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Abstract 
 

Multivariate repeated measures data, in which multiple outcomes are repeatedly measured at two 

or more occasions, are commonly collected in several disciplines (e.g., medicine, ecology, 

environmental sciences), where investigators seek to discriminate between population groups or 

make predictions based on changes in multiple correlated outcomes over time. Repeated measures 

discriminant analysis have been developed and applied to address these research questions. These 

classification models, which have been mostly developed based on growth curve models, 

covariance pattern models, and mixed-effects models, are advantageous in that they can account 

for complex correlation structures in multivariate repeated measures data (e.g., within-outcome 

and between-outcome correlations) to improve their predictive accuracy. However, they largely 

rely on the assumption of multivariate normality, which is rarely satisfied in multivariate repeated 

measures data. To our knowledge, there has been limited investigation of the behavior of these 

existing models in multivariate non-normal repeated measures data. 

The overarching goal of this research was to develop robust repeated measures 

discriminant analysis classifiers for multivariate non-normal repeated measures data. Specifically, 

we developed repeated measures discriminant analysis based on maximum trimmed likelihood 

estimators (MTLE) and generalized estimating equations (GEE) estimators and examine their 

accuracy in comparison to classifiers based on maximum likelihood estimation (MLE) using 

Monte Carlo methods. The simulation conditions examined, included population distribution, 

sample size, covariance structure (between-outcomes and within-outcome), covariance 

heterogeneity, repeated number of occasions, and number of outcome variables. The Monte Carlo 

study results indicated that the proposed methods increased overall mean classification accuracy 
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by 2% - 15% in multivariate non-normal repeated measures data compared to repeated measures 

discriminant analysis based on MLE under most scenarios. Data from two cohort studies were 

used to illustrate the implementation of the proposed repeated measures discriminant analysis 

methods.  

The outcomes of this research includes novel multivariate classifiers for predicting group 

membership in multivariate normal and non-normal repeated measures data. This research 

contributes to the advancement of statistical science on methods for analyzing multivariate 

repeated measures data. 
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1. Introduction 

1.1 Background  
 

Multivariate repeated measures data, where measurements are collected at two or more 

occasions for multiple variables1-16, have been used for discriminating between population groups. 

For example, Fieuws et al. used longitudinally collected biochemical and physiological markers 

to develop a linear discriminant analysis (LDA) rule to predict 10-year success of graft in patients 

who received a kidney transplant 1. Using repeated measures of prostate-specific antigen (PSA), 

free testosterone index (FTI), and body mass index (BMI), discriminant analysis classifier has been 

developed to estimate probabilities of prostate cancer onset in a population of  cancer patients3, 9. 

Marshall and Baron6 also developed a classification for determining pregnant women at risk of 

birth complications using longitudinally collected information on two biomarkers in a sample of 

pregnant women.  

 The majority of these classifiers for multivariate repeated measures data have been 

developed based on mixed-effects regression1, 2, 4, 7-9, 12-15 and covariance pattern models10, 11   which 

allow for the use of parsimonious means and covariance structures. These models are developed 

based on the assumption of multivariate normality, which is often not tenable in repeated measures 

studies such as studies of health-related quality of life where outcomes are typically skewed or 

heavy-tailed17, 18. For example, Fieuws et al. commented that a trivariate linear mixed model that 

was used to analyze longitudinal information on systolic blood pressure, body mass index, and 

blood triglycerides for hypertension prediction, was not appropriate to describe all longitudinal 

profiles in their renal graft failure data study because some of their data were non-normally 

distributed, and used a generalized linear mixed model 1, 19.  
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 Given the demand for multivariate repeated measures classification models1, 2, 4, 7-9, 11-14, 16 

and the increasing collection of multivariate repeated measures health data, which are mostly 

characterized by non-normal distributions1, 2, 14, 16, there is the need for accurate repeated measures 

classifiers that overcome the limitations of multivariate normality assumptions and account for the 

complex correlation structures in data especially in small-sampled data. Developing such 

classification models will be useful for classifying individuals into one of two (or more) 

populations using multivariate repeated measures designs involving continuous, discrete and 

mixed type outcomes, which are routinely collected in several disciplines.   

 

1.2 Research Questions & Objectives 
 

The overarching aim of this research is to develop accurate classification models for discriminating 

between population groups in multivariate repeated measures data when the assumption of 

multivariate normality of the outcome variables is not tenable in small-sampled data. The study’s 

research questions are as follows 

1. How accurate are existing repeated measures discriminant analysis classifiers when applied 

to discriminate between study samples of multivariate non-normal repeated measures data? 

 

2. How accurate are repeated measures discriminant analysis based on trimmed estimators 

and multivariate Generalized estimating equations (GEE) in comparisons to the 

conventional discriminant analysis models based on MLE for classification in multivariate 

non-normal repeated measures? 
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3. What is the impact of mis-specification of correlation structures on the accuracy of repeated 

measures discriminant analysis based on GEE when used for classification in multivariate 

repeated measures data? How is the impact of mis-specification influenced by outcome 

variable distribution? 

 

The study objectives are to: 

1. develop repeated measures classification models based on robust estimation methods for 

discriminating between population groups in multivariate repeated measures data 

characterized by non-normal distributions  

 

2. develop discriminant analysis estimation procedure suitable for modelling multivariate 

discrete, continuous, and mixed type multivariate repeated measures data together with 

covariates, and 

 

3. investigate the impact of correlation structure misspecification on classification accuracy 

in GEEs discriminant analysis under a variety of simulation generation conditions using 

Monte Carlo methods. 

 

In addition, the implementation of these developed methods in the study will be 

demonstrated using example datasets from population-based cohorts of patients with new onset 

epilepsy and inflammatory bowel diseases.  
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1.3 Organization of Thesis  
 

This thesis is structured as a manuscript-based dissertation that consists of three 

manuscripts, which are, as at the time of completing the dissertation, under review in peer-

reviewed journals. Chapter 2 provides a review of the literature of the relevant methodologies used 

in this dissertation. This includes the literature on repeated measures discriminant analysis, 

covariance structure mis-specification in repeated measures data analysis, and robustness of 

statistical estimators. Chapter 3 describes the results of an investigation of the accuracy of repeated 

measures discriminant analysis based on maximum trimmed likelihood estimation and its 

classification performance in comparison to classifiers based on maximum likelihood estimation 

(MLE). Data from the Manitoba Inflammatory Bowel Disease (IBD) cohort study was used to 

demonstrate the implementation of the procedures. In Chapter 4, a new class of repeated measures 

discriminant analysis classifiers based on multivariate generalized estimation equations was 

developed for classification in multivariate repeated measures data characterized by different types 

of outcomes (e.g., binary, count, ordinal). The accuracy of this class of classifiers in comparison 

to the conventional repeated measures discriminant analysis based on MLE was examined using 

Monte Carlo methods. Data from a prospective longitudinal cohort of children with new-onset 

epilepsy were used to illustrate the implementation of these methods. This manuscript is currently 

under review in Statistical Methods in Medical Research at the time of submission of this 

dissertation. Chapter 5 details the results of a study that examined the impact of mis-specification 

of GEE working correlation structure on the classification accuracy of repeated measures 

discriminant analysis based on multivariate GEE under a variety of different distributions and 

number of outcomes. This manuscript is currently under review in Communications in Statistics. 
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The dissertation closes with a discussion about the implications of these findings and suggestions 

for future research in Chapter 6.  
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2. Literature Review 
 

In this chapter, we outline the general framework (formulation) of the discrimination 

problem, present the main approaches of classical discriminant analysis, and literature on 

discriminant analysis procedures for multivariate repeated measures data, which includes 

procedures based on covariance pattern, mixed-effects, and GEE models. This chapter introduces 

the concept of robustness of statistical estimators, existing robust procedures for multivariate 

non-normal data used in this research. These include trimmed estimators (Minimum Covariance 

Determinant and Minimum Volume Ellipsoid).   

2.1 Multivariate Repeated Measures Discriminant Analysis 
 

Let 𝐲𝑖𝑗 be the pq  1 vector of observed measurements corresponding to p repeated 

measurements on each of the q outcome variables for the ith study participant in the jth population 

(𝑖 = 1, …… , 𝑛𝑗; 𝑗 = 1,2;𝑁 = 𝑛1 + 𝑛2). The vectors are structured such that the repeated 

measurements are nested within each variable. While this manuscript focuses on the analysis of 

two-population designs, the procedures have been generalized to multi-population problems 20-22. 

Assume that 𝐲𝑖𝑗~𝑁𝑝𝑞(𝝁𝑗 , 𝛀𝑗), where 𝝁𝑗 and  𝛀𝑗  are the population mean and covariance for the 

jth group and are estimated by  𝝁̂𝑗 and, 𝛀̂𝑗  respectively. Denote 𝜋𝑗 as the prior probability, or the 

membership probability of population 𝑗, that is the probability for an observation to come from 

population 𝑗. The optimal classifier (i.e, the Bayes rule) is based on conditional probability, which 

by the Bayes theorem takes the following form 
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𝑃(𝐲 𝜖 j | 𝒀 = 𝐲) =  
𝑃(𝒀 = 𝐲| 𝐲 𝜖 j)𝑃(𝐲 𝜖 j)

𝑃(𝒀 = 𝐲)
 

              =  
𝜋𝑗𝑓𝑗(𝐲)

∑ 𝜋𝑗
2
𝑗=1 𝑓𝑗(𝐲)

 

 ((2.1) 

 

where 𝑗 = 1,2 (number of populations), 𝑓𝑗(𝐲) is the likelihood (conditional density function), and 𝜋𝑗 is 

the prior probabilities for population 𝑗. The classification decision function can be written as  

 

argmax
𝑗

𝑃(𝐲 𝜖 j | 𝒀 = 𝐲) =  argmax
𝑗

 𝜋𝑗𝑓𝑗(𝐲)   ((2.2) 

Suppose 𝒀| 𝐲 𝜖 j ~ 𝑁𝑝𝑞 (𝛍𝑗, 𝛀𝑗) , where  𝛍𝑗 and 𝛀𝑗  are the mean vector and covariance matrix 

respectively for population 𝑗. Taking the logarithm of the classification function with simple 

calculations reveal that,  

𝑑𝑗(𝐲) = [𝐲 − 𝝁𝑗]
𝑇
(𝛀𝑗)

−1
[𝐲 − 𝝁𝑗] + log|𝛀𝑗| − 2log(𝜋𝑗) + constant  ((2.3) 

where the first term is the so-called Mahalanobis distance between 𝐲 and 𝝁𝑗. The quadratic 

discriminant analysis (QDA) classification, when the population covariances are not equal (i.e.,  

 𝛀1 ≠  𝛀2) assign 𝐲 to population j if 𝑑𝑗(𝐲) achieves the maximum among [𝑑1(𝐲),𝑑2(𝐲)]. If 

further assume a common covariance matrix of the two populations under the assumption of 

homoscedasticity ( 𝛀1 =  𝛀2 = 𝛀), we can simply QDA as linear discriminant analysis (LDA) 

  

𝑑𝑗(𝐲) = [𝐲 − 𝝁𝑗]
𝑇
(𝛀)−1[𝐲 − 𝝁𝑗] + log|𝛀| − 2log(𝜋𝑗) + constant 

= -𝐲𝑇𝛀−1𝝁𝑗 + (
1

2
𝝁𝑗

𝑇𝛀−1𝝁𝑗 − log(𝜋𝑗)) + constant 

 ((2.4) 

It is also well known that with a common covariance structure among populations, if both 

populations have equal membership probabilities, this rule (2.4) coincides with Fisher’s linear 
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discriminant rule22. As 𝝁𝑗, 𝛀𝑗 and 𝜋𝑗 are in practice unknown, they have to be estimated from the 

sampled data. To estimate 𝝁𝑗  and 𝛀𝑗  , one usually uses the population mean 𝐲̅𝑖𝑗 and the population 

empirical covariance matrix 𝐒𝑗 (MLEs), yielding the classical discriminant rule. Two choices are 

popular for the estimates of the membership probabilities 𝜋𝑗. Either the 𝜋𝑗 are considered to be 

constant over all populations, yielding  π̂𝑗= ½ for each poulation or estimated as the relative 

frequencies of the observations in each population, thus π̂𝑗= 
𝑛𝑗

𝑁
. The accuracy of the classification 

rules are commonly evaluated by the overall mean classification accuracy, i.e. the proportion of 

correctly specified individuals. The overall classification accuracy is estimated by  

Overall classification accuracy =  
correct classifications 

Total sample size 
=

𝑛11 + 𝑛22 

𝑁 
 

 ((2.5) 

 

where 𝑛11 and 𝑛22 are the number of study participants correctly assigned to populations 1 and 2, 

respectively. The classical linear and quadratic discriminant analyses are popular discriminant 

analysis models because of their simplicity and flexible assumptions. However, these models are 

inherently less accurate when there is contamination due to outliers or non-normal distributions 

such as those obtained in skewed or heavy-tailed distributions23-26. Therefore, it is important to 

consider robust alternatives to these estimators and in the last two decades several affine 

equivariant estimators possessing a high breakdown point have been proposed27-30. Moreover, 

classical discriminant analysis procedures require balanced data, do not include covariate 

information, and cannot be applied to high dimensional data in which sample size is less than the 

product of the number of repeated measurements and the number of outcome variables31, 32. 

Early research about multivariate repeated measures data focused on procedures based on 

growth curve models, covariance pattern models, and mixed-effects models. Discriminant analysis  
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procedure based on the growth curve model33 extended the concept of discriminant analysis to 

multivariate outcome curves observed over a specified time interval. The multivariate repeated 

measures growth curve model involves fitting outcome curves by linear interpolation between 

successive observations and classifying an individual outcome curve to the group curve it 

resembles most. It requires that the outcome curves in the training sample are fully observed over 

the considered time interval; however, does not require equally spaced observations and makes no 

assumptions about the nature of the variables. In addition to growth curve models, there have been 

a number of developments in discriminant analysis procedures based on covariance pattern and 

mixed-effects models for multivariate repeated measures data. 

 

 

 

2.1.1 Covariance Pattern Model  
 

Repeated measures discriminant analysis based on the covariance pattern model have also 

been described for multivariate repeated measures data4, 10, 34. Covariance pattern model (CPM) 

assumes all outcomes follow the multivariate normal distribution, and multivariate linear 

regression model can be used but assumes the variance-covariance matrix to be of a certain form35. 

The regression model for CPM for each population membership in matrix form can be written as 

𝐲𝑖𝑗 = 𝐗𝑖𝛃𝑗  + 𝒆𝑖𝑗   ((2.6) 

where  𝐲𝑖𝑗 is a 𝑝𝑞 x 1 vector of q correlated outcomes that are each repeatedly measured at p 

occasions in the jth population, and 𝐗𝑖  is the corresponding 𝑝𝑞 x 𝐾𝑞 block diagonal covariate 

(design) matrix, and  𝒆𝑖𝑗~N𝑝𝑞(𝟎,𝛀𝑗) is a vector containing the error components. Population 

means are computed from estimates of the parameters, that is,  𝛍̂𝑗 = E(𝐲𝑖𝑗) = 𝐗𝑖𝛃𝑗
̂ , and the pq×pq 
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variance-covariance matrix (𝛀𝑗) has a functional form. No random effects are included in the 

regression model, so these models do not distinguish the variance term in within-subjects and 

between-subjects variance. The covariance matrix 𝛀𝑗 of the model or residuals provides 

information about both the association within each outcome variable over time and also the 

association between the outcome variables. For fully balanced data set, completely unspecified 

covariance matrix 𝛀𝑗  leads to a total of pq (pq + 1)/2 unknown parameters to be estimated for any 

statistical inference, where p is the number of time points at which measurements have been taken 

36, 37. Estimation of all parameters will require a very large sample, which may not always be 

feasible (𝑛𝑗 < pq) or may be cost prohibitive.  

To reduce the dimension of the unknown parameters of the covariance matrix, a more 

parsimonious structure is sometimes used, such as a Kronecker product (or separable matrix) of 

the covariance matrix 𝛀𝑗 = 𝑽𝑗⨂𝜮𝑗, where 𝑽𝑗 and 𝜮𝑗 are p × p and q × q positive definite matrices 

for the p time points and q outcomes, respectively, and ⊗ is the Kronecker product sign 36-40. Even 

for unstructured p × p and q × q covariance matrices, a reduction in the number of covariance 

parameters is obtained36-43.  The number of unknown parameters to be estimated is only p(p+1)/2 

+ q(q+1)/2 −1 under a Kronecker product structure which is much less than pq (pq + 1)/2 in an 

unstructured variance–covariance matrix38. Further assumed structure for the repeated 

measurements of each outcome, such as a first-order autoregressive (AR-1) or compound 

symmetry (CS) covariance, can lead to an even more parsimonious covariance model; so that the 

number of unknown parameters to be estimated further reduces to 1+ q(q+1)/2 36, 38, 40. The 

structuring of covariance (CS and AR-1) provides flexible model for covariance, resulting in 

improvement in precision, particularly in the analysis based on small sample36, 38, 40. However, the 

Kronecker product model implies that the correlation matrix 𝑽 of the repeated measures on a given 
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outcome variable is assumed to be the same for all outcome variables and the variance-covariance 

matrix 𝜮 between the measurements on all outcome variables at a given time point is assumed 

constant for all time points, which may not be realistic in many applications 36, 37.  Thus, the choice 

of appropriate covariance structure is crucial, and it is vital to test the appropriateness of the 

covariance structure on the data before any statistical analysis11. Inferences of interest are easily 

influenced by the correlation structure’s assumptions, however unstructured correlation structure 

might cause convergence problems as the number of parameters to be estimated grows rapidly 44.  

The main advantage of using a structured variance-covariance matrix over an unstructured one 

is that the number of unknown parameters decreases substantially, assisting analysis of small 

sample data10. The covariance procedures can result in efficient classification rules in high-

dimensional data but can result in decreased classification accuracy when the mean and/or 

covariance structure is/are misspecified10.  The inclusion of covariates, specification of mean and 

parsimonious covariance structure in these models further improve classification accuracy 

compared to the classical discriminant analysis based on unstructured means and population 

covariances. However, none of the classifiers developed based on covariance pattern models allow 

for incomplete longitudinal data or non-normal distributions. 
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2.1.2 Mixed Effects Models  
 

Many researchers have proposed discriminant analysis models based on the use of mixed-

effects models for multivariate repeated measures data1, 2, 4, 7-9, 12, 13. Covariance pattern models do 

not address the incompleteness of the data or the issue of missing values. Discarding data with 

missing components can result in appreciable information loss45. To jointly model multivariate 

repeated measures data using mixed-effects models, a mixed effect model is defined for each 

outcome variable and then the outcome variables are related through the random-effects35 for each 

population.  

𝐲𝑖𝑗 = 𝐗𝑖𝛃𝑗 + 𝐙𝑖𝐝𝑖𝑗 + 𝒆𝑖𝑗  ((2.5) 

where 𝐗𝑖  is the  𝑝𝑞 x 𝐾𝑞 block diagonal covariate matrix for fixed effects, 𝐙𝑖  is the corresponding 

𝑝𝑞 x 𝐿𝑞 covariate matrix for random effects,  𝛃
𝑗
 ~(  𝛃 1𝑗

′ ,  𝛃 2𝑗
′ , … ,  𝛃 𝑞𝑗

′ )′ the vectors of fixed 

effects,  𝒆𝑖𝑗~N𝑝𝑞(𝟎,𝛀) is a vector containing the error components, and  𝒅𝑖𝑗~N𝑝𝑞(𝟎, 𝐃), the joint 

distribution of ith subject-specific random effects pertaining to all outcomes. The covariance 

matrix var(𝒅𝑖𝑗) = 𝐃 is assumed to be a generally unstructured positive definitive matrix. The 

relationship between the outcome variables can be induced through the random-effects in one of 

two ways. The first approach is to include random-effects that are common between the outcomes. 

These models are referred to as shared random effects models. The shared random -effects models 

reflect the belief that common set of underlying characteristics of the individual governs the 

outcome processes35. This assumption can reduce the computational problem substantially, since 

the number of random effects in the model does not increase with the number of outcome variables. 

However, one drawback of the shared random effects approach is that it implies that there is a 

perfect positive correlation between the shared random effects which is typically unrealistic35. The 

second approach is to include unique random effects for each outcome variable, and then model 
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the relationship between the outcome variables through the covariances of the random-effects1, 4, 

35.  These are referred to as correlated random-effects models. In contrast to the shared random 

effects approach, this model allows the correlation between random effects to be positive or 

negative. By examining these correlations, one can get an idea of the relationship between the 

trajectories of the outcomes. It is also possible to calculate a measure of the how correlation 

changes over time (“evolution of association”)1. 

Various discriminant analysis procedures based on mixed-effects models have been made 

in recent years for multivariate repeated measures data. Multivariate linear and non-linear mixed-

effects models that assume unstructured1, 4 and Kronecker product structure7-9, 31, 46 for the 

variance-covariance matrix have been introduced. For example, Marshall et al.8 investigated 

discriminant analysis models based on bivariate nonlinear mixed-effects models with Kronecker 

product covariance for classification in incomplete multivariate longitudinal data. They showed 

that incorporating the Kronecker product covariance structure for multiple outcomes resulted in 

more accurate prediction model estimates compared to unstructured covariance structure. These 

multivariate mixed-effects models that assume Kronecker variance-covariance matrix address the 

issue of small sample size. Generalized linear mixed-effects models have been extended in 

multivariate repeated measures studies for different outcomes (continuous, counts and binary)1, 2, 

14, 16.  

Each of the mixed-effects models references mentioned above except Komarek et al.4 and 

Hughes et al.2, 16 assumed that the random effects follow a multivariate normal distribution. 

However, under misspecification of the random effects distribution, estimates of the model 

parameters may become seriously biased 47. To make the model more robust against 

misspecification of the random-effects distribution, a normal mixture is assumed for the random 
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effects to obtain a robust model that is further used in the LDA procedure2, 4, 16. Few studies have 

assumed multivariate t-distribution and multinomial distribution for the random effects to identify 

different classes of subjects in multivariate repeated measures data48-52. Many of these mixed-

effects models can be fitted using software packages such as the SAS procedure MIXED for linear 

models, GLIMMIX for generalized linear models and NLMIXED for nonlinear models. 

There are several advantages in using multivariate mixed-effect models to analyze 

multivariate repeated measures data. Multivariate mixed-effect models are efficient for dealing 

with incomplete data. Because an individual’s contribution to the likelihood function is calculated 

one subject at a time, it is possible to work with the available data for that subject, ignoring the 

missing data. Valid inferences can be obtained even with incomplete information, under missing 

at random (MAR) assumption. Mixed-effects models for multivariate repeated measures data have 

been extended to include variables of different types. This is because the relationship between the 

variables is handled through the random effects rather than the residuals. However, when the 

number of parameters increases with number of repeated measures and a collection of outcomes, 

the random-effects approaches are more likely to be computationally intensive and unstable1, 4, 35. 

In addition, it is difficult to evaluate the marginal likelihood of jointly generalized linear mixed-

effects models when the outcome is non-normal. 

Despite the variety of classification models developed for classification in multivariate 

repeated measures data, existing classifiers mostly relied on the assumption of multivariate 

normality. So far, there have been limited investigations of multivariate repeated measures 

classification models that are robust to model mis-specification and/or non-normal data 

distributions44.  
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2.1.3 Generalized Estimating Equations  

 

Generalized estimating equations (GEEs) are well-known marginal models used to analyze 

longitudinal discrete and continuous outcomes in clinical trials and biomedical studies53-57. GEE 

is used to characterize the marginal expectation of outcomes as a function of explanatory variables. 

While the mixed-effect model is an individual-level approach that adopts random effects to capture 

the correlation between the observations of the same subject58, GEE is a population-level approach 

based on a quasi-likelihood function and provides the population estimates of the parameters53, 59. 

The parameter estimates of GEE are consistent and asymptotically normally distributed even when 

the “working” correlation structure of outcomes is mis-specified under mild regularity conditions.  

Traditional GEEs have been extended to modeling of multiple outcomes60. In multivariate 

repeated measures binary data, Shelton et al. built a multivariate GEE approach SAS macro, and 

their method has been implemented in R package as well61, 62. Rochon63 also applied the 

multivariate GEE model to simultaneously analyze a mixture of binary and continuous types of 

repeated measures. Using Kronecker product to decompose the working correlation matrix that 

captures between- and within-outcome relationships with a smaller number of correlation 

parameters, multivariate GEE models for multivariate repeated measures continuous data have 

been generalized to a class of multivariate GEE models for multivariate repeated measures data 

with same-type or mixed outcomes64,65. The multivariate GEE models has been implemented in 

an R package JGEE65.  

Multivariate GEE is an attractive approach because it relaxes the distribution assumption 

and only requires the correct specification of marginal means and variances as well as the link 

function which connects the covariates of interest and marginal means. Multivariate GEE can be 

implemented with several commonly available statistical software (e.g., SAS, Stata, S-Plus and 
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R)66. GEE methodology leads to valid inferences and claims its inferential optimality, when the 

missingness mechanism is missing completely at random (MCAR) (i.e. the complete cases can be 

viewed as a random sample from the underlying population). However, GEE can be inefficient 

due to ignored data especially in multivariate problems with highly arbitrary patterns of missing 

data67, 68. Weighted GEE and imputation approaches have proposed when the underlying data is 

missing at random (MAR). Despite the attractiveness of multivariate GEE, which is focused on its 

ability to analyze both discrete and continuous outcome variables, and accommodate different 

types of covariates, researchers have not explored repeated measures discriminant analysis based 

on multivariate GEE. 

2.2 Covariance or Correlation structure Mis-specification  
 

Multivariate repeated measures data comprise of two sources of variations (outcomes and 

occasions), and these variations must be taken into account while analyzing these kinds of data. A 

classical multivariate approach to the modeling and analysis of these data would be assuming 

unstructured covariance structure, yielding maximum-likelihood estimates provided the sample 

size is large. In this case, a large sample size is required for estimation of unstructured covariance 

structure since the number of unknown parameters to be estimated increases very rapidly with the 

increase in dimension of either the number of outcomes q, or the number of repeated occasions 

p36-43. "While it is robust not to assume knowledge of the covariance structure, this can result in 

rather weak inference in the sense that too many degrees of freedom are used up in estimating the 

covariance parameters, leaving too few for the parameters of interest"69, Crowder and Hand 

(4,p.60). Therefore, for reasons of parsimony or more efficient mean estimation, or because the 

sample size may be insufficiently large for the covariance structure to be positive definite almost 
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surely, it may be desirable or necessary to assume that the covariance structure has a more 

structured form70. 

A common and natural structure to consider is the Kronecker product structure, i.e., 𝑽 ⨂𝜮, 

for two positive definite matrices 𝑽 and 𝜮. Several authors have used this Kronecker product 

structure variance-covariance matrix in their analyses of multivariate repeated measures data71-74 

and in classification problems10, 11, 75. This Kronecker product structure separates the covariance 

structure of all the variables into covariance structures attributable to each of the two factors 

(outcomes and occasions), hence this structure is commonly said to be separable. Separability 

imposes a number of constraints on the variances and correlations among the observed variables39. 

Because separability imposes quite severe constraints on the covariance matrix, it may not hold 

for some datasets and it is important to test for this assumption39, 76. In addition, the choice of an 

appropriate covariance structure is crucial for multivariate repeated measures data in the context 

of classification since it increases the misclassification error rate. Thus, it is vital to test the 

appropriate covariance structure on the data before any statistical analysis36.  

In addition, hypotheses testing problems for multivariate repeated measures data using 

Kronecker product structure with both unstructured components have been widely studied by 

many authors37, 39, 41-43, and Kronecker product structure with a CS or AR-1 correlation structures 

on the first component have also been widely studied to avoid identifiability problem36, 40. 

Likewise, Kronecker covariance structure assuming both components as structured CS or AR-1 

which is useful for spatio-temporal repeated measurements have been studied77. For example, for 

modeling the covariance of multivariate environmental monitoring data obtained repeatedly over 

time and space, or for modeling covariance structure of glucose measurement at 15 different 

regions (p=15) in both hemispheres(q=2) of the brain78.  
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All these authors used likelihood ratio test (LRT) statistic for testing separability of a 

covariance structure for multivariate repeated measures data. There are three types of LRT: (1) 

biased tests based on an asymptotic chi-square null distribution. The MIXED procedure of SAS 

software can be used to test the hypotheses for separable covariance structure with the first 

component as CS or AR-1 correlation or unstructured covariance structures using biased LRT79; 

(2) unbiased/modified LRT statistic in which the test statistic is modified in order to match the 

theoretical chi-square distribution to test the separability of variance–covariance structure; and 

(3) unbiased/unmodified tests based on an empirical null distribution (END). Hypotheses tests for 

separable structures are well developed area, and biased and unbiased/unmodified LRTs are 

available. However, the LRT statistic is reliable with very large samples, which may be limited in 

the real-life applications because we have only finite samples. Exploiting the ENDs of the LRT 

statistic overcome the problem of the accuracy of the asymptotic approximation under the null 

distribution of the unmodified LRT statistic for testing separable covariance structure for small or 

moderate sample sizes39, 77. However, the ENDs of the LRT statistics are quite different from their 

limiting chi-square distributions for small sample size. Therefore, the LRT fails in practical use 

because its distribution is very different from its limiting chi-square distribution for small samples. 

In addition, the LRT cannot be used for 𝑛𝑗 < 𝑝𝑞 for the unstructured variance-covariance matrix 

as alternative hypothesis. Nonetheless, researchers still use the theoretical chi-square distribution 

even for small samples as exact tests are not available in such cases.  

 In multivariate repeated measures data applications, one can fit linear models for a 

classification problem with separable covariance structure when 𝑛𝑗 < 𝑝𝑞 using MIXED procedure 

of SAS11, 80. However, before applying MIXED procedure of SAS for classification rules, one must 

test whether the data have separable covariance structure80. Unfortunately, all the above-mentioned 
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available LRT tests need the assumption 𝑛𝑗 > 𝑝𝑞, which is often not possible in applied setting 

given the limitations on data collection.  

 Rao’s score test (RST) has been proposed as an alternative to LRT approach which avoids 

this limitation38, 81. The unmodified RST procedure test a separable covariance structure with the 

first component as a CS correlation matrix, which essentially means that all measurements for any 

characteristic within the same subject are equi-correlated. An advantage of RST is that it only 

exploits the null hypothesis, and thus does not need the assumption 𝑛𝑗 > 𝑝𝑞 as LRT does. When 

both components of the separable covariance structure are unstructured, the RST requires a sample 

size 𝑛𝑗 > max (𝑝, 𝑞), which can be large for many repeated measures (𝑝)38. However, when the 

first separable component is the CS correlation structure, RST only requires a sample size 𝑛𝑗 > 𝑞, 

which is independent of the number of repeated measures. Given the increasing collection of 

multivariate repeated measures data on which separability could be assessed, testing separability 

of a covariance structure using RST when 𝑛𝑗 > 𝑞 is a substantial improvement over the LRT. 

In quasi-likelihood framework, quasi-likelihood under the independent model information 

criterion (QIC)82 was proposed as a modification of  Akaike information criterion (AIC)83  to select 

an appropriate working correlation structure among several candidates in GEE models. Similarly, 

to the AIC, the QIC is a trade-off between a good fit to the model (as measured by the quasi-

likelihood), and a penalty for complexity measured by trace. However, QIC tends to favor the 

independence working structure, because the quasi-likelihood is formed under the working 

independence structure and hence utilizes little information about the correlation for GEE. As a 

remedy, Hin and Wang84 suggested Correlation Information Criterion (CIC), that uses the penalty 

term in the QIC as a criterion for the selection of working correlation structure. 
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2.3 Statistical Robustness  
 

Many assumptions commonly made in classical statistics such as normality, independence, 

and linearity are often not fulfilled in practice85, 86. Statistical procedures (in particular, those 

optimized for an underlying normal distribution) are excessively sensitive to seemingly minor 

deviations from the assumptions, and alternative "robust" procedures have been proposed 27, 86.  

Statistical robustness signifies insensitivity to small deviations from idealized assumptions 85, 86. 

In particular, distributional robustness of statistical estimators means insensitivity to small 

deviations from the shape of the true underlying distribution (usually normal) and tolerance to 

outliers 86. The goals of robust estimators are: to describe the structure best fitting the bulk of the 

data; to identify and mitigate outliers and leverage points 85.   

As mentioned by Peter Huber 27, 86; robust, distribution-free, and non-parametric seem to 

be closely related properties but actually are not. Robust statistical estimators should not be 

confused with nonparametric estimators, although a few nonparametric procedures happen to be 

very robust 85, 87. Robust statistics work in a "neighborhood" of parametric models85. Robust 

estimators consider that parametric models are only approximations to reality and are not only 

valid under strict parametric models but also in a neighborhood of such parametric models85. 

Therefore, robust estimators allow approximate fulfillment of strict assumptions, while 

nonparametric estimators make weak but strict assumptions (like symmetry and absolute 

continuity) 85, 87.  For example, the sample mean and the sample median are nonparametric 

estimates of the mean and the median, but the mean is not robust to outliers.  

In estimation, optimality under the ideal model is commonly measured by the efficiency of 

the estimator, while near-optimality under contamination is displayed by measures of its 

resistance, or robustness27, 86.  Robustness provides methods that trade-off some efficiency at the 
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ideal model to gain resistance against the effects of deviations 27, 86. Robust estimators have optimal 

or nearly optimal efficiency at the assumed model, are resistant to small deviations from the model 

assumptions, and does not suffer a breakdown in case of large deviations 88. 

 

2.3.1 Measures of Robustness 
 

There are several measures of robustness of statistical estimators attempting to quantify the 

change, including the influence function and breakdown point.  The influence function (IF) 

measures the effect of an infinitesimally small fraction of contamination on the estimator, hence a 

local robustness measure85, 89. A desirable property of the IF is boundedness. Boundedness ensures 

that a small fraction of contamination or outliers can have only a limited effect on the estimate or 

describes a function which does not go to infinity as the number of outliers become arbitrarily 

large85, 88, 89.  The breakdown point of an estimator is defined as the proportion of outliers or 

contamination that an estimator can handle before becoming arbitrarily large (or breaks down) 90. 

The higher the breakdown point of an estimator, the more robust the estimator.  The breakdown 

point takes values from 0% to 50%  88. The breakdown point cannot exceed 50% because if more 

than half of the observations are contaminated, then it is not possible to distinguish between the 

underlying distribution and the contaminating distribution 88, 91. The breakdown point of the sample 

mean is zero, which means that a single outlier may throw the estimator completely off, while for 

the sample median it is 50%. Therefore, the median is a robust measure of central tendency while 

the mean is not 90, 92. 

Estimation procedures that are robust to departures from multivariate normal distributions 

have been adopted for repeated measures prediction models. These include (a) transformation of 

data, and (b) robust estimators of parameters. Transformation is seen as an easy-to-implement 
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remedy to address the assumption of normality; however, applying a non-linear (eg: logarithmic, 

inverse) transformation to the outcome not only normalizes the residuals, but also distorts the scale 

of the transformed variable as well as alter the fundamental relationships among variables 93, 

94.  Hence interpretation of the covariate effect on the transformed outcome can be complicated93.  

Robust estimators such as M-estimators 27, 28, S-estimators29, minimum covariance 

determinant (MCD) estimators  and  minimum volume ellipsoid (MVE)30 have been adopted to 

develop robust discriminant analysis for predicting population memberships, but for multivariate 

data collected at a single point (cross-sectional data) 95, 96 and univariate repeated measures data97. 

These robust estimators are especially useful in the multivariate normal model for the robust 

estimation of mean vectors 𝛍𝑗 and covariance matrices 𝛀𝑗, even linear mixed models can be 

formalized as a multivariate normal model88, 98. The dispersion function for the multivariate normal 

model can be the determinant of the covariance matrix det(𝛀𝑗) =|𝛀𝑗 | and Mahalanobis distances 

can be defined as 

𝑑𝑖 = √(𝐲𝑖 − 𝛍𝑗)𝑇𝛀𝑗
−1(𝐲𝑖 − 𝛍𝑗) 

 ((2.7) 

The Mahalanobis distance is a natural measure of ‘outlyingness’ of an observation91.  

Consequently, and provided that the parameters 𝛍𝑗 and 𝛀𝑗 in 𝑑𝑖 are estimated robustly (example, 

via MCD and MVE), Mahalanobis distances can be used to detect multivariate outliers in that 

outliers correspond to large Mahalanobis distances29, 88. Therefore, high breakdown estimates such 

as S-estimators, MCD and MVE have been recommended for non-normal high dimensional 

data29,30, 91,  

99.   
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2.3.2 MCD and MVE Estimators 
 

The minimum volume ellipsoid (MVE) and minimum covariance determinant (MCD) 

estimators introduced by Rousseeuw have received a considerable attention by scientific 

community and widely used in practice30. These are both affine equivariant estimators with 

bounded influence function properties and high breakdown points of ([𝑛𝑗/2]-m + l)/ 𝑛𝑗 approaching 

½ for large 𝑛𝑗
91 and m-dimensional data. The MCD mean and covariance estimates are obtained 

from a subset of the data covering h (ℎ < 𝑛𝑗) of the original data with the minimum covariance 

matrix determinant among all possible subsets of size h. A recommendable and common choice 

for h that yields maximum breakdown is: h= [(𝑛𝑗+m+1)/2], which asymptotically reaches half of 

the data, but any integer h within the interval [(𝑛𝑗 + m + 1)/2, 𝑛𝑗] can be chosen91. If ℎ = 𝑛𝑗 then 

the MCD estimates reduce to the sample mean and covariance matrix of the full dataset. The MCD 

approach is similar to the MVE and has the same objective function. The only difference is in the 

constraint used where MCD minimizes the determinant of the covariance matrix based on the h 

data, while MVE minimizes the volume of the ellipsoid on h data. Thus, the MVE mean and 

covariance estimates are the centre and scatter of the ellipsoid with minimum volume covering at 

least h points of the data respectively. The MCD estimator is more attractive than MVE because it 

has a better convergence rate of 𝑛𝑗
−1/2compared to 𝑛𝑗

−1/3 of MVE100, 101  and MCD gives the exact 

solution102, 103.  

 Several different algorithms have been proposed in attempt to increase the computational 

efficiency of MVE and MCD because to obtain approximate values of these estimators is not only 

expensive but could be impossible for large sample sizes with large number of outcomes and 
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repeated occasions. These algorithms include: the Feasible Solution Algorithm (FSA) which is 

computationally heavy and relatively slow104, 105 and the most commonly used algorithm, FAST-

MCD106 which obviate the need to examine all possible subsets of the data and the FAST algorithm 

has been modified for MVE107. The Fast algorithms are available in many computer packages such 

as MATLAB, R, SAS, and S-Plus. 

2.4 Summary of Review 
 

Marginal models, and mixed-effects models have been used to capture the dependencies in 

multivariate repeated measures data analyses in in the context of classification problems. The term 

marginal models include among others, covariance pattern models(CPM)  and generalized 

estimating equations (GEE)108. The correlation structures induced by CPM and GEE are similar, 

but CPM apply only to continuous normally distributed outcome while GEE can be applied to a 

broad range of outcome variables often encountered in empirical applications (e.g., continuous, 

ordinal, polychotomous, dichotomous). Despite this attractive feature of GEE, researchers have 

not explored the application of GEE approach in discriminant analysis. Also, the selection of the 

correlation structure for the repeated measurements is not as critical for GEE as for mixed-effects 

models since the parameter estimates are consistent and asymptotically normally distributed even 

under mis-specified “working” correlation structure of outcomes in GEE approach. However, in 

the presence of missing data, GEE is only valid under the strong assumption of missing completely 

at random (MCAR)109 but not missing at random assumption (MAR). However, mixed-effects 

models are efficient for dealing with incomplete data. Therefore, valid inferences can be obtained 

in mixed-effects models even with incomplete information under MAR. Multiple imputation GEEs 

and other approaches have been proposed as elegant ways to ensure validity of the inference under 
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MAR109, 110. A disadvantage of mixed-effects model is that the dimension of random-effects 

quickly increases as more outcomes and random-effects are added to the model, increasing the 

computational burden. 

While it is crucial to model the dependencies in multivariate repeated measures data, 

estimation of all parameters will require a very large sample which may not always be feasible. To 

reduce the dimension of the unknown parameters of the covariance matrix, a more parsimonious 

structure such as a Kronecker product of the covariance matrix is sometimes used. To test the 

appropriateness of an assumed covariance structure on the data before any statistical analysis, 

many authors have widely studied hypotheses testing problems for multivariate repeated measures 

data using Kronecker product structure via likelihood tests 37, 39, 41-43 and Rao’s score test 38, 81. 

Finally, robust estimators have also been adopted to robustify marginal and mixed-effects 

models in the analysis of non-normal repeated measures data96, 98, 111-116. High breakdown robust 

estimates such as S-estimators, MVE and MCD have been recommended for non-normal high 

dimensional data instead of M-estimators. However, most of these robust estimators have been 

adopted to develop robust discriminant analysis for predicting group memberships in univariate 

repeated measures data112-116 and have not been extended to multivariate repeated measures 

discriminant analysis.  
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Abstract 
 

Repeated measures discriminant analyses have been developed for distinguishing between two or 

more independent populations in multivariate repeated measures designs, in which multiple 

outcomes are repeatedly measured at two or more measurement occasions. However, these models, 

which are based on structured covariances, rely on the assumption of multivariate normality. This 

study developed repeated measures linear discriminant analysis (RMLDA) and repeated measures 

quadratic discriminant analysis (RMQDA) based on maximum trimmed likelihood estimators 

(MTLE) for classifying repeatedly measured observations characterized by multivariate non-

normal distributions. Monte Carlo methods were used to compare the accuracy of repeated 

measures discriminant analysis procedures based on maximum likelihood estimators (MLE) and 

MTLE under a variety of simulation generation conditions, including population distribution, 

covariance structure, covariance heterogeneity, between-variable and within-variable correlations 

and number of outcome variables. There were negligible differences in the mean accuracy of 

repeated measures discriminant analysis based on MLE and MTLE when the data were sampled 

from multivariate normal distribution. But, the MTLE procedures had between 2% and 13% higher 

overall mean classification accuracy than MLE procedures for multivariate heavy-tailed 

distributions. Repeated measures discriminant analysis based on robust estimators are 

recommended for discriminating between population in multivariate repeated measures designs 

characterized by non-normal distributions. 

 

Keywords: Repeated measures, longitudinal data, robust methods, covariance structure, trimmed 

estimators, non-normality, Outliers 
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3.1 Introduction 
 

Multivariate repeated measures data, in which multiple outcomes are repeatedly measured 

at two or more occasions, are commonly collected in several disciplines including medicine, 

ecology, and environmental sciences, where investigators seek to understand changes in multiple 

correlated outcomes over time or different occasions1-6. Multivariate repeated measures data are 

particularly useful for studying evolutions in subjects’ outcomes over time on multiple 

characteristics7. For example, Fieuws and Verbeke 1 reported data on a cohort of patients who 

having undergone kidney transplant, were longitudinally monitored at irregularly spaced intervals 

over a 10 year period. The repeated collection of multiple biochemical and physiological markers, 

which constitute multivariate repeated measures data, were used to predict 10-year success of graft. 

Multivariate repeated measures data are inherently challenging to analyze because they are 

typically characterized by non-normal distributions, and high-dimensional data. Moreover, such 

data have complex correlation structures8, 9. Classical classification and prediction models 

developed for data collected in a cross-sectional study are not appropriate to address the 

complexities observed in multivariate repeated measures data 8, 9 . 

Repeated measures discriminant analysis, which assume parsimonious mean and 

covariance structures, have been proposed for discriminating between population groups in 

multivariate repeated measures data. These procedures have been primarily developed based on 

mixed-effects regression models, covariance pattern models, and growth curve models10-14 . For 

example, Roy and Khattree developed repeated measures discriminant analysis  procedures based 

on structured means and Kronecker product variance-covariance matrix of unstructured between-

outcome correlation matrix and compound symmetric (CS) or first-order autoregressive (AR-1) 

within-outcome correlation for predicting population membership in multivariate repeated 
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measures data12, 13. One approach that has been widely used in applied behavioral research is 

growth curve modeling analysis. Discriminant analysis have been extended to the study of 

multivariate outcome curves that can be used to classify a given patient’s response curve (example: 

linear and quadratic shape) to the prognostic group it resembles most15. However, misspecification 

of the functional form of the growth curve can potentially lead to biased parameter estimates, 

misleading conclusions and lower accuracy16, 17. Similarly, repeated measures discriminant 

analysis have been developed based on multivariate linear and non-linear mixed-effects models 

that assume no structure 1, 18 and a Kronecker product structure 6, 19-21 for the within-outcome and 

between-outcome covariance matrices. Repeated measures discriminant analysis based on mixed-

effects models are known to be advantageous in that they can accommodate time-varying and time-

invariant covariates in addition to the longitudinally measured outcomes to improve classification 

accuracy. Generalized linear mixed models have been extended in multivariate repeated measures 

data studies for different type outcomes (continuous, counts and binary) 1, 2, 22. However, when the 

number of parameters increases with number of outcomes and repeated occasions, the random-

effect approaches are more likely to be computationally intensive and unstable. In addition, under 

misspecification of the common assumption of multivariate normal distribution for random effect 

parameters, estimates of the mixed-effects model parameters may become seriously biased25 and 

consequently, the performance of the discriminant procedure may also be affected2. 

Most repeated measures discriminant analysis procedures assume the data are sampled 

from a multivariate normal distribution, which may not be tenable. Multivariate repeated measures 

data are frequently characterized by multivariate skewed or heavy-tailed distributions23. So far, 

there has been limited investigations of repeated measures discriminant analysis procedures that 

are robust (i.e., insensitive) to departures from the assumptions of multivariate normality for 
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discriminating between population groups in multivariate non-normal repeated measures data. The 

lack of these repeated measures discriminant analysis procedures that are robust to violation of the 

distributional assumptions has limited their application to several applied research settings where 

multivariate repeated measures data are routinely collected (e.g., cancer screening).  

This study develops robust discriminant analysis models for multivariate non-normal 

repeated measures data. Specifically, we examined the accuracy of repeated measures discriminant 

analysis based on maximum trimmed likelihood estimation (MTLE) methods24, 25 under a variety 

of simulation generation conditions.  The manuscript is organized as follows. In section 3.2, we 

describe the mathematical framework for repeated measures discriminant analysis procedures and 

their robust extensions. The results of a Monte Carlo simulation study, which is designed to assess 

the performance of repeated measures discriminant analysis based on MLE and MTLE are 

discussed in section 3.3. Data from the Manitoba Inflammatory Bowel Disease (IBD) cohort study 

were used to demonstrate the application of these repeated measures discriminant analysis 

procedures in section 3.4, while a discussion of the key findings and their implications are 

described in section 3.5. 

3.2 Repeated Measures Data Analysis  
 

Let  𝐲𝑖𝑗 = ( 𝐲𝑖𝑗1, 𝐲𝑖𝑗2, … , 𝐲𝑖𝑗𝑞) be a 𝑝𝑞 x 1 vector of q outcomes, each repeatedly measured 

at p occasions for the ith individual in the jth population, sampled from a multivariate normal 

distribution such that 𝐲𝑖𝑗 𝑁𝑝𝑞( 𝝁𝑗 , 𝛀𝑗), where 𝝁𝑗 and 𝛀𝑗 is assumed to be pq x 1 mean vector and 

pq x pq positive definite covariance matrix respectively. When 𝝁𝑗 and 𝛀𝑗 are unknown and 

completely unspecified, a total of pq + pq(pq+1)/2 unknown parameters must be estimated. This 

number increases very rapidly as p and q increases. Estimation of so many parameters will require 

a very large sample, which may not always be feasible. A parsimonious approach to parameter 
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estimation is to assume that 𝛀𝑗 has a Kronecker product structure: 𝛀𝑗 = 𝐕𝑗⨂𝚺𝑗, where 𝐕𝑗 and 𝚺𝑗  

are p × p and q × q positive definite matrices respectively, and ⨂ denotes the Kronecker product 

function12, 13. The matrix 𝐕𝑗 is the correlation matrix of the repeated measures on a given outcome 

variable and it is assumed to be the same for all outcome variables. The matrix 𝚺𝑗 represents the 

variance-covariance matrix between the measurements on all outcome variables at a given time 

point and this is assumed constant for all time points. Suppose that no structures whatsoever are 

assumed on 𝐕𝑗 and 𝚺𝑗 except that they are positive definite matrices; then, the classifier has the 

form 

𝜆(𝐲𝑖) = arg max
𝑗

ln (𝜋𝑗𝑓𝑗(𝐲𝑖))  ((3.1) 

 

where  

𝑓𝑗(𝐲𝑖) = (2𝜋)−
𝑝𝑞
2 |𝐕𝑗 |

−
𝑝
2|𝚺𝑗|

−
𝑞
2 exp [−

1

2
𝐷𝑗(𝐲𝑖)] 

 ((3.2) 

𝜋𝑗 is the prior probability that an observation 𝒚𝑖  is from class j, and 𝐷𝑗(𝐲𝑖) =

(𝐲𝑖 − 𝛍𝑗)
′
(𝑽𝑗

−1⨂ 𝚺𝑗
−1)(𝐲𝑖 − 𝛍𝑗) is the squared Mahalanobis distance between the multiple 

outcome vector  𝒚𝑖 and the population mean, 𝝁𝑗. The parameters 𝝁𝑗, 𝐕𝑗 and 𝚺𝑗 are unknown and 

should be estimated, relying on training samples from the different populations. Specifically, 

discriminant analysis rule for two populations allocate 𝒚𝑖 to population 1 if 𝜆̂12(𝒚𝑖) ≤ 0 where  

𝜆̂12(𝐲𝑖) = 𝐷1
∗(𝐲𝑖) − 𝐷2

∗(𝐲𝑖) + 2 log  
𝜋̂2

𝜋̂1
 

 ((3.3) 

with 𝐷𝑗
∗(𝐲𝑖) = (𝐲𝑖 − 𝛍̂𝑗)

′
 𝛀̂𝑗

−1
(𝐲𝑖 − 𝛍̂𝑗) + log | 𝛀̂𝑗 | and 𝜋̂1 and 𝜋̂2 are the a priori probabilities 

that observations belong to populations 1 and 2, respectively. For the conventional discriminant 

analysis, the parameters  𝝁𝑗 , 𝐕𝑗 and 𝚺𝑗 are estimated using MLE. Based on the choice of covariance 

structures, estimates of the Mahalanobis distance and classification rule can be derived11, 12. The 
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homoscedastic model is obtained when the covariance components are homogeneous, that is, 

 𝛀1 =  𝛀2 = 𝛀, the pooled covariance matrix for j = 1,2. The above classifier implies 

classification of a subject with multiple outcome vector 𝐲𝑖  in the first population, if and only if  

(𝐲𝑖 −
𝛍1 + 𝛍2

2
)

′

(𝐕−1⨂ 𝚺−1)(𝛍1 − 𝛍2) > log  
π2

π1
  

 ((3.4) 

which is the linear discriminant analysis (LDA) function, and quadratic discriminant analysis 

(QDA) function when  𝐕1 ≠  𝐕2 as 

(𝐲𝑖 − 𝛍2)
′(𝐕2

−1⨂ 𝚺2
−1)(𝐲𝑖 − 𝛍2) − (𝐲𝑖 − 𝛍1)

′(𝐕1
−1⨂ 𝚺1

−1)(𝐲𝑖 − 𝛍1)  

> log  |
 𝛀1

 𝛀2
| + 2 log  

π2

π1
 

 ((3.5) 

However, conventional repeated measures discriminant analysis procedures rely on the 

assumption of multivariate normal distribution, which may not be tenable in multivariate repeated 

measures data, which are usually characterized by non-normal distributions2, 26. 

 

 3.2.1 Robust Repeated Measures Discriminant Analysis 
 

 An alternate approach to overcome these limitations in conventional repeated measures 

discriminant analysis procedures involves the development of robust repeated measures 

discriminant analysis procedures based on maximum trimmed likelihood estimators (MTLE) of 

mean, 𝛍𝑗 and covariance components, 𝐕𝑗  and 𝚺𝑗. In MTLE, the contribution of each 𝒚𝑖 to the 

(log)likelihood function scores (ℓ(𝜽; 𝒚𝑖) are ranked from the smallest to the highest based 

estimated parameters and the loglikelihood function scores at the extreme tails are assigned smaller 

or no weights. Depending on the weights assigned to observations at the tails, different robust 

estimators could be derived. Specifically, in this study we developed robust repeated measures 

discriminant analysis based on minimum covariance determinant (MCD) and minimum volume 
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ellipsoid (MVE) estimators, which are special cases of MTLE24, 25. For any given value of 𝜽, there 

exists an ordering of 𝒚 of individuals such that, 

ℓ(𝜽; 𝒚1) ≥  ℓ(𝜽; 𝒚2) ≥ ⋯ ≥  ℓ(𝜽; 𝒚𝑛)  (  (3.6) 

 

where ℓ(𝜽; 𝒚𝑖) = ln𝑓(𝒚𝑖; 𝜽) is the contribution of the ith observation to the log-likelihood 

function. Note, the original indices of the observations may not satisfy the likelihood ordering in 

(3.6) for all values of 𝜽. If, for a given value of 𝜽, the above ordering is not satisfied, the indices 

of the observations can be changed so that (3.6) is satisfied24, 25. The ordering of the observations 

may be different for different values of 𝜽. The trimmed log likelihood function is given as 

∑ℓ(𝜽;𝒚𝑖) 

ℎ

𝑖=1

 

 ( (3.7) 

where ℎ is the trimming parameter. The MTLE  𝜽̂(ℎ) is obtained by maximizing the trimmed log 

likelihood function. The key idea is to trim the 𝑛 − ℎ points that are the most unlikely from the 

estimation of the likelihood function. Special cases of MTLE includes MLE, MCD, and MVE.  

When ℎ = 𝑛, 𝜽̂( 𝑛), we obtain the MLE of 𝜽 an𝑑 for ℎ < 𝑛, the MCD and MVE estimators are 

MTLEs of  𝜽 =  (𝝁̂ℎ, 𝛀̂ℎ) for ℎ observations yielding the desired robust estimates 24, 27. The 

parameter ℎ has to be set manually and ℎ can be taken as low as (n /2) + 1. The farther ℎ is from 

n, the more robust but the less efficient are the estimators. The MCD approach is similar to the 

MVE in that it searches for a portion of the data that minimizes the impact of outlying observations 

on estimation of means and covariance parameters. However, MVE seeks to minimize the volume 

of an ellipsoid created by the retained data, whiles MCD minimizes the determinant of the 

variance-covariance matrix. For example; the location estimate of MVE is the center of the 

minimum volume ellipsoid covering (at least) ℎ of the data whiles for MCD, the location estimate 

is the mean of ℎ of the data for which the determinant of the covariance matrix is minimal. 
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3.3 Simulation Study 
 

A Monte Carlo simulation study was conducted to examine the accuracy of robust repeated 

measures discriminant analysis procedures in comparison to the conventional repeated measures 

discriminant analysis based on MLE estimators. Specifically we investigated the following 

procedures: (a) Repeated measures discriminant analysis  that assumes structured means and 

Kronecker correlation matrix of unstructured between-outcomes and within-outcome AR-1 

correlation matrices (st-UNAR),  (b) Repeated measures discriminant analysis  that assumes 

unstructured means and Kronecker correlation matrix of unstructured between-outcomes and 

within-outcome AR-1 correlation matrices (un-UNAR), (c) Repeated measures discriminant 

analysis  that assumes structured means and Kronecker correlation matrix of unstructured between-

outcomes and within-outcome CS correlation matrices (st-UNCS) and (d) Repeated measures 

discriminant analysis that assumes unstructured means and Kronecker correlation matrix of 

between-outcomes and within-outcome CS correlation matrices (un-UNCS). The parameters of 

each repeated measures discriminant analysis procedure were estimated using MLE, MVE and 

MCD estimators. Moreover, repeated measures LDA was used for classification when population 

covariances were assumed homogeneous, while repeated measures QDA was adopted when 

population covariances were assumed heterogeneous.  

The following simulation generation conditions were investigated: (a) number of different 

outcomes (𝑞),  (b) number of repeated occasions (𝑝), (c) total sample size (𝑛), (d) population sizes 

(𝑛1, 𝑛2), € Covariance pattern and magnitude of correlation among the repeated measurements 

(𝜌), (f) mean configuration, (g) Covariance heterogeneity, and (h) population distribution. All 

procedures were investigated for two independent groups. The number of repeated measurements 

was set at 𝑝 =  3, and 5 whilst the number of different outcomes was set at 𝑞 =  3, and 7. Previous 
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studies about repeated measures discriminant analysis  procedures have considered 𝑝 ranging from 

3 to 10, an increase in classification accuracy was quite significant when p increases from three to 

five11, 12. Total sample sizes of 𝑛 = 100, 140 and 200 were investigated. This is consistent with 

previous simulation studies that examined the accuracy of repeated measures discriminant analysis 

based on parsimonious covariance structures with 𝑛 ranging between 60 and 200. Moreover, 

consistent with previous studies, we examined the impact of equal and unequal group sizes 11, 12,28, 

29, 30 31. For   𝑛 =  100, we set (𝑛1, 𝑛2)  =  (50, 50), and (40, 60). Similar equal (1:1) and unequal 

(2:3) group size ratios were investigated when 𝑛 =  140 and 200. A variety of mean 

configurations of different forms have been previously investigated in the development of repeated 

measures discriminant analysis procedures 11, 12. In this study, four configurations for 𝝁1 were 

selected for each pair of p and q. (see Table 3.1) and  𝝁2 was the null vector for all conditions11, 12, 

32. The descriptions of the four configurations for 𝝁1 in Table 3.1 are as follows; configuration I-

III had no change in mean pattern over time for constant, monotonic increasing and quadratic mean 

patterns among repeated outcomes respectively, and configuration IV was assumed to have 

monotonic increasing mean pattern over time for non-constant means among the repeated 

measurements. 

Furthermore, the accuracy of repeated measures discriminant analysis procedures is known 

to be influenced by  the magnitude and pattern of within- and between-outcome correlations33. 

Therefore, we investigated the following components of the assumed Kronecker variance-

covariance matrices: 𝛀𝑗 = 𝐕𝑗⨂𝚺𝑗 , 𝑗 = 1, 2 where 𝚺𝑗 was assumed to be a q × q  unstructured 

variance-covariance matrix with a common variance of 60 among outcome variables and  the p × 

p correlation matrix 𝐕𝑗 = 𝐕𝑗(𝜌𝑗) was assumed to follow a AR-1 or CS structure with 𝜌𝑗 chosen as 
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0.3 and 0.7, representing moderate to strong autocorrelation in the data11, 12 (See Table 3.2 for more 

details). 

In order to assess the performance of the discriminant function, random samples were 

generated from both multivariate normal and multivariate non-normal distributions. With specified 

mean, 𝝁𝑗 and covariance matrix 𝛀𝑗, pq-variate normal distribution populations were generated 

using the mvrnorm() function from the MASS R package34,  multivariate lognormal distribution 

were generated using the rlnorm() function from the compositions R package 35, multivariate t 

distribution were generated using the rmvt() function from the mvnfast R package36,   and  

multivariate Cauchy distribution were generated using the rmsc() function from the sn R package 

36. For robust estimators, the proportion of trimmed data was fixed at 10% symmetric trimming. 

Some researchers have investigated 5%-25% trimming37-39. Even though one study argues 20% 

trimming38, another recommend no more than 10% trimming to achieve optimal results39. The 

FASTMCD and FASTMVE algorithms40-42 were used to define a subsample of observations for 

the trimmed means and covariances. More specifically, robust estimates of the LDA and QDA 

procedures that assumed unstructured or structured means and structured covariances were derived 

by maximizing the likelihood of the 90% best subsample of original observations using the fast 

algorithms. These means and covariance have high robustness properties40, 43. 

Fixed-effects analysis of variance (ANOVA) model was used to assess the relative 

importance of different simulation factors on the variations in the average classification accuracy 

for each procedure44, 45.  The percentage of explained variance attributable to each main effect and 

interactions were evaluated using 𝜂2, an R2 equivalent in regression analysis46. The classification 

was performed on the generated samples from each of the two populations. Previous classification 

research have employed the classification accuracy or the error rate (1-accuracy) metric to 
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discriminate between two or more groups11, 12, 28. Thus, the overall classification accuracy 

(correctly classified / total sample) was used as performance metric in this study and the standard 

errors were also calculated. For each procedure and each method of estimation, a total of 1440 

combination of simulation factors was investigated. There were 1000 replications for each 

combination. The Monte Carlo study was conducted using R version 3.6.3.  

 

3.3.1 Simulation Study Results 
 

Simulation factors such as population distribution, and mean configurations accounted for 

most of the variation in the classification accuracies (Table 3.3), with proportion of explained 

variation ranging 40.8 - 56% and 9.2 - 11% respectively. In addition, the estimation methods (MLE 

and MVE) accounted for some variation in the classification accuracies for all procedures ranging 

from 0.6% to 1.7% 

Tables 3.4 and 3.5 describe the mean classification accuracies and standard errors of 

repeated measures LDA and repeated measures QDA based on MLE and MVE, respectively, by 

population distribution and number of outcomes. The mean classification accuracy of the repeated 

measures discriminant analysis procedures were highest when the data were sampled from a 

multivariate normal distribution and lowest when the data were sampled from extremely heavy-

tailed distribution, regardless of the type of estimation method adopted, number of outcome 

variables, or mean configuration. In particular, there were negligible differences in the mean 

classification accuracy of repeated measures discriminant analysis procedures based on MLE and 

those based on robust estimators when the data were sampled from a multivariate normal 

distribution, or a moderately multivariate heavy-tailed distribution. However, the robust 

estimators’ procedures were more accurate than MLE when the data were sample from a 
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multivariate heavy-tailed distribution. For example, the mean classification accuracy of st-UNCS 

based on MLE and MVE were 0.86 and 0.85 when q = 7 and data were sampled from a multivariate 

normal distribution with outcome variables. Whereas, the mean accuracy of the former and latter 

procedures were 0.54 and 0.70 when q = 7 and the data were sampled from a multivariate Cauchy 

distribution, respectively (Table 3.4). Similar patterns were observed in repeated measures 

quadratic discriminant analysis procedures (Table 3.5). 

Furthermore, when the data were sampled from a multivariate normal distribution, the 

mean accuracy of each repeated measures LDA procedures increased as the number of outcomes 

increased, regardless of the method or estimation. However, the increase in classification accuracy 

as q increased was smaller when the data were sampled from a multivariate non-normal 

distribution. For example, when the data were sampled from a multivariate normal distribution, 

the increase in classification accuracy of the un-UNAR procedure based on MLE and MVE was 

about 0.07 as q increased from 3 to 7. But when data were sampled from a multivariate lognormal 

distribution, there were negligible differences in the classification accuracies for these procedures 

as q increased.  In contrast, the mean classification accuracy of the repeated measures QDA 

procedures decreased as q increased for almost all the investigated population data distributions, 

except for the multivariate lognormal and Cauchy distributions (Table 3.5).  

However, for multivariate lognormal and Cauchy distributions, smaller to no change in 

mean classification accuracy was observed for all procedures for MLE. For the un-UNAR 

procedure when data were sampled from multivariate lognormal, 0.54 mean classification 

accuracy was observed when number of outcomes were both three and seven, whereas for data 

sampled from multivariate Cauchy distribution mean classification accuracy were 0.54 and 0.56, 

respectively for MLE (Table 3.4). In contrast, the decreased in mean classification accuracy for 
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non-normal distributions were much lower for repeated measures discriminant analysis based on 

MLE compared to the robust methods. Moreover, higher mean classification accuracies were 

observed in these non-normal distributions under robust methods. For the un-UNAR procedure 

under MVE, when data were sampled from multivariate lognormal, 0.56 mean accuracy was 

observed when number of outcomes, 𝑞 = 3 compared to 0.57 accuracy when 𝑞 = 7, whereas for 

data sampled from multivariate Cauchy distribution mean accuracies were 0.70 and 0.73, 

respectively (Table 3.4). Again, similar observations were seen for all procedures in robust 

methods. For both MLE and robust methods mean accuracies, smaller to no change was observed 

for structured and unstructured mean for all procedures, irrespective of population distributions 

and number of outcomes. 

For Table 3.5, when QDA classifier was adopted for unequal group covariance, opposite 

effect of the number of outcomes seen in Table 3 was observed, that is 𝑞 = 3  had  a higher mean 

accuracy rate  than   𝑞 = 7  in normal distribution and t-distribution for un-UNAR, un-UNCS and 

st-UNCS except st-UNAR for both MLE and robust methods. For example: for the un-UNAR 

procedure under MVE, the mean accuracy for  𝑞 = 3  was 0.82, whereas for  𝑞 = 7, it was 79, 

whiles for the st-UNAR procedure, the mean accuracy rate for  𝑞 = 3  was 0.84, whereas for  𝑞 =

7, it was 0.86.  Also, higher mean accuracies were observed for the st-UNAR procedure compared 

to the other procedures. In addition, we observed higher increase in classification accuracy for 

increase number of outcomes in Table 3.5 for multivariate lognormal distribution under MLE 

compared to Table 3. For example, for the un-UNAR procedure under MLE, when data were 

sampled from multivariate lognormal, 0.65 accuracy was observed when number of outcomes, 

𝑞 = 3 compared to 0.70 accuracy rate when 𝑞 = 7. With regards to MLE and robust methods, 

higher mean accuracies were observed for Cauchy distribution based on robust methods compared 



59 

 

to MLE, but smaller to no increase mean accuracies were observed in other population 

distributions (Table 3.4). 

Tables 3.6 and 3.7 describe the overall mean classification accuracy of the repeated 

measures LDA and QDA procedures by population distribution and mean configuration, 

respectively. There were negligible differences in the accuracy of the repeated measures 

discriminant analysis based on MLE and robust estimators when the data were sampled from 

multivariate normal or multivariate t distribution. However, the robust procedures were 

significantly more accurate than MLE when the data were sampled from multivariate Cauchy 

distribution. For example, the mean classification accuracy of st-UNAR based on MLE and robust 

estimators were 0.72 and 0.71, when the data were sample from a multivariate t-distributions with 

mean configuration I, respectively. Whereas the mean accuracy of the former and latter procedures 

were 0.53 and 0.64 when the data were sampled from a multivariate Cauchy distribution with the 

same mean configuration I.  

On the other hand, the impact of choice of mean configuration on the accuracy of the 

repeated measures LDA models was confounded by the population distribution. Specifically, when 

the data were sampled from a multivariate normal distribution, the mean classification accuracy of 

the repeated measures LDA procedures were lowest under mean configuration I, which assumed 

no change in mean pattern over time for constant mean among repeated outcomes, but highest 

under mean configuration IV, which assumed unstructured means among the repeated 

measurements regardless of the estimation methods. However, there were negligible differences 

in the classification accuracy of the procedures based on MLE estimators across all the mean 

configurations when the data were sampled from a multivariate log-normal or Cauchy distribution. 

In contrast, accuracy of the procedures based on robust estimators varied across mean 
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configurations when the data were sampled from a multivariate lognormal or multivariate Cauchy 

distribution. For example, the mean accuracy of the st-UNAR procedure based on MLE increased 

by 0.16 (were 0.72 and 0.88) across the mean configurations when the data were sampled from 

multivariate normal distribution, whereas there was negligible change in mean accuracy of this 

procedure across the mean configurations when the data were generated from a multivariate log-

normal distribution. In contrast, the change in mean classification accuracy for st-UNAR 

procedure based on robust estimators across the mean configurations were 0.16 and 0.13 when the 

data were sampled from multivariate normal and multivariate Cauchy distributions, respectively 

(Table 3.6). Thus, the mean accuracy of the procedures based on robust estimators increased across 

the mean configurations when the data were sampled from multivariate Cauchy distribution 

compared to procedures based on MLE (Table 3.6). Similar results were obtained for repeated 

measures quadratic discriminant analysis (Table 3.7).  Results for repeated measures discriminant 

analysis based MCD and MVE were similar, hence we reported results for MVE estimation to 

avoid repetition. 

  

3.4 Application: Manitoba Inflammatory Bowel Disease Study 
 

Multivariate repeated measures data from the Manitoba Inflammatory Bowel Disease 

(IBD) Cohort Study, a prospective longitudinal cohort study to investigate the determinants of 

disease outcomes in community dwelling individuals living with Crohn’s disease or ulcerative 

colitis, were used to demonstrate the application of these methods. Data were collected at six-

month intervals, after baseline, using self-report instruments. Study participants were rated as 

having active (n1 = 214) or inactive (n2 = 127) disease based on self-reported IBD symptoms at 

study entry. Details about the Manitoba IBD Cohort Study have been previously published 
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elsewhere47, 37. Differences between active and inactive disease groups on a disease-specific 

measure of quality of life, the IBD questionnaire (IBDQ)28, were investigated in the first year of 

the study (i.e., three measurement occasions, at baseline (0 months), 6 months, and 12 months, 

p=3). The primary research question is to be able to identify active and inactive disease groups at 

one year of diagnosis using their longitudinal profiles of quality of life. Multivariate repeated 

measures data collected on the four IBDQ domains (q=4) namely emotional health (IBDQ-eh), 

systematic symptoms (IBDQ-ss), social function (IBDQ-sf) and bowel symptoms (IBDQ-bws) 

over the one-year period were used to discriminate between both groups of participants. 

Of the 389 participants who provided data at baseline (month 0), 213 had complete IBDQ 

domains at the end of the first year. Among the 213 participants, 133 were participants with active 

IBD. Table 3.8 and Figure 3.1 describe the differences on each domain for active and inactive 

participants in the Manitoba IBD Cohort Study. Participants with inactive disease had higher 

quality of life scores on all four domains than participants with active disease (Figure 3.1). The 

group means and descriptive measures of multivariate skewness and kurtosis for the IBDQ data 

are reported in Table 3.7. The expected Mardia’s multivariate skewness is 0 and kurtosis is 24 for 

a multivariate normal distribution of 4 variables48. P-value smaller than 0.05 indicated significant 

skewness or kurtosis. At least one of these tests was significant, thus the underlying joint 

population was non-normal.  Overall, the multivariate skewness and kurtosis suggested a moderate 

departure from the assumption of a normal distribution in the active disease group when compared 

with the inactive group (Table 3.8). A non-constant trend was observed in the group means for 

both the active and inactive disease group (Table 3.8) and moderate difference was observed in 

group covariances. Hence, we used RMQDA assuming Kronecker product covariance. The 

advantage of imposing the Kronecker product structure on the data is that it reduces the number of 
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parameters to estimate, which results in greater precision of the estimates since n/pq is small for 

both active (~11) and inactive (~7) disease groups. 

In estimating parameters for the proposed robust RMQDA method (MVE), the symmetric 

trimming parameter was chosen to be 10%, and compared to RMQDA based on MLE. Results of 

these approaches were reported in Table 3.9.  Overall, we observed a 1% to 3% increase in all 

robust methods compared to MLE with 10% trimming. As observed from the simulation, these 

robust procedures may not always be more efficient than repeated measures discriminant analysis 

based on MLE for moderate departures from a multivariate normal distribution. 

In addition, we investigated the influence of class imbalance on the accuracy of these 

proposed models, for which additional simulation condition results are provided in the Appendix. 

Tables 3.10 and 3.11 contain class-specific accuracies of repeated measures LDA procedures 

based on MLE and robust MVE by number of outcomes and sample sizes for normal and Cauchy 

distributions respectively. Conclusions and observations from the additional simulation results 

remained the same as the initial simulations. Thus, class imbalance did not influence the proposed 

repeated measures models. 

3.5 Discussion 
 

This study investigated repeated measures discriminant analysis procedures that assume 

structured and unstructured means with Kronecker covariances based on maximum trimmed 

estimators for discriminating between population groups. As expected, the classification 

accuracies of the repeated measures discriminant analysis procedures were highest in multivariate 

normal distributions but lowest when the data were sampled from a multivariate Cauchy 

distribution. Repeated measures discriminant analysis procedures based on MTLE were more 
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accurate than the conventional repeated measures discriminant analysis based on MLEs when data 

were sampled from multivariate lognormal and Cauchy distributions24, 32. However, there were 

negligible differences in the mean classification accuracies of the MTLE and MLE procedures 

under multivariate normal and moderately heavy-tailed distributions. Furthermore, our results also 

showed that the impact of population group mean separation i.e., distance and data dimensions on 

the classification accuracy of the conventional repeated measures discriminant analysis procedures 

could be masked by the departure from the assumption of multivariate normality. In contrast, the 

impact of both group means separation and data dimension on the accuracy of the repeated 

measures discriminant analysis procedures based on MTLE was not confounded by departure from 

the assumption of multivariate normality. A common criticism of trimmed estimators is that they 

are less powerful in small-sampled studies under multivariate normal distributions49. However, 

our simulation study showed negligible differences in the accuracy of repeated measures 

discriminant analysis  procedures based on MTLE and those based on MLE in small-sampled 

conditions32. 

Of note is the finding that, we observed similar classification accuracy of the investigated 

repeated measures discriminant analysis procedures based on parsimonious means/or covariance 

matrices, regardless of the method of estimation. This can be attributed to the fact that all these 

procedures were investigated in scenarios where the underlying means and covariance structures 

were correctly specified.  It is most likely that the predictive performances of these procedures 

might vary especially in multivariate repeated measures data in which population means and 

covariances are unstructured where the assumption of parsimony (i.e. Kronecker product 

assumption for group means and/or covariance) are violated.  While previous research studies have 

suggested that repeated measures discriminant analysis procedures often result in decreased 
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classification accuracy when the means and covariances are misspecified32, 50, there is limited 

investigation of the robustness of the repeated measures discriminant analysis  based on MTLE to 

model mis-specification. Future research investigations will examine the robustness of repeated 

measures discriminant analysis procedures based on MTLE to misspecification of group means 

and covariance structure.  

This study has some limitations. Our simulation only investigated the classification 

performance of the investigated models in multivariate normal and multivariate heavy-tailed 

distributions but not in multivariate skewed distribution. Previous investigations have shown that 

trimmed estimators are particularly more efficient in data with moderate to significant heavy-tailed 

distributions32. Second, the assumption of complete multivariate repeated measures data in which 

there is no missing data on all outcomes and at all measurement occasions might not be realistic 

in multivariate repeated measures data often encountered in applied research. In clinical settings, 

missing data often occur in multivariate repeated measures studies because patients miss some of 

their regular appointments or because some variables may not be measured at particular visits. 

Repeated measures discriminant analysis based on mixed-effects models have been proposed for 

incomplete multivariate repeated measures data but the misspecification of the common 

assumption of the random effects parameter as multivariate normal distribution may seriously 

affect the accuracy of discriminant analysis classification rules. 25 Pattern mixture and selection 

models  have been proposed to adjust for potential bias in models when it cannot be assumed that 

the mechanism of missingness is ignorable51 52, 53. Further research will investigate the 

development of repeated measures discriminant analysis procedures based on these models with 

imputations and further developments in which mixed-effects models can be extended to these 

robust trimmed methods for classification.  
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In addition, this study relied on the assumption of Kronecker product structure covariance 

to capture the relationship among multivariate repeated measures. Various researches have used 

Kronecker product covariance structures to address sample size and computational issues in 

multivariate repeated measures12, 13, 54-56. While Kronecker structures provide a parsimonious 

model approach to parameter estimation, the accuracy of the resulting repeated measures 

discriminant analysis procedures may be reduced when the means and/or covariance structure of 

the data is misspecified57. It is important that the choice of these repeated measures discriminant 

analysis  procedures be guided first by a preliminary examination of the appropriate means and/or 

covariance structure in the multivariate repeated measures data21, 58. For example, several 

procedures have been developed for testing hypotheses Kronecker product covariance structures 

in multivariate repeated measures for such purposes13, 56, 59,60.  

In summary, this study proposes a new class of repeated measures discriminant analysis 

procedures based on MTLE, which overcomes the inherently restrictive distributional assumption 

of multivariate normality when discriminating between populations groups in multivariate 

repeated measures data characterized by multivariate non-normal distributions. These procedures 

are useful for developing classification models for both short-term and long-term outcomes in 

complex data.   
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           Table 3.1: Four mean configuration structures assumed for population 1 (𝛍1) in the Monte Carlo Study 

Configuration p  q=3        q=7  

I  𝟏𝑝 ⨂ (30,30,30) 𝟏𝑝 ⨂ (30,30,30,30,30,30,30) 

II 3 or 5 𝟏𝑝 ⨂ (27,29,31) 𝟏𝑝 ⨂ (30,31,32,33,34,35,36) 

III  𝟏𝑝 ⨂ (30,25,30) 𝟏𝑝 ⨂ (30,27,24,21,24,27,30) 

    

IV 3 (1,1.1,1.2) ⨂ (30,25,30) (1,1.1,1.2)⨂ (30,27,24,21,24,27,30) 

 5 (1,1.1,1.2,1.3,1.4)⨂ (30,25,30) (1,1.1,1.2,1.3,1.4)⨂ (30,27,24,21,24,27,30) 

    

Note: For population 2,  𝛍2 = 𝟏p ⨂ 25𝟏q for all conditions; q=number of outcome variables; p=number of repeated 

occasions 
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Table 3.2: Configuration of unstructured between-outcomes covariance matrix 𝚺1  given within-outcome 

correlation coefficient (𝜌) for the Monte Carlo Study 

Within-outcome 

correlation coefficient 

(𝜌)                                       0.3                                                                                             0.7 

q=3 

     

          
  

q=7 

 

      

Note: 𝚺1 = 𝚺2 or  𝚺1 = 3𝚺2 
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Table 3.3: Estimated percentage of variation explained (95% C.I) from Analysis of Variance 
 Simulation Condition un-UNAR un-UNCS st-UNAR st-UNCS 

 p * 0.3 * 0.2 

 q 0.6 0.6 1.1 0.6 

 Covariance structure * * * * 

 𝜌 2.0  1.2 1.2 1.4 

 n * * * * 

 Mean Configuration 10.5 11.0 9.2 10.5 

 Population Distribution 51.4 49.8 56.0 50.2 

 Covariance ratio (QDA vs LDA) 0.9 * 3.3 1.1 

 Estimation (MLE vs MVE) 

 

0.6 1.7 1.5 1.5 

 Population Distribution x Covariance ratio 5.1 4.9 3.9 5.0 

 Population Distribution x Mean Configuration 

 

5.0 5.2 4.1 5.0 

Note: *= Estimated percentage of variation explained close to zero; C.I = confidence interval; p= number of repeated 

occasions; p = number of responses; 𝜌= coefficient of correlation; 𝑛 =sample size; un-UNAR = unstructured means-

Kronecker product of unstructured between-outcomes and within-outcome AR-1 correlation matrices; un-UNCS = 

unstructured means-Kronecker product of unstructured between-outcomes and within-outcome CS correlation matrices; st-

UNAR = structured means-Kronecker product of unstructured between-outcomes and within-outcome AR-1 correlation 

matrices; st-UNCS = structured means-Kronecker product of unstructured between-outcomes and within-outcome CS 

correlation matrices; MLE=Maximum likelihood estimator; MVE= minimum volume ellipsoid; LDA= Linear Discriminant 

Analysis; QDA= Quadratic Discriminant Analysis 
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Table 3.4: Overall Mean Accuracy of Repeated Measures LDA procedures based on MLE and Robust 

Estimator, Estimator, MVE (standard error) by population distribution, Number of Outcomes for equal group 

covariance  
Distribution  q  MLE    MVE    

   un-UNAR un-UNCS st-UNAR st-UNCS un-UNAR un-UNCS st-UNAR st-UNCS 

Normal  3 0.77(0.03) 0.77(0.03) 0.77(0.03) 0.78(0.03) 0.77(0.03) 0.77(0.03) 0.76(0.03) 0.78(0.03) 

  7 0.84(0.03) 0.85(0.03) 0.84(0.03) 0.86(0.03) 0.84(0.03) 0.85(0.03) 0.84(0.03) 0.85(0.03) 

T  3 0.77(0.03) 0.77(0.03) 0.77(0.03) 0.78(0.03) 0.77(0.03) 0.77(0.03) 0.76(0.03) 0.77(0.03) 

  7 0.84(0.03) 0.85(0.03) 0.84(0.03) 0.86(0.03) 0.84(0.03) 0.85(0.03) 0.84(0.03) 0.85(0.03) 

Lognormal  3 0.54(0.03) 0.53(0.03) 0.54(0.03) 0.53(0.03) 0.56(0.04) 0.56(0.04) 0.56(0.04) 0.56(0.04) 

  7 0.54(0.03) 0.54(0.03) 0.54(0.03) 0.54(0.03) 0.57(0.04) 0.57(0.04) 0.57(0.04) 0.57(0.04) 

Cauchy  3 0.54(0.05) 0.54(0.05) 0.54(0.05) 0.54(0.05) 0.70(0.04) 0.70(0.04) 0.70(0.04) 0.70(0.04) 

  7 0.56(0.06) 0.56(0.06) 0.56(0.06) 0.56(0.07) 0.73(0.05) 0.73(0.05) 0.73(0.05) 0.73(0.05) 

Note: un-UNAR = unstructured means-Kronecker product of unstructured between-outcomes and within-outcome AR-1 

correlation matrices; un-UNCS = unstructured means-Kronecker product of unstructured between-outcomes and within-

outcome CS correlation matrices; st-UNAR = structured means-Kronecker product of unstructured between-outcomes and 

within-outcome AR-1 correlation matrices; st-UNCS = structured means-Kronecker product of unstructured between-

outcomes and within-outcome CS correlation matrices; MLE=Maximum likelihood estimator; MVE= minimum volume 

ellipsoid; LDA= Linear Discriminant Analysis 
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Table 3.5: Overall Mean Accuracy of Repeated Measures QDA procedures based on MLE and Robust 

Estimator, MVE (standard error) by population distribution, Number of outcomes for unequal group 

covariance 
Distribution q   MLE    MVE    

  un-UNAR un-UNCS st-UNAR st-UNCS un-UNAR un-UNCS st-UNAR st-UNCS 

Normal 3 0.83(0.04) 0.83(0.03) 0.85(0.03) 0.83(0.03) 0.82(0.04) 0.83(0.03) 0.84(0.03) 0.83(0.03) 

 7 0.80(0.04) 0.81(0.03) 0.86(0.03) 0.81(0.03) 0.79(0.04) 0.81(0.03) 0.86(0.03) 0.80(0.03) 

T 3 0.83(0.04) 0.83(0.03) 0.85(0.03) 0.83(0.03) 0.82(0.04) 0.83(0.03) 0.84(0.03) 0.83(0.03) 

 7 0.80(0.04) 0.81(0.03) 0.86(0.03) 0.81(0.03) 0.79(0.04) 0.81(0.03) 0.86(0.03) 0.80(0.03) 

Lognormal 3 0.65(0.11) 0.69(0.04) 0.68(0.05) 0.69(0.04) 0.68(0.07) 0.68(0.04) 0.67(0.05) 0.68(0.04) 

 7 0.70(0.04) 0.70(0.04) 0.70(0.04) 0.70(0.04) 0.69(0.04) 0.69(0.04) 0.69(0.04) 0.69(0.04) 

Cauchy 3 0.53(0.08) 0.54(0.05) 0.54(0.05) 0.54(0.05) 0.66(0.05) 0.66(0.05) 0.66(0.05) 0.66(0.05) 

 7 0.55(0.06) 0.56(0.07) 0.56(0.06) 0.56(0.07) 0.67(0.06) 0.67(0.06) 0.67(0.06) 0.67(0.06) 

    Note: un-UNAR = unstructured means-Kronecker product of unstructured between-outcomes and within-outcome 

AR-1 correlation matrices; un-UNCS = unstructured means-Kronecker product of unstructured between-outcomes 

and within-outcome CS correlation matrices; st-UNAR = structured means-Kronecker product of unstructured 

between-outcomes and within-outcome AR-1 correlation matrices; st-UNCS = structured means-Kronecker product 

of unstructured between-outcomes and within-outcome CS correlation matrices; MLE=Maximum likelihood 

estimator; MVE= minimum volume ellipsoid; QDA= Quadratic Discriminant Analysis 
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Table 3.6: Overall Mean Accuracy of Repeated Measures LDA procedures based on MLE and Robust 

Estimator, MVE (standard error) by population distribution, mean configuration for equal group covariance 
Distribution Mean 

Configurati

on 

MLE    MVE    

  un-UNAR un-UNCS st-UNAR st-UNCS un-UNAR un-UNCS st-UNAR st-UNCS 

Normal I 0.72(0.03) 0.72(0.04) 0.72(0.03) 0.73(0.04) 0.71(0.04) 0.72(0.04) 0.71(0.03) 0.72(0.04) 
 

II 0.76(0.03) 0.78(0.03) 0.76(0.03) 0.79(0.03) 0.76(0.03) 0.78(0.03) 0.76(0.03) 0.78(0.03) 

 III 0.79(0.03) 0.77(0.03) 0.79(0.03) 0.79(0.03) 0.79(0.03) 0.79(0.03) 0.79(0.03) 0.79(0.03) 

 IV 0.88(0.02) 0.89(0.02) 0.88(0.02) 0.89(0.02) 0.88(0.03) 0.89(0.03) 0.87(0.03) 0.89(0.03) 

T I 0.72(0.03) 0.72(0.04) 0.72(0.03) 0.73(0.04) 0.71(0.04) 0.72(0.04) 0.71(0.03) 0.72(0.04) 
 

II 0.76(0.03) 0.78(0.03) 0.76(0.03) 0.79(0.03) 0.76(0.03) 0.79(0.03) 0.76(0.03) 0.79(0.03) 

 III 0.79(0.03) 0.77(0.03) 0.79(0.03) 0.79(0.03) 0.79(0.03) 0.79(0.03) 0.79(0.03) 0.79(0.03) 

 IV 0.88(0.02) 0.89(0.02) 0.88(0.03) 0.89(0.02) 0.88(0.03) 0.89(0.03) 0.87(0.03) 0.89(0.03) 

Lognormal I 0.54(0.03) 0.53(0.03) 0.54(0.03) 0.54(0.03) 0.56(0.04) 0.56(0.04) 0.56(0.04) 0.56(0.04) 

 
II 0.54(0.03) 0.54(0.03) 0.54(0.03) 0.54(0.03) 0.56(0.04) 0.56(0.04) 0.56(0.04) 0.56(0.04) 

 III 0.54(0.03) 0.54(0.03) 0.54(0.03) 0.54(0.03) 0.56(0.04) 0.56(0.04) 0.56(0.04) 0.56(0.04) 

 IV 0.54(0.04) 0.54(0.03) 0.54(0.04) 0.54(0.03) 0.57(0.04) 0.57(0.04) 0.57(0.04) 0.57(0.04) 

Cauchy I 0.53(0.04) 0.53(0.04) 0.53(0.04) 0.53(0.04) 0.64(0.04) 0.64(0.04) 0.64(0.04) 0.64(0.05) 
 

II 0.54(0.05) 0.54(0.05) 0.54(0.05) 0.54(0.05) 0.69(0.05) 0.69(0.05) 0.68(0.05) 0.69(0.05) 

 III 0.54(0.05) 0.54(0.05) 0.54(0.05) 0.54(0.05) 0.69(0.05) 0.69(0.05) 0.69(0.05) 0.69(0.05) 

 IV 0.57(0.04) 0.57(0.03) 0.57(0.04) 0.57(0.03) 0.78(0.04) 0.78(0.04) 0.77(0.04) 0.78(0.04) 

       Note: un-UNAR = unstructured means-Kronecker product of unstructured between-outcomes and within-outcome AR-1 

correlation matrices; un-UNCS = unstructured means-Kronecker product of unstructured between-outcomes and within-

outcome CS correlation matrices; st-UNAR = structured means-Kronecker product of unstructured between-outcomes 

and within-outcome AR-1 correlation matrices; st-UNCS = structured means-Kronecker product of unstructured 

between-outcomes and within-outcome CS correlation matrices; MLE=Maximum likelihood estimator; MVE= 

minimum volume ellipsoid; MVE= minimum volume ellipsoid 
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Table 3.7: Overall Mean Accuracy of Repeated Measures QDA procedures based on MLE and Robust 

Estimator, MVE (standard error) by population distribution, mean configuration for unequal group covariance  
Distribution Mean 

Configurati

on 

MLE    MVE    

  un-UNAR un-UNCS st-UNAR st-UNCS un-UNAR un-UNCS st-UNAR st-UNCS 

Normal I 0.69(0.03) 0.70(0.02) 0.76(0.03) 0.70(0.02) 0.69(0.03) 0.69(0.03) 0.75(0.03) 0.69(0.03) 
 

II 0.78(0.04) 0.77(0.04) 0.82(0.03) 0.77(0.04) 0.77(0.04) 0.76(0.04) 0.81(0.03) 0.77(0.04) 

 III 0.81(0.04) 0.80(0.04) 0.81(0.03) 0.80(0.04) 0.80(0.04) 0.80(0.04) 0.81(0.03) 0.80(0.04) 

 IV 0.90(0.04) 0.92(0.03) 0.94(0.02) 0.92(0.03) 0.90(0.05) 0.92(0.03) 0.94(0.02) 0.92(0.03) 

T I 0.69(0.03) 0.70(0.02) 0.76(0.03) 0.70(0.03) 0.69(0.03) 0.69(0.03) 0.75(0.03) 0.69(0.03) 
 

II 0.78(0.04) 0.77(0.04) 0.82(0.03) 0.77(0.04) 0.77(0.04) 0.76(0.04) 0.81(0.04) 0.77(0.04) 

 III 0.81(0.04) 0.80(0.04) 0.81(0.03) 0.80(0.04) 0.80(0.04) 0.80(0.04) 0.81(0.04) 0.80(0.04) 

 IV 0.90(0.04) 0.92(0.03) 0.94(0.02) 0.92(0.03) 0.90(0.05) 0.92(0.03) 0.94(0.02) 0.92(0.03) 

Lognormal I 0.68(0.08) 0.69(0.04) 0.69(0.04) 0.69(0.04) 0.68(0.05) 0.68(0.04) 0.68(0.04) 0.68(0.04) 
 

II 0.68(0.07) 0.70(0.04) 0.69(0.04) 0.70(0.04) 0.69(0.05) 0.68(0.04) 0.68(0.04) 0.68(0.04) 

 III 0.67(0.07) 0.68(0.04) 0.68(0.04) 0.68(0.04) 0.67(0.05) 0.67(0.04) 0.67(0.04) 0.67(0.04) 

 IV 0.68(0.08) 0.70(0.04) 0.70(0.05) 0.70(0.04) 0.69(0.05) 0.69(0.04) 0.68(0.04) 0.69(0.04) 

Cauchy I 0.53(0.06) 0.54(0.05) 0.54(0.05) 0.54(0.05) 0.62(0.05) 0.62(0.05) 0.63(0.05) 0.62(0.05) 
 

II 0.54(0.07) 0.54(0.05) 0.55(0.05) 0.55(0.05) 0.64(0.05) 0.64(0.05) 0.65(0.05) 0.64(0.05) 

 III 0.54(0.07) 0.54(0.05) 0.54(0.05) 0.54(0.05) 0.65(0.05) 0.65(0.05) 0.64(0.05) 0.65(0.05) 

 IV 0.55(0.08) 0.56(0.04) 0.56(0.05) 0.56(0.03) 0.70(0.05) 0.71(0.04) 0.71(0.04) 0.71(0.04) 

      Note: un-UNAR = unstructured means-Kronecker product of unstructured between-outcomes and within-outcome AR-1 

correlation matrices; un-UNCS = unstructured means-Kronecker product of unstructured between-outcomes and within-

outcome CS correlation matrices; st-UNAR = structured means-Kronecker product of unstructured between-outcomes 

and within-outcome AR-1 correlation matrices; st-UNCS = structured means-Kronecker product of unstructured between-

outcomes and within-outcome CS correlation matrices; MLE=Maximum likelihood estimator; MVE= minimum volume 

ellipsoid; QDA= Quadratic Discriminant Analysis 
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Table 3.8: Descriptive Statistics of IBDQ Domains in active and inactive IBD participants in Manitoba IBD 

Cohort Study 
Measurement 

Occasion 

IBDQ 

Domains 

 Active 

n=133 

 Inactive 

n=80 

  

  Mean (SD) Skewness 

(p-value) 

Kurtosis 

(p-value) 

Mean (SD) Skewness 

(p-value) 

Kurtosis 

(p-value) 
 

0-month Emotional health 5.03(1.12)  

2.35* 

(<0.001) 

 

24.9* 

(<0.001) 

5.46(1.15)  

6.07* 

(<0.001) 

 

29.6* 

(<0.001) 

 
Systemic 

symptoms 

4.78(1.30) 4.94(1.23) 

 Social function 5.76(1.35) 6.30(0.87) 

 Bowel symptoms 5.03(1.11) 5.69(0.88) 

6-month Emotional health 5.12(1.03)  

2.72* 

(<0.001) 

 

25.45 

(0.09) 

5.71(0.89)  

14.01* 

(<0.001) 

 

39.74* 

(<0.001) 

 
Systemic 

symptoms 

4.34(1.21) 5.16(1.15) 

 Social function 5.92(1.19) 6.55(0.76) 

 Bowel symptoms 5.09(1.04) 5.88(0.90) 

12-month Emotional health 5.11(1.11)  

4.59* 

(<0.001) 

 

31.93* 

(<0.001) 

5.79(0.91)  

16.28* 

(<0.001) 

 

38.33* 

(<0.001) 
 Systemic 

symptoms 

4.32(1.28) 5.22(1.14) 

 Social function 5.81(1.30) 6.58(1.00) 

 Bowel symptoms 5.08(1.11) 5.96(0.90) 

Note: *p-value < 0.05, the joint distribution of the variables has significant skewness or kurtosis 
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Table 3.9: Overall Classification Accuracy of Conventional and Robust QDA procedures for IBD data 
 un-UNAR un-UNCS st-UNAR st-UNCS 

MLE 0.50 0.60 0.64 0.51 

MVE (10%) 0.53 0.63 0.65 0.52 

        Note: un-UNAR = unstructured means-Kronecker product of unstructured between-outcomes and within-outcome 

AR-1 correlation matrices; un-UNCS = unstructured means-Kronecker product of unstructured between-outcomes 

and within-outcome CS correlation matrices; st-UNAR = structured means-Kronecker product of unstructured 

between-outcomes and within-outcome AR-1 correlation matrices; st-UNCS = structured means-Kronecker product 

of unstructured between-outcomes and within-outcome CS correlation matrices; MLE=Maximum likelihood 

estimator; MVE= minimum volume ellipsoid 
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Figure 3.1: Observed mean longitudinal profiles of an indicator of whether a participant had active (Red) 

or inactive (Blue) IBD in each of the four IBDQ domains: emotional health (IBDQ-eh), systematic 

symptoms (IBDQ-ss), social function (IBDQ-sf) and bowel symptoms (IBDQ-bws) 
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Appendix 
  

Table 3. 10: Class-Specific Accuracies of Repeated Measures LDA procedures based on MLE and Robust 

Estimator (MVE) for Normal distribution by Number of Outcomes and Sample Sizes  
Methods   un-UNAR  un-UNCS  st-UNAR  st-UNCS  

 Sample Size 

(n1, n2) 

Pop1 Pop2 Pop1 Pop2 Pop1 Pop2 Pop1 Pop2 

Number of outcomes(q=3) 

 

       

MLE Equal 50,50  0.70 0.85 0.70 0.85 0.69 0.84 0.71 0.85 

  70,70 0.71 0.83 0.71 0.83 0.71 0.83 0.72 0.84 

  100,100 0.72 0.82 0.72 0.82 0.71 0.82 0.72 0.83 

 Unequal 40,60 0.70 0.85 0.70 0.85 0.70 0.85 0.71 0.85 

  56,84 0.71 0.84 0.71 0.84 0.70 0.83 0.71 0.84 

  80,120 0.71 0.82 0.72 0.82 0.71 0.82 0.72 0.83 

MVE Equal 50,50  0.69 0.85 0.70 0.85 0.69 0.84 0.70 0.85 

  70,70 0.70 0.83 0.71 0.84 0.70 0.83 0.71 0.84 

  100,100 0.71 0.82 0.72 0.83 0.71 0.82 0.72 0.83 

 Unequal 40,60 0.69 0.85 0.69 0.85 0.69 0.84 0.70 0.85 
 

 56,84 0.70 0.83 0.71 0.84 0.70 0.83 0.71 0.84 

  80,120 0.71 0.82 0.72 0.83 0.70 0.81 0.72 0.83 

Number of outcomes(q=7)        

MLE Equal 50,50  0.78 0.91 0.79 0.91 0.78 0.91 0.79 0.92 

  70,70 0.79 0.90 0.79 0.90 0.79 0.89 0.80 0.91 

  100,100 0.80 0.88 0.80 0.89 0.80 0.88 0.81 0.90 

 Unequal 40,60 0.78 0.91 0.79 0.91 0.78 0.91 0.80 0.92 

  56,84 0.79 0.89 0.79 0.90 0.79 0.89 0.80 0.91 

  80,120 0.79 0.88 0.80 0.89 0.79 0.88 0.81 0.90 

MVE Equal 50,50  0.78 0.91 0.79 0.92 0.78 0.90 0.79 0.92 

  70,70 0.78 0.89 0.80 0.91 0.78 0.89 0.80 0.90 

  100,100 0.79 0.88 0.80 0.89 0.79 0.88 0.80 0.90 

 Unequal 40,60 0.78 0.91 0.79 0.92 0.78 0.90 0.79 0.92 

  56,84 0.78 0.89 0.79 0.91 0.78 0.89 0.79 0.90 

  80,120 0.79 0.88 0.80 0.90 0.79 0.88 0.80 0.90 

Note: un-UNAR = unstructured means-Kronecker product of unstructured between-outcomes and within-outcome AR-1 correlation 

matrices; un-UNCS = unstructured means-Kronecker product of unstructured between-outcomes and within-outcome CS correlation 

matrices; st-UNAR = structured means-Kronecker product of unstructured between-outcomes and within-outcome AR-1 correlation 

matrices; st-UNCS = structured means-Kronecker product of unstructured between-outcomes and within-outcome CS correlation 

matrices; MLE=Maximum likelihood estimator; MVE= minimum volume ellipsoid; LDA= Linear Discriminant 

Analysis;Pop1=Population 1; Pop2=Population 2 
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Table 3.11:Class-Specific Accuracies of Repeated Measures LDA procedures based on MLE and Robust 

Estimator (MVE) for Cauchy distribution by Number of Outcomes and Sample Sizes  
Methods   un-UNAR  un-UNCS  st-UNAR  st-UNCS  

 Sample Size 

(n1, n2) 

Pop1 Pop2 Pop1 Pop2 Pop1 Pop2 Pop1 Pop2 

Number of outcomes(q=3) 

 

       

MLE Equal 50,50  0.47 0.71 0.47 0.71 0.47 0.71 0.47 0.70 

  70,70 0.48 0.69 0.48 0.68 0.48 0.69 0.48 0.68 

  100,100 0.47 0.66 0.47 0.66 0.47 0.66 0.47 0.66 

 Unequal 40,60 0.47 0.69 0.47 0.69 0.47 0.69 0.47 0.69 

  56,84 0.47 0.68 0.47 0.66 0.47 0.67 0.47 0.66 

  80,120 0.47 0.66 0.46 0.65 0.47 0.66 0.46 0.65 

MVE Equal 50,50  0.59 0.80 0.59 0.80 0.60 0.80 0.59 0.80 

  70,70 0.62 0.79 0.62 0.79 0.61 0.78 0.62 0.79 

  100,100 0.63 0.77 0.63 0.77 0.63 0.77 0.63 0.78 

 Unequal 40,60 0.58 0.79 0.58 0.79 0.58 0.79 0.58 0.79 
 

 56,84 0.61 0.78 0.61 0.79 0.61 0.78 0.61 0.79 

  80,120 0.63 0.77 0.63 0.77 0.63 0.77 0.63 0.77 

Number of outcomes(q=7)        

MLE Equal 50,50  0.49 0.74 0.48 0.74 0.49 0.74 0.48 0.74 

  70,70 0.48 0.72 0.48 0.72 0.48 0.72 0.48 0.73 

  100,100 0.48 0.71 0.48 0.71 0.48 0.71 0.48 0.72 

 Unequal 40,60 0.48 0.72 0.48 0.72 0.48 0.73 0.48 0.72 

  56,84 0.48 0.72 0.48 0.73 0.48 0.72 0.48 0.73 

  80,120 0.48 0.70 0.48 0.70 0.48 0.70 0.48 0.71 

MVE Equal 50,50  0.58 0.82 0.58 0.83 0.58 0.82 0.58 0.83 

  70,70 0.64 0.82 0.65 0.82 0.64 0.82 0.65 0.82 

  100,100 0.67 0.81 0.68 0.82 0.67 0.81 0.68 0.82 

 Unequal 40,60 0.54 0.81 0.54 0.82 0.54 0.81 0.54 0.82 

  56,84 0.61 0.81 0.62 0.82 0.61 0.81 0.62 0.82 

  80,120 0.67 0.81 0.68 0.81 0.67 0.80 0.68 0.81 

Note: un-UNAR = unstructured means-Kronecker product of unstructured between-outcomes and within-outcome AR-1 correlation 

matrices; un-UNCS = unstructured means-Kronecker product of unstructured between-outcomes and within-outcome CS correlation 

matrices; st-UNAR = structured means-Kronecker product of unstructured between-outcomes and within-outcome AR-1 correlation 

matrices; st-UNCS = structured means-Kronecker product of unstructured between-outcomes and within-outcome CS correlation 

matrices; MLE=Maximum likelihood estimator; MVE= minimum volume ellipsoid; LDA= Linear Discriminant Analysis; 

Pop1=Population 1; Pop2=Population 2 
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Abstract 
 

 In bio-medical sciences, studies are often designed to investigate changes in multivariate repeated 

measures, where one or more outcomes are measured repeatedly over time in the participating 

subjects. Many statistical procedures have been proposed for the analysis of multivariate repeated 

measures data and their extension to discriminant analysis. However, most of these procedures 

rely on the assumptions of multivariate normality and/or correct specification of the correlation 

and/or mean structures which may not be tenable in multivariate repeated measures designs which 

are characterized by binary, ordinal, or mixed types of outcome distributions. This study 

investigates the accuracy of repeated measures discriminant analysis based on the multivariate 

generalized estimating equation (GEE) framework for classification in multivariate repeated 

measures designs with the same or different types of outcomes repeatedly measured over time. 

Monte Carlo methods were used to compare the classification accuracy of repeated measures 

discriminant analysis procedures based on multivariate GEE, and repeated measures discriminant 

analysis based on maximum likelihood estimators (MLE) under diverse simulation generation 

conditions, which included number of repeated measure occasions, number of outcomes, sample 

size, correlation structures, and type of outcome distribution. Repeated measures discriminant 

analysis based on multivariate GEE exhibited higher mean classification accuracy than repeated 

measures discriminant analysis based on MLE especially in multivariate non-normal distributions. 

Three repeatedly measured outcomes namely severity of epilepsy, current number of anti-epileptic 

drugs (AEDs), and parent-reported quality of life in children with epilepsy were classified into 

remission and refractory groups within two years. 

Keywords: discriminant analysis, multivariate repeated measures data, generalized estimating 

equation, multivariate non-normal distribution, classification 



83 

 

4.1 Introduction 
 

In more recent years, relevant work has been done in capturing the longitudinal nature of 

clinical data and using it for classification via discriminant analysis. These research studies include 

discriminant analysis extensions to repeated measures data with multiple outcomes 1-8. When 

multiple outcomes need to be analyzed, a joint model is required, which extends beyond the 

correlation between repeated measurements of one outcome. Rather, the model should also allow 

for a correlation structure between the different outcomes. Utilizing the correlation structure across 

outcomes with a multivariate model, could increase the classification accuracy9. Classical 

discriminant analysis does not model the correlation structure and thus the information regarding 

the possible structure in the correlation for repeated measurements taken on the same individual 

and between outcomes is lost10-13. Moreover, classical discriminant analysis is based on 

multivariate normality assumption to guarantee an optimal solution. Equal correlation structures 

is assumed in the population groups10 for linear discriminant analysis (LDA) whilst quadratic 

discriminant analysis (QDA) allows for unequal covariance structures between the population 

groups11-13. 

Most LDA methodologies in multivariate repeated measures data are based on mixed 

effects model. Multivariate linear and non-linear mixed-effects models that assumes unstructured1, 

14 and parsimonious structure6, 9, 15, 16 for the variance-covariance matrix have been introduced. For 

instance, several continuous markers and a multivariate linear mixed model was used to evaluate 

a prognosis of primary biliary cirrhosis patients14 and non-linear mixed-effects model to 

distinguish between women with and without pregnancy abnormalities15. Similarly, three 

continuous markers were used to classify patients suffering from prostate cancer6. Generalized 

linear mixed models have been extended in multivariate repeated measures studies for different 
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type of outcomes (continuous, counts and binary)1, 2, 17. Most mixed-effects model LDA assume 

that the random effects follow a multivariate normal distribution. Moreover, the dimension of 

random-effects quickly increases as more outcomes and more measurements occasions are added 

to the model, increasing the computational burden and instability1, 7, 14. In addition, it is difficult to 

evaluate the marginal likelihood of jointly generalized linear mixed models when the outcome is 

non-normal. 

Contrary to mixed effects models approaches, some researchers have utilized generalized 

estimating equations (GEE) based on multiple marginal models of multiple outcomes. To avoid 

the specification of the full likelihood function especially for discrete data, multivariate GEE18 is 

a suitable approach for parameter estimation for repeated measures data without full specification 

of the likelihood. GEEs offer a computationally non-intensive parameter estimation algorithm and 

the resulting parameter estimates have population-averaged interpretation. A joint modeling of 

multiple outcome variables is based on straightforward extension of univariate GEEs with 

correlation structure across outcomes which provides separate set of regression parameters for 

each outcome variable19, 20. Specifically, GEEs directly specify a marginal mean model for each 

outcome and induce the correlation between measurements of outcomes through a working 

correlation matrix. GEEs are less sensitive to covariance misspecification compared to mixed 

effects models 18, 21. 

This study examines the accuracy of discriminant analysis based on multivariate GEE 

framework for classification in multivariate repeated measures designs with same/different types 

of outcomes. The manuscript is organized as follows. In sections 2, we describe the GEEs 

framework for multivariate repeated measures data. The proposed approach, the extension of the 

multivariate GEE framework to discriminant analysis, is presented in Section 3. In section 4, we 
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summarize the results of a Monte Carlo simulation study to assess the validity of the proposed 

GEE repeated measures discriminant analysis approach under diverse simulation scenarios. Data 

from a multivariate longitudinal study of children with epilepsy were used to demonstrate the 

application of these procedures in section 5. Finally, a discussion of the key findings from the 

study and its implications are described in section 6.   

4.2 Generalized Estimating Equations for Multivariate Repeated 

Measures Data 
 

Suppose we have a random sample of n individuals. For each individual i  = 1 ,…, n, let 

𝐲𝑖 = ( 𝐲𝑖1
′ , 𝐲𝑖2

′ , … , 𝐲𝑖𝑞
′ )′ be a 𝑝𝑞 x 1 vector of q correlated outcomes that are each repeatedly 

measured at p occasions, and 𝐗𝑖 = 𝐗𝑖∗ ⊗ 𝐈𝑞  is  a corresponding 𝑝𝑞 x 𝐾𝑞 block diagonal covariate 

matrix, where 𝐗𝑖∗ = (𝐗𝑖1, 𝐗𝑖2, … 𝐗𝑖𝑘 , … , 𝐗𝑖𝐾) is a 𝑝 x 𝐾 matrix of covariates and 𝐗𝑖𝑘 = (𝐗𝑖1𝑘, 

...... , 𝐗𝑖𝑝𝑘),  𝐈𝑞   is an 𝑞 x 𝑞 identity matrix, and ⊗ is the Kronecker product sign. For the analysis 

of multivariate correlated data, the marginal mean vector 𝛍𝑖 = ( 𝛍𝑖1
′ , 𝛍𝑖1

′ , … , … , 𝛍𝑖𝑞
′ )′ is associated 

with K covariates through a generalized linear model (GLM) as follows: 

𝛍𝑖 = 𝐟𝑙(𝐗𝑖𝛃),  ((4.1) 

where, 𝐟𝑙(·) , 𝑙 = 1,2,… , 𝑞 is the inverse outcome-specific link function, 𝛃 = ( 𝛃1
′ , 𝛃2

′ , … , … , 𝛃𝑞
′ )′, 

where 𝛃𝑞 = (𝛃𝑞1 , 𝛃𝑞2, … 𝛃𝑞𝑘 , … , 𝛃𝑞𝐾)′ is the pq×1 dimensional vector of  the qth outcome 

regression coefficients with population-averaged interpretations. The pq × pq marginal covariance 

matrix is: 

𝛀𝑖 = ϕ𝚺𝑖 , (4.2) 

where 𝜙 is a scale parameter that can be known or estimated and 𝚺𝑖 is an pq × pq working 

covariance matrix, which results in a  a total of pq (pq + 1)/2 unknown parameters to be estimated 

for any statistical inference 22, 23 which may not always be feasible (pq is close to n).  
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To reduce the dimension of the unknown parameters of the correlation matrix, a 

parsimonious structure is sometimes used, such as a Kronecker product correlation matrix such 

that 

𝚺𝑖 = 𝐀𝑖
1/2

(𝐑𝑞(𝜶) ⊗ 𝐑𝑝(𝝆))𝐀𝑖
1/2

 (4.3) 

where 𝐀𝒊 is an pq × pq block diagonal matrix, which contains the marginal variance of outcomes 

on the main diagonals, 𝐑𝑞(𝛼) is a q× q working correlation matrix of the outcomes with the 

parameter vector 𝛼, and 𝐑𝑝(𝜌) is a p×p the working correlation matrix for a given outcome at 

different time points with the parameter 𝜌. This structure reduces the number of correlation 

parameters to estimate23-27. Consequently, 𝐑𝑞(𝜶) and 𝐑𝑝(𝝆) denote between-outcomes 

correlation matrix and within-outcome correlation matrix respectively. Further assuming a 

structured working correlation, such as exchangeable (EX), first-order autoregressive (AR-1), or 

unstructured (UN), for 𝐑𝑞(𝛂) and exchangeable (EX) or unstructured (UN) structures for 𝐑𝑝(𝝆) 

can lead to an even more parsimonious model 22, 28, 29. The parsimonious structure provides flexible 

model for the complex correlation, particularly when sample size is small22, 28, 29. Inferences of 

interest are easily influenced by the correlation structure’s assumptions and unstructured 

correlation structure might cause convergence problems as the number of parameters to be 

estimated grows rapidly 30.  In the quasi-likelihood framework with repeated measures outcomes, 

the regression coefficients 𝛃 can be estimated by solving the generalized estimating equations 

(GEEs) 

U(𝛃) = ∑𝐃𝑖
′

𝑛

𝑖=1

𝛀𝑖
−1(𝐲𝑖 − 𝛍𝑖) = 𝟎 

(4.4) 



87 

 

where 𝐃𝑖 =
∂𝛍𝑖

∂𝛃
  is the block diagonal matrix of derivatives of the mean with respect to the 

regression parameters, 𝛍𝑖 is the marginal mean vector, and 𝛀𝑖 is the working covariance matrix. 

Specifically, U(𝛃) = 𝟎 are solved with a Fisher-Scoring algorithm such that 

𝛃̂ = 𝛃 ̃ + (∑ 𝐃̃𝑖
′

𝑛

𝑖=1

𝛀̃𝑖
−1𝐃̃𝑖)

−1

(∑𝐃̃𝑖
′

𝑛

𝑖=1

𝛀̃𝑖
−1(𝐲𝑖 − 𝛍𝑖))  

(4.5) 

 Under mild regularity conditions, the parameter estimates are consistent and 

asymptotically normally distributed even when the “working” correlation structure of outcomes 

is mis-specified, and the variance-covariance matrix can be estimated using a robust “sandwich” 

variance estimator31. The asymptotic covariance matrix of the non-vanishing (non-zero) 

component of 𝜷̂ via the sandwich estimator formula is 31, 32: 

cov̂(𝜷̂) = (∑𝑫̂𝑖
′

𝑛

𝑖=1

𝛀̂𝑖
−1𝑫̂𝑖)

−1

𝑴̂∗  (∑𝑫̂𝑖
′

𝑛

𝑖=1

𝛀̂𝑖
−1𝑫̂𝑖)

−1

 , 

(4.6) 

with 

𝑴̂∗ = ∑𝑫̂𝑖
′

𝑛

𝑖=1

𝛀̂𝑖
−1cov̂(𝐲𝑖)𝛀̂𝑖

−1𝑫̂𝑖 
(4.7) 

and cov̂(𝐲𝑖) = (𝐲𝑖 − 𝝁̂𝑖)(𝐲𝑖 − 𝝁̂𝑖)
′ is an estimator of the true variance-covariance matrix of 𝐲𝑖

18, 

31. Note that if 𝛀𝑖 is correctly specified, 𝛀𝑖 = cov(𝐲𝑖)
33, 34. Moreover, GEE requires the correct 

specification of marginal mean and variance as well as the link function, which connects the 

covariates of interest and the marginal means. 

4.3 GEE Extension to Multivariate Repeated Measures 

Discriminant Analysis 
 

Following the GEE notation, we assume that the ith individual in the jth population 

(𝑗 =1,2) with multivariate repeated outcomes  𝐲𝑖𝑗 , has a marginal mean 𝝁𝑗, and variance 
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covariance matrix  𝛀𝑗 assumed to be pq x pq positive definite. Analogously, with estimations of 

𝛍̂𝑗 = 𝒇𝑞(𝑿𝑖𝜷̂𝑗)   and the variance covariance matrix 𝛀̂𝑗 from the GEE model in population 𝑗 

using a pre-defined structure, the homoscedastic model is obtained when the variance 

components are homogeneous, that is,  𝛀1 =  𝛀2 = 𝛀, the pooled covariance matrix. Based on 

LDA, a randomly selected ith individual with multiple outcome vector 𝐲𝑖  is classified in the first 

population, if  

(𝐲𝑖 −
𝝁̂1 + 𝝁̂2

2
)
′

 𝛀̂−1(𝝁̂1 − 𝝁̂2) > log  
π̂2

π̂1
 

(4.8) 

where 𝝁̂𝑗 and 𝛀̂𝑗
−𝟏are the GEE estimates from (1) and (2), 𝜋̂1 and 𝜋̂2 are the a priori probabilities 

that observations belong to populations 1 and 2. Otherwise, is the individual is classified into the 

second population. For QDA (i.e.,   𝛀1 ≠  𝛀2), the ith subject with multiple outcome vector 𝐲𝑖  is 

classified in the first population, if  

(𝐲𝑖 − 𝝁̂2)
′𝛀̂𝟐

−𝟏(𝐲𝑖 − 𝝁̂2) − (𝐲𝑖 − 𝝁̂1)
′𝛀̂𝟏

−𝟏(𝐲𝑖 − 𝝁̂1)  > log  |
 𝛀̂1

 𝛀̂2

| + 2 log  
π̂2

π̂1
 

        (4.9) 

otherwise, it is classified into the second population.  

 

4.4 Simulation Study  
 

A Monte Carlo simulation study was conducted to examine the accuracy of linear and 

quadratic GEE discriminant analysis procedures that assume Kronecker product structured 

covariances compared to conventional discriminant analysis based on MLE for multivariate 

repeated measures data. The following conditions were investigated: (a) number of repeated 

measurements (𝑝), (b) total sample size (𝑁), (c) group sizes (𝑛1, 𝑛2), (d) pattern and magnitude 

of correlation among the repeated measurements (𝜌), (e) mean configuration, (f) covariance 

heterogeneity, and (g) population distribution. All procedures were investigated for two 
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independent groups.  The number of repeated occasions/ time points was set at 𝑝 =  3 and 5, and 

number of outcomes was set at 𝑞 =  3 and 5. Previous studies about DA procedures  for 

multivariate repeated measures data have considered 𝑝 ranging from three to ten, an increase in 

classification accuracies were quite significant when 𝑝 increased from three to five. 35, 36  Total 

sample sizes of 𝑁 =  80, 140 and 200 were investigated. This is consistent with previous 

simulation studies that examined the accuracy of DA for multivariate repeated measures data 

between 60 and 200. Moreover, consistent with previous studies that examined the impact of equal 

and unequal group sizes 35, 36,37, 38, we investigated conditions of  𝑁 =  80, (𝑛1, 𝑛2)  =  (40, 40), 

and (32, 48), which represent a group size ratio of 1:1 and 2:3, respectively. Similar equal and 

unequal group size ratios were investigated when 𝑁 = 140 and 𝑁 = 200. Furthermore, the 

accuracy of DA procedures is known to be influenced by both the magnitude and pattern of within- 

and multivariate-outcome correlations39. Therefore, we investigated the following within-outcome 

correlation structures: (a) Compound Symmetry with 𝜌 = 0.3  and 𝜌 = 0.7, (b) Autoregressive 

order 1 with ρ =  0.3 and  ρ =  0.735, 36  for the within-outcome correlation 𝐑𝑝(ρ), and  the 

between-outcomes correlation, 𝐑𝑞(𝜌) was assumed to be unstructured (See Table 4.1 for more 

details). Hence, we assumed two Kronecker correlation structures 𝐑𝑞(𝛼) ⊗ 𝐑𝑝(𝜌); UNAR = 

Unstructured between-outcomes and Autoregressive order-1 within-outcome correlation matrix, 

and UNCS=Unstructured between-outcomes and Compound symmetry within-outcome 

correlation matrix. For covariance heterogeneity, we assumed 𝛀1 = 𝛀2  and  𝛀1 = 3𝛀2.  

In order to assess the performance of the discriminant function, we investigated 

multivariate correlated continuous outcome variables, count outcome variables and different types 

of correlated outcomes, namely Case 1, Case 2 and Case 3 respectively. Case 1: For the correlated 

continuous outcome variables, we assumed three normal variables jointly observed for 𝒏𝑗 subjects, 
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where each observed at 𝑝 time points. The true marginal mean outcome model 𝝁𝑖𝑝𝑞 was assumed 

to take the following functional form that uses an identity link function: 

𝝁𝑖𝑝𝑞 = 𝜷𝑞1𝑥𝑖𝑝 + 𝜷𝑞2𝑡𝑖𝑝  (   (4.2) 

The number of covariates, 𝐾 = 2, where 𝑥𝑖𝑝 was generated from an independent normal random 

variable 𝑁(0,1) as a time-invariant covariate, and 𝑡𝑖𝑝 denoted the time of observation as a time-

varying covariate. Details of the true parameters 𝜷 for population 1 and population 2 can be found 

in Table 4.2. On the other hand, the marginal variance matrix of outcomes was assumed to have a 

common variance of 60. Case 2: For the multivariate count outcome variables, data were generated 

from a multivariate Poisson distribution using the log link function instead of identity link in Case 

1 and log transformation of time of observation as a time-varying covariate.  

𝒍𝒐𝒈(𝝁𝑖𝑝𝑞) =  𝜷𝑞1𝑥𝑖𝑝 + 𝜷𝑞2log (𝑡𝑖𝑝)  (   (4.3) 

The true parameters 𝜷 for population 1 and population 2 can be found in Table 4.2.  Case 3: For 

generating different types of correlated outcomes, one of the outcomes generated from case 1 

(multivariate normal distribution data) was converted to Bernoulli outcome using the NORmal-

To-Anything (NORTA) algorithm40 with probabilities from the logit function.  

The LDA and QDA rules were developed using marginal mean and variance-covariance matrix 

estimated via GEE, and MLE for equal and unequal covariance matrix respectively. The 

classification performance of the procedures was evaluated using the overall mean classification 

accuracy and its corresponding standard errors. 

Overall classification accuracy =  
correct classifications 

Total sample size (𝑁) 
 

 ((4.4) 
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All combinations of simulation generation conditions were investigated for each procedure and 

each method of estimation, resulting in a total of 194 combinations. There were 500 replications 

for each combination. All analyses were completed in R statistical software version 3.5.3. 

 

4.4.1 Simulation Study Results 
 

Tables 4.3 and 4.4 describe the mean classification accuracies and standard errors of 

repeated measures linear and quadratic discriminant analysis based on GEE, and MLE respectively 

by population distribution, number of repeated occasions and number of outcomes. The results of 

linear discriminant analysis showed 0.01-0.04 differences among all UNAR procedures when data 

were sampled from a multivariate normal distribution; however, repeated measures discriminant 

analysis based on GEE procedures were more accurate than repeated measures discriminant 

analysis based on MLE among UNCS procedures. For example: for the UNCS correlation matrix 

under GEE, the mean accuracy for  𝑝 = 3  was 0.74 and 𝑝 = 5, it was 0.89, whiles for the UNCS 

correlation matrix under MLE, the mean accuracy for  𝑝 = 3  was 0.66 and 𝑞 = 5, it was 0.63 

when the number of outcomes was five (Table 4.3). 

Moreover, repeated measures discriminant analysis based on GEE had the highest mean 

classification accuracy compared to repeated measures discriminant analysis procedures based on 

MLE when outcomes were sampled from a multivariate Poisson distribution and mixed type 

outcomes. For example, when p = 3 and q=5, the mean classification accuracies of repeated 

measures discriminant analysis procedures based on GEE and MLE were 0.97 and 0.84 when data 

were sampled from a multivariate Poisson distribution with outcome variables. Whereas the mean 

accuracy of the GEE and MLE procedures were 0.72 and 0.58, respectively, when mixed type 

outcomes, under UNAR correlation matrix (Table 4.3). In the quadratic discriminant analysis 
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procedures, repeated measures discriminant analysis procedures based on MLE were least accurate 

regardless of number of repeated occasions, number of outcomes, estimation method or 

multivariate distribution of outcome variables (Table 4.4). For example, when q = 5 and p=3 under 

UNAR correlation matrix, the mean classification accuracies of repeated measures discriminant 

analysis procedures based on GEE and MLE were 0.85 and 0.66 when data were sampled from a 

multivariate normal distribution with outcome variables. 

Furthermore, the mean accuracy of each linear and quadratic discriminant analysis 

procedures increased as the number of repeated occasions and number of outcomes increased, 

regardless of the estimation method or multivariate distribution of outcome variables. For example, 

for q =3 when data were sampled from a multivariate normal distribution, the increase in mean 

classification accuracy of the repeated measures discriminant analysis procedure based on GEE 

and MLE were about 0.11 and 0.05 respectively as p increased from 3 to 5, under UNCS 

correlation matrix (Table 4.3). Likewise, the increase in mean classification accuracy of the 

repeated measures discriminant analysis procedure based on GEE and MLE were about 0.10 and 

0.01 respectively as q increased from 3 to 5, under UNCS correlation matrix and p =3 (Table 4.3). 

It is worth mentioning that, we observed little or no differences in classification accuracies 

for linear and quadratic discriminant procedures when repeated measures discriminant analysis 

procedures based on MLE were used, whereas the classification accuracies for quadratic 

discriminant procedures based on GEE increased compared to its corresponding linear 

discriminant procedures (Table 4.3 & Table 4.4).  

For example: the mean accuracy for  repeated measures discriminant analysis procedure based on 

GEE and MLE were 0.64  and 0.65 respectively for linear discriminant procedure (Table 4.3), 

whiles for quadratic discriminant procedure, the mean accuracy were 0.80 and 0.66 respectively 
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(Table 4.4) under the UNCS correlation matrix, when data were sampled from a multivariate 

normal distribution with outcome variables and  p =3. 

4.5 Application: Health-Related Quality of Life in Children with 

Epilepsy Study (HERQULES) 
 

Multivariate repeated measures data were obtained from the Health-Related Quality of Life 

(HRQOL) in Children with Epilepsy Study (HERQULES), a two-year prospective cohort study 

assessing the course and characteristics potentially associated with HRQOL in children with new 

onset epilepsy across Canada41, 42. Details of HERQULES have been described elsewhere41, 42. 

Data were collected as soon as possible following the diagnosis of epilepsy at baseline (0 month), 

and approximately 6 months, 12 months, and 24 months later (p=4). Standardized questionnaires 

were used to collect parent-report of their children’s HRQOL and a series of child and family 

characteristics, while a neurologist-report form collected information on clinical characteristics of 

the child’s epilepsy.  

 Using this multivariate repeated measures data, we sought to identify patients who will not 

achieve remission from seizures within two years from disease onset. Early identification of 

patients who have refractory epilepsy can allow clinicians to explore alternative treatment options 

(e.g., surgery) to manage seizures and other aspects of the disease2.  Data for this numeric example 

consists of outcome variables (q=3) such as severity of epilepsy, current number of anti-epileptic 

drugs (AEDs), and parent-reported quality of life in children using epilepsy-specific scale which 

were measured over four measurement occasions (p=4) and covariates such as time of observation, 

age at seizure onset, and sex. All repeated measures data were used for the classification. Repeated 

measures linear and quadratic discriminant analysis classification rules were developed based on 

multivariate GEE model using this data . 
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 Of the 187 patients include in this analysis, 101 patients were in the remission group (n1 

=101) and 86 patients were in the refractory group (n2 = 86) within two years. The sample included 

children ages 4 to 12 years. The mean age (standard deviation) in the remission group was 

8.25(2.46) years and in the refractory group was 8.25(2.46) years. The patients included 45.54% 

and 41.86% females in the remission and refractory groups respectively. The QOLCE-55 ratings 

underwent a linear transformation such that domain scores can take values from 0 (low HRQOL) 

to 100 (high HRQOL). The ratings were treated as a continuous variable. The GASE scale is a 7-

point Likert scale ranging from 1 (not severe at all) to 7 (extremely severe) was recoded as a binary 

variable, with ≥ 3 coded as severe thereby using the median severity 3 of the sample, 

corresponding to ‘‘somewhat severe” as a cut-off 43. 

 

4.5.1 Results for HERQULES Data 
 

Figure 4.1 describe the longitudinal changes in the levels of each of the outcome variables 

for all patients in each diagnostic group. For patients who achieved remission, severity of seizures 

appears to decrease over time whereas seizure severity remained high for the refractory group. The 

difference between the overall quality of life of the two groups is less noticeable. However, the 

overall quality of life appears constant over time in the refractory but as time increases the overall 

quality of life of the remission patients gradually increases. The number of AEDs increased over 

time for the refractory patients while those in the remission group had slightly reduced number of 

AEDs. 

 Table 4.5 gives the group-specific correlation parameter estimates of the joint modeling of 

the multiple repeated outcomes using multivariate GEE. We observed that in both remission and 

refractory groups, HRQOL was negatively associated with severity of seizures and the number of 

AEDs. However, there was little to no association between severity of seizures and the number of 
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AEDs. The accuracy of LDA and QDA classifiers based on GEE and maximum likelihood 

estimators are described in Table 4.6. Overall, repeated measures discriminant analysis procedures 

based on GEE exhibited higher overall classification accuracy than repeated measures discriminant 

analysis based on MLE in both LDA and QDA. Moreover, the classification accuracies observed 

using GEE estimators increased when QDA (accuracy, 0.79) was used for classification compared 

to its LDA (accuracy, 0.71) approach whilst the accuracy using MLE estimators for remain the 

same for both QDA and LDA (accuracy, 0.67). The classifiers were more accurate in correctly 

reclassifying patients in the remission group but less accurate for reclassifying those in the 

refraction group.  

 

4.6 Discussion 
 

This study investigates discriminant analysis procedures for multivariate repeated 

measures data using multivariate GEE for discriminating between population groups. The 

proposed approach allows the incorporation of repeated measures outcomes and covariates to 

improve the accuracy of the classifier. Our results showed that the repeated measures discriminant 

analysis based on multivariate GEE model resulted in better classification accuracy than the 

conventional repeated measures discriminant analysis based on maximum likelihood estimators 

especially in multivariate repeated measures data with discrete and/or mixed type of outcomes 44, 

45. This is because the GEE approach enables us to analyze multivariate repeated measures data all 

together regardless of the type of outcomes, without specifying of a full likelihood20, 30, 45, 46. 

Furthermore, our study revealed the impact of increasing repeated occasions and number 

of outcomes on the accuracy of the investigated procedures. The impact of increasing number of 

repeated occasions is consistent with literature on other repeated measures discriminant analysis  
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methods22, 36 ; however, these studies did not investigate the impact of increasing number of 

outcomes.  Specifically, the repeated measures discriminant analysis based on GEE was most 

accurate for increase in the number of repeated occasions and number of outcomes compared to 

repeated measures discriminant analysis based on MLE. Overall, the quadratic discriminant 

analysis was able to better classify individuals than the linear discriminant analysis in repeated 

measures discriminant analysis based on GEE. QDA provides a less restrictive procedure by 

allowing different covariance matrix for each population group, which minimizes 

misclassification. Even though, classification rules based on LDA can perform badly if the 

assumption of a common within-class covariance matrix is violated, classification rules based on 

QDA requires a larger sample size to overcome the singularity problem13, 47, 48. Also, the 

procedures developed in this study are based on two-group multivariate repeated designs, but our 

conclusions can be extended and generalized to multi-group designs49, 50.  

 Despite the unique strengths of this class of repeated measures discriminant analysis 

models, they are not without their own limitations. First, the repeated measures discriminant 

analysis based on multivariate GEE relies on correctly specified link function and parsimonious 

covariance structures, which might not be realistic in typical multivariate repeated measures data. 

It is well known that GEEs yield asymptotically consistent parameter and variance estimates even 

under incorrect specification of the correlation structure but correctly specified link function 44, 46, 

51. This means that a crucial step in the GEE approach is to select a correct link function linking 

the mean response to the covariates52. With regards to parsimonious covariance structures, even 

though several authors have observed many advantages of using Kronecker product structure for 

analyzing multivariate repeated measures data22, 24, 36, 53, 54, one could use the usual unstructured 

variance covariance matrix when there is sufficient data. Moreover, some work has been done on 
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the testing of hypotheses of Kronecker product structure22, 24, 26. It is also not clear whether the 

misspecification of the working c correlation structures for these procedures could influence their 

classification accuracy55. However, one does not know a priori which correlation structure is 

correct. Future research will examine the impact of misspecification of correlation structure on the 

accuracy of these classifiers. In addition, to help in choosing a working correlation matrix that is 

close to the true correlation matrix, a quasi-likelihood under the independence model criterion 

(QIC) which is a modified Akaike information criterion (AIC) has recommended for GEE model56, 

57. Secondly, the assumption of complete multivariate repeated measures data in which there is no 

missing data on all outcomes and at all measurement occasions might not be realistic in 

multivariate repeated measures data often encountered in applied research. Even in a well-

controlled repeated measures study, missing data may frequently occur due to missed visits, 

withdrawal from the study, or loss to follow-up20. Some studies have been done to drop-out 

problems in repeated measures studies via weighted generalized estimating equations58 and 

imputations. Further research could extend the discriminant analysis procedures based on GEE by 

implementing some of the multiple imputation techniques20, 59-61.   

 In summary, this study proposes a new class of discriminant analysis procedures based on 

multivariate GEE, which can be used for distinguishing between population groups in multivariate 

repeated measures data characterized by multivariate non-normal distributions with mixed types 

of outcome variables. An advantage of these procedures is their ability to accommodate both time-

invariant and time-varying covariate to improve the accuracy of model classifiers.  
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Table 4.1: Configuration of unstructured between-outcomes correlation matrix given within-

outcome correlation coefficient for the Monte Carlo Study 

within-outcome      

correlation                                 0.3               0.7 

coefficient (𝜌) 

   𝑞 = 3                           [
1 0.15 0.30

0.15 1 0.45
0.30 0.45 1

]                       [
1 0.65 0.66

0.65 1 0.70
0.66 0.70 1

]  

  𝑞 = 5                 

[
 
 
 
 

1 0.28 0.25 0.28 0.28
0.28 1 0.30 0.40 0.23
0.25
0.28
0.28

0.30
0.40
0.23

1
0.24
0.24

0.24
1

0.37

0.24
0.37
1 ]

 
 
 
 

 

[
 
 
 
 

1 0.70 0.79 0.64 0.70
0.70 1 0.73 0.65 0.74
0.79
0.64
0.70

0.73
0.65
0.74

1
0.63
0.62

0.63
1

0.62

0.62
0.62
1 ]

 
 
 
 

 

q=Number of outcomes  
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     Table 4.2: True parameters (𝜷) for population 1 and population 2 simulated data 
Population 
Distribution 

Number of 
outcomes 

population 1 population 2 

Normal/ 
Mixed-type 

3 (0.3,1,2,0.1,1,1.5) (0.6,2,4,0.2,2,3) 

   
 5 (0.2,1,2,1.5,1,0.4,0.7,3,1.2,0.8) (0.4,2,4,3,2,0.8,1.4,6,2.4,1.6)   

    

    

Poisson 3 (0.3,0.1,0.2,0.1,0.3,0.5) ( 0.9, 0.3, 0.6, 0.3 ,0.9, 1.5) 
 

   
 5 (0.3,0.1,0.4,0.1,0.45,0.6,0.2,0.15,0.3,0.4) (0.9, 0.3,1.2,0.3,1.35,1.8,0.6,0.45,0.9,1.2) 
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Table 4.3: Overall Mean Accuracy (standard error) for repeated measures LDA procedures 

based on GEE, and MLE by population distribution, number of outcomes, and number of 

measurements occasions 
Population 
Distribution 

Number 
of 
outcomes 

Number of 
measurements 
occasions 

GEE   MLE  

   UNAR UNCS  UNAR UNCS 

Normal 3 3 0.62(0.04) 0.64(0.04)  0.63(0.04) 0.65(0.04) 

 5 0.73(0.04) 0.75(0.04)  0.69(0.04) 0.70(0.04) 
 5 3 0.68(0.04) 0.74(0.04)  0.66(0.04) 0.66(0.04) 

  5 0.83(0.03) 0.89(0.03)  0.82(0.03) 0.63(0.03) 

        

Poisson 3 3 0.88(0.04) 0.90(0.03)  0.79(0.04) 0.81(0.04) 
 

 5 0.97(0.02) 0.97(0.03)  0.84(0.05) 0.85(0.05) 

 5 3 0.99(0.01) 0.99(0.01)  0.89(0.04) 0.90(0.04) 

  5 0.99(0.01) 0.99(0.01)  0.95(0.02) 0.95(0.02) 

        

Mixed-type 3 3 0.62(0.04) 0.63(0.04)  0.55(0.04) 0.55(0.04) 

  5 0.72(0.04) 0.74(0.04)  0.58(0.04) 0.58(0.04) 

 5 3 0.68(0.04) 0.72(0.04)  0.67(0.04) 0.57(0.04) 

  5 0.81(0.03) 0.87(0.03)  0.62(0.04) 0.62(0.04) 

Note: UNAR = Unstructured between-outcomes and autoregressive order 1 within-outcome 

correlation matrix; UNCS = Unstructured between-outcomes and compound symmetry within- 

outcome correlation matrix; GEE – Generalized estimating equation; MLE=Maximum likelihood 

estimation 
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Table 4.4: Overall Mean Accuracy (standard error) for repeated measures QDA procedures 

based on GEE, and MLE by population distribution, number of outcomes, and number of 

measurements occasions 
Population 
Distribution 

Number 
of 
outcomes 

Number of 
measurements 
occasions 

GEE   MLE  

   UNAR UNCS  UNAR UNCS 

Normal 3 3 0.77(0.04) 0.80(0.04)  0.65(0.04) 0.66(0.04) 

 5 0.85(0.04) 0.88(0.04)  0.71(0.04) 0.71(0.04) 
 5 3 0.85(0.04) 0.89(0.04)  0.66(0.04) 0.66(0.04) 

  5 0.90(0.03) 0.94(0.03)  0.85(0.03) 0.90(0.02) 

        

Poisson 3 3 0.93(0.03) 0.94(0.03)  0.78(0.04) 0.79(0.04) 
 

 5 0.99(0.01) 0.98(0.03)  0.85(0.05) 0.85(0.05) 

 5 3 0.99(0.01) 0.99(0.01)  0.90(0.04) 0.92(0.03) 

  5 0.99(0.01) 0.99(0.01)  0.95(0.02) 0.95(0.02) 

        

Mixed-type 3 3 0.74(0.04) 0.75(0.04)  0.56(0.04) 0.55(0.04) 

  5 0.84(0.04) 0.85(0.04)  0.58(0.04) 0.58(0.06) 

 5 3 0.83(0.04) 0.86(0.04)  0.58(0.04) 0.58(0.04) 

  5 0.91(0.03) 0.94(0.03)  0.63(0.04) 0.63(0.04) 

Note: UNAR = Unstructured between-outcomes and autoregressive order 1 within-outcome 

correlation matrix; UNCS = Unstructured between-outcomes and compound symmetry within- 

outcome correlation matrix; GEE – Generalized estimating equation; MLE=Maximum likelihood 

estimation 
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Table 4.5: GEE Group-specific correlation parameter estimates for HERQULES data by the 

assumed correlation structure 
 Remission  Refractory  

 UNAR UNCS UNAR UNCS 

ρ 0.812 0.749 0.744 0.726 

Corr(Y2Y1) -0.025  -0.023  

Corr(Y3Y1) 0.003  0.001  

Corr(Y3Y2) -0.042  -0.038  

UNAR: Unstructured between-outcomes and Autoregressive order 1 within- outcome correlation 

matrix; UNCS: Unstructured between- outcomes and Compound symmetry within-outcome 

correlation matrix; Number of (AEDs) (Y1), HRQOL (Y2), Severe Seizure(Y3) 
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Table 4.6: Classification accuracy for the generalized estimating equation (GEE) and maximum 

likelihood estimation (MLE) methods for repeated measures LDA and QDA by the assumed 

correlation structure   
 GEE  MLE  

  UNAR UNCS UNAR UNCS 

LDA Remission 0.772 0.770 0.762 0.76 

     
 Refractory  0.651 0.640 0.570 0.558 

       

 Overall 0.711 0.705 0.665 0.660 

      

QDA Remission 0.871 0.880 0.752 0.750 
 

       
 

Refractory 0.709 0.698 0.581 0.570 

        

 Overall 0.790 0.789 0.667 0.660 

      

LDA: Linear discriminant analysis; QDA: quadratic discriminant analysis; GEE: Generalized 

estimating equation; MLE: Maximum likelihood estimation; UNAR: Unstructured between 

outcomes and Autoregressive order 1 within outcome correlation matrix; UNCS: Unstructured 

between outcomes and Compound symmetry within outcome correlation matrix 
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Figure 4.1: Observed longitudinal profiles of number of anti-epileptic drugs (AEDs), quality of 

life and seizure severity from the Remission group (left column) and the Refractory group (right 

column). Solid lines show LOESS smoothed profiles for Poisson, normal and binomial models 

calculated using data from all patients. Baseline (0 month), and 6 months, 12 months, and 24 

months. 
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Chapter 5 

Effects of Correlation Mis-specification in Generalized Estimating 

Equations Discriminant Function for Multivariate Repeated 

Measures Data: A simulation study 
 

  

Brobbey A,, Lix LM., Nettel-Aguirre A., Tyler Williamson T., Samuel Wiebe, Sajobi T., Effects 

of correlation mis-specification in generalized estimating equations discriminant function for 

Multivariate Repeated Measures Data: A simulation study. Communications in Statistics (under 

review) 

 

The simulation study design, implementation of methods, and manuscript preparation was done 

by AB. All co-authors provided supervisory support, reviewed the results and critically revised the 

manuscript for important intellectual content. AB assumes responsibility for the integrity of the 

manuscript. This manuscript in its entirety is included in Chapter 5. 
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Abstract 
 

Repeated measures discriminant analyses are generally developed based on the assumption of 

parsimonious correlation structures in multivariate repeated measures data which are characterized 

by complex correlation structures such as within- and between-outcome variable correlations. The 

assumption of parsimony in discriminant analysis ensures that the increasing complexity of 

parameter estimation in multivariate repeated measures data can be handled. This study evaluates 

the impact of correlation structure mis-specification on the classification accuracy of discriminant 

analysis based on multivariate generalized estimation equations in multivariate normal and non-

normal repeated measures data. A computer simulation indicated a clear impact of correlation 

structure on the performance of the classification rules under diverse simulation generation 

conditions, which included population distribution, number of outcomes, and repeated occasions. 

The classification accuracy of linear discriminant analysis and quadratic discriminant analysis of 

the multivariate GEE procedures decreased when the correlation structures were mis-specified in 

most cases. We observed higher impact of correlation mis-specification in multivariate repeated 

measures binary outcomes for parsimonious covariance estimation procedures than in multivariate 

count or continuous outcomes. In addition, the classification accuracy increased with increase in 

number of outcomes and repeated occasions even under correlation mis-specification. 

 

Keywords: mis-specification, discriminant analysis, multivariate repeated measures data, 

generalized estimating equation, classification 
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5.1 Introduction  
 

Multivariate repeated measures data in which multiple correlated outcomes are repeatedly 

measured over time occur often in environmental and ecological studies.  Valid analysis of 

multivariate repeated measures data requires accurately modeling of the correlation structure, 

while failure to account for the complex correlation structures may lead to biased regression 

parameters1, 2. Modeling the unstructured correlation structure in multivariate repeated measures 

data is ideal option, might result in convergence problems especially when the sample size is 

smaller or equal to the dimension of the data3. The increasing complexity of multivariate repeated 

measures data analysis can be reduced by imposing additional restrictions on the correlation 

structure.   

Repeated measures discriminant analysis procedures that assume Kronecker (separable) 

product structure on the correlation matrix have been used in covariance pattern models 4-8 , mixed-

effects models and multivariate generalized estimating equations (GEE) models 9-11. Although 

parsimonious correlation structure like Kronecker product structure models can result in efficient 

classification rules especially in small-sample data, Roy showed that repeated measures 

discriminant analysis based on covariance pattern models may result in lower classification 

accuracy when the correlation structure is incorrectly specified in multivariate normal outcome 

distributions7, 12 , but their study was not extended to non-normal outcome distributions.  

To enable the analysis of all types of outcomes and covariates simultaneously for 

discriminant analysis, Brobbey et al. developed repeated measures discriminant analysis based on 

multivariate GEE model13. The multivariate GEE’s regression parameters and their variances are 

robust with respect to mis-specification of the correlation matrix of the outcomes provided the 

sample size is sufficiently large14. However, the consistency and asymptotic normality of the 
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regression estimates depend on the use of consistent correlation parameter estimates, which are 

not guaranteed to exist or to be feasible if the correlation structure is mis-specified15, 16. To our 

knowledge, there is no investigation of the impact of correlation structure mis-specification on the 

accuracy of repeated measures discriminant analysis based on multivariate GEE 13,14,17, 18. Previous 

research of repeated measures discriminant analysis based on multivariate GEE model by Brobbey 

et al. assumed true parsimonious correlation matrices13 and further research is needed to 

investigate the impact of the assumed structures on the accuracy of the models. 

Therefore, this study aimed to investigate the effects of correlation mis-specification on the 

classification accuracy of repeated measures discriminant analysis based on multivariate GEE. 

Monte Carlo methods were used to compare the accuracy of repeated measures discriminant 

analysis based on multivariate GEE when the correlation structure is correctly and incorrectly 

specified under different types of simulation generation conditions 

 

5.2 GEE Discriminant Analysis for Multivariate Repeated Measures 

Data 
 

Suppose we have a random sample of n individuals. For each individual i  = 1 ,…, n, let 

𝐲𝑖 = ( 𝐲𝑖1
′ , 𝐲𝑖2

′ , … , 𝐲𝑖𝑞
′ )′ be a 𝑝𝑞 x 1 vector of q correlated outcomes that are each measured at p 

occasions, and 𝐗𝑖 = 𝐗𝑖∗ ⊗ 𝐈𝑞   is  a corresponding 𝑝𝑞 x 𝐾𝑞 block diagonal covariate matrix, where 

𝐗𝑖∗ = (𝐗𝑖1, 𝐗𝑖2, … 𝐗𝑖𝑘 ,… , 𝐗𝑖𝐾) is a 𝑝 x 𝐾 matrix of covariates and 𝐗𝑖𝑘 = (𝐗𝑖1𝑘, …... , 𝐗𝑖𝑝𝑘),  𝐈𝑞   

is an 𝑞 x 𝑞 identity matrix, and ⊗ is the Kronecker product sign. For the analysis of multivariate 

correlated data, the marginal mean vector 𝛍𝑖 = ( 𝛍𝑖1
′ , 𝛍𝑖2

′ , … ,… , 𝛍𝑖𝑞
′ )′ is associated with K 

covariates through a generalized linear model (GLM) as follows: 
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𝛍𝑖 = 𝐟𝑙(𝐗𝑖𝛃),    (5.5) 

where, 𝐟𝑙(·) , 𝑙 = 1,2,… , 𝑞 is the inverse outcome-specific link function, 

𝛃 = ( 𝛃1
′ , 𝛃2

′ , … , … , 𝛃𝑞
′ )′, where 𝛃𝑞 = (𝛃𝑞1, 𝛃𝑞2, … 𝛃𝑞𝑘 , … , 𝛃𝑞𝐾)′ is the pq×1 dimensional vector 

of  the qth outcome regression coefficients with population-averaged interpretations. The pq × pq 

marginal covariance matrix is: 

𝛀𝑖 = ϕ𝚺𝑖,   (5.6) 

where 𝜙 is a scale parameter that can be known or estimated and 𝚺𝑖 is an pq × pq working 

covariance matrix, which results in a total of pq (pq + 1)/2 unknown parameters to be estimated 

for any statistical inference 19, 20 which may not always be feasible especially when pq≈N. 

Inferences of interest are easily influenced by the correlation structure’s assumptions and 

unstructured correlation structure might cause convergence problems as the number of parameters 

to be estimated grows rapidly3.  In the quasi-likelihood framework with repeated measures 

outcomes, the regression coefficients 𝛃 can be estimated by solving the generalized estimating 

equations (GEEs) 

U(𝛃) = ∑𝐃𝑖
′

𝑛

𝑖=1

𝛀𝑖
−1(𝐲𝑖 − 𝛍𝑖) = 𝟎 

   (5.7) 

where 𝐃𝑖 =
∂𝛍𝑖

∂𝛃
  is the block diagonal matrix of derivatives  mean with respect to the regression 

parameters , 𝛍𝑖 is the marginal mean vector, and 𝛀𝑖 = ϕ𝐀𝑖
1/2

𝐑𝑝𝑞𝐀𝑖
1/2

 is the working covariance 

matrix, where 𝐀𝑖 is an pq × pq block diagonal matrix, which contains the marginal variance of 

outcomes on the main diagonals and 𝐑𝑝𝑞 is a pq× pq working correlation matrix. Under mild 

regularity conditions, the parameter estimates 𝜷̂ are consistent and asymptotically normally 

distributed even when the “working” correlation structure of outcomes is misspecified, and the 

variance-covariance matrix can be estimated using a robust “sandwich” variance estimator21.  
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Given 𝐲𝑖𝑗 = ( 𝐲𝑖𝑗1
′ , 𝐲𝑖𝑗2

′ , … , 𝐲𝑖𝑗𝑞
′ )′ is a 𝑝𝑞 x 1 random vector corresponding to the ith individual in 

the jth population, estimations of the marginal mean 𝛍j, and covariance 𝛀𝑗 are obtained using a 

pre-defined structure from the multivariate GEE model in population 𝑗 (𝑗 =1,2). The linear 

discriminant analysis (LDA) model is obtained when the variance components are homogeneous, 

that is,  𝛀1 =  𝛀2 = 𝛀, the pooled covariance matrix. The LDA implies that an individual with 

multiple outcome vector 𝐲𝑖  is classified in the first population, if and only if  

 
(𝐲𝑖 −

𝝁̂1 + 𝝁̂2

2
)
′

 𝛀̂−1(𝝁̂1 − 𝝁̂2) > log  
π̂2

π̂1
 

    (5.8) 

, and for quadratic discriminant analysis (QDA) classification when  𝛀1 ≠  𝛀2,  as 

 (𝐲𝑖 − 𝝁̂2)
′𝛀̂𝟐

−𝟏(𝐲𝑖 − 𝝁̂2) − (𝐲𝑖 − 𝝁̂1)
′𝛀̂𝟏

−𝟏(𝐲𝑖 − 𝝁̂1)  > log  |
 𝛀̂1

 𝛀̂2
| + 2 log  

π̂2

π̂1
 ,     (5.9) 

otherwise, it is classified into the second population, where 𝝁̂𝑗 and 𝛀̂𝑗
−𝟏are the GEE estimates from 

(5.1) and (5.2), 𝜋̂1 and 𝜋̂2 are the a priori probabilities that observations belong to populations 1 

and 2. 

5.3  Simulation Study 
 

A Monte Carlo simulation study was conducted to examine the impact of correlation 

misspecification on the classification accuracy of linear and quadratic GEE repeated measures 

discriminant analysis. The linear and quadratic GEE discriminant analysis procedures that assume 

Kronecker product structured working correlation with: (a) Unstructured between-outcomes 

correlation and within-outcome first-order autoregressive correlation (UNAR) (b) unstructured 

between-outcomes correlation and within-outcome compound symmetric correlation (UNCS) 

structures, and (c) an unstructured working correlation (UN). The following simulation generation 

conditions were investigated in the study: (a) number of repeated measurements (𝑝), (b) number 

of outcomes (𝑞), (c) total sample size (𝑁), (d) group sizes (𝑛1, 𝑛2), (e) pattern and magnitude of 
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correlation among the repeated measurements (𝜌), (f) covariance heterogeneity, and (g) population 

distribution. All procedures were investigated for two independent groups.  The number of 

repeated measurements points was set at 𝑝 =  3 and 5, while the number of outcomes was set at 

𝑞 =  3 and 5. Previous studies about discriminant analysis procedures for multivariate repeated 

measures data have considered values of 𝑝 ranging from three to ten, an increase in classification 

accuracies were quite significant when 𝑝 increased from three to five. 6, 12  Total sample sizes of 

𝑁 =  120, 250 and 500 were investigated. Consistent with previous simulation studies that 

examined the accuracy of discriminant accuracy for multivariate repeated measures data between 

60 and 500 and examined the impact of equal and unequal group sizes 6, 12,22, 23, we investigated 

conditions of  𝑁 =  120, (𝑛1, 𝑛2)  =  (60, 60), and (48, 72), which represent a group size ratio of 

1:1 and 2:3, respectively. Similar equal and unequal group size ratios were investigated when 𝑁 =

 250 and 𝑁 =  500.  

Furthermore, the accuracy of discriminant analysis procedures is known to be influenced 

by both the magnitude and pattern of within- and multivariate-outcome correlations24. Therefore, 

we investigated the following within-outcome correlation structures for Kronecker product 

structure 𝐑𝑝𝑞 = 𝐑𝑝(𝜌) ⊗ 𝐑𝑞(𝛼): (a) Compound Symmetry with 𝜌 =  0.3 and 𝜌 =  0.7, (b) 

Autoregressive order 1 with 𝜌 = 0.3 and  𝜌 = 0.76, 12  for within-outcome correlation 𝐑𝑝(𝜌), and  

the between-outcomes correlation, 𝐑𝑞(𝛼) was assumed to be unstructured (See Table 5.1) (c) 

unstructured correlation matrix from an independent uniform random variable on (0.2, 0.4) and 

(0.6, 0.8). For covariance heterogeneity, we assumed 𝛀1 = 𝛀2  and  𝛀1 = 3𝛀2. All combinations 

of simulation generation conditions were investigated for each procedure and each method of 

estimation, resulting in a total of 144 combinations. There were 500 replications for each 

combination. Linear and quadratic discriminant analysis rules were developed using marginal 
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mean and variance-covariance matrix estimated via GEE for equal and unequal covariance matrix 

respectively. All analyses were completed in R statistical software version 3.5.3. In order to assess 

the performance of the discriminant function, we investigated multivariate correlated continuous 

and discrete outcome variables 

For the correlated continuous outcome variables, we assumed three normal variables 

jointly observed for 𝑛𝑗 subjects, where each observed at 𝑝 time points. The true marginal mean 

outcome model 𝝁𝑖𝑝𝑞 was assumed to take the following functional form that uses an identity link 

function: 

𝝁𝑖𝑝𝑞 = 𝜷𝑞1𝑥𝑖𝑝1 + 𝜷𝑞2𝑥𝑖𝑝2 + 𝜷𝑞3𝑡𝑖𝑝   (5.6)  

The number of covariates, 𝐾 = 3, where 𝑥𝑖𝑝1 was generated from an independent normal random 

variable 𝑁(0,1) and 𝑥𝑖𝑝2 from an independent binomial random variables 𝐵(𝑛1, 0.6) and 

𝐵(𝑛2, 0.4) as time-invariant covariates for population 1 and population 2 respectively, and 𝑡𝑖𝑝 

denoted the time of observation as a time-varying covariate. Details of the true parameters 𝜷 for 

population 1 and population 2 can be found in Table 5.2. On the other hand, the marginal variance 

matrix of outcomes was assumed to have a common variance of 60.  R package mvrnorm() 

function from the MASS R package25 was used to generate the multivariate normal data.  

For the multivariate binary and count (skewed) outcome variables, simulation data were 

generated from a multivariate binomial distribution using the logit link function and Poisson 

distribution using the log link function with the three covariates respectively.  

log (
𝝁𝑖𝑝𝑞

1 − 𝝁𝑖𝑝𝑞
) =  𝜷𝑞1𝑥𝑖𝑝1 + 𝜷𝑞2𝑥𝑖𝑝2 + 𝜷𝑞3𝑡𝑖𝑝 

    (5.7) 

 

 

               log(𝝁𝑖𝑝𝑞) =  𝜷𝑞1𝑥𝑖𝑝1 + 𝜷𝑞2𝑥𝑖𝑝2 + 𝜷𝑞3𝑡𝑖𝑝   

 

(   (5.8) 
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The true parameters 𝜷 for population 1 and population 2 can be found in Table 5.2. R package 

“bindata” function26 was used to generate the multivariate binary data and “PoisNor” function27 

was used to generate the multivariate count data. A total of 432 combination of simulation factors 

were investigated with 1000 replications for each combination. The Monte Carlo study was 

conducted using R version 3.6.3. The classification performance of the procedures was evaluated 

using the mean overall classification accuracy on a scale of 0 to 1 and its corresponding standard 

error were reported for each combination of simulation generation conditions. 

5.4 Simulation Results 
 

The mean classification accuracies and standard errors of linear and quadratic discriminant 

analysis based on multivariate GEE by number of repeated measurements and number of outcomes 

for multivariate normal outcomes were presented in Tables 5.3.  The results of LDA and QDA 

showed that mis-specification of correlation structure resulted in decreased overall mean 

classification accuracy for all procedures when data were sampled from a multivariate normal 

distribution. For example, when the true correlation structure was UNCS, the mean accuracies 

for 𝑞 = 3 and 𝑝 = 5  were 0.64, 0.65 and 0.60 for UNAR, UNCS, and UN estimations respectively 

under LDA. But, QDA based on GEE procedures were more accurate than LDA based on GEE 

among all the conditions investigated. Under QDA, the mean accuracies were 0.77, 0.78 and 0.70 

for UNAR, UNCS, and UN estimations respectively (Table 5.3). The mean classification 

accuracies under parsimonious correlation were higher than its corresponding unstructured 

covariance under true correlation structure. That is, misspecification of correlation affected mean 

classification accuracies under unstructured estimation more than parsimonious correlation 

estimation. For example, when the true correlation structure was UNCS, 𝑞 = 3 and 𝑝 = 5  , the 

mean accuracies for the QDA based on multivariate GEE were 0.78, and 0.70 for UNCS and UN 
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correlation structures estimation, respectively. In contrast, when the true population correlation 

was UN, the mean accuracies for the QDA based on multivariate GEE were 0.70 and 0.73 when 

the UNCS and UN correlation structures were used for parameter estimation, respectively (Table 

5.3). Furthermore, the mean classification accuracy of all the correlation estimation methods 

increased with increasing number of outcomes, regardless of the assumed true correlation structure 

for multivariate correlated normal outcomes. For example, for p =3, the mean increase in 

classification accuracy of the LDA and QDA procedure were about 0.08 and 0.07 respectively as 

q increased from 3 to 5, under UNAR true correlation structure and UNAR estimation (Table 5.3). 

Likewise, the mean increase in classification accuracy of the LDA and QDA procedure were about 

0.07 and 0.04 respectively as q increased from 3 to 5, under UNAR true correlation structure and 

UN estimation (misspecification) and p =5 (Table 5.3). 

Tables 5.4 describes the mean classification accuracies and standard errors by population 

distribution, number of repeated occasions and number of outcomes for multivariate correlated 

binary outcomes. The results of LDA and QDA based on GEE showed that misspecification of 

correlation structure did not affect overall mean classification accuracy under unstructured 

correlation estimation for multivariate binary outcomes regardless of the true correlation structure. 

For example, when the true correlation structure was UNAR, the mean accuracies for 𝑞 = 3 

and 𝑝 = 3  were 0.63, 0.63 and 0.64 for UNAR, UNCS, and UN estimations respectively under 

LDA. Whiles under QDA, the mean accuracies for 𝑞 = 3 and 𝑝 = 3  were 0.68, 0.68 and 0.72 for 

UNAR, UNCS, and UN estimations respectively (Table 5.4). Similar to results presented in Table 

5.3, QDA based on GEE procedures were more accurate than LDA based on GEE among all 

procedures. Furthermore, we observed little or no differences in classification accuracies for 

UNAR and UNCS correlation estimations regardless of number of outcomes and number of 
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repeated occasions under mis-specified and true correlation. Under multivariate correlated binary 

outcomes, the mean classification accuracy of all correlation estimation methods increased with 

increasing number of outcomes and repeated occasions, regardless of the assumed true correlation. 

For example, for 𝑝 = 3 , the mean increase in classification accuracy of the LDA procedure were 

about 0.03 and 0.07 as q increased from 3 to 5, under UNAR and UNCS estimation respectively 

for true UNAR correlation structure (Table 5.4). Whiles for 𝑞 = 3 , the mean increase in 

classification accuracy of the LDA procedure were about 0.03 as q increased from 3 to 5 for both 

UNAR and UNCS estimation respectively for true UNAR correlation structure (Table 5.4). 

Tables 5.5 describes the mean classification accuracies and standard errors by population 

distribution, number of repeated occasions and number of outcomes for multivariate correlated 

Poisson distribution (count outcomes). Under multivariate correlated count outcomes, we observed 

a decrease in mean classification accuracies under misspecification of the true correlation structure 

especially when the number of outcomes was small (𝑞 = 3) regardless of estimation method. For 

example, when the true correlation structure was UN, the mean accuracies for 𝑞 = 3 and 𝑝 = 3  

were 0.84, 0.83 and 0.87 for UNAR, UNCS, and UN estimations respectively under LDA. 

However, we observed similar mean classification accuracies for most cases even under 

misspecification of the true correlation structure when the number of outcomes increased ( 𝑞 = 5) 

for persimmons correlation estimation but not mis-specification under unstructured correlation 

estimation. For example, when the true correlation structure was UNAR, the mean accuracies 

for 𝑞 = 5 and 𝑝 = 5  were 0.99, 0.99 and 0.90 for UNAR, UNCS, and UN estimations respectively 

under LDA. Whiles under QDA, the mean accuracies for 𝑞 = 5 and 𝑝 = 5 were 0.99, 0.99 and 

0.89 for UNAR, UNCS, and UN estimations respectively (Table 5.5). Similarly to outcomes 

generated from other population distributions, the mean classification accuracy of each LDA and 
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QDA procedures increased as the number of outcomes and repeated occasions increased, 

regardless of the estimation method for multivariate correlated count outcomes.  

Overall, the impact of mis-specification of correlation on classification accuracy of 

discriminant analysis based on multivariate GEE depended on the population distributions. Mis-

specification in multivariate non-normal outcomes under unstructured correlation estimation was 

accurate than parsimonious correlation estimation, or less decrease in classification accuracy for 

mis-specified parsimonious correlation in most scenarios. For example, when the true correlation 

structure was UNAR, the mean accuracies for 𝑞 = 3 and 𝑝 = 5  were 0.69, 0.69 and 0.81 for 

UNAR, UNCS, and UN estimations respectively under QDA (Tables 5.4). Whiles under count 

outcomes, the mean accuracies for 𝑞 = 3 and 𝑝 = 5 were 0.90, 0.90 and 0.87 for UNAR, UNCS, 

and UN estimations respectively (Table 5.5). However, we observed the opposite in multivariate 

normal outcomes, parsimonious correlation estimation was accurate in dealing with mis-specified 

correlation than unstructured correlation estimation. 

5.5 Discussion 
 

This study investigated the effect of correlation structure mis-specification on classification 

accuracy of LDA and QDA based on multivariate GEE when the data were sampled from 

multivariate normal and non-normal distributions. First, the results showed that mis-specification 

of correlation structure resulted in decreased overall mean classification accuracy for all 

procedures. The decrease was higher in multivariate non-normal distribution than normal 

distribution. Mis-specification of correlation structure severely affected multivariate binary 

outcomes followed by multivariate count and continuous outcomes in the repeated measures 

discriminant analysis based on multivariate GEE.  
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Second, the impact of mis-specification varied depending on the true and adopted 

correlation structure. More specifically, mis-specification of correlation structure had negligible 

impact on the mean classification accuracy under unstructured correlation estimation regardless of 

the true correlation structure in multivariate non-normal data but decreased mean classification 

accuracy was observed under parsimonious correlation estimation. However, parsimonious 

correlation estimation had less effect on the mean classification accuracy in multivariate normal 

data regardless of the true correlation structure compared to unstructured correlation estimation. 

Based on the study findings, adopting a discriminant analysis procedure based on 

unstructured correlation matrices when the researcher has prior knowledge of the multivariate 

repeated measures correlation form for each group is recommended in general for correlated non-

normal data. Specifically, either UNAR or UNCS parsimonious correlation are recommended for 

correlated count and continuous data as these parsimonious correlation structure result in efficient 

classification rules when data have less deviations from normal distributions and in small-sample 

data7, 12.  

Whilst it is well known that GEEs yield asymptotically consistent parameter and variance 

estimates under incorrect specification of the correlation structure 28-30, the findings of this study 

suggest that mis-specification of the true correlation structures for these discriminant analysis 

procedures could influence accuracy of these classifiers. To mitigate this problem, goodness of fit 

tests such as quasi-likelihood under the independence model criterion (QIC) which is a modified 

Akaike information criterion (AIC) for GEE model31, 32 could be used to guide the choice of  a 

working correlation matrix. Like the AIC, the QIC is a trade-off between a good fit to the model, 

as measured by the quasi-likelihood, and a penalty for over-complexity as measured by the trace. 

The use of independence assumption when computing the quasi-likelihood makes QIC easy to be 
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implemented but can lead to a considerable loss of efficiency in estimating the regression 

parameters33 and not effective if the correlation structure of the data is far from independence34. 

 Besides the strength of this study, there are some limitations. First, the assumption of 

complete multivariate repeated measures data in which there is no missing data on all outcomes 

and at all measurement occasions might not be satisfied in multivariate repeated measures  data 

often encountered in applied research18. The GEE is valid under the strong assumption of missing 

completely at random (MCAR)35 but not missing at random assumption (MAR). Some studies 

have been done to drop-out problems in repeated measures studies via weighted generalized 

estimating equations36 and multiple imputations to ensure validity of the inference under MAR35, 

37. Further research will be conducted of these misspecification procedures in discriminant analysis 

based on GEE by implementing some of the multiple imputation techniques18, 38-40 using 

simulation techniques. Alternatively, mixed-effects models are efficient for dealing with 

incomplete data41-44 and valid inferences can be obtained even with incomplete information under 

MAR. However, one disadvantage of mixed-effects models is that the dimension of random effects 

quickly increases as more outcomes and random effects are added to the model, increasing the 

computational burden41, 45, 46. 

The repeated measures discriminant analysis based on multivariate GEE relies on correctly 

specified link function. It is crucial in the GEE approach to select a correct link function linking 

the mean outcome to the covariates47 as the consistency of GEE parameter estimates depends on 

correctly specified link function 28-30.  

Our study conclusions might not be generalizable to very large number of outcomes, 

repeated measures, certain population distribution, correlation structures and mixed-type 

outcomes. Previous studies about discriminant analysis procedures for multivariate repeated 
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measures data observed an increase in classification accuracies were quite significant 

when number of repeated measures increased from three to five. 6, 12 but not six to ten. Therefore, 

future research will examine the impact of correlation structures on the robustness of these models 

in a large number of outcomes and to different simulation generation conditions using Monte Carlo 

methods to increase generalizability of our findings.  

 In summary, this study investigated the effect of misspecification of correlation structure 

of discriminant analysis procedures based on multivariate GEE in normal and non-normal 

multivariate repeated measures outcome variables for distinguishing between population groups. 

The adoption of discriminant analysis procedure based on a parsimonious correlation structure can 

reduce the number of parameters to estimate and provide efficient classification accuracy when 

sample size is small and in data with less deviations from normal distributions7. However, 

unstructured correlation structure is recommended if the researcher has prior knowledge of the 

correlation form for multivariate repeated measures data. 
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Table 5.1: Configuration of unstructured between-outcomes correlation matrix given within-outcome 

correlation coefficient for the Monte Carlo Study 

within-outcome      

correlation                                 0.3               0.7 

coefficient (𝜌) 

   𝑞 = 3                           [
1 0.15 0.30

0.15 1 0.45
0.30 0.45 1

]                       [
1 0.65 0.66

0.65 1 0.70
0.66 0.70 1

]  

  𝑞 = 5                 

[
 
 
 
 

1 0.28 0.25 0.28 0.28
0.28 1 0.30 0.40 0.23
0.25
0.28
0.28

0.30
0.40
0.23

1
0.24
0.24

0.24
1

0.37

0.24
0.37
1 ]

 
 
 
 

 

[
 
 
 
 

1 0.70 0.79 0.64 0.70
0.70 1 0.73 0.65 0.74
0.79
0.64
0.70

0.73
0.65
0.74

1
0.63
0.62

0.63
1

0.62

0.62
0.62
1 ]

 
 
 
 

 

q=Number of outcomes  
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Table 5.2: True parameters (𝜷) for population 1 and population 2 simulated data 
Population 
Distribution 

Number of 
outcomes 

population 1 population 2 

Normal  3 (0.3,1,2,0.1,1,1.5,1,1.5,2) (0.6,2,4,0.2,2,3,2,3,4) 

   
 5 (0.2,1,2,1.5,1,0.4,0.7,3,1.2,0.8,0.1,0.2,0.7, 

0.9,1.2) 
(0.4,2,4,3,2,0.8,1.4,6,2.4,1.6,0.2,0.4,1.4,1 
. 8,2.4)   

    

    

Binomial 3 (0.15,0.1,0.2,0.1,0.1,0.25,0.1,0.2,0.3) (0.37,0.25,0.5,0.25,0.25,0.62,0.25,0.5,0.75) 
 

   
 5 (0.15,0.1,0.2,0.1,0.1,0.25,0.1,0.2,0.3,0.25,0.1, 

0.2,0.2,0.14,0.3) 
(0.37,0.25,0.5,0.25,0.25,0.62,0.25,0.5,0.75, 
0.625,0.25,0.5,0.5,0.35,0.75) 

    

    

Poisson 3 (0.3,0.1,0.2,0.1,0.3,0.5)  ( 0.09, 0.03, 0.06, 0.03 ,0.09, 1.5) 

    

 5 (0.3,0.1,0.4,0.1,0.45,0.6,0.2,0.15,0.3,0.4) (0.09, 0.03,0.12,0.03,0.13,0.18,0.06,0.04, 
0.09,0.12) 
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    Table 5.3: Overall Mean Accuracy (standard error) for repeated measures LDA and QDA procedures based on GEE 

by number of outcomes, number of repeated occasions and correlation structure for multivariate correlated normal 

outcomes 
Number of 
outcomes (q) 

Number of 
repeated 
occasions 
(p) 

 LDA   QDA   

  WR→ UNAR UNCS UN UNAR UNCS UN 

  TR ↓       

3 3 UNAR 0.64(0.03) 0.65(0.03) 0.63(0.04) 0.76(0.03) 0.76(0.03) 0.71(0.05) 
 3 UNCS 0.65(0.03) 0.66(0.03) 0.64(0.04) 0.76(0.03) 0.77(0.03) 0.72(0.05) 
 3 UN 0.64(0.03) 0.65(0.03) 0.65(0.03) 0.70(0.03) 0.71(0.03) 0.70(0.05) 
 5 UNAR 0.64(0.03) 0.64(0.03) 0.61(0.03) 0.78(0.04) 0.78(0.04) 0.71(0.06) 
 5 UNCS 0.64(0.03) 0.65(0.03) 0.60(0.05) 0.77(0.04) 0.78(0.04) 0.70(0.06) 
 5 UN 0.63(0.03) 0.63(0.03) 0.65(0.03) 0.70(0.03) 0.70(0.03) 0.73(0.05) 
5 3 UNAR 0.72(0.03) 0.73(0.03) 0.70(0.05) 0.83(0.03) 0.83(0.03) 0.75(0.06) 
 3 UNCS 0.71(0.03) 0.77(0.03) 0.72(0.06) 0.83(0.03) 0.87(0.02) 0.77(0.07) 
 3 UN 0.71(0.03) 0.75(0.03) 0.77(0.04) 0.75(0.03) 0.77(0.03) 0.77(0.06) 
 5 UNAR 0.69(0.03) 0.70(0.03) 0.64(0.06) 0.84(0.04) 0.83(0.04) 0.72(0.07) 
 5 UNCS 0.69(0.03) 0.74(0.03) 0.63(0.08) 0.82(0.04) 0.87(0.04) 0.72(0.08) 
 5 UN 0.69(0.03) 0.70(0.03) 0.72(0.06) 0.71(0.03) 0.72(0.03) 0.73(0.06) 

Note:TR=true correlation structure; WR=working correlation structure; LDA= Linear Discriminant Analysis; 

QDA= Quadratic Discriminant Analysis ; p= number of repeated occasions; q = number of outcomes; UNAR = 

Unstructured between-outcomes and Autoregressive order 1 within-outcome correlation matrix; UNCS = 

Unstructured between-outcomes and Compound symmetry within-outcome correlation matrix; UN = unstructured 

correlation 

  



132 

 

 

Table 5.4: Overall Mean Accuracy (standard error) for repeated measures LDA and QDA procedures based on 

GEE by number of outcomes, number of repeated occasions and correlation structure for multivariate correlated 

binary outcomes 
Number of 
outcomes(q) 

Number of 
repeated 
occasions 
(p) 

 LDA   QDA    

  WR→ UNAR UNCS UN UNAR UNCS UN 

  TR ↓       

3 3 UNAR 0.63(0.03) 0.63(0.04) 0.64(0.06) 0.68(0.03) 0.68(0.03) 0.72(0.03) 
 3 UNCS 0.63(0.04) 0.63(0.04) 0.64(0.05) 0.68(0.03) 0.68(0.03) 0.72(0.03) 
 3 UN 0.62(0.03) 0.62(0.04) 0.64(0.07) 0.66(0.03) 0.66(0.03) 0.71(0.03) 
 5 UNAR 0.66(0.03) 0.66(0.03) 0.68(0.06) 0.69(0.03) 0.69(0.03) 0.81(0.03) 
 5 UNCS 0.65(0.03) 0.66(0.03) 0.69(0.06) 0.69(0.03) 0.69(0.03) 0.81(0.03) 
 5 UN 0.64(0.03) 0.64(0.04) 0.69(0.08) 0.68(0.03) 0.68(0.03) 0.78(0.03) 
5 3 UNAR 0.69(0.03) 0.70(0.03) 0.77(0.10) 0.70(0.03) 0.70(0.03) 0.78(0.05) 
 3 UNCS 0.68(0.03) 0.69(0.03) 0.77(0.10) 0.68(0.03) 0.68(0.03) 0.77(0.05) 
 3 UN 0.66(0.03) 0.67(0.04) 0.76(0.11) 0.67(0.03) 0.68(0.03) 0.75(0.06) 
 5 UNAR 0.72(0.03) 0.73(0.04) 0.81(0.07) 0.75(0.03) 0.76(0.03) 0.87(0.04) 
 5 UNCS 0.70(0.03) 0.71(0.04) 0.79(0.09) 0.74(0.03) 0.76(0.03) 0.87(0.04) 
 5 UN 0.67(0.03) 0.68(0.03) 0.82(0.10) 0.70(0.03) 0.71(0.03) 0.85(0.05) 

Note:TR=true correlation structure; WR=working correlation structure; LDA= Linear Discriminant Analysis; 

QDA= Quadratic Discriminant Analysis ; p= number of repeated occasions; q = number of outcomes; UNAR = 

Unstructured between-outcomes and Autoregressive order 1 within-outcome correlation matrix; UNCS = 

Unstructured between-outcomes and Compound symmetry within-outcome correlation matrix; UN = unstructured 

correlation 
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Table 5.5: Overall Mean Accuracy (standard error) for repeated measures LDA and QDA procedures based on 

GEE by number of outcomes, number of repeated occasions and correlation structure for multivariate correlated 

Poisson outcomes 
Number of 
outcomes (q) 

Number of 
repeated 
occasions 
(p) 

 LDA   QDA    

  WR→ UNAR UNCS UN UNAR UNCS UN 

  TR ↓       

3 3 UNAR 0.83(0.02) 0.84(0.03) 0.81(0.03) 0.86(0.04) 0.87(0.04) 0.80(0.06) 
 3 UNCS 0.86(0.04) 0.86(0.04) 0.83(0.03) 0.87(0.04) 0.87(0.05) 0.82(0.04) 
 3 UN 0.84(0.02) 0.83(0.01) 0.87(0.06) 0.81(0.01) 0.82(0.01) 0.86(0.05) 
 5 UNAR 0.91(0.01) 0.91(0.01) 0.93(0.03) 0.90(0.01) 0.90(0.01) 0.87(0.08) 
 5 UNCS 0.90(0.01) 0.90(0.01) 0.92(0.05) 0.89(0.01) 0.89(0.01) 0.88(0.08) 
 5 UN 0.90(0.02) 0.90(0.01) 0.92(0.09) 0.87(0.02) 0.87(0.03) 0.91(0.06) 
5 3 UNAR 0.97(0.01) 0.98(0.01) 0.91(0.10) 0.98(0.01) 0.99(0.01) 0.92(0.08) 
 3 UNCS 0.97(0.01) 0.98(0.01) 0.90(0.11) 0.98(0.01) 0.99(0.01) 0.91(0.09) 
 3 UN 0.98(0.01) 0.98(0.01) 0.99(0.01) 0.99(0.01) 0.99(0.01) 0.98(0.05) 
 5 UNAR 0.99(0.01) 0.99(0.01) 0.90(0.10) 0.99(0.01) 0.99(0.01) 0.89(0.13) 
 5 UNCS 0.99(0.01) 0.99(0.01) 0.90(0.01) 0.99(0.01) 0.99(0.01) 0.90(0.04) 
 5 UN 0.99(0.01) 0.99(0.01) 0.99(0.01) 0.99(0.01) 0.99(0.01) 0.98(0.02) 

Note:TR=true correlation structure; WR=working correlation structure; LDA= Linear Discriminant Analysis; QDA= 

Quadratic Discriminant Analysis; p= number of repeated occasions; q= number of outcomes; UNAR = Unstructured 

between-outcomes and Autoregressive order 1 within-outcome correlation matrix; UNCS = Unstructured between-

outcomes and Compound symmetry within-outcome correlation matrix; UN = unstructured correlation 
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Chapter 6 

Discussion and Conclusions  
 

6.1 Summary of Study Findings 
 

This dissertation studied and developed discriminant analysis procedures based on 

parsimonious covariance or correlation structures in multivariate non-normal repeated measures 

data to discriminate between two populations. This research investigated three major research 

questions. (1) How accurate are existing repeated measures discriminant analysis classifiers when 

applied to discriminate between study samples of multivariate non-normal repeated measures 

distributions? (2) Can we develop more accurate classification models that overcome the 

restriction of multivariate normality for classification in multivariate non-normal distributions, in 

comparison to the conventional discriminant analysis models based on MLE? (3) What is the 

impact of mis-specification of correlation structures on the accuracy of repeated measures 

discriminant analysis based on GEE when used for classification in multivariate repeated measures 

data? How is the impact of mis-specification influenced by outcome variable distributions? 

The key findings of this research revealed that the mean classification accuracy of repeated 

measures discriminant analysis procedures proposed in this study is influenced by a number of 

data characteristics including population distribution, mean configuration, number of outcome 

variables, number of repeated occasions, and the correlation among the multivariate repeated 

measures data. Also, the impact of correlation misspecification on the mean classification accuracy 

is largely influenced by population distribution and therefore preliminary examination of the 

appropriateness of parsimonious correlation structures in repeated measures discriminant analysis 

(such as LRT and QIC) is always recommended. 
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In chapter 3, we developed repeated measures discriminant analysis models based on 

maximum trimmed likelihood estimators for different assumptions of parsimonious covariance 

structures. Our simulation study showed that repeated measures discriminant analysis procedures 

based on MTLE were more accurate than the conventional repeated measures discriminant 

analysis based on MLEs when data were sampled from multivariate heavy-tailed distributions but 

not multivariate skewed distributions1, 2. The MTLE approach adopted for the repeated measures 

discriminant analysis procedures has good theoretical properties (affine equivariant estimators 

with bounded influence function properties and high breakdown points) that have been 

demonstrated in previous research for multivariate data3. These models were found to be more 

accurate when there are outlying observations. However, our discriminant analysis procedures 

based on MTLE could not be used in multivariate repeated measures data with binary outcomes 

because of the underlying assumptions. 

In Chapter 4, we developed repeated measures discriminant analysis models based on 

multivariate generalized estimating equations and examined its accuracy in comparison to repeated 

measures discriminant analysis based on MLEs under Kronecker product structured correlations 

in multivariate repeated measures data with discrete and/or mixed type of outcomes4, 5. The 

significant advantages of discriminant analysis based on multivariate GEE include its 

computational simplicity and its flexibility for classification of multivariate repeated measures 

data with different types of outcomes (continuous, categorical, or ordinal), 5-8. This class of 

discriminant analysis based on multivariate GEE showed better classification accuracy than 

discriminant analysis based on MLEs especially in multivariate repeated measures binary, count, 

and/or skewed data. Specifically, quadratic discriminant analysis based on multivariate GEE was 

more accurate than the linear discriminant analysis based on multivariate GEE considering 
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population distribution and covariance heterogeneity conditions. However, the accuracy of these 

discriminant analysis based on multivariate GEE depends on the correct specification of the 

multivariate link function for each outcome. 

In Chapter 5, we examined the impact of mis-specification of correlation structures on the 

accuracy of the discriminant analysis models based on multivariate GEE using unstructured and 

parsimonious Kronecker correlation structures. The findings of this study using Monte Carlo 

methods reveal that mis-specification of the true multivariate repeated measures correlation 

structure for these classification models result in decreased mean classification accuracy. The 

decrease in accuracy also varied depending on the correlation structure adopted for estimation and 

the population distribution of the outcome variables. In addition, increase in classification accuracy 

for increased numbers of outcomes and repeated occasions was not influenced by correlation mis-

specification. 

6.2 Implications of Study Findings 
 

This study contributes to the statistical literature on methods for analyzing multivariate 

non-normal repeated measures data and classifying individuals in populations. The major 

contribution of the present research is the development of much needed repeated measures 

discriminant analysis procedures that can be used for developing classification or prediction 

models for multivariate non-normal repeated measures data.   

The findings from our simulation studies showed that the mean classification accuracy of 

repeated measures discriminant analysis procedures proposed in this study were found to be 

influenced by a number of data characteristics including population distribution, mean 

configuration, number of outcome variables, number of repeated occasions, and the correlation 

among the multivariate repeated measures data.  
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More specifically, the research revealed that repeated measures discriminant analysis based 

on MLE should not be used when the data violates the assumptions of multivariate normality. 

Instead, the procedures developed in this study should be used. Tests of multivariate normality can 

be explored by looking at graphs (such as box plots, QQ plots, multi-dimensional graphs). 

Alternatively, the Mardia’s test can be used to check whether the multivariate skewness and 

kurtosis in the multivariate repeated measures are consistent with a multivariate normal 

distribution9.  

The observed impact of mis-specification of correlation structure on the accuracy of these 

developed models call for preliminary examination of the appropriateness of parsimonious 

correlation structures before choosing among the repeated measures discriminant analysis 

procedures proposed in this study10, 11,12. Most authors have used likelihood ratio test (LRT) 

statistic for testing separability of a covariance structure in multivariate repeated measures data13 

to avoid invalid inferences. However, the LRT statistic is reliable with very large samples, which 

may be limited in the real-life applications because we have only finite samples. Rao’s score test 

(RST) has been proposed as an alternative to LRT approach for small sample data14, 15. In general, 

goodness of fit test such as LRT should be used to determine the appropriateness of correlation 

structure in the data before deciding the choice of repeated measures discriminant analysis. 

Furthermore, our study revealed the positive impact of increasing both repeated occasions 

and number of outcomes on the classification accuracy of the proposed repeated measures 

discriminant analysis procedures even under mis-specified correlation16, 17. However, the 

increasing of the number of repeated occasions and number of outcomes improves classification 

accuracy provided the n/pq is satisfied for the estimation of covariance matrix even with the 

assumption of parsimony. This is often violated when p is large. In addition, if the within-variable 
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correlation increases as pq increases, the repeated measurements becomes less and less 

informative. Hence, the classification accuracy might not necessarily increase because more 

repeated measurements are added. 

The choice between proposed repeated measures discriminant analysis procedures in this 

research (MTLE and GEE) should also be determined by the type of outcomes and sample size. 

For example, discriminant analysis models based on MTLE might be more useful for continuous 

outcomes with heavy-tailed distributions. However, discriminant analysis models based on GEE 

should be used in multivariate repeated measures data with discrete and/or mixed type outcomes 

(e.g. binary and count data). In addition, the appropriate link function for the multivariate GEE 

model needs to be explored and correctly determined for the outcome distributions before using 

repeated measures discriminant analysis based on GEE. Even though, any suitable link function 

can be used to relate the mean response to the covariates, the choice of a canonical link function 

produces many of the most widely used regression models18. 

These proposed procedures have a number of uses in clinical and population settings where 

multiple outcomes are repeatedly collected to inform clinical decisions such as diagnosis or 

treatment decisions. For example, in chapter 4, we demonstrated the potential use of these models 

for predicting children with new onset epilepsy who are likely to have treatment resistant epilepsy 

based on repeated measures data collected on some clinical outcomes over one-year period. In 

addition, discriminant analysis have been used for repeated measures data in dementia and other 

neuromuscular diseases where repeated measurement of severe clinical data and biomarkers are 

needed to arrive at a diagnosis19-21. 

There are few or no formal software packages developed to implement these methods in 

clinical settings. Therefore, the development of these new repeated measures discriminant analysis 
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methods in multivariate repeated measures data calls for the development of open-source packages 

to promote its use and implementation in applied research settings. 
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6.3 Strengths and Limitations 
 

This dissertation study have several areas of strength of this research. First, the proposed 

repeated measures discriminant analysis procedures for discriminating between populations in 

multivariate repeated measures data are flexible models for modeling different types of outcomes, 

and are advantageous for discrimination in small-sampled multivariate repeated measures data. To 

our knowledge, the repeated measures discriminant analysis procedures developed in this study 

have not been previously studied for developing classification models for multivariate non-normal 

repeated measures data. This is an important contribution to the statistical literature on methods 

for classification in multivariate non-normal repeated measures data. 

These proposed repeated measures discriminant analysis procedures account for the 

complex correlation structures that are inherent in multivariate repeated measures models to 

improve the accuracy of the classifiers22. In addition, the procedures developed in this research are 

based on parsimonious covariance structures for discriminating between populations in 

multivariate repeated measures data, which is beneficial to studies with small sample sizes. Also, 

quadratic discriminant analysis is recommended over linear discriminant analysis if there is 

evidence of covariance heterogeneity among population groups, to help minimize 

misclassification. 

Most existing discriminant analysis methodologies in multivariate repeated measures data 

are based on mixed effects models and covariance pattern models. Therefore, our repeated 

measures discriminant analysis based of multivariate GEE offers an alternative flexible algorithm 

that can be used to simultaneously analyse different types of outcomes (continuous, counts and 

binary) for researchers in the area of multivariate repeated measures classification studies. In 

addition, the proposed GEE discriminant analysis approach allows the incorporation of covariates 
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to improve the accuracy of the classifier. Our simulation results for the repeated measures 

discriminant analysis based on multivariate GEE model outperforms the conventional repeated 

measures discriminant analysis based on MLEs 4, 5. GEE packages and procedures are available in 

common statistical software such as R and SAS, thus these procedures can easily be applied in 

clinical research23-26. 

Another strength of this study is that, two population-based longitudinal registries were 

used to demonstrate the application of these models. These demonstrations encourage the use and 

show the flexibility of proposed models for different types of outcomes in applied settings.  

Despite the unique strengths of this research, the limitations of this study should also be 

noted. First, the models developed in this study rely on the assumption that the group covariances 

have parsimonious covariance structures. Even though several authors have observed many 

advantages of using Kronecker product structure in addressing sample size and computational 

issues in multivariate repeated measures data16, 17, 27-29, this assumption may not always be satisfied 

in typical datasets obtained from in medical studies. The LRT, QIC and CIC have been 

recommended to guide the selection of a well-fitted model with an appropriate covariance structure 

Second, the investigated repeated measures discriminant analysis procedures assumed 

complete data on all observations and across repeated measurements which might not be realistic 

in multivariate repeated measures data often encountered in applied research. Deletion of data may 

result in biased estimates of discriminant function coefficients and loss of statistical power due to 

smaller sample size. Alternative approaches of models for classification include extension of 

mixed-effects models to these robust trimmed methods as they are useful in handling MAR 

assumption and extension to weighted/penalized generalized estimating equations. 
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Lastly, the simulation generation conditions were designed a priori and conclusions from 

this study may not be generalizability because the limited conditions investigated. For example, 

the study results may not be generalizable to all distributions. This might affect the generalizability 

of the study conclusions.  

 

6.4 Future Directions 

 

This dissertation focused on the development of repeated measures discriminant analysis 

procedures for discriminating between populations in multivariate non-normal repeated measures 

data. In addition to the strengths of this research, the limitations have raised a number of 

opportunities for future research in multivariate repeated measures studies. First, the assumption 

of complete multivariate repeated measures data in which there is no missing data on all outcomes 

and at all measurement occasions might not be realistic in multivariate repeated measures data 

often encountered in applied research. Multivariate repeated measures discriminant analysis based 

on mixed-effects models have been proposed for incomplete repeated measures data and have been 

shown to result in better classification accuracy when the missing data are assumed to be missing 

at random (MAR) but not on missing not at random (MNAR) or nonignorable missing data21, 22, 30, 

31. Pattern mixture and selection models have been proposed to adjust for potential bias in models 

when it cannot be assumed that the mechanism of missingness is ignorable32, 33 in multivariate 

repeated measures data. Therefore, future research will investigate the development of repeated 

measures discriminant analysis procedures based on these models with imputation models and 

developments in which mixed-effects models can be extended to these robust trimmed methods 

for classification. With regards to repeated measures discriminant analysis based GEE, further 
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research could be conducted to address drop-out problems in repeated measures by implementing 

weighted generalized estimating equations34. 

While repeated measures discriminant analysis procedures based on MTLE had higher 

classification accuracy even under extreme departures from non-normality for correctly specified 

covariance structures, mis-specification covariance structure on the repeated measurements in the 

classification rule could increase misclassification error in these models35. However, one does not 

know a priori which correlation structure is correct in multivariate repeated measures data analysis 

and therefore further research is warranted to investigate misspecification of covariance structures 

on these robust trimmed estimation methods.  

Also, covariance pattern models and GEE models used for the development of repeated 

measures discriminant analysis procedures in this research can be fit to multivariate repeated 

measures data using packages and procedures available in common statistical software such as R 

(JGEE, multgee, geepack)24-26 and SAS (proc MIXED, proc GENMOD)23. Future research will 

focus on the development of R packages that implement these repeated measures discriminant 

analysis procedures with example datasets. Such packages could promote the use of these 

procedures by clinical researchers for prognostic tools in clinical practice. 

Finally, Copula models have been employed as an alternative class of robust procedures 

that jointly models mixed discrete and continuous longitudinal outcomes to develop classification 

models36, 37. Future research will focus on the comparison of robust repeated measures 

discriminant analysis procedures investigated in this study to copula approaches for repeated 

measures models for classification.  
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6.5 Conclusion 
 

Our major findings show that repeated measures discriminant analysis based on trimmed 

estimators and multivariate GEE are more accurate in comparisons to the conventional 

discriminant analysis models based on MLE for classification in multivariate non-normal repeated 

measures. Also, our results reveal negative impact of correlation structure mis-specification on 

classification accuracy. We recommend that the choice between these classes of repeated measures 

models should be guided by a preliminary examination of the distribution of the data and the nature 

of correlation between multiple outcomes. 
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