Access to full text denied by publisher.

Please contact your local library to acquire the following paper:

Citation:

A Modified in Situ Suzuki Cross-Coupling of Haloarenes for the Preparation of C_2 -Symmetric Biaryls

Neil G. Andersen, Shawn P. Maddaford, and Brian A. Keay pp 9556 – 9559.

Tables:

Table 1. Initial Attempts to Prepare C₂-Symmetric Biaryls via the *in Situ* Suzuki Reaction

entry ^a	halide	base	product (% yield) ^b
1	iodobenzene	2 M Na ₂ CO ₃	biphenyl (73)
2	iodobenzene	Ba(OH) ₂	biphenyl (80)
3	bromobenzene	Ba(OH) ₂	biphenyl (85)
4	2-bromotoluene	2 M Na ₂ CO ₃	2,2'-dimethyl- biphenyl (40)
5	2-bromoanisole	Ba(OH) ₂	2,2'-dimethoxy- biphenyl (56)
6	1-iodo-2-methoxy- naphthalene	2 M Na ₂ CO ₃	2,2'-dimethoxy-1,1'- binaphthyl (<10)

 $[^]a$ All reactions done in toluene with Pd(PPh3)4 and 12 h reflux time. b Isolated yields.

Table 2. Results from the Preparation of C₂-Symmetric Biaryls Using the Optimized *in Situ* Suzuki Coupling Conditions

entry	halide	product (% Yield)*	entry	halide	product (% Yield)*
1	1a	4a (85)	8	1h	4h (91)
2	1b	4b (73)	9	1i	4i (68)
3	1c	4c (79)	10	1j	4j (92)b
4	1d	4d (95)	11	2a	5a (86)
5	1e	4e (89)	12	2Ь	5b (96)
6	1f	4f (32)	13	2c	5c (84)
7	1g	4g (79)	14	3	6 (73)

 a Isolated yield. b Hydrolysis of the TBDPS ether takes place under the reaction conditions.

1a R1=Br, R2-R5=H

1b R1=Br, R2=CH3, R3-R5=H

1c R1=Br, R2=R4=R5=H, R3=CF3

1d R1=Br, R2=OMe, R3-R5=H

1e R1=Br, R2=R5=OMe, R3=R4=H

1f R1=I, R2=CO2(i-Pr), R3-R5=H

1g R1=I, R2=CON(i-Pr)2, R3-R5=H

1h R1=Br,R3-R5=H, R2=

1i R1=Br, R2=R4=R5=H, R3=CN

1j R1=Br, R2=R3=R5=H, R4=OTBDPS

 R^3 R^2 R^2 R^3 R^3

4a R²-R⁵=H

4b R2=CH3, R3-R5=H

4c R2=R4=R5=H, R3=CF3

4d R2=OMe, R3-R5=H

4e R²=R⁵=OMe, R³=R⁴=H

4f R2=CO2(i-Pr), R3-R5=H

4g R²=CON(/-Pr)₂, R³-R⁵=H

4h R3-R5=H, R2=

4i R²=R⁴=R⁵=H, R³=CN

4j R²=R³=R⁵=H, R⁴=OH

2a R1=Br, R2=H

2b R¹=I, R²=OMe

-- 3

5a R3=naphth-1-yl, R4=H

5b R3=(2-methoxynaphth-1-yl), R4=OMe

2c R1=H, R2=Br

5c R3=H, R4=naphth-2-yl

s

Schemes:

Scheme 1

Scheme 2a

 a (a) 1 equiv of NaH, DMF, 5 equiv of MeI (95%); (b) NaH, CCl4, 1 equiv of Br2 (60%); (c) NaH, DMF, BnBr, (100%); (d) 0.5 equiv of n-BuLi, THF $-78~^\circ\mathrm{C}$ then B(OMe)3 rt 12 h and then PhCH3, EtOH, H2O, Na2CO3, Pd(PPh3)4 reflux 12 h (72%); (e) H2, Pd/C, EtOH/CH2Cl2 (100%).

DOI: <u>10.1021/jo9617880</u>