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Abstract 

As VLSI improves, the feature size of devices is getting smaller and the speed of 

these devices is getting faster. These improvements allow much more complicated 

systems to be packed into a single die. Along with these improvements, however, 

synchronous systems are hitting limits associated with the distribution of the global 

clock signal. This has rekindled the examination of unclocked asynchronous design. 

A major problem in asynchronous design is deadlock, and it is very important to 

check this and kindred properties such as livelock, safety and liveness, etc, before 

an asynchronous system is sent for manufacture. Recently the mathematics and 

mechanized support tools have been developed to check these properties. This thesis 

presents two case studies in designing, specifying and verifying asynchronous systems, 

which help bridge the gap between the formal method and engineering approach and 

clarify the hierarchical methodology for developing asynchronous systems. 
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CHAPTER 1 

Introduction 

This thesis culminates in the specification and verification of a small pipelined asyn-

chronous microprocessor. In this chapter, we first motivate asynchronous design. 

Then we introduce the terminology and methodology used throughout this thesis. 

Finally, we give the structure of the thesis and summarize its contributions. 

1.1. Motivation for Asynchronous Design 

1.1.1. Synchronous Design and Its Limitations. Synchronous design has 

been with us for 30 years. A wealth of experience is now supported by many case 

studies and well-understood methodologies. 

However, VLSI technology is still developing rapidly. The feature size of devices is 

getting smaller and the speed of these devices is getting faster. These improvements 

allow much more complicated systems to be packed into a single die. Along with these 

improvements, however, synchronous systems are hitting limits because they perform 

computations based on the successive pulses of the global clock. Major problems are 

listed below: 

(1) Clock Distribution: All devices in a synchronous system are supposed to fire 

at the same time. The delay time of the global clock signal should be within a 

small window from the clock source to every device in the system. This gives 

rise to two distinct difficulties: 

1 
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(a) Area used: A significant part in a chip is used for the clock distribution, 

e.g., approximately one third of the area [Fur93] in the DEC ALPHA is 

occupied by the clock distribution circuitry. 

(b) Tricky algorithms are required for layout: As feature size decreases by 

n, the number of devices increases by n2. With dense chips, the clock 

distribution network imposes strict conditions on where devices can be 

placed. 
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FIGURE 1.1. A Possible Space Filling 

For example, a possible space filling is given by Figure 1.1. It guarantees the 

same delay time by connecting all devices to the clock source with the same 

wire length. This means that devices can be placed only at locations marked 

by white circles. The clock source shown as a black circle is in the middle. 

(2) Power Consumption: In CMOS, the power dissipated is proportional to the 

frequency of the clock. The reduction of power consumption offered by the de-

crease of circuit feature size is offset by the increase of the number of circuits 

in a single chip. So as chips get faster and denser, removing the generated 

heat becomes a real problem. The 2nd generation DEC ALPHA uses 60w. 
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Furber[Fur93] has estimated the dissipated power of a 0.1 tm 5v CMOS pro-

cessor might reach 2000w by the year 2000! 

(3) Performance: The correct operation of a synchronous circuit is established 

by making the clock period larger than the worst case delay of any possible 

subcomputation (e.g, the nth stage of a ripple carry ADDER) even though the 

probability of the occurrence of the worst case may be very small. 

(4) Metastability: Any computer circuit that has a number of stable states also 

has metastable states. When a circuit gets into a metastable state, it can 

remain there for an indefinite period of time before it resolves into a stable 

state. Consequently, when a metastable phenomenon occurs in a synchronous 

system, erroneous data may be sampled at the time of the clock pulse. 

These problems motivate the re-examination of asynchronous design. 

1.1.2. Asynchronous Design. In an asynchronous system, every component 

works mostly independent and occasionally cooperating with others by communica-

tion. Asynchronous systems have the following potential advantages: 

(1) No clock distribution problem: There is no global clock. The tradeoff is that 

local communication primitives are now needed. 

(2) Power consumption: There is no power consumption related to clock distri-

bution. Potential power reduction may be offered by asynchronous design 

because the devices work only when needed. As yet, there are no good power 

estimation tools for asynchronous design and an optimal solution is unlikely 

at present. 

(3) Performance: This should reflect the average case of performance. In asyn-

chronous design, as soon as a circuit finishes its computation, it informs the 

requester that the result is available. The time used only depends on the spe-

cific case the circuit is working on. Hence there is no need to optimize a circuit 

for speed if the likelihood of its worst case behavior is small. 
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(4) Metastability: This is not a problem for an asynchronous system. When an 

asynchronous circuit gets into a metastable state, it won't send an acknowledge 

signal to its user until it settles. This means the result will be sampled only 

after it settles. No matter how long it stays in a metastable state, it does not 

affect the correctness of the system. 

(5) Uniform interfaces between subsystems: Each subsystem may use 2-phase or 

4-phase for signalling, and dual rail or bundled data protocols for data passing. 

It is easy to switch from one to another, as shown in Section 1.3.2. 

(6) The correctness can be established by two separate steps: The correctness of 

the behaviour of the basic elements is proved by means of physical principles 

only, and the correctness of the behavior of connections of the basic elements 

is proved by means of mathematical principles only (i.e., composability). 

While the advantages are clear, asynchronous design as a technique is immature. 

Unlike synchronous design for which many mature techniques have been developed, 

asynchronous design has been neglected for a long time. There are two main reasons 

why asynchronous design has been neglected for decades. The first is that basic 

elements are much more complicated and cost much more than their synchronous 

counterparts. The second is that there were no nice mathematical tools to tackle the 

complications of asynchronous designs, such as deadlock, livelock, liveness and safety. 

The first problem is no longer so overwhelming due to the increasing capability of 

VLSI fabrication technology. In academic circles asynchronous techniques have always 

retained a niche since they provide a good test bed for mathematical techniques for 

proving the correctness of asynchronous systems. Quite recently the mathematics has 

matured and mechanized testing tools are now in place, e.g., CCS[Mil89] for specifying 

asynchronous design, the modal u-calculus [Sti91],[JC9O], [5ti92b] and [Sti92a] for 

property checking as mechanized in the CWB [Mol91] which we shall use in our 

design, specification and verification. All these are sufficient to make the renewed 

interest in asynchronous design viable. 
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1.2. Methodology 

Three methodologies will be used in this research: the CCS specification language, 

the CCS methodology, and hierarchical methodology. Each is discussed below. 

1.2.1. CCS Specification Language. CCS is a specification language for asyn-

chronous systems. It builds from the agent (process or object) 0 which can do nothing. 

From this basic agent, there are four ways of building more interesting agents. Be-

fore we introduce them, we first explain the essential "actions" part of an agent. We 

distinguish two types of actions: input action a and output action which are a pair 

of actions on the same channel. 

Prefixing. 

For a given agent P and an action "a", a.P is an agent which first does "a" 

then evolves into the agent P. 

E.g., MATCH tf strike. burn. 0, this means that a match can be struck, respond 

with a burn and then die. 

Non-deterministic Choice + 

For two agents A and B, and two actions a and b, a.A + b.B is an agent 

which evolves into A if it receives a transition on a or into B when it receives 

a transition on b. 

E.g., VEND I 1p.smallcandy.VEND1 + 2p.bigcamdi.VEND2, this means 

that a vending machine pops a small candy and evolves into VEND 1 if it ac-

cepts one penny, or pops a big candy and evolves into VEND2 if it receives a 

two penny coin. Here we suppose VEND1 and VEND2 are two other prede-

fined agents. 

Parallel Composition I 

For two agents A and B, AJB is an agent which allows concurrent behaviours 

and synchronizations between A and B. E.g., 

PROG ( ((compl.resu1t2.PROG1) I (comp2.resu1t2. PRO G2)) \ {result2} 
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this means that PROG consists of two concurrent programs .which do their 

computations concurrently and synchronize on the internal line resu1t2. Here 

\{resu1t2} means that resu1t2 is an internal line in PROG which can not be 

accessed by the outside. This composition allows us to build a large system 

only by connecting basic modules. 

Recursive Definition 

By the above three constructors, we can only build agents which carry out 

finite actions and then can do nothing. Hardware circuits are reusable - they 

function forever. With these three basic constructors plus recursive definitions, 

we are ready to specify the basic modules of asynchronous design. 

Example 1: the C element is a rendezvous element which produces an out-

put after both inputs arrive regardless of the order they arrive. In CCS this is 

written: C 1( a.b..0 + b.a..0 

If the C element receives a transition on a first, it will evolve into b..0 which 

waits for a transition on b, then causes a transition on z and finally evolves 

back to C, and can repeat the actions again. Similarly, if b appears first,. it will 

evolve into a.'.0 which waits for a transition on a, then causes a transition on 

z and finally evolves back to C, and can repeat the actions again. 

Example 2: the bubbled C element is a rendezvous element with one tran-

sition already fired. In CCS this s written: C,def = a.z.0 

Here b is the input on *hich it is assumed a transition has happened at the 

Z 

FIGURE 1.2. Bubbled C Element 
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beginning, see Figure 1.2. When C' receives a transition on a,.it will produce 

a transition on z and then behave exactly the same as C. 

Example 3: the Merge element produces an output after it receives a tran-

sition on any one of its two inputs. In CCS this is written: 

M a..M + b..M 

If M receives a transition on a or b, it will produce a transition on z and then 

evolve back to M which can repeat forever. 

Example 4: the Toggle element alternatively produces a transition on one of 

two outputs after every transition arrives on its input, with the first transition 

on the output marked by a dot as in Figure 1.3. In CCS, this is written: 

dcf - a. - T = a.b.c.T 

a T 

b 

C 

FIGURE 1.3. Toggle Element 

Here b is the output marked by a dot. When T receives a transition on a, it 

will produce a transition on b. When the second transition on a arrives, it will 

produce a transition on c and evolve back to T which repeats forever. 

1.2.2. CCS Methodology. Modal /,t-calculus (Hennessy Milner logic plus fixed 

point) is a companion logic for CCS specifications. It can express all the temporal 

operators of temporal logic. Thus its expressiveness is strong enough to describe desir-

able properties for CCS specifications, such as liveness, safety, deadlock and livelock, 

etc (see chapter 3). This is the logic we used to express properties for an asynchronous 
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system. 

The concurrency workbench CWB is a tool supporting CCS. It provides a very pow-

erful model checker to verify whether a system specified in CCS enjoys properties 

expressed in the modal -calculus, and if two different abstract specifications are 

equivalent. We checked properties and equivalences in the CWB as explained in 

chapters 5 and 6. 

1.2.3. Hierarchical Methodology. In the CWB, by using CCS and it-calculus, 

asynchronous design allows us to develop complicated systems in a hierarchical way 

from the very abstract level down to a Register Transfer Level implementation which 

is a composition of basic modules. 

We can prove whether an implementation conforms to its specification by checking 

whether any two adjacent levels in the development towards the lowest level are 

equivalent to each other on the CWB, and build the correctness of the whole system 

by checking the correctness of its subcomponents and communications between these 

subcomponents. When checking properties and correctness, we can use different 

levels of abstraction for any component to avoid unnecessary details of a big system 

in any particular design stage. The hierarchical methodology will help us to sort out 

deadlock and other mistakes. Based on this idea, we can develop hardware designs 

in the same way as we write software. 

In this thesis, by using the tools CCS, the modal it-calculus and the CWB, we spec-

ify and test 2-phase and 4-phase asynchronous designs - two variants of Sutherland's 

move machine: 

(1) AMM (asynchronous move machine), Chapter 5 

(2) PAMM (pipelined AMM), Chapter 6 

based on the hierarchical methodology. 
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CCS, the modal calculus and the CWB proved to be adequate for the following 

reasons: CCS is a simple notation with a clean semantics for specifying asynchronous 

systems. CCS naturally reflects the' behavior of asynchronous systems, E.g., the 

agent a.b.R, this means that b will occur any time after a happens (without tim-

ing restriction). So it is delay insensitive. Finally CCS is expressive enough to give 

coarse specifications of a large system (synchronizations but not data). It has been 

found detailed enough to serve as a blue print for AMM, and PAMM. The modal 

'u-calculus is certainly powerful enough to describe all interesting properties of asyn-

chronous systems, e.g., deadlock, livelock, safety and liveness, etc. When we use 

general purpose macros, modal u-calculus formulae can be quite readable. The CWB 

is an automated model checker with its automated equational checking capability 

and automated property testing ability. The hierarchical methodology allows us to 

abstract away some unnecessary detail at any particular design stage, which helps us 

spot mistakes and property failures in our design as it unfolds level by level. 

1.3. Terminology 

In this section, we introduce the terminology in our asynchronous design. There are 

several different timing models for asynchronous design. We introduce the three most 

common models: speed independent model, delay-insensitive model and bounded de-

lay model. In our design the bounded delay model is used because it is much cheaper 

than the delay-insensitive model and its delay requirements are not too hard to sat-

isfy. In asynchronous design, every component works independently and cooperates 

with others by communication. As mentioned previously, communications are the 

essential part in asynchronous systems. Commonly used communication protocols 

are combinations of the following: 2-phase or 4-phase styles for signalling; and dual 

rail or bundled data communication for data passing. In the following subsections, we 

will define these communication protocols and give the circuits which convert from 

one communication style to another one. 
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1.3.1. Timing Model. Asynchronous design is based on one of several timing 

models. The three most common are described next: 

Speed Independent Model A system can function correctly regardless of any delay 

within its components. This model assumes that no delay is associated with wiring. 

Delay Insensitive Timing Model A system can function properly regardlessof 

any delay within the components and in the wires which connect components as well. 

Bounded Delay Timing Model A system can function properly if delays within 

this system satisfy some predefined limits. 

A delay-insensitive asynchronous system is guaranteed to work properly in the pre-

sense of arbitrary delays in circuits and wires. However it will be very expensive due 

to the prohibitive number of connection wires needed for dual rail data communica-

tion. Some trade-offs need to be considered. Usually a bounded delay timing model 

is used if the delay requirement is not hard to establish. For example, the bundled 

data communication will save a significant number of wires. The delay requirement 

is that the bundled data should arrive at all its destinations before raising the control 

signal to inform these destinations to sample the data. 

1.3.2. Communication Protocols. In asynchronous systems, a signal transi-

tion (a rising or falling edge) is used as a basic event. Commonly used communi-

cation protocols are one combination of the following: 2-phase and 4-phase styles 

for signalling; dual rail and bundled data communication for data passing. In the 

descriptions below, we assume all communication signals commence low. 
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Signalling Communication Protocol 

The interface for asynchronous request-acknowledge communication is shown in Fig-

ure 1.4. 

req 
Sender 

ack 

Receiver 

FIGURE 1.4. Asynchronous Communication Interface 

2-phase communication as shown in Figure 1.5 is a form of communication which 

adheres to the following sequence of transitions: 

(1) One communication is initiated by the sender making a transition on the re-

quest wire, 

(2) The communication is ended by the receiver making a transition on the ac-

knowledge wire. 

4-phase communication as shown in Figure 1.6 is a form of communication which 

adheres to the following sequence of transitions: 

(1) The communication is initiated by the sender raising the request wire. 

(2) The receiver responds to the request by raising the acknowledge wire. 

(3) When the sender senses the change on the acknowledge wire, it lowers the 

request wire to indicate there is no request. 

(4) When the receiver detects the change on the request wire, it lowers the ac-

knowledge wire and indicates the current communication has been finished. 

Conversion between 2-phase and 4-phase Protocols: 2-phase and 4-phase 

styles can be used within one system. 2-phase usually is used for control components 
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Req 

Ack 

\  

N  
one transaction one transaction 

FIGURE 1.5. 2-phase Communication Protocol 

Req 

Ack 

one transaction one transaction 

FIGURE 1.6. 4-phase Communication Protocol 

due to its simplicity, and 4-phase is used for computation components because a 

computational circuit needs to be restored to its predefined state before its next use. 

We can easily convert from one regime to another as typified by: 

(1) Conversion from 4-phase to 2-phase: Two versions of converters from 4-phase 

to 2-phase are illustrated in Figure 1.7 where T is a toggle element and M is a 

merge element, ri and al is a pair of request and acknowledgement signals of 
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the 4-phase circuit, r2 and a2 is a pair of request and acknowledgement signals 

of the 2-phase circuit. 

In version 1 the sequence of signallings is - ri r2 a2 al ri al. In version 2 the 

sequence of signallings is - ri -<r2 a2 I al r1- al. As the two subsequence 

r2 a2 and al ri can go in parallel, it is obviously faster. However version 1 

is perhaps safer because the called circuit has finished its work when the first 

acknowledge signal is brought back to the 4-phase caller. 

Sender 
(4-phase) 

II 

Receiver 
(2-phase) 

a2 

Sender 

(4-phase) 

ri 

al 
•IZ 

T 

M 

r2 

Conve ter I Converter 2 

C 

Receiver 

(2-phase) 

FIGURE 1.7. Converters from 4-phase to 2-phase 

For example, a 2-phase FIFO gets data from a 4-phase source as in Figure 

1.8. We need a converter from 4-phase to 2-phase between the data source 

Source 

(4-phase) 

ri  

al 

4 to 2 converter 

r2 

FIGURE 1.8. A 4-2 Example 

a2 

FIFO 

(2-phase) 
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and the FIFO. In order for the data to be safely stored into FIFO, the data 

has to remain valid before the FIFO sends its acknowledge signal. In this case, 

version 2 has some problems. Consider the following scenario: 

(a) the source sends request signal to the converter. 

(b) the converter will send a request r2 to the FIFO and an acknowledge al 

back to the source. 

(c) FIFO can start sampling the data on the bus; at the same time the source 

is tristating the bus. So the FIFO will not sample the correct data. 

Therefore version 2 can not be used when data passing is involved. But if no 

data passing is involved, version 2 is better because it is faster. 

(2) Conversion from 2-phase to 4-phase: This converter as shown in Figure 1.9 

ri 

C 
Sender 

2-phase 

a 2 

Receiver 
4-phase 

FIGURE 1.9. Converter From 2-phase to 4-phase 

passes the request signal from the 2-phase sender to the 4-phase receiver, 

and then brings the first acknowledge signal back to both the sender as its 

acknowledge and the receiver for lowering the request line, and finally takes 

the transition of the acknowledge lowering signal to C element for its next use. 

Data Communication Protocol 

In dual rail data communication, two request wires (denoted as rF and rT) 
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Sender 

hOT 
hOP 
hiT 
hIP 

a 
3. 

Receiver 

bOF 

biT 

b1F/ 

a 

Transaction! Transaction2 

FIGURE 1.10. Dual Rail Data Communication 

are needed for passing each bit (rF is for the value 0 of the bit, and rT is for the value 

1 of the bit). An additional wire is required for sending the acknowledge back. One 

4-phase dual rail data passing transaction involves: 

(1) the sender makes transitions in either rF or rT (but not both) for every bit, 

(2) the receiver makes a transition in the acknowledge wire to indicate the data 

has been accepted, 

(3) the sender lowers all those wires it raised, 

(4) the receiver lowers the acknowledge signal to finish off one transaction. 

Without loss of generality, we illustrate a two-bit dual rail data communication in 

Figure 1.10. 

In a bundled data communication, as shown in Figure 1.11, a set of stan-

dard data wires (one wire per bit) and a pair of request-acknowledge wires are used. 

In this protocol a delay requirement must be guaranteed by the data bundle and 

control wires in order for the system to behave correctly. The requirement is that the 

delay of the control wire (the request signal) should be longer than the longest delay 



1. INTRODUCTION 16 

Sender 

Req 

Ack 

Receiver 

Req 

Ack  

/ \. 

one 'transaction 

\  

FIGURE 1.11. Bundled Data Communication 

for the data bundle to arrive at all its receivers. 

Conversion between dual rail and bundled data communication: Here we 

give the conversion between 4-phase dual rail and 4-phase bundled data communica-

tion. 

(1) Conversion from dual rail to bundled data communication as typified in Figure 

1.12. EN is an element which usually shut off the data flow, let the data 

through only when requested. Every bit bi on the dual rail bus is connected 

to biT since the actual level of bi is the same as biT. This converter raises the 

request signal r when each bit is raised on dual rail wires. This can be done by 

ANDing all bits to the ENable unit which enables the data to flow from one 

side to the other side. After the acknowledgement signal is raised, all raised 

dual rail wires are lowered and therefore the output from the big AND gate 

becomes low, which causes the EN to be shut off and then lower r. Finally the 

acknowledgement signal is lowered and this transaction is finished off. 

(2) Conversion from bundled data communication to dual rail as typified in Figure 
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FIGURE 1.12. Conversion from Dual Rail to Bundled 

1.13. This converter outputs rAbi as biF and rAbi as biT. So when  is raised, 

biT will be raised if hO is 1 and biF will be raised otherwise. When a is raised, 

r will be lowered and therefore all dual rail wires become low again. Finally 

the acknowledgement signal a will be lowered to finish off this transaction. 

Therefore we can use the protocol most suited to each subsystem in a design and 

convert between them easily when needed. 
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FIGURE 1.13. Conversion from Bundled to Dual Rail 
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1.4. Structure of the thesis 

Chapter 2 surveys three major approaches of asynchronous design. First, silicon 

compilation typically develops a high-level programming language for specifying asyn-

chronous circuits and builds a silicon compiler to automatically translate programs 

to circuits that are correct by construction rather than verified. Second, the for-

mal approach focuses on finding suitable models for describing the behavior of asyn-

chronous systems, hierarchical specification techniques, and mathematical tools to 

check correctness and important properties. Third, the engineering approach builds 

large scale asynchronous designs using standard tools (for synchronous design) and 

relies on insight and experience to "get it right". We illustrate these three approaches 

by introducing one typical related work for each. Our main interest is in the formal 

specification and verification of large asynchronous system. 

Chapter 3 describes the CCS notations, the modal /.z-calculus (HML plus fixedpoint 

operator), and CWB. Based upon transition systems, CCS semantics is given, the 

interpretation of any formula of the modal it-calculus and the satisfaction relation 

between a formula and an agent in a given transition system are defined, and various 

equivalence relations are introduced. It is argued that the observational congruence 

best fits our concerns for asynchronous system. Interesting temporal logic operators 

are defined in terms of the modal i-calculus. The CWB commands we used in our 

specification and verification are listed. 

Chapter 4 introduces Sutherland's move machine and our variants. Sutherland's 

move machine is a slave machine which helps the CPU to get rid of the work needed 

for moving data between CPU and memory, and between two locations in the mem-

ory. Our variant is a slightly expanded version of Dave Spooner's original version 

[BLS94a] with more consistent register usage and with the addition of a LDI in-

struction to facilitate the handling of exceptions. Our account is closely based upon 
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[BLS94b]. 

Chapter 5 systematically presents a 4-phase AMM RTL (register transfer level) imple-

mentation through three different abstract levels of CCS specification. Our account 

is closely based upon [BLS+94a] and is included for contrast and comparison with 

the PAMM model of chapter 6. At the highest abstract level, we specify what AMM 

does at the instruction level. At the next level, we give the RTL definitions of the 

datapath and its control signals, but we keep the control unit quite abstract and do 

not fix precisely where the control signals come from. At the lowest level, we specify 

the control unit using basic control modules, and wire these modules and datapath 

together to detail the control signal flow. This refined specification has served as a 

blueprint for engineers. Property checks and equivalence checks are carried out on 

these specifications. We show that AMM enjoys such desirable properties as deadlock 

and livelock freedom, liveness, no bus contention, etc. Three different abstract levels 

are proved to be consistent. 

Chapter 6 covers PAMM design which includes a fetch unit and an execute unit. 

These two units work independently of each other and communicate with each other 

in the following cases: (i) interrupt raised by the execute unit when a JCC is met with 

the condition code true, ( ii) stop raised by the execute unit when a HALT instruction 

is executed, and (iii) new instruction output raised by the fetch unit. In order to 

improve the speed, we try to make this asynchronous machine maximally parallel. 

It is very tricky to avoid deadlock in a design when too many components work in 

parallel and communicate with each other. But we have verified that the pipelined 

asynchronous move machine is deadlock free. 

Finally, chapter 7 summarizes the thesis work and possible future work. 
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1.5. Contributions of the thesis 

This thesis presents two case studies in asynchronous design. In these case studies, 

we present a systematic development of AMM through three abstract levels which are 

shown to be consistent and down to a level which has served as an implementation 

blueprint. This presentation is heavily based upon two technical reports [BLS94b] 

and [BLS+94a] and is included for comparison and completeness. We also have de-

signed, specified and verified PAMM by carefully abstracting away regular structures. 

At the time of writing, these case studies are some of the largest specifications given 

and specified. These case studies are valuable in their own right and help clarify 

methodology and bridge the gap between the formal method and engineering ap-

proaches. 



CHAPTER 2 

Approaches to Asynchronous Design 

In this chapter we highlight three main approaches to asynchronous design. The first 

approach is silicon compilation which typically develops a high-level programming 

language suitable for specifying asynchronous circuits and then generates circuits di-

rectly from programs written in that language. Silicon compilers produce designs that 

are correct by construction rather than verification. The second approach is formal 

and focuses on finding suitable models for describing the behavior of asynchronous 

systems, hierarchical specification techniques (e.g., composition) for large systems, 

and mathematical tools to check important properties (e.g., liveness, safety, deadlock 

and livelock and different equivalence relationships, etc). The third approach is the 

engineering approach in which one goes ahead and builds large scale asynchronous 

designs using standard tools and relying on insight and experience. We will illustrate 

these three approaches by examples. 

2.1. Silicon Compilation 

Perhaps the main interest of researchers in computer science is to develop high-

level programming languages suitable for specifying asynchronous circuits and then to 

build silicon compilers for them which generate circuits from programs automatically. 

Brunvand [Bru91] chose a LISP-like variant of OCCAM as the source language for 

specifying asynchronous systems and built a silicon compiler for translating an OC-

22 
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CAM program into a 2-phase circuit. As an example of this methodology, Brunvand 

specifies a single place buffer by: 

input output 

(Block ((char input<8> output<8>));a process with two 8-bit channels 

( While True 

(Seq (( Var temp<8>)) 

( input? teiip) 

( output! temp)) 

;repe.t forever 

;sequential composition with 8-bit 

;local variable temp 

;get value from channel input and 

;store in temp 

;send value in temp to channel output 

and the silicon compiler translates such a description into a circuit with 2-phase and 

bundled data passing protocol (the control part of which is delay-insensitive) in the 

following steps. 

(1) Initial replacement: Every OCCAM primitive and OCCAM construct will be 

replaced by a corresponding circuit. This replacement is guaranteed to be 

correct by construction. The initial circuit of the single place buffer generated 

by the compiler is as shown in Figure 2.1, in which the circuits labelled "M" 

are Merge elements. 

(2) Optimization: A peephole-like technique is used to optimize the initial result-

ing circuits. The basic idea is to locate in a circuit a subcircuit matching some 

template and replace it with a simpler part which conforms to the original one. 

Replacement is repeated until the circuit can not be further modified. 
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FIGURE 2.1. The initial circuit of single place buffer 

The initial circuit of the single-place buffer is modified by the following replacement: 

• Every call module with a single client will be replaced by a pair of wires con-

necting Ri (the request signal from the caller) to Rs (the request signal issued 

by the call element), and As (the acknowledge from the called circuit to the 

call element) to Al (the acknowledge issued by the call element to the caller) 

because the trace structures are identical when the environmental constraints 

present in the call module are applied to this pair of wires. Therefore all the 

call modules in the initial circuit are replaced by pairs of wires. 

• A Select module (asynchronous multiplexer) instantiated with constant True 

or False conditions on their sel inputs will be replaced by a wire connecting A 

and B (or C) because the trace structures are identical when the environmental 
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constraints present in the Select module are applied to this wire. The Select 

module in the circuit generated by step 1 is replaced by a single wire. 

• Enable modules are designed to gate different signals onto a common bus. In 

particular, they will drive signals onto a shared bus upon request and then 

report that the values on the bus are correct. Given a request to disable, the 

module will stop driving the bus and make sure the module outputs are in a 

high impedance state before reporting the bus is available. The purpose is to 

avoid bus contention. When there is only one source connecting to a bus, the 

EN unit is superfluous and can be replaced by wires connecting Ren to Aen, 

Rdis to Adis, and data-in to data-out. The circuit is changed by replacing two 

EN modules with wires. 

• The Start signal is a transition that is issued by the environment after intial-

ization to initiate action in the circuit. If Start is wired to a Merge module, 

the Merge module produces an output transition upon the receipt of a Start 

transition. In this case it is possible to remove the Start signal and replace 

the Merge module with an inverter. This transformation depends on the fact 

that modules respond to the master-clear signal by setting their control signal 

outputs low, so the inverter will produce the effect of a Start transition issued 

immediately after master-clear is removed. The Start signal in this circuit is 

removed and the Merge element is replaced by an inverter. 

• M-element with a single input is trace-equivalent to a wire connecting the input 

to the output. This means that it can be replaced by a wire. One M-element 

is replaced by a single wire. 

After the above sequence of transformations, the final circuit is given in Figure 2.2. 

The final circuit is internally presented as a graph with the basic modules as nodes 

and the connection wires as arcs. Brunvand also built output drivers to print the 

final circuit in the format of Netlist for simulation, and to print the final circuit in 

the format of Fusion [Bru91] output for routing and placement. 
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FIGURE 2.2. The final circuit of single place buffer 
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The VLSI circuits constructed using this technique have been mapped into CMOS, 

FPGA and GaAs technologies. A simple RISC processor has been implemented on 

multiple FPGA elements to demonstrate the practicality of the approach. 

However, there is no support for verification, and the specification which could be 

written in this frame is not really abstract since one only can design programs by 

using operators predefined over data types. Although the rules of transformation are 

well argued, they are not formally proved. 

Similar work has been carried out at Eindhoven, Caltech, and Philips. In Eindhoven 

University of Technology, Michiel Van der Korst[vdK92] has built a Silicon Compiler 

VOICE which translates a specification written in a CSP-like language VOKEL into a 

handshake circuit, an intermediate representation. Prototype tools for optimization, 

simulation and visualization of handshake circuits are developed. 

In California Institute of Technology, Martin and Burns[BM88] have described a 

technique for automatically translating a concurrent program based on CSP and Di-

jkstra's guarded commands to a 4-phase delay-insensitive circuit. An asynchronous 

RISC style microprocessor has been developed that demonstrated the feasibility of 

this approach. 

Van Berkel at Philips Research [vBNRS88], [vBKR91] also built a compiler which 

translates programs written in CSP-like language Tangram in two steps. 

(1) Produce a handshake circuit which is a network of components connected 

together by point-to-point channels. 

(2) Change this intermediate form into a netlist of standard-cell VLSI modules for 

final silicon layout. 
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The resulting VLSI circuits use a delay-insensitive, 4-phase, dual-rail protocol for 

communication between components. The system has been used to generate a number 

of VLSI circuits[vB92b]. 

2.2. Formal Approach 

The formal approach focuses on finding suitable models for describing the behaviour 

of asynchronous systems, hierarchical specification techniques (e.g., composition) for 

large systems, and mathematical tools to check some important properties (e.g., dead-

lock, livelock and different equivalence relationships, etc). 

For example, Jo Ebergen has developed a language ([Ebe89], [Ebe9ib] and [Ebe91a]), 

based on trace structure, for specifying asynchronous systems. This language includes 

variables, channels and guarded selections and can deal with data processing as well 

as communication synchronizations. 

r a= 0 or 1 

FIGURE 2.3. A modulo-N counter 

For example, here is a modulo-N counter, which outputs 1 after each of the first 

N-i inputs and 0 after the Nth input. It can be specified by the following description. 

ModC(N:int, r?:un, a!: bin) 

= { by definition } 

I[varn:int :: 

initially n0 

pref* [r?; 
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n:(n+1) mod N; 

if n>O then a:1 

I n0 then a:0 

fi; 

a!; 

] 

II 

The formal semantics of a command is its corresponding trace structure. For ex-

ample, the above specification has the trace structure: 

E = < iE, oE, tE> where, 

iE = Jr}; 

oE = {< a,O >,< a,1 >}; 

tE = pref * [( r?; < a!, 1 >)N_1; r?; < a!, 0>] 

The definition of decomposition forma1izs the idea of "implementing a specifica-

tion by a network of components". The substitution theorem formalizes the modular 

design method. A network, which is a decomposition of a specification, represents a 

speed-independent circuit. If all constituent components are delay-insensitive, then a 

speed-independent decomposition is also a delay-insensitive decomposition. 

We can decompose this specification by using a divide and conquer approach: decom-

pose the modulo-2N counter into a modulo-N counter and a "small" subcomponent 

which has a small number of states (we just show the even number case of N) . One 

possible decomposition of this specification is: 

CELL (r?:un,a! : bin,sr!:un,sa?:bin) 

=f definition} 
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[var k:bin:: 

initially sa=0,k=0:: 

pref*[r?;k:=(k+1) mod 2; 

if k=0 then sr!;sa?Ik 54 0 then skip fi; 

if sa 54 0 or k 0 0 then skip 

I sa0 and k=0 then a:=0 fi; a!;] 

II 

ModC(2N,r! ,a!) 

={ del. of weave} 

I[ chan sr: un,sa:bin:: CELL (r?,a!,sr!,sa?) 11 ModC(N,sr?,sa!) II 

-+ { def. of decompostion} 

(CELL(r?,a! ,sr! ,sa?), ModC(N,sr? ,sa!)) 

Figure 2.4 shows two implementations of the CELL. When N = 2k, k CELLs are 

connected to implement the modulo-N counter. 

Ebergen has given the analyses for response time, area complexity and power con-

sumption within the first order approximations with no reference to any specific physi-

cal implementation provided that certain conditions are satisfied by the network. The 

measures of these three performances are given below. 

(1) The area of a system is measured by the number of "basic" components in 

the decomposition, where a basic component can be any component whose 

number of states is bounded by a predetermined constant. 

(2) The energy is measured by the number of communication actions in a be-

haviour. The power consumption is measured by the total number of com-

munication actions amortized over the external communication actions for a 
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(a) Using dual-rail (b) Using bundled-data 

sr! 

sa? 

FIGURE 2.4. Implementation for CELL 
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worst-case environment which communicates with the implementation in such 

a way that the total number of communication actions is maximized over the 

long term. 

(3) The response time is measured from the time the last input arrives that enables 

the production of that output to the actual production of that output. In 

calculating the response time, it is assumed that the response time of basic 

components are bounded from above and below by fixed constants. 

The above implementation for the modulo-N counter has an amortized constant 

bound of response time and power consumption, and O(log(N)) area complexity. 

This is optimal for a modulo-N counter. 

However, the decomposition of specification is conducted by hand, and the imple-

mentation correctness criteria deduced by the definition of decomposition are not 

strong enough since they are based on trace equivalence, e.g., an implementation 

which deadlocks will not be detected. 

There is some other work based on transitional semantics. Various equivalent re-

lationships have been given for different applications. We are most interested in 

observational congruence which well characterizes the faithfulness of an implementa-

tion to its specification. A group of researchers in University of Edinburgh have done 

extensive research work for formal verification [Mo191], [Sti92b], and [Sti92a]. Their 

workbench CWB has automated the equivalence (various equivalence relationships) 

checking and property (expressed in the modal t-calculus) checking of asynchronous 

systems specified in CCS. 

Other formal work can be found in [DNS92], [Ka186], [Sch85], [Udd86], and [UV88], 

[BS87] and [BE92}. 
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2.3. Engineering Approach 

The engineering approach demonstrates the feasibility of asynchronous design by 

constructing real asynchronous designs. The AMULET group in Manchester Uni-

versity has developed an asynchronous implementation [Fur93] and [PDF92] of the 

ARM microprocessor as part of a broad investigation into lower power techniques. 

Their first commercially realistic asynchronous product is named AMULET1. Their 

methodology is based on Sutherland's "Micropipelines" [Sut89], a transition signalling 

bundled data model. 

The Manchester AMULET group has implemented the basic library of event control 

elements proposed by Sutherland, and extra event control elements: a transparent 

latch for blocking events, a decision-wait element for performing a rendezvous be-

tween one control line and either of a pair of event lines, an event control transparent 

latch, and a capture-pass latch. 

The datapath of AMULET1 [Fur95] is decomposed into 4 blocks: a data interface, 

an address interface, an execution unit and a register bank. 

• Data interface forwards instruction and data from, and returns data to the 

memory. 

• Address interface addresses to the memory. It autonomously increments PC 

while new addresses (for branch or data access) can arrive asynchronously. 

• Execution unit carries out arithmetic and logic operations. It takes register 

operands from the register bank. Immediate operands are forwarded from 

the execute unit. The result is usually returned to the register bank. It is 

implemented as three pipelined stages to improve performance. 

• Register bank holds current values of all the registers except the PC. It locks 

the left hand side registers until the corresponding right hand side operation 
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has been completed and assigned. It includes an arbiter-free locking mecha-

nism which enables efficient read operations in the presence of multiple pending 

write operations. 

First silicon returned from fabrications arrived in April 1994 (AMULET1 has now 

been fabricated on two CMOS processes: a 1 1urn process at ES2 and a 0.7 jim process 

at GEC Plessey Semiconductors). Both prototype devices are functional and execute 

programs produced by standard ARM development tools such as the assembler and 

C compiler. The comparison of AMULET1 and ARM6 [PDF92] is shown' in the 

following table: 

AMULET1/ES2 AMULET1/GPS ARM6 

Process 1A 0.7 /1 1/L 

Area(mm2) 5.5 x 4.1 3.9 x 2.9 4.1 x 2.7 

Transistors 58,374 58,374 33,494 

Performance 20 .5kDhry 40kDhry 3 lkDhry 

Multiplier 5.3ns/bit 3ns/bit 25ns/bit 

Conditions 5V,20° C 5V,20°C 5V,20MHz 

Power 152mW ? 148mW 

MIPS/W 77 ? 120 

TABLE 2.1. Comparison of AMULET and ARM6 

AMULET1 has demontrated the feasibility of designing a full functionality commer-

cial RISC architecture in asynchronous logic. While this design doesn't outperform 

its synchronous counterpart, its performance is within a factor of two in all areas. 

As this is a first attempt by this group at producing an asynchronous design of this 

complexity, it is quite encouraging. Preliminary indications are that AMULET 2 will 

be both faster and use less power than ARM6. 
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At HP Laboratory, Bill Coates, Al Davis and Ken Stevens [Dav95],[DN95] devel-

oped an asynchronous, 300,000 transistor, full custom CMOS chip designed as the 

communication coprocessor (named as Post Office) for the Mayfly scalable parallel 

processor. 

2.4. Summary 

Asynchronous design has always retained a niche in academic circles because it 

provides a good framework for mathematical techniques for proving the circuit cor-

rectness. By now there are some adequate mathematical tools available for specifying 

and verifying asynchronous circuits. In turn these have awakened renewed interest 

from industry. The VLSI group at Calgary specializes in the formal specification and 

verification of large asynchronous hardware systems by using a coarse-grain model. 

CCS is an appropriate tool, supported by the modal n-calculus for expressing desirable 

properties and CWB for property checks and equivalence checks. This thesis contains 

two case studies which demonstrate the application of CCS and the -calculus (as 

mechanized in the CWB) to the specification and verification of a small microproces-

sor (variants of Sutherland's move machine). The goal is to bridge the gap between 

formal and engineering schools, and show that coarse grain formal specifications are 

pitched at the right abstract level to both establish the major deadlock, livelock, and 

safety properties and to serve as an implementation blueprint for the engineers. Time 

is too short to write a silicon compiler supporting our approach. 



CHAPTER 3 

Tools for Specification and Verification 

This chapter introduces the notation and tools used to design and test our variants 

of Sutherland's move machine. CCS is a specification language for asynchronous 

systems. Its semantics is defined in terms of labelled transitional systems. It is 

argued that observational congruence best fits our concern for asynchronous circuits. 

The modal ri-calculus is a companion logic for CCS specification. It can be used to 

express and test that certain desirable properties hold for our asynchronous systems. 

Some important commands in the Concurrency Workbench (CWB) are listed and 

used to check the equivalence between CCS specifications at different abstract levels 

and the satisfaction of those properties we wish to hold. For complete accounts, 

see [Mil89] for CCS, [Sti91] for the modal it-calculus and [Mol9l] for the workbench 

CWB. For the necessary intuition and application, see also the theses of Liu [Liu92} 

and Stevens [Ste94]. 

3.1. CCS - Calculus of Communicating Systems 

In this section, we present the syntax of CCS in BNF and its operational semantics. 

Both are illustrated by examples. 

3.1.1. Syntax of CCS. CCS has a simple and clean syntax, as described below. 

E ::= 0 Nil agent 

A constant 

Ia.E a prefix(o E Act) 

36 



3. TOOLS FOR SPECIFICATION AND VERIFICATION 37 

El + E2 + ... + En summation 

IElIE2I ... IEn composition 

IE\L restriction (LC £) 

E[f] relabelling 

where £ is a fixed set of labels, T is an internal action, Act is £ U { T } and f is 

a relabelling fuction. 

The expressions in this language are called agent expressions, or agents for short. As 

illustrations, we now give three example definitions of common asynchronous circuits. 

Example 1: A fork element, which routes a transition at its input to its two outputs, 

is specified by: 

F= in.('outl.'out2.F+ ' out2.'outl.F). 

Example 2: A call element, which serves a circuit with two users who never need 

the circuit at the same time, is specified in CCS as: 

call = rl.'r.a.'al.call + r2.'r.a.'a2.call 

Example 3: An arbiter unit, which also serves a circuit with two user who may need 

the circuit at the same time, is specified in CCS as: 

Sem = 'g.p.Sem 

Ui ri.g.'gl.'dl.'p.Ul 

U2 = r2.g.'g2.'d2.'p.U2 

Arbiter = (Ui I U2 I Sem) \ {g,p} 

3.1.2. Operational Semantics of CCS. We give the CCS semantics as a la-

belled transition system: (E, Act, —*) where E is the set of all agent expressions, -* 

is a triple relation over E x Act x E (when (El, a, E2) e - p, we write El - E2). 

The transition relation is given by induction on the structure of agent expressions: 
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Act a 
a.E—*E 

Suml E14E1' Sum2  E24E2'  
E1-I-E2-+E1' E1+E2—E2' 

Coml  E1*E1' Com2  E2+E2'  

E1IE2 E1'IE2 E1IE24 4 E1IE2' 

Res E4E'  (a,'a L) 
E\L4E'\L 

RdI  E4E'  

E[f] 4 E'(f] 

Con(A cg( F) 

Com3 E1-E1',E2-*E2' 
E1IE2- E1'IE2' 

In example 3, we specified the arbiter in CCS. When both users request before 

rl 

1  
r2 

ARBITER 

gi dl g2 d2 

FIGURE 3.1. Arbiter 

any grant has been made, one request will be granted and the other user has to wait 

until the grantee is done. Let us prove this is what the arbiter can do according to 

the above semantics. 

Ecample 4: A verification of mutual exclusion via arbitration. 

rl.g.'gl.dl.'p.Ul 4 g.'gl.dl.'p.Ul (Act) 

r2.g.'g2.d2.'p.U2 -* g.'g2.d2.'p.U2 (Act) 
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Ui rl 
-- g.'gl.dl.'p.Ul (A ( F) 

U2 -4 g.'g2.d2.'p.U2 (A 'I P) 

(Ui IU2ISem) -- (g.'gl.dl.'p.UilU2ISem) (Comi) 

(UiU2Sem)\{g, p} -- (g.'g1.d1.'p.U1jU2Sem)\{g, p} (Res) 

Arbiter \{g,p} (g.'gi.dl.'p.U1IU2Sem)\{g,p} (A '( P) 

r2 
(g. gi.di. p.UlIU2ISem) \{g ,p} - 

(g.'gi.di.'p.Ulg.'g2.d2.'p.U2 Sem) \{g, p} (Com2) 

g. 'g2.d2.'p.U2 -4 'g2.d2.'p.U2 (Act) 

'g.p.Sem .::4 p.Sem (Act) 

Sem4p.Sem (A(P) 

(g.'gi.di.'p.U1g.'g2.d2.'p.U2 ISem) \{g,p} 

(g.'gl.di.'p.Ui 'g2.d2.'p.U2 p.Sem) \{g,p} (Com3) 

(by now g.'gl.dl.'p.Ul cannot do anything since there is no 'g in Sem to synchronize 

with g.) 

'g2.d2.'p.U2 Ip.Sem - d2.'p.U2 Ip.Sem (Act) 
d2 

d2.'p.U2 1p.Sem — p.U2 1p.Sem (Act) 

(g.'gi.di.'p.Ui 'g2.d2.'p.U2 p.Sem) \{g,p} 42 

(g.'gi.di.'p.UlI d2.'p.U2 p.Sem) \{g,p} (Com2) 

(g.'gi.dl.'p.Ui d2.'p.U2 1p.Sem) \{g,p} . 

(g.'gi.di.'p.Ul 'p.U2 Ip.Sem) \{g,p} (Com2) 

'p.U2 - U2 (Act) 

p.Sem -4 Sem (Act) 

('p.U2 I p.Sem) .4 (U2ISem) (Com3) 

(g.'gl.di.'p.Ui'p.U2 I p.Sem) - (g.'gl.dl.'p.U1U2Sem) (Com2) 

(g.'gi.dl.'p.Ui'p.U2 I p.Sem)\{g, p} -* 

(g.'gi.di.'p.U11U2Sem)\{g, p} (Com2) 

So the arbiter can evolve into (g.'gl.d1.'p.U1U2Sem)\{g,p} by a sequence of actions 

ri, r2, T(g and 'g), 'g2, d2, and r(p and 'p). In this sequence r2 has been granted 



3. TOOLS FOR SPECIFICATION AND VERIFICATION 40 

first and ri cannot be granted until user 2 is done and releases the Sem by doing 'p 

which synchronizes with p. 

3.1.3. Some Equivalence Relationships. Various equivalence relationships 

have been proposed in terms of the transition relation over the set of agent expres-

sions. This section introduces four equivalence relations (trace equivalence, strong 

bisimulation, weak bisimulation and observational congruence). Observational con-

gruence is the one that best addresses our concerns about the equivalence between 

asynchronous system specifications at different abstract levels. 

Trace equivalence 

Definition 1: The trace set of an agent E is { t E Act* I for some E', E E'}. We 

use tE to stand for the trace set of E. 

Definition 2: Two agents El and E2 are trace equivalent if and only if tEl = tE2. 

This equivalence relation is too weak. For instance, 

El = a.O + a.El and E2 = a.E2 are trace equivalent. El includes deadlock while E2 

is deadlock free. Apparently we want to distinguish these two agents. 

Strong bisimulation 

Definition 3: A binary relation S ç 2 x 2 over agents is a strong bisimulation if 

(P,Q) E S implies, for all c E Act, 

a ,. . (1) Whenever P - P then, for some Q, Q - a Q/ and (P"  ES 
a / a (2) Whenever Q /  F —* Q then, for some F, P —* P and (P',Q) ES 

Definition 4: P and Q are strongly equivalent (or strongly bisimular), written P 

Q, if (P,Q) E S for some strong bisimulation S. This may be equivalently expressed 

as follows: i-' = U{s: S is a strong bisimulation} 
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is also a congruence, which means strong equivalence is substitutive under all 

combinators. However, this equivalence relation is too strong because every r action 

has to be matched. For example, the two agents El = a.T.O and E2 = a.O are not 

strongly equivalent. Since the internal action r is unobservable, both agents have an 

a action and then evolve into deadlock. These two agents don't make any difference 

to us in this sense and they should not be distinguished. 

Weak bisimulation 

Definition 5: A binary relation S C P x P over agents is a (weak) bisimulation if 

(P,Q) E S implies, for all a E L, 

. a (1) Whenever P + P then, for some Q., Q(-)r * - (-r )* Q and (P', Q' -'- ) cS 
a , T a F Q - Q/ then, for some P, P(—.)* - (-i-(2) Whenever Q/) E  

'7. 
(3) Whenever P -1. P then, for some Q,, Q(-)* Q/ and (P', Q ') ES 

(4) Whenever Q - Q' then, for some F', P(-) * F' and (F', Q') E S' 

Definition 6: P and Q are bisimular, written P Q, if (P,Q) E S for some bisimu-

lation S. This may be equivalently expressed as follows: 

= U{ S: S is a bisimulation} 

From this definition, we can see the internal action r is totally ignored. Unfortu-

nately is not a congruence. For example, b.O T.b.O while a.O + b.O 0 a.O + r.b.O. 

Observational congruence 

Definition 7: P and Q are observationally congruent, written P = Q, if for all aE 

Act, 

(1) Whenever F - F' then, for some Q', Q(-*)* - (-.*) * Q' and P'cQ', 

(2) Whenever Q - Q' then, for some F', F(--.)* -+ (-+) * P and P'Q'. 

From this definition, we can see every T action has to be matched by at least one 

r action between two observationally congruent agents. = is substitutive under all 
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combinators. If P Q and both are stable (a stable agent is one that cannot have any 

immediate r action), P = Q. So the observational congruence check can be reduced 

to bisimularity check if the two compared agents are stable. Also we can easily see 

that two agents are not observationally congruent if one is deadlock and the other 

one is not. 

3.2. Process Logics 

In this section, we introduce the process logics: Hennessy Milner Logic (HML) and 

modal a-calculus. We use agents as their models. Thus we interpret formulae by 

agents. The satisfaction relationship between an agent and a formula are defined. 

Some examples are given to show how to express properties. 

3.2.1. Hennessy Milner logic. This subsection gives HML syntax in BNF, its 

interpretation by any given agent and the satisfaction relationship between an agent 

and a formula by structural induction. 

Syntax of HML in BNF: 

A ::= T I -'A IA AB l[K]A 

Where 

T is the constant true, 

1K is a subset of Act. 

Models: 

A labelled transition system is (i', A, - p) where 

P is a nonempty set of agents, 

A is an action set, 

- is a relation over P X A x 7' for each a EA, 

P1-*P2 stands for (P1, a, P2) E -. 
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Interpretation: Every formula in HML is interpreted with an agent of a given 

labelled transitional system as its model, by structural induction: 

(1) T is true under all agents, 

(2) -'A is true under E iff A is false under E, 

(3) A A B is true under an agent E if both A and B are true under E, 

(4) [K]A is true under an agent E if for all E' and all aEK, if E - B' then A is 

true under B' 

Satisfaction: An agent E satisfies a formula A, written as EI=A if A is interpreted 

as true under E. So the satisfaction relation is as follows: 

(1) E = T for all models E, 

(2) E-'Aiff not Ej=A, 

(3)EAABiffE=AandEI=B, 

(4) E I=[K]A if for all E' and all aEK, if E - B' then B' j= A 

HML logic only can express properties about finite action sequences of agents. How-

ever the properties (e.g., deadlock and livelock) about infinite sequences of behaviors 

are the most important part of asynchronous systems. For example, a simple clock: 

Clock = tick.Clock ticks forever, but HML cannot express such a property. What we 

need to cope are fixpoints, and these are supplied by the modal u-calculus. 

3.2.2. Modalft-Calculus. The modal si-Calculus is HML plus a fixpoint oper-

ator. 

Theorem: There will always be at least one solution to the fixpoint equation X 

= FX provided that each fixed point variable is within the scope of an even number 

of negations. 

This is an easy syntactic check. From now on we assume all our modal ,a expressions 

pass it. There may be several fixpoints, but the minimum fixpoint and maximum 
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fixpoint are unique. Fortunately these are the two fixpoints we are most interested 

in. To interpret the minimum and maximum fixed points, we first need to associate 

with a property expressed in HML the set of states (agents) satisfying it within a 

given labelled transition system (, A, —*). 

lITIlP 

llFll 

II All 

llAABIIllAllflllBIl 

[a]Al {P E 21VP' El', p - P1 and P' E IlAll} 

Now we can calculate the sets of agents which satisfy minimum and maximum fix-

points as described below. 

II uX.FX II: The set of agents satisfying the minimum fixpoint X.FX are computed 

by: 

(1) X0 = and i = 0 

(2) Repeat i = i+1 and compute Xi = 

until Xi X_1 

(3) II pX.FX II = X 

II vX.FX I: The set of agents satisfying the maximum fixpoint vX.FX are computed 
by: 

(1) Xo = l' and i = 0 

(2) Repeat i = i+1 and compute Xi = FX_1 

until Xi X_1 

(3) II uX.FX II = X 

Satisfaction relation between an agent and a formula in the modalit-calculus can 

be fully defined by adding two statements for the minimum and maximum fixpoints: 

E l= 1iX.FX if E E II tX.FX II 
E = z'X.FX if E E vX.FX II 
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3.2.3. Derived Operators of Modal -calculus. Some important derived op-

erators are given below: 

IlFil = 

IIAVBII = II 

II(K)IIA = II-'[K]-'AII 

IIvX.FXM = II'(1uX.-'(FX))II 

3.2.4. Definable Interesting Modalities. Some interesting modalities are de-

fined in terms of HML and the minimum and maximum fixed points. 

BOX P def = uZ.P A [—]Z 

CAN P vZ.P A ((—)Z V [—]F) 

EVENT P ( Z.P V ([—]Z A (—)T) 

POSS P ( pZ.P V (—)Z 

where 

S = BOX P if P holds in any state which S can evolve into. 

S = CAN P if there is at least one path along which S can evolve and all states 

satisfy P. The path can be finite and end with deadlock. 

S 1= EVENT P if there exists one state satisfying P on every path along which S can 

evolve. The pathes may not deadlock. 

5 = POSS P if there exists one state satisfying P which S can possibly evolve into. 

BOX P and POSS P are dual: - (BOX P) = POSS -'P, 

CAN P and EVENT P are dual: -' (CAN P) = EVENT -'P 

Examples of using these modalities 

Safety means that something bad would never happen. This can be expressed 

as: BOX -iP, where P stands for the bad thing. 
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Example 1 a deadlock free system S: 

S 1= BOX —i[-]F, where [-]F means that no action is possible (i.e., deadlock). 

Liveness means good thing may happen. 

Example 2 In the arbiter (see the definition in section 1.1.1), one desirable 

property is that every request will eventually be able to get granted. For rl, 

this can be expressed in the modalit-calculus as: 

Arbiter = BOX([rl](EVENT((gl)T))) 

But we cannot express fairness in the modal it-calculus. E.g., does the arbiter fairly 

grant to user 1 and to user 2? This just reflects CCS, since we cannot specify a fair 

arbiter in CCS. 

3.3. The Workbench CWB 

The Edinburgh Concurrency Workbench (CWB) is an automated tool which caters 

for the manipulation and analysis of concurrent systems. Here are some functions we 

used in our specification and verification. 

Agent definition: to define behaviors given in the syntax of CCS. 

bi: this command binds a given identifier to a given agent. 

State space analyses and equivalence checking: to perform various analyses 

on these behaviors such as analysing the state space of a given agent, or to check 

various semantic equivalences and preorders. 

sim: this command allows for interactive simulation of a given agent; 

vs: this command takes an integer and an agent, and lists all possible observations 

of the given agent of the given length; 
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size: this command prints the number of states of a given agent; 

mm: this command takes an agent and an identifier, and binds to that identifier 

the agent with the smallest state space which is bisimular to the given agent; 

fd: This command takes an agent and tell you if there is any deadlock. If there is 

a deadlock, it gives a sequence of actions which make the agent evolve into a deadlock. 

eq: this command takes two agents and return a boolean value indicating whether 

or not these two agents are weak bisimular; we only use this to do equivalence check 

because all our agents are stable and the most interesting observational congruence 

checking can be reduced to bisimularity checking. 

Property definition: to define properties or propositions in the modal /J.- calculus. 

bpi: this command binds a given identifier to a given proposition; 

bmi: this command binds a given, identifier to a given propositional macro; 

Model checking: to check whether a given agent satisfies a certain property. 

cp: this command takes an agent and a property and return a boolean value repre-

senting whether or not the, agent satisfies the property. 

3.4. Summary 

In this chapter, we have introduced CCS syntax and semantics. Examples have 

been given for illustrating how to specify basic circuit modules in CCS and how 

to look at the meaning of a specification. We also have introduced its companion 

modal p-calculus. and their mechanized model checker CWB. Basic temporal opera-

tors (macros) are defined in this modal p-calculus, therefore we can define desirable 
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properties using these basic macroes instead of directly using the minimum and max-

imum operators. This makes the specification of properties much easier and more 

understandable. Examples have been given for showing how to express properties 

such as deadlock and liveness. Some equivalence relationships have been discussed 

and it is argued that the observational congruence is the best one for characterizing 

asynchronous systems. We also have listed commands in the CWB which are used 

for analyzing and checking our CCS specifications. In the chapter 5 and 6, we will 

use CCS to specify AMM and PAMM, and the modal it-calculus to express desirable 

properties of AMM and PAMM, and then CWB to do model-checking. 



CHAPTER 4 

The Move Machine 

sE 
MOVE 

aF 

MI 

The MOVE machine was first suggested by Sutherland in a 1970's CalTech Report, 

now presumed lost. Sutherland observed that CPUs spend much of their time moving 

data back and forth between themselves and memory. Why not have a slave proces-

sor to do just that? When the CPU wants a block of data shifted from A to B, it 

passes details of the request to the MOVE machine and fires it up. When the MOVE 

machine has completed the move, it sends an acknowledgement back to the CPU and 

awaits the next request. 

It turns out that this small processor has sufficient variety that experimenting with 

the various design styles is very instructive. This work in this thesis is based upon 

it. In the later chapters, we shall give the specifications and verifications of variants 

49 
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of an asynchronous move machine in CCS and the modal it-calculus, testing them 

on the CWB. In this chapter, we follow the technical report [BLS94b] closely, and 

display its instruction set by giving three example programs. 

4.1. Typical Data Movement 

We wanted our MOVE machine able to cope with three types of data movement: 

(1) Clear: set a block of data starting at address a to zero. The program is as 

follows. 

L: while k ne n do 

{ M[a] : 0; 

a := a+1; 

k 

} 

X: halt 

(2) Copy: copy the data block starting at address a to address b. The program 

is as follows. 

L: while k ne n do 

{ M[b] : M[a]; 

a := a+1; 

b : b+1; 

k : k+1; 

} 

X: halt 

(3) Compact: copy-(and compact) a list starting at address a to address b. We 

assume that list items are consecutive words with the data in word 2 and the 
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next pointer in word 1. Let a point to the head of the list and b point to the 

head of the compaction area: 

=21 10 

"a" 

15 

nil 

"C" 

b = 100 -ø 102 

"a" 

104 

nil 

Initially Afterwards 

FIGURE 4.1. Move and compact 

The program is as follows: 

L: p : M[a]; 

M[b+1] : MCa+1]; 

if p = nil then goto X; 

nb : b+2; 

M[b] : nb 

b 

a := p; 

goto L; 

X: M[b] : nil; 

halt; 
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4.2. Instruction Set 

52 

David Spooner came up with a simple instruction set able to handle these programs. 

We have this extended by the addition of LDI so that later we are able to record 

exceptions such as memory failure and arithmetic overflow. We also change the 

instruction format .from two operators to three operators. This makes it closer in 

spirit to specifying AMULET .[BLP94a, BLP94b, BLGP94, BL94], another major 

project within the Calgary VLSI group. 

code name writeback 

(addr) 

reg1 

(data) 

reg2 

(data) 

action 

(semantics) 

000 LOD w ri w := M[rl] 

001 STO ri r2 M[rl] := r2 

010 MOV w r2 w:=r2 

011 SCC 1 r2 cc := (rl=r2) 

100 INC w rl w := rl+1 

101 JCC r2 if cc then ip r2 

110 LDI w constant w=:constant 

111 HIT 

With this instruction set, the above three data movement can be coded as following: 

(1) Program Clear - Assume the following register initialization and aliasing: 

rO = 0 aliased to constailt 0 

ri - 0 aliased to counter K 

r2 = N length of the block 

r3 = A start address to be zeroed 

r4 = L code start 

r5 = X code end 
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and our program reads 

L SCC ri r2 cc := k = n ? 

JCC r5 % if cc then goto X 

STO r3 rO % M[a] : 0 

INC r3 r3 : a+1 

INCri ri := k+1 

SCC rirl 

JCC r4 % goto L 

X HLT 

(2) Program Copy - Assume the following register initialization and aliasing: 

rO = 0 aliased to counter K 

ri = N length of the block 

r2 = A start address of block to be moved 

r3 = B start address of receiving area 

r4 = L code start 

r5 = X code end 
and our program reads 

L : SCC rO ri cc := k = n ? 

JCC r5 % if cc then goto X 

LOD r6 r2 % r6 : M[a] 

STO r3 r6 % M[b] : r6 

INC rO rO : k+1 

INC r2 r2 : a+1 

INC r3 r3 : b+1 

SCC rirl 

JCC r4 % goto L 

X : HLT 
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Program Compact - Assume the following register initialization and alias-

ing: 

rO = nil 

ri = A start of the list to be compacted 

r2 = P the pointer in this word 

r3 = D the data in this word 

r4 = L code start 

r5 = X code end 

r6 = B start address of this receiving pair of words 

r7 = NB r6+1 

The program is as follows. 

L : LOD r2 ri % p : M[a] 

INC rirl % a:a+1 

LOD r3 ri % d := M[a+1J 

STO r7 r3 % M[b+1J d 

SCC rO r2 % if p = nil then 

3CC r5 goto X 

INC r7 r7 % nb := b+2 

STO r6 r7 % M[b] := b+2 

MDV r6 r7 h b : b+2 

INC r7 r7 % nb : b+3 

MDVr1 r2 % a  

SCC rO rO 

3CC r4 °h gotoL 

X : STO r6 rO °h M[b] := nil 

HLT 
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4.3. Abstract Specification of AMM 

At this level of abstraction, we specify. what AMM is supposed to do but not how 

to implement it. In 4 phase style, we expect AMM to work as the following: 

(1) AMM is initiated by CPU which initializes AMM as required by a certain data 

movement and then starts AMM by raising sF. 

(2) AMM carries out the required data movement, and raises aF when it finishes 

the current data movement. 

(3) CPU checks registers to see if data movement was okay and then lowers sF. 

(4) AMM lowers aF to be ready for the next data movement. 

A very abstract specification of a 4 phase AMM is: 

AMM4 = initia1ize'.sF.move'.,sF..AMM4 

Similarly an abstract specification of the 2 phase AMM is: 

AMM2 = initialize'.sF.move'..AMM2 

4.4. Summary 

This chapter presents the move machine, a small processor capable of dealing with 

simple data movements such as setting an area of memory to zero, copying the data 

from one location to another location, and copying and compacting list linked data 

into a contiguous area. A set of instructions for carrying out data movements is 

listed. With this instruction set, the possible code segments for these three data 

movements are given. We specify AMM at a very abstract level in which we only 

"black box" what AMM does. We look at register transfer level descriptions of AMM 

in the following chapters. 



CHAPTER 5 

AMM An Asynchronous Move Machine 

This chapter systematically presents a 4-phase AMM RTL (register transfer level) 

implementation through three different abstract levels of CCS specification. Our 

account is closely based upon [BLS94b] and [BLS94a] and is included for contrast 

and comparison with the PAMM model of chapter 6. At the highest abstract level, we 

specify what AMM does at the instruction level. At the next level, we give the RTL 

definitions of the datapath and its control signals, but we keep the control unit quite 

abstract and do not fix precisely where the control signals come from. At the lowest 

level, we specify the control unit using basic control modules, and wire these modules 

and datapath together to detail the control signal flow. This refined specification 

would serve as a blueprint for engineers. Property checks and equivalence checks 

are carried out on these specifications. We show that AMM enjoys such desirable 

properties as deadlock and livelock freedom, liveness, no bus contention, etc. Three 

different abstract levels are proved to be consistent. 

5.1. Abstract Level of Specification 

In chapter 4, we gave a top level 4 phase specification of AMM, namely 

AMM4 = initialize'.sF.move'. 'aF.sF. 'aF.AMM4. 

We now move down one level of abstraction, and detail the semantics of every in-

struction available for data movement. Looking at the instruction set introduced in 

56 
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chapter 4, we see that the semantics of the JCC instruction depends upon the current 

condition code. We distinguish these two cases at two stages in our specification: 

• stage 0 (ready for a new data movement), SPECO is the state with the condition 

code false, and SPEC1 is the state with the condition code true. 

• stage 1 (starting the cycle of instruction fetch and execution), NEXTO is the 

state with the condition code false, and NEXT1 is the state with the condition 

code true. 

We structure the specification by casing over the instructions. We assume the condi-

tion code is false when AMM is powered up (i.e., AMM is initiated in state SPECO). 

Once started by CPU raising sF, it enters the state NEXTO for starting the cycle 

of fetch instruction and execution. At this level of abstraction, Fetch includes two 

steps: ir' (get the current instruction from the memory) and ip' (increment IP). LOD 

modifies register file (denoted as rf') and then continues its NEXTi (i=0 or 1). 5CC 

enters NEXT1 if its two operators are the same (denoted as ccT) or enters NEXTO 

otherwise. JCC modifies IP (again denoted as ip') if the state is NEXT1 before this 

cycle is started. Otherwise it does nothing (the PC is automatically incremented as 

part of fetch). JiLT turns the AMM into a state in which AMM raises the acknowl-

edgement signal (aF) to CPU, and gets ready for the next data movement by lowering 

aF after CPU lowers the sF. 

Specification of AMM. The specification of AMM is structured as follows: 

bi AMM 

SPECO 

bi SPECO 

sF . NEXTO 

bi SPEC1 
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sF.NEXT1 

bi NEXTO 

ir' . ip'.( lod.rf' . I'IEXTO 

+ sto.mem'.NEXTO 

+ mov.rf'.NEXTO 

+ scc.(ccT.NEXT1 + ccF.NEXTO) 

+ ihc.rf'.NEXTO 

+ jcc.NEXTO 

+ ldi.rf'.NEXTO 

+ hlt.'aF.sF.'aF.SPECO ) 

\ ** 

\ 

\ 

** 

** 

cc = F 

register file is updated. 

mem' is memory-writing operation. 

\ ** register file is updated. 

\ ** case split on value in CC 

\ ** register file is updated. 

\• ** 

\ 

bi NEXT1 \ 

ir'.ip'.( lod.rf'.NEXTl \ 

+ sto.mem'.NEXTI \ ** 

+ mov.rf'.NEXTl \ 

+ scc.(ccT.NEXT1 + ccF.NEXTO) 

+ inc.rf'.NEXTl \ ** 

+ jcc.ip'.NEXTl \ 

+ ldi.rf'.NEXTl \ 

+ hlt.'aF.sF.'aF.SPECl ) 

** 

\ 

** 

** 

** 

** 

** 

** 

no jump happens. 

register file is updated. 

cc = T 

register file is updated. 

mem' is memory-writing operation. 

register file 

case split on 

register file 

is updated. 

value in CC. 

is updated. 

jump occurs and IP is updated. 

register file is updated. 

Property Checking: Given a specification of AMM, the next step is to check its 

behavior on the CWB. 

Observable actions of AMM: the sort command lists all observable actions in the 

tested system. 

Command: sort AMM 
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{ccF,ccT,hlt,inc,ip',ir',jcc,ldi,lod,mem',mov,rf',sF,scc,sto,'aF} 

Size of AMM state space: the size command gives us a measure of the complexity 

of a specification. 

Command: size AMM 

AMM has 20 states. 

Deadlock freedom: the fd command can check to see if a system can deadlock. 

Command: fd AMM 

No such agents. 

5.2. Middle Level of Specification 

We now unfold the design through one level and decompose it into a datapath and 

a control unit. We further decompose the control unit into two parts: one responsible 

for the fetch instruction, and the other one responsible for instruction execution. 

w 

'p 

EN 

IR 

EN 

RF ALU 

MEM 

EN EN 

FIGURE 5.1. AMM Datapath 

5.2.1. Datapath. There are three buses in the AMM datapath given in Figure 

5.1 - the write back bus W, the data bus D and the address bus A. The memory 
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is shared by instructions and data. The register file has two output (read) ports and 

one input (write) port. The three control wires indicate the two registers to be read 

and one register to be written. The ALU carries out arithmetic and logic operations, 

and passes the data D to W. An instruction pointer register IP maintains the address 

of the next instruction. An instruction register JR keeps the current instruction. 

Registers show their outputs strongly except when being written. The EN latches 

shut off data flow to buses and prevent bus contention. 

Our model departs slightly from the original [BLS94a] in that (i) data is moved 

from busses A and D to W through the ALU rather than through separate enable 

elements, and (ii) JR is wired to bus D via an enable element to faciliate the LDI 

instruction. 

5.2.2. Basic Data Path Modules. In this section we introduce the basic data 

path modules. For the detailed CCS specification and explanations with diagrams 

and usages, refer to appendix A. In our library of basic data path moduls we have 

the wire, register, register file, boolean register, enable unit, memory and ALU. 

WIREs are used to model control signals. The level (high or low) of a WIRE (or 

WIREs) will determine which function should be carried out. The level of a WIRE 

is changed when its controller makes a transition. Its current level can be sensed by 

a stream down circuit. 

REG is a register whose output is always strong. Its contents can be written upon 

request, its value will then be replaced by the current input. It issues an acknowledge 

signal when the new value is latched and shows strongly. 

ENables are placed between registers and busses. In their quiescent state, they block 

their input. In the enabled state, input passes through and shows strongly. They are 

normally in their quiescent state. The enabled state is entered upon request and cut 

off again upon acknowledgement. 

BOOLJtEG can be set to 1 or cleared to 0, and be tested for its current value. 

RF is a register file which has a block of registers. It has two output ports which are 
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chosen by two addresses ri and r2, and one input port which is chosen by the address 

w. Two outputs always have strong data corresponding to RF[rl] and RF[r2]. The 

register w can be written when requested. 

MEM has two connected buses: address bus and data bus, and has a control wire 

mrw connected to it. When mrw is high, MEM will put the content at the memory 

location from the address bus on the data bus upon request. When mrw is low, the 

content at the memory location from the address bus will be replaced by the data on 

the data bus. 

ALU is an algorithmic and logic unit which has two inputs (dm1 and dm2) and an 

output. It can carry out the following functions: compare two inputs and set the 

condition code boolean register, increase dm1 and pass to output, and pass dm2 to 

its output. It has two connected control wires alul and a1u2 to determine which 

function is actually carried out upon request. 

5.2.3. Datapath composition. With all the basic modules introduced in the 

last section and specified in Appendix A, we are ready to specify the AMM datapath 

which is the collection of all its components connected by the three busses. We follow 

the object oriented design style in the sense that every component is an independent 

object and interacts with others through communication on busses and wires. 

bi DATAPATH 

REG [rwlP/rwR,awlP/awR, ip' /reg'] 

EN [relP/reE, aelP/aeE, sIP/sEN , zIP/zEN] 

REG [rwlR/rwR,awlR/awR,ir' /reg'] 

EN [relR/reE, aelR/aeE, sIR/sEN , zIR/zEN] 

RF \ 

EN[reRF1/reE,aeRF1/aeE,sRF1/sEN,zRF1/zEN \ 

EN [reRF2/reE, aeRF2/aeE, sRF2/sEN, zRF2/zEN] \ 

ALU 

I BOOL_REG [testccltest ,noj/zero ,jmp/one] \ 

'P 

ENABLE for IF 

IR 

ENABLE for IR 

Register File 

ENABLE for RF[rl] 

ENABLE for RF[r2] 

Arithmetic Unit 

Condition Code Boolean Register 
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I WIRE [alul/in, aluiF/lo , alulT/hij 

I WIRE [a1u2/in,alu2F/lo , alu2T/hi] 

IMEM 

I WIRE [mrw/ in, mrwT/hi , mrwF/loj 

) \ DATAPATHlines 

basi DATAPATHlines 

testcc noj jmp alulT aluiF alu2T alu2F'mrwT mrwF 

Some properties of the datapath: 

Observable actions: 

Command: sort DATAPATH 

{alul,a1u2,rA,sA,zA, ' aA, 

ccT,c.cF,testcc,'jmp,'noj, ** related to ALU 

mrw,rM,sD,zD,mem','aM, ** related to memory 

rwlP,ip','awlP, ** related to IP 

relP,sIP,zIP,'aelP, ** related to EN_IP 

rwIR,ir','awIR, ** related to IR 

relR,sIR,zIR,'aelR, ** related to EN-IR 

rwRF,rf','awRF, ** related to RF 

reRF1,sRF1,zRF1,.'aeRFl, ** related to EN_RF1 

reRF2,sRF2,zRF2,'aeRF2} ** related to EM_RF2 

The number of states: 

Command: size DATAPATH 

DATAPATH has 449280000 

ALU' s 

Control Wires 

Memory 

MEM read/write Wire 

5.2.4. Instructions. The datapath of AMM is composed of the following re-

sources: IP, ENJP, IR, ENJR, RF, ENRF1, ENJtF2, CC, ALU and MEM. All 
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instructions carried out use some of these resources. In a 4-phase design, these re-

sources are requested for a computation phase (ri at). The signals are lowered later. 

There are two control wires alul and alu2 for the ALU and one mrw for MEM. These 

wires are normally low and the actual function of their data module depends upon 

their levels. ALU carries out three possible functions. One is to pass the value on 

DBUS to WBUS when both alul and alu2 are low. The caller does not raise any of 

these wires for requesting this function. The second one is to increase the value on 

DBUS and passes the increased value to WBUS when alul is high and alu2 is lower. 

The caller raises alul for requesting this function. The last one is to compare two 

operators on ABUS and DBUS and set the conditional code register CC when alu2 

is high and alul is low. The caller raises alu2 for requesting this function. 

MEM carries out two possible functions read and write. Read operation when mrw is 

high. The caller raises mrw for requesting this function. Write operation when mrw 

is low. The caller does not raise mrw for requesting this function. For convenience, 

we tabulate the signal names in Table 5.1. 

Micro-operations of Each Instruction 

Now we go through AMM instructions one by one. Each is a sequence of the above 

micro-operations and each micro-operation is simply one use of a particular resource. 

Once we have explained the AMM instructions, generating a description of the con-

troller is quite mechanical. Sequences of micro-operations corresponding to instruc-

tions are described as the following. 

Fetching instruction (IR'): JR := MEM[IP] is carried out in the following steps: 

(1) put the current instruction address on ABUS by enabling ENJP, 

(2) read the instruction from the memory at the address on ABUS to DBUS, 

(3) pass it from DBUS to WBUS by requesting ALU pass, 

(4) modify JR with the instruction on WBUS. 
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Micro-operation Resource Used Req Ack COntrol 

IP:=WBUS IP rwlP awlP 

ABUS:=IP ENJP relP aelP 

IR:=WBUS JR rwlR awlR 

DBUS:=IR ENJR relR aeJR 

RF[w]:=WBUS RF rwRF awRF 

ABUS:=RF[rl] ENRF1 reRFi aeRFi 

ABUS:=RF[r2] ENRF2 reRF2 aeRF2 

WBUS:=DBUS ALU rA aA 

WBUS:=ABUS+1 ALU rA aA alul 

cc:=(ABUS=DBUS) ALU rA aA a1u2 

DBUS:=MEM[ABTJS] MEM rM aM mrw 

MEM[ABUS]:=DBUS MEM rM aM 

TABLE 5.1. Micro-operation, Resource and Control Signal 

Micro-operations Signals 

ABUS := IP 'reJP.aeJP 

DBUS := M[ABUS] mrw.'rM.aM 

WBUS := ABUS 'rA.aA 

JR := W 'rwlR.awlR 

TABLE 5.2. Micro-operations of IR' 

Incrementing IP (IP'): IP := IF + 1 is carried out in the following steps: 

(1) put the address in IP on ABUS by enabling EN_IP, 

(2) increase the address on ABUS and pass it to WBUS by requesting an ALU 

increment, 

(3) modify IF with the increased value on WBUS. 
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Micro-operations Signals 

ABUS := IP 'relP.aelP 

WBUS := ABUS + 1 alul.'rA.aA 

IP := W 'rwlP.awlP 

'ABLE 5.3. Micro-operations of IP' 

LOD w ri: RF[w] := MEM[RF[rl]] is carried out in the following steps: 

(1) put the memory address on ABUS by enabling EN..RF1, 

(2) get the value from the memory at ABUS to DBUS by requesting memory read, 

(3) pass the data on DBUS to WBUS by requesting ALU pass, 

(4) store the data on WBUS into the register file by requesting a register file write. 

Micro-operations Signals 

ABUS := RF[rl] 'reRFl.aeRFl 

DBUS := MEM[ABUS] mrw.'rM.aM 

WBUS := DBUS 'rA.aA 

RF[w] := WBUS 'rwRF.awRF 

TABLE 5.4. Micro-operations of LOD 

STO ri r2: MEM[RF[rl]] := RF[r2J is carried out in the following steps: 

(1) put the memory address on ABUS by enabling ENJtF1, 

(2) put the data on DBUS by enabling ENJtF2, 

(3) store the data on DBUS into the memory at the address on ABUS by request-

ing memory write. 

MOV w r2: RF[w] := RF[r2] is carried out in the following steps: 

(1) put RF[r2] on DBUS by enabling ENJtF2, 

(2) pass the data on DBUS to WBUS by requesting ALU pass, 
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Micro-operations Signals 

ABUS := RF[rl] 'reRFl.aeRFl 

DBUS := RF[r2] 'reRF2.aeRF2 

M[ABUS] := DBUS 'rM.aM 

TABLE 5.5. Micro-operations of STO 

(3) store the data on WBUS into the register file. 

Micro-operations Signals 

DBUS := RF[r2] 'reRF2.aeRF2 

WBUS := DBUS 'rA.aA 

RF[w] := WBUS 'rwRF.awRF 

TABLE 5.6. Micro-operations of MOV 

SCC ri r2: CC := (RF[rl]==RF[r2]) is carried out in the following step: 

(1) put the first operator on ABUS by enabling EN..RF1, 

(2) put the second operator on DBUS by enabling EN..RF2, 

(3) compare two operators and set the condition code register by requesting ALU 

compare. 

Micro-operations Signals 

ABUS := RF[rl] 'reRFl.aeRFl 

DBUS := RF[r2] 'reRF2.aeRF2 

CC := (RF[rl]==RF[r2]) a1u2.'rA.aA 

TABLE 5.7. Micro-operations of 

INC w ri: RF[w] := RF[rl] + 1 is carried out in the following steps: 
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(1) put RF[rl] on the ABUS by enabling EN.JtF1, 

(2) increase the value on ABUS and pass to WBUS by requesting an ALU incre-

ment, 

(3) store the value on WBUS into the register file by requesting register file write. 

Micro-operations Signals 

ABUS := RF[rl] 'reRFl.aeRFl 

WBUS := ABUS + 1 alul.'rA.aA 

RF[w] := WBUS 'rwRF.awRF 

TABLE 5.8. Micro-operations of INC 

JCC r2: if cc is true then IP := RF[r2], and if cc is false it does nothing. This is 

carried out in the following steps: 

(1) check the condition code by testcc, if it is true it continues to do the following 

steps, otherwise they are omitted. 

(2) put the new address RF[r2] on DBUS by enabling EN..RF2, 

(3) pass it from DBUS to WBUS by requesting ALU pass, 

(4) modify IP with the data on WBUS by requesting IP write operation. 

Micro-operations Signals 

check condition code 'testcc.(jmp + noj) 

DBUS := RF[r2] 'reRF2.aeRF2 

WBUS := DBUS 'rA.aA 

RF[w] := WBUS 'rwRF.awRF 

TABLE 5.9. Micro-operations of JCC 

LDI w i: RF[w] := i is carried out in the following steps: 
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(1) put the immediate value on DBUS by enabling ENJR, 

(2) pass it from DBUS to WBUS by requesting ALU pass, 

(3) store the value on WBUS into the register file by requesting register file write. 

Micro-operations Signals 

DBUS := ir 'reIR.aelR 

WBUS := DBUS 'rA.aA 

RF[w] := WBUS 'rwRF.awRF 

TABLE 5.10. Micro-operations of LDI 

5.2.5. Fetch Unit. The fetch unit organizes control signals for guaranteeing 

the correct micro-operation sequence of fetching an instruction (IR'), incrementing 

IP (IP'), activating the execute unit to execute the current instruction and finally 

deciding to continue this cycle or terminate this data movement depending on the 

signal from the execute unit which indicates whether a HALT instruction has been 

executed. The specifications of IR' and IP' are simply sequences of the signals listed 

in the tables in the last subsection: 

bi IR' 

rIR'.'relP.aelP.mrw.'rM.aM.'rA.aA.'rwlR.awlR.'aIR'.IR' 

bi IP' 

rIP'. ' relP.aelP.alul. ' rA.aA. ' rwlP.awlP. ' alP' . IP' 

The fetch unit behaves as follows: 

When the fetch unit is started by CPU raising sF, it first computes and flattens IR', 

and then compute and flatten IP' for instruction fetch and IF increment as specified 

in the following code: 

bi FET 
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sF . READ...INST 

bi READ_INST 

'rIR' . aIR' . 'rIR' . aIR'. ' rIP' . aIP' . 'rIP' . aIP' . PRE_DEC 

The fetch unit drives RF[rl] onto WBUS before decoding instruction during the 

instruction execution because no other source needs to use WBUS during this period. 

This makes instruction specifications simpler since we do not need to enable it later. 

Then it activates the execute unit by sending sE. 

bi PRE-DEC 

'reRFl.aeRFl. ' sE.FET_END 

Now the fetch unit waits for a signal from the execute unit. If the signal cF is raised, 

this means the fetch unit will continue to read a new instruction. In this case it brings 

down all raised signals and repeats READ_INST. If eP is raised, this means that this 

data movement has been finished. Then it should send acknowledge signal aF back 

to CPU, brings down all raised signals and get ready for the next data movement. 

bi FET-END 

cF. ' reRFl.aeRFl. ' sE.cF.READ_INST \ 

+ eP. ' reRFl.aeRFl. ' sE.eP. ' aF.sF. ' aF.FET 

The fetch unit consists of IR', IP' and FET. 

bi FETCH 

( FET I IP' I IR' )\{rIP',aIP',rIR',aIR'} 

5.2.6. Execute Unit. The execute unit is used to issue all control signals for 

ensuring the correct micro-operation sequence of instruction execution. It is further 

decomposed into a decode unit and all instruction bodies. When the decode part 

is started by the fetch unit raising sE, it will decode the current instruction. If the 

current instruction is not HLT, it computes this instruction and informs the fetch 

unit by raising cF when the computation is done, and then flattens this instruction 
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when sE is lowered. If the current instruction is HLT, it computes this instruction 

and informs the fetch unit by raising eP when the computation is done, and then 

flattens this instruction when sE is lowered. Its CCS specification is given as: 

bi DEC-EXEC 

sE.EXEC1 

bi EXEC1 

lod.'rLOD.aLOD.'cF.sE.'rLOD.aLOD.'cF.DEC_EXEC \ 

+ sto. 'rSTO . aSTO. ' cF. sE. ' rSTO .aSTO. 'cF.DEC_EXEC \ 

+ mov.'rMOV.aMOV.'cF.sE.'rMOV.aNOV.'cF.DEC_EXEC \ 

+ 5CC. 'rSCC.aSCC. ' cF,sE. ' rSCC.aSCC. ' cF.DEC_EXEC \ 

+ inc.'rINC.aINC.'cF.sE.'rINC.aINC.'cF.DEC_EXEC \ 

+ jcc.'rJCC.aJCC.'cF.sE.'rJCC.aJCC.'cF.DEC_EXEC \ 

+ idi. ' rLDI . aLDI. ' cF.sE. ' rLDI . aLDI. ' cF.DEC_EXEC \ 

+ hlt.'rHLT.aHLT.'eP.sE.'rHLT.aHLT.'eP.DEC_EXEC 

Each instruction is responsible for carrying out its associated sequence of micro-

operations. We specify each instruction simply by sequencing all control signals in 

its corresponding table in subsection 5.3.4. Here we should remember that ABUS 

RF{rl} has been carried out before decoding. So we do not need to enable EN.RF1 

for individual instructions any more. 

For example, 

bi LOD 

rLOD. ' inrw. ' rM.aN. ' rA.aA. ' rwRF.awRF. ' aLOD.LOD 

when rLOD arrives from the decode unit, the execution of LOD w ri starts with 

mrw.'rM.aM to read the value from the memory at the address ABUS (which has 

been driven by RF[rl] in advance) to DBUS, then 'rA.aA to pass the value on DBUS 

to WBUS, and finally 'rwRF.awRF to store the value on WBUS into RF[w]. The 
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computation stage is finished off by 'aLOD. The decode unit will flatten this instruc-

tion by a second pass through the same signals. 

The other instructions are specified in the same way: 

bi STO 

rSTO. ' reRF2.aeRF2. ' rM.aM. ' aSTO.STO 

bi MDV 

rMDV. ' reRF2.aeRF2. ' rA.aA. ' rwRF.awRF. ' a14OV.NDV 

bi SCC 

rSCC. ' reRF2.aeRF2. ' alu2. ' rA.aA. ' aSCC.SCC 

bi INC 

rINC. ' alul. ' rA.aA. ' rwRF.awRF. ' a.INC.INC 

bi .3CC 

rJCC. ' testcc.JCCl 

bi JCC1 

jmp.'reRF2.aeRF2.'rA.aA..'rwlP.awlP.'aJCC.JCC2 + noj.'aJCC.JCC3 

bi JCC2 

rJCC. ' testcc.jmp. ' reRF2.aeRF2. ' rA.aA. ' rwlP.awlP. ' aJCC..JCC 

bi JCC3 

r.JCC. ' testcc.noj. ' aJCC.JCC 

biLDI 

rLDI. ' relR.aelR. 'rA.aA. 'rwRF.awRF. ' aLDI.LDI 

bi HLT 

rHLT. ' aHLT.HLT 

Finally the execute unit is given by wiring the decode unit and all instructions, and 

hiding internal connections in Elines. 

basi Elines 

rLDD rSTO rMDV rSCC rINC rJCC rLDI rHLT \ 

aLDD aSTO aMDV aSCC aINC aJCC aLDI aiiLT 
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bi EXEC 

(DEC_EXECILODISTOIMOVISCCI INC IJCCILDIIHLT) \ Elines 

5.2.7. AMM. We have now specified the datapath, the fetch unit and the exe-

cute unit. AMM is merely their composition, hiding all internal signals. 

bi AMM 

(DATAPATHIFETCHIEXEC) \ Mimes 

basi Mimes 

rwlP rwlR rwRF rM rA relP relR reRFi reRF2 \ 

awlP awlR awRF aM aA aelP aelR aeRFi aeRF2 \ 

alul alu2 mrw testcc ccT ccF sE cF eP 

5.2.8. Property Checking. Any asynchronous system is prone to deadlock, 

progress and safety problems. We can express and check such properties using the 

modal p-calculus, as mechanized in the CWB. This subsection provides checks for 

some typical desirable properties. 

Minimization: An asynchronous system is built by connecting subcomponents. To 

check properties of a large system, we first generate an equivalent machine with the 

minimized number of states. In general, an agent and its minimized version are 

weakly bisimular. In our case, they are observationally congruent since all our agents 

are stable. 

We minimize AMM by first minimizing its components: the datapath to DATAP-

ATH', and the fetch unit to FETCH' and the execute unit to EXEC'. 

Command: bi AMM 

Agent: (DATAPATH' I FETCH' I EXEC') \ Mimes 

Command: min AMM 
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Save result in identifier: AMM' 

AMM' has 90 states. 

Deadlock Freedom: If a system can always make a move, it is deadlock free. In 

the modal -calculus, deadlock free can be expressed by: BOX (-)T. 

Command: fd AMM' 

No such agents. 

Livelock Free: If a system never could get into a state from which it can do internal 

actions forever, it is livelock free. 

Command: cp AMM 

proposition: BOX (max(X.<t>X)) 

false 

Safety: Something bad never happens. 

Safety 1: every driving source drives-buses in the following way: once it drives a 

bus, it won't drive the bus again before tristating the bus. We use macro CYCLE2 

to express this property. For example, CYCLE2 sIP zIP means that zIP has to occur 

after one sIP has happened and before the next sIP will happen. 

Command: cp AMM' 

Proposition: CYCLE2 sIP zIP 

true 

Similarly, we have successfully tested this property for the following pairs: sIR and 

zIR, sRF1 and zRF1, sRF2 and zRF2, sA and zA, SD and zD. 

Safety 2: one cannot reach a state in which different sources may drive the same 

bus. 

Test bus A: There are two sources ENJP and ENRF1 which can drive bus A via 

requests on sIP and sRFl. 

Command: cp AMM' 

Proposition: BOX ((<sIP> T & < sFtF1>T)) 
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true 

Test bus D: There are three sources EN_IR, EN_RF2 and MEM which can drive bus 

D via requests on sIR, sRF2 and sD. 

Command: cp AMM' 

Proposition: BOX ((<sIR>T & <sRF2>T & <sD>T)) 

true 

Command: cp AMM' 

Proposition: BOX ((<sIR>T Sc <sRF2>T)) 

true 

Command: cp AMM' 

Proposition: BOX ((<sIR>T Sc < sD>T)) 

true 

Command: cp AMM' 

Proposition: BOX ((<sD>T Sc < sRF2>T)) 

true 

Test bus W: only ALU drives this bus (via sA). So no bus contention is possible. 

Safety 3: Once a bus is driven, it must be tristated before it will be driven again. 

We can use macro NEC-FOR a P to express this property. This macro means that a 

action is necessary for P to hold. 

Test bus A: Once it is driven by sIP, it is necessary to be tristated by zIP before sIP 

or sRF1 is possible. Similar test has been successfully carried out when it is driven 

by sRF1. 

Command: cp AMM' 

Proposition: BOX ([sIP] (NEC-FOR zIP <sIP,sRF1>T)) 

true 

Test bus D: Once it is driven by sIR, it is necessary to be tristated by zIR before 

sIR, sRF2 or sD is possible. Similar tests are successful for sRF2 and sD. 
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Command: cp AMM' 

Proposition: BOX ([sIR] NEC-FOR zIR <sIR,sRF2,sD>T) 

true 

Safety 4: AMM never acknowledges back to CPU before it executes a halt instruc-

tion. 

Command: cp AMM' 

Proposition: NEC-FOR hit ' aF 

true 

Liveness: 

Strong liveness means that something eventually happens. This can be expressed as 

BOX EVENT P. 

Weak liveness means that it is always possible for something to happen. This can be 

expressed as BOX FOSS P. 

Liveness 1: the actions related to Fetch are strong live transitions. They always 

eventually happen (every instruction requires to fetch JR and increase IF). 

Command: cp AMM' 

Proposition: BOX EVENT <ir'>T 

true 

Command: cp AMM' 

Proposition: BOX EVENT <ip'>T 

true 

Liveness 2: the 8 instructions are all weak live transitions. For example, a LOD in-

struction is a weak live transition and can be tested below (a program may not contain 

a LOD). Similar tests have been successfully carried out for all other instructions. 

Command: cp AMM' 

Proposition: BOX POSS <iod>T 
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true 

5.2.9. Equivalence Checking. We have given two different abstract levels of 

specification. When we systematically develop a system hierachically, we have to 

make sure that a lower concrete level faithfully represents its higher more abstract 

level. To check this consistency, we need to hide actions specific to the lower level 

because these actions are not observable at the abstract level. We accomplish this 

below by composing AMM with the agent R and hiding Runes. 

bi R 

'sA.R+ ' sD.R+ ' sIP.R+ ' sIR.R+ ' sRFl.R+ sRF2.R+ \ 

'zA.Ft + 'zD.R + 'zIP.R + 'zIR.R + 'zRFl.R + 'zRF2.R 

basi Runes 

sA zh sD zD sIP zIP sIR zIR sRF1 zRF1 sRF2 zRF2 

Command: bi AMM_R 

Agent: (AMM'IR) \ Runes 

Command: min AMM_R 

Save result in identifier: AMM-RI 

AMM-R' has 20 states. 

Command: fd AMM-RI 

No such agents. 

The consistency between two levels means that they are weak bisimular. In our case 

they are also observationally congruent since all agents are stable. 

Command: eq 

Agent: SPECO 

Agent: AMM-RI 

true 
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5.3. Lowest Level of Specification 

At the middle level of AMM specification, we specified a control unit by giving, 

for each instruction, the order in which the control signals activate the datapath 

resources. In this section, we go down one further level of abstraction and detail 

where the control signals come from by wiring basic control modules and the datapath 

together. The control unit consists of a fetch unit, an execute unit and a call box which 

routes the datapath access signals between the fetch or execute unit and datapath 

and enables datapath elements to be shared. We also check properties and prove that 

it is consistent with the middle level of specifications and hence with the abstract 

level. 

5.3.1. Basic Control Modules. In this subsection we introduce the basic con-

trol modules. For their detailed specification and explanation, see chapters 1 and 3. 

C is a rendezvous element which generates a transition after both of its inputs arrive 

regardless of their order. 

C' is a bubble C element which assumes one input transition has already arrived at 

the beginning and will have the same behavior as C. 

M is a merge element which generates a transition whenever it receives a transition 

at either of its two inputs. 

FORK is an element which produces transitions at both outputs once it receives a 

transition at its input. The order of transitions at two outputs is arbitrary. 

FASTFK is an element which is similar to FORK except that the order of transi-

tions at two outputs is fixed. This is used to reduce the number of states in CCS 

specification. 

CALL element is used to solve multi-user problem. When a resource is shared by two 

or more users who never contend at the same time, CALL element is put between the 

resource and its users. This ensures the acknowledge signal goes back to the calling 
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user. 

S is van Berkel's S element. It is used to call a sub-circuit twice (once to compute, 

once to flatten). 

5.3.2. Fetch Unit. The fetch unit is implemented in Figure 5.2. IR' and IP' 

in the fetch unit access datapath modules to carry out instruction fetch and IP in-

crement. Some modules are shared by IP', IR' and instruction executions. Every 

datapath module, once activated by one certain user, should send the acknowledge 

signal back to the calling user. We delay the analysis of IR' and IP' datapath ac-

cesses until subsection 5.3.4 where we will examine all datapath accesses by IR', IP' 

and all instruction executions, and solve the resource sharing problem by using call 

modules. Here the fetch unit specification doesn't include the real access to data path. 

As shown in Figure 5.3, the fetch unit sequentially organizes the, activities: (i) IR', 

(ii) IP', and (iii) instruction execution. These activities will be carried out through 

CALL elements. 
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rIR' 

11 

AR' 

IR' 

BN 
53 

- 

rIP' IP 

'P. 

S 

A 
reRFI aEX' 

EXEC cF 

eP 

test zero 

BOOLEAN 

REGISTER 

ackt) 

auk  

sett) one 

set] 

cF 

done 

FIGURE 5.2. Main Part of Fetch Unit 

end 
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start M MAIN 

done 

FIGURE 5.3. Implementation of Fetch Unit 

bi FETCHimp 

( C' [ sF/a, end/b, in/z J \ 

I M2 [ zero/a, in/b, s/z J \ 

I FORK [ one/a, aF/b, end/c ] \ 

I S [ s/s, sl/r, a3/a, test/d ] \ 

I S [ sl/s, setM/r, allY/a, s2/d ] \ 

I FASTFK I setM/a, mrw/b, rIR'/c ] \ 

I S I s2/s, rIP'/r, aIP'/a, s3/d ] \ 

I S I s3/s, reRF1/r, aEX'/a, a3/d] \ 

I M2 I ackO/a, ackl/b, aEX'/z J \ 

I BOOL_REG I cF/setO, eP/seti J \ 

) \ Fetchlines 

basi Fetchlines 

in zero s end si s2 s3 a3 ackO acki aEX' test one setM 
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5.3.3. Execute Unit. The execute unit is to organize instruction execution, as 

given in Figure 5.4. Instruction executions are carried out through CALL modules. 

All datapath accesses will be dealt in the next subsection. 

sE 

bi M7 

DECODE 

rLOD_. 
rSTO.._ 

..rSCC._ 

.rLOflL 

rHLT 

LOD STO 

EXEC 

MOV SCC INC JCC LODI 

,-ULOD 
,.—nSTO - 

,_-n11Ov - 

,-UINC 
- 

,-iLODI 

M7 
eF 

eP 

FIGURE 5.4. Implementation of Execute Unit 

al. 'z.M7 + a2.'z.M7 + a3.'z.M7 + a4.'z.MT + a5.'z.M7 + a6.'z.M7 + a7.'z.M7 

bi EXECimp 

sE . EXECimpi 

bi EXECimpi 

lod. ' rLOD.sE.'rLQD.EXECimp \ 

+ sto. ' rSTO.sE.'rSTO.EXECimp \ 

+ mov. ' rMQV.sE.'rMOV.EXECimp \ 

+ scc. ' rSCC.sE.'rSCC.EXECimp \ 

+ inc. ' rINC.sE.'rINC.EXECimp \ 

+ jcc. ' rJCC.sE.'rJCC.EXECimp \ 

+ idi. ' rLDI.sE.'rLDI.EXECimp \ 

+ hit. ' rHLT.sE.'rHLT.EXECimp 
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aF 
-C  

sF 

FETCH 

'p. 

sE 
- 

CF 

DECODE 
rJCC__. 

jLODL 

rHLT LOD STO 

---x  

EXEC 

'Ov SCC INC CC OD 

CALL BOX 

M7 

DATAPATh 

FIGURE 5.5. AMM Architecture 

5.3.4. Call Box. AMM architecture is given in Figure 5.5. Now we examine 

the datapath accesses of the fetch unit (through IR' and IP'), and the execute unit 

(through all instruction executions). Each instruction involves a sequence of micro-

operations. Each micro-operation accesses exactly one basic datapath module. Ac-

cording to the micro-operation tables of instructions in subsection 5.2.4, we can give 

the data modules accessed by a particular instruction in Table 5.11. According to 

this table, we can calculate how many users share a particular data module, as shown 

in its reverse table 5.12. Having this resource use table, we can easily construct a call 

element for each data module. For example, MEM is shared by three instructions 

IR', LOD and STO, and CALL3 element will be put in front of the MEM for three 

users to share. Therefore the call box is specified as: 

bi CALLS 

( C2IP I C4RF I C2EN...IP I C4EN_RF2 I C8ALU I C3MEM ) 
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Instruction Resource 

IR' ENJP, MEM,ALU,IR 

IF ENJP, ALU, IP 

LOD ENRF1, MEM, ALU, RF 

STO EN- F1, ENRF2, MEM 

MOV ENJtF2, ALU, RF 

SCC EN.RF1, EN.RF2, ALU 

INC ENRF1, ALU, RF 

JCC if cc=T then ENRF2, ALU, IF 

LDI ENJR, ALU, RF 

HLT 

TABLE 5.11. Datapath Accesses by Instructions 

Where C2IP is a CALL2 element for IP, C4RF is a CALL4 element for RF, C2EN..IP 

is a CALL2 element for ENJP, C4ENRF2 is a CALL4 element for EN...RF2, C8ALU 

is a CALL8 element for ALU, and C3MEM is a CALL3 element for MEM. 

5.3.5. Control Unit. The control unit is a unit by connecting fetch unit, execute 

unit and their CALL box. 

bi SETMRW 

FASTFK [ rLOD/a, mrw/b, rLODf/c ] 

bi SETALU1IP 

FASTFK [ ipl/a, alul/b, iplf/c ] 

bi SETALU1INC 

FASTFK [ rINC/a, alul/b, rINCf/c ] 

bi SETALU2 

FASTFK [ sccl/a, alu2/b, scclf/c J 

bi WHLT 
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Resource Instruction Calls 

IP IT, JCC ( cc =T) 2 

JR IR' 1 

RF LOD, MOV, INC, LDI 4 

ENJP IR',JP' 2 

ENJR LDI 1 

ENRF1 LOD, STO, SCC, INC 4 

ENJtF2 STO, MOV, SCC, JCC 4 

ALU IR',IP', LOD, MOV, SCC, INC,JCC, LDI 8 

CC JCC 1 

MEM IR', LOD, STO 3 

TABLE 5.12. Resource Uses 

rHLT. ' eP.WHLT 

bi MAJCC 

M2 C jcc4/a, noj/b, aJCC/z J 

bi McF 

M7 C aLOD/al, aSTO/a2, aNOV/a3, aINC/a4, aSCC/a5, aJCC/a6, aLDI/a7, cF/zj 

bi CONTROLimp 

( FETCHimp I EXECimp I SETMRW I SETALU1INC I SETALU1IP I SETALU2 \ 

I CALLS I WHLT I McF I MAJCC) \ Contr].ines 

basi Contrlines 

rLOD rSTO rMOV rSCC rINC rHLT \ 

aLOD aSTO aMOV aSCC aINC aJCC aLDI \ 

jcc2 jcc3 jcc4 ipi ipif ip2 ldi2 rINC± mci \ 

movi mov2 rLODf lodi lod2 irl 1r2 stol scclf \ 

sccl nIR' aIR' aIR' rIP' alP' 
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5.3.6. AMM. The AMM is the composition of the datapath and the control 

unit. Its CCS specification is given as the following: 

bi AMMimpi 

( CONTROLimp 

I DATAPATHE rLDI/relR, aIR'/awlR, sE/aeRF1,rJCC/testcc] 

) \ MOVElines 

\ 

\ 

basi MOVElines 

rA rM relP rLDI rwlP rwlR reRFi reRF2 rwRF \ 

aA aM aelP a.eIR awlP sE aeRFi aeRF2 awRF \ 

jmp noj rJCC mrw alul alu2 cF eP rwlR 

AMMimpi is started by the signal start and finish off a data movement by issuing 

the signal done. If we use start as sF and done as aF, a second sF can be accepted 

before an aF is issued. Obviously it is not equivalent to our more abstract levels of 

specification, which guarantee the order sF - 'aF - sF -+ 'aF. So we can not use 

start as sF and done as aF. Some restrictions should be put on the order of sF and 

aF, as below: 

bi RES 

sF. ' start.done. ' aF.RES 

bi AMMimp 

( RES I AMMimpi ) \ -Cstart, done} 

5.3.7. Property Checking. Here we minimize AMMimp and check it for dead-

lock. 

Minimization: 

Command: min FETCHimp 

Save result in identifier: FETCHimp' 



5. AMM - AN ASYNCHRONOUS MOVE MACHINE 85 

FETCHimp' has 716 states. 

Command: min AMMimp 

Save result in identifier: AMMimp' 

AMMimp' has 90 states. 

Deadlock Freedom: 

Command: fd AMMimp' 

No such agents.. 

5.3.8. Equivalence Checking. The equivalence of this level and the middle 

level are checked in the following. Since we have proved the most abstract level and 

the middle level are equivalent in the last section, three levels of AMM specification 

are consistent. 

Command: eq 

Agent: AMM' 

Agent: AMMimp' 

true 

5.4. Summary 

This chapter systematically develops AMM through three abstract levels which are 

proven consistent. It is a reworking [BLS94a] with a slightly modified instruction 

set and datapath. The most abstract level only addresses what AMM is supposed to 

do at the instruction level. The next level spells out its datapath and points out all 

control signals and when they should be sent to the datapath by the control unit. The 

lowest level details all the control signal flows by wiring basic control modules and 

the datapath together. This level of specification is clean enough and clear enough 

to serve as an implementation guide. T.Borsodi, a graduate student in ECE, took 

a CCS description of AMM [BLS94b] and [BLS94a] and implemented it in Xilinx 

FPGA technology in a matter of 2 or 3 weeks in 1993. In the manner of [BLS94a], 
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we have also proved that AMM enjoys desirable properties such as deadlock freedom, 

livelock freedom, no bus contention, liveness and safety. 



CHAPTER 6 

PAMM A Pipelined Asynchronous Move 

Machine 

This chapter gives the specification of a 2 phase pipelined asynchronous move ma-

chine. In the asynchronous move machine we designed in chapter 5, the operations 

were sequential and did not overlap. One of the advantages of an asynchronous system 

is that components usually work in parallel and only occasionally need to cooperate 

with others by communication. We now consider a 2 phase pipelined move machine 

which implements this inherent parallelism. We decompose PAMM to two modules: 

a fetch stage and an execute stage. We also prove it to be deadlock free and possess 

the required liveness properties. 

6.1. PAMM Architecture 

FIGURE 6.1. PAMM 

87 
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As shown in Figure 6.1, PAMM consists of two major modules: a fetch module and 

an execute module separated by a FIFO. The fetch module expects code to be sequen-

tial. It speculatively generates sequential PC values, and pushes the corresponding 

instruction into the FIFO buffer. The execute module takes instructions one by one 

from the FIFO and executes them. We posit a Harvard architecture with separate 

instruction and data memories. 

What happens when the execute module meets a jump instruction which is taken? In 

this case the sequential anticipation is wrong and none of the prefetched instructions 

following the jump instruction should be executed. The halt instruction has similar 

problems. These can be solved with a global arbiter and a colour register in each 

module. The arbiter allows three contenders to arrive asynchronously: sequential 

anticipation, instruction flow change, and stop. The colour registers indicate the par-

ity of the current instruction sequence. Each fetched instruction carries the current 

colour when it is pushed into the FIFO. Once a jump or halt is taken, the execute 

module flips its colour register and requests the arbiter. When this request gains 

control, the sequential generation of PC values is blocked in the fetch module. The 

colour register is flipped and the new value from theexecute unit becomes the current 

PC. The fetch unit then generates instructions from the new PC base and with the 

flipped colour. The execute unit automatically discards all unwanted instructions by 

comparing the colour of the next instruction with its own current colour. We assume 

that both colour registers (the one in the fetch stage and the one in the execute stage) 

have the same colour after PAMM is powered up. 

6.2. 2-Phase Basic Modules 

This section introduces basic control modules and datapath modules. 

6.2.1. Control Modules. In our library, we have FORK and FASTFK element, 

C element and C' the bubbled C element, WAIT element, CALL and ARBITER. 
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FORK, FASTFK, C and C' elements are the same as introduced in chapter 5. CALL 

is basically the same as the 4-phase except that a 2-phase CALL element does not 

have the flatten stage. 

WAIT element is for holding an transition until a certain condition is satisfied. 

The ARBITER element is put between a resource and its users who share this re-

source. The ARBITER allows exactly one user and blocks the others. Only after the 

allowed user is done, the ARBITER will accept another waiting user. 

6.2.2. Datapath Modules. In our library, we have register REG, incrementor 

INC, memories IMEM and DMEM, a first-in-first-out queue FIFO, a counter WC 

and ALU. 

Register 

A register is a one position buffer which can accept a new value when it is empty 

nfl 

data-in 

am 

REG 

and can be read when it has a value. 

Specification: 

LR = rin.n.inc.'ain.LR 

  rout 

data-out 

  aout 

Co = 'inc.Cl + 'nf.CO 

Cl = 'dec.CO + 'ne.Cl 

RR = ne.'rout.aout.dec.RR 

REG = ( LR I CO I RR ) \ {inc,dec,ne,nf} 
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Its writer should follow the pattern: 

WRITER = ...prepare data.'rin.ain... 

Its reader follows the pattern: 

READER = ... rout.process data.'aout... 

Incrementer 

An incrementer is a very trivial element which accepts an input d, produces d+1 

data-in 

I 
INC 

rinl 

routl  

aoutl 
.< 

I 
data-out 

and gets ready for repeating this procedure when d+1 has been used. 

Specification: 

INC = rinl.'routl.aoutl.INC 

The caller follows the pattern: 

caller = ...prepare data.'rinl.routl.latch new data.'aoutl... 

IMEM 

IMEM is a memory with reduced functionality. PAMM only reads instructions from 

it. So we hide its write operation to reduce the complexity of PAMM. 

Specification: 

IMEM = rIM.'aIM.IMEM 

The caller follows the pattern: 

caller = ... prepare address.'rM.aM 

DMEM 
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address I I data 

DMEM is a traditional memory with both write and read operations. We consider 

rM rwaM 

1'  
data 

address 

DMEM 

the control wire as a 1-bit local bus driven by its controller. 

Specification: 

DMEM = rM.(rw=1.'aM.MEM + rw=O.mem'.'aM.MEM) 

Its caller follows the pattern: 

Write = ... prepare data and address.drive rw with O.'rM.aM 

Read = ... prepare address.drive rw with 1.'rM.aM 

FIFO 

FIFO is a first in and first out queue which can accept a new value when it is not full 

and can output a data when it is not empty. The user can check how many positions 

are occupied. Here FIFO have a signal "able" which indicates that there is two space 

left. In our PAMM we need to leave a space for dealing with a jump instruction which 

arrives asynchronously. Every time we need to check "able" before a new request for 

the next sequential instruction is issued. This means that FIFO always leaves one 

space dealing with the jump instruction. 
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able 

data-in 

ainF 

isO isi is2 

routF 

data-out 

aoutF 

Specification: 

LF = rinF.nf.'inc.'ainF.LF 

RF = ne. ' routF . aoutF. ' dec.RF 

FO = 'able.FO + inc.F1 + 'nf.FO + 'isO.FO 

Fl = 'able.Fl + inc.F2 + dec.FO + 'nf.Fl + 'ne.Fl + 'isl.Fl 

F2 = inc.F3 + dec.F1 + 'nf.F2 + 'ne.F2 + '1s2.F2 

F3 = dec.F2 + 'ne.F3 

FIFO = ( LF I FO I RF ) \ {ne, nf, inc, dec} 

Writer = ... prepare data.'rinF.ainF 

Reader = ... routF.process data.'aoutF 

WC counter 

WC is a counter which can be set to a certain value, tested for its value and decreased 

by one. This element is used for modeling the colour in our design. A counter with 

1 as its maximal value is specified below. 

bi WC 

wcO 

bi WCO 
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setWCO.WCO + setWC1.WC1 + 'wcO.WCO 

bi WC1 

'wcl.WCl + minus.WCO 

Boolean Register 

2 phase boolean register is basically the same as the 4 phase one except that it does 

not have the flatten stage. 

Specification: 

bi BOOL_REG 

BOOL_REGO 

bi BOOL_REGO 

setO. ' ackO.BOOL_REGO + 

seti. ' ackl.BOOL_REGl + 

test. ' zero . BOOL_REGO 

bi BOOL_REG1 

setO. ' ackO.BOOL_REGO + 

seti. ' ackl.BOOL_REGl + 

test. ' one.BOOL_REGl 

ALU 

ALU is an arithmetic and logic unit. It has two inputs and one output. It also 

includes a conditional code boolean register CC. We use a two-bit local traditional 

bus as its control wires whichis driven by its controller. This ALU does one of three 

basic functions depending on the current function code (fc). 

(1) Passes opi through, if the function code is 00. 

(2) Increases opi and output the increased value, if the function code is 01. 



aoutA result routA 
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opi op2 rinA 

ccT 

testcc 
ccF 

(3) Compares opi and op2 and sets CC to true (opl=op2) or to false (opiop2), 

if the function code is 10. 

Specification: 

CC = BOOL.REG[setT/setl,setF/setO, 

ackT/ackl,ackF/ackO, 

ccT/one, ccF/zero , testcc/test] 

ALU = rinA.(fc00.ALU1 + fc01.ALU1 + fc10.ALU2) 

ALU1 = 'routA.aoutA.ALU 

ALU2 = eq.'setT.ackT.ALUl + neq.'setF.ackF.ALUl 

ALU-CC = ( ALU I CC ) \{setT, ackT, setF, ackF} 

The caller follows the following pattern: 

Pass = ... drive op1 and fc with 00.'rinA. rout A.process data.'aoutA 

Increase = ... drive opi and fc with 01.'rinA.routA.process data.'aoutA 

Compare = ... drive opi, op2 and fc with 10.'rinA.routA.'aoutA 

Tester = ... (ccT.code for ccT + ccF.code for ccF) 

With all these 2-phase basic modules, we are able to specify the PAMM. 
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6.3. Fetch Unit 

The fetch unit in PAMM is responsible for fetching instructions. Once a new data 

movement is requested, the fetch stage gets the next instruction, pushes it with the 

current colour into a FIFO. It repeats this procedure (called the main loop) unless 

the following situations are met: 

(1) An interrupt signal arrives when the execute stage executes a JCC instruction 

with the condition code true. Both the fetch stage and the execute stage will 

change their current instruction colours, and the fetch stage throws away the 

address in PC and gets the current instruction address from execute stage. 

Then the fetch stage will return to the main loop. 

(2) A halt signal arrives when a halt instruction is executed. Both the fetch stage 

and the execute stage will change their current instruction colours. The fetch 

stage will acknowledge this current data movement to the CPU and halt to 

the execute stage, and prevent the fetch unit from working until a new data 

request comes. 

The architecture of the pipelined asynchronous fetch unit is given in Figure 6.2. The 

fetch unit consists of two parts: The top part is responsible for choosing and passing 

a fetch request from different sources down to the bottom part. The bottom part 

carries out the actual fetch operation, increases the current instruction address and 

stores it into the program counter PC, which are in parallel. Detailed explanations 

will be given as the specification unfolds. 

TARB is an arbiter with three contenders: rLOOP is an internal request which is 

released by WAIT when the FIFO is "able" after rLOOPl is issued. rLOOP1 is issued 

in two cases: (i) after the move machine has been initialized, (ii) after the current 

sequential fetch has been finished. rINTP is a request from the execute unit when a 

jump occurs. This means that the current instruction flow is changing. The current 

instruction address will be from the execute unit not from PC. 
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FIGURE 6.2. PAMM Fetch Unit 
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Here we have to void the address in PC to avoid a deadlock which would otherwise 

happen when no one takes the old PC out and a new PC value tries to get in. 

Even though it is obviously necessary to do this, it took quite a few days to locate 

and fix this deadlock when the CWB showed its existence in our design. The most 

straightforward solution is to send an acknowledge signal to the PC. The FASTFK 

is used to route this request to PC. rHALT is a request from the execute unit when 

a halt instruction is executed. This means the current data movement has been 

finished. Its CCS specification is: 

b  TARB 

( ARB3 C rLOOP/rl, rINTP/r2, rHALT/r3,g2'/g2 ] \ 

I FASTFK Eg2'/a,aoutPl/b, g2/cJ \ 

) \{g2'} 

TEST is a unit which carries out a number of trivial functions. Four sources use this 

component. It governs both a colour register and a halt register for recording whether 

a rHALT has been handled. Its functions include: 

When a rMOVE arrives, it passes down the request, the initial address from CPU. 

When both the acknowledgement signal from the CALL unit and the done signal from 

the bottom part arrive, it raises rLOOP1 for fetching a new sequential intruction. 

This request is released as rLOOP whenever the FIFO becomes "able". Here the 

acknowledgement signal from the CALL unit means that the current address is in the 

MAR (memory address register). The done signal means that the current instruction 

has been placed in the FIFO and the PC is changed to MAR + 1. The "able" means 

that there are two spaces left in the FIFO and the sequential access can continue. 

bi TEST1 

rMOVE. ' rl.al.done. ' rLOOPl.TESTl 

When gi arrives (sequential PC generation passes through the arbiter), it checks 

the halt register. If a rHALT has not been handled, it passes on this request, the 
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address in PC. When both the acknowledgement signal from the CALL unit and the 

done signal from the bottom part arrive, it signals on dl for releasing the arbiter and 

rLOOP1 to the WAIT element. rLOOP will be raised whenever the FIFO becomes 

"able". Otherwise it clears the halt register for the next use, voids the PC value by 

acknowledging the PC, releases the arbiter and then sends aMOVE back to the CPU 

to indicate that the current data movement has been finished. 

bi TEST2 

gi. ' testhalt . TEST21 

bi TEST21 

halt. ' clearhalt . ackclear. ' aoutP3. ' dl. ' aMOVE.TEST2 \ 

+ nohalt.'r2.a2.done.'dl.'rLOOPl.TEST2 

When g2 arrives (the rINTP gains control), it changes the current colour. This is 

modeled by a counter which records how many instructions carry wrong colour and 

done by checking how many instructions following the jump and setting the counter. 

Here we should notice the number of wrong colour instructions is equal to n - 1 

(the number of instructions in the FIFO is n) since the jump instruction is still in 

the FIFO. Then it passes down this request and the new address. When both the 

acknowledgement signal from the CALL unit and the done signal from the bottom 

arrive, it sends aINTP to the execute unit and d2 to release the arbiter. 

bi TEST3 

g2.(nl. ' setWCO.TEST31 + n2. ' setWCl.TEST31) 

bi TEST31 

'r3.a3.done. ' aINTP. ' d2.TEST2 

When g3 arrives, it sets the halt register, changes the colour register (in the same 

way as for the jump instruction), sends aHALT to the execute unit and releases the 

arbiter. 
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bi. TEST4 

g3. (ni. ' setWCO.TEST41 + n2. ' setWC1.TEST4I) 

bi TEST41 

sethalt . ackset. 'aHALT. 'd3 . TEST4 

Here is the CCS specification for TEST: 

bi HALT 

BOOL_REG [sethalt/set 1, clearhalt/setO, 

ackset/acki , ackclear/ackO, 

halt/one ,nohalt/zero , testhalt/test] 

bi WAIT 

rLOOP1 . able. ' rLOOP.WAIT 

bi TEST 

TEST 1 + TEST2 + TEST3 + TEST4 

bi TTEST 

( HALT I TEST I WAIT ) \ TTESTlines 

\ 

\ 

basi Hlines 

sethalt clearhalt ackset ackclear testhalt halt nohalt rLOOP1 

TCALL is a CALL3 element. It stores the current memory address for three different 

sources into MAR. When it gets an acknowledgement signal from the MAR, this 

means the current memory address is safely in the MAR. If this address is from PC, 

the old address is no longer useful and taken out by sending an acknowledgement to 

PC. The FASTFK element routes this signal to PC. Its CCS specification is: 
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bi WALL 

( CALL3 [a2'/a21 I FASTFK [ a2'/a, aoutP2/b, a2lc ] ) \ -Ca2'} 

Now we can specify the top part by connecting the above specifications and hiding 

internal actions. 

bi TOP 

( TARB I TEST I WALL \ 

I M3 [aoutPl/a, aoutP2/b, aoutP3/c , aoutP/zj \ 

) \ TOPlines 

basi TOPlines 

dl, d2, d3, gi, g2, g5, 

ri, r2, x'3, al, a2, a3, \ 

aoutPl, aoutP2, aoutP3, rLOOP 

The bottom part is a component by wiring MAR, INC, IMEM, PC, FIFO. Its speci-

fication is: 

bi BOTTOM 

(MAR \ 

I C C aoutMl/a, ainF/b, aoutM2/z J \ 

I FASTFK [aoutM2/a.,done/b,aoutM/c] \ 

I FASTFK C routM/a, nfl/b, nM/c] \ 

I INC C ninP/routl] \ 

IPC \ 

I IMEM C ninF/aM] \ 

IFIFO \ 

I FASTFK C amP/a, aoutMl/b, ainl/c ] \ 

I C'[routP/a, rib, ninM/z] \ 

) \ BOTTOMlines 



6. PAMM - A PIPELINED ASYNCHRONOUS MOVE MACHINE 101 

basi BOTTOMlines 

rinM aoutM routM aoutMl aoutM2 \ 

rM \ 

rinF ainF \ 

rinP amP routP \ 

rinl ainl 

Finally the fetch unit can be specified by composing the top component and the 

bottom component, and hiding internal communications. 

basi FETCHlines 

r a able done aoutP ni n2 

bi FETCH 

( TOP I BOTTOM ) \ FETCHlines 

Property Check: Observable actions at the FETCH interface: 

Command: sort FETCH 

rMOVE ' aMOVE ' rbutF aoutF rINTP ' aINTP rHALT ' aHALT ' setWCO ' setWCl 

The complexity of FETCH unit:: 

Command: min TOP 

Save result in identifier: TOP' 

TOP' has 2362 states. 

Command: min BOTTOM 

Save result in identifier: BOTTOM' 

BOTTOM' has 292 states. 

Command: min FETCH 
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Save result in identifier: FETCH' 

FETCH' has 1217 states. 

6.4. Execute Unit 

The architecture of the execute unit is shown in Figure 6.3. The execute stage 

always gets an instruction from the FIFO as long as the FIFO is not empty. If the 

instruction doesn't have the same colour as the current colour of the execute stage, it 

means that this instruction is obsolete (it is prefetched following a JCC which changes 

the current instruction flow or HALT) and should be thrown away. Otherwise the 

execute stage will execute the current instruction and then repeats this procedure. 

There are two instructions which could change the colour register. One is JCC. If 

the conditional code is true, the execute stage will change its colour and then send 

an interrupt request to the fetch stage. It can return to the normal procedure after 

the interrupt acknowledge signal arrives. The other one is HALT. The execute stage 

will change its colour and then send a halt request to the fetch stag. It can return 

to the normal procedure after the halt acknowledge signal arrives. 

Hre we model this colouring by a counter WC which records the number of the 

wrong colour instructions in the FIFO. The execute unit decides whether or not the 

current instruction should be executed by checking the WC. If WO indicates there is 

at least one wrong colour instruction, it just discards this one and decreases WC by 

one. Otherwise it executes this instruction. Since this execute unit is quite trivial to 

implement, we keep it abstract for reducing PAMM complexity. This unit is specified 

below: 
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routF 

bi XC 

XC0 

FIFO 

w: ri: 

CALL 

awRF rrRF 
RF 

rwRP arRF 

ALU 

A 
a1IL.... 

ainL rint 

LATCH aoutL 
ronti 

ccT 
 testcc 
ccF 

address 

datain 
MEM 

rM 

dataout 

DEC 

EXEC 

FIGURE 6.3. PAMM EXECUTE UNIT 

bi XCO ** CC is false 

routF . XCO1 

bi XCO1 
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wcO.take. \ ** right colour 

( jcc.'aoutF.XCO \ ** no jump occurs 

+ hlt.'rHALT.aHALT.'aoutF.XCO \ ** halt 

+ lod.'aoutF.XCO \ 

+ scc.XC2 \ 

+ nop.'aoutF.XCO \ 

• mov.'aoutF.XCO \ 

+ inc.'aoutF.XCO \ 

+ sto.'aoutF.XCO ) \ 

+ wcl.discard.'minus.'aoutF,XCO ** wrong colour instruction 

bi XC2 

eq.'aoutF.XCl + neq.'aoutF.XCO ** CC = (rl==r2) 

bi XC1 ** CC is true 

routF .XC11 

bi Xcii 

wc0.take. \** right colour 

(jcc.'rINTP.aINTP.'aoutF.XCi \** jump occurs 

+ hlt.'rHALT.aEALT.'aoutF.XCl \ 

+ lod.'aoutF.XCi \ 

+ scc.XC2 \ 

+ nop.'aoutF.XCl \ 

+ mov. ' aoutF.XCl \ 

+ inc.'aoutF.XCl \ 

+ sto.'aoutF.XCl ) \ 

+ wcl.discard.'minus.'aoutF.XCl ** wrong colour instruction 
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Property Check: 

Command: sort XC 

routF ' aoutF'rINTP aINTP ' rHALT aHALT wc0 wcl 

take discard eq neq lod sto mov inc scc jcc flop hlt 

The complexity of the execute unit: 

Command: min XC 

Save result in identifier: XC 

XC' has 22 states. 

6.5. PAMM 

PAMM is the composition of the fetch unit and the execute unit, as specified below: 

bi PAMM 

( FETCH I XC I WC) \ PAMMlines 

basi PAMMlines 

rINTP aINTP rHALT aHALT \ 

routF aoutF setWC0 setWC1 wcO wci. minus 

Observable actions in PAMM: 

Command: sort PAMM 

eq,hlt,inc,jcc,lod,mov,neq,nop,scc,sto,rMOVE,'aMOVE 

PAMM complexity: 

Command: min PAMM 

Save result in identifier: PAMM' 

PAMM' has 104 states. 

6.6. Environment 

PAMM is a slave processor for the CPU. CPU has to obey some rules in order to 

use it, as specified below. 
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b  ENV 

initialize. ' rMOVE. aMOVE.ENV 

6.7. Property Check 

Now we can look at the PAMM when it operates in its environment. PAMM is 

proved to be deadlock free and possess required liveness. 

bi PAMM-ENV 

(PAMM I ENV)\-CrMOVE, aMOVE} 

Command: min PAMM-ENV 

Save result in identifier: PAMM-ENV' 

PAMM-ENV' has 20 states. 

Command: fd PAMM-ENV' 

No such agents 

Command: cp AMM' 

Proposition: BOX POSS <lod>T 

true 

Similar tests for other instructions have been successfully carried out. 

6.8. Summary 

This chapter gives a PAMM specification which has been shown deadlock free. 

PAMM is a highly parallel machine which takes advantage of asynchronous design 

style. But very tricky reasoning is necessary to avoid deadlock. During our lesign, 

we met three major deadlocks and fixed them after they were tested by the CWB. 

(1) Requesting the sequential fetch: 

(a) The first natural thought is that we request a sequential fetch once the 

current instruction has been fetched. When we did this, a deadlock 

happened since we sent too many requests which could not be consumed 
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in the following case: a rLOOP and rINTP arrive at the same time and 

the aribter allows the rINTP to go through. When this request rINTP 

has been processed, a new rLOOP is issued before the previous one can 

be processed. 

This deadlock is fixed by finding rLOOP can be issued only after the 

initialization or a sequential fetch has been carried out. 

(b) The second natural thought is that rLOOP is issued whenever FIFO is 

not full. A deadlock happened when the FIFO is full and no rLOOP 

can be issued and in the meantime a rINTP comes. The new instruction 

cannot be put into the FIFO and the execute unit is not taking any 

instruction out of FIFO since the jump instruction is not yet completed. 

This deadlock can be removed by keeping a space in the FIFO for dealing 

with this case. 

(2) PC value: When a jump i.s taken, the old PC value should be discarded. In 

asynchronous design, we have to explicitly remove the value and free the PC 

for its next use. A deadlock happened until we noticed this. 



CHAPTER 7 

Conclusions 

7.1. Summary 

The contribution of this thesis has been to present two case studies which: 

(1) help bridge the gap between the formal method and engineering approaches 

by focussing on block level descriptions which map exactly into CCS and yet 

serve as blueprints for implementations (see also [BLS94a, BLP94a, BLP94b, 

BLGP94, BL94]); 

(2) help clarify a hierarchical methodology for systematically developing and test-

ing asynchronous systems (see.also [Ste94, Liu92]); 

(3) are valuable in their own right. 

They are amongst largest verifications yet done of asynchronous systems. 

In chapter 1, we explained the terminologies used in asynchronous design. In 

chapter 2, we surveyed three disparate approaches of asynchronous design: Silicon 

Compilation, Formal Methods, and the Engineering Apprdach. We also explained 

these approaches giving one typical example for each approach. In chapter 3, we 

covered the specification language CCS, its companion logic modal a-calculus and 

the mechanized workbench CWB which are used throughout the rest of this thesis to 

specify and verify our abstract designs. The next two chapters closely followed pre-

viously published work [BLS94b, BLS94a]. In chapter 4, we described the move 
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machine upon which this thesis research is based. In chapter 5, we systematically 

followed AMM through three different abstract levels of specification, showed these 

levels to be consistent, and showed that they were deadlock free, livelock free and 

in possession of certain safety and liveness properties. The heart of the thesis was 

chapter 6, in which we specified and verified PAMM, a pipelined 2-phase machine, 

whose implementation is inherently parallel in operation. As case studies, themodels 

of chapter 5 and chapter 6 explicate the 4 phase and 2 phase design styles. They 

are also vehicles for expanding the specification driven design methodology which 

systematically takes one down from the top level to a provenly equivalent description 

which serves as an implementation blueprint, thus helping to bridge the gap between 

the Formal and the Engineering approaches. 

Through these case studies, CCS has been demonstrated to be an appropriate and 

usable tool for describing and developing asynchronous hardware. At each abstract 

level, an asynchronous circuit has a finite number of distinguished states. This finite-

ness allows us to use the CWB workbench. The companion logic to CCS (the modal 

p-calculus) copes with the complicated properties, such as deadlock, livelock, live-

ness and safety, etc., inherent in asynchronous systems. The CWB also allows us 

to test the equivalence of descriptions at different levels of abstraction. We believe 

that observational congruence best defines the equivalence between two circuits. Real 

circuits are always stable, which means that the first action is not an internal action 

(this matches event-driven circuits). So the equivalence check is reduced to a check 

for weak bisimularity, which is easy to carry out. 

These case studies have exhibited some shortcomings of the, methodology. 

(1) State explosion: A very succinct CCS specification can be a very complicated 

model which has millions of states. 

(2) Tricky reasoning to locate and fix deadlock: Asynchronous systems are very 

prone to deadlock. Although the CWB can test whether or not a design 

includes deadlock, locating and fixing a deadlock requires very tricky reasoning. 
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(3) Slow algorithms in the CWB: the algorithms for agent minimization and equiv-

alence checking are very slow. Even in the SUN/SPARC 20, it takes 3 to 4 

hours to minimize an agent which has more than 1000 states after minimiza-

tion. 

7.2. Future Work 

7.2.1. Silicon Compiler. CCS is a specification language with succinct syntax 

and clean semantics. However, since a CCS specification can be very abstract, it 

might take an experienced engineer a long time to generate a real design from this 

specification. It is not a mechanical step. Building a silicon compiler based upon CCS 

would be a great help but also a difficult topic. As noted by Stevens[Ste94], some 

restrictions should be put on the CCS specification to be translated by its silicon 

compiler. 

7.2.2. Faster Algorithms. The algorithms in the CWB for agent minimization 

and equivalence check are very slow. Improving their efficiencies will greatly shorten 

the development cycle of asynchronous design. Analyzing the complexity for this 

problem and finding an approximate optimal algorithm will be worthwhile. 
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APPENDIX A 

4 Phase Basic Data Path Modules 

In the following, we list all 4 phase basic data modules used in our design. All 

these descriptions are from [BLS94b] and [BLS94a] with permission from Dr. G. 

Birtwistle. 

A.I. Wire 

Wires may be either high or low; and may be sensed. The description is: 

WIRE ( WIREO 

WIREO 1( in.WIRE1 + 1.WIREO 

WIRE1 1( in.WIREO + i.WIRE1 

The controller of the wire makes it high with the first in and low with the second 

in. 

Sensor code typically follows the pattern: 

(hi.code for high+lo.code for low) 

A.2. Register 

• the output is always "strong" and may be read several times 

• the input may "wobble". It is ignored until there is a write request at which 

time the output changes at once. 
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rwR 

din 

Protocol. The interaction sequence is: 

Writer: sDin rwR awR zDin rwR awR 

'ft 
REG: rwR reg' awR rwR awR REG 

awR 

dout 

• Specification. From the register's point of view, after rwR is raised, the (strong) 

value on din is written into the register (indicated by reg'). The fresh value also 

drives the output bus. When the register raises awR, the caller is safe to assume that 

the new value is in the register and is strong. The caller then lowers rwR and the 

register lowers awR. 

REG ( rwR.reg'.awR.rwR.awR.REG 

Usage. The caller puts new value on the input bus (sDin) then raises rwR. When 

the register raises awR, the caller will tristate the input bus (zDin) before lowering 

rwR and then waits for awR to be lowered. The onus is on the caller to make the 

input strong before raising rwR. 

Writer Lef sDin.rwR.awR.zDin.rwR.awR. 

A.3. Enable 

• the input to the ENABLE is normally strong, 

• its output is normally tristated, it is driven only on request 

Protocol. The interaction sequence is: 

Caller: reE aeE read reE aeE 

EN: reE sEN aeE reE zEN aeE EN 
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4 rwR 
REG 

awR 

reE 
EN 

aeB 

i1i 
Enable registers are placed between busses and "ordinary" registers whose outputs 

are normally strong so that the latter only drive the bus on request. When reE is 

raised, the strong data value of the register is passed, indicated by sEN. aeE is then 

raised, a signal to the caller that the bus is safe to read. When the bus has been 

read, the caller lowers reE. The enable register then cuts off the register value thus 

tristating the bus (zEN) and then lowers aeE. 

Specification. 

Usage. 

EN def r€E.SEN..reE.ZEN.aeE.EN 

Caller 'I .aeE.read..aeE. 

A.4. Boolean register 

setO 

ackO 

setl 

ackl 

test 

'Jr 
BOOLJtEG 

zero 

one 
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• we assume that read, write, and test requests do not overlap 

• write requests set the register true or false. (There is no wobbling - sets are 

always accepted.) 

• the current value may be tested and read several times. 

Protocol. The interaction sequences are: 

Set/reset register. 

Setter:. setO ackO ackO 

BJtEG: setO reg=F ackO setO ackO B_REG 

Read value in register. Suppose the boolean register is in state 1. 

Read: one test one 

J1'. 

B.REG1: test one test 3i B..REG1 

Specification. 

BOOLREG ( B.REGO 

BREGO 'I setO.ackO.setO.ackO.B..RECO 

+ set1.ack1.set1.ack1.BJEG1 

+ test.F.test..BREGO 

B...REG1 de I .setO.ackO.setO. ackO.BREGO 

+ setl.ackl.setl.ackl.BREG1 

+ test..test..B.REG1 

A boolean register may be set to 0 or 1. Each setting is acknowledged. To read a 

register, a caller raises test. The register will respond by raising either zero or one. 

Usage. The calling tactic is: 

(zero. test. zero. code for 0+one1. one. code for 1) 
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A.5. Register file 

A register file is a block of (in our case 8) registers each following the model of §2.1.2. 

The outputs from the registers (which are always strong) are filtered through two 

multiplexers - one selected by the control bits rl, the other by the control bits r2. 

Thus 

doutl I RF[ri] 

dout2 ( RF[r2] 
The input bus is copied to all 8 registers. The write signal from rwRF is and'ed with 

the decoded control bits wReg so that only one register will be "invited" to write 

awRF 
rwRF 

wReg 

w.Bus 

n-to- 1 _. D  

decoder ._ D  

11 
R 

R. 2 
R. 1 

.  

M 
U   
X dout1 

-ITh 
—M 

U 

X dout2 

when we go through the sequence rwRF/awRF up and down. The 8 register awR 

signals are or'ed together to produce the external awRF signal. 

Here is our abstract view of the register file: 

Protocol. The interaction sequence is: 
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ri 

r2 

wReg 

wBu.s 

rwRF awRF 

Specification. At our level of abstraction, its the same as a single register. 

RF 48f rwRF.rf'.awRF.rwRF.awRF.RF 

NB we have abstracted away ri, r2, wReg, wBus, doutl and dout2 from our speci-

fication. 

Usage. See a single register. 

As far as AMM is concerned, the 

ri is wired to bits 3..5 of JR 

r2 is wired to bits 6..8 of IR 

wReg is wired to bits 6..8 of JR 

When IR changes, so do they, and so do the values on doutl and dout2. 

A.6. Memory 

The address bus is unidirectional; the data bus is bidirctiona1. The caller raises the 

read/write line mrw for a read and leaves it down for a write. The read/write line is 

lowered after the read has taken place. 

Protocol. The two interaction sequences are: 
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mrw 

addr 

data 

rM aM 

mrwt mrw4. 

Read: sA rM aM read; zA fl? aM 

.fr .fr 
MEM: rM sD Th? rM zD aM MEM 

For a read, the caller raises the line mrw and drives the address bus (sA). It then 

raises rM and awaits the raising of aM at which time the memory will have put the 

read value strongly onto the data bus. When the data has been read, the caller lowers 

mrw and tristates the address bus (zA) before lowering rM. The memory unit will 

tristate the data bus (zD) and then lower aM. 

sA zA 

Write: sD rM aM zD rM aM 

MEM: rM mem' aM rM aM MEM 
For a write, the caller leaves the line mrw low, but drives the address bus (sA) and 

the data bus (sD). It then raises rM and awaits the raising of aM at which time 

the memory will have been updated ( mem'). The caller then tristates both busses 

(zA.zD) and then lowers rM. The memory unit then lowers aM. 
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Specification. 

MEM ( rM.(mrwT.READ + mrwF.WRITE) 

READ sD.aM.rM.zD.M.MEM 

WRITE ( mem'.iM.rM.M.MEM 
Usage. The caller follows one or other of the protocols: 

Read ( mrw.sA.M.aM. read data .mrw.zA)M.aM 

def - 

Write = sA.sD.rM.aM.zA.zD.M.aM 

A.7. ALU 

alu 

dm1 

dm2 

rA aA 

.setO 
acicO 
setl 
ackl 

dout 

The ALU can either compare (in which case it sets a boolean register) or increment. 

The alu line is raised then lowered for compare and left low throughout an increment. 

Protocol. The two interaction sequences are: 

Compare 
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alut alu• 

sDinl zDinl 

COMP: sDin2 rA aA zDin2 aA 

ALU: rA din1=din2=SET1 A rA iA ALU 

din1din2=SETO aA rA X ALU 

where SET1 = iLack1.I.ack1 

SETO = setO.ackO.setO.ackO 

The caller sets the compare operation by raising alu, drives the data on the input 

busses, and then raises rA. The circuit fires by setting a condition code register to F 

(via .setO/ackO) or T (via setl/ackl). It then raises aA. When the caller is ready, it 

will lower flatten the line alu and the busses and then lower rA. The ALU responds 

by lowering aA. 

Increment 

INC: sDinl aA read zDinl j aA 

.1,!. 

ALU: rA sA A rA zAl aA ALU 

The caller drives dm1 and then raises then raises rA. The circuit fires, putting the 

result on the output bus dout. and then raising aA. When the caller has read the 

value on dout it lowers rA. The ALU then tristates the dout bus and lowers aA. 

Specification. 

ALU def = rA.(aluT.COMP + aluF.INC) 

COMP de =( T.ack1.set1.ack1.trA.A.ALU 

+ .setO.ackO..setO.ackO.aA.rA.aA.ALU 

INC I sA.iA.rA.zA.A.ALU 
Usage. The caller follows the protocols: 
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alu.sDIN 1.sDIN2.A.aA. 

alu.zDIN1.zDIN2.A.aA 

INC I sDIN1JA.aA. 

zDIN1.rA.aA 

ALU' 

Since our ALTJ will always be associated with a "condition code" register, we might 

as well give it define it; Here is the implementation: 

alu 

dm1 

dm2 

with CCS definition: 

rA aA 

test 

ALU' de =( (ALU I BOOL_REG) \ {setO, ackO, setl, acicl} 

We picture this composition by: 

and its specification is (roughly): 

zero 

one 
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alu 

dm1 

dm2 

test 

rA aA 

zero 

one 

dout 

ALP ( rA.(COMP + INC) + test.TEST 

COMP ef cc'.A.rA.A.ALU' 

INC sA.A.rA.zA.A.ALU' 

TEST '( ccT..test..ALU' 

+ ccF.zro.test..ALU' 

A.8. van Berkel's S element 

Protocol. The interaction sequence for van Berkel's S circuit ([vB92a]) is: 

Caller: d ... d Caller 

.ft 
5: 8  a F ad s S 

i1  ft 

sub-unit: r compute if r flatten U sub-unit 

126 
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S S 

r 
V 

A 

a 

sub - unit 

S 

d 

Specification. When s is raised, it calls an associated sub-unit twice (once to com-

pute, once to flatten). Raising r fires the subunit. Once the sub-unit has computed 

it raises a, whereupon the S element lowers r. The sub-unit now flattens its local 

circuits and then lowers r. The S element now signals it is done by raising d. Then 

.s and d are lowered in turn. 

S 'fI .s.r.tet subunit compute.a..Iet sub-unit flatten.a2.s2.S 

Usage. 

Caller def s- = .d.s.d.... 


