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ABSTRACT 

An optimization model to determine the optimal rail line length and rail termini 

with the objective of minimizing the sum of user time cost, bus and rail operating costs, 

rail line cost, bus and rail fleet costs and passenger transfer penalty cost is presented. The 

effects of both uniform and non-uniform rail line costs as well as the passenger transfer 

penalty cost are examined. A model to determine the optimal location of ring rail lines 

with the aim of minimizing user access and rail line costs for both uniform and variable 

demand densities is presented as well. 

The analyses considered daily passenger many to many demand at peak and off-

peak periods. The optimal parameters are obtained using calculus. Sensitivity analyses are 

conducted to test the robustness of the proposed models. The validity and applicability 

of the proposed models are tested using Calgary, Alberta as a case study. 
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I 

CHAPTER ONE 

INTRODUCTION AND LITERATURE REVIEW 

1.1 INTRODUCTION 

The application of optimization methods to determine transit network parameters 

is becoming a prominent feature in contemporary public transit planning. Over the past 

years, the determination of transit network parameters such as rail line length, location 

of termini of a rail line and location of a ring rail line are not based on any 

comprehensive analysis but rather on some criteria not considered from the view point 

of economic and optimization concepts. Such adhoc rail planning practices generated 

some serious problems in the rail world. Among others, it resulted in increase in 

passenger travel time and related cost, loss of patronage of rail systems by passengers and 

loss of interest in rail ridership by private automobile owners. Other resulting problems 

are loss of revenue by transit operators, loss of revenue to society as a whole, 

abandonment of rail lines in some transportation corridors and generation of non-

optimization of landuse development. 

It is against this background that this research is undertaken with the aim of 

providing very important rail planning tools which will help solve some of the existing 

transit problems in the rail world. More particularly, the determination of optimal rail line 

length, optimal location of termini of a rail line and optimal location of a ring rail line 

are very important rail network parameters required for constructive rail planning, and 

analytical models developed to obtain these parameters are presented in this research. 

Commenting on the need for construction of a rail line to serve a high travel 
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density, Seneviratne et a! (1986) emphasized that the rail line length is a critical 

parameter that will determine global transportation costs. They explain that the rail line 

length influences the initial capital investment cost, rail line maintenance cost and systems 

operating cost. It also affects some transit parameters such as passenger travel demand, 

transit system headway, transit station spacing and location, transportation corridor width 

as well as service area coverage. It is essential to highlight that other parameters such as 

optimal location of termini of a rail line and optimal location of a ring rail line are also 

of great importance so far as the provision of a rail line is concerned, and should also be 

given the utmost attention when planning for provision of rail line in an urban 

transportation corridor is desired. 

1.2 RESEARCH PROBLEM 

This research involves the determination of optimal rail line length connecting the 

Central Business District and Suburban Region. The objective is to minimize the sum of 

user time cost, bus and rail operating costs, rail line cost, bus and rail fleet costs and 

passenger transfer penalty cost. An analysis to determine the optimal location of the 

termini of a cross-town rail line will be presented as well. The effects of both uniform 

and non-uniform rail line costs as well as the passenger transfer penalty cost on the rail 

line length and termini will be discussed. 

The research will seek to explore the optimal location of a ring rail in a large 

metropolitan region. Basically, the analysis will involve the determination of optimal radii 

of ring rail lines that will minimize only user access cost as well as user access and rail 

line costs for both uniform and variable trip demand densities. In particular, the analytical 

design will consider daily passenger many to many travel demand travel pattern at both 

peak and off-peak periods. Sensitivity analysis will be conducted to test the robustness 
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of the proposed models. The validity and applicability of the proposed models will be 

tested using the existing transit line haul in Calgary, Alberta, as a case study. 

1.3 TRANSPORTATION COSTS 

The provision of a rail line in an urban transportation corridor will require the 

consideration of relevant cost parameters consistent with the desired planning objective. 

The relevant cost parameters are user time cost, bus and rail operating costs, rail line cost, 

bus and rail fleet costs and passenger transfer penalty cost. 

Direct fixed capital costs associated with public transportation services are rail line 

cost and fleet costs. The main rail line cost components are land acquisition cost, design 

cost, rail track cost, rail line construction cost, station construction cost, garage 

construction cost, parking lots construction cost, utility relocation cost as well as the 

maintenance costs of these rail facilities. Fleet cost is the cost associated with the 

acquisition of transit vehicles. It includes the cost of transit vehicles, shipping cost, 

insurance cost and overhead cost. With regard to modelling for public transportation 

services, the fleet size cost is formulated based on the number of transit vehicles in 

operation, which is basically a function of the number of seats (seating and standing 

passenger spaces), the round trip time and operational headway of the vehicles. 

The direct variable costs are user access and egress cost, user time cost, passenger 

waiting time cost at transit stops, user time cost, passenger transfer penalty cost, delay to 

passengers due to stops by transit system at transit stops and stations to allow for 

boarding and alighting of passengers and systems operating costs. User access and egress 

cost with regard to public transportation route and mode choices is the cost incurred by 
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passengers to walk to the nearest available transit stop or station, and is basically 

evaluated from the point of view of time or distance. 

Passengers being transported have to contribute their own time inputs into the 

transportation services. User time inputs involve passengers' waiting time for a transit 

system at bus stops or train station, and in-vehicle riding time in a transit system to 

destination. Delay due to stops by transit system at transit stops or stations to allow 

passengers to board and alight from the vehicle include time lost by transit system due 

to deceleration and acceleration, door opening and closing times, passenger unloading and 

loading times as well as the time interval between closing of door and the instant the 

transit system begins to move. Passenger transfer times include time taken by passengers 

to exit from a transit system, walk to a platform, wait for another transit system of similar 

or dissimilar mode and finally enters an arriving transit system for departure to 

destination. Associated with this transfer is loss of time and transfer penalty cost. Bus and 

rail operating costs, among others, include labour cost, fuel cost, maintenance cost, 

vehicle depreciation cost and overhead cost. 

User access and egress costs, passenger waiting time at transit stops or stations, 

passenger delay cost due to stops by transit system at transit stops and stations are 

irrelevant to the determination of rail line length as well as radius of the ring rail line and 

hence will not be considered in this analysis. The time taken or distance travelled by 

passengers to access or egress the rail line in order to reach their destination points are 

independent of the rail line length. Hence the associated access and egress costs are 

neglected. Moreover, the delay to stops by transit systems at transit stops or stations is 
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dependent on the number of boarding and alighting passengers, but independent of the 

number of stops if boarding and alighting at a stop and edge effects are neglected 

(Wirasinghe, 1992). More essentially, the delay is independent on the rail line length as 

well as radius of the ring rail line and is also not considered in the formulation of the 

total cost function. The "out of pocket" cost of passengers (i.e. transit fares) will not be 

included in the user time costs since the fares basically involves payments made directly 

by users to operators. Hence, this cost component will not be considered in the analysis. 

Indirect transportation costs are the external costs generated by transportation users 

and inflicted on the non-travelling passenger without any payment or compensation being 

made to the affected non-travelling passengers. Basically, the external costs of 

transportation consist of noise, atmospheric pollution and vehicle congestion. Others are 

accidents, visual intrusion, vibration and community severance costs. For convenience, 

indirect or external costs will not be considered in this research. 

1.4 LITERATURE REVIEW 

1.4.1 RAIL LINE LENGTH 

Research aimed at determining the optimal rail line length started in the mid-

sixties. Creighton et al ( 1964) investigated the rail line length in a corridor where the 

demand for travel to the Central Business District (CBD) decreased exponentially with 

increasing distance from the CBD and obtained a single expression for the line-length 

that minimized the sum of the rail line construction and user time costs. Also Werner et 

a! ( 1968) investigated a similar problem. They, however, considered a gamma distribution 

demand per unit area density, and obtained a set of equations for station spacings and line 
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length but did not solve them. 

Black (1975) considered a network of radial line to which all commuters walked, 

and using an iterative technique, he obtained uniform line lengths, station spacings, 

headways and number of lines that minimized user time, operating and construction costs 

for a demand per unit area that decreased exponentially. Lam ( 1979) extended the model 

of Creighton et al ( 1964) to include operating cost,and obtained numerical solution for the 

line lengths when the linear density is represented by a normal distribution function. 

In 1980, the City of Calgary proposed a 9.650km radial LRT line in the North - 

West corridor and later decided to shorten it to about 6.400km. However, the decision 

regarding the " cut-back" on the rail line length was not based on any comprehensive 

economic analysis. It is against this background that Babalola et a! ( 1982) presented a 

paper that evaluated, from an economic point of view, the length of the existing LRT line 

along a given centre line in North-West Calgary, Alberta. Their proposed model is aimed 

at determining the length of track that minimizes the sum of the rail line cost, user travel 

time cost, bus and rail operating costs and rail fleet cost. They disclosed that an existing 

analytical model was modified and employed to facilitate their investigation. The results 

of their analysis show that the City's proposal is 1.500km short of the optimal track 

length obtained in their analysis. They remarked that the length proposed by the Transit 

Planners at the City of Calgary could be justified by assuming a low value for a unit of 

riding time per passenger. 

More perhaps, a paper closely related to this research is presented by Senevirante 

et a! ( 1986). They developed an analytical model to investigate the optimal rail line length 
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that minimizes the sum of user time cost, bus and rail operating costs, rail line costs and 

rail fleet cost as well as the threshold demand necessary to ensure that the resulting rail 

line length is positive. In their analysis, however, they considered both linear and area 

demand travel pattern from Suburban to CBD during the morning commute peak period. 

They obtained optimal rail line lengths for both uniform and non-uniform line costs. They 

found that when the cost per unit length is uniform, a minimum transport cost rail line 

of nonzero length exists only if the net gain in travel time and operating cost transporting 

the total ridership a unit distance by rail, when compared to bus, exceeds the marginal 

line and fleet cost per unit length. The effect of shifts in passenger demand on the optimal 

rail line length is discussed in their paper. Their model is tested using Calgary, Alberta 

as a Case Study. 

In their paper entitled "Optimal Bus Route Length", Taylor et al ( 1989) developed 

some continuous transportation models to determine the optimal bus route length. Their 

models are derived using steps which are assumptions of continuous spatial to define trip 

distribution in transportation corridor, derivation of operation cost as a function of line 

length, estimation of travel demand, derivation of total revenue under a flat and graduated 

system as a function of travel demand and line length and determination of optimal line 

length for the operator. In particular, they developed a computer program to calculate the 

optimal bus rotite length. 

They identified the factors that cause the changes in optimal bus route length. 

These include variation in population gradient, employment density gradient and 

impedance factor. Others are walking distance, unit bus operating cost and average 
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passenger bus carried at maximum load. They presented a case to examine the model 

parameters, and carried out a sensitivity analysis to investigate changes in the proposed 

parameters with regard to travel demand and optimal bus route length. 

Schonfeld et al ( 1993) developed an analytical model to determine the optimal 

transit route length, spacing, headway and stop locations subject to minimisation of the 

sum of operator and user time costs. They explained that their proposed equations are 

incorporated within an efficient algorithm which calculates the optimal values of the 

decision variables for a more realistic model with vehicle capacity constraints. They 

considered many-to-one demand travel pattern with uniform passenger trip density along 

transit routes emerging radially from the CBD into the low density suburbs. Their 

research findings include the fact that stop spacing increases along the route in the 

direction of passenger accumulation towards the CBD, and the spacing first decreases and 

then increases along the route towards the CBD. They also carried out sensitivity analysis 

and numerical example to test the validity and applicability of their model. 

They remarked that is it rather surprising that the determination of optimal rail line 

length is not given more attention in literature related to rail planning given the significant 

impact of route length on cost. They cited the paper presented by Seneviratne et a! ( 1986) 

as one that optimized radial length of a transit route in an urban transportation corridor. 

They indicated that Seneviratne et al did not consider stations along the line and related 

cost, and based the minimum rail fleet size on the peak period passenger capacity 

requirements, implying that the optimum route length would operate at the maximum 

allowable headway. They emphasized that this assumption may be unpermitted even for 
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the peak periods since the optimal headway may be heavily influenced by user waiting 

time. This explains why they (i.e. Schonfeld .et a!) developed a model that jointly 

optimizes the headway, route length and stop spacing. 

However, the fact that they used the same model to determine the optimal rail line 

length and operational characteristics of transit systems such as headway, creates an 

opportunity for criticizing their model. The rail line length is identified as one of the 

major parameters controlling the implementation of rail transit projects and therefore 

considered as a long-term planning tool. Headway, on the other hand, is considered as an 

operational characteristic of transit systems and therefore used for short-term planning 

policies. An attempt to develop a model to determine both long-term and short-term 

planning parameters under the same sets of assumptions and constraints, therefore, 

subjects their proposed model to criticisms. 

1.4.2 RAIL LINE TERMINI 

To date, no literature on optimum location of rail termini along a cross-town 

transportation corridor is documented. Over the past years, decisions regarding the 

location of termini of a rail line have not been based on any comprehensive, economic 

and optimization analyses. Location has an effect in the sense that cost per unit distance 

from the origin and destination points of passengers to the rail termini is influenced by 

the distance it has to be located. However, papers that discuss the optimal location of 

some public facilities such as police stations, sewage treatment plants, warehouses, 

distribution centres, communication centres are available. It is imperative to say that 

insight into these literature will generate some very important concepts which, to a very 
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large extent, can assist in developing models to optimally locate the termini of a rail line. 

A model developed to determine the optimum location of a "switching centre" in 

a communication network and to locate the best place to build a police station in a 

highway system is developed by Hakimi ( 1964). His analysis is based on the principle 

that the concepts of the "centre" of a graph are generalized to the " absolute centre" of a 

weighted graph. He defined a weighted graph as a graph with weights attached to its 

vertices and branches. He presented procedures for finding these locations. His analysis 

shows that the optimal location of a switching centre is always at a vertex of the 

communication network, whilst the best location for the " police station" is not necessarily 

at the intersection. 

Goldman ( 1969) developed a model to solve the problem of locating centres of 

processing facilities in a network, with the aim of minimizing the total transportation cost 

associated with their use. He assumed that all movements occur between a vertex and a 

centre nearest to it. He then established an objective function that minimizes the total 

transportation costs and obtained expressions for coordinates of the centres. He concluded 

that only the vertex location of the centres needs to be considered. 

The problem of optimally locating the central facility in a network with the aim 

of minimizing the sum of its distance from sources of flow is investigated by Goldman 

et al ( 1971). They assumed that each distance is approximately weighted to reflect the 

associated flow volume and/or cost. They obtained a simple one-pass solution algorithm 

for two classes of topologically simple' networks which are either acyclic or contain 

exactly one cycle. The centres are determined in terms of coordinates. 
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A model that solves a dynamic-transportation-allocation problem when the number 

of destinations and sources are fixed is developed by Tapiero ( 1971). He formulated his 

problem as follows: given the location of each destination, the requirement of each 

destination, possible source capacity limitation and a set of shipping costs, it is required 

to determine the optimum location of each source, the allocation of destination to each 

source and amount to be supplied to each source. His analysis is based on the assumption 

that transportation costs are linear and proportional to the euclidian distance between 

sources and destinations. 

He obtained an analytical solution from a set of conditions for optimality. He 

disclosed that although his model is focused on location and allocation of transshipment, 

it is equally applicable to optimal location of warehouses, distribution centres, 

communication centres or production facilities. 

As discussed in his paper entitled "Minirnax Location of a Facility in a Network", 

Goldman (1978) presented a model to solve the problem of locating a facility in a 

network so as to minimize the largest of its distance from the vertices of the network. He 

remarked that his proposed model either solves the location problem or reduces it to an 

analogous problem for a single "cyclic component" of network. However, for an " acyclic 

component" of network, an efficient algorithm solution is obtained. He presented a partial 

analog of these results for a "weighted distance" of the problem. Ironically, an application 

of his proposed model to real life issues is not discussed in his paper. 

A paper that addresses the problem of locating the absolute and vertex centres of 

an undirected tree graph using minimax criterion is presented by Handler ( 1973). Based 
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upon a convexity property of the criterion function, he developed a very simple but 

efficient algorithm that locates the minimax point by locating first a maximax point. He 

located the vertex centre using simultaneous technique. He remarked that the minimax is 

at the mid-point of the maximum path from the maximax point. 

It is imperative to comment that the optimal location of the above-mentioned 

facilities is determined in terms of coordinates and not in terms of distance measured 

from a reference (zero) point. In this analysis, the optimal location of the rail termini (i.e. 

the starting and ending points of a rail line) will be determined in terms of distance 

measured from a reference (zero) point. In particular, the difference in length between 

the termini is the optimal rail line length. 

1.4.3 RING RAIL LINE 

Very few, if any, analytical models are developed to determine the optimal ring 

rail line location connecting cross-town corridor systems. Available literature are focused 

on location of one or more ring roads in an urban transportation corridor. Blumenfeld et 

al ( 1970) developed a model to investigate the routing of two ring roads in a circular city. 

In particular, they examined a situation in which a circumferential road exists at the 

boundary of a city, and it is desired to build a second ring road within the city. Their 

analysis is based on certain simplifying assumptions, which include the city being circular 

in shape, all origins lie outside the city and destinations within the city have angular 

symmetry. Others are that origins and destinations are uncorrelated except at the entry 

points, average speed at any point is a function of radius alone and is an increasing 

differential function, and drivers choose routes so as to minimize their travel time. 
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They emphasized that one measure of benefits of adding a second ring road to an 

existing ring road is purposely to relieve traffic congestion and thus to minimize average 

travel time. They however remarked that their model is limited in the sense that it does 

not consider the effect of correlation between origins and destinations, effects of a finite 

number of radial roads, effects of anisotropic origin and destination distributions, and 

redistribution of traffic load when various measures like the addition of ring roads are put 

into practice. 

In his paper entitled "Locating Concentric Ring Roads in a City", Pearce (1974) 

discusses the development of a mathematical model to investigate the optimal location of 

concentric ring roads in a city so as to minimize the average distane travelled off the 

rings. He considered road networks with several concentric ring roads. His analysis is 

based on the assumption that travel within the city can be approximated by ring-radial 

routing and drivers select routes which minimize the total travel time. He also assumed 

that trip end lie within the city, and are distributed independently of one another and have 

areal densities. Furthermore, travel speeds are constant on all road types except the ring 

roads. 

He found that although ring roads are more effective if they are characterized by 

a higher speed of travel than the rest of the city, their optimal location, to a very large 

extent, is independent of such speeds. He explained that ring roads are usually designed 

to reduce interactions between vehicles, so that traffic congestion in a city arises from the 

traffic off the ring roads. He commented that the provision of several ring roads cannot 

by itself reduce travel on radial roads, and therefore is not an economic and cost-effective 
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method of reducing travel time and related cost on radial roads. Such a remark is not 

highly acceptable. His paper concludes with a suggestion for provision of one or two 

well-placed ring roads with the aim of realising the optimum travelling benefits. 

A theoretical model which seeks to explore the location of two ring roads with the 

objective of minimizing the total radial travel in a circular town of unit radius is presented 

by Smith ( 1975). He assumed that drivers choose least time paths and that vehicle speeds 

are controlled so as to minimize the radial travel time. His analysis suggests that the 

radial travel volume can be reduced substantially provided the following are available: a 

high capacity-high speed outer ring road close to the town; a low capacity-low speed 

inner ring road around the central area; linked traffic lights to guarantee that average 

speeds are slow within the town, particularly on the inner road; and radial roads are 

connected at the town centre. 

His analysis revealed that whatever the distribution of origins and destinations, if 

an internal ring road minimizes the total radial travel, then the radial flow inside the ring 

equals the radial flow just outside the ring. He also found that if origins and destinations 

are uniformly and independently distributed over that part of the radials within the town, 

and a ring road already exists, then the optimal radius of a single inner road is f2-1. 

Jha ( 1977) developed a model to determine an optimal combination of radial and 

ring roads considering a radiocentric grid network serving an idealized circular city, with 

the objective of minimizing the sum of construction and travel costs. His analysis is based 

on the assumptions that originating work trips are uniformly distributed and all jobs are 

located in the central core of the city. More particularly, his research involved cases 
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where all ring roads are equally spaced and ring road spacing is a function of the 

distance from city centre. 

He conducted a sensitivity test and identified the variables that are sensitive to the 

total cost and speed parameters. These variables are number of radial roads, number of 

ring roads, percentage of ring roads and the optimal ring spacing. His findings include the 

fact that a road network with a varying ring road spacing is more economical than a 

network with constant ring spacing. He emphasised that a road network can operate at its 

optimum provided it consists of about eighty-percent of ring roads. This assertion seems 

to be in sharp contrast with the findings of Pearce ( 1974). In my opinion, for a road 

network to be described as optimal on the basis of provision of approximately eighty-

percent of ring roads is not economically sound. Provision of road and other supporting 

facilities require a high initial capital investment, and public funds needed to construct 

the roads are very scarce. Perhaps, inclusion of economic analysis in his research will 

disclose some very important facts which are missing in the paper. 

A piece of literature that discusses the development of a model to determine the 

optimal location of a single road to connect a radial road network is presented by Smith 

(1979). He assumed that radial roads have no connection other than a single ring road, 

and furthermore the radial roads do not meet at the centre of the town. He also assumed 

a fixed origin-destination distribution, and ignored trips which originate and terminate on 

the same radial road. His research revealed very interesting findings. He found that for 

any fixed origin-destination distribution, there is allocation of the ring road which 

minimizes the impact of radial traffic flow, for almost any criterion used to assess the 
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impact. He remarked that an optimal ring has as many relevant trip-ends inside as on the 

outside. 

As discussed by Porter ( 1992) in his paper entitled "A circumferential light rail 

transit line" being planned for the Stockholm City, Sweden, the proposed ring rail line 

was specifically designed to serve the ever-increasing transit demand not oriented towards 

the central business district corridors, but rather connecting the suburban areas. He 

explained that Stockhlom Transportation Planners recommended the deployment of 

circumferential light rail line in order to reduce dependence on private automobile 

ownership and usage. He enumerated the benefits of the provision of a circumferential 

LRT line, which are savings in vehicle operating costs, reduction in waiting time because 

of improved regularity, improved traffic safety and environmental benefits.But regrettably, 

he failed to present an analysis aimed at determining the optimal ring rail location in a 

transportation corridor. 

1.4.4 LANDUSE-LRT INTERACTION 

The evaluation of light rail transit-landuse interaction with the aim of improving 

public transit services over the past few years is a ubject of great interest to public transit 

planners especially in North America and European states. Taber et al ( 1978) presented 

a paper that examines the potential for light rail transit operations in streets with mixed 

traffic. They hypothesized that street operation of light rail transit (LRT) is possible and 

desirable in order to achieve the reduction of capital cost in rail construction projects and 

improvement of transportation services. In particular, their paper attempts to establish a 

systematic framework for investigating the potential for a shared street environment and 
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to stimulate a discussion among LRT planners about the role of street operations with 

regard to operations of LRT systems. 

Their methodology involves the identification and investigation of transportation 

problems and the analysis of various design elements and strategies. They discussed 

several methods of effective street operation. Their discussion is based on reduction of 

street delays and prevention of accident to pedestrians, automobiles and LRT systems. 

They commented that the effective operations of LRT systems and automobiles on streets 

will reduce capital cost of construction of several rail lines, provide faster construction 

time, result in less environmental disturbance, and attract a large volume of transit 

passengers. Their discussion is based on existing traffic and transit data obtained from 

Toronto. 

A paper that explains that LRT can work and does work in a variety of situations 

is presented by Tennyson ( 1982). His paper also analyzes the condition necessary to 

support the successful implementation of LRT systems. He explained that for the LRT 

system to be effective, it must satisfy the requirements of a substantial number of 

tripmakers along its route. Besides, travel time must be shortened in order to attract riders 

who have the option of travelling by private automobile. Alternatively, travel volume 

must be so high to the extent that a low transit modal split will still yield high ridership. 

He emphasized that LRT operation is effective only when travel demand is sufficient to 

justify LRT applications on its productive efficiency rather than its speed. 

He disclosed that the provision of exclusive right-of-way will help minimize LRT 

trip time and relieve highway congestion. He further revealed that the maximum 
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efficiency of operations of LRT can be attained by effective integration of LRT services 

with local bus services. However, on long fast radial lines serving the CBD, integration, 

although desirable, may not be a necessity. He concluded with the observation that the 

conditions under which LRT works best range from a long, fast, low-density suburban 

lines to short, slow, high density inner-city lines. 

In his paper entitled "Light Rail-Technology or Way of Life", Ridley (1992) 

described LRT systems in terms of its technology and way of life. He defined the LRT 

system as a tracked, electrically driven local means of transport which can be developed 

step by step from a modern tramway to a means of transport running in tunnels or at 

above ground level. He commented that every stage of development of the LRT can be 

a final stage in itself, and more importantly, it permits development to the next higher 

stage. Hence he remarked that LRT systems are flexible and expandable as well. 

He disclosed that the quality of an LRT system is basically determined by the 

nature and extent of separation of its track from the carriageway for private transportation. 

Giving priority to LRT systems at crossings with private traffic also raises the standard 

of the system. The common aim of these measures is to reduce delays and increase the 

regularity of the services. He enumerated the advantages of provision of LRT lines and 

other supporting facilities, which include the fact that they are relatively cheap to build 

and require little maintenance effort, they provide safety to waiting passengers at stations, 

and are punctual and reliable. Others are LRT impiDves accessibility to residential, 

business, shopping and other activity centres, provides park-and-ride facilities, and reduces 

vehicular congestion, air and noise pollution. 
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A brochure on LRT systems presented by Transit Gloria Mundi ( 1992) highlighted 

the advantages of LRT in the areas of transportation, development and environment. 

Commenting on the transportation aspect, it disclosed that LRT has several advantages 

which include winning riders away from their cars, providing good riding quality in terms 

of comfort and convenience, exhibiting fast and efficient operating characteristics, 

generating low operating cost and attracting economic opportunities. In the area of land 

development, the advantages of LRT include the fact that it stimulates investments and 

redevelopment, produces residential growth, protects residential neighbours and provides 

less need for highway construction. On the subject of the environment, LRT is found to 

reduce air and noise pollution, saves energy, reduces congestion and provides a more 

efficient use of land for transportation than any form of highway vehicle. 

A paper that discusses the development of LRT systems in the San Diego 

metropolitan area, from a simple LRT to a maturing and expanding rail system is 

presented by Larwin et al ( 1992). Their paper presents the key decision made in the 

development of the LRT network in San Diego, the operating performance of the LRT 

over the past ten years and a prognosis for its future. They discussed that the desired 

criteria considered for the selection of the LRT are the need for a corridor that extends 

a relatively long distance and provides opportunity for high speed operation, a line 

primarily at-grade and primarily in exclusive right-of-way and a system with low 

operating cost and high probability of meeting operating costs with revenue. 

They indicated the benefits of LRT operations. These include forcing transit 

planners to keep up with the state-of-the-art, producing enthusiasm for the operating 
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personnel by giving them new challenges to look forward to, providing on-going free 

publicity to the transit system through routine new coverage resulting in stimulation of 

public enthusiasm. Others are allowing the transit system to grow intelligently with 

personnel and provision of a learning atmosphere where mistakes and failures are 

relatively small and corrective measures are easily taken to improve knowledge. 

Arrington ( 1992) presented a paper describing how the effective integration of 

landuse and LRT systems resulted in great success in Portland, Oregon. He explained that 

a working partnership between transit planners, politicians and the community as a whole 

resulted in the development of successful landuse and transit strategy, which is applied 

to enhance the operations of public transit systems. Most essentially, he indicated that the 

effective and efficient operations of LRT in Portland, and more particularly in the 

suburban areas, resulted in the construction of several residential buildings, provision of 

park and ride facility, reduction of traffic congestion and related problems, reduction of 

air and noise pollution, promotion and enhancement of business and other economic 

ventures, and provision of more socio-economic activities. 

Others are maximization of development around stations, increasing public transit 

patronage and ridership as well as improvement of accessibility to residential locations, 

shopping, business and other activity centres. Although this research will not give 

prominence to discussion on LRT-landuse interaction, it is imperative to comment that 

the generation of optimal passenger demand that will warrant the provision of LRT 

systems and other supporting facilities is largely dependent on efficient and effective 

interaction between LRT systems and landuse. 
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1.4.5 ORIGIN-DESTINATION TRIPS 

A fundamental requirement in public transit planning is the estimation of 

passenger travel demand from a point of travel origin to a point of travel destination. It 

is against this background that Colangelo et a! ( 1977) presented a paper that discusses 

passenger estimation in short range transit planning policies using cross-classification 

matrix methods. The values of model parameters used in their analysis are derived from 

detailed household-transit-landuse data. Various socio-ecónomic characteristics used as 

indicators in the estimation procedures for travel demand include household income, 

household size, household density, automobile ownership, trip purpose and user's age. 

Level of service parameters considered in their analysis are frequency of service, 

condition of transit system, and automobile travel time and related cost versus transit 

travel time and cost. - 

They enumerated some refinement to their model which include changes in 

propensity of transit trips generation over time, refinement of the effect of level of service 

on transit trip making and effect of discrepancy between the service area trip rate and 

study area trip rate. Others are examination of details required in recommendation 

procedures, applicability of the model in large urban areas and applicability of the 

procedure when planning is done for transit systems other than conventional bus service. 

They disclosed that although improvement to their model can be realized with greater 

expenditure of money and effort, it provides a sound planning tool for many applications. 

The procedure is successfully used to describe the actual demand for several existing 

transit systems, as well as to estimate future demand reflecting different policy decisions. 
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Their model is successfully tested in several cites, and it is found to give reasonable and 

realistic results. 

Hendrickson et al ( 1984) developed a model to estimate origin-destination travel 

matrices using constrained least square (COLS) regression and quadratic methods. 

Besides, their proposed method is used to evaluate variances of matrix entry estimates. 

Their method, which does not require general origin-destination surveys, however allows 

available and relevant information, including uncertain information and judgement. They 

explained that the form of their proposed objective function is flexible, and the resulting 

estimates are best described as linear unbiased estimates. They commented that the 

estimated variances of the entry estimates represents a measure of the uncertainty 

associated with each entry estimates, and may be used to evaluate the estimates as well 

as to suggest sampling strategy approaches. 

They enumerated the advantages of their regression function which include its 

flexibility in terms of information that can be included as constraints, ability to provide 

a measure of reliability of the entry estimates in terms of the variance and ability to 

obtain high accuracy when compared with chi-square formulation. Others are ability to 

account for errors in the constraints, ability to provide estimates that are consistent with 

available data and ability to estimate unknown parameters in linear distribution function. 

However, their methods exhibit some disadvantages. These are computational burdens 

associated with calculating the estimates and generation of unreasonable estimates if the 

formulation of regression function does not include non-negative constraints. They 

remarked that their proposed model, when compared with other estimation methods 
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especially regarding accuracy, computational effort and use of uncertainty measures, is 

found to possess a better degree of origin-destination matrices from aggregate data. 

As discussed in their paper entitled " Generating a Bus Route Origin-Destination 

Matrix from On-Off Data", Simon et a! (1985) highlighted a method to generate a bus 

route origin-destination matrix from passenger boarding and alighting counts. They 

checked the route origin-destination estimates obtained from passenger boarding-alighting 

data against actual origin-destination data considering both simple and complex bus lines, 

and observed that estimates of trip length distributions and origin-destination matrices did 

not statistically differ from the actual data. They elaborated on some practical methods 

of collecting passenger origin-destination data. They commented that their method, which 

they recognized as inexpensive but accurate, is suitable for estimating route origin-

destination matrices for existing transit lines. The advantages of their model include the 

fact that it is simple and can he used to test and adjust the origin-destination matrix. 

Niham et al ( 1987) developed an algorithm to solve the problem of estimating 

origin-destination patterns from passenger input-output counts using recursive prediction 

error methods. They formulated their origin-destination matrix estimation problem 

considering a traffic count problem and developed a recursive prediction error (RPE) 

method to estimate the origin-destination matrices. They explained that the origin-

destination matrix estimation problem is simplified when route choice of origins and 

destinations is unimportant, and available count gives the total exists from each origin and 

total arrivals at each destination. They disclosed that such situations occur in estimating, 

among others, the distribution of passengers on single bus routes and equilibrium flows 
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through a subarea. They commented that recursive methods allow engineers and planners 

to track time-varying origin-destination patterns. Besides, it can be integrated with other 

existing input count forecasting models to forecast future trip patterns of passengers. 

A model which estimates the pattern of passenger origin-destination travel along 

a transit route is developed by Kikuchi et al ( 1992). They discussed that the input to their 

model is boarding and alighting counts at stations and the output is the estimated 

passenger volume for each station pair. They used linear programming methods to 

estimate the origin-destination volume with the objective of minimising the expected error 

by locating each estimate with as close to the centre of the feasible solution as possible. 

They also presented numeric examples for the case when the non-directional boarding and 

alighting counts are available. The uses of their model include estimation of origin-

destination table of a transit line, distribution of duration of stay at parking lots and 

estimation of vehicle travel pattern along highways and estimation of characteristics of 

by-pass traffic. 

In this research, a 1991-92 transit demand data obtained from the Transit 

Operations Management at City of Calgary will be used to test the models. Passenger 

demand defined in terms of number of passengers, passenger-kilometre and seat-kilometre 

will be obtained from the data, and used for the validation of the proposed models. 

1.4.6 MANY TO MANY DEMAND 

Only few studies on analytical optimization for public transportation systems have 

given due consideration to many to many travel demand patterns. Holroyd (1965) 

analyzed a grid bus network having passenger trip demand distributed uniformly over an 
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infinite plane to determine the optimal route spacing and headway with the objective of 

minimizing total systems costs. Newell (1979) extended Hoiroyd's research by 

investigating convexity-related difficulties in bus routes considering a many to many 

travel demand pattern. 

In his paper entitled "The Effect of the Design of Road Networks on the Intensity 

of Traffic Movement in Different Parts of a Town with Special Reference to the Effects 

of Ring Roads", Smeed ( 197 1) considered passenger many to many travel demand in his 

model formulation. He described many to many by trip density, which he assumed as a 

function of the positions of homes and workplaces. 

Ghoneim et al ( 1981) optimised stop spacing for a many to many demand 

distribution along one route by minimizing the sum of operator and user time cost with 

a given fleet size. They assumed that their proposed daily travel demand function varies 

slowly between bus stops. They also considered non-uniformly distributed travel demand 

by using cumulative originating and destinating trip functions along their route. Stochastic 

effects due to irregular stops of buses were also considered in their analytical model. 

Vaughan ( 1986) developed an analytical optimization model bus network 

consisting of a radial and ring routes to determine the optimal route spacing and headway 

by minimizing user travel time subject to fleet size constraints for a many to many 

demand travel pattern. More particularly, he described the many to many demand travel 

as a continuous function of the positions of a commuter's home and workplace, as also 

suggested by Smeed ( 1971). Under the assumption that buses travel at a constant speed 

subject to a fleet size constraint, he found that both the optimal spacing between buses 
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are inversely proportional to the cube root of the proportion of commuters joining and 

leaving the routes. He presented a numerical example based on the assumption that 

commuters' many to many demand is uniformly distributed along the bus routes. 

Wirasinghe ( 1990) developed an optimization model to re-examine Newell's 

dispatching policy for a public transportation route with time varying many to many 

demand. Accordingly, he proposed a dispatching policy for a bus route with many to 

many time-varying demand and a variable maximum load point with a capacity constraint 

based on seats per unit time formulation of demand. He commented that a many to many 

demand is characterized by boarding and alighting of passengers from buses at bus stops 

located on the bus routes. Under such circumstances, a seat (seating and standing 

passenger-space) can be used by several passengers in series, and the associated demand 

for travel can be measured in terms of seat per unit time. 

An analytical model developed to determine the optimal route angle, headway and 

station spacing for a radial bus network in a heterogenous geographical environment 

considering a passenger many to many travel demand at both peak and off-peak periods 

is presented by Chang ( 1991). His model's objective is to minimize the sum of passenger 

waiting time cost, access cost, in-vehicle cost and operator cost. More importantly, his 

study attempts to analyze radial bus networks in which the actual irregular demand 

distributions in the form of step functions or origin-destination matrices are used to reflect 

the spatial and temporary heterogeneity of public transportation systems and their 

environments. Using approximation theory, he obtained closed-form solutions for the 

optimal route angle, headway for different time periods and stop spacing for various 
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locations. A numerical example is illustrated in his literature. Besides, he presented an 

application of his model considering irregular demand patterns that are directionally 

imbalanced at both peak and off-peak periods. 

Available literature on determination of optimal rail line length are focused only 

on passenger many to one demand travel pattern at the morning commute period. More 

specifically, this research will be based on passenger many to many demand travel pattern 

at both peak and off-peak periods. In particular, the demand will be described by a 

continuous function of the difference between the cumulative number of boarding and 

alighting passengers at every point on the line haul. 

1.4.7 FLEET SIZE AND COST 

The determination and selection of the most economic and efficient fleet of transit 

vehicles considering passenger many to many travel demand at both peak and off-peak 

periods, to serve an entire network of public transit routes, is of great importance to 

transit planners. It is against this background that Salzborn ( 1970) developed a model to 

determine the minimum fleet size for a suburban railway system with the objective of 

minimizing the number of railcars required for peak operations by cutting railcars back 

from station along the haul rail line as well as to minimize total driver time. He assumed 

that the departure times of the trains are given and also two trains departing within any 

given cycle will experience a minimum possible delay after each other. 

His model formulation is based on the principle that the total number of railcars 

simultaneously in operation is equal to the maximum number of railcars, considering 

system's operations at both peak and off-peak periods. He derived a mathematical 
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expression to determine the number of railcars required for peak operations, and found 

that the outcome of his analysis is insensitive to small changes in departure times. He 

commented that a certain number of railcars and a certain amount of driver's time are 

required in order to obtain an optimum fleet, and that not too much can be done about 

it by changing the departure time. His paper concludes with a demonstration of the 

practical usefulness of his model by applying it to an existing railway system in 

Aldelaide, Australia. 

A fleet selection model designed for a single route under stationary, inelastic travel 

demand is presented by Hauzer ( 1971). His analysis is based on two simplifying 

assumptions: travel demand on the route does not depend on the quality of service; the 

conditions of vehicle flow on the route are affected significantly by changes in the 

number of public transportation vehicles serving the routes. He formulated the total cost 

of the provision of service on the route per unit time as a function of the number of 

vehicles serving the route and the capacity of vehicles that serve the route. In particular, 

the total cost is given by the sum of yearly operating costs, wages, amortization, 

insurance, and administration costs. 

Based on the findings of his analysis, he remarked that for the same total cost, a 

public transit route can be served by few large vehicles or small ones. He explained that 

for a fixed budget a range of vehicle size can be selected from within which the optimal 

route fleet is to be selected. The upper limit of this range is the route fleet for a given 

budget that minimizes the expected waiting time at the critical point of the route. 

However, the lower limit of the range is a fleet composed of the smallest vehicles for 
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the same budget that still can survive the entire travel demand. He disclosed that the 

identified parametric variables sensitive to the total cost are variation of optimal route 

fleet, travel demand, route length, available budget, stop density and traffic friction. 

In his paper entitled "Optimum Bus Scheduling", Salzborn ( 1972) discussed the 

development of a model to determine the optimum bus scheduling with the objective of 

minimizing the number of buses required for operations as well as to minimize the 

passenger waiting time. For analytical purposes, he defined fleet size as the maximum of 

the difference between the vehicle capacity that has departed from any point before any 

given time and vehicle capacity that has arrived at any point before any given point. He 

remarked that although the minimum fleet size formula is derived considering a single bus 

route, it is also applicable to many transportation systems with more than one bus route. 

A paper that discusses the development of a model to investigate the optimum 

railcar fleet sizing in the Northeast Transportation corridors in the United States is 

presented by Fourer et al ( 1977). Moreover, their paper is aimed at exploring the effects 

of fleet management strategies. Their model objective is to minimize the sum of capital 

and rail operating costs. A linear programming model that determines fleet requirements 

for several different formulations of the objective function is developed, and a minimum 

vehicle fleet size expressed in vehicle-kilometres per day and maximum load factor, are 

then determined. They remarked that passenger demand is a senitive parameter so far as 

the determination of optimum fleet size and related cost is concerned. On the subject of 

fleet management strategies, they explained that effective implementation of fleet 

management policies will result in obtaining optimum vehicle fleet size, lower operating 
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cost and increased ridership. 

Their model is tested using transit data, on rail corridors in Northeast portion of 

United States. Their analysis indicated that the most heavily travelled portion of the 

corridor, Philadelphia to New York, might be better served by adding trains between these 

two cities. The disadvantage of their model lies in the fact that it is not capable of 

handling a more complex express-feeder transit network.Accordingly, they suggested that 

a suitable integer programming formulation might give a better results in such a case. 

Gertsbach et a! ( 1977) presented a paper that treats the problems which usually 

arise in constructing transportation schedules, considering the selection of minimum 

vehicle fleet size for a given schedule. They imagined that a transit operating agency has 

to carry out a given set of passages, and each passage consists of names of departure and 

arriving terminals as well as departure and arrival times at the terminal.The set of 

passages consist of a certain time period, and that each transit vehicle can carry out 

passages of the given set. 

The problem is then to determine the minimal fleet size for the given trip and the 

optimal routes for each vehicle. Their analysis 'is based on the assumption that every 

vehicle, after arriving in any terminal at any time can perform every passage departing 

from the terminal at a particular time period. Their formulated objective function is the 

difference between the number of departures and arrivals occurring at any terminal for 

a given time interval, and proved that the required fleet size is the maximum of the 

formulated objective function. Furthermore, they studied a special case of periodic 

'schedules and found that a periodic schedule can be decomposed into an optimal periodic 
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fleet. Application of their model to practical scheduling when passages have tolerances 

for departure times is discussed as well. 

In this research, the formulation of vehicle fleet cost will be based on passenger 

trips occurring in the afternoon peak period. More particularly, the fleet cost will be 

derived considering the number of seat (seating and standing passenger spaces) required 

to be dispatched during the afternoon peak period at round trip time with the maximum 

travel demand. A parabolic demand function will be assumed in order to obtain an 

expression for the fleet size and related cost. 



32 

CHAPTER TWO 

RAIL LINE LENGTH: CBD-SUBURBAN CORRIDOR ANALYSIS 

2.1 INTRODUCTION 

A CBD-Suburban corridor is a route that provides passenger travel from CBD to 

Suburban Region and vice versa. The Canadian Transit Handbook ( 1980) described CBD-

Suburban corridor as a type of transportation corridor that does not easily accommodate 

most trips destined to places other than the CBD regardless of the configuration of the 

roadway network it is superimposed. Furthermore, the Handbook reported that the CBD-

Suburban corridor, while serving the CBD well, attracts few other trips. Besides, the 

corridor provides improved services to multiple destination but requires a great use of 

transfer. The CBD-Suburban corridor is characterized by short, frequent headways. It is 

also characterized by high impedance for trips using crosstown routes. The CBD-

Suburban corridor can be modified by the addition of crosstown or circumferential routes. 

Vuchic et a! ( 1988) described a radial line as an alignment that radiates outwardly 

from the city centre into the suburban region. They remarked that the radial line usually 

follows directions of heavy passenger demand, which gradually decreases towards the 

suburban regions. The decreasing demand can be matched either by turning some trains 

back at an intermediate station, or by branching the line into several directions and thus 

distributing its capacity and increasing area coverage in the suburban regions. 

They indicated that the main advantage of radial lines and the dominant reason for 

their extensive use in many cities is that they tend to serve the heaviest travel corridors 

in the city. Their disadvantages are that they often have limited distribution in the centre 
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of the city and that their inner terminals may be constrained in space as a result of 

expensive construction, making their operations difficult. 

This chapter discusses the development of an analytical optimization model to 

determine the optimal rail line length considering a Central Business District (CBD) to 

Suburban transportation corridor. The objective is to minimize the sum of user time costs, 

rail and bus operating costs, rail line construction and maintenance costs, fleet costs and 

passenger penalty costs. A case study is demonstrated to assess the practical usefulness 

of the proposed analytical model by applying it to the existing North-West light rail 

transit corridor in Calgary, Alberta. Sensitivity analysis is presented to test the robustness 

of the proposed model. Numerical examples are demonstrated as well. 

2.2 TRANSIT NETWORK 

Two transit network systems are considered in this analysis. One type of the transit 

network will be discussed in this section. The other type of network will be discussed in 

Section 2.17. An idealized metropolitan region with a dense rectangular grid road network 

is considered (Figure 2.1). The network is assumed to consist of two distinct sets of 

parallel curvilinear roads (x and y). It is planned to provide an efficient and reliable 

transit service by the construction of a rail line TCTR along the transportation corridor 

The proposed railway is to emanate from the heart of the CBD, T, to a location 

TR in the suburban region but not necessary to its end T. Bus service will be provided 

in the corridor section which originates at TR and terminates at the end of the suburban 

region T. The service is assumed to be provided by special line-haul buses operating 

along the corridor. The proposed rail system and line-haul buses are "fed" by feeder buses 



Figure 2.1 Proposed Bus and Rail Network System 
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operating at both the rail region TCTR and bus region TRTS respectively. 

It is proposed to operate a light rail transit (LRT) system on the railway. 

Comparatively, a LRT system is known to provide a fast, comfortable, safe, secure and 

reliable services to passengers than bus transit systems (Vuchic et al, 1985). Moreover, 

the LRT system has a relatively low operating cost per passenger-kilometre or seat-

kilometre. Others advantages include low maintenance cost, low noise and environmental 

pollution effects, significant improvement on land-use and reduction in private automobile 

usage (TRRL, 1980). 

It is assumed that the trains departing from a central terminus Tc and running 

towards the terminal T will stop at stations located along the rail line to enable 

passengers to board and alight. Upon reaching TR, continuing passengers will transfer into 

the line-haul buses. The train then makes a return trip to T. The buses departing from 

TR and running to bus terminus T5 located at the end of the suburban region, will stop at 

bus stops located along the corridor to allow for boarding and alighting of passengers. At 

T, all passengers in the bus will alight from the bus, which will then make a return trip 

to terminus TR. Passengers originating from bus section TRTS and destined for the rail 

section TCTR will transfer from the line-haul buses into the trains at TR. The converse is 

also true. 

Feeder bus services will be provided to the corridor from all residential zones 

located in the suburban regions. The feeder buses will stop at bus stops B (Figure 2.1) 

located in the zones to allow for boarding and alighting of passengers from the buses. It 

is postulated that each residential zone is served exclusively by feeder buses. It is 
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particularly assumed that passenger trips originating at any point 0 and destinating at any 

point D in the residential zones are served by feeder buses to the nearest rail station or 

line haul bus stops from which a corridor line haul is available. 

It is also assumed that passengers residing in the suburban region as well as those 

not residing at a reasonable walking distance to the nearest train station in rail section 

TcTs will access the rail transit system by walking. from their origins to their nearest bus 

stop, wait for the arrival of the first feeder bus at half the bus headway, and finally enter 

and ride in the bus to the nearest rail station or line-haul bus stop. However passengers 

residing at an appreciable walking distance to the corridor will access the LRT system 

and line-haul buses by walking. 

2.3 THE MODEL 

Consider a CBD-Suburban transportation corridor TCTRTS of length L where T 

and TR represent the CBD and boundary of suburban regions respectively (Figure 2.2), 

and TR is the train terminus in the suburban region. T and TR are respectively the start 

and end points of the proposed rail line of length XR. TR is considered to be a major 

transfer point. For analytical purposes, the rail line is measured from the heart of CBD 

(i.e. T) to the terminus TR. 

T 
0  

I  

I  

TR 

XR 

L 

Figure 2.2 Dimensions of Proposed Transit Line Haul 

T 
0 
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The analysis will seek to determine the optimal rail line length with the objective 

of minimizing the sum of user time costs, rail and bus operating costs, rail line costs, fleet 

costs and passenger transfer penalty costs. The analysis is based on normal daily demand 

travel patterns during both peak and off-peak periods. 

2.4 MANY TO MANY TRAVEL DEMAND FUNCTION 

In this analysis, a many to many travel demand pattern between the CBD and 

suburban region is considered. This is the type of normal daily travel demand pattern 

characterized by multiple origins and destinations of passengers. With this type of 

demand, there exist boarding and alighting of passengers at transit stations or stops 

located on the transit routes at both peak and off peak periods. 

The demand is assumed to be distributed along the line haul corridor. Let the daily 

number of boarding and alighting passengers at station or stop location i in the corridor 

be b(x1) and a(x,) respectively (Figure 2.3.1). In particular, b(x) and a(x1) are respectively 

defined as the daily number of passengers that board and alight at locations x, in the 

corridor for travel in the direction TcTs. The daily cumulative number of passengers that 

board [B(x] and alight [A(x,)] from the train (Figure 2.3.2) up to locations x1 on the line 

haul for travel in the direction TcTs are: 

3(x1) b(x1)  

A(x1) = E ax1) (2.1.2) 

The cumulative daily number of boarding B(x1) and alighting A(x1) passengers at 
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Length of Line Haul (km) 
Figure 2.3.1 Typical Daily Number of Boarding and Alighting Passengers: 

CBD-Suburban Transportation Corridor 

b(x) 
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Figure 2.3.2 Demand and Cumulative Demand 
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locations on the line haul are plotted as step functions against the distance of locations 

on the line measured from T, and smoothed out to obtain B(x) and A(x) (Figure 2.3.2), 

where B(x) and A(x) respectively denote the cumulative daily number of boarding and 

alighting passengers up to point x on the rail line for the travel in the direction 

The slopes b(x) and a(x) at any point x on the B(x) and A(x) curves (Figure 2.3.2) 

represent respectively the daily number of boarding and alighting passengers per unit 

distance in the vicinity of x. The daily through passenger load M(x) at any point x for 

travel in the direction TcTs on the line haul is the difference between B(x) and A(x). 

Thus: 

No
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M(x) = B(x) - A(x) (2.1.3) 

T TR TS 

Length of Line Haul ( km) 
Figure 2.3.3 Typical Daily Through Passenger Load: 

CBD-Suburban Transportation Corridor 
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Figure 2.3.3 depict the graph of daily through passenger load M(x) against x plotted as 

a continuous function. 

Essentially, the demand density pattern at any point x on the transit route will not 

necessarily be a function of transit parameters such as population density; residential 

density and land development density at x but related to the passenger travel demand 

densities along the feeder bus route network and line haul as well.The through passenger 

load M(x) of passengers is the basic data for analysing the demand for a transit line. More 

importantly, it provides the basic information on the number of passengers travelling past 

transit stations, and for that matter, every point on the line haul. 

2.5 USER TIME COST 

In this analysis, user time is defined as the travel time of a transit user riding by 

train and/or bus in the regions TCTR and TRTS respectively. The travel time of feeder 

buses on routes perpendicular to the rail centre line (Figure 2.1) is not related to the rail 

line length. It is therefore considered as independent of the length of rail line. The 

associated cost is irrelevant and hence not considered in the analysis. Furthermore, the 

travel time of feeder buses on all routes with directions parallel to the rail centre line, 

though dependent on the rail station locations, are independent of the rail line length and 

are therefore ignored in the analysis. 

Consider M(x) number of passengers travelling an elemental distance dx in the 

direction TCTR (Figure 2.4). The total passenger travel (measured in passenger-kilometres) 

over the entire length XR of the rail line is: 
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fff (x) dx 
Hence the daily cost of travel time by train in the direction TCTR is: 

YRfM(X) dx (2.2) 

where ? R is the average cost of travel time by train per passenger per kilometre. Also the 

daily user time cost for passengers travelling in the bus section in the direction TRTS is 

given by: 

185M(x) dx (2.3) 

where y, is the average cost of travel time by feeder bus per passenger per kilometre. 

/  

F  

TR T5 

Length of Line Haul (x) 
Figure 2.4 An Element of Demand: 

CBD-Suburban Transportation Corridor 
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Assuming that trips are returned by the same transit modes by retracing paths, then 

a symmetric trip is said to he generated. For a returned trip from Ts to Tc through TR, the 

related user time cost by rail and bus is respectively given by Equations 2.2 and 2.3. 

Hence the total user time cost for a two directional travel is equal to twice the sum of 

Equations 2.2 and 2.3: 

Cu = 2 YRfM ( x) dx + 2 YE5M (x-) dx (2.4) 

The convenience of formulating demand by M(x) is that travel time costs can be 

formulated independently of individual origins and destinations, thus making the data 

collection exercise manageable. 

2.6 RAIL AND BUS OPERATING COSTS 

The purpose of operating any transit service is to transport passengers over some 

distance as quickly and safely as possible at a reasonable cost. Two types of operating 

cost units are suggested by planners (e.g. Stratton et al, 1960). These are operating cost 

per seat-kilometre and operating cost per passenger-kilometre. The unit of operating cost 

per seat-kilometre probably better reflects the real cost associated with operations of 

transit systems. Buses and trains are fully loaded during peak periods. However, they are 

lightly loaded at off-peak periods. Besides, the directional operation of vehicles during 

peek period is uneven; buses and trains are crowded in one direction, and are lightly 

loaded in the opposite direction. Trains exhibit degree of adjustment of seats to passenger 

usage since different train lengths are used in response to passenger loads at both peak 

and off-peak periods. 
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2.6.1 RAIL OPERATING COST CONSIDERING SEAT-KILOMETRES 

During the morning and afternoon peak periods, more trains and buses are required 

to meet the high passenger demand. The associated passenger travel demand, expressed 

in seat-kilometres, is therefore high (maximum) in this case. However, during the off-peak 

periods, less trains and buses are in operation, giving a relatively low minimum passenger 

demand expressed in seat-kilometre. Besides, the passenger demand varies from train to 

train or bus to bus at distance XR along the rail line (Figure 2.5) as well as the time t at 

peak and off-peak periods. 

In planning exercises, it is undesirable to design considering only the travel 

demand at peak periods. However, it is reasonable to use an average travel demand 

expressed in seats by considering the daily maximum demand [MM(R)] and minimum 

demand [M(R)] for train operations on the haul rail line at peak and off-peak 

respectively (Figure 2.5), and the daily maximum demand [MM(B)] and minimum demand 

[Mm(B)] for bus operations on the haul bus line at peak and off-peak periods respectively 

as well. 

Let MA(R) and MA(B) be the average daily number of passengers at a point on the 

haul rail line and haul bus line respectively. For a rail line length of XR kilometres, the 

average travel demand in seat-kilometres, is XRMA(R), and the associated daily rail 

operating cost of owing and operating a train a train per seat-kilometres is A.RXRMA(R) 

where XR is the average cost of operating a train per seat per kilometre. For a bus line of 

length (L-XR) kilometres, the passenger travel demand expressed in seat-kilometres is (L-

Xg)MA(B). The related daily bus operating cost is ?(L-Xk)MA(B) where ? is the average 
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cost of owing and operating a bus per seat per kilometre. The daily rail and bus operating 

costs is given by the expression: 

XRXRMA (R) + B(LXR)MA (B) (2.5.1) 

Hence, for a two directional travel, the total daily rail and bus operating cost is given by 

twice the sum of Equation (2.5.1): 

2[?XRMA (R) + XB (L—XR)MA (B)] (2.5.2) 
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Figure 2.5 Variation of Passenger Load with Line Length 

2.6.2 RAIL OPERATING COST CONSIDERING PASSENGER-KILOMETRES 

It is possible to obtain the total daily travel demand and related rail and bus 

operating costs expressed in terms of passenger-kilometres. The operating cost of trains 
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in rail section TCTR is obtained by replacing yg as presented in Equation 2.2.2 with %R, 

which is defined as the cost of operating a train per passenger-kilometre. Hence the rail 

operating cost becomes: 

XX 

RfM() dx (2.6.1) 

Given the bus routing strategy discussed in Section 2.1, the cost of operating buses in a 

direction perpendicular to the rail centre line is considered independent of the rail line 

length and hence neglected. However, the relevant cost of operating buses along the 

corridor in the section TRTS is considered, and is expressed as: 

2 BfM(x) dx 
XX 

(2.6.2) 

where ? is the average cost of operating a bus per passenger-kilometre. Considering two 

directional travel from Tc to Ts through Tk and back to T, the total rail and bus 

operating cost is expressed as: 

2?JM(x) dx + 2? 2fM(x) dc (2.7) 

2.6.3 CHOICE OF APPROPRIATE OPERATING COSTS 

The consideration of total rail and bus operating costs (Equation 2.5.2) developed 

from the concept of passenger travel demand expressed in seat-kilometre generates much 

complexities in the planning exercise. For that matter, the total rail and bus operating 

costs (Equation 2.7) based on passenger travel demand expressed in terms of passenger-
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kilometres is considered in the analysis. The units of passenger demand is a much more 

meaningful measure of demand for public transit systems in the sense that both the 

number of passengers and the distance of travel by passengers influences the cost of 

meeting the demand (Tyson, 1974). 

It is imperative to remark that although trip production measured in seat-kilometres 

is greater than the related passenger demand expressed in passenger-kilometres for a given 

trip, there is an insignificant difference between the total daily rail and bus operating costs 

measured in terms of seat-kilometres and passenger-kilometres (Miller et a!, 1973). 

2.7 RAIL LINE COST 

All capital and maintenance costs directly related to the rail line length such as 

land acquisition cost, design cost, rail track acquisition cost, rail track construction cost, 

station construction cost and utility relocation cost as well as maintenance cost of rail 

facilities are termed rail line cost. The total rail line cost is: 

f7L (X ) dX (2.8) 

where YL(x) is the discounted rail line cost per kilometre per day at x. It should be 

explained that by formulating YL(x) to be a function of x, allowance is made for variable 

land costs as well as costs of various line section scenarios (e.g. underground, at grade, 

elevated etc.) to be included in the analysis. 

2.8 RAIL FLEET COST 

Rail fleet costs are categorized as fixed capital costs. In this analysis, fleet size 

is defined as the number of seats (seating and standing passengers spaces) required to 



47 

be dispatched during the peak period in the round trip time .(r) with the maximum travel 

demand. The determination of rail fleet cost is based on the assumption that all trains will 

depart from and return to terminal T. The round trip time is thus defined as the time 

elapsed from the time of departure to the time when the train is ready for another trip. 

It is further assumed that, due to variation of passenger travel demand at both peak and 

off-peak periods, the number of trains required to carry passengers will vary. More 

vehicles will be used during the peak periods, with less vehicles used during off-peak 

operations. Peak period operations will be separated by short headways. However, the 

headways will be longer at off-peak periods. 

The formulation of fleet cost is based on afternoon peak operations. This is due 

to the fact that the maximum passenger demand is most likely to occur at afternoon peak 

hours. The reason is that most passengers who have made a trip during morning peak 

period and day off peak period will be making a home journey at the afternoon peak. 

However, this analysis can also be applied to morning peak period with some variations. 

It is also assumed that the chosen vehicle headway is such that the estimated load on a 

train at the maximum load point does not exceed the vehicle capacity (Wirasinghe, 1990). 

It is given that buses will be provided to service the line haul in TRTS. Since the buses 

will be operated as single units and can also be used in other routes, the cost of owning 

and operating the buses is included in the bus operating cost. Also, it is assumed that 

LRT systems will be acquired and operated on the rail line TcTR. Invariably, the 

acquisition of the LRT vehicles requires a high initial capital upfront. Hence, prominence 

is given to the determination of rail fleet cost in this analysis. 
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Consider a situation where passengers can board and alight from the LRT system 

at any station location x1 on the line haul. Assume that demand for travel is expressed in 

terms of seats per unit time, and a seat is used in series by more than one passenger. Let 

the cumulative number of boarding and alighting passengers at station location i in a train 

j dispatched at time t during the afternoon peak period be B,(t) and A(t) respectively. 

Then the maximum load or the demand for seats in the vehicle is: 

s(t) - Max, [B(t) -A1(t)) (2.9.1) 

The cumulative demand S(t), expressed in terms of seats, for all vehicles up to time t 

during the afternoon peak period is given as: 

S(t) =Es (t) (2.9.2) 

Figure 2.6.1 shows a graph of cumulative demand S(t1) against t plotted as a step 

function, and smoothened out to obtain the cumulative demand S(t) at any time t on the 

line haul. The slope s(t) at any time t, which is the demand in terms of seats per unit 

time, is given by: 

s(t) = dS(t)/dt (2.9.3) 

In particular, the slopes s(t) at times t plotted against time t will, in all likelihood, assume 

a parabolic shape as shown in Figure 2.6.2 (Seneviratne et al, 1986). The maximum fleet 

size M(r) for the afternoon peak is the number of seats required to be dispatched during 

the round trip time r which includes the maximum demand per unit time Mx of travel 

where M* is defined as the maximum demand per unit time during the afternoon peak 
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period. 

2.8.1 PARABOLIC VARIATION OF DEMAND WITH TIME 

Senevirante et al ( 1986) reported that the demand per unit time p(t) for a many 

to one travel demand pattern during the morning commute period is parabolic in shape. 

They formulated the total corridor demand P during the morning commute period as: 

P = fp ( C) dt: 

and concluded that the minimum rail fleet size M(r) for commute period is: 

k+r 

M(r) = f p ( t:) d7t: for r < T2 -T1 

M(r) = P for r≥T2-T1 

(2.10) 

They also disclosed that in the absence of independent estimates, the maximum demand 

per unit time during commute period P1 is approximated by: 

rn = 6P/5 (T2-T1) (2.12) 

provided the shape of the p(t) curve is parabolic. 

The shape of travel demand per unit time M(t) as a function of time t for many 

to many demand during the afternoon peak hour period (Figure 2.6.3) is found to be 

similar to the shape of p(t) for a many to one demand during the morning commute 

period as reported by Senevirante et al ( 1986). Transit data on maximum passenger 

ridership demand in the train during the afternoon peak period, at the maximum load 

point, for a many to many demand travel pattern on the N-W LRT line in Calgary, plotted 
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Figure 2.6.3 Afternoon Peak-Period Travel Demand Profile: 
CBD-Brentwood LRT Line in Calgary, Alberta 

6:00 pm 

as a function of passenger demand per unit time M(t) against travel time t of trains 

confirm this finding (Figure 2.6.3). 

Consider a case of passenger many to many travel demand pattern during the 

afternoon peak hour period. The graph of passenger many to many demand per unit time 

M(t) against time t is shown in Figure 2.6.2. In urban transit planning, the choice of 

appropriate round trip time r for transit vehicles operating on CBD-Suburban haul rail line 

(Figure 2.1) is selected so as not to exceed the duration of afternoon peak period T2-T1, 

where T1 and T2 respectively define the starting and ending times of the round trip time. 
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Figure 2.6.4 Variation of Many to Many 
Demand with Travel Time for Small r 

t 

Figure 2.6.5 Variation of Many to Many 
Demand with Travel Time for Large r 
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It is therefore assumed in the ensuing analysis that the determination of fleet size M(r) 

for transit vehicles is based on condition that r<T2-T1. To this end, the determination of 

fleet size under the condition that r>T2-T1 is not considered. 

If the round trip time r is small, the resulting fleet size M(r) approximates to a 

rectangular shape abcd (Figure 2.6.4) with value as rM. However if r is large, the 

associated M(r) is represented by the parabolic region efgh (Figure 2.6.5) having a value 

of 2rM*/3. Particularly, the average fleet sizes (5rM76) give a reasonable fleet size 

estimates required for actual planning exercise and design. Allowing for fixed size of 

transit vehicles as well as stand-by vehicles, the average fleet size is increased by about 

20% (Seneviratne et al, 1986), giving an approximate designed fleet size of value rM. 

2.8.2 DETERMINATION OF RAIL FLEET COST 

Let the round trip time r be: 

r = 2XRAR + (2.13) 

where XR is the length of a line, AR is the inverse of train operating speed and cR is the 

sum of the turn around and average lay over times at terminal Tc and TR. Let the 

discounted cost of a rail-vehicle per passenger space per day be %F. Then the total rail 

fleet cost per day CF is given by the expression: 

CF = FrM 

Substitution of Equation 2.12 into Equation 2.13 gives: 

CF = X  F(2XR'\RR)M 

(2.14) 

(2.15) 
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2.9 PASSENGER TRANSFER PENALTY COST 

The decline in public transit travel in North America over the past few years has 

generated great concern, especially in the areas of transit planning. Factors identified as 

causes of decrease in public transit demand include high user riding time on transit 

systems user discomfort and inconvenience, lack of passengers safety and personal 

security and high transit fares. Others are the unreliable nature of public transit systems, 

generally poor level of transit services and lack of accessibility of transit system at some 

residential areas in suburban regions (TRRL, 1980). More importantly, the problems 

associated with passenger transfers from a mode of transit system to a similar or different 

transit modes are identified as a major factor influencing public transit demand 

(Doornenbal, 1985). 

Passenger transfer is inherent in public transportation services, and it takes the 

form of change from a transit mode to a similar or dissimilar transit mode. Passenger 

transfer times include time taken by a passenger to exit from a transit system, walk to 

boarding area, wait for another transit system of similar or different mode and finally 

enter another transit system departure. 

Results of the passenger transfer survey by Doornenbal ( 1985) shown that transit 

riders perceive public transit trips as significantly worse when the trip requires a transfer 

even if transfer time is negligible. Passenger transfer is identified by public transit 

planners (e.g. Bates, 1978) as one of the major factors that affects public transit ridership, 

and to some extent, influences the overall public transportation cost and benefits for a 

given period of time. Therein lie the reason for consideration of passenger transfer cost 
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in this analysis. 

First we consider passengers who are not within walking distance of a station or 

line haul bus stop either at the origin or destination of the trip. Figure 2.7 shows a typical 

passenger transfer phenomenon for a public transit system considering a CBD-Suburban 

transportation corridor. A passenger from 0 to D1 or 02 to D2 will experience one type 

of transfer from bus to bus at T1 or T2, or no transfer depending on the feeder bus route 

configuration. However, a passenger travelling from 03 to D3 will be subjected to two 

types of transfer. These are transfer from bus to bus at T5 followed by transfer from bus 

to bus at TR. Also, passenger travelling from 04 to D4 will experience two types of 

transfer. These consist of transfer from bus to train at T4 and then transfer from train to 

bus at T. A passenger travelling from 05 to D5 will experience three types of transfers. 

These are transfer from bus to bus at T1, bus to train at TR and train to bus at T5. In much 

the same way, a passenger travelling from 06 to D. will experience three types of 

transfer; transfer from bus to train at T6, train to bus at TR and finally bus to bus at T. 

From the above description of passenger trip characteristics, it is observed that at 

most two types of transfers are recorded for passenger trips originating and terminating 

at the bus or rail region. However, three types of transfers are obtained for passenger trips 

originating at the bus region and terminating at the rail region, or vice versa. This is due 

to the fact that passengers travelling from bus region to rail region, or from rail region 

to bus region, are "forced" to transfer from one type of transit mode to a different type 

of transit mode at TR. Thus an additional transfer is needed at TR for all passengers 

crossing from bus region TSTR to rail region TRTC and vice versa. This penalty exists for 



Figure 2.7 Typical Passenger Transfer System: 
CB D-S uburban Transportation Corridor 
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passengers who do not need to use a feeder bus at the origin and/or destination, as long 

as they travel from TCTR to TRTS. 

Considering the passengers who walk at one end of the trip to a line haul stop or 

station, it is clear that only one form of transfer is needed unless they have to travel past 

the point TR. No transfers are needed for passengers who can walk at both ends of their 

trips unless they have to cross TR. It is therefore observed that all passengers who travel 

past TR are subjected to an extra transfer in comparison to those whose travel is confined 

to either the TCTR or TRTS regions. The inconvenience associated with the transfer process 

is termed "passenger transfer penalty cost". The effects of this penalty is to cause the rail 

line length to be longer. 

2.9.1 ANALYSIS FOR PASSENGER TRANSFER PENALTY COST 

It is assumed in this research that the maximum number of transfers by a 

passenger for a given trip is two. This is in agreement with the research finding on public 

transfer studies undertaken by Hunt ( 1990). He disclosed that potential public transit 

riders will not patronise transit trips characterized by three or more transfers. Thus 

passengers who use the system described here to travel from the rail region TCTR to the 

bus region TRTS are those who need to use a feeder bus at only one end of the trip. This 

is due to the fact that the number of passengers transferring from train to bus at TR is 

directly dependent on the rail line length, and the associated passenger transfer penalty 

cost is therefore used in the analysis. 

Consider a passenger trip from Tc to T, with transfer of passengers from train to 

bus occurring at terminal TR, a distance XR from the central terminus T. The passenger 
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transfer penalty cost associated with this trip is expressed as 

YPM(XR) (2.16) 

where 'yp is the average cost of transferring per passenger and M(XR) is the number of 

transfer passengers at XR. For a returned trip from Ts to T, the number of passengers 

transferring from train to bus at TR is M(XR) and the related passenger transfer penalty 

cost is also 

YPM(XR) (2.17) 

Hence the total passenger transfer cost is given by the sum of Equations 2.16 and 2.17: 

2Tp1vf(XR) (2.18) 

2.10 OPTIMIZATION 

The analysis will seek to determine the optimal rail line length with the objective 

of minimizing the sum of user time cost, rail and bus operating costs, rail line cost, rail 

fleet cost and passenger transfer penalty cost. The global transportation cost [Z(XR)] is 

obtained by summing Equations 2.4, 2.7, 2.8, 2.15, and 2.18. Thus: 
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Z(X) = 2 RfM(x)dx + 2YBJM(x)dx 

+ 2? RfM(x)dx + 2? BfM(x)dx 

+ f7L (x) dx + (2XRAR+t R) RM * 

+ 21M(X) 

(2.19) 

The optimal rail line length which minimizes the total transportation cost is obtained by 

taking the derivative of Equation 2.19 and setting the resulting expression to zero: gives: 

and therefore: 

Z' (XR) = 2[(y -y) + (? R-7 B)]M(XR) + ?( XR) (2.20.1) 

+ 2ARA,1vI* + 2yM' (XR) 

L (XR)+2ARFM 

+ 21M' (XR) 

(2.20.2) 

For a minimum total transportation cost to be obtained, the second derivative of Equation 

2.19 with respect to XR should be positive. Thus: 

Z" (XR) =2 [ (YRYB ) + (? R - 2 B ) ]M' (XR) 

+ YL' (XR) + 2'yM" (XR) > 0 
(2.21) 

2.11 GRAPHICAL ANALYSIS 

More insight regarding the determination of the optimal rail line length is gained 

by exploration of the total cost function (Equation 2.19) and its first and second 
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derivatives (Equations 2.20.1 and 2.21 respectively) under some simplifying assumptions. 

Firstly, for the sake of convenience and simplicity, the passenger transfer cost expression 

(Equation 2.18) and it resulting first and second derivative are neglected in the foregoing 

analysis. Furthermore, the substitution of y = and 8 = 2ARXRM into 

Equations 2.20 and 2.21 respectively gives: 

Z/ (XR) = -AyM(X) + YL (XR) + 8 (2.22) 

Z" ( X,) = -L TM' (XR) + "i'L1 (XR) 

2.12 UNIFORM RAIL LINE COST 

It is possible to assume that the discounted rail line cost per kilometre per day 

b'L(XR)] is approximately constant under certain conditions. For instance, the rail line 

might be a continuous subway or it may run throughout along a highway median or a 

main rail line right-of-way. If the rail line cost is uniform, then the first derivative of the 

daily discounted rail line cost per kilometre per day [IL'(XR)} is zero. Equations 2.22 and 

2.23 are respectively reduced to: 

Z' (XR) = -LyM(X) + yL + 0 

Z'(XR) = 

(2.23) 

Figure 2.8.1 depict the graph of through passenger load M(XR) against length of 

line haul XR plotted as a continuous function. Typically, M(XR) is zero at Tc where Xk=O. 

M(XR) then increases till it attains its maximum load ML at the maximum load point TL 

where XR=XL. From TL, M(XR) decreases till it is zero at Ts where XR=L. In particular, 
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Figure 2.8.1 Variation of Daily Through Passenger Load with Line Length 

Z(XR) is minimized if Z(XR)--O and Z"(XR)>O. From Equation 2.24.2, Z"(XR)>O only if 

M(AR)<O, i.e. M(XR) is decreasing. This occurs in the region XL≤XR≤L. Conversely, 

Z(XR) is maximized when Z'(XR)=O and Z"(XR)<zO. Z"(X)<O provided M'(XR)>O, i.e. 

M(XR) is increasing. This is found to occur in the region O≤XR≤XL. The solutions to 

Equation 2.24.1 depend on whether y+e>yML or 'YL+8<.&YML as explained below. 

2.13 CASE STUDIES 

2.13.1 CASE 1: ? L + B > AyML 

It is possible that no solution will exists in this case. Hence the optimal X=O 

(Figure 2.8.2). This possibility increases with the above inequality. Furthermore, since 

IL + B > LYML 

then 

(2.25.1) 

(2.25.2) 



62 

 0 
XL L X 
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where 0 is a function of M. 

2.13.2 CASE 2: YL + 0 <"L 

In this case, there exist the possibility of obtaining two solutions of XR (Figure 

2.8.3). The total cost is locally minimized at X2 since Z"(X2)>O at X2. The optimal XR=X2. 

However, the cost is maximized locally at X1 since Z"(X1)<O. 

2.13.3 SPECIAL CASE 

Figure 2.8.4 describe the possibility of obtaining four solutions of XR. Obviously, 

the total cost is minimized locally at X2 or X4. Under this condition, the total cost at X2 

and X4, i.e. Z(X2) and Z(X4), are determined and compared. The length that gives the 

overall minimum cost is the global optimal. 

• 2.13.4 CASE 4: GENERAL CASE 

An insight regarding the effect of passenger transfer penalty cost (Equation 2.18) 

on the optimal rail line length is explored by graphical analysis (Figure 2.8.5). 

Consideration of passenger transfer penalty cost changes Equations 2.24.1 and 2.24.2 

respectively to: 

Z' (X R ) = + y L, + 0 + 2'yM' ( XR) 

and 

(2.26.1) 

Z"(XR) = -/X'yM'(X) + 2'y,M"(X) ( 2.26.2) 

It is observed from Equation 2.26.2 that Z"(XR)>O if M'(XR)<O and M"XR)<O. However, 

Z"(XR)<O provided M'(XR)>O and M"(XR)<O. Two solutions of XR (i.e. X2 and X4) are 

obtained under this condition, and the total cost is found to be minimized locally at X4 
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(Figure 2.8.5). It is observed from Figure 2.8.5 that if transfer penalty cost is not 

considered, the optimal line length is X3, which is less than X4. Hence, the effect of the 

transfer penalty cost is to cause the rail line length to be longer. 

2.14 NON-UNIFORM RAIL LINE COST 

Under some conditions, the rail line is constructed to run partly along a highway 

median, subway, elevated structures and main rail line right-of-way. The rail line is 

therefore described to be non-uniform. The discounted rail line cost per unit length per 

day ['y(X)] will vary with line length. Generally, one expect YL(XR) to decrease as XR 

increases, i.e. as the line moves away from the CBD to the Suburban Region (Figure 

2.9.1). 

A 

E 

0 
U 

TC T T 10. 
XP 

Figure 2.9.1 Variation of Rail line Cost with Line Length 
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In this case, Z'(XR) and Z"(XR) given by Equations 2.22 and 2.23 will apply in this 

case. In particular, Z(XR) is minimized if Z'(XR)=O and Z"(XR)>O. From Equation 2.23, 

it is found that Z"(Xk)>O provided M'(Xk)<O and YL(XR)>O. This occurs in the region 

XL≤XR≤L. Z(XR) is maximized when Z(XR)=O and Z"(XR)<O. Z"(XR)<O if M'(XR)>O and 

YL(XR)<O. This occur in the region O≤Xk≤XL. The solutions to Equation 2.23 depend on 

whether y(X)+O>AyM 01 YL(XR)+O<YML as in the following analysis. 

2.14.1 CASE 1: + 0 > Y1"1L 

Under the above condition, it is possible that no solution will exist (Figure 2.9.2). 

Hence, the optimal XR=O. This possibility increases with the above inequality. For 

YL(XR) + 0 > LyM (2.27.1) 

then 

ML (2.27.2) 

2.14.2 CASE 2: YL(XR) + 0 <"L 

It is possible to obtain two solutions of XR under this condition (Figure 2.9.3). The 

total cost is locally minimized at X2 since Z"(X2)>O at X2. Hence the optimal X=X2. 

However, the total cost is maximized locally at X1 since Z"(X1)<O at X1. 

2.14.3 SPECIAL CASE 

The chances of obtaining four solutions of XR is graphically illustrated in Figure 

2.9.4. In this case, the total cost is minimized locally at X2 or X4. The total cost at X2 and 
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X4, i.e. Z(X2) and Z(X4), are enumerated and compared. The length that gives the overall 

minimum cost is the global optimal. 

2.14.4 CASE 4: GENERAL CASE 

The effect of passenger transfer penalty cost (Equation 2.18) on the optimal rail 

line length XR is graphically explained using Figure 2.9.5. By considering passenger 

transfer penalty cost, Equations 2.22 and 2.23 respectively become: 

and 

Z' (XR) = -L\YM(XR) + 'YL(XR) + e + 2y),1' (X) 

Z" ( X) = -LS.yM' ( XR) + y' (XR) + 27DM" (XR) 

(2.28.1) 

(2.28.2) 

It is found from Equation 2.28.2 that Z"(XR)>O if M'(X)<O, YL(XR)>O and M"(XR)>O. 

However, Z"(XR)<O provided M'(XR)>O, 'YL(XR)<O and M"(XR)<O. Two solutions of X 

(i.e. X2 and X4) are obtained under this condition. The total cost is minimized locally at 

X4 (Figure 2.9.5). From Figure 2.9.5, it is observed that if transfer penalty cost is 

neglected, the optimal XR is X3, which is less than X4. Therefore, the effect of the transfer 

penalty cost is to increase the rail line length. 

2.15 MODEL APPLICATION 

This section of the analysis discusses the application of the proposed analytical 

model to the existing North-West LRT corridor in Calgary, Alberta. More particularly, 

an attempt to determine if the North-West LRT line of length 8.30km is optimal and 
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economic is discussed. Over the past years, rail lines are built along transportation 

corridors considering factors such as high population density, high residential density and 

high land development activities within the corridors (Yeates et al, 1980). Usually, 

comprehensive studies are not undertaken to investigate if the proposed rail line length 

to be constructed is optimal and economic. Essentially, analytical optimization models can 

be developed and used to obtain some reasonable, practical and optimal rail line length. 

According to the North-West Calgary Functional Study Report ( 1980), the 

proposed overall length of the LRT line to be constructed is approximately 9.65km. 

However, due to the problem of scarcity of public funds needed to construct this high 

capital intensive project, the LRT line is subjected to a stage construction process.To date, 

a line length of 8.30km radiating from the heart of the CBD to Brentwood Station is 

constructed (Figure 2.10). The line consists of seven stations. 

The proposed analytical model will be used to obtain the optimal rail line length. 

A 16.75km corridor emanating from Downtown Calgary and terminating at Crowfoot 

Station (Figure 2.10) is assumed to exist. The Dalhousie and Crowfoot Stations are 

assumed to be existing as well, and are located at positions indicated in Figure 2.10. All 

passengers originating from the northern part of Calgary (including such areas as Silver 

Springs, Dalhousie, Crowfoot, Varsity acres, Hawkwood, Ranchland, Edgemont, Market 

Mall, Northland and Brentwood) and accessing the LRT system at Brentwood Station are 

assumed to use feeder buses. In particular, the daily total number of feeder bus riders are 

distributed linearly along the Brentwood-Crowfoot section of the bus line haul. It is worth 

mentioning that the cost due to people using their private automobile to access the train 



Table 2.2 Values of Transit Parameters 

Symbol Definition Units Value + 

Average cost of travel by bus per passenger per kilometre $/pass/km 0.27 

IL Average daily rail line cost per kilometre $/km/day 3148 

yr Average cost of transferring into bus per passenger per kilometre $/pass/km 0.72 

YR Average cost of travel by train per passenger per kilometre $/pass/km 0.13 

Average bus operating cost per passenger per kilometre $/pass/km 0.23 

XF Average train fleet cost per seat per day $/seat/day 2.84 

X R Average rail operating cost per passenger per kilometre $/pass/km 0.01 

• Average tardity of train hr/km 0.0314 

Average layover plus turn around time at train terminal hr 0.083 

M* Maximum hourly passenger demand pass 4800 

r Period of construction of rail project year 2 

I Interest (discount) rate % 7 

N Design life span of rail project year 50 

+ Determination of Unit Cost Estimates is Presented in Appendix I 
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Table 2.1 1991-92 Daily Passenger Demand on N-W Line Haul in Calgary, Alberta 

Sta. 

No. 

Sta. 

Name 

Dist. from 

Sta. No.1 

(km) 

b(X) 

(pass) 

a(XR) 

(pass) 

B(XR) 

(pass-km) 

A(XR) 

(pass-km) 

M(XR) 

(pass-km) 

CBD 0.00 0 0 0 0 0 

2 CBD 2.00 10729 0 10729 0 10729 

3 Sunnyside 3.05 650 790 11379 790 10589 

4 SAlT 4.02 540 1800 11919 2590 9329 

S Lion's Park 5.11 350 1370 12269 3960 8309 

6 Banff Trail 5.91 140 660 12409 4620 7789 

7 University 7.27 740 2500 13149 7120 6029 

8 Brentwood 8.30 200 2947 13349 10067 3900 

9 Dalhausie 12.01 100 3382 13449 13449 1800 

10 Crowfoot 16.75 0 0 13449 13449 0 



Table 2.2 Values of Transit Parameters 

Symbol Definition Units Value + 

Average cost of travel by bus per passenger per kilometre $/pass/km 0.27 

YL Average daily rail line cost per kilometre $fkm/day 3148 

yp Average cost of transferring into bus per passenger per kilometre $/pass/km 0.72 

YR Average cost of travel by train per passenger per kilometre $/pass/km 0.13 

X B Average bus operating cost per passenger per kilometre $/pass/km 0.23 

Average train fleet cost per seat per day $/seat/day 2.84 

Average rail operating cost per passenger per kilometre $/pass/km 0.01 

AR Average tat-dity of train hr/km 0.0314 

T R Average layover plus turn around time at train terminal hr 0.083 

M Maximum hourly passenger demand pass 4800 

r Period of construction of rail project year 2 

I Interest (discount) rate % 7 

N Design life span of rail project year 50 

+ Determination of Unit Cost Estimates is Presented in Appendix I 
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CBD-CROWFOOT LINE HAUL IN CALGARY, ALBERTA 

N
o
.
 o

f 
Pa

ss
 (
Th

ou
) 

7,4 

41111. 

B oarding 

Alighting 

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.-8 No.9 No.10 

Station Number 

Figure 2.11 Daily Number of Boarding and Alighting Passengers 
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Figure 2.12 Cumulative of Number of Boarding and Alighting Passengers 



1991-92 DAILY THROUGH PASSENGER LOAD 
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Figure 2.13 Daily Through Passenger Load 



Table 2.3 Determination of Optimal Rail Line Length 

Sta. 

No. 

Station 

Name 

Dist. from 

Sta. No. 1 

(km) 

M(XR) 

(pass/day) 

M'(XR) 

(pass/km/day) 

AyM(X) + 

($/km/day) 

'YL+2YPM'(XR)+O 

($/km/day) 

1 CBD 0.00 0 0 0 4004 

2 CBD 2.00 10729 5365 7295 6217 

3 Sunnyside 3.05 10589 -472 7200 3664 

4 SAlT 4.02 9329 -1106 6344 3208 

5 Lions Park 5.11 8309 -1720 5650 2766 

6 Banff Trail 5.91 7789 -1420 5296 2981 

7 University 7.27 6029 -1308 4099 3062 

8 Brentwood 8.30 3900 -2010 2652 2557 

9 Dalhousie 12.01 1800 -3540 1224 1455 

10 Crowfoot 16.75 0 -4765 0 573 

+ LHS of Equation 2.20.2 

* RHS of Equation 2.20.2 
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at Brentwood Station is neglected. The reason being that the line cannot be extended to 

reduce the private cost of people who choose to use their private automobiles. 

Table 2.1 depicts the 1991-92 daily passenger (boarding and alighting) ridership 

on the North-West link of Calgary LRT system (Calgary Transit). Figure 2.11 shows the 

daily number of passengers boarding and alighting from the LRT at any point on the line 

haul. Figure 2.12 shows the cumulative of the daily number of boarding and alighting 

passengers at any point on the line haul. Figure 2.13 however depicts the difference 

between the cumulative of the daily number of boarding and alighting passengers at any 

point on the line haul. 

The values of the unit cost parameters are shown in Table 2.2. The determination 

of the estimates of unit cost parameters is presented in Appendix I. Table 2.3 depicts the 

evaluation of the left hand side (LHS) and right hand side (RHS) of Equation 2.20.2 using 

the demand data (Table 2.1) and parameters (Table 2.2). Data shown at Columns 4 and 

5 of Table 2.3 are plotted against the rail line length Xk (Figure 2.14). The optimal rail 

line length is found to be 9.41km. A computer program (Appendix II) developed using 

Equation 2.20.2 also gives the value of the optimal rail line length as 9.41km. This brings 

the optimal terminal close to the Northland Mall. The optimal terminal is approximately 

1.11km away from the existing terminal located at Brentwood Station. It is found that an 

optimal line length of 8.30km (i.e. at Brentwood Station) is obtained ify=O.25, YR=°.'5' 

?=0.2l, XR=0.05, ?= 3. 10, =0.70 and YL=3200 are separately used in the analysis. 
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2.16 SENSITIVITY ANALYSIS 

Uncertainty has emerged over the past decades as one of the major factors which 

transportation systems analysts, planners and decision-makers have to contend with in 

making constructive decisions with regard to the provision of a rail line, be it for the short 

or long run. In view of this, it is appropriate that sensitivity analysis be discussed in this 

research in order to check the robustness of the proposed analytical model as well as to 

provide a better understanding of critical parameters on which the model's outcome 

depends. Most importantly, sensitivity analysis will indicate the critical unit cost 

parameters that may require close attention at pre-construction, construction and post-

construction stages in order to ensure that the most economic return is realised. 

The optimal rail line length XR is found to exhibit some degree of sensitivity to 

the unit cost parameters used in the analysis (Seneviratne et al, 1986). It should be 

explained that reasonable and realistic estimates of the relevant unit cost parameters 

required for determination of optimal rail line length is of great importance in order to 

obtain a reliable solution of the optimal rail line length. In this research, sensitivity 

analysis will be conducted on all unit cost parameters considered in the analysis. The unit 

cost parameters are listed in Table 2.2. Exactly ± 25% test about the central value for 

each parameter is considered. In particular, the sensitivity of each parameter is explored 

whilst keeping all other parameters at their current estimates. 

Tables 2.4 depict the global summary of the sensitivity test results. Sensitivity 

ratings of the various unit cost parameters with respect to the optimal rail line length is 

shown in Column 9 of Table 2.4. It is found that the optimal rail line length XR is 



Table 2.4 Summary of Sensitivity Test Results on Optimal Rail Line Length (XR) 

Unit 

Cost 

Parameters 

Original 

Optimal 

Rail 

Line 

Length 

(kin) 

At -25% Sensitivity Test At +25% Sensitivity Test Sensitivity Rating of Unit 

Cost Parameters 

on Optimal Rail 
Line Length 

Symbols 

Optimal 

Line 

Length 

(kin) 

% Change in length Optimal 

Line 

Length 

(km) 

% Change 

in length 

Inc. Dec. Inc. Dec. 

9.41 7.43 21.04 12.01 27.63 Very Sensitive 

YR 9.41 10.95 16.36 7.90 16.05 Sensitive 

A8 9.41 7.61 19.12 11.43 21.47 Sensitive 

AR 9.41 9.43 0.21 9.32 0.10 Highly Insensitive 

TP 9.41 7.90 16.05 16.75 78.0 Very Sensitive 

Ar 9.41 9.94 5.63 9.02 4.09 Insensitive 

YL 9.41 16.75 78.00 7.43 21.04 Very Sensitive 

M(XR) 9.41 7.56 12.0 12.0 17.43 Sensitive 

00 
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sensitive to the parameters 'YB' YR' YL' yr,, %13 and M(XR). However, the optimal rail line 

length is insensitive to the parameters ? and 2R 

It is found that no optimal line exists if YB' %B, XF and YL are separately neglected. 

High optimal line lengths are obtained if yR and 2R are not considered individually. 

However, high values of optimal line length are obtained if unreasonably high values of 

YB' ? and y are separately used. No optimal line length exists if high values of 'YR. 

XF and 'YL are individually employed. 

The result of the analysis shows that the optimal XR increases with increasing 

values of M(XR), YB' XB and yr,, and vice versa. A high value of M(XR) implies high 

demand for rail systems. Hence, a longer rail line length is to be provided in order to 

meet the high demand. High value of YB is due to higher user travel times, excessive 

delays to riders, low level of reliability of buses, low level of safety and protection of 

passengers, poor level of comfort and convenience as well as high levels of air and noise 

pollution. This situation causes the rail demand to increase, therefore causing the line 

length to be longer. 

A very high value of XB is attributed to factors which include excessive traffic 

delays, high cost of fuel and high labour costs. Consequently, bus operators may require 

passengers to pay high fares for their trips in order to meet the high bus operating cost. 

This situation may cause a decline in demand for bus services, thereby causing the 

demand for rail systems to increase. A longer rail line length is to be provided to meet 

the increasing demand. The converse is also true. With regard to transfer of passengers 

from train to bus, a high value of yp is due to factors such as longer waiting times for 
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arrival of buses, low level of reliability of buses, lack of safety and protection to transfer 

passengers at transfer points, and lack of convenience and comfort to transfer passengers 

at bus stops. These situations will warrant the provision of longer length of rail line haul 

and a corresponding shorter length of bus line haul. The effect is that potential rail riders 

may not be discouraged from using the rail systems. Besides, users of non-transit modes 

may be attracted to the rail system. 

It is also found that the optimal XR decreases with increasing YR and 'YL, and vice 

versa. High value of YR is caused by factors which include levels of comfort, convenience 

and safety. The demand for rail systems will decline under such conditions. A shorter line 

length is to be provided in this case. The converse is true. A high value of YL is attributed 

to factors including high cost of demolition and relocation of existing facilities as well 

as high land cost at CBD region. Ironically, huge funds are required to construct the a rail 

line with longer length. The required funds might not be available. A shorter line length 

is most likely to be constructed under such situation. The opposite is also true. 

The analysis indicated that the optimal XR is insensitive to XR and ?. Practically, 

the cost of operating and maintaining rail systems is low in comparison to that of buses. 

Generally, a high initial capital upfront is required to purchase railcars. However, 

discounting this cost over the entire life span of the rail vehicles tends to make the rail 

fleet cost somewhat insignificant. These may explain why the optimal XR is insensitive 

to ' R and Xr.. However, under some conditions, it is possible for the values of AR and XF 

to have a significant effect on optimal XR. This occurs when XR and kr. are unrealistically 

high. Factors which give high XR include high labour and administrative costs as well as 
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high cost of owing the railcars. The demand for rail systems will therefore decline, 

causing the provision of shorter line length along the rail corridor. 

2.17 MODEL EXTENSION 

The model discussed above can be extended to determine the optimal rail line 

length by considering a different network scenario. A rectangular local road network 

consisting of two distinct sets of parallel curvilinear roads(x and y) is considered. An 

existing curvilinear transportation corridor with a haul bus 'line CS emanating from CBD 

towards a suburban region and parallel to x-roads (Figure 2.15) is to be replaced by a 

haul rail line (Figure 2.16). The bus line haul, which is a major road, is to be converted 

into a feeder bus route. The rail line TCTR, to be located closely parallel to the existing 

bus line haul, will emanate from the heart of the CBD, T, into the suburban region at 

T, but not necessary to its end at l's. However, feeder bus service will be provided to the 

rail line from all areas, including those beyond the end of the rail line. 

All assumptions pertaining to operations of trains and feeder buses as well as 

nature of passenger accessibility to the transit systems discussed in Section 2.2 will apply 

in this case. Furthermore, it is assumed that feeder buses will use the haul bus line TT 

to access the rail terminal T R. Moreover, all assumptions considered in the formulation 

of user time cost, rail and bus operating costs, rail line cost and rail fleet cost will be 

considered under this network scenario. Accordingly, the expressions for user time cost, 

rail and bus operating costs, rail line cost and rail fleet cost given by Equations 2.4, 2.7, 

2.8 and 2.15 respectively, are also applicable in this case. It is imperative to remark that 

the demand functions given by equations 2.1.1, 2.1.2, and 2.1.3 are applicable in this case. 



Figure 2.15 Existing Bus Network System 



Figure 2.16 Proposed Bus and Rail Network System 



Figure 2.17 Typical Passenger Transfer System: 
CBD-Suburban Transportation Corridor 
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However, the passenger transfer penalty cost (Equation 2.18) will not hold for this 

particular model. The discrepancy is attributed to the different operating strategies of 

feeder buses assumed in the formulation of the proposed model. A careful assessment of 

the model indicates that the introduction of rail line will generate an additional transfer 

for all passengers transferring from bus to train. Accordingly, the total number of 

passengers boarding the train is considered in formulating the related transfer penalty cost. 

The formulation of passenger transfer penalty cost consistent with this network scenario 

is presented below. 

It is observed from Figure 2.17 that a passenger travelling from 01 to D1 will 

experience one type of transfer from bus to bus at T1 or no transfer depending on the 

configuration of feeder bus routes. Moreover, a passenger travelling from 02 to D2 will 

experience one type of transfer from bus to bus at T2. However, a passenger travelling 

from 03 to D3 will be subjected to two types of transfers. These are transfer from bus to 

train at TR and then transfer from train to bus at T3. Also, a passenger travelling from 

04 to D4 will experience two types of transfers; transfer from bus to train at Tc followed 

by transfer from train to bus at TR. It is therefore observed that with bus network only 

(Figure 2.15) at most one transfer is needed. Once a rail line is introduced (Figure 2.16) 

an additional transfer is needed for all passengers boarding the train. A disutility of travel 

is therefore associated with the provision of the rail line. The relevant total transfer 

penalty cost is given by: 
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2YpfB(x) dx 

89 

(2.29) 

where y1, is the average cost of transferring per passenger per kilometre and B(x) is the 

cumulative of the daily number of boarding passengers at point x on the rail line haul. 

2.18 OPTIMIZATION 

The optimal rail line length which will minimize the sum of user time cost, rail 

and bus operating costs, rail line cost, rail fleet cost and passenger transfer penalty cost 

will be explored. The overall transportation cost [Z(X)] is given by the sum of Equations 

2.4, 2.7, 2.8, 2.15, and 2.29. Thus: 

Z(XR) = 2?R5M(x)dx + 2,Yn  

+ 2?fM(x)dx + 2?BJM(x)dx 

(2 .3 0 ), 

+ f7L + 

+ 2YpfB(x)dx 

Taking the derivative of Equation 2.30 and setting the resulting expression to zero gives: 

(2.31) 

The minimum total transportation cost is obtained by setting the second derivative of 

Equation 2.30 with respect to Xk to be positive. This gives: 
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Z" (XR) = 2 [(YRYB ) +() R-A)]M'(XR) +YL (XR) +2 ypB'(XR) > 0 (2.32) 

2.19 OPTIMUM DEMAND 

The estimation of the most economic or optimum passenger demand that warrants 

the provision of an appreciable length of a rail line along a transportation corridor is long 

recognised in rail transportation planning (Seneviratne, 1986). Transit planners identified 

passenger demand as the most significant determinant that will justify the provision of a 

rail line. Yeates et al ( 1980) discussed the impact of passenger demand with regard to 

provision of a rail line. An important fact that should be emphasised is that the benefits 

and savings to be realised by provision of a rail line as well as the maximization of 

profits by transit operators largely depends on passenger demand. 

The important role played by passenger demand in rail planning has necessitated 

the determination of the most economic and optimal passenger demand that will warrant 

or justify the provision of a rail line in this research. To this end, an analysis carried out 

to obtain the optimum passenger demand is discussed. The optimal demand Mo(XR) that 

will ensure that the resulting rail line length is positive is obtained by setting Equation 

2.31 to zero, and solving for Mo(XR). Accordingly, the required optimum demand is given 

by the expression: 

Mo(XR)=[YL(XR) +2AX1M+2y2B(X)]/2 [(YYR) +().3-XR)] (2.33) 

2.20 MODEL APPLICATION 

The proposed model is tested using the existing North-West LRT line in Calgary, 

Alberta. It should be remarked that the current operating strategies of the public transit 



Table 2.5 Values of Transit Parameters 

Symbol Definition Units Value 

Average cost of travel by bus per passenger per kilometre S/pass/km 0.27 

YL Average daily rail line cost per kilometre 5/km/day 3148 

Average cost of transferring into train per passenger per kilometre $IpassIkm, 0.48 

IR Average cost of travel by train per passenger per kilometre S/pass/km 0.13 

Average bus operating cost per passenger per kilometre S/pass/km 0.23 

XF Average train fleet cost per seat per day S/seat/day 2.18 

Average rail operating cost per passenger per kilometre S/pass/km 0.03 

AR Average tardity of train hr/km 0.0314 

TR Average layover plus turn around time at train terminal hr 0.083 

M Maximum hourly passenger demand pass 4800 

r Period of construction of rail project year 2 

I Interest (discount) rate % 7 

N Design life span of rail project year 50 



Table 2.6 

Sta. 

No. 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Determination of Optimal Rail Line Length 

Station 

Name 

Dist. from 

Sta. No. 1 

(kin) 

M(XR) 

(pass/day) 

B(XR) 

(pass/day) 

yM(XR) 

(S/km/day) 

YL+2YpB(XR)+8 

(51km/day) 

CBD 0.00 0 0 3648 4004 

CBD 2.00 10729 10729 7295 14303 

Sunnyside 3.05 10589 11379 7200 14928 

SAlT 4.02 9329 11919 6344 15446 

Lions Park 5.11 8309 12269 5650 15782 

Banff Trail 5.91 7789 12409 5296 15917 

University 7.27 6029 13149 4099 16627 

Brentwood 8.30 3900 13349 2652 16819 

Dalhousie 12.01 1800 13449 1224 16915 

Crowfoot 16.75 0 13449 0 16915 

+ LHS of Equation 2.31 

* RHS of Equation 2.31 

t'.) 
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15 

DETERMINATION OF OPTIMAL RAIL LINE LENGTH 
CBD-CROWFOOT. LINE HAUL IN CALGARY, ALBERTA 

LHS of Equation 2.31 

RHS of Equation 2.31 

2 4 6 8 10 12 14 16 

Rail Line Length (km) 

Figure 2.18 Determination of Optimal Rail Line Length 
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systems in Calgary perfectly fit this scenario. The transit ridership data and the values of 

the unit cost parameters given respectively in Tables 2.1 and 2.5 are employed in the test. 

The computation of the LHS and RHS of Equation 2.31 are shown respectively at 

columns 6 and 7 of Table 2.6. These values are plotted against the rail line length (Figure 

2.18). No optimal rail line length is obtained. Hence, the optimal rail line length is zero. 

A computer program (Appendix III) developed using Equation 2.31 gives a zero optimal 

line length. 

The model extension revealed that no optimal line length exists by using the 

North-West transit line in Calgary, Alberta, as a case study. Nonetheless, using Calgary 

as an example, it is possible to obtain positive values of optimal line length under some 

conditions. For instance, by using y=2A3, y=2.3O and ,=O.01 separately, optimal line 

lengths of 9.20km, 9.0 1km and 7.35km are respectively obtained. Also by increasing the 

values of M(XR) as given in Column 8 of Table 2.1 by 1000%, an optimal line length of 

10.80km is obtained. 

The determination of economic or optimal demand that will warrant the provision 

of a rail line and other supporting facilities is essential. Generally, reasonable high 

demand is required to justify the implementation of LRT system. For a city like Calgary, 

a high bus riding unit cost or low rail riding unit cost might not necessary result in 

increase in passenger demand for the LRT system. Hence, effective methods of increasing 

passenger demand should be sought by city authorities and planners. One such method 

is implementation of effective park-and-ride policies. Park-and-ride facilities should be 

developed extensively to enhance attraction of private automobiles users to buses and 



95 

rails. 

However, it will be incomplete to address this measures without due consideration 

of the very important issue of quality of rail service. Methods of attracting people from 

autos to rail systems must be clearly identified. People must know that trains have such 

qualities as speed, safety, reliability, convenience, affordabilty, fuel economy and 

sustainability. An auto to rail transfer is not likely to be brought about by persuasion only; 

it would almost certainly require some form of state intervention, exercised through such 

measures as high vehicle and fuel taxation, congestion tolling and direct restriction on 

private vehicles. 

In reality, a high demand for rail systems may require the provision of a longer 

rail line length. This situation results in high construction and maintenance costs of 

providing the rail line. The optimal decision for constructing the rail line is based on the 

fact that the socio-economic gains and benefit associated with the provision of the rail 

line, at short and long runs, exceeds the cost of providing the line. 
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CHAPTER THREE 

RAIL LINE TERMINI:CROSSTOWN CORRIDOR ANALYSIS 

3.1 INTRODUCTION 

A crosstown transportation corridor is basically a route that provides passenger 

travel from one Suburban Region to another Suburban Region through the CBD. Most 

essentially, the corridor accommodates trips destined to places other than the CBD. The 

Canadian Transit Handbook (1980) identified some characteristics of a cross-town 

corridor. The book reported that in comparison to a CBD-Suburban corridor, cross-town 

corridors attracts more trips, serves multiple destinations and therefore provides high level 

of connectivity. Besides, it accommodates trips destined to places other than the CBD and 

provides low level of passenger transfer. The crosstown corridor is however characterized 

by infrequent transit headways in comparison to a CBD-Suburban corridor. 

Vuchic et al ( 1988) described a crosstown line as a line that connects two 

suburban regions and pass through city centre. They explained that since the lines are 

connected their terminal operations take place in Suburban Regions. They emphasized that 

crosstown lines should be planned with two major considerations. First, their two parts 

from centre of the city should have maximum passenger volumes to ensure good 

utilization of offered capacity. Secondly, they should connect Suburban Regions between 

which there is demand for travel. 

This Chapter presents an analytical model which determines the optimal location 

of the termini of a rail line. The relevant transportation costs considered in the analysis 

are user time costs, bus and rail operating costs, rail line costs, rail fleet costs and 



Figure 3.1.1 Proposed Bus and Rail Network System 
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passenger transfer penalty costs. The objective is to minimize the sum of the relevant 

transportation costs associated with the provision of a rail line along a cross-town 

transportation corridor. More particularly, the analysis will consider passenger many to 

many demand travel pattern at both peak and off-peak periods. 

Methods used in the analysis are basically calculus with graphical and numerical 

illustrations. The validity and applicability of the proposed analytical model is investigated 

using the Northwest-South crosstown corridor in Calgary as a case study. Sensitivity test 

is demonstrated to explore the robustness of the proposed model. 

3.2 TRANSIT NETWORK 

Consider a rectangular local road network consisting of two district sets of parallel 

curvilinear roads (x and y) which permits orthogonal passenger movements (i.e. parallel 

and perpendicular to the routes. A LRT line (Figure 3.1.1) is planned to be constructed 

along the transportation corridor from point Ts located in a suburban region to point TE 

located in another suburban region through T (i.e. CBD). Bus services will be provided 

in the corridor sections T0T5 and TETD. The service is assumed to be provided by special 

line haul buses operating along the corridor. The LRT systems and line haul buses will 

be " fed" by feeder buses operating in the rail region TSTE and bus regions ToTs and TETD. 

It is assumed that the line haul buses departing from To and running towards T 

will stop at bug stops located along the corridor to enable passengers to board and alight. 

Upon reaching T, continuing passengers will transfer into the train. The train running 

from Ts to TE will stop at stations located on the haul rail line to allow for boarding and 

alighting of passengers. At TL, continuing passengers will transfer into the line-haul buses. 
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Trips are returned by same transit modes by retracing paths. It should be stressed that all 

assumptions pertaining to operations of feeder buses as well as the nature of passengers' 

accessibility to the transit systems discussed in Section 2.2 will apply in this case. 

3.3 THE MODEL 

Figure 3.1.2 depicts a crosstown transportation corridor TOTSTCTETD of length L 

where To and TD represents the ends of two suburban regions. Ts and TB are, respectively, 

the start and end points of the proposed LRT line of length XR. In particular, To is 

assumed to be the starting chainage, i.e. zero reference point. Tc is the centroidal location 

of the CBD. Xs and XE are, respectively, the distances of Ts and TE measured from To. 

The points Ts and TB are considered as major transfer points. It is required to determine 

analytically the optimal locations of the rail termini Ts and TB. 

TO Ts Tc TE 

Xs 
 F 

XE 

L 

TD 
 0 

Figure. 3.1.2 Dimensions of Proposed Transit Line Haul 

3.4 MANY TO MANY DEMAND FUNCTION 

A detailed discussion on many to many travel demand is presented in Section 2.4. 

All conditions and assumptions employed in the formulation of passenger demand for the 

CBD-Suburban corridor analysis in Chapter 2 are considered for cross-town corridor 
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analysis. More importantly, it is necessary to emphasize that like the formulation of many 

to many demand discussed under CBD-Suburban corridor analysis, the many to many 

demand for a cross-town corridor trips is similarly described by a continuous function 

defined in terms of the difference between the cumulative number of boarding and 

alighting passengers at every point on the haul rail line, i.e. the passenger load crossing 

a point on the line. A typical M(x) profile pertaining to passenger travel along a cross-

town corridor is shown in Figure 3.2.1. 

M(x) 

TO TS TL TE 

Figure 3.2.1 Typical Daily Through Passenger Load: 
Crosstown Transportation Corridor 

Although the analysis is based on the assumption that M(x) function is continuous, 

it is worth mentioning the possibility of discontinuity in M(x) at CBD. Figure 3.2.2 shows 

three cross-town rail lines (i.e. TSTE, TBTF and TOTII) crossing each other at the CBD, T. 
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Figure 3.2.2 Location of Three Transit Haul Lines in an Urban Corridor 
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T0 

M(x) 

TO 

Drop in M(x) 

T5 TC T5 

Figure 3.2.3 Drop in Daily Through Passenger Load at CBD 

Rise in M(x)  

TD 

T5 TE 

Figure 3.2.4 Rise in Daily Through Passenger Load at CBD 
To 
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Consider a train running from Ts to TE through T. Passengers whose trips are destined 

to Tc as well as places not located along the rail section TcTE will alight from train at T. 

This situation will cause an instant drop in M(x) at T (Figure 3.2.3). One can consider 

the situation where more passengers riding on trains operating on the rail lines TBTF. and 

TGTH will transfer at Tc for continuation of their trips along the rail section TCTE, with 

few passengers alighting from train operating along the rail line TSTE at T. This scenario 

will instantly increase M(x) at T (Figure 3.2.4). It should be disclosed that the effect of 

discontinuity in M(x) at Tc will not be considered in the analysis. 

3.5 USER TIME COST 

In this analysis, user time cost is defined as the travel time of passengers riding 

in buses in the regions ToTs and TETD as well as in train in the region TSTE. 

Consideration is given to travel time of feeder buses on routes parallel to the rail centre 

line. However, the travel time of feeder buses on routes perpendicular to the rail centre 

line is neglected since it is generally independent of the rail line length in most cases. 

Also travel time of feeder buses on all routes parallel to the rail centre line, though 

dependent on the rail station locations, is generally independent of the rail line length 

except perhaps at the two rail termini and hence will not be considered in the analysis. 

Besides, the travel time of feeder buses on routes perpendicular to the rail centre line in 

the rail region is neglected as well since that distance is independent of the rail line 

length. 

The bus riding time cost due to passengers travelling by bus in Section T0T in 
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the direction To to Ts is given as: 

XS 
M(x) dx 

(3.1) 

where M(x) is the daily through passenger load at any point x for travel in the direction 

TOTD and YB is the average cost of travel time by feeder bus per passenger per kilometre. 

The travel time cost by train for passenger trips in Section TSTE is: 

Xv 

YRfM() dx 
(3.2) 

where yR is the average cost of travel time by train per passenger pert kilometre. 

The bus riding time cost by passengers travelling in section TETA is given by the relation: 

(3.3) 

If it is assumed that the returned trip traverses back the same route, then the total user 

time cost is given by twice the sum of Equations 3.1, 3.2 and 3.3: 

2 YfM ( x) dx + 2 YRfM(x)  dx + 2 ?JM ( x) dx 
(3.4) 

3.6 RAIL AND BUS OPERATING COSTS 

As in the case of the determination of rail and bus operating costs for a CBD-

Suburban corridor where the passenger travel demand is expressed in terms of passenger-

kilometres (Section 2.6), the rail and bus operating costs considering a crosstown corridor 
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are also determined such that the passenger travel demand is defined in terms of 

passenger-kilometres. 

The total rail and bus operating costs is obtained by replacing YB and YR as given 

by Equation 3.4 by Xn and XR respectively, where ? is the average cost of operating a 

bus per passenger per kilometre and XR is the average cost of operating a train per 

passenger per kilometre. Hence for a return trip, the total rail and bus operating cost is: 

2? 2fM(x)dx + 2?RfM(x)dx + 2? BfM(x)dx 
(3.5) 

3.7 RAIL LINE COST 

The daily rail line cost considering a cross-town haul rail line with Xs and XE as 

the start and end points of the rail line respectively, is given as: 

Py 1, (X ) dX (3.6) 

3.8 PASSENGER TRANSFER PENALTY COST 

Figure 3.3 shows a typical passenger transfer phenomenon associated with 

passenger trips' along a cross-town line haul. A passenger travelling from O to D1 will 

experience one form of transfer from bus to bus at T1 or no transfer depending on the 

configuration of the feeder bus routes. A passengers travelling from 02 to D2 will be 

subjected to two forms of transfers. These are transfer from bus to train at Ts and transfer 



Figure 3.3 Typical Passenger Transfer System: 
Crosstown Transportation Corridor 
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from train to bus at T2. Also, a passenger travelling from 03 to D3 will experience two 

form of transfers: transfer from bus to train at Ts followed by transfer from train to bus 

at TE. A passenger travelling from 04 and D4 will experience two forms of transfers. 

These are transfer from bus to train at T4, followed by another transfer form train to bus 

at T7. 

However, a passenger travelling from 05 to D5 will experience three types of 

transfers: transfer from bus to bus at TD, bus to train at TE and train to bus at T2. A 

passenger travelling from 06 to D6 will be subjected to four types of transfers. These are 

transfer from bus to bus at TD, bus to train at T, train to bus at Ts and bus to bus at T1. 

As explained in Section 2.9, the maximum number of transfer by a passenger for a given 

trip is two. Particularly, the first and second forms of passenger transfers at termini T. 

and T. are considered. Three or more forms of transfers for a given passenger trip are 

unlikely to occur, i.e they will not use the system. Since T5 and TB are assumed to be 

major transfer points, only the transfer of passengers from bus to train and train to bus 

at Ts and T. is considered. The analysis thus pertain to determination of optimal rail line 

length between two adjacent major transfer points Ts and TE. 

Consider passenger trips from bus section TOT passing through to rail section 

TSTE with transfer from bus to train occurring at T. Since the number of passengers 

transferring at Ts is M(X), then the related passenger penalty cost is: 

(3.7) 
7M(X5) 

For trips continuing from rail section TETS to bus section TETD with transfer of passengers 
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occurring at T, the associated transfer penalty cost is: 

(3.8) 

We note that the above includes the passenger going from section T0T to section TETD. 

Assuming that trips are returned by the same modes by retracing paths, the total passenger 

transfer penalty cost is therefore given by: 

(3.9) 
2[?J,M(XE) + y1,M(X3)] 

3.9 RAIL FLEET COST 

Detailed discussion on the formulation of rail fleet cost for a CBD-Suburban 

Corridor considering a passenger many to many demand at afternoon peak period is 

presented in Section 2.8. In particular, the formulation of rail fleet cost for passenger 

travel on a train along a crosstown haul rail line haul is similar to that presented for the 

case of passenger travel in a train along a CBD-Suburban corridor. To this end, all 

assumptions and conditions considered in Section 2.8 are assumed to be applicable to the 

formulation of rail fleet cost for crosstown corridor analysis. Transit ridership data on the 

Brentwood-Anderson LRT line in Calgary during the afternoon peak period is plotted, and 

found to be parabolic in shape (Figure 3.4). 

Consider the case of a train running from Ts to TE through Tc over a rail line of 

length Xk. Assume that the return trip of the train traverses back the same route. Then 

with reference to Equation 2.15, the required daily rail operating cost is given as: 
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(3.10) 
[2(XE - XS)AR + 

Afternoon Peak-Period Travel Demand Profile: 
Brentwood-Anderson LRT Line in Calgary, Alberta 

3:00 pm 
4:00 pm Time (minutes) 5:00 pm 6:00 pm 

Figure 3.4 Variation of Passenger Many to Many Demand with Travel Time 

3.10 OPTIMIZATION 

The total transportation cost ZXS,XE), obtained by summing Equations 3.4, 3.5, 

3.6, 3.9 and 3.10, is thus: 

Z(XS,XE) = 2YfM(x)dx + 2'YR,fM(x)dx + 

+ 2A.B5M(x)dx + 2iM(x)dx + 2 ,(M(x)dx 

Xz 

+ f•L (X) dX + ypM  + 

+(2 (XE-XS)AR+;)?M 

(3.11) 
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Keeping XE constant and differentiating Equation 3.11 with respect to Xs gives: 

= 2yBM(Xs)-2YRM(Xs)+2?EM(Xg)-2'yRM(Xs) 

- YL(XS ) +2yM' (Xs) 2AR?N 

Setting equation 3.11 to zero gives: 

(3.12) 

(3.13) 
2 [ ( y - y) + )M(X) = 7L (Xs) -2-yM' ( X5) + 2ARX.FM 

For minimum global transportation cost to be realised, the second derivative of equation 

3.11 with respect Xs should be positive: 

a2z =2 (Y -'Y,) MV ( X3) YL (Xs) +2y,M" (Xs) >0 ( 3.14) 

Keeping Xs constant and differentiating Equation 3.11 with respect to XE gives: 

az - 

— 2yM(X) - 2 YBM (XE ) + 2?M(XE) - 2XEM(XE) 

+ 'YL(XE) + 2 YPM' (XE) + 2ARXFM' 

for which at the optimum point XE 

(3.15) 

21 (y2-'y) + ( BR ) ]M(XE) = YL(XE) +2'y' (XE) +2ARA,M* ( 3.16) 

Setting the second derivative of Equation 3.11 with respect to XE to be greater than zero 

gives: 

(3.17) 
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3.11 GRAPHICAL ANALYSIS 

This section of the report discusses the determination of the optimal rail line 

length XR using graphical analysis. The central issue is to determine the optimal location 

of the starting point Ts and ending point T. of the rail line (i.e. the optimal Xs and XE) 

using Equations 3.12 and 3.15 respectively. The difference between Xs and XE is the 

optimum rail line length XR. 

3.11.1 DETERMINATION OF X 

Substitution of &y = 2{(y-y)+(2-X)} and 8 = 2AR?RMm into Equations 3.12 and 

3.14, and the neglect of the first and second derivatives of passenger transfer cost, 

modifies Equations 3.12 and 3.14 respectively to: 

Z'(X5) = b.yM(X) - ?L (Xs) - 0 

'V Z" ( X) = L.yM' ( X) - IL I (X3) 

3.12 UNIFORM RAIL LINE COST 

If a uniform .rail line cost is assumed, then IL (Xs)=O. Equations 3.18 and 3.19 

therefore becomes: 

Z' ( X5) = 1.yM(X) - 7L 

Z" ( X5) = LyM' ( X5) 
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The graph of through passenger load M(X) against length of line haul Xs is shown in 

Figure 3.5. M(XS) is zero at To whçre X5=O. M(X) then increases till it attains its 

maximum load ML at the maximum load point Tc where Xs=XL. From T, M(X) 

decreases till it is zero at T where X=L. In particular, Z(X) is minimized if Z'(X5)=O 

and Z"(X)>O. From Equation 3.20.2, Z(Xs)>O only if W(Xs)>O, i.e. M(X) is increasing. 

M(XR) 

£ 

TL 

L 

Figure 3.5 Variation of Daily Through Passenger Load with Line Length 

This occurs in the region O≤Xs≤XL. Conversely, Z(X) is maximized when Z(Xs)=O and 

Z"(X)<0. Z(Xs)<O provided M'(X)<0, i.e. M(XS) is decreasing. This is found to occur 

in the region XL≤XS≤L. In particular, the solutions to Equation 3.20.1 depend on whether 

'YL+O>frYML or YL+O<&YML as explained below. 
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3.12.1 CASE 1: 'IL + 0 > ') L 

It is possible that no solution will exist in this case. Accordingly, the optimal X=O 

(Figure 3.6.1). This possibility increases with the above inequality. Furthermore, since 

then 

M L < 71, 

(3.21.1) 

(3.21.2) 

3.12.2 CASE 2: IL + 0 <I'yML 

In this case, there exist the possibility of obtaining two solutions of X (Figure 

3.6.2). The total cost is locally minimized at X1 since Z"(X1)>O at X1. The optimal X=X. 

However, the cost is maximized locally at X2 since Z"(X2)<O. 

3.12.3 SPECIAL CASE 

Figure 3.6.3 describes the possibility of obtaining four solutions of X. Obviously, 

the total cost is minimized locally at X1 or X3. Under this condition, the total cost at X1 

and X3, i.e. Z(X1) and Z(X3), are determined and compared. The length that gives the 

overall minimum cost is the global optimal. 

3.12.4 CASE 4: GENERAL CASE 

An insight regarding the effect of passenger transfer penalty cost (Equation 3.9) 

on optimal X is explored by graphical analysis (Figure 3.6.4). Consideration of passenger 
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XL L 

Figure 3.6.1 Optimal Line Length (Uniform Line Cost) 

XL X2 L 
Figure 3.6.2 Optimal Line Length (Uniform Line Cost) 
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Figure 3.6.3 Optimal Line Length (Uniform Line Cost) 

X 1 X2 XL X3 X, L 
Figure 3.6.4 Optimal Line Length (Uniform Line Cost) 
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transfer penalty cost changes Equations 3.20.1 and 3.20.2 respectively to: 

Z' (X) = AYM(X") - - 0 + 2y,M' (Xs) 

and 

(3.22.1) 

Z"(X5) = /yM'(X5) + 2y"(x) (3.22.2) 

It is found that Z"(X)>0 if M'(XR)>O and M"(XR)<O. However, Z"(XR)<O provided 

M'(XR)<O and M"(XR)>O. Two solutions of Xs (i.e. X2 and X4) are obtained under this 

condition, and the total cost is found to be minimized locally at X2 (Figure 3.6.4). It is 

observed from Figure 3.6.4 that if transfer penalty cost is not considered, the optimal X 

is X1, which is less than X2. Hence, the effect of transfer penalty cost is to decrease the 

optimal X. 

3.13 NON-UNIFORM RAIL LINE COST 

More generally, ?L(Xs) tends to increase as the line moves from the Suburban 

Region To to the CBD, T. (X5) then decrease as the line moves away from the CBD 

to Suburban Region TD (Figure 3.7); The expressions for Z(Xs) and Z"(X) given by 

Equations 3.18 and 3.19 will apply in this case. Z(X) is minimized if Z(Xs)=O and 

Z"(X)>0. From Equation 3.19, it is observed that Z"(X)>0 provided M'(X)>0 and 

YL(Xs)<O. Thi occur in the region O≤XS≤XL. Z(X) is maximized when Z(Xs)=O and 

Z"(X)<0. Z"(X)<0 if M'(X)<0 and y'(X)>O. This is found to occur in the region 

XL≤XS≤L. It is imperative to remark that the solutions to Equation 3.19 depend on 

whether YL(Xs)+O>YML or YL(XS)+O<&YML as in the following analysis. 
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0 X 1. L 
Figure 3.7 Variation of Rail Line Cost with Line Length 

3.13.1 CASE 1: 7L(Xs) + 0 > AYML 

Under the above condition, it is possible that no solution will exist (Figure 3.8.1). 

Hence, the optimal X5=O. This possibility increases with the above inequality. For 

then: 

Y1, (XS) +9>7ML 

ML < ?(x5) + e 
LY 

(3.23.1) 

(3.23.2) 

3.13.2 CASE 2: YL(XS) + 

It is possible to obtain two solutions of Xs in this case (Figure 3.8.2). The total 

cost is locally minimized at X1 since Z'(X1)>O at X1. Hence the optimal Xs=-XI. However, 
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Figure 3.8.1 Optima! Line Length (Non-Uniform Line Cost) 
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Figure 3.8.3 Optimal Line Length (Non-Uniform Line Cost) 
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Figure 3.8.4 Optimal Line Length (Non-Uniform Line Coat) 
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the total cost is maximized locally at X2 since Z"(X2)<0. 

3.13.3 SPECIAL CASE 

The chances of obtaining four solutions of Xs is illustrated in Figure 3.8.3. In this 

case, the total cost is minimized locally at X1 or X3. The total cost at X1 and X3, i.e. 

Z(X1) and Z(X3), are enumerated and compared. The length that gives the overall 

minimum cost is the global optimal. 

3.13.4 CASE 4: GENERAL CASE 

The effect of passenger transfer penalty cost (Equation 3.9) on the optimal rail line 

length is graphically explained using Figure 3.8.4. By considering passenger transfer 

penalty cost, Equations 3.18 and 3.19 respectively become: 

and 

Z' (X3) = L\yM(X) - YL(Xs) - 9 + 2'yM' ( X5) 

z" (X5) = LyM' ( Xe) - YL (X5) + 2'y14" (X5) 

(3.24.1) 

(3.24.2) 

It is observed from Equation 3.34.2 that Z"(X)>0 if M'(X)>0, YL'(Xs)<O and M"(X)<0. 

However, Z"(X)<0 provided M"(X)<O, 'YL(Xs)>O and M"(X)>0. Two solutions of X 

(i.e. X2 and X4) are obtained under this condition. The total cost is minimized locally at 

X2 (Figure 3.8.4). From Figure 3.8.4, it is observed that if transfer penalty cost is 

neglected, the optimal X is X1, which is less than X2. Thus, the effect of transfer penalty 

cost is to decrease the optimal X. 



121 

3.14 DETERMINATION OF XE 

Substitution of Ay = 2[(yB-R)+(?-A)} and 0 = 2AR?RM* into Equations 3.15 and 

3.17, and the neglect of the first and second derivatives of passenger transfer cost gives: 

Z'(XE) = -AyM(X) + YL(XE ) + e (3.25) 

Z"(XE) = -/ yM'(X) + YLE ) (3.26) 

3.15 UNIFORM RAIL LINE COST 

Under the assumption that the discounted rail line cost per unit length is uniform, 

YL(XE)=O. Hence Equations 3.25 and 3.25 respectively become: 

Z'(XR) = - yM(X) + 

Z (XE) = -L%yM'(X) 

Z(XE) is minimized if Z'(XE)=O and Z"(XE)>O. From Equation 3.27.2, Z"(XE)>O only if 

M'(XE)<O, i.e. M(X) is decreasing. This occur in the region XL≤XE≤L. Conversely, 

Z(XE) is maximized when Z'(X)=O and Z"(XE)<O. Z"(X)<O provided M'(XE)>O, i.e. 

M(XE) is increasing. This is occur in the region O≤XE≤XL. The solutions to Equation 

3.27.1 depend on whether yL+O>LyML or YL+O<AYML as explained as follows. 

3.15.1 CASE 1: ? L + 0 > iyM 

It is possible that no solution will exist under the above condition. Hence the 

optimal XE=O (Figure 3.9.1). This possibility increases with the above inequality. 

Furthermore, since: 
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then: 

+ 8 > AyM 

8 
M 1 L<  L +  

Ay 

(3.28.1) 

(3.28.2) 

3.15.2 CASE 2: YL + 8 <.L\4 L 

There exist the possibility of obtaining two solutions of X. (Figure 3.9.2). The 

total cost is locally minimized at X2 since Z"(X2)>O at X,. The optimal XE=Xi. However, 

the cost is maximized locally at X1 since Z"(X1)<O. 

3.15.3 SPECIAL CASE 

Figure 3.9.3 describes the possibility of obtaining four solutions of X5. The total 

cost is minimized locally at X2 or X4. Under this condition, the total cost at X. and X4, 

i.e. Z(X2) and Z(X4), are determined and compared. The length that gives the overall 

minimum cost is the global optimal. 

3.15.4 CASE 4: GENERAL CASE 

The effect of passenger transfer penalty cost (Equation 3.9) on optimal XE is 

explored by graphical analysis (Figure 3.9.4). Consideration of passenger transfer penalty 

cost changes Equations 3.27.1 and 3.27.2 respectively to: 
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and 

Z' (XE) = -/\'YM(XE) + 'y,+ 0 + 2'y,,M' (XE ) 

Z" (XE) = - 1M' ( XE) + 27f" (XE) 

(3.29.1) 

(3.22.2) 

Z"(XE)>O if M'(XE).<O and M"(XE)>O. However, Z"(XE)<O provided M'(XE)>O and 

M"(XE)<O. Two solutions of XE (i.e. X2 and X4) are obtained under this condition, and 

the total cost is found to he minimized locally at X4 (Figure 3.9.4). It is observed from 

Figure 3.9.4 that if transfer penalty cost is not considered, the optimal XE is X3, which 

is less than X4. Hence, the effect of the transfer penalty cost is to increase the optimal XE. 

3.16 NON-UNIFORM RAIL LINE COST 

The expressions for Z(XE) and Z"(XE) given by Equations 3.25 and 3.26 will 

apply in this case. Z(XE) is minimized if Z(XE)=O and Z"(XE)>O. From Equation 3.26, 

it is found that Z"(X5)>O provided M'(XE)<O and ?L'(XE)>O. This occurs in the region 

XL≤XE≤L. Z(XE) is maximized when Z'(XE)=O and Z"(XE)<O. Z"(XE)<O if M'(XE)<O and 

L(XE)>O. This is occur in the region O≤XE≤XL. The solutions to Equation 3.25 depend 

on whether ?L(XE)+0>A'YML or 'YL(XE)+O</YML as explained below. 

3.16.1 CASE 1: YL(XS) + 0 > AyM1 

In this case, it is possible that no solution will exist (Figure 3.10.1). Hence, the 

optimal XE=O. This possibility increases with the above inequality. For 

IL (XE) + 0 > (3.30.1) 



Figure 3.10.2 Optimal Line Length (Non-Uniform Line Length) 
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Figure 3.10.3 Optimal Line Length (Non-Uniform Line Cost) 
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then: 

ML < YL(XE) +Ay 
e 

(3.30.2) 

3.16.2 CASE 2: YL(XI) + 

It is possible to obtain two solutions of XE under this condition (Figure 3.10.2). 

The total cost is locally minimized at X2 since Z"(X2) >-0 at X2. Hence the optimal XE=X2. 

However, the total cost is maximized locally at X1 since Z"(X1)<0. 

3.16.3 SPECIAL CASE 

The possibility of obtaining four solutions of X. is graphically illustrated in Figure 

3.10.3. In this case, the total cost is minimized locally at X2 or X4. The total cost at X2 

and X4, i.e. Z(X2) and Z(X4), are enumerated and compared. The length that gives the 

overall minimum cost is the global optimal. 

3.16.4 CASE 4: GENERAL CASE 

The effect of passenger transfer penalty cost (Equation 3.9) on the optimal X. is 

graphically explained using Figure 3.8.4. By considering passenger transfer penalty cost, 

Equations 3.25 and 3.26 respectively become: 

Z'(XE) = -L7M(XE ) + YL (XE) + 0 + 2,M'(XE) 

and 

(3.31.1) 
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Z" (XE) = -LyM' ( XE) + 'YL (XE) + 27,M" ( XE) (3.31.2) 

It is observed from Equation 3.31.2 that Z"(X)>0 if M'(XE)<O, YL XE)>O and M"XE)>O. 

However, Z"(XE)<O provided M'(XE)>O, 'YL'(Xn)<O and M"(XE)<O. Two solutions of XE 

(i.e. X2 and X4) are obtained under this condition. The total cost is minimized locally at 

X4 (Figure 3.10.4). From Figure 3.10.4, it is observed that if transfer penalty cost is 

neglected, the optimal X. is X3, which is less than X4. Thus, the effect of the transfer 

penalty cost is to increase the optimal XI.;. 

3.17 MODEL APPLICATION 

An attempt to determine the optimal location of the starting and ending points of 

a àrosstown LRT line using graphically technique presented in Section 3.12 is discussed 

below. The Northwest-South LRT line in Calgary is used as a case study (Figure 3.11). 

A crosstown transportation corridor originating from Crowfoot bus-stop and terminating 

at Shawnessy bus stop is assumed to exist. A 1991-92 daily passenger ridership data is 

shown in Table 3.1. 

Figures 3.12 and 3.13 respectively depict the daily number of passenger boarding 

[b(x)] and alighting {a(x)} at point x on the haul line and the daily cumulative of the 

number of boarding [B(x)] and alighting [A(x)] passengers at point x. The difference 

between the daily cumulative of the number of boarding and alighting passengers [M(x)] 

is shown in Figure 3.14. Table 2.2 shows the values of the unit cost and design 

parameters. 
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Figure 3.11 Northwest-South Transit Line Haul in Calgary, Alberta 



Table 3.1 1991-92 Daily Passenger Demand in Calgary, Alberta 

Sta. No. Sta. Name Dist. (x) b(x) a(x) B(x) A(x) M(x) 

I Crowfoot 0.00 0 0 0 0 0 

2 Dalhousie 4.74 3460 100 3360 100 3260 

3 Brentwood 8.45 2629 200 5989 300 5689 

4 University 9.48 4370 1030 10359 1330 9029 

5 Banff Trail 10.84 3400 100 13759 1430 12329 

6 Lion's Park 11.64 1550 350 15309 1780 13529 

7 SALT 12.73 1970 470 17279 2250 15029 

8 Sunnyside 13.70 1675 680 18954 2930 16024 

9 CBD 16.75 8314 6646 27268 9576 17692 

10 Stampede 18.14 830 1070 28098 10646 17452 

11 Eriton 18.87 72 562 28170 11208 16962 

12 39th Avenue 20.57 250 1070 28420 12278 16142 

13 Chinook 22.90 1556 3340 29976 15618 14358 

14 Heritage 25.10 910 2750 30886 18368 12518 

15 Southland 26.78 1190 3826 32076 22194 9882 

16 Anderson 27.79 300 5049 32376 27243 5133 

17 Canyon 
Meadows 

30.47 200 1940 32576 29183 3393 

18 Midnapore 31.50 100 3493 32676 32676 2000 

19 Shawnessy 33.35 0 0 32676 32676 0 
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Table 3.2 Determination of Optimal Starting Point of a Rail .Line 

Sta. 

No. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

M(X) 

(pass/day) 

M'(X5) 

(pass/km/day) 

&yM(X) 

(S/kin/day) 

?L-2YeM<s)+O 

(S/km/day) 

3360 673 2285 3519 

5689 1429 3868 2975 

9029 2000 6139 2564 

12329 1818 8384 2695 

13529 1427 9199 2977 

15029 1333 10219 3044 

16024 777 10896 3444 

17692 0 12030 4004 

17452 -500 11867 4364 

16962 .554 11534 4403 

16142 .647 10976 4469 

14358 -798 9763 4578 

12518 -1111 8512 4804 

9882 -1517 6719 5096 

5133 -1875 3490 5354 

3393 -2031 2307 5466 

2000 .2356 1360 5700 

0 -2835 0 6045 

+ LFIS of Equation 3.13 

* RHS of Equation 3.13 
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Figure 3.15 Optimal Location of Starting Point of a Cross-town Rail Line 



Table 3.3 Summary of Sensitivity Test Results on X5 

Unit 

Cost 

Parameters 

Original 

Optimal 

xs 

(Ian) 

At -25% Sensitivity Test At +25% Sensitivity Test Sensitivity Rating 

of Unit Cost 

Parameters on 

Optimal X 

Symbol 

Optimal 

X 

(km) 

% Change in length Optimal 

(kin) 

Change 

in length 

Inc. Dec. Inc. Dec. 

ya 6.85 8.48 23.79 5.87 14.31 Sensitive 

YR 6.85 6.30 8.03 7.39 7.88 Sensitive 

XB 6.85 7.83 14.31 5.11 25.40 Highly Sensitive 

XR 6.85 6.83 0.20 6.87 0.30 Insensitive 

YP 6.85 7.17 4.67 6.52 4.82 Sensitive 

XF 6.85 6.68 2.41 6.93 1.26 Insensitive 

YL 6.85 5.53 20.73 7.17 20.58 Very Sensitive 

M(X) 6.85 7.53 9.92 8.26 10.96 Sensitive 



Table 3.4 Summary of Sensitivity Test Results on Daily Transportation Cost 

Unit 

Cost 

Parameters 

Original 

Optimal 

Cost 

(5) 

At -25% Sensitivity Test At +25% Sensitivity Test Sensitivity Rating 

of Unit Cost 

Parameters on 

Optimal Cost 

Symbol 

Optimal 

Cost 

(5) 

% Change 

in Cost 

Optimal 

Cost 

Cs) 

% Change 

in Cost 

Inc. Dec. Inc. Dec. 

YB 233,221 206951.00 11.26 206,951 11.26 Sensitive 

YR 233,221 229,593.00 1.55 291,923 25.17 Sensitive 

XB 233,221 245,995.00 5.48 222,297 0.40 Sensitive 

XR 233,221 232769 0.19 232,769 4.68 Insensitive 

YP 233,221 221705 4.94 221,007 5.24 Sensitive 

233,221 232436 0.33 232,436 0.34 Insensitive 

YL 233,221 231007 0.95 239,952 2.88 Sensitive 

M(X5) 233,221 198776 14.76 274,338 17.63 Sensitive 
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Table 3.5 Determination of Optimal Ending Point of a Rail Line 

Sta. 

No. 

M(X) 

(pass/day) 

M'(XE) 

(pass/kin/day) 

yM(X) * 

(S/kin/day) (S/km/day) 

2 3360 673 2285 4488 

3 5689 1429 3868 5032 

4 9029 2000 6139 5444 

5 12329 1818 8384 5313 

6 13529 1429 9199 5031 

7 5029 1333 10219 4963 

8 16024 777 10896 4563 

9 17692 0 12030 4004 

12 17452 .500 11867 3644 

11 16962 -554 11534 3605 

12 16142 -647 10976 3538 

13 14358 -798 9763 3429 

14 12518 -1111 8512 3204 

15 9882 -1517 6719 2911 

16 5133 -1875 3490 2654 

17 3393 -2031 2307 2541 

18 2000 -2355 1360 2307 

19 0 -2835 0 1963 

+ LIIS of Equation 3.16 

* RHS of Equation 3.16 
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Table 3.6 Summary of Sensitivity Test Results on Optimal XE 

Unit 

Cost 

Parameters 

Original 

Optimal 

Length 

(kin) 

At -25% Sensitivity Test At •25% Sensitivity Test Sensitivity Rating of 

Unit Cost Parameters 

on Optimal XE 

Symbols 

Optimal 

Length 

(kin) 

% Change in Length 

(kin) 

Optimal 

Length 

(kin) 

% Change in Length 

(kin) 

Inc. Dec. Inc. Dec. 

Y1, 29.67 28.04 5.49 30.43 2.56 Sensitive 

YR 29.67 30.43 2.56 29.24 1.44 Sensitive 

Xe 29.67 28.69 3.30 30.43 2.56 Sensitive 

XE 29.67 30.00 1.11 29.56 0.7 Insensitive 

Xr 29.67 30.43 2.56 30.43 2.56 Insensitive 

yp 29.67 29.02 2.19 30.43 2.56 Sensitive 

YL 29.67 31.53 6.36 27.61 6.90 Sensitive 

M(XE) 29.67 25.62 13.65 32.89 10.85 Sensitive 
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3.17.1 OPTIMAL X 

The computation of the left hand side (LHS) and right hand side (RHS) of 

Equation 3.13 using the demand data shown in Table 3.1 and the values of the unit cost 

parameters given in Tables 2.2 is shown in Table 3.2. The calculated values (Columns 5 

and 6, Table 3.2) are plotted against the rail line length X (Figure 3.15). The optimal X 

is found to be 6.85km. Hence the starting point of the rail line should be located at 

6.85km measured from Crowfoot Station. A computer program (Appendix II) developed 

using Equation 3.14 gives the value of the optimal Xs as 6.85km. This brings the optimal 

rail terminal close to Northland Mall. Hence, the existing Brentwood Station is found to 

be located at a distance which is approximately 1.60km less the optimal terminal. 

Sensitivity analysis is conducted to investigate the parameters that are sensitive to 

the optimal location of the starting point of the rail line. As usual, the test is conducted 

at ± 25% of the central values of the parameters given in Table 2.2. The grand summary 

of the sensitivity test results is shown in Table 3.3. It is found that the optimal Xs is 

sensitive to the parameters ye, '. yL, 'ye, X. and M(X). However, the optimal Xs is 

insensitive to the parameters XF and ?k. 

Furthermore, the sensitivity of the unit cost parameters on the optimal daily total 

cost is tested under similar conditions discussed above. Table 3.4 gives the overall 

summary of the test. It is also found that the optimal daily total cost of locating the rail 

terminal at X=6.85km is sensitive to the parameters YB' IR' YL' y, XB and M(XR). The 

daily total cost is however, insensitive to Xr. and AR. 



143 

3.17.2 OPTIMAL XE 

Columns 6 and 7 of Table 3.5 respectively present the evaluation of the left hand 

side (LHS) and right hand side (LHS) of Equation 3.16 using the M(x) data given in 

column 6 of Tables 3.1 as well as the values of the parameters given in Tables 2.3. These 

computed values are plotted against the rail line length XE (Figure 3.16). The optimal XE 

is 29.67km. A computer program (Appendix II) developed using Equation 3.16 gives the 

value of the optimal XE as 29.67km. This brings the optimal ending point of the rail line 

near Canyon Meadows. In particular, the optimal XE is approximately 1.88km beyond the 

existing terminal at Anderson Station, which is located at chainage 27.79km. The 

difference between Xs and XE is the required optimal rail line length XR, which is found 

to be approximately 22.82km. The optimal line length is found to be 3.48km longer than 

the existing LRT line of length 19.34km. 

The sensitiveness of the unit cost parameters on XE is explored as well. Table 3.6 

presents the overall summary of the sensitivity test. The optimal XE is determined to be 

sensitive to the parameters Yfl iR yL, yp, XB and M(XR). However, the optimal XE is 

insensitive to X. and XE. 

In concluding this section, it is imperative to remark that an optimal Xs of value 

8.446km (i.e. at Brentwood Station) is however obtained if values of YB=°.20' 7R=°. 19, 

X=O.15, XR=O.lO, XF=S.SO, i,=0.19 and YL=395° are independently used. It is found that 

low values of optimal Xs are obtained if unreasonably high values of YB' XB and yp are 

used individually. Contrarily, high values of X are obtained if considerably high values 

of YE' X, XF and y are separately used. Also, an optimal XE of value 27.79km (i.e. at 
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Anderson Station) is obtained if values of YD=° 2O' YR- °.20' XB=O.15, ?=O.10, ? 5.5O, 

y=0.19 and YL=395° are separately used. It is found that no optimal XE is obtained if 

considerably high values of 'y, XR, XF and YL are individually considered. Besides, high 

positive values of XE are obtained if very high values of yD, AS and are individually 

used in the analysis. 

The analysis indicates that the optimal X decreases with increasing values of YB' 

X. and and vice versa. High values of these parameters will cause an increase in 

demand [i.e M(X)] for rail systems. This requires optimal Xs to be shorter. The converse 

is true. However, the optimal Xs is found to increase with increasing values of YR' R' XF 

and 'YL and vice versa. More particularly, high values of these parameters will result in a 

decrease in rail demand, causing optimal X5 to be longer. The converse is also true. 

It is also observed that the optimal XE increases with increasing values of YB' 'Ya 

and yp and vice versa. High values of these parameters will cause an increase in demand 

[i.e M(XE)] for rail systems. Hence a longer optimal XE is required. The optimal XE is, 

however, found to decrease with increasing values of YR' ?, XF and YL' and vice versa. 

Thus high values of these parameters will cause rail demand to decrease, and a 

corresponding decrease in optimal XE. The opposite is also true. From the foregoing 

observation, it is concluded that high values YB' XB and yp will results in high demand for 

rail systems, aiid consequently the provision of a longer cross-town rail line, and vice 

versa. However, high values of the parameters YR. XR, XF and YL will cause low rail 

demand, resulting in the provision of a shorter rail line length. The reverse is also true. 



145 

3.18 MODEL EXTENSION 

The model presented above can be extended to investigate the optimal termini of 

a rail line length. A slightly different transit network is considered in this case. A 

rectangular local road network consisting of two distinct sets of parallel curvilinear 

roads(x and y) is considered. An existing cross-town haul bus line CS, which is assumed 

to be parallel to the x-roads (Figure 3.17), is to be replaced by a haul rail line TsTE 

(Figure 3.18). The rail line TCTR, to be located closely parallel to the existing bus line 

haul, will emanate from a point T located in the suburban region to point TB located in 

another suburban region but not necessary to the ends of the suburban regions at To and 

TD. The rail line will pass through the point Tc located at the CBD. However, feeder bus 

service will be provided to the rail line from all areas, including those beyond the rail 

termini. 

All assumptions regarding the operations of trains and feeder buses as well as 

nature of passenger accessibility to the transit systems discussed in Section 3.2 will apply 

in this case. It is further assumed that feeder buses will use the haul bus lines TOTA and 

TDTC to access the rail termini Ts and T. respectively. Besides, all assumptions considered 

in the formulation of user time cost, rail and bus operating costs, rail line cost and rail 

fleet cost will be considered in this case. Hence, the expressions for user time cost, rail 

and bus operating costs, rail line cost and rail fleet cost given by Equations 3.4, 3.5, 3.6 

and 3.9 respectively, will apply in this case. 

However, the passenger transfer penalty cost (Equation 3.10) will not apply in this 

case. The reason is due to the different operating strategies of feeder buses assumed in 



Figure 3.17 Existing Bus Network System 



Figure 3.18 Proposed Bus and Rail Network System 



Figure 3.19 Typical Passenger Transfer System: 
Crosstown Transportation Corridor 
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the formulating the proposed model. An assessment of the model indicates that the 

introduction of rail line will generate an additional transfer for all passengers boarding the 

train. The total number of passengers boarding the train is therefore considered in 

formulating the related transfer penalty cost. An analysis to determine the passenger 

transfer penalty cost under this scenario is presented below. 

It is observed from Figure 3.19 that a passenger travelling from 01 to D1 will 

experience one type of transfer from bus to bus at T1 or no transfer depending on the 

configuration of the bus routes. A passenger travelling from 02 to D. will experience two 

types of transfer. These are transfer from bus to train at Ts and train to bus at T2. Also, 

a passenger travelling from 03 to D3 will be subjected to two types of transfers. These 

consist of transfer from bus to train at T5 and then transfer from train to bus at TE. 

Moreover, a passenger travelling from 04 to D4 will experience two types of transfers; 

transfer from bus to train at Tr, followed by transfer from train to bus at T5. Relating to 

the above, it is found that with bus network only (Figure 3.17) at most one transfer is 

required. An introduction of a rail line (Figure 3.18) will result in an additional transfer 

is required for all passengers boarding the train. The relevant transfer penalty cost is 

expressed as: 

Xv 
2 pfB(x) dx 

XS 

(3.32) 

3.19 OPTIMIZATION 

The overall transportation cost is obtained by summing Equations 3.4, 3.5, 3.6, 

3.10 and 3.32: 
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Z(x) = 2 B5M(x)dx + 2 RfM(x)dx 

+ 22 BfM(x)dx + 2? RfM(x)dx 

+ fy, (x) dx + 2fB(x)dx 

+ [2 ( XE Xs)AR+t gIAM* 

+ 2Y3fM(x)dx 

+ 28fM(x)dx ( 333) 

Keeping XE constant and differentiating Equation 3.33 with respect to Xs gives: 

az = 

- YL(Xs) -2yB(X) _2AR?M* 

Setting Equation 3.34 to zero gives: 

(3.34) 

= y(Xg)+2ypB(X$)+2AR?M* ( 3.35) 

The minimum transportation cost is obtained by taking the second derivative of Equation 

3.33 with respect X. This gives: 

a2z = 2 
[( 1B 'YR ) IM' (X) -2yB(X5) YL (Xs) > .36) 

Keeping Xs constant and differentiating Equation 3.33 with respect to X. gives: 

az - 

- 2 YRM(XE) - 2YBM(XE) + 2? RIvI(XE) - 2XBM(XE) 

+ YLE) + 2YpB(XE) + 2AR?.FM* 

Hence setting Equation 3.37 to zero gives: 

(3.37) 

= (3.38) 
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For minimum transportation cost, the second derivative of Equation 3.26 with respect to 

XE should be positive. Thus: 

ax  2 
- 2 [( YR-YB) +( AR-XB)]M'(XE) +YL(XE) +2YPB'(XE) > 0 

(3.39) 

3.20 MODEL APPLICATION 

The validity and applicability of the proposed model is investigated using the 

existing Northwest-South LRT line in Calgary, Alberta. The transit ridership data and the 

values of the unit cost parameters given respectively in Tables 3.1 and 2.7 are used in the 

test. The computation of the LI-IS and RHS of Equation 3.35 are shown respectively at 

Columns 6 and 7 of Table 3.7. By plotting these values against the rail line length (Figure 

3.20), an optimal Xs value of 0.00km is obtained. Moreover, a computer program 

(Appendix III) developed using Equation 3.35 gives the optimal Xs as 0.00km. 

Furthermore, the computation of the LHS and RHS of Equation 3.38 is shown in Table 

3.8. The values are plotted against XE (Figure 3.21). A zero optimal value of X. is 

obtained. A computer program (Appendix) developed using Equation 3.38 gives the 

optimal X. as zero as well. 

The model extension revealed that no optimal Xs and X. exist using Calgary as 

a case study. However, it is possible to obtain positive values of Xs and XE under some 

conditions. For instance, using y8=0.81, YR=°.69 and y=0.01 separately, optimal Xs of 

values 4.78km, 4.78km and 1.52km are respectively obtained. Furthermore, by increasing 

the values of M(x) as given in Column 8 of Table 3.1 by 1000%, an optimal Xs of value 

0.65km is obtained. Also, using y=2.43, 'YR=2.3° and y=0.Ol independently, optimal XE 
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Table 3.7 Determination of Optimal Starting Point of a Rail Line 

Sta. 

No. 

M(X5) 

(pass/day) 

MI(Xs) 

(pass/km/day) 

AM(X) * 

(S/km/day) 

YL.2YPB (xS)+ e 

(S/km/day) 

2 3360 673 2284 5616 

3 5689 1429 3868 6878 

4 9029 2000 6139 8976 

5 12329 1818 8384 10608 

6 13529 1427 9199 11352 

7 15029 1333 10219 12298 

8 16024 777 108896 13102 

9 17692 0 12030 17093 

10 17452 -500 11867 17491 

11 16962 -554 11534 17526 

12 16142 .647 10976 17646 

13 14358 .798 9763 18393 

14 12518 -1111 8512 18829 

15 9882 -1517 6719 19401 

16 5133 -1875 3490 19545 

17 3393 -2031 2307 19641 

18 2000 -2356 1360 19689 

19 0 -2835 0 19689 

+ LHS of Equation 3.29 

* RHS of Equation 3.29 



OPTIMAL STARTING POINT OF RAIL LINE 

CROWFOOT-SHAWNESSY LINE HAUL IN CALGARY, ALBERTA 

RHS of Equation 3.35 

5 10 15 20 

LHS of Equation 3.35 

25 30 

Rail Line Length (km) 

Figure 3.20 Optimal Location of Starting Point of a Cross-town Rail Line 
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Table 3.8 Determination of Optimal Ending Point of a Rail Line 

Sta. 

No. 

M(XE) 

(pass/day) 

M'(XE) 

(pass/km/day) 

yM(XE) + 

(S/km/day) 

IL+2?PB(XE)+0 

(S/kin/day) 

2 3360 673 1478 7030 

3 5689 1429 2503 9554 

4 9029 2000 6139 13948 

5 12329 1818 8383 17212 

6 13529 1429 9199 18700 

7 15029 1333 10219 20591 

8 16024 777 10896 22199 

9 17692 0 12030 30181 

12 17452 -500 11867 . 30978 

11 16962 -554 11534 31047 

12 16142 -647 10296 31287 

13 14358 -798 9763 32781 

14 12518 -1111 . 8512 33654 

15 9882 -1517 6719 34797 

16 5133 -1875 3490 35085 

17 3393 .2031 2307 35277 

18 2000 -2355 1360 35373 

19 0 -2835 0 35373 

+ LHS of Equation 3.33 

* RHS of Equation 3.33 



OPTIMAL ENDING POINT OF RAIL LINE 
CROWFOOT-SHAWNESSY LINE HAUL IN CALGARY, ALBERTA 

5 10 15 20 25 30 

Rail Line Length (km) 

Figure 3.21 Optimal Location of Ending Point of a Cross-town Rail Line 
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of values 27.89km, 27.78km and 28.00km are obtained. respectively. Besides, by 

increasing the values of M(x) by 1000%, optimal X. of value 27.78km is obtained. 
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CHAPTER FOUR 

LOCATION OF RING RAIL LINE 

4.1 INTRODUCTION 

Many North American cities have inherited a rail network which is basically 

radial. The radial rail network provided a socio-economic benefit to individual passengers 

and the society as a whole (Yeates et al,1980). However, factors such as suburbanization 

and decentralization of socio-economic activities have resulted in the reduction of 

passenger travel from suburban regions towards the CBD along radial rail lines in recent 

years (Vuchic et al, 1968). Contrarily, passenger trips not oriented towards the CBD but 

rather connecting suburban regions in some cities are reported to increase at high rate 

(Potter, 1992). For such cities, it is necessary to consider providing some ring rail lines 

so as to accommodate and improve the Suburban-Suburban travel along the ring rail line. 

However, the effective operation of a rail transit system on a ring rail line is 

chiefly dependent on the size of the entire urban. area, degree of dispersion of residences 

and most importantly, the density of passenger travel demand. Typically, ring rail 

facilities are attractive in large urban areas with a high concentration of passenger transit 

demand spread over a large area. However, such high capital intensive facilities are less 

attractive where passenger demand is scattered over a large area at low densities (Clarens 

et a!, 1975). 

Some transportation planners (Abraham et al, 1993) suggested the provision of 

several ring roads on which transit buses are operated as an effective measure of 

improving passenger trips linking suburban regions in a large metropolitan area. They 
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argued that a relatively low initial capital investment is required to construct a ring road 

as compared to the provision of a ring rail line of the same radius. Although their 

arguments is sensible, one cannot rule out the possibility of occurrence of high vehicular 

congestion and associated traffic problems on the road network that will make the bus 

routes unattractive. However, exclusive ring bus lanes can be analyzed in a manner very 

similar to that for a ring rail line. Abene ( 1992) cited Ghaha as one of the countries 

experiencing very serious transportation problems. Other countries like Nigeria, Nepal and 

India are currently facing atrocious traffic problems which cannot be solved even by the 

application of existing sophisticated Traffic Demand Management (TDM) tools.The 

introduction of an efficiently integrated bus and rail transit systems to be operated on a 

combined radial and ring rail network, can be ideal solution to the complex transportation 

problems prevailing in these countries: 

Ironically, rail infrastructure projects require a high initial capital upfront, and 

public funds needed to construct the rail and other supporting facilities are very scarce. 

Accordingly, the construction of several ring rail lines might not be plausible in the 

interim. However, the provision of one or two well-placed ring rail lines will, to a very 

large extent, improve passenger travel especially along transportation corridors connecting 

suburban regions and generate tremendous benefits in the not too distant future. This line 

of reasoning leads us to the concept of developing an optimization model to analytically 

investigate the location of a single ring rail line based on some reasonable and realistic 

assumptions. 

A circumferential transportation corridor is described as a route that accommodates 
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most trips destined to places located in the Suburban Regions other than the CBD. The 

corridor serves multiple destinations and hence provides a high level of connectivity. It 

is, however, characterized by uncoordinated transfer. In some cases, transfer can be 

lengthy and inconvenient so that during the off-peak periods, the resistance to travel using 

a circumferential route may be high (Canadian Transit Handbook, 1980). The benefits 

associated with the provision of a circumferential route include savings in user riding time 

cost, savings in systems operating costs and reduction in environmental pollution (Potter, 

1992). 

Vuchic et al ( 1988) described a circumferential line as a line that serves non-

centrally oriented trips, but rather trips in circular form. They highlighted the important 

role played by ring lines in an urban network. In addition to serving circular trips, they 

connect radial lines in the city, shortening trips among them, and thus distribute their trips 

to various points in the city. Due to their multiple purpose, ring lines often have rather 

even passenger loadings along their length and during different periods of day. This 

results in high utilization of capacity and makes operations economical. They also 

identified some operational problems of ring lines. The most serious is the absence of 

terminal times, which prevents recovery of delays and reduces their reliability. Besides, 

their speeds can be changed only in certain increments, due to the fixed ratio between 

headway and cycle time. 

An analytical model designed to determine the optimal location of a ring rail line 

in a large densely populated metropolitan region is presented in this chapter. Precisely, 

the analysis involve the determination of optimal radius of a proposed ring rail line with 



160 

the objective of minimizing user costs and rail line costs. More essentially, the analysis 

will consider passenger demand travel pattern at both peak and off-peak periods. The 

validity and applicability of the model is explored using Calgary, Alberta as a case study. 

Sensitivity analysis is also conducted to test the robustness of the proposed model. 

4.2 DECISION CRITERIA ASSOCIATED WITH DETERMINATION OF 

OPTIMAL LOCATION OF A RING RAIL LINE 

The concerns underlying the provision of a ring rail line in a large metropolitan 

area, which is characterized by high and uniform passenger demand, are socio-economic 

related. To this end, constructive decisions have to be considered and agreed upon by all 

decision-making bodies (including transportation planners, politicians and the general 

public as a whole) before the final approval for provision of a ring rail line is granted. 

Some important decision criteria which are of great interest so far as the provision of a 

ring rail line is concerned are discussed below. These decisions consist of the 

consideration of concentration and density of passenger travel demand in a given zone, 

rail line cost, user total travel time, total systems operating cost and more perhaps 

passenger transfer at major transit transfer points. 

4.2.1 CONCENTRATION OF PASSENGER TRAVEL DEMAND 

A discussion on the passenger travel demand as the most important determinant 

that will justify the provision of a rail line in an urban transportation corridor is given in 

Section 2.11. More essentially, concerning the provision of a ring rail line, the locations 

of high concentration and density of passenger travel demand at the suburban regions will 

govern the location of the ring rail line that will connect the regions. Consider a large 
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Figure 4.1 Optimal Location of Ring Rail Line Based on Passenger Demand Density 
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metropolitan area with a relatively small CBD at which, several radial rail lines are 

centred (Figure 4. 1), and assume that passenger demand varies along the radial rail lines. 

In reality, there will be locations or zones on the radials where passenger demand is 

highly concentrated. 

The generation of high concentration of passenger demand is mainly due to the 

development of high residential settlements and occurrences of high socio-economic 

activities within the suburban regions. These factors will lead to the growth and expansion 

of the suburban regions as well as the interaction of socio-economic activities between 

the suburban regions. In such a case, it is appropriate to locate a i'ing line to connect the 

regions of high concentration of passenger demand with the aim of improving passenger 

trips between the suburban regions. Moreover, depending on the locations of the 

passenger travel demand densities, it is appropriate to construct two or three ring rail lines 

(Figure 4.2) in order to meet the ultimate objective of providing a more efficient means 

of transportation services to the general public. 

4.2.2 RAIL LINE COST 

If the location of a circumferential rail line is based on the minimization of 

construction and maintenance of the ring rail line and stations costs, then obviously the 

concern will be to locate the rail line with a minimum radius R,, close to the 

neighbourhood of the CBD (ring 1, Figure 4.3). Ironically, whilst such a ring rail line is 

most likely to favour passenger trips in the vicinity of the CBD, a large portion of trips 

originating and destinating at an appreciable distance away from the CBD will not be 

satisfied. In such a case, it is most likely that the economic benefits will not be 
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maximized even in a long period of time. 

Conversely, the location of the ring rail line of maximum radius R. at the 

outermost areas of the metropolitan area (ring 3) will require a high initial capital upfront 

for which funds required for construction might not be available sooner or later. Besides 

it might only favour passenger trips originating and destinaling in the outermost regions. 

Figure 4.3 Optimal Location of Ring Rail Line 

For that matter, it is appropriate to locate the rail line at average radius R 0 (ring 2) 

measured from To, where R1,0 is approximately the average value of R, and R. 

4.2.3 SYSTEMS OPERATING COSTS 

Operating cost is one of the important cost elements that should be given 
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prominence when the planning for provision of a rail line is desired. In this context, 

systems operating cost include bus and rail fleet costs and bus and rail operating costs. 

Generally, transit operators will prefer to run transit systems haul lines which will 

minimize their total operating costs. Accordingly, the operations of trains on relatively 

short haul line (ring 1) will obviously meet this objective. The question then arise as to 

whether the operation of trains on ring 1 will generate the funds adequately enough to 

maintain the existing transit systems as well as to purchase new bus and rail vehicles, if 

and when necessary. 

The crux of the matter is that operating trains on ring 1 will not generate enough 

passenger demand to meet the ever-increasing systems operating costs. For the same 

reasons, it is economically unjustifiable to provide ring 3. However, the provision of ring 

2 is most likely to generate high passenger dem and and associated benefits and funds 

needed to sustain the operations of the transit system and, more perhaps, to purchase new 

vehicles. 

4.2.4 PASSENGER TRANSFER PENALTY COST 

One major factor affecting passenger travel along radial lines connected at CBD 

(Figure 4.2) is passenger transfer from one mode to a similar or dissimilar mode (TRRL, 

1990). This problem, to a very large extent, has tremendously caused a decline of 

passenger demand for transit systems (Doornenbal et al, 1985). Hence, an attempt to 

develop a ring rail line model basically to promote and enhance passenger trips 

connecting suburban areas is a step in the iight. direction. 

The provision of a ring rail line will enhance passenger trips linking suburban 
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regions by reducing the average total travel time of passengers. Some of the anticipated 

benefits as a result will include attraction of private automobile users to the usage of 

public transit systems, production of high passenger demand and generation of high 

revenue needed for the sustenance and improvement of the overall transit services in the 

entire metropolitan area. 

4.3 THE MODEL 

An idealized metropolitan region (Figure 4.4) with a relatively small CBD located 

around To, on which several existing radial railway lines are centred, is considered. The 

regional highway grid is assumed to be radiocentric and centred at T. as well. However, 

the local roads are assumed to consist of a rectangular grid network. Both the radiocentric 

and rectangular roads are assumed to be shared by feeder buses and other class of 

vehicles. Rail service is provided between the CBD and stations in the residential zones. 

It is assumed that trains stops at every station to allow passengers to board and alight 

from the train. 

In addition, feeder bus services are provided to the rail line from all residential 

zones. It is postulated that each residential zone is served exclusively by feeder buses. 

The feeder buses stops at bus stops located in the zones to allow for boarding and 

alighting of passenger from the buses. It is particularly assumed that passenger trips 

originating at any point in the residential zones are served by feeder buses to a selected 

station from which rail service is available. The points T. is assumed to be a central 

terminal for operations of LRT systems on the radial haul rail lines. Besides, To is 

assumed to be a major transfer point. 
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Figure 4.4 An Idealised Metropolitan Region 
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Trains operating on ring rail line are assumed to stop at stations on the haul line 

to allow for boarding and alighting of passengers at the stations. These trains are fed by 

feeder buses as well. In particular, the station S1 is assumed to be the central terminus for 

operations of LRT systems on the ring rail line. It is assumed that feeder buses will 

travel at a uniform speed. Trains are assumed to travel at constant speed as well. Since 

passengers can board and alight the transit vehicles at every transit stops and stations, the 

maximum number of passengers on the vehicle at any space or time is assumed to be less 

than or equal to the vehicle capacity. 

Also trains are subjected to the same operating conditions. Bus and rail fleet as 

well as the operating costs are not considered in the analysis since the transit systems are 

assumed to be existing. The cost of constructing the radial rail lines is not considered 

since the radial lines are existing. However, the cost of constructing the ring rail line is 

considered in the analysis. The rail fleet cost and the cost of dispatching trains on the ring 

rail line are considered. 

Figure 4.5 shows a circular city S4S5S6 of uniform radius b and centre at To. TOT,, 

T0T2 and T0T3 are radial rail lines, all connected at To. S1S2S3 is a ring rail line of radius 

R and centre at To. 01 is the origin point of a passenger located at the right side of the 

radial line TOT, and outside the ring rail line. Passenger 01 can access the ring rail line 

by two ways. These consist riding in a train from T4 to S or access the ring rail line at 

T4. 02 is the origin point of a passenger located at the left side of the line TOT, and 

outside the ring rail line. Similarly, passenger 02 has two ways of accessing the ring rail 

line. These are riding in train from T4 to S1 and accessing the train at T5. 03 is the origin 
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point of passenger located at the left side of the line TOT, and inside the ring rail line. 03 

can access the ring rail line by riding in train from T6 to S1, or accessing the ring rail line 

at T5. 04 is the origin point of a passenger located at the right side of line TOT, and inside 

the ring. 04 can access the ring either at T7 or by riding in train from T6 to S1. 

D1 is the destination point of a passenger located at the right side of radial rail line 

T0T3 and outside the ring rail line. A passenger originating at 0, 02, 03 or 04 will get 

to D1 by two ways. These consist of egressing the ring rail line haul either at T11 or riding 

in train from S3 to T8. D2 is the destination point of a passenger located at the left side 

of the radial line T0T3 and outside the ring rail line. A passenger from 0, 02, 03 or 04 

will get to D2 by egressing the train at T9 or by riding in train from S3 to T8. D3, the 

destination point of a passenger located at the left side of the radial line T0T3 and inside 

the ring rail line, will be reached by a passenger from 0, 02, 03 and 04 by either 

egressing the train at T9 or riding in train from S3 to T10. D4 is the destination point of a 

passenger located at the right side of the radial line T0T3 and inside the ring rail line. A 

passenger from 0, 02, 03 and 04 will get to D4 either by egressing the train at T11 or 

by riding in train from S3 to T10. 

It is observed from the above passenger travel patterns that sixteen passenger trip 

types will be obtained. A model that accounts for all of the trip scenarios will be much 

too detailed, and more perhaps, result in more complexities. For mathematical simplicity, 

consideration will be given to passenger trips originating at both inside and outside the 

ring and destinating at both inside or outside the ring. 
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4.4 TRIP DEMAND DENSITY 

Passenger many to many demand is considered in the analytical determination of 

the optimal location of a ring rail line within a large metropolitan area. Two types of 

transit trip demand densities will be considered in the analysis. These are uniform and 

non-uniform demand densities. With regard to uniform demand density, the origin and 

destination points of passengers are assumed to be uniformly spread over the entire 

metropolitan region. The passenger many to many demand is uniform in space and 

therefore independent of polar radius R and angle 9. The symbol M, with units expressed 

in passengers per square kilometre, will be used to highlight the fact that the daily 

passenger demand density as used in the model formulation is constant and independent 

of R and 0. 

Concerning the non-uniform demand density, it is assumed that the origin and 

destination points of passengers are unevenly spread over the entire region. The demand 

is therefore variable in space, and is a function of location (R,0). The notation M(R,9) is 

used to represent variable trip demand density. 

4.5 ACCESSIBILITY COSTS 

Transportation Planners have frequently used the concept of accessibility, mainly 

in connection with trips generation models and within the context of evaluation of 

transportation systems. Accessibility has played a major role in spatial economic theories 

of cities. It has been considered as a key role in the determination of urban densities, 

land-use and effective operation of transit systems. Attention has been focused on the role 
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of accessibility in urban interaction and trip demand models. Unfortunately, the term is 

rarely defined, let alone measured in quantifiable terms. Consequently, the conceptual 

nature of accessibility results in difficulties in evolving a truly satisfactory measure for 

it. This in turn complicates its use as an explanatory variable for transportation planning. 

In his paper entitled "The Role of Accessibility in Basic Transportation Choice 

Behaviour", Burns et al ( 1976) discussed that accessibility measures reflect the level of 

service provided by transportation systems to various locations. More importantly, they 

discussed that accessibility to public transit systems by transit riders is a very important 

factor which affect patronage of public transit systems. This explains why it is given 

much prominence in several literature related to urban transit planning. In this analysis, 

it is particularly assumed that passengers will access the ring rail line using the existing 

rail lines. 

4.6 UNIFORM DEMAND ANALYSIS 

4.6.1 MINIMIZATION OF USER COSTS 

Suppose a ring rail line of radius R and centre at To (Figure 4.5) is to be located 

within the metropolitan region. It is required to determine the optimal radius of a ring rail 

line with the objective of minimizing the total accessibility (user) costs considering a 

daily uniform demand density M. The user cost include walking (access and egress) cost, 

waiting time cost, riding time cost and transfer penalty cost. Consider a passenger whose 

origin point (r,9) is located inside the ring rail line (Figure 4.6). The elemental area AA 

of the passenger origin point. (r,O) is rdrd8. By considering the locations of all passengers 

residing inside the ring rail line in the entire polar region, the daily cost of accessing the 
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ring rail line is: 

2n R 

YAMff(R-r)rdrd9 (4.1) 

where is the cost of accessing the ring rail line per passenger per kilometre. 

The daily cost of accessing the ring rail line by all passengers whose origin points 

are located outside the ring rail line is given by the expression: 

2ltb 

?,Mff(r-R)rdrde (4.2) 

The daily total access cost is given by the sum of Equations 4.1 and 4.2, which reduces 

to: 

2 YA M 1 R Rb2 
- 2-

(4.3) 

All passengers egressing the ring rail line haul will get to their destination points which 

are located at both inside and outside the ring rail line. The required total user access cost 

[Z(R)] is obtained by doubling Equation 4.3. Hence: 

Z(R) = 41ryM[ R 3 R b2 . - (4.4) 

Differentiating Equation 4.4 with respect to R and setting the resulting expression to zero 

gives the required optimum radius (R0) of the ring rail line that minimizes access cost as: 

R b 
0 (4.5) 

It is concluded from Equation 4.5 that the optimal radius is greater than half of the city 
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radius. Hence the optimal location of the ring rail line is found to be more closer to the 

city boundaries. For minimum total cost to be obtained, the second derivative of Equation 

4.4 with respect to R should be positive. Thus: 

Z"(R) = 81tR'YAM> 0 (4.6) 

4.6.2 MINIMIZATION OF USER AND LINE COSTS 

It is possible to obtain an expression for the optimum radius of a ring rail line 

with the objective of minimizing the sum of user access cost and rail line cost. All capital 

costs associated with the construction and maintenance of the a ring rail line are 

categorized as rail line cost. These include land acquisition cost, design cost, rail track 

acquisition cost and rail track construction cost. Others are station construction cost, 

parking lots construction cost, railcars garages construction cost, utility relocation cost. 

In this analysis, the cost of dispatching trains on the ring rail line is included in the rail 

line cost. If a uniform rail line cost per kilometre per day YL is assumed, then the rail line 

cost per day is: 

2ICRYL (4.7) 

In this case, the daily total cost [Z(R)], which is redefined as the sum of user costs and 

rail line costs, is given by the sum of Equations 4.4 and 4.7. Thus: 

Z(R) = 47tYAM [_3_ - + 2irR'y, (4.8) 

By differentiating Equation 4.8 with respect to R and setting the resulting expression to 

zero, the optimum radius R0 of the ring rail line becomes: 
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R - Ib2 _ YL 
O 4J_ -  2 'YAM 

(4.9) 

Relating Equation 4.9 to Equation 4.5, it is observed that the addition of rail line cost in 

the total cost function tends to reduce the optimal radius of the ring rail line. The 

reduction in optimal radius tends to be pronounced if the rail fleet cost and cost of 

operating trains on the ring rail line are included in the rail line cost. Moreover, by 

including transfer cost due to transfer of pasengers on the ring rail line as well as user 

riding cost in the objective function, the optimal radius will further decrease. 

In reality, trips are made in order to achieve some socio-economic gains and 

related benefits. Thus passenger trips on the ring rail line will generate some benefits. The 

resulting effect of the derived benefits is likely to be to allow the radius of the ring rail 

line to be longer. However, the benefits associated with.passenger travel on the ring rail 

line is beyond the scope of this thesis. The minimum total cost is obtained by setting the 

second derivative of Equation 4.8 with respect to R to be positive. This gives: 

Z" (R) = 81rMR'YA > 0 (4.10) 

4.7 MODEL APPLICATION 

The applicability of the proposed model is explored using Calgary, Alberta, as a 

case study. The centre of the city is assumed to be located at the intersection of 7th 

Avenue and Centre Street. The average city radius (b) and current average daily transit 

trip density (M) are 14.63km and 200pass/km2 (Calgary Transit). From Equation 4.5, the 

optimum radius of the ring rail line is 10.34km, which is greater than half of the city 

radius. The proposed ring rail line (ring 1) is observed to pass through such areas as 
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Figure 4.7 Optimal Location of Proposed Ring Rail Line in Calgary, Alberta 



Table 4.1 Summary of Sensitivity Test Results on Optimal Radius 

Unit. 

Cost 

Parameters 

Original 

Optimal 

Radius 

(kin) 

At -25% Sensitivity Test At +25% Sensitivity Test Sensitivity Rating of Unit 

Cost Parameters 

on Optimal Radius 

Symbols 

Optimal 

Radius 

(kin) 

% Change 

in Radius 

Optimal 

Radius 

(kin) 

% Change 

in Radius 

Inc. Dec. Inc. Dec. 

b 6.82 0.00 100.00 10.33 51.47 Very Sensitive 

YL 6.82 7.80 15.10 5.60 17.89 Sensitive 

YA 6.82 5.13 24.78 7.65 12.17 Sensitive 

M 6.82 5.13 24.78 7.65 12.17 Sensitive 
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Arbour Lake and Scenic Acres in the North-West, Saddle Ridge and Taradale in the 

North-East as well as Douglas Estates and Canyon Meadows in the Southern, part of 

Calgary. 

The user access cost 'YA and rail line unit cost YL are respectively $0.13 per 

passenger per kilometre and $3148 per kilometre per day (Appendix 1). The substitution 

of the values of b, YL' YA and M into Equation 4.9 gives the optimum radius of the ring 

rail line as 6.82km. Hence the effect of line costs is to decrease the optimal radius. In 

this case, the proposed, ring rail line (ring 2) is observed to run through areas including 

Brentwood and Beddington Heights in the North-West, Whitehorn and Penerooke in the 

North-East, Foothills Industrial and Acadia in the South-East, and Richmond and 

Patterson in the South-West, part of Calgary (Figure 4.7). 

Sensitivity test is conducted to test the robustness of the model. The test is 

conducted at ±25% of the values of b, YL' YA and M. Table 4.1 depicts the overall 

summary of the sensitivity test results. It is found that the optimal radius is very sensitive 

to the parameters b, M, IA and 1L• 

It is worth indicating that the.rail fleet cost, cost of operating trains on the ring 

rail line, user cost of riding in trains on the ring rail line and transfer cost due to transfer 

of passengers occuring at stations on the ring rail line are not considered in the analysis. 

The inclusion of these other costs in the objective function will cause the radius of the 

ring rail line to decrease. Generally, trips are made to achieve some socio-economic goals 

and related benefits. The inclusion of the derived benefits in the objective function will 

cause the radius of the ring rail line to increase. 
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4.8 VARIABLE DEMAND ANALYSIS 

4.8.1 MINIMIZATION OF USER COSTS 

An analysis to determine the optimal radius of a ring rail line with the objective 

of minimizing total user costs considering variable trip demand density M(R,O) is 

explained as follows. M(R,O) is define as the number of passengers per sqaure kilometre 

at e. Suppose a ring rail line of varying radii R(8) and centre at To is to be located within 

a city of radius b (Figure 4.8). Considering the locations of all passengers residing inside 

the ring rail line in the entire polar region (Figure 4.9), the related daily cost of accessing 

the ring rail line is: 

27R (0) 

iAff [R(0)-r]M(r,O)rdrdO ( 4.11) 

where 'YA is the cost of accessing the ring rail line per passenger per kilometre and M(R,O) 

is daily non-uniform demand density. The daily cost of accessing the ring rail line by all 

passengers whose origin points are located outside the ring rail line is given by the 

expression: 

2it b 

TA [r-R(0)]M(r,9)rdrd8 ( 4.12) 
OR 9) 

The daily total access cost is given by the sum of Equations 4.11 and 4.12. It is assumed 

that all passengers will egress from the ring rail line to reach their destination points 

which are located at both inside and outside the ring rail line. The required total user 

costs [Z(R,8)] is given by twice the sum of Equations 4.11 and 4.12. The total user cost 

then becomes: 



181 

SI 

11 

11 

/ 

11 

Figure 4.8 Typical Passenger Trip Assignment 

-S 
.5. 

-5 

5'  

5'  

/ 

/ 

/ 
/ 

/ 



.5 

/ 

/ 
/ 
/ 
I 

/ 
/ 

a 

I 

/ 

S . 

/ 
/ 
/ 

S.' 

/ 
/ 

I 
I 

• City 
Boundary 

/ 
/ 

Figure 4.9 Elemental Area Located at Typical Origin Point of Passenger 

Ring Rail 
Line 



183 

R(e) R(0) 

Z(R,O) = 4iry[ f R(0)rM(r,O)dr - 5 r2M(r,8)dr] 
(4.13) 

b b 

+47ry[1fr2M(r,9)dr_ [ R(e)rM(rie)drl 
Re) Re) 

The optimal radius which minimizes the total user access costs is obtained by 

taking the first derivative of Equation 4.13 with respect to R(8) and setting the resulting 

expression to zero. This gives: 

R(8) b 

rM(r10)dr= jrM(r,e)dr 

) 

(4.14) 

The left and right hand terms of Equation 4.14 are interpreted as the total demand 

at 0 for all passengers residing at inside and outside of the iing rail line respectively. 

These terms can be obtained by numerical or graphical integration rM(r,0) with respect 

to r. From Equation 4.14, it is deduced that the required optimal radius R(0) is the value 

of R(0) which makes the total number of passenger residing inside the ring rail line to be 

equal to the number of passenger residing outside the ring rail line. It is worth mentioning 

that the second and third terms on the right side of Equation 4.13 are respectively 

interpreted as the first moment of the passenger demand at inside and outside the ring rail 

line about To. Also, these terms can be obtained by numerical or graphical integration of 

r2M(r,9) with respect to r. For minimum total cost to be realised, the second derivative 

of Equation 4.13 with respect to R(0) should be positive. Thus: 

Z"(R,O) = 87tYAR(0)M(R,0) > 0 (4.15) 
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4.8.2 MINIMIZATION OF USER AND LINE COSTS. 

The possibility of a non-zero optimum radii of a ring rail line with the objective 

of minimizing the sum of user costs and rail line costs exists. If a non-uniform rail line 

cost per kilometre per day YL(R,O) is assumed, then the rail line cost per day is: 

21tR(0)YL(R,O) (4.16) 

The daily total cost [Z(R,8)] is then given by the sum of Equations 4.13 and 4.16. Thus: 

R(8) R(0) 

Z(R,O) = 47t'IA[ f R(0)rM(r,O)dr- f r 2M (r,O)dr] 

b b 

41cYA  
P8) P8) 

+ 21rR(0)'yL(R,O) 

The optimal radius which minimizes the total user and line costs is obtained by taking the 

first derivative of Equation 4.17 with respect to R(0) and setting the resulting expression 

to zero. This simplifies to: 

(4.17) 

b R(0) 

2YA 5 rM(r, 9)dr-21A 5 rM(r, 0) dr=YL(R , 0.) 
R(0) 

(4.18) 

From Equation 4.18, it is found that the optimal radius R(8) is the required value of the 

ring rail line such that twice the difference between the daily user access costs per 

kilometre for passengers residing ouside and inside the ring rail line equals the daily rail 

line cost per kilometre. For minimum total cost to be realised, the second derivative of 

Equation 4.18 with respect to R(8) should be positive. Thus: 

Z"(R,O) = 8yR(0)M(R,0) + 21rYL'(R,8) > 0 (4.19) 
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4.9 MODEL APPLICATION 

For illustrative purposes, the entire city of Calgary is divided into four sectors 

Figure 4.10). Sector one, located at the North-West part of Calgary, is enclosed by Bow 

River, Downtown Corridor and Edmonton Trail. Sector two, which is located at the 

North-East part of Calgary, is sulTouded by Memorial Drive and Edmonton Trail. Sector 

three is assumed to be located at the South-East part of Calgary. This sector is enclosed 

by Memorial Drive and Elbow River. Sector four, located at the South-East part of 

Calgary, is surrounded by the Elbow River and Bow River. Data on zonal population of 

the city (Appendix IV), obtained from Department of Transportation Planning in City of 

Calgary, is used in the analysis. 

Based on the objective of minimizing only user access cost (Equation 4.14), the 

values of the optimal radius obtained for sectors one, two, three and four are 4.06km, 

3.5 1km, 5.0 1km and 3.29km respectively. The proposed ring rail line (ring 3, Figure 4.10) 

is observed to run through such areas as Banff Trail and Highwood in the North-West, 

Vista Heights and Franklin Industrail in the North-East, Erin Woods and Fairview in the 

South-East, and Spruce Cliff and Elbow Park in the South-West part of Calgary. 

Using Equation 4.18, it is possible to obtain optimal radius of the ring rail line 

considering the objective of minimizing both user access and line costs. The values of the 

optimal radius obtained for sector one, two, three and four are respectively 2.74km, 

3.07km, 4.00km and 2.47km. The proposed ring rail line (ring 4, Figure 4.10) is observed 

to run through areas including Hillhurst and Rosemount in the North-West, Winston 

Heights and Mayland Heights in the North-East, Southview and Manchester in the South-
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Figure 4.10 Optimal Location of Proposed Ring Rail Line in Calgary, Alberta 
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West, and Bankview and Sunalta in the South-East. Also, it is found that the optimal 

radius for each sector decreases if the line cost is included in the objective function. The 

values of optimal radii obtained in this case are observed to be unrealistically low. 

However, by including the benefits associated with the provision of the ring rail line in 

the total cost function (Equation 4.18), reasonable and realistic values of the optimal radii 

will be obtained. 

Suffice it to say that the concept of provision of a ring rail line in Calgary has not 

received sufficient attention. Transit planners in Calgary emphasised that the benefits 

associated with the provision of the ring rail line in Calgary is mainly dependent on high 

passenger demand. Hence a high passenger demand is required to warrant the provision 

of the ring rail line. They remarked that the current transit demand in Calgary is 

insufficient to justify the provision of the ring rail line. The benefit of providing a ring 

rail line is not incorporated in the model. Furthermore, the rail fleet cost, cost of operating 

trains on the ring rail line, user cost of riding in trains on the ring rail line and transfer 

cost due to passenger transfer occurring on the ring rail line are not considered as well. 

This makes the proposed model for determining the optimal location of a circumferential 

rail line somewhat imperfect. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATION 

5.1 CONCLUSIONS 

A set of analytical models for optimal rail line length, optimal rail termini as well 

as optimal location of a ring rail line are developed considering relevant cost parameters, 

which are user costs, systems operating costs, rail line and fleet costs and passenger 

transfer penalty cost. Many to many demand at both peak and off-peak periods is 

considered. The mathematical methods used are generally restricted to calculus with 

graphical and numerical illustrations. 

Application of the models to Calgary's transit line demonstrated their usefulness 

in providing simple and ready answers. Considerable planning insights can be obtained 

with the use of the proposed models. Most importantly, the proposed models, in 

conjunction with the sensitivity analyses are expected to be of practical use for 

determining optimum value of rail line length and location of rail termini and location of 

a ring rail line. Moreover,the models provide useful information to planners on ways to 

provide an efficient and economic policies that will improve the current practices in rail 

planning. 

The models for optimal rail line length and optimal location of rail termini are 

designed considering important factors which include passenger many to many demand 

at both peak and off-peak periods as well as passenger transfer penalty costs. These 

factors are overlooked in previous studies. This makes the proposed models more realistic 

and applicable to real life situations. 



189 

Itshould be mentioned that the models are applicable to LRT lines serving many 

to one or one to many trips. It is also applicable to various rail technologies such as 

Rapid Rail Transit (RRT) systems and Commuter Rail Transit (CRT) systems, and can 

be easily adapted to the operations of other public transit modes. 

To date, no literature on optimal location of rail termini and optimal location of 

a ring rail line are documented. The determination of these important rail parameters are 

- explored and presented in this report. The research therefore contributes a great deal 

towards effective rail planning. 

5.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

The research investigated the effect of passenger transfer penalty cost on the 

desired parameters. However, the assumption that all passenger travelling beyond the rail 

termini will transfer from rail to bus creates room for criticism. This assumption is 

considered for the sake of mathematical simplicity. But simplicity curtails accuracy. In 

reality, not all passengers will transfer into buses. Some passengers will continue their 

trips to their destination points by using their private automobiles or walking. Therefore 

it is more desirable to investigate the possibility of using a modal split analysis to 

determine a more accurate number of transfer passengers and their related cost. 

The model developed to determine the optimal location of a ring rail line, which 

considers only few parameters such as user access cost and line cost, is expected to be 

a starting point for further research. A more comprehensive research, encompassing many 

other factors including user tiding cost, transfer cost, fleet cost and operating cost, is 

therefore required in order to develop a more realistic model to determine the optimal 
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radius of a ring rail line. 

The determination of realistic optimal radius is, to a very large extent, dependent 

on user access cost and user riding cost. These cost parameters can be properly 

formulated by an efficient trip assignment technique. In this analysis, the passenger trip 

assignment technique used to formulate the user access cost is really not constructive. It 

is therefore recommended that an effective trip assignment model to be developed in 

order to properly formulate the user access and riding costs. Although the analysis gave 

prominence to the optimal location of a single ring rail line, it is imperative to remark 

that the proposed model can be used to determine the optimal location of two or three 

ring rail lines in a large metropolitan area characterized by a high concentration of 

passenger demand for public transit systems. Moreover, the optimal spacing between the 

ring rail lines can be determined using the model. 

It is imperative to remark that the research is focused on the supply side of 

transportation systems, with little prominence given to the demand side of the 

transportation systems. This research therefore provides simple economic tools to rail 

planners transportation researchers and analysts. The lack of guidance to provision of a 

rail line is no longer an obstacle when experience and judgement are used in conjunction 

with the information proposed by these models. It is demonstrated that the models meet 

their designed objectives fairly well. However, due to the deficiencies identified in the 

foregoing discussions, with particularly reference to the model developed to determine the 

optimal radius of a ring rail line, it is necessary that more research work to be undertaken 

to establish more confidence in the validity of the proposed models. 
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APPENDIX 1 

UNIT COST ESTIMATES 

In this section, various unit cost parameters required for validating the presented 

models are estimated. Basic assumptions made for this purpose are described as well. 

Costs are updated to reflect their current value and tailored to meet our requirements. The 

formulas 

F = 

and 

P = F(1+i) 

are used to estimate the future sum F and present sum P, where i is the inflation rate and 

n is the duration. Moreover, the formula 

A = 

is used to estimate the yearly costs, where A represent the annual cost, P is the present 

cost, I is the interest rate (i.e. rate of return) on investment and N is the design life span 

of project. 

1.0 TRAVEL TIME UNIT COSTS 

The average cost per passenger per hour by walking, waiting, riding and 

transferring in Calgary are respectively $ 11.70, $3.40, $5.40 and $ 16.69 (Hunt et al, 

1993). Given that the average walking speed of a passenger is 1.2m/s (Teply, 1984), the 

average cost of walking per passenger per kilometre (i.e.y) is $2.71. If the average speed 

of buses and trains are respectively 20.0km/h and 35.0km/h (Calgary Transit, 1993), then 



199 

the average cost of travel by bus and train (i.e. 'yB and YR) are $0.27 and $0.13 

respectively. The average cost of transferring per passenger per kilometre 'y by bus and 

train are respectively $0.72 and $0.48. 

2.0 RAIL LINE UNIT COST 

The cost of constructing the south LRT line of length 10.9km in Calgary in 1981 

is $136,200,000.00 (Calgary Transit, 1993). Based on 2% inflation rate, the present 

construction cost is $ 172,734,532.40. At 7% rate of return on investment (Calgary Transit, 

1994), the annual line cost based on 50 years design period is $ 12,523,253.60. For 365 

number of days in a year, the average discounted rail line cost per kilometre per day (i.e. 

'IL) is $3148.00. 

3.0 RAIL FLEET UNIT COST 

The cost of a rail vehicle in Calgary in 1981 is $ 1,400,000.00 (Calgary Transit, 

1993). At 2% inflation rate, the current ( 1993) rail vehicle cost is $1,775,538.51. At 7% 

interest rate and 20 years design life span of vehicle, the annual rail fleet cost per vehicle 

is $ 128,726.54. Based on 365 number of days in a year, 162 places (seating and standing 

spaces) per LRT vehicle and a place for each passenger, the average rail fleet cost per 

place per day (i.e. X) is $2.84. 

4.0 RAIL OPERATING UNIT COST 

The total cost of operating rails on the North-West, North East and South rail lines 

in Calgary in 1991 is $9,955,791.00 (Calgary Transit, 1993). The current ( 1993) rail 

operating cost based on 2% inflation rate is $ 10,358,004.96. The daily total rail demand 

expressed in passenger-kilometre, on all the exiting lines in Calgary, in 1991 is 856,328 
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(Calgary Transit, 1993). At 2% growth rate of transit demand (Calgary Transit) the 

present total rail demand is 890,924 passenger-kilometre per day. The average rail 

operating cost per passenger per kilometre (i.e. ?) is therefore $0.03. 

5.0 BUS OPERATING UNIT COST 

The cost of purchasing a bus in Calgary in 1975 is $215,000.00 (Calgary Transit, 

1993). For a total number of 526 buses purchased in 1975, the associated total bus fleet 

cost is $ 113,090,000.00. At 2% inflation rate, the current (1993) bus fleet cost is 

$161,520,368.10. Each bus has a salvage value of $4000.00 at the end of 20 years. Hence 

the present total salvage value is $ 1,415,992.00. Based on 7% interest rate at 50 years 

project life span, the effective annual bus fleet cost is $11,607,567.27. 

The total bus operating cost in Calgary in 1991 is $63,012,520.00. Considering a 

2% average inflation rate, the present ( 1993) bus operating cost in Calgary is 

$65,558,225.80. In this analysis, the required operating cost is taken to be the sum of 

annual bus fleet and annual operating cost of buses. The required annual operating cost 

is therefore $77,165,793.07. This simplifies to daily bus operating cost of $211,413.13 

based on 365 number of days in a year. The daily total bus demand in Calgary in 1991 

is 919,186 passenger-kilometres (Calgary Transit, 1993). At 2% transit demand growth 

rate, the present (1993) daily total bus demand is 972,066 passenger-kilometre. Hence the 

average bus operating cost per passenger per kilometre (i.e. XB) is $0.23. 
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APPENDIX II 

100 ' MAIN PROGRAM 

110 

120' 

130 N=1 : DIM X(N), Y(N), HX(N), DF(N) 

140' 

150' 

160' GET PARAMETERS 

170' 

180 GMB=.27 : GMR=.13 : LMB=.23 : LMR=.03 GML=3148 : GMP=0.72 

190 ALFR=1.0 : CLMR=.0314 : LMFR=2.84 : MMR=4800 

200,XRO=8 

210' 

220 ' GET XR(i) AND MXR(i) 

230' 

240 READ NPT 

250 DIM XR(NPT), MXR(NPT) 

260 FOR 1=1 TO NPT 

270 READ XR(I), MXR(I) 

280 NEXT I 

290 DATA 10 

300 DATA 0, 0,2, 9700, 3.045, 10589, 4.015, 9329, 5.106, 8309 

310 DATA 5.909, 7789, 7.273, 6029, 8.303, 3900, 12.011, 1800, 16.479,0 

320 

330 

340 ' CALCULATE CONSTANTS 

350 

360' 

370 CST1=2*(GMRGMB+LMRLMB) 

380 CST2=GML+2*ALFR*CLMR*LMFR*MMR2*ALFB *CLMB*LN1J *MME 

390 'INPUT"xrO=",XRO 

400 X(1)=XRO 
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410 'GOSUB 750 

420 'PRINT "x=";X(l),"y=" ;Y(1) 

430 'GOTO 365 

440 GOSUB 550 

441 CLS 

450 PRINT INPUT DATA : PRINT 

460 PRINT "gmb=";GMB, "gmr=";GMR, "lmb=";LMB, "lmr=";LMR 

470 PRINT "gml=";GML, "gmp=";GMP 

480 PRINT "alfr=";ALFR, "lmfr=";LMFR, 

490 PRINT "INITIAL VALUE=";XRO : PRINT 

500 PRINT 1t********* OUTPUT DATA : PRINT 

510 PRINT "XR=";X(l), "ERROR=";Y(l), "NO. OF ITERAflONS=";ITE 

520 END 

530' 

540' 

550 ' GRADIENT METHOD TO SOLVE A GROUP OF N NON-LINEAR EQUATIONS: 

560 ' Y(I)=f(X(1),X(2),...,X(N))=0 for 1=1, 2,..,N 

570 E - GIVEN ERRORS; H - STEP. 

580' EQUATIONS ARE DEFINED STARTING AT LINE **** 

590 

600' 

610 E=.01 : H=.0001 ITE=0 

620 FOR 1=1 TO N 

630 IF X(I) <> 0 THEN HX(I)=H*X(I) ELSE HX(I)=H 

640 NEXT I 

650 GOSUB 890 

660 F=F1 

670 IF F<E THEN 860 

680 ITE=ITE+1 : PRINT"No. of iteration=";ITE 

690 FOR 1=1 TO N 

700 PRINT  

710 NEXT I 
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720 SUM--O 

730 FOR 1=1 TO N 

740 X(I)=X(I)+HX(I) 

750 GOSUB 890 

760 FH=F1 

770 DF(I)=(FH-F)/HX(I) 

780 SUM=SUM+DF(I)A2 

790 X(I)=X(I)-HX(I) 

800 NEXT I 

810 RLMT=F/SUM 

820 FOR 1=1 TO N 

830 X(I)=X(I)RLMT*DF(I) 

840 NEXT I 

850 GOTO 620 

860 RETURN 

870' 

880 

890 'USER DEFINED A GROUP OF N NON-LINEAR EQUATIONS 

900' 

910' 

920 XRV=X(1) : GOSUB 990: Y(1)=CST1*MXRV+CST2 

930 XRV1=XRV : GOSUB 1140 

940 Y(1)=Y(1)+2*GMP*DMXRV 

950 F1=Y(1)2 

960 RETURN 

970' 

980' 

990' SUBROUTINE FOR INTERPOLATION: USE ALL POINTS 

1000 ' GIVEN A XRV, RETURN A MXRV 

1010' 

1020' 

1030 MXRV=0 
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1040 FOR FF=1 TO NPT 

1050 MULTI=1 

1060 FOR MPT=1 TO NPT 

1070 IF PT<>MPT THEN MULTI=MULTI*(XRVXR(MP'I))/(XR(11)..XR(MPT)) 

1080 NEXT MPT 

1090 MXRV=MXRV+MULTI*MXR(IJ!) 

1100 NEXT PT 

1110 RETURN 

1120' 

1130' 

1140 ' SUBROUTINE FOR CALCULATING DERIVATIVES 

1150' GIVEN A XRV1, RETURN A DMXRV 

1160' 

1170' 

1180 DELTA=.05 

1190 XRV=XRV 1+DLTA 

1200 GOSUB 990 

1210 VALUE1=MXRV 

1220 XRV=XRV 1-DLTA 

1230 GOSUB 990 

1240 VALUE2=MXRV 

1250 DMXRV=(VALUE1 VALUE2)/(2*DLTA) 

1260 RETURN 
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APPENDIX III 

100' MAIN PROGRAM 

110' 

120' 

130 N=1 : DIM X(N), Y(N), HX(N), DF(N) 

140' 

150' 

160' GET PARAMETERS 

170' 

180 GMB=.27 : GMR=.13 : LMB=.23 : LMR=.03 : GML=3148: GMP=-.54 

190 ALFR=1.0 : CLMR=.0314: LMFR=2.84 : MMR=4800 

200 XRO=1 

210' 

220 ' GET XR(i) AND MXR(i) 

230' 

240 READ NPT 

250 DIM XR(NP1), MXR(NPT) 

260 FOR 1=1 TO NPT 

270 READ XR(I), MXR(I) 

280 NEXT I 

282 READ NPTB 

284 FOR 1=1 TO NPTB 

286 READ BXR(I): NEXT I 

290 DATA 10 

300 DATA 0,0, 2.00, 10729, 3.045, 10589, 4.015, 9329, 5.106, 8309 

310 DATA 5.909, 7789, 7.273, 6029, 8.303, 3900,12.011, 1800,16.749, 0 

312 DATA 10 

314 DATA 0,10729,11379,11919,12269,12409,13149,13349,13449,13449 

320' 

330' 

340' CALCULATE CONSTANTS-

350 ' 

360' 

370 CST1=2*(GMRGMB+LMRLMB) 

380 CST2GML+2*ALFR*CLMR*LMFR*MMR 
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390 'lNPUTt'xrO=",XRO 

400 X(1)=XRO 

410 'GOSUB 750 

420 'PRINT "x=";X(l),"y=";Y(l) 

430 'GOTO 365 

440 GOSUB 550 

441 CLS 

450 PRINT "'' INPUT DATA : PRINT 

460 PRINT "gmb=";GMB, "gmr=";GMR, "Imb=";LMB, "Imr=";LMR 

470 PRINT "gml=";GML, "gmp=";GMP 

480 PRINT "alfr=";ALFR, "Jmfr=";LMFR, 

490 PRINT "Initial XR value=";XRO : PRINT 

500 PRINT "********* OUTPUT DATA ""'" : PRINT 

510 PRINT "XR=";X(l), "ERROR=";Y(l), "NO. OF IThRATIONS=";ITE 

520 END 

530' 

540' 

550 ' GRADIENT METHOD TO SOLVE A GROUP OF N NON-LINEAR EQUATIONS: 

560' Y(I)=f(X(1),X(2),...,X(N))=0 FOR 1=1, 2,..,N 

570' E - GIVEN ERROR; H - STEP. 

580 ' EQUATIONS ARE DEFINED STARTING AT LINE 

590' 

600' 

610 E=.01 : H=.0001 : ITE=0 

620 FOR 1=1 TO N 

630 IF X(I) <> 0 THEN HX(I)=H*X(I) ELSE HX(I)=H 

640 NEXT I 

650 GOSUB 890 

660 F=F1 

670 IF F<E THEN 860 

680 ITE=ITE+1 : PRINT"NO. OF ITERATION=";ITE 

690 FOR 1=1 TO N 

700 PRINT "x(";I;")=";X(I),"y(";I")=";Y(I) 

710 NEXT I 

720 SUM=O 
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730 FOR 1=1 TO N 

740 X(I)=X(I)+HX(I) 

750 GOSUB 890 

760 FH=F1 

770 DF(I)=(FH-F)IHX(I) 

780 SUM=SUM4-DF(I)A2 

790 X(I)=X(I)-HX(I) 

800 NEXT I 

810 RLMT=F/SUM 

820 FOR 1=1 TO N 

830 X(I)=X(I)RLMT*DF(I) 

840 NEXT I 

850 GOTO 620 

860. RETURN 

870' 

880' 

890 'USER DEFINED A GROUP OF N NON-LINEAR EQUATIONS 

900' 

910' 

920 XRV=X(1) : GOSUB 990: Y(1)=CST1*MXRV+CST2 

930 GOSUB 1121 

940 Y(1)=Y(1)42*GMP*BXRY 

950 F1=Y(1)A2 

960 RETURN 

970' 

980' 

990 ' SUBROUTINE FOR INTERPOLATION: USE ALL POINTS 

1000 ' GIVEN A XRV, RETURN A MXRV 

1010' 

1020' 

1030 MXRV=0 

1040 FOR PT=1 TO NPT 

1050 MULTI=1 

1060 FOR MPT=I TO NPT 

1070 IF PTcc>MPT THEN MULTI=MULTI*(XRVXR(MPT))/(XR(PT)XR(MPT)) 
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1080 NEXT MPT 

1090 MXRV=MXRV+MULTI*MXR(PT) 

1100 NEXT PT 

1110 RETURN 

1120' 

1121 ' SUBROUTINE FOR INTERPOLATION: USE ALL POINTS 

1122 'GIVEN A XRV, RETURN A BXRV 

1123 

1124 BXRV=0 

1125 FOR PT=1 TO NPTB 

1126 MULTI=1 

1127 FOR MPT=1 TO NPTB 

1128 IF PT<>MPT THEN MULT[=MULTI*(XRVXR(MPT))/(XR(PT)XR(MP1)) 

1129 NEXT MPT 

1130 BXRV=BXRV+MUL'fl*BXR(Pl) 

1131 NEXT PT 

1132 RETURN 

1133 

1140' SUNROUTINE FOR CALCULATING DERIVATIVE 

1150' GIVEN A XRV1, RETURN A DMXRV 

1160' 

1170' 

1180 DLTA=.05 

1190 XRV=XRV1+DLTA 

1200 GOSUB 990 

1210 VALUE1=MXRV 

1220 XRV=XRV1-DLTA 

1230 GOSUB 990 

1240 VALUE2=MXRV 

1250 DMXRV=(VALUE1VALUE2)/(2*DLTA) 

1260 RETURN 
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APPENDIX IV 
Zone Pop Jobs 
2 0 652 
3 0 154 
4 0 70 
5 0 0 
6 0 1629 

• 7 0 0 
8 0 20 
9 0 22 
11 0 11 
12 0 0 
13 0 1041 
14 0 679 
15 0 43 
16 0 2122 
17 0 24 
100 1443 818 
101 3548 687 
102 2213 1783 
103 454 1824 
104 1588 99 
105 5239 736 
106 2749 1158 
107 5617 863 
108 0 1317 
109 3626 747 
110 2226 1148 
111 2179 456 
112 2957 661 
113 0 126 
114 50 562 
115 4709 658 
116 4250 454 
117 4207 524 
118 6224 654 
119 3418 171 
120 537 749 
121 0 1218 
122 452 869 
123 1882 5531 
124 2846 395 
125 499 5698 
126 3005 574 
127 4135 1072 
128 0 2291 
129 5161 646 
130 3818 63 
131 0 1322 
132 7725 987 
133 0 256 
134 6759 372 
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135 753 456 
136 0 760 
137 6814 414 
138 6186 74 
139 0 0 
141 5112 223 
142 7468 282 
143 4827 264 
144 6374 742 
145 4443 570 
146 2846 138 
147 3867 620 
148 9704 1165 
149 6047 196 
151 4344 706 
152 3725 120 
153 8727 890 
154 7965 442 
155 271 31 
156 52 0 
157 0 0 
158 47 10 
159 18 0 
161 565 283 
162 27 0 
163 0 1205 
164 11 30 
165 212 152 
166 4279 113 
167 49 102 
168 76 78 
169 26 26 
201 4355 1029 
202 5992 858 
203 3626 559 
204 2330 852 
205 3592 1030 
206 0 255 
207 2435 107 
208 6283 496 
209 0 4531 
210 2 643 
211 0 2787 
212 0 1369 
213 9427 805 
214 11665 591 
215 0 1603 
216 0 2781 
217 0 6694 
218 1 3570 
219 0 3631 
221 2 2735 
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222 2561 2612 
223 4700 271 
224 0 904 
225 0 729 
226 0 1241 
227 0 1508 
228 0 1003 
229 0 553 
231 12002 582 
232 11996 660 
233 0 694 
234 10513 544 
235 0 3617 
236 9411 1067 
237 6786 182 
238 2175 122 
239 5 9 
241 0 224 
242 10652 311 
243 13 20 
244 6462 322 
245 1465 20 
246 2777 59 
247 103 80 
248 1 0 
249 0 3339 
251 0 412 
252 0 1459 
253 0 373 
254 8074 343 
255 445 43 
256 0 0 
257 21 10 
258 145 0 
259 31 0 
261 76 47 
301 2228 348 
302 1489 1116 
303 0 472 
304 0 3290 
305 0 2750 
306 0 2956 
307 0 3008 
308 0 3504 
309 0 5219 
311 25 2502 
312 2 1212 
313 1055 263 
314 755 3765 
315 2 3159 
316 6541 1820 
317 7005 698 
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318 4406 901 
319 6538 871 
321 11543 733 
322 63 4437 
323 0 1124 
324 6173 346 
325 0 369 
326 0 1754 
327 2 1707 
328 3925 298 
329 0 2146 
330 0 2374 
331 0 653 
332 11226 1226 
334 2 3788 
335 6746 623 
336 1655 201 
337 4927 383 
338 4622 823 
339 5 5664 
341 1 2156 
342 4534 207 
343 9720 513 
344 2411 49 
345 150 1425 
346 43 122 
347 20 1682 
348 22 325 
349 0 30 
351 18 930 
352 2520 116 
353 6575 378 
354 6000 318 
355 7357 863 
356 0 220 
357 8762 1035 
358 0 1025 
359 4733 261 
361 10580 1369 
362 0 0 
363 3 69 
364 8 0 
365 3855 151 
366 7291 274 
367 5 113 
368 0 0 
369 27 0 
371 1 0 
372 33 6 
400 6163 3451 
401 5330 1465 
402 10697 1194 
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403 4077 1837 
404 0 851 
405 2050 476 
406 7371 1224 
407 479 2576 
408 7182 891 
409 2610 284 
410 0 1367 
411 2772 659 
412 3132 666 
413 274 1680 
414 3 1165 
415 0 3309 
416 5353 905 
417 1961 578 
418 674 424 
419 761 1010 
420 0 1469 
421 2346 204 
422 6395 808 
423 0 659 
424 7344 469 
425 2903 480 
426 0 704 
427 6635 1134 
428 5981 766 
429 23 11 
431 16 0 
432 4426 547 
433 4937 241 
434 0 10 
435 3544 79 
436 802 272 
437 0 0 
438 6535 793 
439 315 143 
440 210 2176 
441 4121 803 
442 578 1753 
443 6457 516 
444 5815 1415 
445 7042 981 
446 6920 437 
447 7067 655 
448 6094 591 
449 0 3082 
450 4019 2105 
451 8724 864 
452 6316 351 
453 11170 561 
454 4830 260 
455 0 45 
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456 5511 204 
457 345 84 
458 63 0 
501 27 19894 
502 265 10136 
503 692 9260 
504 0 20672 
505 1822 2794 
506 1002 6829 
507 861 6385 
508 914 558 
509 0 69 
511 2821 5403 
512 1152 3227 
513 467 1160 
514 0 290 
515 0 1542 
516 688 33 
517 243 840 
518 797 1897 
519 908 1008 
521 6288 3357 
522 314 5016 
523 505 3872 
524 6375 1785 


