Detailed explanations

will be given as the specification unfolds.

TARB is an arbiter with three contenders: rLOOP is an internal request which is

released by WAIT when the FIFO is "able" after rLOOPl is issued. rLOOP1 is issued

in two cases: (i) after the move machine has been initialized, (ii) after the current

sequential fetch has been finished. rINTP is a request from the execute unit when a

jump occurs. This means that the current instruction flow is changing. The current

instruction address will be from the execute unit not from PC.

6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 96

rINTP rHALT

rMOVE DOVE

rLOOP

aoutPl TARB

1 dl g2
d2 d3

aoutP3

aoutP2

TTEST rLOOP1

1 al s2 3 a3

WALL

ainM rinM
MAR

aontM roiitM

rinl
INC

cnfT rôjitl

done

r

rinP
v

amP rinP
PC

riitP ro itP
A

IMEM
am

ainF rinF
FIFO able

RO11tF rortF

>. aINTP

aHALT

WAIT

FIGURE 6.2. PAMM Fetch Unit

6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 97

Here we have to void the address in PC to avoid a deadlock which would otherwise

happen when no one takes the old PC out and a new PC value tries to get in.

Even though it is obviously necessary to do this, it took quite a few days to locate

and fix this deadlock when the CWB showed its existence in our design. The most

straightforward solution is to send an acknowledge signal to the PC. The FASTFK

is used to route this request to PC. rHALT is a request from the execute unit when

a halt instruction is executed. This means the current data movement has been

finished. Its CCS specification is:

b TARB

(ARB3 C rLOOP/rl, rINTP/r2, rHALT/r3,g2'/g2] \

I FASTFK Eg2'/a,aoutPl/b, g2/cJ \

) \{g2'}

TEST is a unit which carries out a number of trivial functions. Four sources use this

component. It governs both a colour register and a halt register for recording whether

a rHALT has been handled. Its functions include:

When a rMOVE arrives, it passes down the request, the initial address from CPU.

When both the acknowledgement signal from the CALL unit and the done signal from

the bottom part arrive, it raises rLOOP1 for fetching a new sequential intruction.

This request is released as rLOOP whenever the FIFO becomes "able". Here the

acknowledgement signal from the CALL unit means that the current address is in the

MAR (memory address register). The done signal means that the current instruction

has been placed in the FIFO and the PC is changed to MAR + 1. The "able" means

that there are two spaces left in the FIFO and the sequential access can continue.

bi TEST1

rMOVE. ' rl.al.done. ' rLOOPl.TESTl

When gi arrives (sequential PC generation passes through the arbiter), it checks

the halt register. If a rHALT has not been handled, it passes on this request, the

6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 98

address in PC. When both the acknowledgement signal from the CALL unit and the

done signal from the bottom part arrive, it signals on dl for releasing the arbiter and

rLOOP1 to the WAIT element. rLOOP will be raised whenever the FIFO becomes

"able". Otherwise it clears the halt register for the next use, voids the PC value by

acknowledging the PC, releases the arbiter and then sends aMOVE back to the CPU

to indicate that the current data movement has been finished.

bi TEST2

gi. ' testhalt . TEST21

bi TEST21

halt. ' clearhalt . ackclear. ' aoutP3. ' dl. ' aMOVE.TEST2 \

+ nohalt.'r2.a2.done.'dl.'rLOOPl.TEST2

When g2 arrives (the rINTP gains control), it changes the current colour. This is

modeled by a counter which records how many instructions carry wrong colour and

done by checking how many instructions following the jump and setting the counter.

Here we should notice the number of wrong colour instructions is equal to n - 1

(the number of instructions in the FIFO is n) since the jump instruction is still in

the FIFO. Then it passes down this request and the new address. When both the

acknowledgement signal from the CALL unit and the done signal from the bottom

arrive, it sends aINTP to the execute unit and d2 to release the arbiter.

bi TEST3

g2.(nl. ' setWCO.TEST31 + n2. ' setWCl.TEST31)

bi TEST31

'r3.a3.done. ' aINTP. ' d2.TEST2

When g3 arrives, it sets the halt register, changes the colour register (in the same

way as for the jump instruction), sends aHALT to the execute unit and releases the

arbiter.

6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 99

bi. TEST4

g3. (ni. ' setWCO.TEST41 + n2. ' setWC1.TEST4I)

bi TEST41

sethalt . ackset. 'aHALT. 'd3 . TEST4

Here is the CCS specification for TEST:

bi HALT

BOOL_REG [sethalt/set 1, clearhalt/setO,

ackset/acki , ackclear/ackO,

halt/one ,nohalt/zero , testhalt/test]

bi WAIT

rLOOP1 . able. ' rLOOP.WAIT

bi TEST

TEST 1 + TEST2 + TEST3 + TEST4

bi TTEST

(HALT I TEST I WAIT) \ TTESTlines

\

\

basi Hlines

sethalt clearhalt ackset ackclear testhalt halt nohalt rLOOP1

TCALL is a CALL3 element. It stores the current memory address for three different

sources into MAR. When it gets an acknowledgement signal from the MAR, this

means the current memory address is safely in the MAR. If this address is from PC,

the old address is no longer useful and taken out by sending an acknowledgement to

PC. The FASTFK element routes this signal to PC. Its CCS specification is:

6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 100

bi WALL

(CALL3 [a2'/a21 I FASTFK [a2'/a, aoutP2/b, a2lc]) \ -Ca2'}

Now we can specify the top part by connecting the above specifications and hiding

internal actions.

bi TOP

(TARB I TEST I WALL \

I M3 [aoutPl/a, aoutP2/b, aoutP3/c , aoutP/zj \

) \ TOPlines

basi TOPlines

dl, d2, d3, gi, g2, g5,

ri, r2, x'3, al, a2, a3, \

aoutPl, aoutP2, aoutP3, rLOOP

The bottom part is a component by wiring MAR, INC, IMEM, PC, FIFO. Its speci-

fication is:

bi BOTTOM

(MAR \

I C C aoutMl/a, ainF/b, aoutM2/z J \

I FASTFK [aoutM2/a.,done/b,aoutM/c] \

I FASTFK C routM/a, nfl/b, nM/c] \

I INC C ninP/routl] \

IPC \

I IMEM C ninF/aM] \

IFIFO \

I FASTFK C amP/a, aoutMl/b, ainl/c] \

I C'[routP/a, rib, ninM/z] \

) \ BOTTOMlines

6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 101

basi BOTTOMlines

rinM aoutM routM aoutMl aoutM2 \

rM \

rinF ainF \

rinP amP routP \

rinl ainl

Finally the fetch unit can be specified by composing the top component and the

bottom component, and hiding internal communications.

basi FETCHlines

r a able done aoutP ni n2

bi FETCH

(TOP I BOTTOM) \ FETCHlines

Property Check: Observable actions at the FETCH interface:

Command: sort FETCH

rMOVE ' aMOVE ' rbutF aoutF rINTP ' aINTP rHALT ' aHALT ' setWCO ' setWCl

The complexity of FETCH unit::

Command: min TOP

Save result in identifier: TOP'

TOP' has 2362 states.

Command: min BOTTOM

Save result in identifier: BOTTOM'

BOTTOM' has 292 states.

Command: min FETCH

6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 102

Save result in identifier: FETCH'

FETCH' has 1217 states.

6.4. Execute Unit

The architecture of the execute unit is shown in Figure 6.3. The execute stage

always gets an instruction from the FIFO as long as the FIFO is not empty. If the

instruction doesn't have the same colour as the current colour of the execute stage, it

means that this instruction is obsolete (it is prefetched following a JCC which changes

the current instruction flow or HALT) and should be thrown away. Otherwise the

execute stage will execute the current instruction and then repeats this procedure.

There are two instructions which could change the colour register. One is JCC. If

the conditional code is true, the execute stage will change its colour and then send

an interrupt request to the fetch stage. It can return to the normal procedure after

the interrupt acknowledge signal arrives. The other one is HALT. The execute stage

will change its colour and then send a halt request to the fetch stag. It can return

to the normal procedure after the halt acknowledge signal arrives.

Hre we model this colouring by a counter WC which records the number of the

wrong colour instructions in the FIFO. The execute unit decides whether or not the

current instruction should be executed by checking the WC. If WO indicates there is

at least one wrong colour instruction, it just discards this one and decreases WC by

one. Otherwise it executes this instruction. Since this execute unit is quite trivial to

implement, we keep it abstract for reducing PAMM complexity. This unit is specified

below:

6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 103

routF

bi XC

XC0

FIFO

w: ri:

CALL

awRF rrRF
RF

rwRP arRF

ALU

A
a1IL....

ainL rint

LATCH aoutL
ronti

ccT
 testcc
ccF

address

datain
MEM

rM

dataout

DEC

EXEC

FIGURE 6.3. PAMM EXECUTE UNIT

bi XCO ** CC is false

routF . XCO1

bi XCO1

6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 104

wcO.take. \ ** right colour

(jcc.'aoutF.XCO \ ** no jump occurs

+ hlt.'rHALT.aHALT.'aoutF.XCO \ ** halt

+ lod.'aoutF.XCO \

+ scc.XC2 \

+ nop.'aoutF.XCO \

• mov.'aoutF.XCO \

+ inc.'aoutF.XCO \

+ sto.'aoutF.XCO) \

+ wcl.discard.'minus.'aoutF,XCO ** wrong colour instruction

bi XC2

eq.'aoutF.XCl + neq.'aoutF.XCO ** CC = (rl==r2)

bi XC1 ** CC is true

routF .XC11

bi Xcii

wc0.take. ** right colour

(jcc.'rINTP.aINTP.'aoutF.XCi ** jump occurs

+ hlt.'rHALT.aEALT.'aoutF.XCl \

+ lod.'aoutF.XCi \

+ scc.XC2 \

+ nop.'aoutF.XCl \

+ mov. ' aoutF.XCl \

+ inc.'aoutF.XCl \

+ sto.'aoutF.XCl) \

+ wcl.discard.'minus.'aoutF.XCl ** wrong colour instruction

6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 105

Property Check:

Command: sort XC

routF ' aoutF'rINTP aINTP ' rHALT aHALT wc0 wcl

take discard eq neq lod sto mov inc scc jcc flop hlt

The complexity of the execute unit:

Command: min XC

Save result in identifier: XC

XC' has 22 states.

6.5. PAMM

PAMM is the composition of the fetch unit and the execute unit, as specified below:

bi PAMM

(FETCH I XC I WC) \ PAMMlines

basi PAMMlines

rINTP aINTP rHALT aHALT \

routF aoutF setWC0 setWC1 wcO wci. minus

Observable actions in PAMM:

Command: sort PAMM

eq,hlt,inc,jcc,lod,mov,neq,nop,scc,sto,rMOVE,'aMOVE

PAMM complexity:

Command: min PAMM

Save result in identifier: PAMM'

PAMM' has 104 states.

6.6. Environment

PAMM is a slave processor for the CPU. CPU has to obey some rules in order to

use it, as specified below.

6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 10

b ENV

initialize. ' rMOVE. aMOVE.ENV

6.7. Property Check

Now we can look at the PAMM when it operates in its environment. PAMM is

proved to be deadlock free and possess required liveness.

bi PAMM-ENV

(PAMM I ENV)\-CrMOVE, aMOVE}

Command: min PAMM-ENV

Save result in identifier: PAMM-ENV'

PAMM-ENV' has 20 states.

Command: fd PAMM-ENV'

No such agents

Command: cp AMM'

Proposition: BOX POSS <lod>T

true

Similar tests for other instructions have been successfully carried out.

6.8. Summary

This chapter gives a PAMM specification which has been shown deadlock free.

PAMM is a highly parallel machine which takes advantage of asynchronous design

style. But very tricky reasoning is necessary to avoid deadlock. During our lesign,

we met three major deadlocks and fixed them after they were tested by the CWB.

(1) Requesting the sequential fetch:

(a) The first natural thought is that we request a sequential fetch once the

current instruction has been fetched. When we did this, a deadlock

happened since we sent too many requests which could not be consumed

6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 107

in the following case: a rLOOP and rINTP arrive at the same time and

the aribter allows the rINTP to go through. When this request rINTP

has been processed, a new rLOOP is issued before the previous one can

be processed.

This deadlock is fixed by finding rLOOP can be issued only after the

initialization or a sequential fetch has been carried out.

(b) The second natural thought is that rLOOP is issued whenever FIFO is

not full. A deadlock happened when the FIFO is full and no rLOOP

can be issued and in the meantime a rINTP comes. The new instruction

cannot be put into the FIFO and the execute unit is not taking any

instruction out of FIFO since the jump instruction is not yet completed.

This deadlock can be removed by keeping a space in the FIFO for dealing

with this case.

(2) PC value: When a jump i.s taken, the old PC value should be discarded. In

asynchronous design, we have to explicitly remove the value and free the PC

for its next use. A deadlock happened until we noticed this.

CHAPTER 7

Conclusions

7.1. Summary

The contribution of this thesis has been to present two case studies which:

(1) help bridge the gap between the formal method and engineering approaches

by focussing on block level descriptions which map exactly into CCS and yet

serve as blueprints for implementations (see also [BLS94a, BLP94a, BLP94b,

BLGP94, BL94]);

(2) help clarify a hierarchical methodology for systematically developing and test-

ing asynchronous systems (see.also [Ste94, Liu92]);

(3) are valuable in their own right.

They are amongst largest verifications yet done of asynchronous systems.

In chapter 1, we explained the terminologies used in asynchronous design. In

chapter 2, we surveyed three disparate approaches of asynchronous design: Silicon

Compilation, Formal Methods, and the Engineering Apprdach. We also explained

these approaches giving one typical example for each approach. In chapter 3, we

covered the specification language CCS, its companion logic modal a-calculus and

the mechanized workbench CWB which are used throughout the rest of this thesis to

specify and verify our abstract designs. The next two chapters closely followed pre-

viously published work [BLS94b, BLS94a]. In chapter 4, we described the move

108

1. CONCLUSIONS 109

machine upon which this thesis research is based. In chapter 5, we systematically

followed AMM through three different abstract levels of specification, showed these

levels to be consistent, and showed that they were deadlock free, livelock free and

in possession of certain safety and liveness properties. The heart of the thesis was

chapter 6, in which we specified and verified PAMM, a pipelined 2-phase machine,

whose implementation is inherently parallel in operation. As case studies, themodels

of chapter 5 and chapter 6 explicate the 4 phase and 2 phase design styles. They

are also vehicles for expanding the specification driven design methodology which

systematically takes one down from the top level to a provenly equivalent description

which serves as an implementation blueprint, thus helping to bridge the gap between

the Formal and the Engineering approaches.

Through these case studies, CCS has been demonstrated to be an appropriate and

usable tool for describing and developing asynchronous hardware. At each abstract

level, an asynchronous circuit has a finite number of distinguished states. This finite-

ness allows us to use the CWB workbench. The companion logic to CCS (the modal

p-calculus) copes with the complicated properties, such as deadlock, livelock, live-

ness and safety, etc., inherent in asynchronous systems. The CWB also allows us

to test the equivalence of descriptions at different levels of abstraction. We believe

that observational congruence best defines the equivalence between two circuits. Real

circuits are always stable, which means that the first action is not an internal action

(this matches event-driven circuits). So the equivalence check is reduced to a check

for weak bisimularity, which is easy to carry out.

These case studies have exhibited some shortcomings of the, methodology.

(1) State explosion: A very succinct CCS specification can be a very complicated

model which has millions of states.

(2) Tricky reasoning to locate and fix deadlock: Asynchronous systems are very

prone to deadlock. Although the CWB can test whether or not a design

includes deadlock, locating and fixing a deadlock requires very tricky reasoning.

7. CONCLUSIONS 110

(3) Slow algorithms in the CWB: the algorithms for agent minimization and equiv-

alence checking are very slow. Even in the SUN/SPARC 20, it takes 3 to 4

hours to minimize an agent which has more than 1000 states after minimiza-

tion.

7.2. Future Work

7.2.1. Silicon Compiler. CCS is a specification language with succinct syntax

and clean semantics. However, since a CCS specification can be very abstract, it

might take an experienced engineer a long time to generate a real design from this

specification. It is not a mechanical step. Building a silicon compiler based upon CCS

would be a great help but also a difficult topic. As noted by Stevens[Ste94], some

restrictions should be put on the CCS specification to be translated by its silicon

compiler.

7.2.2. Faster Algorithms. The algorithms in the CWB for agent minimization

and equivalence check are very slow. Improving their efficiencies will greatly shorten

the development cycle of asynchronous design. Analyzing the complexity for this

problem and finding an approximate optimal algorithm will be worthwhile.

Bibliography

[BE92] Janusz A. Brzozowski and Jo C. Ebergen. On the Delay-Sensitivity of

Gate Networks. IEEE Transactions on Computers, 41(11):1349-1360,

November 1992.

[BL94] G. Birtwistle and Y. Liu. Manchester Amulet Specification: Top Level.

Computer Science Technical Report, Computer Science Department,

University of Calgary, 1994.

[BLGP94] G. Birtwistle, Y. Liu, J. Garside, and N. Paver. Manchester Amulet Spec-

ification: The Execution Pipeline. Computer Science Technical Report,

Computer Science Department, University of Calgary, 1994.

[BLP94a] G. Birtwistle, Y. Liu, and N. Paver. Manchester Amulet Specification:

The Address Interface. Computer Science Technical Report, Computer

Science Department, University of Calgary, 1994.

[BLP94b] G. Birtwistle, Y. Liu, and N. Paver. Manchester Amulet Specification:

The Register Bank. Computer Science Technical Report, Computer Sci-

ence Department, University of Calgary, 1994.

[BLS94a] Graham Birtwistle, Y. Liu, D. Spooner, J. Aldwinckle, K. Stevens,

and W.Yu. Case Studies in Asynchronous Design. Part II: a 4-stroke

AMM. Computer Science Technical Report, Computer Science Depart-

ment, University of Calgary, 1994.

111

BIBLIOGRAPHY 112

[BLS94b] Graham Birtwistle, Y. Liu, D. Spooner, J. Aldwinckle, K. Stevens, and

W.Yu. Case Studies in Asynchronous Design. Part I: AMM Architec-

ture. Computer Science Technical Report, Computer Science Depart-

ment, University of Calgary, 1994.

[BM88] Steven M. Burns and Alain J. Martin. Syntax-directed Translation

of Concurrent Programs into Self-timed Circuits. In J. Allen and

F. Leighton, editors, Proceedings of the Fifth MIT Conference on Ad-

vanced Research in VLSI, pages 35-50. MIT Press, 1988.

[Bru91] Erik Brunvand. Translating Concurrent Communicating Programs into

Asynchronous Circuits. PhD thesis, Carnegie Mellon University, 1991.

[B587] J. A. Brzozowski and C.-J. Seger. A Unified Theory of Asynchronous

Networks. Report CS-87-24, Computer Science Dept., Univ. of Waterloo,

Cananda, March 1987.

[Dav95] A. Davis. Burst Mode Controllers: Synthesis and Experience. In

G. Birtwistle and A. Davis, editors, Proceedings VII Banff Workshop:

Asynchronous Digital Circuit Design. Springer Verlag, Workshops in

Computing Series, 1995.

[DN95] A. Davis and S. Nowick. Introduction. In G. Birtwistle and A. Davis,

editors, Proceedings VII Banff Workshop: Asynchronous Digital Circuit

Design. Springer Verlag, Workshops in Computing Series, 1995.

[DNS92] David L. Dill, Steven M. Nowick, and Robert F. Sproull. Specification and

automatic verification of self-timed queues. Format Methods in System

Design, 1(1):29-60, July 1992.

{Ebe89] - Jo C. Ebergen. Translating Programs into Delay-Insensitive Circuits, vol-

ume 56 of CWI Tract. Centre for Mathematics and Computer Science,

1989.

[Ebe91a] Jo C. Ebergen. A Formal Approach to Designing Delay-Insensitive Cir-

cuits. Distributed Computing, 5(3):107-119, 1991.

BIBLIOGRAPHY 113

[Ebe91bJ Jo C. Ebergen. Parallel Computations and Delay-Insensitive Circuits. In

Graham Birtwistle, editor, IV Higher Order Workshop, Banff 1990, pages

85-104. Springer-Verlag, 1991.

[Fur93] S. B. Furber. Computing without clocks: Micropipelining the arm pro-

cessor. In Graham Birtwistle, editor, Proceedings VII Banff Workshop:

Asynchronous Digital Circuit Design, 1993.

[Fur95] S. Furber. Computing without Clocks: Micropipelining the ARM Proces-

sor. In G. Birtwistle and A. Davis, editors, Proceedings VII Banff Work-

shop: Asynchronous Digital Circuit Design. Springer Verlag, Workshops

in Computing Series, 1995.

[JC9O] J.Bradfield and C.Stirling. Verifying temporal properties of processes. In

J.Sifakis, editor, Proceedings of CONCUR '90, number 458, pages 115-

125. Springer-Verlag, 1990.

[Kal86] Anne Kaldewaij. A Formalism for Concurrent Processes. PhD thesis,

Dept. of Math. ans C.S., Eindhoven Univ. of Technology, 1986.

[Liu92] Ying Liu. Reasoning about asynchronous designs. MScEE thesis, Electri-

cal and Computer Engineering, The University of Calgary, 1992.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mol91] Faron Moller. The Edinburgh Concurrency Workbench. Technical Re-

port, Computer Science Department, University of Edinburgh, 1991.

[PDF92] N. C. Paver, P. Day, S. B. Furber, J. D. Garside, and J. V. Woods.

Register locking in an asynchronous microprocessor. In Proc. Int'l. Conf.

Computer Design, pages 351-355. IEEE Computer Society Press, Octo-

ber 1992..

[Sch85] Huub M. J. L. Schols. A formalisation of the foam rubber wrapper prin-

ciple. Master's thesis, Dept. of Math. ans C.S., Eindhoven Univ. of Tech-

nology, 1985.

BIBLIOGRAPHY 114

[Ste94] Ken Stevens. Burst Mode Asynchronous Design. PhD thesis, Computer

Science, The University of Calgary, 1994.

[Sti91] Cohn Stirling. An introduction to modal and temporal logics for ccs. In

A.Yonezawa and T.Ito, editors, Concurrency: Theory, Language, and

Architecture, number 491, pages 2-20. Springer-Verlag, 1991.

[Sti92a] Cohn Stirling. Modal and Temporal Logics. Technical Report ECS-LFCS-

91-157, Laboratory for the Foundations of Computer Science, University

of Edinburgh, 1992.

[Sti92b] Cohn Stirling. Modal and Temporal Logics for Processes. Technical Re-

port ECS-LFCS-91-221, Laboratory for the Foundations of Computer

Science, University of Edinburgh, 1992.

[Sut89] Ivan E. Sutherland. Micropipelines. Communications of the ACM,

32(6):720-738, January 1989.

[Udd86] Jan Tijmen Udding. A formal model for defining and classifying delay-

insensitive circuits. Distributed Computing, 1(4):197-204, 1986.

[UV88] Jan Tijmen Udding and Tom Verhoeff. The mathematics of directed

specifications. Technical Report WUCS-88-20, Dept. of C.S., Washing-

ton Univ., St. Louis, MO, June 1988.

[vB92a] Kees van Berkel. Beware the Isochroni6 Fork. Integration, the VLSI jour-

nal, 13(2):103-128, June 1992.

• [vB92b] Kees van Berkel. Handshake Circuits: An Intermediary between Com-

municating Processes and VLSI. PhD thesis, Eindhoven University of

Technology, 1992.

[vBKR91] Kees van Berkel, Joep Kessels, Many Roncken, Ronald Saeijs, and Frits

Schalij. The VLSI-Programming Language Tangram and its Translation

into Handshake Circuits. In Proc. European Design Automation Conf.,

pages 384-389, 1991.

BIBLIOGRAPHY 115

[vBNRS88] C. H. (Kees) van Berkel, Cees Niessen, Martin Rem, and Ronald W. J. J.

Saeijs. VLSI Programming and Silicon Compilation. In Proc. Int'l. Conf.

Computer Design, pages 150-166, Rye Brook, New York, 1988. IEEE

Computer Society Press.

[vdK92] Michiel van der Korst. VOICE, a silicon compiler for asynchronous cir-

cuits. Technical report, IVO, Eindhoven University of Technology, August

1992.

APPENDIX A

4 Phase Basic Data Path Modules

In the following, we list all 4 phase basic data modules used in our design. All

these descriptions are from [BLS94b] and [BLS94a] with permission from Dr. G.

Birtwistle.

A.I. Wire

Wires may be either high or low; and may be sensed. The description is:

WIRE (WIREO

WIREO 1(in.WIRE1 + 1.WIREO

WIRE1 1(in.WIREO + i.WIRE1

The controller of the wire makes it high with the first in and low with the second

in.

Sensor code typically follows the pattern:

(hi.code for high+lo.code for low)

A.2. Register

• the output is always "strong" and may be read several times

• the input may "wobble". It is ignored until there is a write request at which

time the output changes at once.

116

A. 4 PHASE BASIC DATA PATH MODULES 117

rwR

din

Protocol. The interaction sequence is:

Writer: sDin rwR awR zDin rwR awR

'ft
REG: rwR reg' awR rwR awR REG

awR

dout

• Specification. From the register's point of view, after rwR is raised, the (strong)

value on din is written into the register (indicated by reg'). The fresh value also

drives the output bus. When the register raises awR, the caller is safe to assume that

the new value is in the register and is strong. The caller then lowers rwR and the

register lowers awR.

REG (rwR.reg'.awR.rwR.awR.REG

Usage. The caller puts new value on the input bus (sDin) then raises rwR. When

the register raises awR, the caller will tristate the input bus (zDin) before lowering

rwR and then waits for awR to be lowered. The onus is on the caller to make the

input strong before raising rwR.

Writer Lef sDin.rwR.awR.zDin.rwR.awR.

A.3. Enable

• the input to the ENABLE is normally strong,

• its output is normally tristated, it is driven only on request

Protocol. The interaction sequence is:

Caller: reE aeE read reE aeE

EN: reE sEN aeE reE zEN aeE EN

A. 4 PHASE BASIC DATA PATH MODULES 118

4 rwR
REG

awR

reE
EN

aeB

i1i
Enable registers are placed between busses and "ordinary" registers whose outputs

are normally strong so that the latter only drive the bus on request. When reE is

raised, the strong data value of the register is passed, indicated by sEN. aeE is then

raised, a signal to the caller that the bus is safe to read. When the bus has been

read, the caller lowers reE. The enable register then cuts off the register value thus

tristating the bus (zEN) and then lowers aeE.

Specification.

Usage.

EN def r€E.SEN..reE.ZEN.aeE.EN

Caller 'I .aeE.read..aeE.

A.4. Boolean register

setO

ackO

setl

ackl

test

'Jr
BOOLJtEG

zero

one

A. 4 PHASE BASIC DATA PATH MODULES 119

• we assume that read, write, and test requests do not overlap

• write requests set the register true or false. (There is no wobbling - sets are

always accepted.)

• the current value may be tested and read several times.

Protocol. The interaction sequences are:

Set/reset register.

Setter:. setO ackO ackO

BJtEG: setO reg=F ackO setO ackO B_REG

Read value in register. Suppose the boolean register is in state 1.

Read: one test one

J1'.

B.REG1: test one test 3i B..REG1

Specification.

BOOLREG (B.REGO

BREGO 'I setO.ackO.setO.ackO.B..RECO

+ set1.ack1.set1.ack1.BJEG1

+ test.F.test..BREGO

B...REG1 de I .setO.ackO.setO. ackO.BREGO

+ setl.ackl.setl.ackl.BREG1

+ test..test..B.REG1

A boolean register may be set to 0 or 1. Each setting is acknowledged. To read a

register, a caller raises test. The register will respond by raising either zero or one.

Usage. The calling tactic is:

(zero. test. zero. code for 0+one1. one. code for 1)

A. 4 PHASE BASIC DATA PATH MODULES 120

A.5. Register file

A register file is a block of (in our case 8) registers each following the model of §2.1.2.

The outputs from the registers (which are always strong) are filtered through two

multiplexers - one selected by the control bits rl, the other by the control bits r2.

Thus

doutl I RF[ri]

dout2 (RF[r2]
The input bus is copied to all 8 registers. The write signal from rwRF is and'ed with

the decoded control bits wReg so that only one register will be "invited" to write

awRF
rwRF

wReg

w.Bus

n-to- 1 _. D

decoder ._ D

11
R

R. 2
R. 1

.

M
U
X dout1

-ITh
—M

U

X dout2

when we go through the sequence rwRF/awRF up and down. The 8 register awR

signals are or'ed together to produce the external awRF signal.

Here is our abstract view of the register file:

Protocol. The interaction sequence is:

A. 4 PHASE BASIC DATA PATH MODULES 121

ri

r2

wReg

wBu.s

rwRF awRF

Specification. At our level of abstraction, its the same as a single register.

RF 48f rwRF.rf'.awRF.rwRF.awRF.RF

NB we have abstracted away ri, r2, wReg, wBus, doutl and dout2 from our speci-

fication.

Usage. See a single register.

As far as AMM is concerned, the

ri is wired to bits 3..5 of JR

r2 is wired to bits 6..8 of IR

wReg is wired to bits 6..8 of JR

When IR changes, so do they, and so do the values on doutl and dout2.

A.6. Memory

The address bus is unidirectional; the data bus is bidirctiona1. The caller raises the

read/write line mrw for a read and leaves it down for a write. The read/write line is

lowered after the read has taken place.

Protocol. The two interaction sequences are:

A. 4 PHASE BASIC DATA PATH MODULES 122
mrw

addr

data

rM aM

mrwt mrw4.

Read: sA rM aM read; zA fl? aM

.fr .fr
MEM: rM sD Th? rM zD aM MEM

For a read, the caller raises the line mrw and drives the address bus (sA). It then

raises rM and awaits the raising of aM at which time the memory will have put the

read value strongly onto the data bus. When the data has been read, the caller lowers

mrw and tristates the address bus (zA) before lowering rM. The memory unit will

tristate the data bus (zD) and then lower aM.

sA zA

Write: sD rM aM zD rM aM

MEM: rM mem' aM rM aM MEM
For a write, the caller leaves the line mrw low, but drives the address bus (sA) and

the data bus (sD). It then raises rM and awaits the raising of aM at which time

the memory will have been updated (mem'). The caller then tristates both busses

(zA.zD) and then lowers rM. The memory unit then lowers aM.

A. 4 PHASE BASIC DATA PATH MODULES 123

Specification.

MEM (rM.(mrwT.READ + mrwF.WRITE)

READ sD.aM.rM.zD.M.MEM

WRITE (mem'.iM.rM.M.MEM
Usage. The caller follows one or other of the protocols:

Read (mrw.sA.M.aM. read data .mrw.zA)M.aM

def -

Write = sA.sD.rM.aM.zA.zD.M.aM

A.7. ALU

alu

dm1

dm2

rA aA

.setO
acicO
setl
ackl

dout

The ALU can either compare (in which case it sets a boolean register) or increment.

The alu line is raised then lowered for compare and left low throughout an increment.

Protocol. The two interaction sequences are:

Compare

A. 4 PHASE BASIC DATA PATH MODULES 124

alut alu•

sDinl zDinl

COMP: sDin2 rA aA zDin2 aA

ALU: rA din1=din2=SET1 A rA iA ALU

din1din2=SETO aA rA X ALU

where SET1 = iLack1.I.ack1

SETO = setO.ackO.setO.ackO

The caller sets the compare operation by raising alu, drives the data on the input

busses, and then raises rA. The circuit fires by setting a condition code register to F

(via .setO/ackO) or T (via setl/ackl). It then raises aA. When the caller is ready, it

will lower flatten the line alu and the busses and then lower rA. The ALU responds

by lowering aA.

Increment

INC: sDinl aA read zDinl j aA

.1,!.

ALU: rA sA A rA zAl aA ALU

The caller drives dm1 and then raises then raises rA. The circuit fires, putting the

result on the output bus dout. and then raising aA. When the caller has read the

value on dout it lowers rA. The ALU then tristates the dout bus and lowers aA.

Specification.

ALU def = rA.(aluT.COMP + aluF.INC)

COMP de =(T.ack1.set1.ack1.trA.A.ALU

+ .setO.ackO..setO.ackO.aA.rA.aA.ALU

INC I sA.iA.rA.zA.A.ALU
Usage. The caller follows the protocols:

A. 4 PHASE BASIC DATA PATH MODULES 125

alu.sDIN 1.sDIN2.A.aA.

alu.zDIN1.zDIN2.A.aA

INC I sDIN1JA.aA.

zDIN1.rA.aA

ALU'

Since our ALTJ will always be associated with a "condition code" register, we might

as well give it define it; Here is the implementation:

alu

dm1

dm2

with CCS definition:

rA aA

test

ALU' de =((ALU I BOOL_REG) \ {setO, ackO, setl, acicl}

We picture this composition by:

and its specification is (roughly):

zero

one

A. 4 PHASE BASIC DATA PATH MODULES

alu

dm1

dm2

test

rA aA

zero

one

dout

ALP (rA.(COMP + INC) + test.TEST

COMP ef cc'.A.rA.A.ALU'

INC sA.A.rA.zA.A.ALU'

TEST '(ccT..test..ALU'

+ ccF.zro.test..ALU'

A.8. van Berkel's S element

Protocol. The interaction sequence for van Berkel's S circuit ([vB92a]) is:

Caller: d ... d Caller

.ft
5: 8 a F ad s S

i1 ft

sub-unit: r compute if r flatten U sub-unit

126

A. 4 PHASE BASIC DATA PATH MODULES 127

S S

r
V

A

a

sub - unit

S

d

Specification. When s is raised, it calls an associated sub-unit twice (once to com-

pute, once to flatten). Raising r fires the subunit. Once the sub-unit has computed

it raises a, whereupon the S element lowers r. The sub-unit now flattens its local

circuits and then lowers r. The S element now signals it is done by raising d. Then

.s and d are lowered in turn.

S 'fI .s.r.tet subunit compute.a..Iet sub-unit flatten.a2.s2.S

Usage.

Caller def s- = .d.s.d....

