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Abstract 

In loss reserving, a large portion of zeros are expected at the later development 

periods of an incremental loss triangle. Negative losses occur frequently in the in-

cremental loss triangle due to actuarial practices such as subrogation and salvation. 

The nature of the distributions assumed by most stochastic models, such as the log-

normal and over-dispersed Poisson distributions, brings restrictions on the zeros and 

negatives appearing in the loss triangle. 

In this thesis, the existing stochastic reserving models will be introduced and 

compared, particularly those dealing with zeros and negatives in the loss triangle. 

The specialized Bayesian software BUGS (Spiegeihalter et al., 1996) will be used to 

implement the model introduced by Kunkler (2006) for the situation where there 

are negatives in the loss triangle. Logit model and prior specifications different to 

those in Kunkler (2006) will be considered. We will compare the results from BUGS 

to those Kunkler (2006) obtained with the Econometrics Toolbox (Lesage, 1999) in 

MatLab (developed by the MathWorks, Inc.). 

Inspired by the work of Kunkler (2004, 2006), we will propose a Bayesian mixture 

model to extend the stochastic reserving models to a situation where there are both 

zeros and negatives in the incremental loss triangle. A multinomial mixture model 

will be applied to model the sign of the loss data, while the lognormal distribution 

is assumed for the loss magnitudes of negatives and positives. Bayesian generalized 

linear models will be fitted for both the mixture and magnitude models. The model 
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will be implemented using the Markov chain Monte Carlo (MCMC) techniques in 

BUGS. 
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Chapter 1 

Introduction 

1.1 Loss Reserving 

Loss reserving is the process of estimating the amount of money (i.e., reserve) an 

insurance company needs to set aside for future losses, based on the loss data from 

the same group of policies over a past period of time. Determining an appropriate 

amount of loss reserve is very important for the financial stability of an insurance 

company. An inadequate reserve amount may lead to insolvency, while an overesti-

mation of the reserve will reduce the periodic income of the insurance company. 

The loss reserving data are typically listed as a loss triangle by the accident year 

(i.e., the year when the accident occurs) and development year (i.e., number of years 

between the accident year and actual payment of the loss). Details as well as an 

example will be given in Section 2.1 of this thesis for the loss triangle. 

Traditionally, two of the most popular loss reserving methods used by insur-

ance companies are the chain ladder method (Harnek, 1966) and the Bornhuetter-

Ferguson method (Bornhuetter and Ferguson, 1972). This is partly due to their 

simplicity of implementation. The chain ladder method assumes the same ratio (i.e., 

development ratio) for losses from the same adjacent development years. The de-

velopment ratio can be estimated from previous data by some mean measures such 
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as the arithmetic mean or geometric mean. Bornhuetter and Ferguson (1972) intro-

duced an external estimate of ultimate loss into the chain ladder method for each 

accident year, which solved the problem of instability in the chain ladder method. 

This method is named the Bornhuetter-Ferguson method, and is very popular in loss 

reserving practice. In Section 2.1 of this thesis we will give the details and examples 

of these two methods. 

1.2 Stochastic Loss Reserving Models 

Although the traditional methods such as the chain ladder and Bornhuetter-Ferguson 

methods are simple to implement, they do not consider the stochastic nature of the 

data. Recent researchers focus more on the stochastic loss reserving methods, in 

which the variability and tail values of the distribution of the reserve are studied. 

1.2.1 Classical Stochastic Reserving 

In stochastic loss reserving, specific distributions such as the lognormal (Kremer, 

1982), over-dispersed Poisson (Renshaw and Verrall, 1998), and negative binomial 

(Verrall, 2000) are assumed for the loss reserving data, with which the risk of an 

underestimation or overestimation can be quantified. For these models, classical 

generalized linear model (Nelder and Wedderburn, 1972) structures can be fitted to 

the mean or other parameters of the reserve distribution. The application of the gen-

eralized linear structures gives rise to the stochastic models reproducing the chain 

ladder reserves. 
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An introduction of the lognormal, over-dispersed Poisson, and negative binomial 

models will be given in Section 2.2 of this thesis. Comparisons of the chain ladder 

model and the stochastic models reproducing the chain ladder reserves can be found 

in papers such as Kremer (1982), Renshaw and Verrall (1998), Mack (1994), Verrall 

(2000), Mack and Venter (2000), and Verrall and England (2000). 

1.2.2 Bayesian Models 

In Bayesian statistics, the parameters of a distribution are assumed to be random 

variables instead of definite values. External information or expert opinion can be 

incorporated into the model via the distribution (i.e., prior distribution) specified for 

the parameters. Inferences can be made for the mean or variance of the parameters 

or quantities of interest based on Bayes' Theorem (Bayes, 1763). By assuming cer-

tain prior distributions for the parameters, traditional generalized linear models can 

also be implemented in the framework of Bayesian statistics. 

With its capability of incorporating external information, Bayesian method is 

used frequently in stochastic reserving. In papers such as Scollnik (2002a), de Alba 

(2002a, 2002b, 2006), and Ntzoufras and Dellaportas (2002), external information 

is incorporated into the stochastic reserving model by specifying prior distributions 

for the parameters. Bayesian models for the chain ladder and Bornhuetter-Ferguson 

methods were introduced by Scollnik (2004) and Verrall (2004) respectively. Most of 

the above models are implemented using the Markov Chain Monte Carlo (MCMC) 

simulation method in the Bayesian software package BUGS (Spiegeihalter et al., 

1996). Reviews of the MCMC method, BUGS, and their application in actuarial 
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science can be found in Scoilnik (1996, 2001). In Chapter Two of this thesis, we will 

give a detailed review of the Bayesian methods and their application in loss reserving 

and actuarial science. 

1.3 Zeros and Negatives 

1.3.1 The Problem 

Due to the nature of the distributions assumed, the stochastic models reviewed in 

the previous section have their limitation in handling zero and negative values in the 

loss triangle. For example, the lognormal model works only in the cases of positive 

losses. Using the quasi-likelihood approach (McCullagh and Nelder, 1989, Chapter 

9, pages 323-356), the over-dispersed Poisson and negative binomial models can be 

implemented even when there are non-integer or negative values in the data. How-

ever, due to the parameterization of the variance, the sum of the incremental claims 

in each development year has to be positive. Hence the quasi-likelihood approach is 

also restricted in the number of zeros and negatives it can handle. 

In loss reserving, however, a large portion of zeros are expected at the later de-

velopment periods of an incremental loss triangle. Negative losses occur frequently 

in the incremental loss triangle due to actuarial practices such as subrogation, salva-

tion, cancellation of a claim, initial over-estimation of a loss, consequences of judicial 

decisions, and errors. A large number of zeros and negatives occur in the loss triangle 

may make some of the models inappropriate or even undefined. 
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1.3.2 Previous Work 

Although various techniques have been proposed in the recent actuarial literature 

(e.g., de Alba, 2002a, 2006; Kunkler, 2004, 2006) in order to deal with the problem 

of zeros and negatives, none of them can handle the situation when there are notable 

number of zeros and negatives in the loss triangle. 

A threshold parameter is introduced by de Alba (2002a, 2006) into the lognormal 

model to handle the negatives, while the number of zeros is highly restricted. The 

improved lognormal model assumes a minimum value of the negative losses (i.e., the 

negative of the threshold parameter) which is not consistent with the true nature of 

the loss data. The improved lognormal model in de Alba (2006) will be introduced 

in more detail in Subsection 4.2.1 of this thesis. 

Kunkler (2004) proposed a binomial mixture model to handle the situation where 

there are zeros in the loss triangle. A binomial mixture model is used to model the 

probabilities of zeros and positives, while a lognormal model is used for the magni-

tude of the positive losses. A similar model is introduced by Kunkler (2006) to deal 

with the negatives in the loss triangle. The same binomial mixture model is used 

for the probabilities of negatives and positives, while two different lognormal model 

structures are used for the magnitudes of negatives and positives. Bayesian general-

ized linear models are fitted for both the mixture and magnitude models. We will give 

detailed introductions of these two models in Subsection 4.2.2 and 4.2.3 of this thesis. 
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In Chapter Five, we will implement the binomial mixture model of Kunkler (2006) 

in the Bayesian software package BUGS (Spiegelhalter et al., 1996) in order to re-

produce and verify the results Kunkler obtained using the Econometrics Toolbox 

developed by LeSage (LeSage, 1999) for MatLab (developed by the MathWorks, 

Inc.). Due to the vagueness of model specification in Kunkler (2006), we will try 

different prior specifications as well as different implementations of the binomial logit 

model. 

1.4 A Multinomial Mixture Model 

Inspired by the work of Kunklr (2004, 2006), we will propose a Bayesian mixture 

model in Chapter Six to extend the stochastic reserving models to a situation where 

there are both zeros and negatives in the incremental loss triangle. A multinomial 

mixture model will be applied to model the sign of the loss data, while the lognormal 

distribution is assumed for the loss magnitudes of negatives and positives. Bayesian 

generalized linear models will be constructed for both the mixture and magnitude 

models. 

In Chapter Seven, the model will be implemented using the Markov chain Monte 

Carlo (MCMC) techniques in BUGS. For the sake of comparison, a loss triangle 

similar as to that in Kunkler (2006) is used for our model implementation. The 

loss triangle is adjusted from the 'Historical Loss Development Study' (1991) by the 

Reinsurance Association of America, keeping the same negative values as in Kunkler 

(2006). The same model structure as the one in Kunkler (2006) is chosen for the 
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negative magnitude model. Prior distributions similar to those in Kunkler (2006) are 

specified to make the results more comparable. A chain ladder type model structure 

derived from the structure in Zehnwirth (1994) is used for the magnitude of the 

positive losses. The model implementation, BUGS codes, as well as the results for 

the estimation of parameters and reserves are given in this chapter. 



Chapter 2 

Stochastic Loss Reserving 

2.1 Loss Reserving 

To meet the future claims on the policies currently in force, an insurance company 

needs to set aside an amount of money named the reserve. Loss reserving or claims 

reserving is the process of estimating the amount of reserve the insurance company 

needs to hold, based on the losses to the specific group of policies over past periods. 

A typical data format used to tabulate the loss data for loss reserving is the loss 

triangle or claim triangle (Scoilnik, 2004). In a loss triangle the loss data are listed by 

the accident year (period) and development year (period). The accident year refers 

to the year when the accident occurs, while the development year is the number of 

years between the accident year and the year the insurance company actually pays 

for the loss. The data set looks like a triangle at the time when the outstanding 

claim reserve needs to be estimated. 

A loss triangle frequently referenced in the loss reserving literature is from the 

'Historical Loss Development Study' (1991) by the Reinsurance Association of Amer-

ica. This data set was analyzed by Mack (1994), Renshaw and Verrall (1998) and 

Kunkler (2004, 2006). Please refer to Table 2.1 and Table 2.2 for the loss triangles 

in which the incremental losses and cumulative losses in units of $1000 are listed by 
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the accident year and development year. 

Table 2.1: Incremental Loss Triangle, Historical Loss Development Study (1991)  

Development year 
Accident year 1 2 3 4 5 6 7 8 9 10  

1 5012 3257 2638 898 1734 2642 1828 599 54 172 

2 106 4179 1111 5270 3116 1817 -103 673 535 

3 3410 5582 4881 2268 2594 3479 649 603 
4 5655 5900 4211 5500 2159 2658 984 

5 1092 8473 6271 6333 3786 225 
6 1513 4932 5257 1233 2917 
7 557 3463 6926 1368 

8 1351 5596 6165 
9 3133 2262 
10 2063 

Table 2.2: Cumulative Loss Triangle, Historical Loss Development Study (1991) 

Development year 

1 2 3 4 5 6 7 8 9 10 

5012 8269 10907 11805 13539 16181 18009 18608 18662 18834 

106 4285 5396 10666 13782 15599 15496 16169 16704 
3410 8992 13873 16141 18735 22214 22863 23466 
5655 11555 15766 21266 23425 26083 27067 
1092 9565 15836 22169 25955 26180 
1513 6445 11702 12935 15852 

557 4020 10946 12314 
1351 6947 13112 
3133 5395 
2063 

2.1.1 Chain Ladder Method 

One of the simplest and most popular models for loss reserving is the chain ladder 

method, in which a fixed development ratio Aj is assumed for cumulative losses from 
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two adjacent development years, i.e. from development year j - 1 to j. The intro-

duction of this model can be dated back to Harnek (1966). 

For an incremental loss triangle over n consecutive accident years, Pj, (i = 

1,. . . , n; j = 1,... , m - i + 1), a cumulative loss triangle is required for applying the 

chain ladder method. The following formula can be used to obtain the corresponding 

cumulative loss triangle C (i = 1,... ,n; j = 1,... ,n - i+ 1): 

Pi,k 
k=1 

1,... ,n; j = 1,... ,m — i+ 1. 

The development ratio for each development year can be estimated based on the 

cumulative loss triangle data as in Verrall ( 1989). 

Let 

Ci, j . - 

, 3 - , . . , Ti. 
L_i j=1i+l '-'i,j-1 

With the estimated development ratios 31.j (i = 2,... , n), the losses for future years 

can be obtained based on past loss data. That is, 

= n-i+1 X  'n-i+2 

Oj,_i x i=1, ... ,n; j=n—i+3,...,n. 

The total loss reserve R is the sum of all the estimated future losses, which is equal 

to the difference between the estimated final losses P and loss to date P. Hence, the 

estimated loss reserve is given by 
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where P = + E2 and P = En 

Applying the chain ladder method, we can now estimate the loss development 

ratios, future losses, and reserve for the cumulative loss triangle in Table 2.2. The 

resulting estimated future losses are listed in Table 2.3. 

Table 2.3: Estimated Future Cumulative Losses, Chaiir Ladder Method 
Accident' Development year 

year 1 2 3 4 5 6 7 8 9 10  
1 

2 16871 

3 23935 24174 
4 27879 28437 28721 

5 27227 28044 28605 28891 
6 17596 18300 18849 19226 19418 
7 14407 15992 16632 17131 17474 17649 

8 16652 19483 21626 22491 23166 23629 23865 
9 8740 11100 12987 14416 14993 15443 15752 15910 
10 6189 10026 12733 14898 16537 17198 17714 18068 18249  

Dev ratio -  ' 3.00 1.62 1.27 1.17 1.11. 1.04 1.03 1.02 1.01  

The total loss reserve based on the above estimated cumulative losses is 

+ - ( cj_i+i) 
i=2 

= 212582 - 160987 

= 51595 
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2.1.2 Bornhuetter-Ferguson Method 

For the chain ladder method, the estimate of final reserve can be affected dramatically 

by the most recent losses, except for the first accident year there is no reserve. This 

is easy to see when we write the estimate of outstanding claims for each accident 

year in the following form, as in England and Verrall (2002): 

= Ci,n_i+i (•n—i+2•n—i+3 . . . - i) , = 2,. .. , fl. (2.1) 

Now, observe that the estimated total losses for accident year i from the chain ladder 

method can be calculated as 

TT(C')_rY 
-- '-'i,m—i+1"n—i+2"n—i+3 . . An I i=2,...,n. 

Substituting this result into Equation (2.1) gives another expression for the estimated 

final reserve for each accident year, namely 

= 1 (A A 

  n_i+25n_i+3.. . -. i) 
)m_i+2An_i+3. .. 

i=2, ... ,n. 

For the Bornhuetter-Ferguson method (Bornhuetter and Ferguson, 1972), an outside 

estimate of total loss (BF) is introduced based on past experience and company 

practices. The Bornhuetter-Ferguson estimate of outstanding claims tends to be 

more stable than the estimate given by the chain ladder method, as the formula 

incorporates some external information. The estimated reserve for each accident 

year under the Bornhuetter-Ferguson method is given by 

= (J (BF)  1 
(n_i+2n_i+3. .. - i) 

Ani+2)n.i+3 . . . 
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where 5j (j = 2,. . . , n) are the development factors calculated using the chain ladder 

method. 

Now based on the results in Table 2.3 from the chain ladder method, we can 

calculate the reserves using the Bornhuetter-Ferguson method. The Bornhuetter-

Ferguson reserve estimates for our example in Table 2.1 using different assumptions 

of (j(BF) (i = 2,. .. . n) are listed in Table 2.4. 

Table 2.4: Reserves vs Estimated Ultimate Losses, Bornhuetter-Ferguson Method 
Accident 50% CL Chain Ladder 150% CL 200% CL 

year (JBF jj (J?F ] j (J3F f? (J BF i R4  
1 9417 0 18834 0 28251 0 37668 0 
2 8436 84 16871 167 25307 251 33742 334 
3 12087 354 24174 709 36261 1063 48348 1417 
4 14361 827 28721 1654 43082 2481 57442 3308 
5 14446 1356 28891 2711 43337 4066 57782 5422 
6 9709 1783 19418 3566 29127 5349 38836 7132 
7 8825 2667 17649 5334 26474 8002 35298 10669 
8 11933 5377 23865 10753 35798 16130 47730 21507 
9 7955 5257 15910 10514 23865 15771 31820 21029 
10 9125 8093 18249 16186 27374 24279 36498 32372  

Total 25798 51594 77392 103190 

From the above table we can see that the final reserve is proportional to the esti-

mated ultimate losses we assume. We get the same reserve estimates when assuming 

the same ultimate losses as those calculated from the chain ladder method. The 

difference of 1 is due to the rounding process in calculation. For the years when the 

total losses are extremely small or large, it will be effective to stabilize the result by 

applying an ultimate loss estimate based on long term experiences. 
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2.2 Stochastic Models for Loss Reserving 

The traditional loss reserving methods such as the chain ladder and Bornhuetter-

Ferguson methods are the most popular reserving models in practice, as they are 

simple to model and also give good estimates for outstanding reserves. However, in 

recent years attention has focussed on the variability and tail values of the distribu-

tion of the reserve, which brings the necessity of investigating the stochastic nature 

of the data. 

By specifying the distribution or certain statistical measures for the loss data, 

stochastic loss reserving models have become a popular tool with which to esti-

mate measures such as the percentiles or prediction error of the outstanding reserve. 

Stochastically based chain ladder models define the first two moments (Mack, 1993), 

or assume specific distributions such as lognormal (Kremer, 1982), over-dispersed 

Poisson (Renshaw and Verrall, 1998), or negative binomial (Verrall, 2000) for the 

loss reserving data. Many researchers (e.g., Kremer, 1982; Renshaw and Verrall, 

1998; Mack, 1994; Verrall, 2000; Mack and Venter, 2000; Verrall and England, 2000) 

have focused on the comparison of the chain ladder method and the stochastic models 

reproducing the chain ladder reserves. Among these models, the distribution based 

models are the most popular stochastic models in recent study. 
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2.2.1 Lognormal Model 

In the lognormal model, the incremental loss values Pij are assumed to follow log-

normal distributions, that is 

LN(, a2), i = 1,.. ., n; j = 1,... ,n. 

The three-parameter ANOVA structure is very popular in which the mean is modelled 

by 

[ljj = [L + a + Pi , 

This model first appeared in Kremer (1982) to reproduce the results of the traditional 

chain ladder method. But due to the stochastic nature of the model, the results may 

still differ from those of the chain ladder method. Before the logarithmic transfor-

mation, the structure of the mean is multiplicative in this model, which is similar to 

the chain ladder method. A limitation of this model is that the incremental loss data 

used for this model must be positive so as to ensure that the logarithm is defined. A 

wide range of reserving literatures investigated the implementation of the model us-

ing various statistical techniques such as generalized additive models (Verrall, 1996), 

Bayesian inference (Scoilnik, 2004; de Alba, 2006), and mixed models (Antonio et 

al., 2006). 

2.2.2 Over-Dispersed Poisson Model 

The Poisson distribution has a mean equal to the variance, which is usually not 

true for the actual incremental loss data. The over-dispersed Poisson distribution is 
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more flexible by adding an over-dispersion parameter to allow for the variance to be 

proportional to the mean. Renshaw and Verrall (1998) introduced an over-dispersed 

Poisson model which reproduces the simple chain ladder reserves. In their model 

the incremental loss Pij is assumed to follow an over-dispersed Poisson distribution 

given by 

Pj over-dispersed Poisson(m, q) 

where 

E[P] == Tnij = Xij, 

Var[P] =q5xy, 

with 

i=1, .... m;j=1,...,n, 

LYi='• 
j=1 

In the over-dispersed Poisson model, yj is the proportion of ultimate losses occurring 

in development year j, while xi is the expected ultimate loss for accident year i. The 

product of Xjj is then the expected loss for development year j of accident year 

i. This mean structure is multiplicative, which allows it to reproduce the results of 

the chain ladder method. The over-dispersion parameter qi relaxes the restriction of 

equality for the mean and variance. 

For modelling the mean of the over-dispersed Poisson model, a log linear model 

structure can be used to facilitate estimation. In Renshaw and Verrall (1998), the 

same model structure as that for the lognormal model (Kremer, 1982) was proposed 

for the over-dispersed Poinsson distribution. That is, 

i=1, ... ,n;j=1,...,n. 
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This ANOVA model structure is equivalent to the multiplicative mean structure 

mij = Xij, but is more convenient for estimation. Constraints such as the corner 

constraints can be used to the sets of parameters in this model. 

Using the quasi-likelihood approach (McCullagh and Nelder, 1989, Chapter 9, 

pages 323-356), the over-dispersed Poisson model can be implemented even when 

there are some non-integer or negative values in the data. Hence, it is applicable 

to loss triangles where there are non-integer and negative values. Details about 

the over-dispersed Poisson model for loss reserving can be found in Renshaw and 

Verrall ( 1998). The earliest ideas of linking the chain ladder method and the Poisson 

distribution can be dated back to Wright (1990) and Mack (1991). 

2.2.3 Negative Binomial Model 

The negative binomial model (Verrall, 2000) looks more similar to the chain ladder 

method and gives similar results with the over-dispersed Poisson model. The model is 

derived from the over-dispersed Poisson model. It has parameters Aj (j = 1,. . . , n) 

which are analogous to the development ratios in the chain ladder method. An 

over-dispersion parameter is contained in the model to allow over-dispersion of the 

variance. In the negative binomial model, the incremental losses Pij are assumed to 

follow over-dispersed negative binomial distributions. That is, 

over-dispersed negative binomial, 
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with mean and variance given by 

i=1, ... ,n;j=1,...,n 

i=1,...,n;j=1, ... ,n, 

where Cij = C,_1 + Pij is the cumulative loss. In this recursive model, an estimate 

of Cj,_1 needs to be obtained before modelling P. 

The model can also be written in terms of cumulative losses C. It is easy to 

verify that Cij also follows an over-dispersed negative binomial distribution with 

mean and variance given by 

E [C] = 

Var[C] = 0A (A — 1) Cu_i 

i=1,...,n; j=1, ... ,n 

i=1, ... ,n;j=1,...,n. 

Details of this model can be found in Verrall (2000), and England and Verrall 

(2002). 

2.2.4 Other Models 

There are many other stochastic reserving models that are popular in the reserving 

literature. A comprehensive review of the stochastic reserving models is given in 

England and Verrall (2002). Besides the distributions listed above, the gamma dis-

tribution can be used for the claim amounts (Mack, 1991). A normal approximation 

can be used for the negative binomial model (McCullagh and Nelder, 1989, Chapter 

4, pages 103-107). Mack (1993) brought forward another recursive stochastic model 

by only specifying the first two moments of the claim distribution which also pro-
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duces the chain ladder reserves. 

To avoid over-parameterization of the model, other generalized linear model 

(GLM) structures or parametric curves have been introduced by early researchers. 

One of the most popular structures is the Hoerl curve or gamma curve (Wright, 1990; 

Renshaw, 1994a) which can be applied to the lognormal model or gamma model with 

a log link function. Wright (1990) was the first to model the claim frequency and 

severity separately with GLM structures for the incremental losses in stochastic re-

serving. Non-parametric smoothing techniques can also be applied, an example of 

which is the introduction of generalized additive models (CAM) in stochastic reserv-

ing by Verrall (1996). 

The Bornhuetter-Ferguson method shows that the use of external information 

is a great help for stabilizing the reserve estimates. Bayesian inference provides 

an effective and flexible way of implementing external information into the model. 

A wide range of Bayesian models such as the Bayesian hierarchical models (Scoll-

nik, 2002a), Bayesian Bornhuetter-Ferguson method (Scollnik, 2004; Verrall, 2004), 

Bayesian mixture model (Kunkler, 2004, 2006), Bayesian GLM (Verrall, 2004) and 

general Bayesian techniques (Ntzoufras and Dellaportas, 2002; de Alba, 2002b, 2006) 

can be applied for stochastic reserving. 



Chapter 3 

Bayesian Methods 

3.1 Bayesian Inference 

In classical statistics, the parameters of a distribution are assumed to be definite 

values. Based on Bayes' Theorem (Bayes, 1763), Bayesian statistics, details of which 

can be found in Gelman, Carlin, Stern and Rubin (2005), releases this restriction 

and catches the uncertainty in the parameters with the use of random variables. 

Bayesian inference is the process of statistical modelling with statistical probabil-

ity distributions fitted for the observed data set as well for the unknown parameters 

and unobserved future observations. Bayes' Theorem can be applied to new obser-

vations by treating the former posterior distribution as the new prior distribution, 

which automatically updates the model. 

The process of a Bayesian analysis can be broken down into three steps (Gelman 

et al., 2005, Chapter 1): 

1. Specifying a joint probability distribution for the data as well as for the unob-

servable quantities such as the parameters, which determines a full probability 

model for the specific problem under consideration. 

2. Obtaining an appropriate posterior distribution for the parameters. The pos-

20 
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tenor distribution is the conditional probability of the parameters of interest 

given the observed data. 

3. Evaluating the model fit and interpreting the posterior distributions obtained. 

3.1.1 Bayesian Statistics 

Posterior Inference 

In Bayesian statistics, the parameters of a probability distribution are assumed to be 

random variables. We assume that y is a vector y = (yi, y2, ..., y) with n observa-

tions and 0 is a vector of parameters in the sampling distribution. The probability 

distribution of the observations y can be written as a conditional distribution r(vl°), 

which is called the sampling distribution. This sampling distribution is conditional 

on the model parameters which are denoted by 0. A probability distribution .7r(0), 

known as the prior distribution in Bayesian statistics, is specified for 9. The resulting 

full probability model is given by 

p(o, y) = ir(0)p(yO). 

Using Bayes' Theorem (Bayes, 1763), the posterior distribution for 0, i.e. the condi-

tional distribution of 0 given y, can be obtained as 

ir(oly) - y) - ir(0)p(ylo)  
- p(y) - p(y) 

Here, p(y) = >9ir(0)p(yl0) in the discrete case or p(y) = fir(0)p(ylo) dO in the 

continuous case. Since p(y) is independent of 0 and can be considered as a constant, 

an unnormalized posterior probability can be simply obtained as 

ir(OIy) cc 7r(0)p(ylO). 
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Predictive Inference 

With the observed data of y in hand, predictions may be made for future observations 

using Bayesian analysis. The posterior predictive distribution, or the conditional 

distribution of given y, needed for predicting future observations of our interest, is 

defined by 

XOY) =  8I) dO 

= f(o, y) (Ol) dO. 

If we assume that P and y are conditionally independent given 0, then 

(Iv) = f p(9 10) ir(Oly) dO. 

Details of the analysis can be found in Gelman et al. (2005, Chapter 2, pages 6-9). 

A Parametric Example 

The earliest parametric example of Bayesian inference is the binomial model which 

can be dated back to Bayes (1763). In the binomial model, the sampling distribution 

of y is assumed to be binomial, with number of trials denoted by n and probability 

of success denoted by 0. That is, 

y r'' binomial(n, 0) 

for which the sampling distribution's probability function is given by 

p(yn, 0) = (y) y=0,1,...,n. 
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A beta prior can be assumed for 0, i.e. 

0 '-' beta(a, b) 

Then the prior density function for 0 is 

7r(0) =  1 9a_1(1 - 9)b1 

/3(a,b) 

OC Oa—I(1 - 

where /3(a, b) =   0 < 0 < 1, a > 0 and b > 0. From the earlier results, the 

posterior probability distribution for 0 can be obtained by 

ir(Oly) oc ir(0)p(yle) 

oc 0'(1 - - 0)fl—Y 

= 9a+y-1(1 - 9)b+n__1 

= - 9) b*._i. 

The form of the posterior distribution in this example can be recognized as a beta 

distribution with parameters a* = a + y and b* = b + n - y. Here the beta distri-

bution is said to be a conjugate prior for the binomial distribution, as the posterior 

distribution is of the same form as the prior. 

Predictive analysis can now proceed on the basis of the posterior predictive dis-
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tribution given by 

(Iv) = j p(I6) ir(Oly) dO 
0 

= f' (n)09 (1 - 0) n—  1  Oa*_1(1 - 0)b* _1 dO 
/3(a*, b*) 

(n' 

-  '/ I +a-1 - O)n*_1 dO 
- (a*, b*) 

- (;)/(+ a*, n _+b*) 

- /3(a*, b*) 

since has the same binomial distribution as y, i.e. r' binomial(n, 0), and 

Oy r'' beta(a*, b*) as verified before. 

Details of this model can be found in text books such as Leonard and Hsu (1999, 

Chapter 3, pages 108-114), and Gelman et al. (2005, Chapter 2, pages 31-46). 

For the above example, an informative prior was used with definite information 

specified for the prior distribution. There are also other forms of priors such as the 

noninformative prior and improper prior that can be used for Bayesian analysis. A 

noninformative prior is a prior that gives vague information about the prior distri-

bution, an example of which can be a distribution with an extremely large variance. 

An improper prior with a sum or integral of the prior density larger than 1 or infinite 

can be assumed, so long as sensible answers for the posterior probabilities exist. 

3.1.2 Regression Models 

Classical Regression Models 

Classical regression models are widely used for exploring the relationship between 
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a dependent variable (response) and some independent variables (predictors). The 

regression equation is the mathematical formulation of the relationship between the 

response and predictors. In general linear regression models, the responses are as-

sumed to follow independent normal distributions and the regression equation is 

assumed to be linear. 

The introduction of the generalized linear models (Nelder and Wedderburn, 1972) 

relaxed the restrictions of the independence, normality, and linearity assumptions. 

A generalized linear model (GLM) has three components (Dobson, 2002, Chapter 3, 

pages 49-53): 

1. Response variables Yi,. . . , Y from the same distribution of the exponential 

distribution family, such as the normal, Poisson, or binomial distribution; 

2. A parameter vector /3 (p x 1) and a predictor vector 

/ 
xli ... xlp 

X= 

3. A monotone link function 1 relaxing the linear restriction, such as the log link 

function given by l() = log(,u). 

With these components a GLM can be formulated as 

i=1, ... ,n, 



26 

where 

4 =E(), i=1,...,n. 

For the classical GLM, the parameters ,B can be estimated by the method of maxi-

mum likelihood estimation, instead of the least squares estimation method routinely 

used for the linear regression models. However, in the case of normally distributed 

responses, the results given by the maximum likelihood estimation and least squares 

estimation methods are equivalent. Further details concerning GLMs can be found 

in Nelder and Wedderburn (1972), and Dobson (2002). 

GLMs can be fitted for the stochastic reserving models introduced in Chapter 

Two. 

Bayesian Regression Models 

An alternative to the maximum likelihood estimation and least squares estimation 

approaches to regression model fitting is given by the Bayesian analysis. In the 

Bayesian regression model, the coefficients of regression 3 are treated as random 

variables. The estimation of parameters and future predictions are accomplished 

using posterior and predictive distributions. Bayesian regression can be extended 

to the generalized linear model (GLM), which gives the Bayesian generalized linear 

model. Reviews of Bayesian regression models and Bayesian GLMs can be found in 

Gelman et al. (2005, Chapters 14 and 16). 

A binomial GLM will be used to illustrate the Bayesian analysis of a GLM. In the 

model developed by Kunkler (2004, 2006) for stochastic loss reserving, the response 
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variables Y1, Y2, . . . , Y,, are assumed to follow binomial distributions with different 

parameters, i.e. 

binomial(n, 0) i=1,2, ... ,n. 

Two commonly used link functions for binomial responses (Dobson, 2002, Chap-

ter 7, pages 116-124) are the logistic link and probit link functions given by 

logit(0) = log G 0 0) 

probit(0) '(0) 

where (.) is the cumulative distribution function of a standard normal distribution. 

Given a parameter vector ,8 = (i3, /32,. . . , ,5,)T and a predictor vector 

fT\ / 
xi 

X= 

\X TJ \Xi XnpJ 

the logit GLM for the parameter vector 01, 02,... , On of the binomial model can be 

written as 

logit(0) = xT/3, i = 1,.. . 

In the Bayesian GLM framework, prior distributions for the parameters need to 

be specified. In this way, external information is introduced into the model. In our 

example, we may assume that each Pi follows a normal distribution with different 

means and variances specified, i.e. 

i=1,2,...,n. 
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If the response follows a distribution with several parameters, then a Bayesian 

GLM structure can be fitted to some or all of the parameters. 

3.1.3 Mixture Models 

Mixture models can be used for modelling the data from a population which has 

several subpopulations with different distributions, where data from each subpopu-

lation share the same distribution. The following discussion is based on the review 

of mixture models given in Gelman et al. (2005, Chapter 18). 

For each observation y from the mixture distribution, let C denote a vector of in-

dicator variables identifying the subpopulation from which the observation is drawn. 

Given the value of this indicator data, the distribution of the observation y is de-

termined. So in the mixture model, the distribution of y is specified conditionally 

on both its parameters 0 and the mixture data C. Implementation of this model can 

be performed under the framework of a Bayesian analysis by specifying the prior 

distributions for 0 and C. 

Assume the observed data are from a population with M subpopulations, with 

the distribution of the mth subpopulation given by fm(y Orn) with a parameter vector 

°m The proportion of the population from component m can be denoted as A,, with 

M=l Am = 1. Let 0 = (01, 02, • . , GM) and A = (Al, A2,... , AM). Then the sampling 

distribution of the ith observation yj is given by 

(yIG, A) = Alf (ylGi) + A2f(yilo2) + .. . + AMf(yjI9M) 
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In this case, the indicator vector for the ith observation can be defined as 

where 

I 1 if the ith observation is from the mth subpopulation 

0 otherwise. 

It is easy to see that the distribution of each indicator vector Ci, given A, is given by 

multinomial(A, 1) 

The joint sampling distribution of y and C can be written as 

n M 

p(y, CIO, A) = p(IA)p(yI(,9) = II fI(Amf(yiI9m))m 
i=1 m=]. 

Prior distributions for A and 0 must now be specified in order for the Bayesian pos-

terior analysis to proceed. 

Note, the discussion above assumed that the number of subpopulations, M, was 

fixed and known. Gelman et al. (2005, page 466) discuss the more general case when 

there is uncertainty concerning the value of M. 

3.2 Model Implementation 

Gelman et al. (2005, Chapters 10-13) give a detailed review of various topics con-

cerning Bayesian model implementation for complex problems. In particular, they 
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emphasize posterior simulation and approximation. Crude estimation is usually a 

starting point for a more accurate and complicated posterior sampling analysis. For 

example, for the cases when there are missing data, crude estimation can be per-

formed by simply ignoring all the missing data. Due to its roughness, crude inference 

can only serve as a starting point and reference for later analysis. 

For complex problems, the Bayesian analysis often proceeds on the basis of simu-

lation from the posterior distribution of the parameters. The shape of the posterior 

distribution can be described on the basis of the mean, variance, percentiles, and 

various plots of the simulated parameter values. Another use of the posterior simu-

lation is to make inferences about the predictive distributions. With the simulated 

value of the parameter O, it is now possible to simulate a predictive value P, from 

the predictive distribution p(i1) by making a conditional draw from the conditional 

distribution p(i I) 

However, direct simulation from the posterior distribution is possible only for 

simple Bayesian models, such as ones for which a conjugate prior is assumed. The 

numerical method known as Markov chain Monte Carlo (MCMC) is an important 

and useful tool for more complicated full Bayesian analyses. 

3.2.1 Markov Chain Monte Carlo 

The Main Idea 

Scollnik (2001) describes the main ideas behind MCMC. In a MCMC simulation, 

sample data are simulated from a Markov chain which has a stationary distribution 
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the same as the posterior distribution p(Oly). From the key property of a Markov 

chain, the distribution of any sampled draw 0' depends only on the last simulated 

value 0'. Under some regularity conditions, these dependent draws 01, 02,... can 

be shown to satisfy the statements 

as t —+ oo, 

and 

h(0') -+ E[h(0)} a.s., as n - 00, 

where h(.) is an integrable function. 

For a MCMC algorithm, it is always necessary to check the convergence of the 

sequence, to ensure that the distribution of the random draw is close enough to its 

actual distribution. 

MCMC methods have been widely used in the actuarial literature, examples of 

which can be found in Scollnik (1993, 1996, 2001, 2002a), Haastrup and Arjas (1996), 

Ntzoufras and Dellaportas (2002), Verrall (2004), de Alba (2006), and Ntzoufras, 

Katsis and Karlis (2005). A detailed review of actuarial modelling with MCMC can 

be found in Scoilnik (1996, 2001). 

The Gibbs Sampler 

There are many different algorithms that can be used in the construction of an 

MCMC simulation. Many of these have been described in the statistics literature 

(e.g., Gelfand and Smith, 1990; Smith and Roberts, 1993; and Tierney, 1994). Two 
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of the most popular algorithms are the Metropolis-Hastings algorithm (Metropolis 

and Ulam, 1949; Metropolis et al., 1953; and Hastings, 1970) and Gibbs sampler 

(Geman and Geman, 1984). As a special case of the Metropolis-Hastings algorithm, 

the Gibbs sampler or alternating conditional sampling is one of the simplest and 

most useful methods for MCMC. 

A review of the Gibbs sampler is given in Gelman et al. (2005, Chapter 11, pages 

287-289). Gelfand (2000) reviews the origins of the Gibbs sampler and assesses 

its impact on the research community. For the algorithm of Gibbs sampler, the 

parameter vector 0 is divided into several subvectors, i.e. 0 = (0, 02,... , Gd) for some 

integer d. During each iteration, a sample of each subvector is drawn conditional 

on the simulated values of the rest of subvectors. That is, at iteration t, Ojt (j E 

{ 1, 2,... , d}) is drawn from the conditional distribution 

where 

t-1 - (Ot t iji—1 
- V1,. . '"j-1''1j+1'"' 11d ) 

For example, at the first iteration (i.e. for t = 1), we have 

(0 , G,. . . , 0) 

00 2 = (G, 8,... , 0) 

iO 'ij1,1 iji 
V_d_ _ VV2,...,Vd_1 
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In this manner, the values of each Oj will be updated in each iteration. Under 

appropriate conditions, the distribution of the simulated values of O will get closer 

to the posterior distribution of 0 when t gets larger. Depending on the problem, 

this convergence may occur immediately (or almost immediately), or it may require 

many (or even tens of thousands of) iterations. Posterior inference can be conducted 

based on the portion of samples drawn from the iterations after convergence. 

Details about other MCMC methods such as the Metropolis and Metropolis-

Hastings algorithms can be found in Gelman et al. (2005, Chapter 11). 

Regression Models 

With noninformative priors utilized for all the parameters, Bayesian regression mod-

els (including Bayesian GLMs) give estimates and standard errors equivalent to those 

from classical regression models. In this case, the difference is that we may still use 

posterior simulations as an effective tool for implementing predictive inference and 

model checking in the Bayesian setting. 

For Bayesian regression models, external information can be incorporated by 

specifying informative priors for the parameters. Conjugate priors may be assumed 

in order to obtain the exact form of the posterior distributions, which may make 

the model easier to implement. Nonconjugate priors on the regression parameters 

may also be used. Refer to Gelman et al. (2005, Chapters 14 and 16) for additional 

details. 
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3.2.2 Computation in BUGS 

BUGS (Spiegeihalter et al., 1996) is a specialized program for MCMC based analy-

sis. BUGS stands for Bayesian inference using . ibbs sampling. Several versions of 

BUGS have been developed for different computer platforms. WinBUGS exists for 

Windows. OpenBUGS is a version that can run on Windows and Linux, and within 

the statistical package R. GeoBUGS and PkBUGS are add-ons to WinBUGS that 

can fit spatial and pharmacokinetic models, respectively. Bayesian full probability 

models based on MCMC can be implemented in BUGS very conveniently. Examples 

can be found in Scolinik (2001, 2002a, 2002b, 2004), Verrall (2005), and Gelman et 

al. (2005, Appendix C). The various BUGS packages can be obtained from these 

websites: 

www.mrc-bsu.cam.ac.uk/bugs 

mathstat.helsinki.fi/openbugs. 

Simple Bayesian Models 

Suppose we have a data set y = (y1, y2,. .. ,Yk) from the binomial model specified in 

Subsection 3.1.1. That is, 

yn,O '-' binomial(n, 0), i=1,2,...,k 

and 

0 r'..' beta(a, b) 

This model can be defined in BUGS with these lines of code: 

model -C 
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for (1 in 1:k)-[ 

y[i] dbin(theta, n) 

} 

theta dbeta(a, b) 

a - dlnorm(O, 1.OE-6) 

b dlnorm(O, 1.OE-6) 

} 

In the illustration above, noninformative lognormal priors with large variances were 

specified for the parameters a > 0 and b > 0 of the beta distribution. Note, for 

the normal and lognormal distributions in BUGS, the first parameter is the mean 

and the second parameter is the inverse of the variance (also known as the precision). 

Predictive inference can be implemented for the y variables by adding an addi-

tional variable Yk+1 with the same distribution, i.e. simply by adding one more term 

in the first loop. 

model -C 

for (I in 1:k+1){ 

y[i] - dbin(theta, n) 

} 

theta - dbeta(a, b) 
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a dlnorm(O, 1.OE-6) 

b - dlnorm(O, 1.OE-6) 

} 

Once a full probability model is properly defined and coded in BUGS, and the data 

loaded, BUGS will compile and then run an implementation of a MCMC simulation 

for the model. 

Regression Models 

It is also very convenient to define a regression model such as a GLM in BUGS (e.g., 

see Scolinik, 2002b). For example, we can define a GLM for the binomial data above. 

The model is 

yIn,9 '-' binomial(n, O) , i=1,2, ... ,k, 

and 

logit(0) = P1 + ,82i , 

with normal noninformative priors for ,81 and /32. 

The regression model is defined in BUGS by specifying the regression equation 

with a left arrow < - composed of < and -. The above model can be defined in 

BUGS with these lines of code: 

model { 

for (1 in 1:k)-C 

y[i] - dbin (theta [i], n) 
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theta[i] <- betal + beta2 * ± 

} 

betal dnorm(O, 1.OE-6) 

beta2 - dnorm(O, 1.OE-6) 

} 

After loading the data and initial values for the unknown parameters, posterior sim-

ulation and inference can be performed in BUGS via a menu-driven interface. 

Monitoring Convergence 

When the number of iterations is not large enough, the distribution of the simulated 

values may not be close enough to the target distribution. Therefore, convergence 

needs to be checked before the simulated samples can be used for posterior analysis. 

A common method is to monitor convergence by simulating multiple sequences with 

different starting points. Convergence needs to be monitored for the entire distribu-

tion including all the parameters and quantities of interest. 

A useful tool for checking the convergence was first introduced by Gelman and 

Rubin (1992). It is an estimator of a potential scale reduction factor R that is 

defined based on the between-sequence variance .8 and within-sequence variance W. 

Suppose 0 is a parameter or quantity of interest in the model. With m parallel 
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sequences each with length n, the estimates of B and W for 0 are given by 

m 

where 

W= 1 >s, 
j=1 

i=1 

()2 

()2 

and q5jj is the ith draw from the jth sequence. 

Gelman and Rubin (1992) defined an estimator of the potential scale reduction 

factor by 

R 

where 

'm+iIy) n — i  

W M W mm 

is a pooled posterior variance estimate taking into account the sampling variability 

in the estimation of the mean , and 

= 

is an estimator of the marginal posterior variance of 0. F(q5y) is an unbiased 

estimator for var(q5y), if the simulation has a starting distribution that is identical 
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to the target distribution, but overestimates var(q5y) when the initial distribution is 

overdispersed. The within-sequence variance W is an underestimate of var(qly) with 

its expectation increases to var(qy) as m goes to infinity. Hence, the estimate ] will 

decline to 1 as n -* oo. The potential scale reduction factor 1 can be used as an 

indicator for convergence. When A is close to 1, we may consider the m sequences 

of the n simulated values to be converged. 

Brooks and Gelman (1998) further refined the potential scale reduction factor 

by incorporating a correction factor accounting for the sampling variability of the 

variance estimates. The correction factor is determined using the method of Fisher 

(1935). Their refined potential scale reduction factor is given by 

d+3. d+3 c/ 
R= d+1R d+1W' (3.1) 

where d 2/'(). In this refined potential scale reduction factor, the estimator 

Cr is corrected for the degrees of freedom on which it is based. See Brooks and Gel-

man (1998, pages 437-438) for details of this derivation. 

BUGS calculates the refined potential scale reduction factor .k, (Brooks and Gel-

man, 1998) automatically for use of monitoring the convergence of the simulation. 

A graphical approach is used which makes the monitoring of convergence easier to 

conduct. 
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Note, as in Gelman et al. (2005, Chapter 11, pages 294-299), the potential scale 

reduction factor can also be defined as 

f? 

which will also decline to 1 as n -+ oo. 

To monitor the convergence of the entire distribution, we need to estimate the 

potential scale reduction factors for all the parameters and quantities of interest. 

The simulation needs to be run until every parameter's f? is close to I. Usually, & 

values below 1.1 will be acceptable. We may combine the second halves of all the 

sequences to use as our sample for posterior reference. Details can be found in Gel-

man and Rubin (1992), Brooks and Gelman (1998), Gelman et al. (2005, Chapter 

11, pages 294-299), or other books with topics in MCMC simulations. 



Chapter 4 

Zeros and Negatives 

4.1 The Problem 

At this point, let us return to the loss reserving context introduced in Chapter Two. 

In practice, it is frequently the case that zero losses appear in some of the cells mak-

ing up the incremental loss triangle. This is especially true at the later stage of the 

development years, as most outstanding claims will have been settled by that time 

(Kunkler, 2004, Abstract). 

We may even expect negative values in the loss triangle due to various reasons 

arising from insurance practices (Kunkler, 2004, 2006; de Alba, 2002a, 2006). By 

subrogation, the insurance company can obtain the right to claim from a third party 

for paid losses. So after paying a claim the insurance company may recover an 

amount of money at a future date from that party which will appear as a negative 

loss. Similarly, in marine insurance, it is a customary practice that the insurance 

company pay the full amount of goods to the insured party and get the residual 

value, which is called salvage. In this case, a negative loss arises when the insurance 

company sells the goods and recover some amount of money back. There are other 

reasons for which negative losses may occur, such as the cancellation of a claim, 

initial over-estimation of a loss, consequences of judicial decisions, and errors. 

41 
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However, most of the stochastic models presented in Chapter Two assume pos-

itive values for the claim data. For the lognormal model (Kremer, 1982) in which 

lognormal distributions are specified for the loss data, zero and negative losses will 

make the model undefined. A similar problem arises with the over-dispersed Poins-

son (Renshaw and Verrall, 1998) and negative binomial (Verrall, 2000) loss reserving 

models. Although the quasi-likelihood method can be used for these models so as to 

accommodate non-integer, zero and negative values, too many zero or negative values 

may result in negatives in some columns, which will make the model inappropriate. 

4.2 Previous Work 

To cope with the problems caused by zero and negative values in stochastic loss 

reserving, some improved models have been proposed in the recent literature. An 

improved Bayesian lognormal model was introduced by de Alba (2002a, 2006) to 

extend the lognormal model (Kremer, 1982) to situations where there are negative 

values in the loss triangle. Kunkler (2004) put forward a Bayesian binomial mixture 

model for the situation when there are zeros in the loss triangle data. Kunkler (2006) 

proposed a similar model for a loss triangle with values composed of positives and 

negatives. 

4.2.1 An Improved Lognormal Model 

For the incremental loss triangle the notation Yij is used instead of the Pij used in 

the previous chapters so as to be consistent with the commonly used notation for 

probabilistic models. In the improved lognormal model proposed by de Alba (2002a, 
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2006), a threshold parameter 8> 0 is introduced so that the lognormal model can 

be applied to adjusted loss data Yij + 8> 0. That is, 

Yij + 8 cT2), i = 1,... ,n; j = I,— , n . 

The three-parameter ANOVA structure is used to model the mean by 

Itij = / + c +)3j I i=1, ... ,n;j=1,...,m. 

Corner constraints are assumed whereby c = = 0. 

For a Bayesian analysis to proceed, the prior distributions must be specified 

for the model parameters. For example, de Alba (2002a, 2006) assumes the prior 

distributions 

N(0, cT 2) 

.-' N(0, o.), i=1,2,...,n 

N(0, o), j=1,2,...,n 

a2  IG(v, A) 

where IG(v, A) stands for an inverse Gamma distributions with parameters ii and 

A. The parameters (hyperparameters) in these prior distributions must now be 

specified themselves. If precise values for the hyperparameters are unavailable, then 

a Bayesian hierarchical modelling approach can be adopted, and the hyperparameters 

can be assigned prior distributions reflecting a lack of information. de Alba (2006, 
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page 56) took this approach and adopted the hyperprior distributions 

U '-' IG(0.l, 0.1) 

o r' IG(0.001, 0.001) , i = 1,2,... ,n 

o. IG(0.001, 0.001) , j = 1, 2,. . . , n 

v -' G(2.5, 0.1) 

A -' G(2, 0.1) 

N(200, 10000) 

Old IG(0.0001, 0.1) 

where G(a, b) stands for a Gamma distributions with parameters a and b. 

In the manner described above, de Alba (2002a, 2006) improved the lognormal 

model so that the model can be applied even if there are negative values in the loss 

triangle. One limitation of this model is that it assumes a minimum value —5 for 

the loss data, which is not true in reality. And it may also not be appropriate where 

there are zeros in the loss triangle, especially when the proportion of zeros in the 

loss triangle is large. 

4.2.2 A Binomial Mixture Model for Zeros 

Modelling Mixture Data 

A binomial mixture model is applied by Kunkler (2004) for modelling zeros in the log-

normal model. An indicator or mixture data triangle z = zij  i = 1, 2,. .. , a = 
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1)21 . . - i + 1} is introduced to model the sign of the data, where 

zij = 

The model assumes that the probability of getting positive losses depends only on 

development year j. This is consistent with the empirical observation that there 

tends to be more zeros at the later development years. Denoting P(zij = 1) = Aj, it 

is easy to see zij follows a Bernoulli distribution with its sampling probability given 

by 

p(zIA) = )Zii (1 - 

Since the Bernoulli distribution is the special case of a binomial distribution with a 

single trial (i.e., n = 1), link functions such as the logistic, probit and complementary 

log-log link functions can be used for the mixture data. Putting l(Aj) as the link 

function for Aj, a piecewise linear relationship is proposed in the form of 

i-i 

(4.1) 

a special case of which is 

l(A)=8o+(j-1)61, 

when 6k,. . . , Jd are assumed to be equal. 

(4.2) 

Modelling Magnitude Data 

For the magnitude data of the positive losses, the author uses the lognormal distribu-

tion as the sampling distribution. Denoting p(y0) = p (yij I zij = 1, 0), the sampling 

distribution of loss magnitudes is given by 

log(y)0 N(X,8, a21) 
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where 0 = (/3,o 2), and I is an identity matrix with dimension equal to the number 

of positive values. Kunkler (2004) proposed the model structure of Zehnwirth (1994) 

for the mean of the lognormal model. In this model the form of X8 is given by 

j-1 i+j-2 

(XPO)ij = a +> + ) t. 
d=1 

(4.3) 

Bayesian posterior analysis can be performed when prior information is specified 

for the variance parameter and the parameters for the regression models in Equa-

tions (4.1), (4.2), and (4.3). 

A drawback of the structure in (4.3) is that for loss triangle data, we are usually 

not able to get information about losses for i + j > n + 1, the lower triangle. So it 

will not be possible to get estimates of tt for t > n - 1, which will complicate the 

predictive analysis. And the model only copes with the situation where there are 

zeros, probably due to the computational difficulty. 

4.2.3 A Binomial Mixture Model for Negatives 

Modelling Mixture Data 

Kunkler (2006) proposed another binomial mixture model for extending the lognor-

mal model to situations where there are negative values in the loss triangle. The 

key difference between this model and the one in Kunkler (2004) is that it defines 

a different indicator or mixture data triangle z = {z : i = 1, 2,. . . , ma; j = 

1,2, ... ,ma j+1} as 

1 —1 Yjj  
ZjjS 

1 1 Yjj  
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Similar to Kunkler (2004), it is easy to see that 4 = (z + 1)/2 follows a Bernoulli 

distribution with its sampling probability given by 

p(zIAj) = Xzj (1— )1_Zj 

where Aj = = 1). 

The same link functions proposed in Kunkler (2004), such as the logistic, probit 

and complementary log-log link functions, can be used with this model. letting l(A) 

denote the link function for A, the same piecewise linear relationship as in Kunkler 

(2004) is proposed as 
i—i 

I (A) = >, 5d, (4.4) 
d=O 

with a special case of this being 

l(A)=80+(j—i)51. (4.5) 

Modelling Magnitude Data 

The lognormal distribution is assumed as the sampling distribution for the magnitude 

data of both the negative and positive losses. That is, 

lyiji 

lyiji 

if Yij <0 

if Yij > 0. 

Two model structures are proposed by Kunkler (2006) to use for the model for the 

magnitude data, each corresponds to an assumption for the form of the parameters 
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The first one is derived from the three parameter ANOVA structure introduced 

by Kremer (1982). Based on this, Kunkler (2006) suggested 

= [L + (at + EyF) 1(z=i) + (a + 'yr)  (4.6) 

where a common parameter of p is assumed for both the positive and negative mag-

nitude, 'A is the indicator function with a value of 1 when A is true and 0 otherwise, 

and at) a, tyl are the row and column parameters for the positive and negative 

magnitudes. 

The second structure is obtained from the probabilistic trend family of models 

described by Zehnwirth (1994). Based on this Kunkler (2006) proposed 

Aij = (at + 1 (%=J) + (a + E I(z-1) + tt, 

j-1 3- i+j-2 

(4.7) 

where common calendar year trend factors of tt (t = 1, 2,. . . , 2n - 2) but different 

parameters of at, y, a, 'y (i 1,2,..  na) d 1,2, . . . , na - 1) are assumed for 

positive and negative magnitudes. 

An Example 

Kunkler (2006) performed a Bayesian analysis of his binomial mixture model for 

an adjusted loss triangle from the 'Historical Loss Development Study' (1991) pub-

lished by the Reinsurance Association of America. The adjusted losses considered 

by Kunkler (2006) is given in Table 4.1. Observe that this loss triangle contains both 
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Table 4.1: Adjusted Loss Triangle with Negatives 
Development year 

Accident year 1 2 3 4 5 6 7 8 9 10 

1 5012 3257 2638 -898 1734 2642 1828 599 -54 172 
2 -106 4179 -1111 5270 3116 1817 -103 673 535 

3 3410 5582 4881 2268 2594 3479 649 603 
4 5655 5900 4211 5500 2159 2658 984 

5 1092 8473 6271 6333 3786 -225 
6 1513 4932 5257 1233 2917 

7 -557 3463 6926 1368 
8 1351 5596 6165 

9 3133 2262 
10 2063 

positive and negative losses. 

For the mixture data, Kunkler (2006) adopted a model structure different from 

(4.4) and (4.5) for the binomial GLM. Based on a preliminary data analysis described 

in Kunkler (2004), he chose a logit model 

logit(A) = oo + (j - 5) 511(j>5) 

and assumed noninformative priors for the parameters JO and JI. 

For the loss magnitude data, Kunkler (2006) used a model structure which is 

different from (4.6) and (4.7). This was a simplified model, with linear relationships 

assumed for both the development year and calendar year parameters so as to reduce 

the number of parameters. The simplified model is given by 

= W + (j - + (a + (j - l)y)I(_i) + (i + j - 2)t, (4.8) 

where a+, ty, a and 'y are base magnitudes and development year parameters 
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which are assumed to be different for positives and negatives, and t is the common 

calendar year parameter. 

On the basis of a residual analysis, Kunkler (2006, page 547) found that this 

simplified model failed to capture certain major trends in the development period 

directions for both the negative and positive data, and also failed to capture a level 

change between accident periods five and six for the positive data. Accordingly, 

Kunkler revised the model to 

Aii = (I( <5) 4 + I( >5)c4) I(z=i) + al'(_l) 

+ {I(>i)-yj + I(j>2)t + I(j>3 + [I(4<j<6)(i — 4) + I(j>6)2] 'y 

+I(j>6)(j - 6)')'} I(Z23 r1) 

+ { [IU<3)(j - 1) + I(j>3)2] yj + I(j>3)(j - 3)'y}  

+(i+j-2)t. 

Kunkler (2006) found that this revised model appeared to capture the major 

levels and trends in the data. Further details of his analysis are provided in Kunkler 

(2006). In the next chapter, we will show how the model in Kunkler (2006) can be 

implemented in BUGS. 



Chapter 5 

Implementing Kunkler's Model in BUGS 

5.1 Coding the Mixture Model 

In the previous chapter, we reviewed several loss reserving models that have been 

proposed for use in special situations when zero and negative values appear in the 

loss triangle. In this chapter we will implement one of these, the model by Kunkler 

(2006), in BUGS. The model in Kunkler (2006) was originally implemented using 

MatLab (developed by the MathWorks, Inc.), along with the Econometrics Toolbox 

of econometric functions for use in MatLab developed by LeSage (LeSage, 1999). 

For the binomial mixture model, we denote lflt1 in Subsection 4.2.3 as zij for 

simplicity. We first code the binomial mixture model 

i=l,2,...,na; 

where the Bernoulli probability ).j is modelled with a logit structure 

logitX) = Jo + (j - 5) 51'(j>5) 

Mildly informative priors are assumed for the parameters 50 and 5. That is, 

So N(0, 100) 

Si r'i N(0, 100) 

51 
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The BUGS codes for this model is 

for (j in 1:10) { 

for (i in 1:10) { 

z[i, j] - dbern(p[j]) 

} 

for (j in 1:10) -C 

# Logit model 

logit(p[j]) <- delta[1]+ (j-5)*step(j---6)* delta[2] 

} 

for (j in 1:2) { 

# Prior distribution 

delta[j] - dnorm(0, 0.01) 

} 
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5.2 Coding the Magnitude Model 

The magnitude data for both the negatives and positives are assumed to be lognor-

mal. That is, 

IyI EN (1-4j, 

yij EN (Aij, 

Yjj  (5.1) 

Yjj  (5.2) 

where the means of these lognormal distributions are modelled with a GLM structure 

chosen by Kunkler (2006). The model is given by 

Aij = (I< c + I(j>5)c4) I( j.r1) + 

+ { I(j>i)y + I(j>.2)"4 + I(j>3)7t + [I(4<3<o) (j - 4) + I(j>6)2] 'yt 

+I(j>6)(j - 6)'yt} 1(z =1) 

+ { [I< 1) + 1(3>3)2] yj + I(3>3) (j - 3)y}  

+(i+j-2)t. 

Kunkler (2006) assumed noninformative (actually, mildly informative) priors of 

N(0, 1000) for all of the c, 'y and t parameters appearing in the above model. 

The parameters w and w in Equations (5.1) and (5.2) were estimated as 5.9511 

and 6.1646, respectively, by Kunkler (2006) on the basis of a preliminary data analy-

sis. See Kunkler (2006, pages 550, 553-554) for details. We use these same estimated 

values of w and w. Kunkler (2006) used the olsgQ function (LeSage, 1999, Chap-

ter 6, pages 175-178) in MatLab to implement Gibbs sampling for this GLM model. 
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This function defines the prior density specification of o in this way: 

= sige x Vjj 

i.i.d.   
Vii r 

sige gamma(nu, dO) 

r gamma(nr, kr). 

Kunkler (2006) used a fixed value of r, i.e. r = 100. We assume Kunkler (2006) used 

the values nu = 0 and dO = 0, which are the default values used by o1sg() function 

as described in LeSage (1999, page 176). This results in a diffuse or noninformative 

garnma(0, 0) prior for sige. 

We code the same model for the magnitudes data in BUGS in the following 

manner. 

for (i in 1:10) { 

for (j in 1:10) { 

y[i, j] < yp[i, j]*(2*z[i, j]-1) 

yp[ij j] - dlnorm(mu[i, j], tao[i, j]) 

# Modelling the mean 

mu[i, j] <-a[i, j]+gp[i, j]+gn[i, j]+(i+j-2)*iota 

a[i, j] < (step(5-i)*alphap[1]+step(i-.6)*alphap[2])*z[i, j] 

+alphan*(1-z[i, j]) 

gp [I, j] < (step(j -2) *gaimnap [ 1] +step(j-3)*gaminap [2] 
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+step (j 4) * (ganunap [3] +step (6-j) * (j 4) *gammap [4]) 

+step(j -7) * (2*ganunap [4] +(j -6)*ganunap [5] )) *z [1, j] 

gn[i, j] < (step(3-j)*(j -1)*gamnian[1]+step(j-4)*(2*gainnian[1] 

+(j -3)*ganunan[2]))*(1-z[i, j]) 

} 

} 

# Modelling the inverse-variance (precision) 

for (1 in 1:10) { 

for (j in 1:10) -C 

tao[i, j] < tau[i,j]*(6.1646*z[i, j]+5.9511*(1-z[i, j])) 

tau[i,j] <- 1/(sige*v[i,j]) 

v[i,j] <- r*r/c[i,j] 

c[i,j] dchisqr(r) 

} 

} 

# Priors for the parameters 

sige - dganlma(0, 0) 

alphan - dnorm(0, 1.OE-3) 

iota dnorm(0, 1.OE-3) 

for (I in 1:2) -( 
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alphap[i] dnorm(0, 1.OE-3) 

gammap[i] - dnorm(0, 1.OE-3) 

gammanEl] - dnorm(0, 1.OE-3) 

} 

for (1 in 3:5) -C 

gaininap[i] dnorm(0, 1.OE-3) 

5.3 Comparison of Results 

We ran three chains for the model with dispersed initial values, and monitored all 

of the parameters for convergence. Consider the inverse variance (i.e., precision) 

parameters tau[i, j] = From the history plots of these parameters in BUGS, we 

observe that it only takes 100 iterations before the three paths start to mix for every 

one of the tau[i, j] parameters. Figure 5.1 is the history plot for the sampled values 

of the precision tau[1, 1] for the first magnitude entry in the loss triangle. 

In order to diagnose convergence, we also monitor the refined potential scale re-

duction factors (Brooks and Gelman, 1998), previously defined in Equation (3.1). 

In the case of the precision parameters tau[i, j], the corresponding refined potential 

scale reduction factor R converged to approximately 1 within about 1000 iterations 

(e.g., see Table 5.1). 



57 

0 
0 

d 
I I 

500 1000 1500 

iteration 

0 

Figure 5.1: History Plot of the Precision Parameter tau[1, 1] 

Table 5.1: Refined Potential Scale Reduction of the Precision Parameter tau[1, 1] 

Iteration R Iteration f? Iteration f? Iteration R 

550 1.016 1050 1.007 1550 1.008 2050 1.003 
600 1.033 1100 1.002 1600 1.004 2100 1.003 

650 1.001 1150 0.995 1650 1.001 2150 1.003 

700 0.986 1200 0.996 1700 1.009 2200 1.001 
750 0.995 1250 0.998 1750 1.006 2250 1.003 

800 0.985 1300 1.001 1800 1.003 2300 1.003 
850 1.000 1350 1.002 1850 1.004 2350 1.004 

900 0.997 1400 1.006 1900 1.003 2400 1.002 
950 1.006 1450 0.999 1950 1.001 2450 1.002 
1000 1.010 1500 1.006 2000 1.003 2500 1.001 

On the basis of history plots and examination of R, for the other parameters 

in the model, we determine that all of these other parameters converge before the 

2000th iteration. So we can use a sequence with the same length as in Kunkler 

(2006) to estimate the posterior distribution of the parameters and the reserves. We 

use time simulated values from iterations 2001 to 12000 from all three chains in the 

simulation, a total of 30000 posterior samples, for our analysis. The estimates of our 

parameters are very close to those from Kunkler (2006). Please refer to Table 5.2 



58 

below for details. 

Table 5.2: Estimates of Parameters for the Magnitude Model 
BUGS results Kunkler 2006 

Parameter mean STD mean STD 

at 7.797 0.220 7.800 0.226 
7.187 0.356 7.195 0.368 

'yj 0.557 0.222 0.552 0.229 
0.020 0.234 0.022 0.236 
-0.624 0.250 -0.614 0.25 
-0.219 0.142 -0.225 0.142 
-0.681 0.105 -0.677 0.106 

5.253 0.372 5.251 0.376 

yj 0.809 0.244 0.816 0.242 
-0.611 0.107 -0.614 0.109 

t 0.068 0.045 0.068 0.047 

The percentiles of the reserve estimates from Kunkler (2006) are given in Table 

5.3. The reserve estimates, their corresponding standard deviations, and some of 

their percentiles on the basis of the BUGS output are listed in Table 5.4. 

From the above results, we can see that the mean and percentiles from MatLab 

and BUGS are very close. Some of the standard deviations for the reserve estimates 

are quite large, which may be the reason for any differences in the mean and percentile 

estimates. 
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Table 5.3: Percentiles of the Reserve Estimates from Kunkler (2006)  
Year 1 2.5 5 50 Mean 95 97.5 99  

1 0 0 0 0 0 0 0 0 
2 -88 -65 -50 141 147 437 539 691 
3 -169 -124 -88 444 464 1107 1316 1602 
4 -261 -169 -49 1104 1144 2445 2796 3352 

5 -317 19 367 2466 2551 5007 5753 6545 
6 -304 115 519 2834 2956 5757 6530 7471 
7 -13 699 1385 4838 4987 9058 10092 11456 
8 198 1387 2407 7493 7670 13450 15029 17085 
9 163 2175 3913 12229 12469 21696 24144 27331 
10 2382 4801 6701 17144 17724 30478 34025 39022  

Total 22624 26940 30157 49098 50112 73325 79139 87377 

5.4 Differing Priors Density Specifications 

As noted earlier, the gamma(0, 0) prior presumably adopted by Kunkler (2006) 

for the parameter sige is described as a diffuse prior by LeSage (1999, page 176). 

However, we are not sure whether in BUGS gamma(0, 0) is necessarily defined in 

quite the same way. In this section, we will code the model using several different 

diffuse prior density specifications for sige. 

5.4.1 Types of Diffuse Priors 

Proportional Density 

The gamma distribution gamma(a,,@) is normally only defined for a> 0 and 3> 0. 

Kunkler (2006) used a diffuse prior of gamma(0, 0). From the definition of the 

gamma density function, assuming gamma(0, 0) is defined in the obvious way, its 

density function would have the form of p(x) = x, x> 0. From this form, a 
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Table 5.4: Mean, STD and Percentiles of Reserve Estimates from BUGS  
Year mean sd MC error 2.50% 5.00% median 95.00% 97.50% 
1 0 0 0 0 0 0 0 0 
2 153 168 1.11 -66 -50 146 444 539 
3 486 375 2.74 -116 -81 466 1130 1316 
4 1192 740 6.09 -147 29 1156 2475 2826 
5 2692 1420 13.65 221 576 2589 5138 5856 
6 3104 1575 11.51 334 765 2980 5822 6587 
7 5272 2356 15.54 1129 1788 5082 9325 10490 
8 8023 3337 24.61 2007 2993 7828 13750 15270 
9 13100 5426 47.00 3104 4760 12780 22270 24850 
10 18590 7176 84.20 5923 7881 18030 31030 34200 

Total 52620 13260 156.4 29760 33070 51460 75970 81890 

reasonable guess of the diffuse prior in MaCLab for sige would be 

p(szge) oc 1 
sige 

(5.3) 

This form of prior is discussed in Gelman et al. (2005, Chapter 2, pages 61-65). 

This prior can be defined in BUGS using the "ones trick" (Spiegeihalter, Thomas, 

Best, and Lunn, 2004), where an imaginary observation with value 1 is used to ob-

tain the desired prior. The 1 is assumed to be an observation from a Bernoulli 

distribution with probability p. Keeping in mind that the contribution made to the 

likelihood by a Bernoulli observation with a value of 1 is given by p, we see that the 

correct prior density contribution results if p is set equal to a term proportional to 

the desired prior density. 

The diffuse prior in Equation (5.3) can be defined in BUGS using the following 

code. 
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one <- 1 

C <- 1000 # a large number to ensure that p<l 

sige dflat() 

p <- (1/sige)/c # expression for desired prior of sige 

one dbern(p) 

Uniform Prior 

Another type of diffuse prior is a uniform prior on an interval. For the prior of 

the parameter sige in Kunkler (2006), a uniform prior on an interval (0, L) can be 

assumed. That is, 

sige U(0, L) . (5.4) 

For the interval upper bound L, we can choose big values such as 10 or 100 in order 

to make the prior information vague. This prior can be easily defined in BUGS as 

follows: 

L <- 100 

sige - dunif(0, L) 

Flat Prior 

BUGS has a standard function dflatQ which represents a useful form of diffuse 

prior. The fiat prior function dflatQ is an improper (fiat) prior which assumes equal 

probability for each value on the whole real line. It is very straightforward to specify 

a fiat prior for sige in BUGS. That is, 
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sige dflatO. 

5.4.2 Comparison of Results 

Time for Convergence 

Using the proportional prior defined in Equation (5.3), it took much longer for the 

sample paths of the precision parameter tau[i, j] to converge. The simulated values 

from the three chains did not mix until after about 20,000 iterations. This is shown 

in the history plot of tau[1, 1] in Figure 5.2. The history plots for all of the other 

tau[i, j] parameters are similar. 

0 10000 20000 

iteration 

Figure 5.2: History Plot of tau[1, 1] with Proportional Prior 

From the refined potential scale reduction factors, it is easy to see that after 

20,000 iterations, the potential scale reduction is very close to 1. The values of the 

potential scale reduction for iterations from 550 to 21,500 are listed in Table 5.5 as 

an example. For the iterations 22,001 to 30,000, the values are similar to those from 

iterations 20,050 to 21,500. The refined potential scale reduction factors for all the 
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other parameters stay close to 1. after about 20,000 iterations. 

Table 5.5: Refined Potential Scale Reduction of tau[1, 1] with Proportional prior 

Iteration R Iteration R Iteration R Iteration R 
550 5.366 5050 1.213 20050 1.129 20800 1.039 

600 5.002 5100 1.038 20100 1.062 20850 1.038 
650 5.604 5150 0.982 20150 1.073 20900 1.027 

700 4.632 5200 0.923 20200 1.100 20950 1.033 

750 4.498 5250 0.975 20250 1.106 21000 1.029 
800 4.685 5300 1.056 20300 1.100 21050 1.032 
850 4.809 5350 1.013 20350 1.062 21100 1.030 
900 4.545 5400 1.008 20400 1.028 21150 1.024 

950 4.666 5450 0.997 20450 1.056 21200 1.023 
1000 3.404 5500 0.998 20500 1.060 21250 1.021 

1050 2.838 5550 1.017 20550 1.024 21300 1.018 
1100 2.650 5600 0.989 20600 1.026 21350 1.022 

1150 2.183 5650 0.992 20650 1.034 21400 1.021 

1200 2.091 5700 1.005 20700 1.039 21450 1.017 

20750 1.041 21500 1.017 

For the uniform prior of .sige defined in Equation (5.4), we choose L = 100. The 

convergence of the simulation is very quick and similar to the simulation when using 

gamma(0, 0) as the prior. From the history plot of tau[1, 1] in Figure 5.3, it is appar-

ent that the three chains began to mix after about a hundred iterations. The history 

plots for all of the other tau[i, j] parameters look similar. From the refined potential 

scale reduction factors, it is easy to see that after 1000 iterations, the potential scale 

reduction is very close to 1. The sample values of the potential scale reduction for 

iterations from 550 to 2500 are listed in Table 5.6. The values of the potential scale 

reduction for the iterations after 2500 look similar. All the other parameters seem 

to converge after about 1000 iterations. 
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Figure 5.3: History Plot of tau[1, 1] with Uniform Prior 

Table 5.6: Refined Potential Scale Reduction of tau[1, 1] with Uniform prior 

Iteration R Iteration R Iteration .R Iteration R 

550 1.023 1050 0.996 1550 1.010 2050 0.994 
600 1.046 1100 0.996 1600 1.009 2100 0.994 
650 0.992 1150 1.011 1650 1.006 2150 0.995 
700 1.002 1200 1.008 1700 1.006 2200 0.996 

750 1.010 1250 1.001 1750 1.008 2250 0.995 

800 1.003 1300 1.007 1800 1.006 2300 0.997 
850 1.007 1350 1.005 1850 1.000 2350 0.997 

900 1.009 1400 1.009 1900 1.001 2400 1.002 
950 0.998 1450 1.005 1950 1.000 2450 0.998 

1000 0.988 1500 1.010 2000 0.996 2500 1.000 

For the flat prior with domain on the whole real line, the convergence of the 

simulation is so much slower that we have to choose less dispersed starting values 

for the three chains to reach convergence. Using the new starting points, the three 

chains start to mix well after about 27,000 iterations. This can be observed from the 

history plot of tau[1, 1] in Figure 5.4 as an example. 

The values of the refined potential scale reduction factors are consistent with 
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Figure 5.4: History Plot of tau[1, 1] with Flat Prior 

what we observe in the history plot. The refined potential scale reductions are close 

to 1 after about 30,000 iterations. The values of the refined potential scale reduction 

factors for iterations from 550 to 31,500 are listed in Table 5.7. All of the other 

parameters also seem to converge after about 30,000 iterations. 

Based on the convergence results described above, we will use the simulated values 

for iterations 20,001 to 30,000 from the three chains for the estimation of parameters 

and reserves in the case of the proportional prior. Iterations 2001 to 12,000 will 

be used for the posterior inference of the model using the uniform prior. For the 

model with the flat prior, iterations 30,001 to 40,000 will be used for estimating the 

parameters as well as the reserves. 

Estimation for Parameters 

The posterior summaries for the main parameters from the models with the three 

different diffuse prior density specifications are listed in Table 5.8. From this table, 
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Table 5.7: Refined Potential Scale Reduction of tau[1, 1] with Flat prior  

Iteration R Iteration R Iteration R Iteration R 
550 2.176 10050 1.205 30050 1.137 30800 1.014 

600 1.522 10100 1.141 30100 1.098 30850 1.013 

650 1.519 10150 1.222 30150 1.031 30900 1.009 
700 1.450 10200 1.122 30200 1.021 30950 1.015 

750 1.333 10250 1.136 30250 1.049 31000 1.019 
800 1.332 10300 1.144 30300 1.045 31050 1.016 
850 1.325 10350 1.144 30350 1.031 31100 1.017 
900 1.328 10400 1.150 30400 1.029 31150 1.017 

950 1.327 10450 1.149 30450 1.036 31200 1.009 

1000 1.305 10500 1.146 30500 1.026 31250 1.004 
1050 1.304 10550 1.165 30550 1.015 31300 1.003 
1100 1.300 10600 1.136 30600 1.031 31350 1.003 

1150 1.291 10650 1.132 30650 1.031 31400 1.003 

1200 1.309 10700 1.111 30700 1.027 31450 0.997 

30750 1.018 31500 1.000 

we can see that the results are very close to each other. The type of the diffuse prior 

selected for the sige parameter has little influence on our estimation. 

Estimation of Reserves 

The reserve estimates from the models with the three different diffuse priors are 

listed in Tables 5.9, 5.10, and 5.11. As was the case with the posterior parameter 

summaries, these results are all very close to one another. We can conclude from 

our results that the type of diffuse prior on sige has little influence on our model 

estimation. 
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Table 5.8: Estimates of Parameters for the Magnitude Model with Different Priors 
Proportional Uniform Flat Kunkler 2006  

Parameter mean std mean std mean std mean std 

al 7.804 0.227 7.798 0.227 7.798 0.235 7.800 0.226 
7.207 0.374 7.192 0.372 7.194 0.385 7.195 0.368 

0.554 0.224 0.548 0.236 0.556 0.237 0.552 0.229 
0.023 0.232 0.033 0.242 0.022 0.242 0.022 0.236 

73+ -0.606 0.242 -0.614 0.253 -0.609 0.260 -0.614 0.25 
-0.225 0.141 -0.230 0.144 -0.229 0.146 -0.225 0.142 

-0.676 0.105 -0.677 0.109 -0.676 0.108 -0.677 0.106 

al 5.255 0.374 5.245 0.384 5.247 0.391 5.251 0.376 

0.819 0.237 0.817 0.248 0.819 0.252 0.816 0.242 
-0.613 0.106 -0.613 0.110 -0.614 0.113 -0.614 0.109 

t 0.066 0.047 0.068 0.048 0.067 0.049 0.068 0.047 

5.5 Specification of Logit Model 

Kunkler 's Specification 

For the binomial mixture model, recall that in Subsection 5.1.1 we let 

zBernoulli(A), i=1,2,...,na; j=1,2,...,fl 

logit(A) = 60 + (j - 5) 61'(j>5), 

N(0, 100) 

61 N(0, 100) 

j1,2, ... ,fla (5.5) 

This in not exactly the same specification used in Kunkler (2006). In particular, 

Kunkler (2006) is vague on the prior he used for JO and ój, except to say that it was 

noninformative. Also note, whereas we coded this part of the model specification 

directly in BUGS, Kunkler used the probitg() function (LeSage, 1999, Chapter 7) 
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Table 5.9: Reserve Estimates with Proportional Prior 
Year mean sd MC error 2.50% 5.00% median 

1 0 0 
2 

3 
4 

5 
6 
7 
8 

9 
10 

Total 

152 
481 

1184 
2671 

3106 
5261 

8069 
13030 

18370 

52320 

167 

373 
731 
1388 
1570 

2334 
3279 

5307 
7126 

13070 

0 0 
1.10 -64 
2.73 -115 

5.71 -141 
14.38 205 
11.80 360 

16.08 1135 
26.69 2128 
50.15 3044 

91.56 5791 

173.6 29830 

0 0 
-48 
-81 
47 

557 
754 
1796 

3108 
4794 

7783 

33040 

145 
458 

1143 
2578 
2981 

5097 
7862 
12760 

17820 

51260 

95.00% 

0 
442 

1114 
2451 
5041 

5830 
9307 
13680 
21990 

30710 

75440 

97.50% 

0 
530 
1316 
2797 

5739 
6606 
10440 

15170 
24290 

33970 

80900 

in MatLab to implement the Gibbs sampling for this part of his model. We discuss 

this latter point in further detail below. 

Albert and Chib 's Specification 

The probit_g() function described in LeSage (1999) makes use of the Albert and Chib 

(1993) approach to the estimation of logit and probit models. Essentially, Albert and 

Chib (1993) proposed augmenting the binary 0 and 1 type of data appearing in logit 

and probit models with variables drawn from an underlying continuous distribution. 

Albert and Chib (1993) show that the underlying truncated normal distributions are 

the theoretically appropriate ones to use. A big advantage of this approach is that 

the resulting model is sometimes easier to code in the context of a MCMC simulation. 

The approach proposed by Albert and Chib (1993) is implemented in the probit_gQ 

function developed by LeSage (1999) in the following manner. Suppose z is a vector 

of binary observations. Let y denote the corresponding vector of augmented obser-
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Table 5.10: Reserve Estimates with Uniform Prior 
Year mean sd MC error 2.50% 5.00% median 95.00% 97.50% 

1 0 0 0 0 0 0 0 0 
2 153 171 1.20 -65 -49 144 448 548 

3 487 386 2.68 -120 -84 463 1154 1349 
4 1196 760 6.85 -147 30 1149 2492 2861 

5 2693 1458 14.80 161 516 2581 5234 5944 
6 3112 1613 11.54 310 725 2978 5933 6764 

7 5275 2400 15.19 1063 1725 5072 9479 10690 

8 8111 3399 25.05 2024 3051 7888 13920 15720 
9 13230 5604 46.95 2864 4724 12920 22700 25420 
10 18810 7444 84.02 6055 7948 18210 31750 35340 

Total 53070 13630 161.10 29920 33140 51830 77160 83040 

vations, such that yj < 0 if zi = 0 and yj >= 0 if zi = 1. Let X denote the matrix of 

covariate values and b the vector of regression parameters. The probit_g() .function 

assumes this model: 

y=Xb+e 

e N(0, V) 

V = diag(vi, v2, 

r 
- z.z.d. 
Vi  

r '-S-' gamma(m, k) 

b- N(c, T). 

V.) 

Albert and Chib (1993) show that this modelling approach encompasses both the 

traditional logit and probit model structures. LeSage (1999) notes that the resulting 

posterior estimates for b should be close to those resulting from a traditional probit 

model when r is large (say, r = 100) and diffuse prior is adopted for b. LeSage 

(1999) also notes that setting r around 7 and adopting a diffuse prior for b should 
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Table 5.11: Reserve Estimates with Flat Prior 
Year mean sd MC error 2.50% 5.00% median 95.00% 97.50% 
1 0 
2 156 
3 488 

4 1200 

5 2687 
6 3117 
7 5293 
8 8115 
9 13200 

10 18680 

Total 52930 

0 0 
173 

386 
764 
1448 

1644 
2401 

3459 
5583 
7466 

13730 

1.12 

2.88 

6.83 
15.14 
12.59 
18.01 

28.15 
55.65 
96.51 

190.40 

0 0 
-66 -49 
-119 -84 
-142 40 

146 534 

331 750 
1099 1758 

1958 2962 
3084 4775 

5770 7813 

29500 32860 

0 0 0 
147 453 553 
461 1148 1352 

1148 2524 2916 
2576 5173 5882 
2963 5987 6858 
5100 9451 10550 
7866 14040 15650 

12850 22690 25280 

18030 31700 35350 

51620 77330 83150 

produce posterior estimates for b close to those from a traditional logit model. We 

can easily use this same approach towards probit/logit modelling in BUGS. 

Implementing in BUGS 

The BUGS code for the logit model using Albert and Chib's (1993) approach is as 

follows. 

# Unobserved z[i,j] 

for (1 in 2:10) { 

for (j in ( 12-i):10) { 

z[i,j] <- step( z.y[i,j] ) 

z.y[i,j] - dnorm(p[j], tau0[i,j]) 

} 

} 

# Observed z[i,j] 
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for(i in 1:10) { 

for(j in 1:(11-i)) { 

z.y[i,j] dnorm(p[j], tau0[i,j]) I( z.ylow[i,j], z.yupp[i,j] ) 

z.ylow[i,j] <- -10000000 * ( 1 - z[i,j] ) 

z.yupp[i,j] <- 10000000 * z[i,j] 

} 

} 

for (j in 1:10) { 

p [j] < delta[1]+ (j-5)*step(j-5 5)* delta[2] 

} 

for(i in 1:10) { 

for(j in 1:10) { 

tauo[i,j] <- 1 / ( v0[i,j] ) 

v0Ci,j <- r0*r0/c0[ij] 

c0Ci,j] - dchisqr(ro) 

} 

} 

rO <- 7 

We use the same magnitude model as in Section 5.2 and the uniform prior for 

sige as in Subsection 5.4.1 to ease the convergence. We ran the model in BUGS 
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with r = 7 and got the estimates of parameters and reserves very close to those 

from the previous sections. The simulation converges very quickly. We monitored 

the convergence of all the parameters and used the simulated values from iterations 

11,001 to 21,000 for our posterior analysis. The estimates of the reserves are listed 

in Tables 5.12. 

Table 5.12: Reserve Estimates Using Albert and Chib's Approach  
Year mean sd MC error 2.50% 5.00% median 95.00% 97.50%  

1 0 0 0 0 0 0 0 0 
2 155 172 1.14 -64 -48 146 447 547 

3 488 382 3.03 -116 -80 462 1156 1346 

4 1190 749 6.24 -144 35 1142 2481 2852 

5 2668 1450 14.26 152 532 2560 5152 5886 
6 3116 1622 11.48 324 742 2964 5949 6852 

7 5285 2406 16.71 1131 1773 5089 9409 10660 
8 8049 3374 24.51 2003 3026 7821 13860 15440 

9 13140 5553 53.67 2988 4673 12780 22660 25300 
10 18650 7404 86.38 5865 7940 17990 31690 35280  

Total 52750 13490 162.70 29640 33050 51630 76480 82680 

As we use the same magnitude model as before, the estimates of parameters for 

the magnitude should not change when a different model specification is used for 

the mixture data. The estimates of parameters for the binomial mixture model are 

listed in Table 5.13. Rom the table we observe that there are notable differences 

in the estimates of parameters from the different specifications of the logit model. 

However from the reserve estimates in Table 5.12 we can conclude that the effect on 

the reserve estimates is very small. 

The Influence of r 

LeSage (1999) notes that with different values of r (i.e., r = 2, 25, 50, 100), the 
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Table 5.13: Estimates for Mixture Model Using Albert and Chib's Approach  
Specification Parameter mean sd MC error 2.50% median 97.50% 

60 3.692 0.850 0.015 2.168 3.640 5.533 
-0.307 0.533 0.008 -1.272 -0.333 0.841 

50 2.189 0.507 0.006 1.299 2.155 3.262 
-0.197 0.310 0.004 -0.763 -0.213 0.435 

Albert & Chib 

BUGS Logit 

resulting posterior estimates for b could be used to approximate those from. the tra-

ditional logit and probit models. Here we run the model in BUGS with different 

values of r to study the influence of r on the binomial logit model in Equation (5.5). 

The same magnitude model as in Section 5.2 and the proportional prior for sige as 

in Subsection 5.4.1 are used. , 

The converged sequences from 3 different chains are used for our posterior in-

ferences. The estimates of all the parameters converge after iteration 11,001, for all 

values of r considered. We use the simulated values from iterations 11,001 to 21,000 

for our posterior analysis of parameters and reserves. 

From Table 5.14, we observe that the posterior estimates of the parameters 8o 

and 6 in Equation (5.5) vary for different values of r. The larger the difference in r 

the larger is the difference in the parameter estimates. 

The reserve estimates and standard deviations using the values r - 2, 25, 50, 100 

are listed in Tables 5.15, 5.16, 5.17 and 5.18 for comparison. We observe that the es-

timates of reserve tend to decrease as the value of r increases. The other percentiles 

of the reserves also have the same trend. 
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Table 5.14: Estimates for Mixture Model with Different Values of r  
Value of r Parameter mean sd MC error 2.50% median 97.50% 

JO 2.855 0.916 0.034 1.467 2.721 4.894 
51 -0.137 0.598 0.021 -1.072 -0.224 1.297 

6o 3.692 0.850 0.015 2.168 3.640 5.533 
51 -0.307 0.533 0.008 -1.272 -0.333 0.841 

JO 6.387 1.320 0.019 3.890 6.350 9.078 
-0.586 0.853 0.012 -2.189 -0.613 1.176 

JO 8.691 1.816 0.025 5.290 8.649 12.370 

-0.747 1.184 0.014 -2.983 -0.780 1.694 

60 11.890 2.479 0.034 7.247 11.810 16.980 
61 -0.952 1.623 0.020 -4.019 -0.998 2.352 

2 

7 

25 

50 

100 

Table 5.15: Reserve Estimates Using Albert and Chib's Approach (r = 2)  
Year mean sd MC error 2.50% 5.00% median 95.00% 97.50%  

1 0 0 0,0 0 0 0 0 
2 163 174 1.75 -63 -46 152 456 559 
3 511 388 4.11 -113 -77 484 1176 1371 
4 1259 743 7.74 -111 118 1212 2546 2936 

5 2822 1437 17.97 350 702 2693 5315 6053 
6 3230 1613 14.11 487 877 3078 6053 6900 

7 5450 2412 18.73 1298 1931 5241 9679 10880 
8 8312 3378 28.75 2322 3255 8063 14170 15800 
9 13440 5439 55.16 3596 5228 13100 22650 25240 

10 19040 7342 103.50 6374 8305 18380 31810 35360  

Total 54220 13520 199.90 31070 34370 53020 77970 84210 

In this chapter, we used BUGS to obtain results very close to those in Kunkler 

(2006). The results in Kunkler (2006) were originally obtained using MatLab, along 

with the Econometrics Toolbox of econometric functions (LeSage, 1999) for use in 

MatLab. Although MatLab is a very good programming environment, arguably 

BUGS is better represented in the statistics and actuarial literature, and is probably 

more accessible to the average actuarial practitioner. 
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Table 5.16: Reserve Estimates Using Albert and Chib's Approach (r = 25)  

Year mean sd MC error 2.50% 5.00% median 95.00% 97.50%  

1 0 0 0 0 0 0 0 0 
2 153 171 1.12 -68 -51 144 448 551 

3 484 388 2.96 -123 -84 459 1150 1354 
4 1183 753 6.41 -156 17 1140 2490 2837 

5 2651 1436 13.95 140 485 2545 5138 5841 
6 3049 1621 11.44 268 672 2914 5858 6713 
7 5219 2390 15.35 1040 1701 5016 9357 10530 

8 8005 3414 24.62 1866 2905 7763 13910 15470 

9 13010 5562 50.00 2875 4527 12690 22390 24930 

10 18510 7325 86.18 5772 7817 17850 31390 34950  
Total 52260 13440 161.60 29310 32710 51050 75890 82160 

In the next chapter, we will propose a multinomial model for a more general 

situation than that is considered in Kunkler (2006). Specifically, we will develop a 

multinomial model for the situation when there are both zeros and negatives in the 

loss triangle. In a subsequent chapter, we will implement this model in BUGS. 
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Table 5.17: Reserve  
Year mean sd 

Estimates Using Albert and 

MC error 2.50% 5.00% 
Chib's Approach (r = 50) 

median 95.00% 97.50% 
1 0 0 
2 153 172 

3 485 385 

4 1183 754 

5 2655 1458 
6 3072 1629 

7 5213 2426 
8 7990 3442 

9 12950 5607 
10 18360 7450 

Total 52060 13590 

0 0 0 
1.10 -65 -50 
2.77 -118 -81 

6.36 -146 22 
14.18 106 470 

12.12 317 695 
15.09 1027 1660 

24.60 1882 2859 
46.34 2644 4349 
90.81 5502 7540 

162.10 28880 32080 

0 0 0 
145 
458 
1142 

2549 
2931 
5009 
7748 
12650 

17740 

50830 

451 
1156 

2498 
5136 

5876 
9400 

13900 
22480 

31360 

75940 

548 
1355 

2842 

5877 
6685 
10650 

15510 
25000 
34880 

82170 

Table 5.18: Reserve Estimates Using Albert and 

Year mean sd MC error 2.50% 5.00% 
Chib's Approach (r = 100)  

median 95.00% 97.50% 
1 0 0 0 0 0 
2 157 172 1.13 -65 -49 

3 485 384 2.82 -118 -82 

4 1177 749 6.31 -141 30 
5 2644 1443 14.51 121 508 

6 3042 1634 11.67 224 630 

7 5190 2436 17.20 992 1621 
8 7911 3437 26.48 1751 2742 

9 12850 5607 48.68 2544 4240 
10 18130 7425 90.03 5182 7273 

Total 51580 13550 164.90 28380 31690 

0 0 0 
147 452 552 
459 1151 1354 

1125 2491 2838 

2534 5143 5873 
2906 5881 6696 
4989 9369 10640 

7715 13770 15400 
12530 22350 24950 

17540 31020 34520 

50500 75270 81640 



Chapter 6 

A Bayesian Mixture Model as a Solution 

6.1 The Model 

The models introduced in Chapter Four are all aimed at solving the problem of loss 

reserving when either zeros or negatives appear in the loss triangle, but not both 

together. No model has been proposed for extending the stochastic reserving models 

to situations where there are both zeros and negatives existing in the loss triangle 

together. 

Based on the two mixture models introduced by Kunkler (2004, 2006), a Bayesian 

mixture model will be proposed in this chapter to extend the conventional stochastic 

loss reserving model to a more general situation where there are a considerable 

number of both zero and negative values in the loss triangle. The multinomial 

distribution will be used to model the mixture data which indicate the sign of losses, 

while distributions such as the lognormal (Kremer, 1982), over-dispersed Poisson 

(Renshaw and Verrall, 1998), and negative binomial (Verrall, 2000) can be assumed 

for the magnitude data for both the positives and negatives. GLM structures can be 

incorporated in the model as well. 

77 
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6.2 Model for the Mixture Data 

6.2.1 Modelling Mixture Data 

As in Chapters Four and Five, let Yij denote the incremental losses in the loss triangle. 

Based on the sign of the data, the incremental loss triangle can be split into three 

subsets containing values of negatives, zeros, and positives, respectively. The three 

subsets are defined as 

S()={y: Yij  

= {yj Yij = 0} 

S() ={y: Yjj  

A mixture data triangle z = {z : j = 1, 2,.. . a = 1, 2,. . . , r - i + 1} can be 

defined for modelling the sign of the incremental loss triangle where 

zij = 

(1, 0, o)T if yj < 0 

(0, 1, o)T if Yij = 0 

(0, 0, i)T if Yij >0 

In the actual loss triangle, there tends to be more zeros and negatives in the 

later stage of development years. So we can assume that the proportion of zeros 

and negatives depends only on the development year as in Kunkler (2004, 2006). 

Denoting P(yij < 0) = Aij, P(y 0) = A2, then P(yij > 0) = 1 -  Ajj  - A2. It is 

easy to verify that zij has a multinomial distribution, which is 

z r'.j multimomial(A, 1), 
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where 

6.2.2 Distribution of Mixture Data 

The sum of the mixture data for each development year stands for the number of 

yij observations that are negative, zero, or positive from our definition. This can be 

written as 

zj= zij = 

/Number of Yij observations< 0' 

Number of Yij observations= 0 

\Number of Yij observations> 01 

Assuming independence for losses from different accident years, the sum of the mix-

ture data in each development year also follows a multinomial distribution with its 

probability distribution function given by 

where 

/A,3\ 

Zj Z2J Z3j 

Ajj 

)Z1iAZ2i(1 -  Ajj  - A2.)flajZ1i2i 
Ij 2j 

A2 = 

\A3/ \1AljA2J 

and 
naj 

zlj Z2j z3 

Thaj! 

zi!z2!z3! 
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6.2.3 Generalized Linear Models 

The probabilities of negatives and zeros often seem to depend on the development 

year. A Bayesian GLM for the multinomial probabilities on the development year j 

can be applied to model this structure. Two commonly used link functions for the 

multinomial distribution are the logistic and probit links (Dobson, 2002, Chapter 8, 

Page 135-148). For demonstration purposes, only the logistic link is used for our 

analysis. 

The piecewise linear relationship (Kunkler, 2004, 2006) gives a flexible structure. 

This model structure can be written as 

log  \( .-. 
Ali A33 

i—i 

d=O 

61d, 1=1,2. 

With the above structure, some of the parameters can be set to zero or assigned equal 

values. To solve the problem of over parameterization, a simple linear regression on 

j - 1 can be used as a special case of the above model. That is, 

log ( t) =810 +(j-1)511, 1=1)2. (6.1) 

Denoting 11Aj) = log () (where 1 = 1, 2), the model can be expressed in 

matrix form by 
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where 

\ l2(A) VA -d) j 

1 1 

6.3 Model for the Magnitude Data 

6.3.1 Modelling Magnitude Data 

To ease the analyses for this section, simplified notations for the distributions of the 

magnitudes of the positive and negative data are introduced as 

p(y191) = P(-Yij I zij = —1,O) 

p(yjO) = p(yijIz3 = 1,93) 

As discussed in Chapter Two, many distributions such as the lognormal (Kremer, 

1982; de Alba, 2002a, 2006; Kunkler, 2004, 2006), over-dispersed Poisson (Renshaw 

and Verrall, 1998), and negative binomial (Verrall, 2000) can be assumed for the loss 
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magnitude data. For demonstration purposes, lognormal sampling distributions are 

assumed for the loss magnitude data y and y+ in our analysis. That is, 

log(y)01 '-' N(Xj3i, o1i) 

log(y)03 N(X, 2fi2, a2'2) 

where 

0i= A, 0')1 

03 = Al U)2 

I. is an identity matrix of n,,- x ny-

12 is an identity matrix of n,,+ x n,,+ 

no n0—i+1 

= E E 1(y 1<O) 
i=1 j=1 

fla na—i+1 

fl,,+ = E '(yjj>O) 
i=]. :7=1 

01 is a parameter vector of k131 x 1 

/32 is a parameter vector of kfl2 >< 1 

X 1 is a design matrix of n,,- x kfi1 

X 2 is a design matrix of n,+ >< k 
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6.3.2 Generalized Linear Models 

Zehnwirth (1994) put forward a flexible regression structure which can be applied to 

the loss magnitude data of y and y. The model can be written as 

(X 1/31) = a1 + 

j-•1 i+j-2 

>'Yld+ E nit, 
d=1 

l= 1,2. 

The ali parameters are for modelling the effect of accident year, while the and 

7/tt parameters are chosen to catch the effects of development year and calendar year 

respectively. Observe that the observed data in the loss triangle provide no infor-

mation concerning the q1t parameters for t ≥ n. Hence it is impossible to predict 

for future losses without making adjustments to the model and/or including prior 

information. 

Setting zeros for all the 771t parameters gives a structure comparable to that of 

the chain ladder model. The model under this structure reduces to 

i— i 

(Xfl1/3z)=al+ -y1d, 1=1,2, (6.2) 

where the transformed e d parameters are analogous to the development ratios in 

the chain ladder model. 

Kunkler (2004, 2006) also introduced a simplified version of this model to over-

come the problem of over parameterization, in which 

(Xfl1 /31) =aj+(j— 1)y1+(i+j-2)j, 1= 1, 2. 
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There is an obvious limitation for this structure in that the trend may not be linear 

in either the development year or calendar year for real data. 

When negatives appear in the loss triangle and the size of the data set is relatively 

small, some smoothing structures (Zehnwirth, 1985; Renshaw 1994a; Wright, 1990) 

can be introduced to avoid the problem of over parameterization. One of the choices 

may be the Hoerl curve (Zehnwirth, 1985) given by 

(X,fi1) ij = ci + a1 + b1i log U) + rjjj 

which provides a development pattern similar to those of the claim triangles. 

(6.3) 

A special case of the model in Equation (6.3) is when bi = b and ri = r for all 

i, assuming a common runoff pattern for all accident years. In this case, the model 

can be written as 

(X,81) = c1 + a1 + b1 log (j) + r1j. 

6.4 Bayesian Inference 

6.4.1 Model Basics 

In the framework of Bayesian inference, the claim reserve will be estimated based on 

the posterior predictive distributions of the magnitude and mixture data for future 

incremental losses. In the analysis of this section, the future incremental data triangle 
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and future mixture data triangle will be denoted as 

?={jj: i=2,...,na; j = ThaZ+l,...,fld} 

={2j: Z2, ... Ina; jfla _Z+1,...,Thd}. 

Bayesian inference based on the style of analysis given in Chapter Three can be 

performed here. Assuming that the parameters are also random variables, the joint 

probability distribution of y, z, 0 and A can be written as the product of the joint 

prior distribution 7r (0, A) and the joint sampling distribution, i.e. 

p(y,z,0,A) = ir(0,A)p(y,z0,A) 

Applying Bayes' Theorem, the joint posterior distribution for 0 and A can be written 

as 

ir(0,Ay,z)=  p(y,z) 

where p(y,z) = EO,A1r(0,A)p(y,zI0,A) or p(y,z) = ffir(0,A)p(y,z0,A)d0dA. 

From the above formula, we can obtain the unnormalized joint posterior distribution 

by 

?r (0, A)p(y, zlo, A)  

ir(0,Ay,z) cxir(0,A)p(y,z0,A) 

The joint sampling distribution for y and z in the above formulas can be obtained 

with the multinomial sampling mixture distribution of p(zij  and the conditional 

sampling distribution p(yjjlzjj, 0) with 

)) = 0) 

By averaging over z1, the marginal sampling distribution of Yij gives us a form 

with which we can focus on the claim amount of our interest. Similar to Kunkler 
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(2004, 2006), we obtain 

p(yI0,A) =P(z = = —1,0k) + P(Zii = = 0,02) 

+ P (Zij = = 1,03) 

= —1,0k) = 0,02) 

+ (1— Ali - )2i)p(yiiIzi = 1,03) 

= —1,0k) + )'2I(=o) + (I — - )2j)p(yijIzij = 1,03) 

In the above formula, we can verify that 

P(Yij I Zij = 0, 02) = 
Jo 

' 
if Yij > 0 or Yij <0 

if Yij = 0 

= 

To predict future losses, the joint posterior predictive distribution of yij and Zjj 

needs to be used with its formula given by 

p(Üij, .ijIy, z) = ) * 

Treating the future mixture triangle i as nuisance parameters, the marginal poste-

rior predictive distribution of the future incremental triangle k can be obtained by 

(similar to Kunkler, 2004, 2006) 

p(ijIy,Z) =PPij = = — 1, Y) + P(iij = = 01 Y) 

+ PPij = = 1,y) 

= — 1, Y) + A2j POij Pij = 0, Y) 

+ (1 - = 1,y) 

where Ali = p(Zij = —1), )'2j = p(Zij = 0) and 1 -  Ali  - 2j = p(zjj = 1). 
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6.4.2 Posterior Analysis for Mixture Parameters 

Given the prior mixture distribution 7r j) and the multinomial sampling mixture 

distribution p(Zj I )j), the posterior mixture distribution for A can be written as 

nd 

ir(AIz) o fJir(Aj)p(zjlAj). 

Under the GLM structure given in Subsection 6.2.3, the posterior mixture distri-

bution can also be written in terms of the GLM parameters = I I. We 
621) 

have 
nd 

7r(Iz) oc ir() fJp(zjjA), 
j=1 

where ir(z) is the prior mixture distribution for A and P(Zj Iz) is the multinomial 

sampling mixture distribution for zj given by 

p(zI) oc Ai()zhiA2()z23 (1 - - 

With the logistic link function, the A1 parameters can be expressed in terms of A as 

=  

exp[610 + (j 

=  

exp[610 + (j 

exp[610 + (j - W ill 

- 1)6] + exp[820 + (j - 1)8] + 1 

exp [520 + (j - I) J211 

—1)811]+exp[520+(j-1)621]-+-1 

6.4.3 Conjugate Analysis for Mixture Parameters 

A conjugate prior distribution for the multinomial is Dirichlet. So the analysis 

becomes easier if Aj is assumed to follow a Dirichlet distribution with its probability 

distribution function given by 

(A) - F(a12 + a2 + a3)  Aahjl)2jlAa3jl 
2j 3j 
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The posterior distribution for A can be obtained by 

nd 

7r(AIz) cx fJir(Aj)p(zjl.Aj) 

j=1 

nd 

—1 .X'' AZ2j A naj 
2j 3j lj 2j 3j 

nd 

= I-I —1)'Y3J+Thaj Z13 — Z2j 1 
lj 2j 3j 

j=1 

nd 
* 1 * 1 * 

- 1F '1i \C j a3 

- lj"li "2j "3j 

j=1 

which is a new Dirichiet distribution with parameters a = c + z1, ij a2j = a2 + Z2j 

and a = a + aj -  zlj  - z2. The details of choosing an appropriate prior can be 

found in Gelman et al. (2005) and its references. 

6.4.4 Posterior Analysis for Sampling Distribution 

Under the lognormal GLM model formulated in Subsection 6.3.2, the magnitude 

data for both the positives and negatives follow lognormal distributions: 

log(y)O1 r- N(X31, crI1) 

109(Y+) 103 '-' N(X, 2/32, u212) 

A noninformative uniform prior on log a1) can be assumed in order to make the 

normal regression model easier to analyze. As in Gelman et al. (2005, Chapter 14, 

Pages 356-357), this leads to 

7r(@t,0?) cx a2 1 = 1, 2. 
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The joint posterior distribution for 61 and a1 (1 = 1, 2) can factored into 

= 

7r (p2' U 22 
= 1r(132lo, y)7r(2+) 

with which the conditional posterior distributions for 01 and 82 can be obtained 

(Gelman et al., 2005, Page 356) as 

N(i,( 01 X 1X j)'o-) 

,82 IcT, y+ N (p2, (xxfl2) —1 cT) 

For cr1 and a2, the marginal posterior distributions can be obtained by 

Iy - 
ir(o =  7r 0,2, y—) 

ir(oIy) - lr(,02, °I y)  
- 1r(32Io, y) 

These can be shown to follow scaled inverse-x2 distributions in the forms of 

Inv- 2(ny_ - kth, o-) 

Inv-X2(n,+ - k2, &), 

where 01 and o (1 = 1,2) can be estimated by 

= (X', X, 1)' X 1 log(y) 

/32 = (XX 2 ' X 2 log(y) 

= n- k,61 (log(Y1 - X, 1 

1 
= n+ - k  (log(Y+)_xp2& 

2 

)T 

)T 

(log(y-) - x11) 

(109(y') - xfl22) 
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With the above analytical results for the posterior distributions and posterior 

predictive distributions, we will be able to implement our multinomial mixture model 

in computer languages such as C and FORTRAN. MCMC simulation methods such 

as the Gibbs sampler discussed in Chapter Three can be used for our posterior 

simulation. Detailed steps of the posterior sampling algorithm for our model will be 

similar to those given in Kunkler (2004, pages 29-30). 



Chapter 7 

Model Implementation 

The use of the specialized Bayesian software BUGS makes it easier for implement-

ing our complicated multinomial mixture model. As illustrated in Chapter Three, 

Bayesian models including Bayesian GLMs can be implemented in BUGS simply 

by specifying the sampling distributions, prior distributions and the regression func-

tions. Hence, the posterior analysis given in Chapter Six for our multinomial mixture 

model will not be needed for our model fitting in BUGS. 

In this chapter, our multinomial mixture model will be fitted to the loss triangle 

adjusted from the original data at 'Historical Loss Development Study' (1991). Par-

ticularly for the positive magnitude where we have plenty of data, a GLM structure 

different from that in Kunkler (2004, 2006) will be constructed. The model is based 

on the three parameter lognormal model, with the interpretation of parameters more 

comparable to those from the chain ladder method. A calendar year trend parameter 

is introduced into this chain ladder type of structure. 

The variances of the positive and negative magnitudes will be modelled using the 

same method as in the o1sg() function in MatLab (LeSage, 1999, page 176). The 

parameters for the mixture and magnitude models as well as the reserves will be 

estimated and compared to those from Kunkler (2006). 

91 
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7.1 The Data 

7.1.1 Loss Triangle 

For illustrative purposes, the original loss triangle from the 'Historical Loss Develop-

ment Study' (1991) by the Reinsurance Association of America listed in Table 2.1 is 

adjusted so that it contains both values of zeros and negatives. The negative losses 

in our adjusted loss triangle are the same as those used by Kunkler (2006). 

Table 7.1: Adjusted Incremental Loss Triangle with Zeros and Negatives  
Development year 

Accident year 1 2 3 4 5 6 7 8 9 10  
1 5012 3257 2638 -898 1734 2642 1828 599 -54 172 

2 -106 4179 -1111 5270 3116 1817 -103 0 535 

3 3410 5582 4881 2268 2594 3479 0 603 
4 5655 5900 4211 5500 2159 2658 984 
5 1092 8473 6271 6333 3786 -225 
6 1513 4932 5257 1233 2917 

7 -557 3463 6926 1368 

8 1351 5596 6165 
9 3133 2262 
10 2063 

7.1.2 Mixture Data 

Based on the above data of the adjusted incremental loss triangle, we can get the 

loss triangles of the mixture data z as listed in Table 7.2. 

From the mixture data triangle, it is not difficult to get the values of z1, z2j and 

z3j for our simulation purpose of the mixture data. These values are listed in Table 

7.3 below. 
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Table 7.2: Mixture Data Triangle for Zeros and Negatives  
Development year 

Accident year 1 2 3 4 5 6 7 8 9 10 
1 1 1 1 -1 1 1 1 1 -1 1 

2 -1 1 -1 1 1 1 -1 0 
3 11111101 
4 1111111 

5 11111-1 
6 11111 

7 -1111 
8 111 

9 11 
10 1 

Table 7.3: Multinomial Data for Modelling Zeros and Negatives  
Development year (j) 1 2 3 4 5 6 7 8 9 10  

zjj 2 0 1 1 0 1 1 0 1 0 

Z2j 0 0 0 0 0 0 1 1 0 0 
8 9 7 6 6 4 2 2 1 1 

7.1.3 Magnitude Data 

The observations of the positive and negative magnitudes y+ and y are listed in 

Table 7.4 and Table 7.5. 

7.2 Model Construction 

7.2.1 Modelling Mixture Data 

The Model 

In Chapter Six, we proposed using the multinomial distribution to model the mixture 

data, i.e. 

multinomial(A, 1), 
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Table 7.4: Loss Magnitude Triangle for Positive Losses 
Development year 

Accident year 1 2 3 4 5 6 7 8 9 10 

1 5012 3257 2638 1734 2642 1828 599 172 

2 4179 5270 3116 1817 535 
3 3410 5582 4881 2268 2594 3479 603 
4 5655 5900 4211 5500 2159 2658 984 
5 1092 8473 6271 6333 3786 

6 1513 4932 5257 1233 2917 

7 3463 6926 1368 
8 1351 5596 6165 

9 3133 2262 

10 2063 

Table 7.5: Negative Losses with Accident and Development Years  
y 898 54 106 1111 103 225 557 
i 1 1 2 2 2 5 7 

j 491 3 7 6 1 

where 
/ Aij 

\l)ljA2jJ 

From the mixture data we can see that there tends to be more zeros and negatives 

during the later development years. Since we have the same negatives as those in 

Kunkler (2006), for the negative probability Aj we will use the same logit model 

structure given in Equation (5.5). The model for the negative probability is given 

by 

logit(Ai) = ow + (i - 5) 511'(j>5), j = 1, 2, ..., (7.1) 

Since the zero values are only observed after the 6th development period, we assume 

the probability for zeros A2j differs only after the 6th development period. So we 
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may use the following model structure for zeros: 

1ogit(A2) = 2O + (j - 6) 5211(j>6), (7.2) 

Similar to Kunkler (2006), we assume the same diffuse priors for the 5 parameters. 

That is, 

N(0, 100), 1=2,3;i=0,1. 

The BUGS code for this part of our model is given below. 

# Model for z 

delta[3, 1] <- 0 

delta[3, 2] <- 0 

for (j in 1:10) { 

for (i in 1:10) { 

z[j, i, 1:3] dmulti(p[j, 1:3], 1) 

} 

} 

for Ci in 1:10) { 

for (i in 1:3) { 

1] <- phiCj, 1] / sum(phi[j, 1:3]) 

log(phi[j, 1]) <- delta[1, 1]+(j-5)*step(j-6)* delta[1,2] 

log (phi [j, 2]) <- delta[2, 1]+(j-6)*step(j-7)* delta [2,2] 
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log (phi [j, 3]) < delta[3, 1] +(j-5)*step(j-6)* delta[3, 2] 

} 

for (i in 1:2) { 

for (j in 1:2) { 

delta[i, j] dnorm(0, 0.01) 

} 

7.2.2 Modelling Magnitude Data 

We assume the magnitudes of both positives and negatives follow lognormal distri-

butions with different means and variances. That is, 

/ 4\ 
EN —) if Yij <0 (7.3) 

(/ti+j, IY r. EN i) if Yij > 0. (7.4) 

Positive Magnitude 

For the magnitude data of positives, we will model the mean of the lognormal distri-

bution with the chain ladder type structure in Equation (6.2) with the same calendar 

trend factor t from Kunkler (2006). The model structure is given by 

i- i 

(7.5) 

Diffuse priors of N(0, 1000) are assumed for all of the c, 'y and t parameters 

in the above model. Since the loss triangle contains zeros, we are not able to use a 
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common lognormal distribution for the loss triangle. The magnitudes of the positives 

and negatives have to be modelled using two lognormal distributions. Two vectors 

(ii, and jj for the positive magnitudes in the BUGS code) are used to store the 

values of i and j for the magnitude data. The model is coded in BUGS using the 

following lines of code. 

# Model for y+ 

for (1 in 1:n1[1]) { 

y1[i] dlnorm(mul[i], taol[iil[i], jjl[i]]) 

mul [1] <- aiphap [iii Ci]] +( iil Ci] +jj 1 Ci] -2) *iota 

} 

for (i in nl[1]+1: nl[2]) { 

y1[i] dlnorm(mul[i], taolCiilCi], jjlCi]]) 

mul [i] <- alphap Ciii Ci]] +slLun(gamniap Cl : jjl Ci] - 1]) 

+ (iii Ci] +jj 1 Ci] -2) *iota 

} 

for (i in 1: maxl-1) { 

gamniapCi] 

aiphap [i] 

} 

dnorm(O, 1.OE-3) 

dnorm(O, 1.OE-3) 

aiphapEmaxi] dnorm(O, 1.OE-3) 
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Negative Magnitude 

For the magnitude data of the negatives, a simplified model structure needs to be 

used to solve the problem of over parameterization. Since we assume the same 

negative losses as in Kunkler (2006), the model in Kunkler (2006) given in Section 

5.2 can be used to model the mean of negative magnitude. The model structure for 

the negative magnitude is given by 

= aj + [I(<3)(j 1) + I(>3) 2] tyj + I( >3) (j - 3)y + (i + j - 2)t. (7.6) 

Similar to the magnitude model for the positives, diffuse priors of N(0, 1000) 

are assumed for all of the a, -y and t parameters. The BUGS code for the negative 

magnitude model is given by the following lines. 

# Model for y-

for (1 in 1:n2) { 

y2[i] dlnorm(mu2[112[i], jj2[i]], tao2[112[i], jj2[i]]) 

mu2 [112 [1], jj2 [1]] <-alphan+step(3-j j2 [1] ) * (jj2 [11-1) *gamman [1] 

+step (jj 2 [1] -4) * (2*gamman [1] + (jj2 [11-3) * 

gainnian[2] )+( i12 [1] +jj2 [1] -2)*iota 

} 

aiphan - dnorm(0, 1.OE-3) 

for (1 in 1: 2) -C 
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gainman[i] dnorm(0, 1.OE-3) 

} 

iota - dnorm(0, 1.OE-3) 

Modelling Variance 

For the variance parameters crii in Equations (7.3) and (7.4), we will use a model 

specification similar to that in the ols_gQ function in LeSage (1999, page 176). Also, 

see Chapter Five of this thesis. In our simulation, the prior density specification of 

4 is defined in this way: 

4 = sige X Vij 

L. i.i.d. 
Vii r 

sige ' V'.' U(0, 100) 

r = 100. (7.7) 

We used the fixed value of r = 100 so as to be consistent with Kunkler (2006). For 

the prior distribution of sige, we used a diffuse uniform prior U(0, L) as discussed 

in Chapter Five of this thesis, with £ = 100. 

We estimate the parameters w and w in Equations (7.3) and (7.4) based on 

the same analysis given in Kunkler (2006, pages 553-554). The estimates of w and 

w are obtained by running the model using the variance construction in Equation 
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(7.7). The estimates are given by 

1 

- var(r+) 

1 

var(r-) 

where r+ and r are the residual vectors for the positive and negative log magnitudes. 

That is, 

r = log(y+) - log(y+) 

r = log(y) - log(y-), 

where log(y+) and log(y-) are the predicted values of log(y) and log(y-) in the 

upper loss triangle for the existing data. The values of log(y+) and log(y-) are 

calculated from Equations (7.5) and (7.6) using the posterior estimates of the a, 

and t parameters. 

The residual values r+ and r are calculated and listed in Tables 7.6 and 7.7. 

Table 7.6: Posterior Estimates of Positive Residuals r  
Accident Development year 

year 1 2 3 4 5 6 7 8 9 10 

1 -0.69 0.33 0.62 0.33 -0.13 -0.41 -0.05 0.00 
2 0.22 -0.49 -0.13 0.37 -0.01 
3 -0.20 -0.09 0.11 0.33 0.03 -0.30 0.05 
4 -0.63 -0.07 0.34 -0.48 0.29 0.05 0.39 
5 1.08 -0.37 0.01 -0.55 -0.20 
6 0.29 -0.30 -0.29 0.61 -0.41 
7 0.03 -0.59 0.48 
8 0.53 -0.30 -0.32 
9 -0.49 0.43 
10 -0.04 
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Table 7.7: Posterior Estimates of Negative Residuals r  
y 0.468 0.387 -0.410 -0.025 -0.219 -0.464 0.450 
i 1 1 2 2 2 5 7 
j 4 9 1 3 7 6 1 

For the variance calculation, we use the m normalized sample variance. That is, for 

the data x = (x1, x2,... , x) we let 

1, 
var(x) = — 

n i-i 

where is the sample mean given by 

n 

i=1 

Using the data in Tables 7.6 and 7.7, we obtained the estimated values of w and 

w as 

Xi. 

2 

2r = 6.3880 

c2r = 5.1547. 

We will use these estimated values for our model implementation in BUGS. The 

BUGS code for the positive and negative variances is as follows. 

# Model for inverse variance 

for (i in 1:10) { 

for (j in 1:10) { 

taol[i,j]<-6.3880*tau[i,j] 

ta02[i,j]<-5. 1547*tau[i,j] 

tau[i,j] <- 1/(sige*v[i,j]) 
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v[i,j] <- r*r/c[i,j] 

c[i,j] - dchisqr(r) 

} 

} 

r<- 100 

L<-100 

sige - dunif(0, L) 

7.3 Estimation and Prediction 

7.3.1 Convergence of MCMC Simulation 

Three chains with dispersed initial values are used for our simulation. With the uni-

form distribution U(0, 100) assumed for the parameter sige, the simulation converges 

very quickly, i.e. before iteration 1,000. This can be observed from the history plots 

of the 3 chains for each parameter or quantity of interest. The three chains mix 

very quickly. The history plots of the parameter tau[1, 1] are given in Figure 7.1 as 

an example. The history plots of all the other parameters or quantities of interest 

behave similarly. 

The refined potential scale reduction factors A, (Brooks and Gelman, 1998) are 

also monitored in order to diagnose convergence. In the case of all the parameters 

and quantities of interest, the corresponding refined potential scale reduction factor 

-f converged to approximately 1 within about 1,000 iterations. The values of the 

refined potential scale reduction factors f?, are less than 1.01 for all the quantities 
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Figure 7.1: History Plot of the Precision Parameter tau[1, 1], Multinomial Model 

after 2,000 iterations. The values of the refined potential scale reduction factors 

for the precision parameter tau[1, 1] are listed in Table 7.8 as an example. The 

refined potential scale reduction factors for all the other quantities of interest are 

very similar. 

Table 7.8: Refined Potential Scale Reduction of tau[1, 1], Multinomial Model 

Iteration R Iteration R Iteration R Iteration .R 

550 1.016 1050 1.007 1550 1.008 2050 1.003 
600 1.033 1100 1.002 1600 1.004 2100 1.003 

650 1.001 1150 0.995 1650 1.001 2150 1.003 
700 0.986 1200 0.996 1700 1.009 2200 1.001 
750 0.995 1250 0.998 1750 1.006 2250 1.003 
800 0.985 1300 1.001 1800 1.003 2300 1.003 

850 1.000 1350 1.002 1850 1.004 2350 1.004 

900 0.997 1400 1.006 1900 1.003 2400 1.002 
950 1.006 1450 0.999 1950 1.001 2450 1.002 

1000 1.010 1500 1.006 2000 1.003 2500 1.001 

We will use the simulated values from iterations 2,001 to 12,000 from all three 

chains for our posterior analysis in the following subsection. A total of 30000 poste-

rior samples will be used for our posterior analysis of parameters and reserves. 
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7.3.2 Mixture Model 

For the multinomial mixture model in Subsection 7.2.1, the parameters for the logit 

models in Equations (7.1) and (7.2) are estimated by posterior simulation. The 

estimates of the parameters, their standard deviations and percentiles are listed in 

Table 7.9. 

Table 7.9: Estimates for Multinomial Mixture Model 
Model Parameter mean sd MC error 2.50% median 97.50% 

Multinomial 

Binomial 

6o 
511 

620 

521 

60 

-2.181 
0.268 
-4.126 
0.832 
2.189 
-0.197 

0.496 
0.323 
1.106 
0.602 
0.507 
0.310 

0.012 -3.200 

0.008 -0.397 
0.029 -6.658 
0.015 -0.389 
0.006 1.299 
0.004 -0.763 

-2.157 
0.281 
-3.990 
0.846 
2.155 
-0.213 

-1.280 
0.865 
-2.380 
1.996 
3.262 
0.435 

From the above table we observe that the estimates of the Jjj parameters from 

the multinomial model have very close absolute values with those of the Sj parame-

ters from the binomial model in Kunkler (2006) except for their signs. The closeness 

of the absolute values are due to the fact that we have the same negative values as 

those in Kunkler (2006). The difference in the sign is from the factor that the logit 

function we defined for the negatives is based on the ratio of negative probability 

over the positive, while the one in Kunkler (2006) is defined based on the opposite 

ratio. 

The posterior mean for each future development year of each accident year in the 

lower part of the loss triangle is listed in Table 7.10, 7.11 and 7.12 respectively for 

negatives, zeros and positives. From the posterior mean of the negative probability 

we observe that the probability stays the same for the first 5 development years, 
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and increases with development years from then on. Similarly for the posterior 

mean of the positive probability, we observe that in the first 6 development years, 

the probability of zero is very small, and the probability increases significantly with 

every development year thereafter. 

Table 7.10: Posterior Mean for Probability of Negatives, Multinomial Model  
Accident Development year 

year 1. 2 3 4 5 6 7 8 9 10  
1 

2 0.250 
3 0.237 0.244 
4 0.208 0.237 0.248 
5 0.167 0.208 0.237 0.245 
6 0.133 0.167 0.208 0.236 0.248 

7 0.105 0.132 0.171 0.209 0.236 0.243 
8 0.104 0.107 0.133 0.166 0.210 0.239 0.248 
9 0.105 0.109 0.110 0.134 0.170 0.214 0.244 0.251 
10 0.109 0.109 0.110 0.110 0.133 0.169 0.211 0.238 0.249 

Table 7.11: Posterior Mean for Probability of Zeros, Multinomial Model  
Accident Development year 

year 1 2 3 4 5 6 7 8 9 10  
1 

2 0.303 
3 0.178 0.308 
4 0.085 0.180 0.305 
5 0.040 0.084 0.180 0.310 
6 0.022 0.039 0.084 0.181 0.308 
7 0.022 0.022 0.037 0.086 0.179 0.304 
8 0.021 0.020 0.022 0.038 0.083 0.178 0.307 
9 0.023 0.022 0.023 0.021 0.038 0.087 0.173 0.306 
10 0.022 0.023 0.022 0.022 0.021 0.040 0.084 0.177 0.304 



106 

Table 7.12: Posterior Mean for Probability of Positives, Multinomial Model  
Accident Development year 

year 1 2 3 4 5 6 7 8 9 10 
1 

2 0.447 
3 0.585 0.448 
4 0.707 0.583 0.447 
5 0.792 0.708 0.584 0.445 
6 0.844 0.794 0.707 0.583 0.444 
7 0.873 0.846 0.792 0.705 0.584 0.452 
8 0.875 0.873 0.845 0.796 0.706 0.584 0.445 
9 0.872 0,869 0.868 0.845 0.793 0.699 0.583 0.443 
10 0.869 0.868 0.869 0.868 0.847 0.791 0.705 0.585 0.447 

7.3.3 Magnitude Model 

Positive Magnitude 

For the lognormal positive magnitude model specified in Equations (7.4) and (7.5), 

we obtained the posterior predictive estimates of the at, -yd'and t parameters. The 

estimates of the parameters, their standard deviations and percentiles are listed in 

Table 7.13. 

Negative Magnitude 

Similar to the previous section, the posterior predictive means for the a and 'y 

parameters in Equation (7.2) and (7.6) can be estimated using the simulated sam-

ples from BUGS. The estimates of the parameters, their standard deviations and 

percentiles are listed in Table 7.14. For comparison purposes, the estimates of the 

same parameters for the negative magnitude model of Kunkler (2006) are also listed. 

From Table 7.14 we observe that the estimates for the parameters are very close, 

since we use the same model and same negative data for our simulation. 
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Table 7.13: Parameter Estimation of Positive Magnitude, Multinomial Model 
Parameter mean sd MC error 2.50% median 97.50% 

at 
+ a2 
+ a3 
+ a4 
+ a5 
+ 

+ 
Lt7 

'Y2+ 
+ 

.73 
+ 
• 
+ 

.75 
+ 

.76 
+ 

.77 
+ 

.78 
+ 

.7 

7.834 
7.816 
7.647 
7.574 
7.488 
6.868 
6.694 
6.705 
6.371 
6.256 
0.437 
-0.079 
-0.692 
-0.325 
-0.196 
-0.792 
-0.919 
-0.338 
-1.159 

0.298 
0.394 
0.396 
0.494 
0.616 
0.732 
0.888 
0.989 
1.130 
1.310 
0.311 
0.303 
0.336 
0.347 
0.382 
0.507 
0.586 
0.759 
0.864 

0.005 
0.009 
0.014 
0.021 
0.027 
0.034 
0.040 
0.047 
0.053 
0.060 
0.009 
0.008 
0.009 
0.008 
0.008 
0.010 
0.010 
0.012 
0.012 

7.242 
7.035 
6.875 
6.613 
6.301 
5.452 
4.986 
4.792 
4.192 
3.719 
-0.172 
-0.675 
-1.357 
-1.004 
-0.945 
-1.789 
-2.062 
-1.835 
-2.861 

7.837 
7.816 
7.643 
7.568 
7.484 
6.858 
6.676 
6.694 
6.351 
6.246 
0.435 
-0.081 
-0.687 
-0.327 
-0.198 
-0.798 
-0.920 
-0.336 
-1.157 

8.427 
8.601 
8.449 
8.568 
8.728 
8.370 
8.522 
8.742 
8.683 
8.928 
1.052 
0.521 
-0.038 
0.366 
0.566 
0.211 
0.246 
1.141 
0.548 

Common Parameters and Ultimate Losses 

We also estimated the common parameters of the positive and negative magnitudes 

models, i.e. the calendar trend factor t and the r parameters for the inverse variance. 

The posterior mean, standard deviation and percentiles of the calendar parameters 

are listed in Table 7.15. The posterior means of the precision parameters are listed 

in Table 7.16. The posterior means of the precision parameters for different accident 

years and development years are very close to each other, which is consistent with 

the independently identical distribution assumption. 
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Table 7.14: Parameter Estimation of Negative Magnitude, Multinomial Model  
Model Parameter mean sd MC error 2.50% median 97.50%  

4.958 0.622 0.024 3.758 4.957 6.205 
Multinomial 0.819 0.309 0.005 0.220 0.816 1.432 

-0.694 0.180 0.007 -1.051 -0.694 -0.336 
5.255 0.387 0.014 4.491 5.258 6.021 

Kunkler2006 yj 0.805 0.241 0.007 0.338 0.807 1.293 
-0.609 0.108 0.003 -0.818 -0.609 -0.395 

Table 7.15: Parameter Estimation of Calendar Trend Factor, Multinomial Model 
Parameter mean sd MC error 2.50% median 97.50%  

t 0.153 0.132 0.007 -0.128 0.153 0.408 

7.3.4 Reserves 

The posterior mean reserve for each accident year and development year in the lower 

part of the loss triangle is estimated. The triangle reserve estimates are listed in 

Table 7.17. 

The posterior means, standard deviations and percentiles for the total reserve 

and reserves by accident year are listed in Table 7.18. From the table, we observe 

that the reserves for our multinomial mixture model are smaller than those for the 

binomial model in Table 5.10 using the same prior distributions for the parameters. 

It is what we would expect to see, as we have two extra zeros included in the loss 

triangle we used, while all the other loss data are the same. 
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Table 7.16: Posterior Mean for Precision Parameters, Multinomial Model  
Acc Development year 

year 1 2 3 4 5 6 7 8 9 10  
1 0.575 0.582 0.580 0.584 0.582 5.802 0.579 0.581 0.581 0.581 

2 0.581 0.581 0.580 0.581 0.581 0.582 0.580 0.581 0.581 0.580 
3 0.579 0.583 0.583 0.579 0.583 0.580 0.584 0.581 0.580 0.581 

4 0.584 0.584 0.586 0.582 0.585 0.582 0.582 0.583 0.581 0.580 
5 0.577 0.585 0.583 0.580 0.582 0.585 0.580 0,580 0.581 0.581 
6 0.558 0.581 0.585 0.579 0.585 0.579 0.580 0.580 0.581 0.580 
7 0.583 0.582 0.582 0.575 0.580 0.580 0.580 0.581 0.580 0.581 

8 0.578 0.584 0.576 0.579 0.581 0.581 0.581 0.581 0.580 0.580 

9 0.576 0.582 0.582 0.581 0.582 0.580 0.580 0.581 0.581 0.581 
10 0.581 0.581 0.580 0.581 0.581 0.582 0.580 0.581 0.581 0.581 

Table 7.17: Mean Reserve by Accident & Development Years, Multinomial Model 
Accident Development year 

year 1 2 3 4 5 6 7 8 9 10 

1 

2 116 
3 424 111 

4 604 460 118 
5 1603 647 504 127 

6 1895 978 384 296 69 
7 1982 1911 957 374 287 65 
8 2688 2322 2225 1130 432 341 72 
9 3676 2136 1903 1866 918 331 266 48 
10 4226 3922 2351 2131 2087 1018 361 299 46 
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Table 7.18: Mean, STD and Percentiles of Reserve Estimates, Multinomial Model 
Year mean sd MC error 2.50% 5.00% median 95.00% 97.50%  

1 0 0 0 0 0 0 0 0 
2 116 248 2.19 -78 -53 532 735 2001 
3 534 805 7.39 -162 -109 1877 2477 2001 
4 1182 1234 10.46 -265 -157 3324 4139 2001 
5 2880 2456 20.73 -304 -9 7311 8940 2001 
6 3622 2746 22.74 -343 244 8286 9871 2001 
7 5577 4051 31.52 -272 711 12760 15240 2001 
8 9210 6501 59.28 -636 1258 20050 23730 2001 
9 11140 10160 111.80 -5555 -852 26900 32510 2001 
10 16440 17820 214.30 -8590 -1744 44630 57080 2001  

Total 50710 25030 378.80 9571 19440 90850 104600 2001 



Chapter 8 

Conclusions 

In the previous chapters, we have investigated numerous stochastic models in loss 

reserving, particularly those dealing with zeros and negatives in the loss triangle. 

Papers such as de Alba (2002a, 2006) and Kunkler (2004, 2006) have put forward 

two types of models to deal with either zeros or negatives in the loss triangle. No 

model has been introduced for a situation with notable numbers of both zeros and 

negative. After a review of the literature and methodologies, we implemented the 

model of Kunkler (2006) in BUGS with slightly different specifications, in order to 

test the model and reproduce Kunkler's results. Inspired by the models of Kunkler 

(2004, 2006) and other previous work, we proposed a Bayesian multinomial mixture 

model for a more general situation when there are both zeros and negatives in the 

loss triangle. The model was implemented in BUGS with prior distributions and 

data similar to those in Kunkler (2006). 

8.1 The Model 

The Bayesian multinomial mixture model we proposed in Chapter Six and Seven 

seems to work very well in dealing with zeros and negatives in stochastic loss reserv-

ing. From the simulation results in Chapter Seven, we observe that the estimates of 

parameters and reserves look reasonable according to the data we are using. With 

the multinomial mixture model for modelling the sign of the data, the model is able 
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to deal with situations where there are large portions of zeros and negatives. The 

number of zeros or negatives that can be handled is never restricted. The general-

ized linear modelling structure gives the flexibility of innovation as well as replicating 

various existing models, such as the chain ladder model. With a Bayesian implemen-

tation, external information can be incorporated by specifying specific prior distri-

butions for the parameters or quantities of interest. 

8.2 The Software 

Application of the Bayesian software package BUGS facilitates the model implemen-

tation for our model. The programming language and grammar are easy to use and 

flexible for model coding. For Bayesian generalized linear modelling, any type of link 

function can be specified in the model equation in addition to the well known types. 

By specifying noninformative priors for all the parameters, we are able to implement 

the classical models, such as the classical generalized linear models in BUGS. As an 

open source program, a large number of researchers are contributing to the devel-

opment of BUGS, which keeps BUGS up to date with the latest developments in 

Bayesian statistics. 

8.3 Future Work 

The Bayesian mixture model implemented in Chapter Seven is only an example of 

the Bayesian mixture models that can be used for dealing with zeros and negatives in 

the loss triangle. For different loss triangle data, different generalized linear models 

can be fitted for both the mixture and magnitude models. Other link functions such 
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as the probit and log-log link functions can be used, while a nonlinear regression 

equation can be fitted for the multinomial mixture model. Instead of the lognormal 

model, other models as reviewed in Chapter Two such as the over-dispersed Poisson 

model can be chosen for the magnitude models of the negatives and positives. 

Another possible application of the Bayesian mixture model in loss reserving is 

the situation where the losses are from several notably different distributions (e.g., 

large losses vs. small losses, losses from different territory, gender). To better reflect 

the actual distributions of the different groups, a Bayesian binomial or multinomial 

mixture can be applied to model the probabilities of losses from different groups, 

while different distributions or models can be fitted for losses from each group. 
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