
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2012-09-13

A modified fingerprinting technique for

an indoor, range-free, localization

system with dynamic radio map

annealing over time

Lesser, Andrew M.

Lesser, A. M. (2012). A modified fingerprinting technique for an indoor, range-free, localization

system with dynamic radio map annealing over time (Master's thesis, University of Calgary,

Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/24797

http://hdl.handle.net/11023/210

Downloaded from PRISM Repository, University of Calgary



UNIVERSITY OF CALGARY

A Modified Fingerprinting Technique For An Indoor, Range-Free, Localization

System With Dynamic Radio Map Annealing Over Time

by

Andrew M. Lesser

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

September, 2012

c© Andrew M. Lesser 2012



Abstract

Indoor wireless localization systems have gained considerable interest in the past

decade with the wide spread implementation of affordable wireless networks through-

out indoor environments. Many organizations have employed these systems to track

people, equipment, and merchandise in an effort to reduce operating costs which can

include loss or theft, inventory, and efficient utilization of time sensitive assets.

The complex, indoor radio frequency propagation environment introduces many

challenges for wireless location systems. In particular, the large and small scale fad-

ing of signals introduces uncertainties in the location dependence of radio frequency

measurements.

This thesis explores two approaches to mapping the above location dependency

of measurements with the primary focus on reducing the time required for extensive

environment calibration. The formulation of proposed location estimation algorithms

and calibration approaches will be presented. A radio frequency device affixed to a

mock hospital asset will be used as a real world example to validate the algorithms.
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Chapter 1

Introduction

1.1 Motivation

Methods of wireless location estimation have become very popular in Real-Time Lo-

cation Systems (RTLSs) and are employed by a variety of different commercial prod-

ucts [1, 2, 3, 4]. An important application of such a system is for the accurate

localization of equipment and persons within a dense hospital environment. Systems

utilizing an existing Wireless Local Area Network (WLAN) 802.11 infrastructure typ-

ically, but not always, employ a Received Signal Strength (RSS) based algorithm to

estimate a location. This research will focus on the use of RSS measurements which

are common in any WLAN. These systems can be classified into two main categories,

range-based and range-free location estimation.

In the traditional range-based approach, the location of interest is estimated

through the use of geometrical techniques such as Time of Arrival (TOA) or Time

Difference Of Arrival (TDOA). All range-based approaches require the determina-

tion of the dependence present between any measurements and the distance between

the Transmitter-Receiver (T-R). Due to the varying multipath and shadowing effects

present in a typical indoor propagation environment, range-based measurements can

be shown to be highly variable [5], resulting in significant challenges for accurate lo-
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cation estimation.

In the range-free approach, location estimation algorithms are typically split into

two stages: an offline and an online phase. In the offline phase, a radio map is

constructed from RSS measurements taken within the propagation environment at

multiple locations with known coordinates. This radio map is created by sectioning

the environment into a dense grid of locations, or Anchor Point (ANP) locations,

where sequential RSS calibration measurements are recorded from multiple APs to

develop a statistical model of the propagation environment at each location. In lit-

erature, the RSS calibration measurements at ANP locations are often referred to as

fingerprints of the WLAN radio frequency environment and the creation of a complete

radio map is referred to as a site survey. In the online phase, an estimated location is

determined from the evaluation, or location-dependence mapping, of multiple online

RSS measurements against the radio map.

First, two range-free algorithms that estimate a location by mapping the RSS-

location dependency between online RSS measurements and fingerprint RSS mea-

surements will be investigated. These fingerprint RSS measurements are acquired

from multiple calibration locations in the offline phase to form a radio map of the

environment. The performance of each location estimation algorithm will be analyzed

in terms of their error between true and estimated locations. A radio map created

from fingerprint RSS measurements at every selected ANP in the environment will

be used for the analysis of two AP selection methods.

Second, due to the time consuming nature of fingerprinting every ANP, which is

also considered to be too invasive on the normal operations within an environment,

an investigation will be conducted into the two components of fingerprinting that
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can be adjusted in order to alleviate the problem: a reduction in the time spent col-

lecting fingerprint RSS measurements at each ANP and a reduction in the density

of fingerprinted ANPs throughout the environment. An interpolation algorithm will

be utilized to construct multiple radio maps from fingerprint RSS measurements ac-

quired by two unique hardware configurations.

Third, a radio map annealing algorithm consisting of a discrete state-space Hid-

den Markov Model (HMM) will be outlined that will utilize the motion dynamics of

an asset throughout the environment to infer its online sequential RSS measurements

to the most probable sequence of ANP locations, or update the fingerprints within

interpolated radio maps at the ANP locations corresponding to the most probable

path of an asset throughout the environment.

1.2 Project Objectives

The goal of this research is to design and improve the calibration techniques required

for a range-free indoor WLAN localization system. This research will also test the

implementation of manufactured tracking modules that have been specifically design

for RSS-based wireless location systems. This thesis differs from the majority of pre-

vious research in literature where indoor WLAN localization systems employ laptops

to acquire RSS measurements. These do not reflect real life asset localization scenar-

ios and, as such, research in this thesis is based on commercially available modules

specifically designed for WLAN localization systems. These modules will be utilized

for the acquisition of all RSS measurements. The specific aims of this research are to:

1. Explore deterministic and probabilistic approaches to range-free indoor local-
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ization with emphasis on methods for the selection and weighting of RSS mea-

surements from multiple APs;

2. Develop techniques for reducing the radio map calibration effort required for

range-free indoor localization, specifically the density and location of ANPs

and their corresponding sample time;

3. Develop an interpolation algorithm that populates an initial radio map of dense

ANPs from a sparse, incomplete, radio map;

4. Validate the interpolation with varying sparseness of radio map ANPs with

fingerprint RSS measurements collected via two hardware configurations: a

turntable and multiple stationary reference points;

5. Develop a radio map annealing algorithm that improves the initial radio map

over time with multiple unknown asset motion sequences;

6. Validate the above algorithm with varying fingerprint sample times and reduc-

tions in the density of ANPs used for interpolation of the radio maps.

1.3 Thesis Outline

The outline of the thesis is as follows:

• In Chapter 2, two indoor WLAN location estimation approaches will be explored

that have been used extensively in literature that utilizes RSS measurements:

range-based and range-free indoor WLAN location estimation. The high level

details of each approach will be explained, each with their own strengths and

weaknesses, and will be accompanied by previous research into their specific

utilization techniques. The chapter will be concluded with an explanation as to

why the range-free approach was chosen for this thesis.
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• In Chapter 3, the proposed range-free WLAN localization system will be out-

lined beginning with the RSS measurement acquisition hardware and setup. The

use of a radio map will be introduced which will describe the spatial-RSS de-

pendency mapping throughout different locations within the environment where

two different location estimation approaches will also be outlined. An RSS in-

terpolation algorithm will be formulated that will be used to complete an initial

radio map collected from sparse locations, as well as a technique that utilizes

online RSS measurements from multiple unknown location sequences of an asset

to anneal the initial radio map, or infer the online RSS measurements to the

most probable ANP location in the initial radio map, over time.

• In Chapter 4, the proposed techniques outlined in Chapter 3 will be validated.

Two different AP selection methods will be compared in terms of their perfor-

mance in each of the location estimation approaches. Details will be provided

as to explain the choice of one location estimation algorithm for the remainder

of the validation. Both an interpolation and an annealing algorithm will be

validated for their performance in improving the accuracy of static location es-

timation. The annealing algorithm will utilize initial radio maps, interpolated

from fingerprint RSS measurements collect by a turntable and multiple station-

ary reference point devices, and multiple dynamic asset traces with online RSS

measurements collected throughout the environment.

• In Chapter 5, the thesis contributions and outline suggestions for future work

on this project will be summarized.
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Chapter 2

Background

Indoor location estimation systems will be classified as either a range-based or a

range-free approach in this thesis. Both require the system designer to determine the

dependence between radio frequency measurements and either the distance between

a transmitter-receiver or calibration at pre-defined locations throughout an environ-

ment. This chapter will explore these two approaches, discuss previous work as re-

ported in literature, and compare each in terms of their strengths and weaknesses. An

explanation will be given as to why this research will focus on the range-free approach

to location estimation.

2.1 Range-Based Location Estimation

Range-based approaches are generally referred to in literature as radio propagation

modeling [6, 7, 8, 9, 10, 11, 12, 13, 14]. In TOA, the range is determined from a signals

transit time, or delay, between a T-R, where as TDOA uses the difference in transit

time between two or more signals. Angle of Arrival (AOA) is an extension of TDOA,

where an array of receivers measure a signals transit time individually, and where

the difference in range between any two can be used to calculate the AOA. These

measurement types, which require precise clocks for both T-R, are considered to be

extremely complex and are not available in standard 802.11 WLAN. However, RSS
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measurements are readily available in WLAN where devices attempting to establish,

or have established, a connection to the WLAN to rank the signal quality, based on

RSS, between itself and an associated AP. If a device registers that the signal qual-

ity is degrading past its allowable limit for reliable communication, the device will

attempt to associate to a different AP with greater signal quality. Most range-based

approaches require knowledge of the exact coordinates of every transmitter used for

location estimation. The remainder of this thesis will focus exclusively on WLAN

where RSS measurements are readily available.

The first step required for range-based approaches is the determination of the

dependence present between RSS measurements and the distance between the T-R

in WLAN. The attenuation of RSS over distance, referred to as propagation or Path

Loss (PL), is modeled to be inversely proportional to the distance, or range, be-

tween an AP and a receiver raised to a specific PL exponent. Due to the varying

multipath and shadowing effects present in a dense, indoor propagation environ-

ment, it can often be quite challenging to model or predict this dependence. Multi-

path, or small scale fading, is caused by the interference from multiple signal paths

which occur around the carrier wavelength[5]. The wavelength for 802.11 WLAN is

λc = 2.9979 E 8/2.4 E 9 = 12.5 cm. Shadowing is a result of reflections, diffractions,

and absorptions of a signal off obstacles in an environment.

The second step required for RSS range-based approaches typically involves tri-

lateration, which refers to a location estimate calculated from the intersection region

formed by circles of radii equal to the estimated ranges between multiple APs with

known coordinates. Non-linear least squares algorithms, which suffer from conver-

gence problems and high computational effort, are used to iteratively solve a system
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of equations, formulated by the circles, to attempt to converge on a single estimated

location.

2.1.1 Range Determination

The generic formulation used to model the above dependence is known as the Friss

equation [5] given as

Pr = Pt
GtGrg

2γ

4πdnex
(2.1)

where Pt is the transmitted power (W), Gt and Gr are the transmitter and receiver

gains, d is the distance between the transmitter and receiver, nex is the PL exponent,

g is the Rayleigh/Rician parameter, and γ is the log-normal parameter.

In order to utilize Eq. 2.1 with RSS measurements, it is often more convenient to

take its logarithm, where Pr is the received power (dBm), to form

Pr = α− 10 · nex · log(d) + X (2.2)

which is utilized extensively in range-based techniques. The parameter α = Pt +

20 log(g)+ 10 log γ+10 log GtGr

4π
can be determined a priori and will remain constant

as long as the transmit power and antenna gains remain unchanged [7, 12]. X is

approximated as a Gaussian random variable with zero mean and represents the

shadowing effects within the environment. It can be noted that the free-space forms

of Eq. 2.1 - 2.2 occur with a PL exponent of 2. It has been shown [5, 15] that

for indoor environments the PL exponent can range from a typical value of 3 to an

extreme of > 6. This is attributed to the dramatic increase in the accumulation of

non-Line-of-Sight (LOS) components, due to obstructions within the environment,
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which arrive at the receiver at different instances in time.

To calculate a distance estimate from Eq. 2.2, an assumption must be stated

that over a short period of time the WLAN propagation environment between a

T-R does not change and therefore a nex exists such that Eq.2.2 follows a Gaussian

distribution [7].

Prt − (α− 10 · nex · log(dt)) → N (0, σ) (2.3)

Prt is modeled as a Gaussian random variable, at any instant in time t, where a

Maximum Likelihood Estimation (MLE) of the distance, or range, between a T-R

can be calculated for a single RSS measurement as

d̂ = 10
(α−Prt )
10·nex (2.4)

If multiple RSS measurements are collected for a short period of time, and each are

modeled as independent Gaussian random variables, then a MLE of the this distance

becomes

d̂ = 10
(α−P̄r)
10·nex (2.5)

where P̄r is the average of the multiple RSS measurements. During asset motion, it

has been shown that RSS measurements averaged over a very short period of time

will reduce the effects of the fast fading term [6, 7].

Examples of Eq. 2.4 based on RSS measurements can be seen in Fig. 2.1 for

LOS and non-LOS environmental conditions. The PL exponent for the LOS case is

slightly higher to that of free space, which is to be expected since there are multiple

reflections off surrounding surfaces arriving at the receiver at different times, as well
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as a direct LOS component. The non-LOS case does not have a direct component

and leads to a further increase in the PL exponent. Both cases demonstrate the

severe multipath effects on RSS measurements within an indoor environment where

variations by almost 17 dBm can be seen at a single location. A common method used
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Figure 2.1: Received Signal Strength for Single AP at LOS and non-LOS Locations

to determine the PL exponent for a given range of locations is to use linear regression

techniques based on RSS measurements collected a multiple locations within the

localization environment. This can be seen as a limited approximation since RSS

measurements collected across a large area are used to calculate a single PL exponent

for that area. Any estimated range based on Eq. 2.4 that utilizes a single PL exponent

will not take into account the large statistical variations in RSS for that particular

location. However, while averaging of multiple RSS measurements for the range
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calculation of Eq. 2.5 does incorporate statistical variations, the use of a single PL

exponent over a large area still remains as a critical influence on inaccurate range

estimation.

2.1.2 Trilateration

In a range-based approach, the most common technique used to estimate a location

is called trilateration. It is based exclusively on T-R geometry, where range estimates

based on RSS measurements are used to form radii of intersecting circles with known

origin, or in the case of RSS measurements, the origins are APs with known coordi-

nates. The prefix tri reflects the requirement of 3 or more estimated ranges, or circles,

that are needed to calculate an intersection region. This can be seen in Fig. 2.2 for

two different scenarios. Ideally, if the estimated radii equaled the true radii for three

or more circles, then the intersection of the circles converges on a single point, the true

location. In a severe multipath environment, these radii are over or under estimated

yielding an intersection region consisting of multiple solutions. Therefore, an asset

can have an estimated location anywhere within this intersection region due to the

inaccuracy in range estimation; this directly translates to an inaccuracy in location

estimation. To estimate a location region with trilateration, a system of equations

formed from the multiple circles must be solved through the iterative minimization of

a cost function, generally with a sum of squared distances criterion as shown in Eq. 2.6:

ǫ =

Nap
∑

i=1

(

(x̂− ai)
2 + (ŷ − bi)

2 − d̂2i

)2

(2.6)
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Figure 2.2: Example of True and Estimated Range Distances

where Nap is the number of APs used in localization, (ai, bi) are the Cartesian coordi-

nates of the ith AP, d̂i is the range estimate for the ith AP, and (x̂, ŷ) is the iteratively

estimated location. Non-linear least squares algorithms such as conjugate gradient,

steepest decent, Gauss-Newton, Levenberg-Marquardt, and trust region have been

investigated for trilateration [6, 7, 10, 11, 16, 17], with each performing an itera-

tive minimization of a cost function based on a overdetermined system of non-linear

equations. Some of the main drawbacks are: large convergence time, requirements

for accurate initial location estimates, and the possibility of a divergence from any

real solutions. The problem can be formulated as a linear set of equations by making

use of lines of position, or radial axes, of multiple intersecting circles thus allowing

for a linear least squares location estimation. However, this approach is generally

disregarded due to the time required to algebraically determine the number of inde-

pendent lines of position, for different multiples of APs, at each location estimation

instance and generally results in multiple solutions.
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Some trilateration systems calculate multiple location estimations over a short

time period with sets, or windows, of RSS measurements collected at the unknown

location where the final estimated location is determined by the average or weighted

centroid of the multiple solutions [18].

Notable research conducted in [7, 9] attempted to concurrently estimate the PL

exponents and location at any instance in time through the maximization of a com-

patibility function, which incorporates the PL exponents into Eq. 2.6. The authors

reasoned that the estimated ranges required for Eq. 2.6 can be regarded as PL ex-

ponent estimations that maximize the specific compatibility function. With the in-

crease in the number of estimated parameters, a non-linear, Levenberg-Marquardt

least squares estimation algorithm was formulated that placed a number of heuristic

constraints on the values of the estimated PL exponents. The computational effort

required to perform such a non-linear least squares approach is high, yet they were

able to achieve good location estimation accuracy with an average distance error of

3.97 meters and a 70 percentile of 4.7 meters, without the assistance of tracking tech-

niques. The highest average of online RSS measurements from 4 APs were used for

location estimation.

The SELFLOC system proposed by [16] relied on a method of fusing multiple

location estimations together through Region of Confidence (ROC) filtering. Prior to

estimation, a ROC is constructed from the multiple solutions to the system of equa-

tions that form intersection regions of the range estimated circles of multiple APs.

Location estimates are either accepted or rejected depending on if they fall within

the ROC or not. The filtered location estimates are then sorted into bins where the

shortest path connecting at least one estimated location from each bin is found and
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averaged together to form the final estimated location. A new ROC is formulated

based on previous shortest paths following the expiration of a designated time inter-

val. The system was able to achieve a best mean distance error of 3.8 meters with

the use of 4 APs.

2.2 Range-Free Location Estimation

Range-free approaches are generally referred to in literature as fingerprinting [10, 19,

20, 21, 22, 23, 24, 25, 26] and consist of two phases: an offline and an online phase.

In the offline phase, a location estimation system is trained or calibrated through a

site survey that is performed to collect fingerprint RSS measurements from multiple

APs, at N spatially distributed ANP locations, and to store them within a radio

map of the environment. Each ANP utilized in the site survey is a known location

distributed by a unique grid layout which is typically designed to uniformly cover the

localization environment.

This calibration is needed to determine the location dependency of RSS. The site

survey is carried out where the fingerprint RSS measurements, as well their Cartesian

coordinates, are collected from each visible AP and used to construct a radio map,

R, of the environment. The mean and variance of the RSS at each ANP, for each

visible AP, gives us insight into the temporal variations throughout the environment

caused by time-varying multipath and shadowing.

R , {(xapi,F(xapi)) |i = 1, . . . , N} (2.7)
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where xapi , [x y]T are the Cartesian coordinates of the ith ANP.

F(xi) , [rapi(1), . . . , rapi(n)] is the fingerprinting matrix containing the RSS mea-

surements at each ANP. The fingerprint vector rapi(τ) ,
[

r1i (τ), . . . , r
L
i (τ)

]

contains

the RSS measurements from each of the L APs at time τ at each spatial point xi.

The time consuming and intrusive nature of fingerprinting an environment at every

ANP used in the range-free location estimation system is by far one of its most im-

portant limitations. There are two main components that can be adjusted in order

to alleviate this problem. The first would be the amount of time spent fingerprinting

at each ANP. This directly translates into the number of RSS measurements from

each ANP used in the localization algorithm. The second would be the number of

fingerprint ANPs used to complete the radio map. This thesis will explore methods

to alter these components and attempt to alleviate the time sensitive nature of fin-

gerprinting a radio map.

Another limitation would be the vendor specific nature of acquiring RSS measure-

ments. The IEEE 802.11 standard specifications on RSS, are that they are a relative

measure of RSS for internal use by chipsets[27]. Typically, modulated radio frequency

signals enter a device through single or multiple antennas, with known gain, and are

sampled by analog to digital converters for either the in-phase, quadrature-phase,

or a combination of components. An integrator is then used to accumulate samples

over a specified time period for a vendor specific calculation of RSS[28, 29]. A more

detailed explanation of how vendor specific hardware acquires RSS measurements is

beyond the scope of this thesis. Therefore, all fingerprint RSS measurements acquired

to construct a radio map will be hardware dependent.
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2.2.1 Mapping the RSS-Location Dependency

In the online phase, an asset affixed with a transceiver collects test RSS measurements,

rt, at its unknown location and a location estimate is computed x̂ = b (rt,R) where

b (. . .) is a particular mapping between the radio map ANP locations and the RSS

measurements. Two approaches to mapping b (rt,R) will be considered: deterministic

and probabilistic.

2.2.1.1 Deterministic

The most well known deterministic approach to indoor range-free location estimation

is often referred to as the Nearest Neighbors in Signal Space (NNSS) algorithm and

its formulation was first reported in literature [24]. This laid the foundation for sub-

sequent work reported in [30, 31, 32, 33, 34] and has been demonstrated to provide

excellent accuracy when compared to more sophisticated techniques.

Let the set
{

xap(1) , . . . ,xap(N)

}

denote the ordering of ANPs with respect to their

increasing distance in signal space, or the distance between the sampled RSS mea-

surements and the mean calibration RSS measurement at each ANP.

dNNSS

(

rt,F(xap(i))
)

= ‖rt − r̄i‖
2 1 ≤ i ≤ N (2.8)

where r̄i =
1
n

∑n
τ=1 ri(τ) are vectors of the average fingerprint RSS, for each AP, at

xap(i) . The location estimate is obtained from the average of the K selected ANPs

with known locations as

x̂ =
1

K

K
∑

k=1

xap(k) (2.9)
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The RADAR system described in [24, 30] was the first known deterministic finger-

printing approach that utilized the NNSS algorithm for location estimation. The

effect of using multiple NNSS for location estimation was analyzed. Their results

showed that for a large value of K, a significant degradation in accuracy occurred

due to ANPs located far from the true location were being included in the average

of Eq. 2.9. The effect of orientation was also investigated with separate radio maps

collected for each of the four directions. Location estimations were performed with

online RSS measurements collected in an orientation opposite that that of the radio

map. Their results showed a decrease in the localization accuracy as significant as

67% for differnt orientations. The number of ANPs, and their corresponding loca-

tions, used in a radio map was also investigated. Starting from a randomly located

set of N = 70 ANPs throughout their environment, a reduction to N = 20 and

N = 40 ANPs saw a median decrease in accuracy of 33% and 10% respectively which

led then to invoke a threshold on the density of required ANPs and distributed them

uniformly throughout the localization environment. An extension known as Weighted

Nearest Neighbors in Signal Space (WNNSS) will be described in greater detail in

the following chapter as it forms the basis for a comparison of location estimation

approaches explored in this thesis.

A major limitation of the NNSS algorithm is that no statistical properties are uti-

lized in the mapping between online RSS measurements and the fingerprints contained

in the radio map, as opposed to the probabilistic approaches outlined below.

2.2.1.2 Probabilistic

Probabilistic range-free location estimation is formulated based on Bayesian statistics

with the most common approaches including MLE and Maximum A Posteriori (MAP)
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estimation which modeled the fingerprint RSS measurements, rapi, conditioned on

each ANP location, xapi , contained in the radio map each as conditional probability

densities. The MLE of a location is approximated as

x̂MLE ≈ argmax
xapi

p (rapi|xapi) i = 1 . . . N (2.10)

with the MAP estimate of a location approximated as

x̂MAP ≈ argmax
xapi

p (xapi |rapi) =
p (rapi|xapi) p (xapi)

∫

p (rapi |xapi) p (xapi) dxapi

i = 1 . . . N (2.11)

where p (rapi|xapi) and p (xapi |rapi) are conditional probability densities referred to as

the likelihood and posterior densities. p (xapi) is the prior knowledge of an assets lo-

cation before any observed RSS measurements and is typically assumed to be uniform

in density as no location knowledge is available before acquiring RSS measurements.

Such an assumption results in a correspondence between the MLE and MAP formu-

lations and, since the approximated likelihood density is determined solely from the

fingerprint RSS measurements, the MLE of location is bound to the discrete, uni-

formly placed ANPs within the environment.

A common method to approximate the likelihood densities, p (rapi|xapi) , i =

1 . . .N , is to represent the fingerprint RSS measurements for each available AP

as a histogram with defined origin and bin width, with reported use in literature

by [26, 35, 36, 37]. The resulting histogram density estimate is constructed by

counting the number of RSS measurements that fall within each bin defined as

{w(b), bmin ≤ b ≤ bmax}. This process is repeated for each AP with the overall likeli-

hood density calculated as the dimensional product of these individual densities. The
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overall histogram estimate of the approximated likelihood density at a single ANP is

given as [22]

p̂ (rapi|xapi) =
d
∏

l=1

p̂
(

rlapi|xapi

)

=
d
∏

l=1

1

nh

n
∑

τ=1

δ
(

rlapi (τ)
)

(2.12)

where h = w (b+ 1)− w (b) is the bin width and

δ
(

rlapi (τ)
)

=















1 if w (b) ≤ rlapi (τ) < w (b+ 1)

0 otherwise

(2.13)

The histogram density estimate requires the assumption that the fingerprint RSS

measurements are Independent and Identically Distributed (IID). This assumption is

violated where correlations can exist for RSS measurements acquired over time [22].

The histogram estimate of approximated likelihood densities is strongly dependent

on the choice of origin and bin width which, even with optimal parameters, has a

relatively slow convergence to the true density due to the large number of required

samples [38, 39].

A third approach to probabilistic location estimation known as the Mean Squared

Error (MSE) estimator, explored in literature by [19, 20, 21, 22, 23, 40], will utilize a

technique referred to as multivariate Kernel Density Estimation (KDE) to approxi-

mate the required posterior densities and will be explored in greater detail in Chapter

3 as it forms the basis of the indoor range-free localization system detailed in this

thesis. The work in [22] reported superior Minimum Mean Squared Error (MMSE) lo-

cation estimation performance of a multivariate KDE when compared to a histogram

density estimate. Therefore, the use of a kernel density estimate for the calculation
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of posterior densities will not be explored in this thesis.

2.2.2 Radio Map Interpolation

A variety of radio map interpolation approaches have been investigated in the litera-

ture [25, 26, 41, 42] with each employing either deterministic or probabilistic location

estimation algorithms. To validate performance, various reductions to a radio map

were explored including either the density of ANP locations, the sample time at each

ANP location, or both.

The work in [41] detailed the formulation of a cubic spline interpolation algorithm

to interpolate a complete radio map from fingerprint RSS measurements at sparse

ANP locations. The cubic spline formulation required the computation of polyno-

mial coefficients based on either one of four different boundary conditions. The fin-

gerprinting sample time at each ANP was fixed with the analysis of multiple radio

maps interpolated using each of the four boundary conditions through reductions in

the density of ANPs. A single boundary condition was then selected through a com-

parison of the multiple interpolated radio maps versus a complete radio map without

any reduction in the number of ANPs. Location estimation was calculated with the

K NNSS algorithm and the optimal radio map. The authors provide no indication

as to the selected value of K or the number of utilized APs. Without interpolation,

the average distance error was reported as 2.77 meters using a complete radio map

of fingerprint RSS measurements. The best average distance error was reported as

2.92 meters and occurred with a 38% reduction in the total number of ANPs used for

cubic spline radio map interpolation. The worst average distance error was reported

as 3.52 meters and occured with a 13% reduction in the total number of ANPs.
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The work in [42] formulated a localization estimation approach that utilized a

set of radial basis functions to interpolate between a reduced radio map and online

RSS measurements and produce a estimated location. Each radial basis function was

dependent on the choice of kernel function, which mapped location-RSS dependency

between the radio map and online RSS measurements, which was selected as Gaus-

sian. A location offset, determined as the centroid of all ANP coordinates, was also

required along with an optimal kernel bandwidth. This complex approach required

a least squares estimation of radial basis function parameters for each variation of

the kernel bandwidth, with the optimal value selected as the one resulting in the

smallest Root Mean Squared (RMS) distance error using a separate test radio map.

This approach did not attempt to interpolate fingerprint RSS measurements from a

reduced radio map to a complete one. The density of ANPs within a radio map and

their corresponding sample time were both investigated with results showing only a

21% increase in the RMS distance error for a reduction in sample time of 1/2 and a

reduction to only 40% of the initial ANP in the complete radio map.

The work in [26] outlined a probabilistic location estimation system which utilized

a histogram estimate of the likelihood densities, at each ANP, stored in a radio map.

Therefore, histogram estimates of the likelihood densities at the reduced radio map

ANP locations were used to linearly interpolate the missing likelihood densities to a

complete radio map. The density of a skipped ANP in the complete radio map was

interpolated from its two neighboring ANP likelihood densities based on the linear

distance between them. Intuitively, an ANP closer in distance to the skipped ANP

would have a greater contribution then the ANP further away. This relatively effi-

cient interpolation approach preformed well with the overall accuracy of localization
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increasing from 49% to 59%, resulting from a 2/3 reduction in the number of original

ANPs and 20 fingerprint RRS measurements used in the histogram estimate of the

likelihood densities. With an increase to 60 fingerprint RSS measurements, the over-

all accuracy increased further from 56% to 68%.

The work in [25] focused solely on incomplete outdoor radio maps which utilized

an Inverse Distance Weighting (IDW) algorithm for the interpolation of a complete

radio map with fingerprint RSS measurements from sparse, scattered ANP locations.

This technique will be explored further in Chapter 3 as it forms the basis for the

interpolation approach used in this thesis.

2.2.3 Radio Map Annealing

The radio map annealing algorithm outlined in [26, 40] models each dynamic unknown

user trace sequence as a Markov process governed by a stochastic finite state machine

known as a Hidden Markov Model (HMM). The model parameters a transition matrix

which governs how a user may move through the available states, an initial state

distribution that accounts for prior knowledge about were a user may have started its

sequence, and an emission distribution which describes the likelihood of a particular

observation given that the user is within a certain state. The emission distribution

can be formulated using any probabilistic approach to mapping the RSS-location

dependency using the fingerprint RSS measurements in an initial radio map. The

number of states in the model is identical to the number of ANPs in the initial radio

map. The term hidden is used to emphasize that the sequence of states corresponding

to each user trace is unknown and that only observations are emitted from each state

in the unknown sequence, or in this case online RSS measurements. In the first step
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to improve the initial radio map over time, multiple unknown user traces as used

to train the HMM model parameters via a Generalized Expectation-Maximization

(GEM) algorithm. This iterative technique adjusts the HMM model parameters in

an attempt to maximize the probability of observing each sequence of online RSS

measurements emitted from the unknown user traces. The second step to improve

the initial radio map over time involves the use of a Viterbi algorithm, along with

the adjusted HMM parameters, to find the most probable sequence of states, or path

of the user trace, that could have produced the observed online RSS measurements.

The initial radio map can now be annealed with the state, or ANP, labeled online

RSS measurements from each user trace. The radio map annealing algorithm will be

detailed in Chapter 3 as it forms the basis for the approach used in this thesis and

was not explained in great detail in the literature.

2.3 Discussion

A detailed background of range-based and range-free location estimation approaches

has been given with a high level comparison of their individual strengths and weak-

nesses shown in Table 2.1. Based on this comparison, along with literature presented

in the previous sections, the probabilistic range-free location estimation approach was

chosen for for remainder of the thesis. The proposed range-free localization system,

outlined in Chapter 3, will implement a MSE estimator which utilizes a probabilistic

technique referred to as multivariate KDE to approximate the required posterior den-

sities. To reduce the exhaustive effort of acquiring fingerprint RSS measurements at

each ANP, radio map interpolation and annealing algorithms will be presented based

on IDW and HMM parameter training via GEM with multiple unknown asset traces.
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Range-based Approaches

Strengths Weaknesses

• no extensive radio map database

required

• no exhaustive offline fingerprinting

phase

• precise AP coordinates required

• determination of multiple location

dependent PL exponents for range

calculation

• iterative non-linear solvers re-

quired for estimation location

Range-free Approaches

Strengths Weaknesses

• AP coordinates are not required

• higher accuracy reported in litera-

ture

• probabilistic approaches can be

used to anneal an incomplete ra-

dio map over time

• measurements at specific orienta-

tions can be incorporated into ra-

dio map

• radio map interpolation can re-

duce site survey

• Extensive fingerprinting required

at each ANP

• location estimation limited to

scope of fingerprint environment

• radio map is hardware dependent

• large database to store radio map

Table 2.1: High Level Comparison of Strengths and Weaknesses
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Chapter 3

Proposed System and Concepts

As stated in chapter 2, the range-free localization technique will be used in this

thesis. The initial location estimation system concept is illustrated at a high level

in Fig. 3.1. This chapter will outline and discuss each of the sections required for

the operation of the overall system and will begin with the measurement system that

utilized specialized hardware to acquire fingerprint RSS measurements that will be

used to construct a radio map of the localization environment. As an example of

an asset, we used a mock intravenous pump equipped with the specialized hardware

to acquire RSS measurements at multiple online locations. To investigate the effects

that an asset has on RSS attenuation, asset radiation patterns were collected in an

RSS-Location 

Dependency

Localization Technique

Fingerprinting

Nearest 

Neighbor
MMSE via 

Kernel Density 

Estimation

Estimated 

Location

ProbabilisticDeterministic

Range-freeCalibration RSS 

Measurement 

System

RSS Measurements 

from Unknown Location

Figure 3.1: Diagram of Proposed Range-Free Localization System



26

anechoic chamber for the mock Infusion (IV) pump as well as a human subject.

Two range-free location estimation methods will be explored that take different

approaches to the mapping of the dependence between the radio map fingerprint and

the RSS measurements collected at test locations. To try and alleviate the time

consuming and intrusive nature of fingerprinting, the reduction in sampling time

at each ANP and the total number of ANP required for an initial radio map will

be explored. This will be demonstrated later in the chapter with a modified location

estimation system shown in Fig. 3.16. Finally, an annealing algorithm will be outlined

that utilizes multiple sequences of RSS measurements with unknown locations to

improve the radio map over time.

Tracking algorithms, which utilize trajectories based on a combination of location

and velocity estimations to help improve an overall solution will not be applied in

this thesis. Concepts applied in this thesis can be extended to easily include tracking

methodologies and will be discussed in the conclusion along with potential future

work.

3.1 Measurement System

Throughout the thesis, all RSS measurements were acquired using WiFlyR© RN-134G

802.11b modules, a product family manufactured by Roving Networks Inc.[43]. A

standalone module can be seen in Fig. 3.2(a) with an attached omnidirectional an-

tenna. Fig. 3.2(b) displays a Reference Point (RP) which houses one of the stan-

dalone modules and was designed to safely secure the device within the environment

and to protect the hardware from tampering. These modules are considered ideal
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(a)Module with Omnidirectional An-
tenna

(b)Reference
Point

Figure 3.2: WiFly RN-131G 802.11b Modules

for this research because of their ability to perform real-time RSS measurement ac-

quisition. Some of the features include: selective channel scanning, variable channel

scan time, wakeup/sleep timers, on-chip antenna, and ultra low power consumption

(sleep/awake). The WiFlyR© modules run specialized firmware that allows specific

events to wake up the module, scan the environment, and transmit the data for col-

lection. Online RSS measurements from test locations were collected using the on

board Surface Mount Device (SMD) antenna. Radiation patterns for each configura-

tion were measured in the anechoic chamber at the University of Calgary to determine

the best orientation of the module, on a human subject and on a mock IV pump, and

determine effects cause by RF attenuation.
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DIR-601 Wireless 

Router

BAE Antenna 

(not used)

Figure 3.3: Access Point Located in Anechoic Chamber

3.2 Radiation Patterns

The anechoic chamber at the University of Calgary was used to characterize the

radiation patterns of a module with the omnidirectional and the chip antennas. An

investigation into these radiation patterns was required to characterize the RSS atten-

uation introduced by affixing a module to an asset as different materials vary widely

in their electromagnetic characteristics [5]. Significant RSS attenuation, throughout

any 360 degree orientation, can dramatically reduce the accuracy of any WLAN lo-

calization system.

To simplify the problem, a DIR-601 wireless router was placed and aligned atop a

tripod and used as the transmitter as shown in Fig. 3.3. This was the logical choice

since the experimental site uses these same wireless routers as APs. To limit the ad-

dition of extra RF interference between the AP and the module, C++ code routines
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Figure 3.4: Vertically Orientated Module on Human Subject in Anechoic Chamber

were written to scan, collect, and transmit the RSS measurements via RS-232 outside

the chamber. If the specialized firmware were used, the module would attempt to

transmit the data to a web server following each RSS scan. The radiation patterns

were constructed at 1.5 degree increments from the average of 5 RSS measurements.

Each radiation pattern plot is orientated so that the transmitting AP is in direct line

with the module at +90 degrees (right side of each plot). To measure the radiation

pattern of the omnidirectional antenna, a chair was placed on the chamber turntable

and a user held the antenna base at arm’s length while focusing on the antenna place-

ment over the turntable pivot point. For the chip antenna, radiation patterns were

collected for the module aligned in a vertical and horizontal orientation. A human

test asset was placed in a chair on the chamber turntable with a module fixed to

the left chest in each orientation, as shown in Fig. 3.4, with the resulting radiation

patterns shown in Fig. 3.5. Nulls in the radiation pattern can be seen at angles of

−62 and 100 degrees for the horizontal orientation of the module, and are absent
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Figure 3.5: Radiation Pattern for Vertically and Horizontally Orientated Module on
Human Subject [dBm]

in the vertical orientation. These nulls are a characteristic design in the SMD chip

antenna radiation patterns. The results further indicate, for angles between −50 and

170 degrees, that the RSS is severely degraded and is attributed to the human body’s

ability to act as a large RF attenuator [44]. These large variations in the reported

RSS, from either a single or multiple APs, would inflict additional location estimation

errors due to inaccuracies in the mapping of the RSS-location dependency. Methods

to alleviate these effects will not be explored in this thesis. The radiation pattern of a

module attached to the mock IV pump was also conducted for the said orientations as

shown in Fig. 3.6. A reference radiation pattern was also constructed by suspending a

module above the chamber turntable at the exact height of the mock IV pump using

polystyrene, a material with the electromagnetic characteristics close to air [45], as
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Figure 3.6: Vertically Orientated Module on Mock IV Pump

Figure 3.7: Vertically Orientated Module on Styrofoam
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Figure 3.8: Radiation Patterns for Mock IV Pump and Styrofoam - Horizontal [dBm]
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shown in Fig. 3.7. From this we can determine if the turntable itself is affecting the

radiation pattern. The specifications of the Rufa 2.4 GHz SMD Chip antenna [46],

manufactured by Antenova, details the radiation patterns for these two alignments

but not the radiation patterns produced with the addition of a human or equipment

asset. The radiation patterns for the horizontal and vertical module orientations are

shown in Fig. 3.8 - 3.9. The horizontal module configuration of Fig. 3.8 illustrates

nulls in the radiation pattern as described for the human body case. The radiation

patterns for the vertical module orientation, shown in Fig. 3.9, indicate small varia-

tions in the RSS over 360 degrees, for both the mock IV pump and the polystyrene,

which indicates that the placement of a vertical module on the mock IV pump would

not greatly effect the reported RSS from APs. Therefore, the mock IV pump, with

a vertically orientated module, will be used for acquiring RSS measurements at all

online locations and is shown in Fig. 3.10.

Figure 3.10: Mock Infusion Pump Located in Hallway
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3.3 Localization Site and 802.11 WLAN Infrastructure

The existing wireless infrastructure, located on the third floor of the University of

Calgary’s Information and Communication Technology (ICT) building, consists of

three sporadically located Aruba AP-70 access points. After further investigation, it

was determined that these access points would not be suitable for RSS-based loca-

tion systems due to their inherent ability to vary their transmit power throughout the

day as shown in Fig. 3.11. The analysis of RSS measurements taken from multiple

days lead to the conclusion that the transmit power is not varied at predictable time

intervals and therefore cannot be adapted for. Although this setting could probably

be altered, access to these parameters was restricted to the University of Calgary IT

department. To alleviate this problem, 6 D-Link DIR-601 wireless routers, or APs,

were positioned throughout the localization environment. These APs allow a system
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Figure 3.11: RSS measurements From a Varying and a Static Transmit Power Access
Point
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designer to specify a static transmit power level for which the RSS measurements,

even with presence of outliers which are inherent to any indoor multipath environ-

ment, can be seen to follow a stationary level. Since the WiFly modules were set to

scan each channel for 100 ms, the access points were configured to have a beacon rate

of 20ms. This would increase the probability that a WiFly module would hear mul-

tiple APs during each scan operation. The third floor of the University of Calgary’s

ICT building is constructed from a wide variety of materials with each having their

own unique electromagnetic characteristics such as reflection and attenuation factors.

The main support beams, and floors, are constructed from reinforced concrete. The

majority of the interior walls consist of aluminum frames layered with drywall. The

building layout was surveyed into MatlabR© for plotting as shown in Fig. 3.12.

3.4 Hardware for Ground Truth Radio Map Acquisition

Each ANP used in the system is at a known location spatially distributed by a unique

grid layout which is typically designed to uniformly cover the localization environ-

ment. This thesis will investigate a uniform grid of ANPs separated by 1 meter

throughout three corridors as illustrated in Fig. 3.12. In order to collect reliable fin-

gerprint RSS measurements at ANP locations, a variable-speed, TCP/IP controlled

turntable was constructed and tested (Fig. 3.13). Two WiFly modules were connected

to opposite sides of the turntable with their omnidirectional antennas positioned ver-

tically and were set to scan the environment on the desired channels at 1Hz. A

total of 200 scans were obtained at each ANP location translating to a fingerprint

sample time of 100 seconds. Since RSS measurements a known to be dependent on
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device orientation[31], the rotation of the WiFly modules throughout the data col-

lection process provided a means as to capture more statistical variation in the RSS

measurements throughout a planer 360 degree range in orientation. This was ac-

complished by rotating at a rate of approximately one half of a wavelength per RSS

measurement at the operating frequency calculated as

λ

2
=

f

2 · c
=

2.452 E 9

2 · 2.9979 E 8
= 0.0611[m] (3.1)

A site survey was carried out where the fingerprint RSS measurements, as well their

Cartesian coordinates, were collected from each visible AP and used to construct a

radio map, R, of the environment. The mean and variance of the fingerprint RSS

measurements at each ANP, for each visible AP, gave insight into the temporal varia-

tions throughout the environment caused by time-varying multipath and shadowing.

R , {(xi,F(xi)) |i = 1, . . . , N} (3.2)

where xi , [x y]T are the Cartesian coordinates of the ith ANP.

F(xi) , [ri(1), . . . , ri(n)] is the fingerprinting matrix containing the RSS mea-

surements at each ANP. The fingerprint vector ri(τ) ,
[

r1i (τ), . . . , r
L
i (τ)

]

contains

the RSS measurements from each of the L APs at time τ at each spatial point xi.

The complete turntable radio map will be assumed as the Ground Truth (GT) for

accuracy comparison. An example of fingerprint RSS measurements for one random

ANP location are shown in Fig. 3.14.
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Figure 3.14: Fingerprint at Random Grid Point for Six Access Points

3.4.1 Sources of Turntable RSS Measurement Errors

For each ANP location, the turntable was positioned center with an ANP marker on

the ground which was used to help with alignment. The main source of measurement

error in this case would be the misalignment of the turntable with the floor markers.

These alignment errors are empirically estimated to be smaller than 5 cm.

3.5 Location Estimation Methods

In this section, zero memory location estimation techniques will be explored. The

term zero memory refers to an estimator that does not require knowledge of a previ-

ous estimate to compute its present estimate. Utilizing the radio map given by Eq. 3.2
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and observed RSS measurements rt, a location estimate is computed x̂ = b (rt,R)

where b (. . .) is a particular mapping between the radio map ANP locations and the

RSS measurements. Two approaches to mapping b (rt,R) will be considered. First,

a deterministic NNSS approach will be formulated and discussed, followed by a prob-

abilistic approach based on a MMSE criterion with nonparametric KDE. Specific

variations of the above techniques will also be explored to show their improvement to

the overall location accuracy when compared to their traditional methods. Further-

more, these methods do not rely on approximated T-R distances, the so called PL

models, for localization of an asset as discussed in Chapter 2.

3.5.1 Deterministic Range-free Location Estimation

3.5.1.1 K-Nearest Neighbors in Signal Space

Introduced in Section 2.2.1 and reviewed here for convenience, let
{

xap(1) , . . . ,xap(N)

}

denote the ordering of ANPs with respect to their increasing distance in signal space,

or the distance between the online RSS measurements and the mean fingerprinted

RSS measurement at each ANP.

dNNSS

(

rt,F(xap(i))
)

= ‖rt − r̄i‖
2 1 ≤ i ≤ N (3.3)

where r̄i =
1
n

∑n
τ=1 ri(τ) are the vectors of the average of fingerprint RSS measure-

ments, for each AP, at xap(i). The location estimate is obtained from the average of

the K selected ANPs with known locations as

x̂ =
1

K

K
∑

k=1

xap(k) (3.4)
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The number of nearest-neighbours K chosen for location estimation must be inves-

tigated. If K = 1, complete trust is given to a single anchor point within the radio

map that has the smallest Euclidean distance in signal space. This can lead to low

location accuracy if, in fact, multiple anchor points throughout the environment have

comparable Euclidean distances in signal space and are not contributing to the over-

all weighted average. If K ≫ 1, the weighted average of K ANP coordinates could

contain ANPs with potentially low Euclidean distance in signal space, thus lowering

location accuracy. The effect of high K ≫ 1 is visualized in Fig. 3.12, where if an

asset were located in the top right ANP and several K are used within the average,

the estimated location would be skewed to an ANP many meters away due to the

averaging of the nearest-neighbours locations even if the RSS measurements were

accurate to the top right ANP.

3.5.1.2 K-Weighted Nearest Neighbors in Signal Space

An extension to the NNSS technique outlined in Section 2.2.1, known as WNNSS,

assigns a weight to each ANP ordered with respect to increasing distance in signal

space.

x̂ =
K
∑

k=1

βj
∑K

j=1 βj
xap(k) (3.5)

where

βj =
1

ǫ+ dNNSS

(

rt,F(xap(j))
) (3.6)

and ǫ is a small number used to avoid division by zero. This approach will elevate

some of the inaccuracy in location estimate due to the number of nearest-neighbours

chosen since it is a weighted average of the nearest-neighbour locations. WNNSS has
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been reported to increase accuracy in positioning error by 2% over NNSS [47].

3.5.2 Probabilistic Range-free Location Estimation

This approach to location estimation will be formulated based on a MSE criterion

utilizing KDE techniques as presented in [23, 19, 20, 22]. The MSE location estimator

is the minimization of the l2 norm of the location error stated as

x̂ = argmin
x̂

E

{

(x− x̂)T (x− x̂)
}

(3.7)

where the expected value of the MMSE location estimate is the conditional mean of

x given the RSS measurements [48] such that

x̂ = E {x|rt} =

∫

ρ

xf (x|rt) dx (3.8)

The location estimation problem can be reduced to the challenge of determining

the posterior conditional Probability Density Function (PDF) f (x|rt) where prior

information about the asset location can be extracted from the radio map. With

our focus on indoor location estimation in the presence of a combination of LOS

and non-LOS conditions, there is no simple parametric model for approximating

the density f (x|rt) and as such, nonparametric techniques must be adopted for the

density estimation of f (x|rt) from the underlying structure of the radio map RSS

measurements without any prior assumptions.
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3.5.2.1 Multivariate Joint Kernel Density Estimation

From Bayes theorem,

f (x|rt) =
f (rt|x) f (x)

∫

ρ
f (rt|x) f (x) dx

(3.9)

the likelihood f (rt|x) provides relevant information about the asset location based

on the observed RSS measurements rt. The prior f (x) is the belief in the asset

location before any observed RSS measurements. Direct approximations of the prior

and likelihood densities are needed to estimate the posterior density f(x|rt) and since

no explicit equation is available to determine the prior, this density is estimated from

the underlying structure of the radio map RSS measurements associated with each

selected ANP through the use of the joint density f(rt,x) [48]. The posterior density

estimate can be formulated using the definition of conditional density

f(x|rt) =
f(rt,x)

∫

ρ
f(rt,x)dx

(3.10)

Given the fingerprint training data, the joint density f(rt,x) can be estimated through

the multiplication of weighted kernel functions, or marginal densities, summed over

each ANP used in positioning. The product kernel density estimator [38] is given as

f(rt,x) ≈
1

Nσ
xapi

σ
rapi

N
∑

i=1

K

(

rt − r̄api
σ
rapi

)

K

(

x− xapi

σ
xapi

)

(3.11)

where {(xapi, r̄api)|i = 1, . . . , N} is the mean of the fingerprint RSS measurements at

each selected ANP and
{

σ
xapi

, σ
rapi

}

are the kernel bandwidths. The choice of kernel

function was investigated in[23, 19, 20] that showed that the shape of the kernel did

not lead to drastic variations in location estimation. The consensus was to implement
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the Gaussian kernel due to its ease of mathematical manipulation. In general, for KDE

a recommended multivariate, or d-dimensional, kernel function should be unimodal,

smooth, and adhere to the following conditions [38, 22]

• K (rt) ≥ 0, ∀ rt ∈ R
d

•
∫

Rd K (rt) = 1

•
∫

Rd rtK (rt) = 0

•
∫

Rd rtr
T
t K (rt) = Id

This thesis will focus on the Gaussian kernel, therefore the multivariate product KDE

becomes

f(rt,x) ≈
1

N

N
∑

i=1

N
(

rt; r̄api,σrapi

)

N
(

x;xapi ,σxapi

)

(3.12)

where
{

σ
xapi

,σ
rapi

}

=
{

σ∗
xapi

Id, σ
∗
rapi

Id

}

and N is a Gaussian kernel defined as

N
(

rt; r̄api,σrapi

)

≡
1

(2π)d/2
∣

∣σ
rapi

∣

∣

1/2
exp

(

−
1

2
(rt − r̄api)

T
σ

−1
r

(rt − r̄api)

)

(3.13)

Given that RSS measurements have been observed, the denominator, or normalizing

factor of the posterior density can be rewritten as

f(x|rt) =
f(rt,x)

∫

ρ
f(rt,x)dx

=
f(rt,x)

f(rt)
(3.14)

and substituting the multivariate product kernel density estimate into the above

posterior density leads to

f(x|rt) ≈

∑N
i=1N

(

rt; r̄api,σrapi

)

N
(

x;xapi,σxapi

)

∑N
i=1N

(

rt; r̄api,σrapi

) (3.15)
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=

N
∑

i=1

ωi(rt)N
(

x;xapi,σxapi

)

(3.16)

where

ωi(rt) =
N
(

rt; r̄api,σrapi

)

∑N
i=1N

(

rt; r̄api,σrapi

) (3.17)

The posterior density shown in Eq. 3.16 follows the form of a Gaussian mixture and

as such, the MMSE location estimate and its covariance can be approximated by a

single Gaussian density with the mean and covariance. The estimated location and

its covariance are often referred to as the first and second moments[48]. Referring

back to the MMSE in Eq. 3.8

x̂ = E {x|rt} =

∫

ρ

xf(x|rt)dx (3.18)

and substituting in the posterior density estimate of Eq. 3.14,

x̂ =

∫

ρ

x
f(rt,x)

f(rt)
dx =

∫

ρ
xf(rt,x)dx

f(rt)
(3.19)

where the denominator becomes

f(rt) =

∫

ρ

f(rt,x)dx (3.20)

=

∫

ρ

1

N

N
∑

i=1

N
(

rt; r̄api,σrapi

)

N
(

x;xapi,σxapi

)

dx (3.21)

=
1

N

N
∑

i=1

N
(

rt; r̄api,σrapi

)

(
∫

ρ

N
(

x;xapi ,σxapi

)

dx

)

(3.22)

=
1

N

N
∑

i=1

N
(

rt; r̄api,σrapi

)

(3.23)
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since
∫

K(z)dz = 1 assuming a zero-mean, non-negative kernel with unit area. The

final position estimate becomes

x̂ = E {x|rt} =
N
∑

i=1

ωi(rt,F(xapi))xapi (3.24)

where ωi(rt,F(xapi)) is defined by Eq. 3.17 using the information provided from each

radio map fingerprint F(xapi). A similar derivation [48] can be done to formulate the

associated covariance

P = E
{

(x− x̂)(x− x̂)T|rt
}

(3.25)

=
N
∑

i=1

E
{

(x− x̂)(x− x̂)T|rt
}

ωi(rt,F(xapi)) (3.26)

=
N
∑

i=1

E
{

(x− xi + xi − x̂)(x− xi + xi − x̂)T|rt
}

ωi(rt,F(xapi)) (3.27)

=
N
∑

i=1

ωi(rt,F(xapi))Ci +
N
∑

i=1

ωi(rt,F(xapi))(xi − x̂)(xi − x̂)T (3.28)

=
N
∑

i=1

ωi(rt,F(xapi))
[

Ci + (xi − x̂)T
]

(3.29)

=

[

N
∑

i=1

ωi(rt,F(xapi))
(

Ci + xix
T
i

)

]

+ x̂x̂T (3.30)

where Ci = E
{

(x− xi)(x− xi)
T|rt

}

is the variance of the ANP positions deter-

mined during the fingerprint site survey.

It is important to note, as previously mentioned for the histogram density esti-

mate outline in Section 2.2.1.2, that the multivariate product kernel density estimate

requires the assumption that the fingerprint RSS measurements are IID. This as-

sumption is violated due to correlations in RSS measurements collected over time,
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however, the density estimate has been shown to maintain high performance with the

proper kernel bandwidth tuning [22].

3.5.2.2 Kernel Bandwidths

Also known as the window width, these bandwidths control the width of the kernel or

the region of influence of each training sample[38, 39]. Let’s consider the two extreme

cases:

• σ
rapi
→ 0

The KDE becomes a train of delta functions centered at each fingerprint RSS

measurement and risks significantly over-fitting the data.

• σ
rapi
→∞

The KDE approaches a Uniform distribution that captures the global structure

of the data and risks significantly under-fitting the data.

Therefore, it is important to determine the dependence of this parameter on each set

of fingerprint RSS measurements. It has been shown in the literature [38, 39] that

for a Gaussian kernel the optimal bandwidth in terms of minimizing the asymptotic

mean integrated error between the estimated and true densities is given by

σ∗
rapi

=

(

4

d+ 2

)
1

d+4

σ̂
rapi

n
−1
d+4 (3.31)

where d is the number of APs used, n is the number of fingerprint RSS measurements,

and σ̂2
rapi

= 1/d
∑d

l=1

(

σ̂2
rapi

)2

is the average of the estimates of the marginal variances

for each AP at xi. Therefore σ
rapi

= σ∗
rapi

Id. The primary disadvantage of this

optimal bandwidth selector is that a single value is used to apply the same bandwidth

to each set of fingerprint RSS measurements, for each AP, at each ANP.
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To account for the variation of the fingerprint RSS measurements from a Gaussian

distribution, a smoothing factor, s, is introduced to scale the optimal bandwidth. The

smoothed optimal kernel bandwidth is then used for location estimation

s =
σ̃∗
rapi

σ∗
rapi

(3.32)

where σ̃∗
rapi

is smoothed optimal kernel bandwidth used in estimation. A basic exam-

ple of how the smoothing factor selection, applied to the optimal kernel bandwidth,

affects KDE for a single AP (d = 1) is shown below in Fig. 3.15.
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Figure 3.15: KDE of RSS Measurements from Single AP with Varying Smooth factor
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3.6 Radio Map Annealing Via Dynamic Asset Traces

The time consuming and intrusive nature of location fingerprinting an environment is

one of the most important disadvantages of range-free indoor location estimation tech-

niques. There are two main components of a range-free system that can be adjusted

in order to alleviate this problem. The first is the amount of time spent collecting

data at each ANP. This directly translates into the number of fingerprinted RSS

measurements, n, from each ANP used in the localization algorithm. The second is

a reduction in the number of fingerprinted ANPs which can lead to an incomplete

radio map.

In order to dynamically anneal an initial radio map with unknown asset traces,
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Figure 3.16: Localization System with Dynamic Radio Map Annealing
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one must first interpolate the skipped ANPs to complete the radio map. A HMM

finite state machine, combined with a GEM algorithm, trains the HMM model pa-

rameters with multiple unknown asset traces to anneal the initial radio map over

time. A block diagram of the overall system, with the implementation of radio map

annealing for a single unknown asset trace, can be seen in Fig. 3.16. The system is

divided into two sections: observations and localization system. First, initial calibra-

tion RSS measurements are collected at sparse locations throughout the environment

where an interpolation algorithm is used to complete the radio map for each ANP

in the system. This portion of the localization system is indicated as a dashed line,

in the lower right hand section of Fig. 3.16, since it will only be utilized once prior

to location estimation. Second, the static RSS measurements from the first unknown

asset location are used for MMSE location estimation. Third, an unknown asset

trace, used by the HMM annealing algorithm, is shown as the sequence of online

RSS measurements collected during the dynamic motion of the asset between static

locations 1 and 2. The sequence of RSS measurements is used to train the HMM

model parameters through the use of a GEM. Third, the most probable sequence

of states, based on the observed sequence of RSS measurements, is determined via a

Viterbi algorithm. The newly labeled sequence of RSS measurements are added into

the radio map at their respective ANP locations. Finally, the annealed radio map

and the static RSS measurements from the second unknown asset location are used

for MMSE location estimation.

The stock WiFlyR© RN-134 802.11b modules did not support a feature for the

detection of dynamic motion, therefore it was necessary to develop additional cir-

cuitry, the accelerometer daughter board outline in Appendix A, to allow for the
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determination between static and dynamic online RSS measurements.

3.6.1 Interpolation of Skipped Anchor Points

To reduce the number of fingerprinted locations and ensure the system still has a

complete radio map, we interpolate the fingerprint RSS measurements to each skipped

ANP while keeping the measurement acquisition as translucent as possible to the

normal operations within an environment. To try to alleviate the intrusiveness of

using a turntable to calibrate ANPs, a second method was developed that utilized

the designed RPs placed along the length of each hallway wall. Pairs of RPs located

directly across from one another were used to interpolate RSS to each ANP location.

The reduction in the total number of RPs used for interpolation was also investigated.

In the first approach, the number of fingerprinted ANPs has been reduced to every

third ANP as shown in Fig. 3.17. To interpolate the RSS of the skipped ANPs, the

two closest fingerprinted ANPs are used. It can be seen that the contribution from

each fingerprinted ANP will depend solely on the distance between it and each of the

skipped ANPs. In the second approach, the number of RPs has also been reduced to

every third ANP spacing as shown in Fig. 3.18. It can be seen that the RPs spaced

directly in line with an ANP are used solely to interpolate that specific ANP. The

interpolation of the off-spaced ANPs will require the combined contributions from

each of its four closest RPs.

3.6.1.1 Inverse Distance Weighting for RSS

An appropriate algorithm is needed in order to interpolate the RSS measurements

of the skipped ANPs. We have chosen IDW as our method of interpolation which is
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Figure 3.17: Example Interpolation from Calibration Anchor Points

typically used to interpolate data at sparse locations within dense grids[49]. It has

been previously implemented for the interpolation of outdoor radio maps[25]. This

elegant, yet simple approach weights the RSS measurements from the RPs, the known

scattered locations, for each AP by the inverse of its difference in Euclidean distance

to each skipped ANP. To find a interpolated RSS value, µap{RSS},l, at a skipped ANP,

xap, based on the RSS samples µ (xrpi){RSS},l for i = 1, . . . , N is given as

µap(xap){RSS},l =
N
∑

i=1

αi(xap)
∑N

i=1 αi(xap)
µ (xrpi){RSS},l (3.33)

where l = 1, . . . , d is the number of selected APs and
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Figure 3.18: Example Interpolation from Calibration Reference Points

αi(xap) =
1

d(xap,xrpi)
ρ
=

1

‖xap − xrpi‖
ρ (3.34)

The exponent ρ is termed the power parameter and controls the weight of each RP

on the current ANP in the interpolation. It follows that for RSS measurement IDW,

the RPs closest to the interpolated ANP should be influenced most, with distant RPs

contributing less, hence ρ ≥ 2 for 2-d interpolation. Ideally, setting ρ = 2 will result

in Eq. 3.34 becoming the inverse of the Euclidean distance between each RP and the

interpolated ANP and has been shown to lead to satisfactory empirical results with

low computational complexity [49].
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3.6.2 Hidden Markov Model for Unknown Asset Traces

A HMM is a stochastic finite state machine that can model discrete Markov processes

with a set of parameters. The term hidden refers to the fact that the underlying

stochastic process is not observable and can only be observed through a second set

of stochastic processes that produce observation sequences [50, 51]. The HMM had

its earliest known success in the field of speech recognition [51]. The total number of

available states within the HMM, N , also equals the number of ANP used in the loca-

tion estimation system. This set of states will be referred to as S = {s1, s2, . . . sN}.

We will denote the hidden state at any online time t as qt with a particular asset

trace sequence of hidden states of length T denoted by Q = [q1, q2, . . . qT ] where

qt ∈ {s1, s2, . . . sN}. The collection of observed RSS measurements from d APs cor-

responding to the sequence of hidden states will be denoted as R = [r1, r2, . . . rT ].

There are two conditional independence assumptions[52] that need to be made in

order to move forward with any HMM algorithm and are outlined as follows.

1. For any asset trace sequence of hidden states, Q, the probability of a certain

hidden state qt at time t only depends on the hidden state qt−1 at time t − 1.

This is known as the first-order Markov assumption.

P (qt|qt−1, qt−2, . . . , q1) = P (qt|qt−1) (3.35)

2. Any RSS measurement, rt, observed from a hidden state, qt, is independent of

any other state.
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P (rt|qT , rT , qT−1, rT−1, . . . , qt+1, rt+1, qt, rt, qt−1, rt−1, . . . , q1, r1) = P (rt|q1)

(3.36)

3.6.2.1 Parameter Overview

The production of any hidden asset trace sequence, Q, is described by a time indepen-

dent stochastic transition matrix that governs how an asset may move throughout

the environment subject to a certain set of constraints. In general, the transition

probabilities do not necessarily have to be symmetric (ai,j 6= aj,i

A = {ai,j} = {p (qt = sj|qt−1 = si)} 1 ≤ i ≤ N

1 ≤ j ≤ N

(3.37)

An example of the transition probabilities for one state, or one column of A, is

given in Fig. 3.19 for two scenarios. A maximum distance constraint of 2 meters is

set governing how far the asset can jump forward or backward in state space, and

the associated probability of each throughout the state sequence. In Fig. 3.19(a), the

probabilities follow a triangular distribution where an asset is more likely to transition

to its closest neighboring states either forwards or backwards, with less probability

that the asset will transition further. In Fig. 3.19(b), the probabilities follow a uniform

distribution where an asset is equally likely of transitioning forwards or backwards to

its closest neighboring states, or further states depending on the maximum distance

constraint. An example of A representing only the state transition matrix distance
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constraint shown in Fig. 3.19(a) can be seen in Eq. 3.38.
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
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(3.38)

For time t = 1, the initial state probabilities are formulated to account for any

prior knowledge about where an asset may start their trace sequence.

π = {πi} = {p (q1 = si)} 1 ≤ i ≤ N (3.39)
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The emission, or conditional, probabilities describe the likelihood of a certain ob-

servation at a particular time, rt, given that the HMM is in state si. For discrete

observations, where rt ∈ {v1, v2, . . . vH}, the matrix form

λ = {λi,h} = {p (rt = vh|qt = si)} 1 ≤ i ≤ N

1 ≤ h ≤ H

(3.40)

This is the discrete observation assumption that an observation is any one of H

possible values, vh, where V = {v1, v2, . . . vH}. For continuous observations, the

probability densities are described using a set of PDFs for the observation space.

λ = {λi(rt)} = {p (rt|qt = si)} 1 ≤ i ≤ N (3.41)

In this research, the conditional probabilities are calculated using the technique out-

lined in Section 3.5.2.1 where each rt in the observation sequence R is used within the

likelihood kernel density estimate to map its RSS-dependency against the fingerprint

RSS measurements corresponding to each interpolated ANP in the set of all avail-

able states S. The conditional probabilities are also normalized to result in a total

probability of 1 over all states. Assuming that any observed RSS measurement is an

allowable value, rt = vt, then

λ = {p (rt = vt|qt = si)} = {p (rt|xi)} (3.42)

= {ωi(rt)} =

{

N (rt; r̄i,σr
)

∑N
i=1N (rt; r̄i,σr

)

}

1 ≤ i ≤ N (3.43)
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As a standard stochastic constraint, we must guarantee that a state transition occurs

from t → t + 1, therefore normalization conditions are enforced on each model pa-

rameter to ensure that the appropriate vector dimension has a probability summation

equal to 1.

N
∑

j=1

ai,j = 1

H
∑

h=1

λi,h = 1

N
∑

i=1

πi = 1 (3.44)

An example of how the above assumptions are invoked on a HMM can be seen in

Fig. 3.20. The white circles represent the hidden asset trace states as they progress

through time with interconnecting location state transition probabilities. Their as-

sociated observations, RSS measurements, are denoted as grey circles with emission

or likelihood probabilities. The initial location state probability at time t = 1 is also

shown. The complete set of HMM model parameters outlined in Eq. 3.37 - 3.44 will

be denoted as the tuple θ = (A,λ,π). The distributions of the above parameters will

...

...

...

q1 q2 q3 qt

r1 r2 r3 rt

Pr(r1|q1) Pr(r2|q2) Pr(r3|q3) Pr(rt|qt)

Pr(q2|q1) Pr(q3|q2) Pr(q4|q3) Pr(qt|qt-1)Pr(q1)

...

Figure 3.20: Example of First Order HMM State Transition Through Time
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follow as

P (q1|π) =
N
∏

i=1

πi (3.45)

P (qt|qt−1,A) =

N
∏

i=1

N
∏

j=1

ai,j (3.46)

P (rt|qt,λ) =
N
∏

i=1

H
∏

h=1

λi,h (3.47)

with the complete-data likelihood, or the joint distribution of R and Q given θ for a

sequence of length T , given by

P (R,Q|θ) = P (q1|π)

[

T
∏

t=2

P (qt|qt−1,A)

]

T
∏

m=1

P (rm|qm,λ) (3.48)

=

N
∏

i=1

πi

[

T
∏

t=2

N
∏

i=1

N
∏

j=1

ai,j

]

T
∏

t=1

N
∏

i=1

H
∏

h=1

λi,h (3.49)

3.6.2.2 Generalized Expectation-Maximization for Model Training

In the first setup to improve the initial interpolated radio map over time, unknown

asset traces will be used to train the HMM model parameters via a GEM algorithm.

Also known as Baum-Welch parameter estimation[52, 53, 54, 51, 55, 50, 56], this

iterative technique improves an initial estimate of the model parameters, denoted as

θ1 =
(

A1,λ1,π1
)

,to a set of model parameters θ∗ that best explains P (R|θ), which is

the likelihood of the observed RSS measurement sequence R given θ. The maximum

likelihood problem becomes

θ∗ = argmax
θ

logP (R|θ) (3.50)
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Although the maximization should be over P (R|θ), it is equivalent to maximizing

logP (R|θ) since log is monotonic and it makes the GEM algorithm mathematically

easier to handle. Furthermore, with a HMM the state sequence Q that would have

produced R is unknown and must be incorporated into the maximization through

P (R,Q|θ), which is the joint distribution of R and Q summed over all possible

hidden state sequences.

θ∗ = argmax
θ

log
∑

Q∈ S

P (R,Q|θ) (3.51)

This solidifies our understanding as to why P (R|θ) is often referred to as the incom-

plete data likelihood and P (R,Q|θ) the complete data likelihood.

Maximizing Eq. 3.51 would be difficult since it involves taking the log of a sum of

variables. Therefore, we turn to GEM where the goal is to iteratively maximize an

auxiliary function, Q, through the expectation(E) and maximization(M) steps until

convergence is reached at some local optimum θ∗. Only an improved θ(k+1) is required

to be set at each iteration k of the M step, not the optimal as required by standard

EM.

θ(k+1) = argmax
θ
Q
(

θ, θ(k)
)

(3.52)

where θ are the HMM parameters to be maximized, θ(k) are the maximized parameters

from the previous iteration, and the Q function is

Q
(

θ, θ(k)
)

= E
[

logP (R,Q|θ) |R, θ(k)
]

(3.53)

=
∑

Q∈ S

logP (R,Q|θ)P
(

Q|R, θ(k)
)

(3.54)
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=
∑

Q∈ S

logP (R,Q|θ)
P
(

R,Q|θ(k)
)

P (R|θ(k))
(3.55)

and the term P
(

R|Q, θ(k)
)

is the posterior distribution of the latent state sequence Q,

given R and θ(k), and is evaluated during the E-step which will be discussed later. The

Q function can be reformulated in terms of the joint probability, P (R,Q|θ), using

Bayes’ theorem as shown in Eq. 3.55. An explanation as to how GEM maximizes the

likelihood P (R|θ) through the iterative maximization of the Q function is arduous

and beyond the scope of this thesis. Interested readers are encouraged to read the

detailed formulation provided by [57]. It can be guaranteed that if we choose θ(k+1)

so that Q
(

θ, θ(k+1)
)

≥ Q
(

θ, θ(k)
)

, then logP
(

R|θ(k+1)
)

≥ logP
(

R|θ(k)
)

.

M-Step

To make the HMM parameter maximization manageable, the Q function can be

rewritten as the sum of each parameter allowing for the maximization to be performed

individually. With knowledge of the joint distribution for the current iteration, as

given in Eq. 3.49, the Q function expands to

Q
(

θ, θ(k)
)

=
∑

Q∈ S

logP (q1|π)
P
(

R,Q|θ(k)
)

P (R|θ(k))

+
∑

Q∈ S

(

T
∑

t=2

logP (qt|qt−1,A)

)

P
(

R,Q|θ(k)
)

P (R|θ(k))

+
∑

Q∈ S

(

T
∑

t=1

logP (rt|qt,λ)

)

P
(

R,Q|θ(k)
)

P (R|θ(k))
(3.56)



61

The first term in Eq. 3.56 can be evaluated further since by selecting all Q ∈ S, the

values of q0 are just repeatedly selected, or the marginal probabilities for t = 1.

∑

Q∈ S

logP (q1|π)
P
(

R,Q|θ(k)
)

P (R|θ(k))
=

N
∑

i=1

log π
q1,i
i

P
(

R, q1 = si|θ(k)
)

P (R|θ(k))
(3.57)

The second term in Eq. 3.56 will become the sum of the joint-marginal probabilities

for t− 1 and t since for each t we are progressing over all state transitions from i to

j and weighting by the corresponding probability.

∑

Q∈ S

(

T
∑

t=2

logP (qt|qt−1,A)

)

P
(

R,Q|θ(k)
)

P (R|θ(k))
=

N
∑

i=1

N
∑

j=1

T
∑

t=2

log a
qt,jqt−1,i

i,j

P
(

R, qt−1 = si, qt = sj |θ(k)
)

P (R|θ(k))
(3.58)

The third term in Eq. 3.56 will become the sum of the marginal probabilities for t

since for each t we are progressing over the emission probabilities for all states and

weighting each possible emission by the corresponding probability

∑

Q∈ S

(

T
∑

t=1

logP (rt|qt,λ)

)

P
(

R,Q|θ(k)
)

P (R|θ(k))
=

N
∑

i=1

T
∑

t=1

H
∑

h=1

log λ
qt,irt,h
i,h

P
(

R, qt = si|θ(k)
)

P (R|θ(k))

(3.59)

Following the procedure detailed in Appendix B, the technique of Lagrange multipliers

can be used to define the model parameters that will iteratively maximize P (R,Q|θ∗).

π
(k+1)
i =

P
(

R, q1 = si|θ(k)
)

P (R|θ(k))
= P

(

q1 = si|R, θ
(k)
)

(3.60)
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a
(k+1)
i,j =

∑T
t=2 P

(

R, qt−1 = si, qt = sj|θ(k)
)

∑T
t=2 P (R, qt−1 = si|θ(k))

=

∑T
t=2 P

(

qt−1 = si, qt = sj |R, θ(k)
)

∑T
t=2 P (qt = si|R, θ(k))

(3.61)

λ
(k+1)
i,h =

∑T
t=1 P

(

R, qt = si|θ(k)
)

δ
rt,vh

∑T
t=1 P (R, qt = si|θ(k))

=

∑T
t=1 P

(

qt = si|R, θ(k)
)

δ
rt,vh

∑T
t=1 P (qt = si|R, θ(k))

(3.62)

E-Step

At each iteration in the maximization of Q, the posterior and joint-posterior proba-

bilities

P
(

qt = si|R, θ
(k)
)

(3.63)

P
(

qt−1 = si, qt = sj |R, θ
(k)
)

(3.64)

required for the M-Step are evaluated efficiently using a two-stage technique known as

the forward-backward, or Baum-Welch, algorithm. The forward partial probability,

denoted as αi (t), is the joint probability of observing the first rτ , where τ = 1, 2, . . . , t

and being in state qi at time t.

αi (t) = P
(

r1, r2, . . . , rt, qt = si|θ
(k)
)

(3.65)

Following the derivation detailed in Appendix B, αi (t) can be evaluated recursively

as

αi (1) = π
(k)
i λ

(k)
i (rt) 1 ≤ i ≤ N (3.66)

αi (t) = λ
(k)
i (rt)

N
∑

j=1

αj (t− 1) a
(k)
j,i 1 ≤ i ≤ N

1 ≤ t ≤ T

(3.67)
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The backward partial probability, denoted as βi (t), is the conditional probability of

observing the remaining rτ , where τ = t+ 1, t+ 2, . . . , T given the state at t is qi.

βi (T ) = 1 ∀i (3.68)

βi (t) = P
(

rt+1, rt+2, . . . , rT |qt = si, θ
(k)
)

1 ≤ t ≤ T − 1 (3.69)

Following the derivation detailed in Appendix B, βi (t) can be evaluated recursively

as

βi (T ) = 1 (3.70)

βi (t) =

N
∑

j=1

a
(k)
i,j λ

(k)
i (rt+1)βj (t+ 1) 1 ≤ t ≤ T (3.71)

The posterior probability detailed in Eq. 3.63 can be now be formulated in terms of

αi (t) and βi (t) since

P
(

qt = si|R, θ
(k)
)

=
P
(

R, qt = si|θ(k)
)

P (R|θ(k))
(3.72)

P
(

R, qt = si|θ
(k)
)

= P
(

R|qt = si, θ
(k)
)

P
(

qt = si|θ
(k)
)

(3.73)

= P
(

r1:t, rt+1:T |qt = si, θ
(k)
)

P
(

qt = si|θ
(k)
)

(3.74)

= P
(

r1:t|qt = si, θ
(k)
)

P
(

rt+1:T |qt = si, θ
(k)
)

P
(

qt = si|θ
(k)
)

(3.75)

= P
(

r1:t, qt = si|θ
(k)
)

P
(

rt+1:T |qt = si, θ
(k)
)

(3.76)

= αi (t) βi (t) (3.77)
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P
(

R|θ(k)
)

=

N
∑

i=1

P
(

R, qt = si|θ
(k)
)

=

N
∑

i=1

αi (t)βi (t) (3.78)

resulting in

P
(

R, qt = si|θ
(k)
)

=
αi (t) βi (t)

∑N
i=1 αi (t) βi (t)

(3.79)

The joint posterior probability detailed in Eq. 3.64 can also be formulated in terms

of αi (t) and βi (t) since

P
(

qt−1 = si, qt = sj |R, θ
(k)
)

=
P
(

R, qt−1 = si, qt = sj |θ(k)
)

P (R|θ(k))
(3.80)

P
(

R, qt−1 = si, qt = sj |θ
(k)
)

= P
(

r1:t−1, qt−1 = si, rt, qt = sj, rt+1:T |θ
(k)
)

(3.81)

= P
(

rt+1:T |qt = sj , θ
(k)
)

. . .

× P
(

qt = sj |qt−1 = si, θ
(k)
)

. . .

× P
(

rt|qt = sj |θ
(k)
)

. . .

× P
(

r1:t−1, qt−1 = si|θ
(k)
)

(3.82)

= βi (t) ai,jλj (rt)αi (t− 1) (3.83)

P
(

R|θ(k)
)

=
N
∑

i=1

P
(

R, qt = si|θ
(k)
)

=
N
∑

i=1

αi (t)βi (t) (3.84)

resulting in

P
(

qt−1 = si, qt = sj |R, θ
(k)
)

=
βi (t) ai,jλj (rt)αi (t− 1)

∑N
i=1 αi (t) βi (t)

(3.85)
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In summary, the GEM algorithm for HMM parameter training based on unknown

asset trace sequences maximizes the likelihood of P (R|θ) to some local optimum θ∗

through the iterative maximization of the HMM parameters. This is accomplished

through the construction and evaluation of the Q function at each iteration until a

convergence criterion is reached, typically when the change in likelihood does not

increase between successive iterations. The GEM algorithm can be visualized in

Fig. 3.21 as ’climbing’ the surface of the likelihood function to arrive at local optimum

θ∗ [57].

θ
* 
Local Optimum θ

** 
Global Optimum

L
ik

el
ih

o
o
d

θ1 θ2

Q (θ, θ1)

Q (θ, θ2)

Figure 3.21: Iterative Maximization of the Observation Sequence Likelihood via GEM
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3.6.2.3 Probability Lattice Tracing via Viterbi Algorithm for Most Prob-

able State Sequence

Now that the HMM model parameters have been trained through GEM, the second

setup to improve the initial fingerprinted radio map may be explained. The sequence

of observed RSS measurements, R = [r1, r2, . . . rT ], collected during the unknown

asset trace sequence, Q = [q1, q2, . . . qT ], can be used to anneal the radio map if the

locations of where the observations were collected can be determined. The Viterbi

algorithm can be used to find the most probable asset trace sequence, or path, of states

that could have produced their associated observations[58, 51, 55] and is defined as

the maximization of P (Q|R, θ∗). In fact, the Viterbi algorithm can also be used to

find the most probable asset trace sequence of states using the observed RSS and the

set of untrained HMM parameters. This would not be advisable since the optimized

HMM parameters resulting from the maximized likelihood of P (R|θ∗) through GEM

best represents the sequence of observed measurements R.

There are two variables that are required for the Viterbi algorithm and are defined

as

δt (i) = max
q1,q2,...,qt−1

P (q1, q2, . . . , qt = si, r1, r2, . . . , rt|θ∗) (3.86)

which is the best score, or highest likelihood, along a single path among all the possible

paths ending in state si at time t and

ψt (i) = arg max
q1,q2,...,qt−1

P (q1, q2, . . . , qt = si, r1, r2, . . . , rt|θ∗) (3.87)

which is used to keep track of the best path ending in state si at time t. The full

procedure of the Viterbi algorithm is outline as
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Initialization

δt (i) = πiλi (r1) 1 ≤ i ≤ N (3.88)

ψt (i) = 0 (3.89)

Recursion

δt (j) = max
1≤i≤N

(δt−1 (i) ai,jλj (rt)) 2 ≤ t ≤ T

1 ≤ j ≤ N

(3.90)

ψt (j) = arg max
1≤i≤N

(δt−1 (i) ai,j) 2 ≤ t ≤ T

1 ≤ j ≤ N

(3.91)

Termination

P+ (Q|θ∗) = max
1≤i≤N

δT (i) (3.92)

q+T = arg max
1≤i≤N

δT (i) (3.93)

Backtracking

q+t = ψt+1

(

q+t+1

)

T − 1 ≥ t ≥ 1 (3.94)

Q+ =
[

q+1 , q
+
2 , . . . , q

+
T

]

(3.95)

Following the above calculation of the most probable sequence of states, Q+, and

remembering that each HMM state corresponds to a unique ANP in the system, the

radio map is annealed by updating the fingerprint matrix with the observed RSS
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measurements for each AP resulting in

R+ ,
{(

xapi,F
+(xapi)

)

|i = 1, . . . , N
}

(3.96)

where F+(xapi) is the annealed fingerprint matrix at each ANP= q+t , 1 ≤ t ≤ T .

3.7 Discussion

This chapter discussed each component required for the proposed indoor range-free

localization system that will be experimentally validated in Chapter 4. It is important

to note that this thesis will not explore the implementation of tracking algorithms

and their associated benefits to location estimation accuracy. However, the Bayesian

statistical development of the proposed probabilistic location estimation and radio

map annealing algorithms will lead to an interesting discussion as to the feasibility

of tracking adaptation into the proposed system.
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Chapter 4

Experimental Validation

This chapter explores the validation of proposed concepts outlined in Chapter 3.

First, the experiment setup used to perform the site survey environment, placement

of ANPs and RPs, and the acquisition of online RSS measurements at static test

locations and during dynamic test traces will be described.

The GT radio map constructed via the turntable setup of Section 3.4 was used

to analyze the number and selection of d APs required within the deterministic and

probabilistic location estimation techniques of WNNSS and MMSE. The selectable

parameters of both techniques, K for WNNSS and s for optimal kernel bandwidth

smoothing of the KDE, were examined to determine their most appropriate selection

to produce the best distance error results possible for this system.

The first component which addresses the laborious fingerprinting effort will be a

reduction in the total number of calibration ANP locations. Fingerprint RSS mea-

surements acquired from sparse calibration ANP locations will be used to interpo-

late fingerprints to a complete radio map of all available ANPs. Validation will be

performed with different degrees of sparseness for both the turntable fingerprints col-

lected at each ANP as well as fingerprints acquired from stationary RPs attached to

walls throughout the environment. The second component, or the n number of initial

fingerprint RSS measurements at each of the sparse ANPs, will also be explored.
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4.1 Setup and RSS Measurement Acquisition Procedures

This section details the offline production of the complete GT radio map with the

turntable setup, the placement of RPs throughout the environment, the acquisition of

online RSS measurements for each available AP at each online location, the acquisition

of online RSS measurements during each dynamic trace of the asset, and the figure of

merit used in this thesis. The total number of available APs within the localization

environment, as outlined in Section 3.3, is fixed at 6.

4.1.1 Ground Truth Radio Map

The localization environment was divided into 71 ANPs, equally spaced by 1m as

shown in Fig. 3.12. The two modules attached to the turntable setup, shown in

Fig. 3.13, were programmed to collect a single fingerprint RSS measurement vector

every 1 second. Since some scans do not sense every AP available to the localization

system, some ANP locations vary in the number of fingerprint RSS measurements

for each available AP. Our tests will evaluate the proposed system with a total

N = 200 fingerprint RSS measurement vectors for each ANP location. The number

of RSS measurement vectors, from each AP̧, did vary in length due to the amount

of time spent acquiring at each ANP, therefore only the first 200 RSS measurement

vectors can be guaranteed and will be used for this validation. Therefore, Taps = 200

seconds were spent at each ANP location. Several days were required to collect all

GT fingerprint RSS measurements.



71

4.1.2 Interpolated Radio Map from Reference Points

As shown in Fig 3.18, two RPs were affixed to the opposing walls, in direct line with

each ANP, at a height of 180 cm along the corridors forming a direct line between

the ANPs and the two RPs as shown in Fig 3.18. RSS measurements were collected

for approximately 10 minutes with the scan period set to 2 seconds. This resulted in

approximately 220− 240 RSS measurement vectors used to interpolate each ANP in

the complete radio map. Once again, only the first 200 RSS measurement vectors will

be used for this validation. A second set of several days was required to collect all RP

RSS measurements and did not coincide with the collection of the GT fingerprint RSS

measurements. With no changes to the propagation environment, this is assumed to

not effect the validation of proposed techniques.

4.1.3 Static Online Locations

The mock IV pump setup, detailed in Section 3.2, was used to collect online RSS

measurements at each of 101 static online locations with its Cartesian coordinates,

xtest, recorded for accuracy calculations. The static locations were randomly selected

with each of the 71 ANPs included at least once in the set of 101 online locations.

Each online location was observed for approximately 180 seconds with the module

set to scan for available APs every 5 seconds. This yielded approximately 36 online

RSS measurement vectors for each static location. The orientation of the mock IV

pump was selected randomly at location. This thesis will utilize all acquired RSS

measurements at each online location. The effects of varying the number of online

RSS measurements used for location estimation will not investigated.
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4.1.4 Dynamic Asset Traces

In addition to the static online locations, the mock IV pump setup was used to collect

online RSS measurements every second during dynamic motion between each of the

static online locations, resulting in 100 dynamic asset traces of varying length from

2 − 60 meters. The speed at which the asset was moved throughout each trace was

approximately between 2 − 3 meters per second. A volunteer was used to move the

mock IV pump through each trace as to mimic an actual patient in a hospital. The

accelerometer daughter board, detailed in Appendix A, was configured to wake the

module for scanning every 1 second during dynamic motion. Since the dynamic traces

were of varying length, it follows that each of fingerprint vectors would also vary in

length. A third set of several days was required to collect online RSS measurements at

all static location and dynamic traces. As mentioned in Section 4.1.2, this is assumed

to not effect the validation.

4.1.5 Figure of Merit

Distance error is calculated as the Euclidean distance between the estimated, x̂, and

the true static online location, xtrue. This thesis will report the Average Distance

Error (ADE), which is defined as the average of l2 norms between Ntrue estimated

and true static online locations as

dADE =
1

Ntrue

Ntrue
∑

i=1

‖x̂− xtrue (i)‖
2 (4.1)
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4.2 Localization Algorithm Comparison with Ground Truth

The two range-free localization algorithms discussed in Section 3.5, the deterministic

WNNSS and probabilistic MMSE, were each evaluated utilizing all 101 static online

locations with the complete radio map comprised of a total of 200 fingerprint RSS

measurements vectors. The selection of APs for each algorithm will be determined

based on the sample RSS measurements taken at each of the static online locations.

The d number of selected APs will be evaluated using two different methodologies: the

d highest average of online RSS measurement vectors and the d highest frequency of

online RSS measurement vectors for each static online location. For the first method,

each algorithm calculates the average value of online RSS measurements from each

AP, sorts the averages from highest to lowest, and selects the d APs from the sorted

list. For the second method, each algorithm counts the number of RSS measurements

from each AP, sorts the counts from highest to lowest, and selects the d APs from

the sorted list. These will be referred to as method 1 and method 2 for the sake of

convenience.

4.2.1 K Weighted Nearest Neighbors in Signal Space

Along with the determination of the d number of APs for location estimation, it

was also necessary to vary the selectable parameter K, or the number of WNNSS,

to see its effect on the ADE. As can be seen in Table 4.1, the d selected number

of APs used in the location estimation was varied from 3 to 5 with the K selected

number of WNNSS varied from 1 to 7 for the complete radio map of 200 fingerprint

RSS measurement vectors. For clarification, method 1 and 2 for AP selection will be

referred to as Avg. RSS and Freq. RSS, or High Avg. RSS and High Freq. RSS in
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various figures and tables throughout the validation.

The value of K corresponding to the smallest ADE for each set of selected APs

in Table 4.1 was used to further investigate the effects of varying the n number of

initial fingerprint RSS measurements on the ADE as shown in Fig. 4.1. It can be seen

that the ADE is highly dependent on the number of selected APs, regardless of which

selection method is used, with an approximate decrease in the ADE of 0.5 meters,

per AP, with an increase from 3 to 4 to 5 APs. The selection of APs with method 1,

which is the most common technique found in literature, outperforms method 2 for

the selection of 3 and 4 APs. In contrast, for the selection of 5 APs method 2 results

in the smallest ADE. The results in Fig. 4.1 further show that a fairly consistent ADE

is maintained with the increase in n used for WNNSS location estimation. This could

be attributed to the turntable configuration, which was described in Section 3.4,

where the rotation attempts to average out the spatial fast fading effects on RSS

K WNNSS - ADE (m) - Ground Truth Radio Map - 200 Fingerprint

RSS Measurements - APs Selected by Highest Avg. RSS

or Highest Freq. RSS Measurements at Online Locations

3 APs 4 APs 5 APs

K Freq. RSS Avg. RSS Freq. RSS Avg. RSS Freq. RSS Avg. RSS

1 4.16 4.02 3.12 3.28 2.46 2.51

2 3.99 3.84 2.98 3.01 2.34 2.43

3 3.75 3.57 3.03 2.99 2.33 2.40

4 3.65 3.59 2.99 2.94 2.31 2.39

5 3.65 3.50 2.99 2.95 2.35 2.41

6 3.57 3.40 2.96 2.91 2.39 2.47

7 3.62 3.42 3.00 2.93 2.40 2.53

Table 4.1: K WNNSS - Ground Truth Radio Map - 200 RSS Measurements
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Figure 4.1: WNNSS for Minimum Distance Error with Ground Truth - 3, 4, 5 APs

measurements. The turntable does not improve the residual effects caused by long

term shadowing of walls and obstacles.

With a fixed number of 5 selected APs, method 1 and 2 were compared with

variations in K and n as shown in Fig. 4.2. The variation of K can be seen to

directly influence the ADE with K = 1 producing the greatest variation in the ADE

with a further increase in K resulting in a more uniform ADE as n is increased. As

K > 5, the ADE increases due to WNNSS from more distant ANPs contributing

to the location estimation. This effect can be best seen through the contour plots

in Fig. 4.3 with the selection of 5 APs by method 1 and 2 shown in Fig. 4.3(a) and

Fig. 4.3(b) respectively. The ADE resulting from 5 APs selected via method 1 is more

consistent with an increase in n.
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A Cumulative Distribution Function (CDF) is used extensively in literature

to conveniently show the probabilities resulting from the accumulation of all distance

errors for a given localization technique. This can be visualized in Fig. 4.4 for WNNSS

with fixed values of K, variations in n, and APs selected via method 2. For example,
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K WNNSS - Distance Errors (m) - APs Selected by

Highest Freq. RSS Measurements at Online Locations

3 APs, K = 6 4 APs, K = 6 5 APs, K = 4

# RSS AVG 50 % 70 % AVG 50 % 70 % AVG 50 % 70 %

10 3.57 2.10 3.92 3.01 1.95 3.34 2.59 1.54 3.10

25 3.70 2.31 3.73 2.96 1.73 3.73 2.36 1.40 2.88

50 3.84 2.23 4.22 3.08 1.79 3.65 2.43 1.59 3.12

100 3.71 1.94 4.27 3.13 1.75 3.51 2.39 1.55 2.61

150 3.69 2.22 4.12 3.12 1.85 3.58 2.41 1.58 2.70

200 3.69 2.03 4.07 3.19 1.90 3.54 2.42 1.61 2.85

Table 4.2: K WNNSS - Distance Errors - APs Selected by Highest Freq. RSS at
Online Locations

to determine the cumulative probability of a distance error less than or equal to 3

meters, one would locate this value on the x axis and trace the figure vertically to

the desired CDF plot. As in Fig. 4.4(a), the resulting cumulative probability for a

distance error of less than or equal to 3 meters corresponds to approximately 63%

for n = 100 initial fingerprint RSS measurements. The distance error results from

the WNNSS CDF plots presented in Fig. 4.4 are shown below in Table 4.2. These

include the ADE, the 50th (median) and 70th percentile of distance error, for fixed

values of K, variations in n, and APs selected via method 2. Even with a small value

of n, WNNSS shows superior location estimation performance with d = 5 selected

APs and K = 4.

4.2.2 Minimum Mean Squared Error Estimator via KDE

A comparison of method 1 and 2 for the selection of d APs must be made against the

probabilistic MMSE localization approach. The selectable parameter s, or smoothing

factor outlined in Section 3.5.2.2, adjusts the optimal kernel bandwidth used with
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the multivariate KDE to account for RSS measurement variations from the Gaussian

distribution and directly effects the ADE. Therefore, it was necessary to calculate

the parameter s with a variation in n, or the number of initial fingerprint RSS mea-

surements, for the selection of APs based on method 1 and 2. An example for d = 5

APs can be in Fig. 4.5, where the value of s resulting in a minimum ADE was de-

termined for each increment of n from the GT radio map. Further visualization can

be seen in Fig. 4.6, where contours of the ADE are shown with variations in s and

n. Optimum values of the smoothing factor, for d = 5, were calculated as the av-

erage of s across the variation in n for both method 1 and 2 as savg = 1.0175 and

sfreq = 1.0125 respectively. The results of MMSE with optimum smoothing factors

can be seen in Table 4.3, which reports the ADE resulting from the selection of 3, 4,

and 5 APs based on methods 1 and 2 utilizing the entire radio map of 200 fingerprint

RSS measurement vectors.

The optimum values of s, for each set of selected APs, were used to

investigate the effects of varying n on the ADE as shown in Fig. 4.7. Similar to

the results of the WNNSS location estimation shown in Fig. 4.1, the MMSE ADE is

MMSE via KDE - Avg. Distance Error (m) - 200 Fingerprint RSS

Measurements - APs Selected by Highest Avg. RSS or Highest

Freq. RSS Measurements at Online Locations, Optimum Smooth Factor

3 APs 4 APs 5 APs

Freq. RSS Avg. RSS Freq. RSS Avg. RSS Freq. RSS Avg. RSS

3.39 3.22 2.98 2.97 2.41 2.48

Table 4.3: MMSE via KDE - Average Distance Error - 200 RSS Measurements
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highly dependent on the number of selected APs regardless of which selection method

is used with an approximate decrease in the ADE of 0.3 meters with an increase from

3 to 4 and an approximate decrease in the ADE of 0.5 meters from 4 to 5 APs. The

selection of APs with method 1 again outperforms method 2 for the selection of 3

and 4 APs. In contrast, for the selection of 5 APs method 2 results in the smallest

MMSE ADE.

A CDF is used to visualize the cumulative probabilities of all distance errors and is

shown in Fig. 4.8 for MMSE location estimation with optimal values of s, variations

in n, and APs selected via method 2. The distance error results from the MMSE

location estimation CDF plots are shown in Table 4.4.



82

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance Error (m)

C
u

m
u

la
ti

v
e 

P
ro

b
ab

il
it

y

CDF of MMSE via KDE Distance Error, 3 APs,
 Optimum s, Ground Truth

 

 

10 RSS

25 RSS

50 RSS

100 RSS

150 RSS

200 RSS

(a)3 APs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance Error (m)

C
u

m
u

la
ti

v
e 

P
ro

b
ab

il
it

y

CDF of MMSE via KDE Distance Error, 4 APs,
Optimum s, Ground Truth

 

 

10 RSS

25 RSS

50 RSS

100 RSS

150 RSS

200 RSS

(b)4 APs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance Error (m)

C
u

m
u

la
ti

v
e 

P
ro

b
ab

il
it

y

CDF of MMSE via KDE Distance Error, 5 APs,
Optimum s, Ground Truth

 

 

10 RSS

25 RSS

50 RSS

100 RSS

150 RSS

200 RSS

(c)5 APs

Figure 4.8: CDF of MMSE via KDE for Varying Number of RSS Measurements, APs
Selected by Highest Freq. RSS at Online Locations

4.2.3 Remarks

Two different methods were investigated for the selection of APs using both WNNSS

and MMSE location estimation algorithms with optimal values of parameters K and

s. The results showed that both location estimation algorithms achieved comparably
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MMSE via KDE - Distance Errors (m) - APs Selected by

Highest Freq. RSS Measurements at Online Locations

3 APs 4 APs 5 APs

# RSS AVG 50 % 70 % AVG 50 % 70 % AVG 50 % 70 %

10 3.61 2.59 3.77 2.98 1.81 3.94 2.52 1.79 2.99

25 3.55 2.24 3.83 2.82 1.70 3.27 2.41 1.61 3.46

50 3.63 2.21 3.82 2.84 1.69 3.24 2.39 1.44 3.39

100 3.38 1.97 3.80 2.92 1.76 3.19 2.46 1.57 3.46

150 3.32 2.08 3.56 2.97 1.75 3.30 2.42 1.57 3.38

200 3.39 2.11 3.59 2.98 1.86 3.47 2.41 1.45 3.31

Table 4.4: MMSE via KDE - Distance Errors - APs Selected by Highest Freq. RSS
at Online Locations

low ADE of approximately 2.5 meters when d = 5 APs were selected with method

2, regardless of the n number of initial fingerprint RSS measurements from the GT

radio map. As a result of these findings, the number of selected APs by method

2, calculated by the highest frequency of online RSS measurements for each online

location, with be fixed at d = 5 for the remainder of the validation. It is important

to note that the optimum values of K and s were determined from a single data set

specific to the location estimation environment used for this validation. Changes to

the locations of APs, building modifications, or the density of personal would alter

the influences of shadowing on the fingerprint RSS measurements, thus resulting in

inaccurate optimum values.

Although comparable ADE was achieved for both the deterministic WNNSS and

probabilistic MMSE location estimation algorithms, the Bayesian statistics supplied

by the KDE utilized within the MMSE location estimation are advantageous as they

can be used to calculate the likelihood, or emission, distributions required by the

GEM algorithm used to train the HMM model parameters of the dynamic radio
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map annealing algorithm outlined in Section 3.6.2. Therefore, the MMSE location

estimation algorithm will be used throughout the remainder of this validation. It is

also interesting to note that for MMSE location estimation, the average value of the

smooth factor s was approximately a value of 1 which indicates that the turntable GT

radio map of 200 fingerprint RSS measurement vectors approximated the Gaussian

kernel with optimum selected bandwidths as outlined in Section 3.5.2.2. The use of

a complete radio map, consisting of fingerprint RSS measurements from dense ANP

locations, would be ideal for range-free location estimation, but not very practical.

Therefore, two scenarios were introduced, as outlined in Section 3.6.1, to geometrically

reduce the density of fingerprint ANPs.

4.3 Radio Map Annealing via Dynamic Asset Traces

The proposed radio map interpolation and annealing algorithms, as outlined in Sec-

tion 3.6, were analyzed for two different scenarios. First, a set of 3 complete radio

maps were constructed with the IDW interpolation algorithm, as outlined in Sec-

tion 3.6.1.1, and reductions in the density of fingerprinted locations from the origi-

nal GT turntable radio map of 71 ANPs. These will be referred to as interpolated

turntable radio maps. Second, a set of 3 complete radio maps were interpolated with

reductions in the density of RPs located along opposing walls to the ANP locations.

These will be referred to as interpolated RP radio maps. It is important to recall

that the ANPs, or states, which form a complete radio map are located uniformly at

1 meter increments throughout the localization environment. The reduction in the

density of locations used for interpolation will be referred to as an increase in the

sparseness. The removal of every 2nd, 3rd, and 4th location results in an increase in
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sparseness to 1/2, 1/3, and 1/4 of the original locations, be it ANP locations from

the original GT radio map or locations of the RPs. Both scenarios were visualized

in Fig. 3.17 - 3.18 for a sparseness of 1/3. The multiple unknown asset traces were

utilized within the annealing algorithm to study its effects on MMSE location esti-

mation for increases in sparseness of both the interpolated turntable and interpolated

RP radio maps. The maximum number of iterations and convergence criterion of

the GEM used for the annealing algorithm were fixed at 100 and 0.001 respectively.

The number of APs used for this validation was fixed at d = 5 and were selected by

method 2, as described Section 4.2.3.

4.3.1 Smoothing Factors of Interpolated Turntable Radio Maps

To implement MMSE location estimation on each of the interpolated turntable radio

maps, an investigation into the smoothing factor that adjusts the optimal kernel

bandwidth, required by the multivariate KDE, was conducted with variations in

both s and n. As in previous section, the smoothing factors for each interpolated

turntable radio map was selected as the value of s resulting in the smallest location

estimation error at each increment of n. The interpolated radio maps resulting from

increases in the sparseness of fingerprint locations are referred to as 2, 3, and 4 meter

for convenience as shown in Fig. 4.9. The original GT turntable radio map, referred

to as 1 meter, was included for as comparison of s without interpolation. Further

visualization can be seen in Fig. 4.10, where contours of the ADE are shown with

variations in s and n. The results illustrate relatively small variations in both the

smoothing factor and the ADE with increases in n, regardless of the sparseness of
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the interpolated turntable radio map. This indicates that the use of an optimum

smoothing factor, calculated as the average of s across the variation in n, can be

utilized with the MMSE location estimation algorithm regardless of the selected value

of n. Optimum values were calculated as the average of s across the variation in n

for each radio map and are shown in Table 4.5. It can be seen that the optimum

values increase as the sparseness of interpolated ANPs is increased. These optimum

smoothing values were fixed within the MMSE location estimation algorithm during

the investigation of annealing the interpolated turntable radio maps. It is important

to again note that the optimum values of s, as shown in Table 4.5, were determined

from a single data set specific to the location estimation environment used for this

validation.

Interpolated Turntable Radio Maps

Optimum Values of Smoothing Factor

1 meter 2 meter 3 meter 4 meter

s 1.013 1.095 1.139 1.317

Table 4.5: Interpolated Turntable Radio Maps - Values of Smoothing Factor

4.3.2 Dynamic Annealing of Interpolated Turntable Radio Maps

The annealing algorithm outlined in Section 3.6.2 required the configuration of con-

straints on the HMM parameter A, the state transition probability distribution.

These constraints govern how an asset may move throughout the environment every

1 second, as modeled by the HMM state machine. The probabilities of the maximum

distance constraint were selected based on a triangular distribution for the validation
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as shown in Fig. 3.19(a). For a distance constraint of m = 2, the probabilities depict

that an asset is most likely to transition to its closest neighboring states with less

probability that the user will transition to further states. The HMM parameter π,

the initial state distribution, was selected to be uniform across all states since no prior

knowledge is available as to the starting state of an asset. The likelihood, or emission,

distribution λ has probabilities describing the likelihood of observing an online RSS

measurement given that the asset is in a particular state within the HMM. Recall

that the states within the HMM correspond to the ANPs within a complete radio

map. These likelihood probabilities are calculated using the technique outlined in

Section 3.6.2.1 where each online RSS measurement within the sequence R, collected

during the unknown asset trace, are used within the KDE to map its RSS-dependency

against the selected interpolated radio map.

The annealing of each interpolated turntable radio map was performed with
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variations in the maximum distance constraint, for m = 1 . . . 4, to analyze how well

the HMM state machine captured the actual speed of the asset throughout each

trace. Variations were also conducted on the initial number of fingerprint RSS mea-

surements, n, used for the calculations of λ and MMSE location estimation. The

annealing algorithm was first utilized on the original GT turntable radio map to in-

vestigate its effects on the ADE without any interpolation. This is shown in Fig. 4.11.

The improvement to location estimation from annealing a radio map is reported as

the percentage decrease in ADE. The ADE was calculated through the use of MMSE

localization of all static asset locations with and without the annealing of each radio

map. The use of the same online RSS measurements from the static asset locations

was needed to offer a fair comparison of only the improvements to the ADE with and

without annealing.

The results in Fig. 4.11(a) indicate that annealing of the original GT turntable

radio map can provide some improvement to the ADE with variations in n. The

percentage decrease in ADE was consistent with state transition distance constraints

of m = 2 . . . 5, regardless of the initial value of n. The constraint m = 1 performing

lower which was to be expected since the the HMM state machine could not reflect

transitions greater than 1 meter per second. The speed of the user during each of

the dynamic asset traces was maintained at between 2 − 3 meters per second. The

greatest percentage decrease was between 8 − 16% and was accomplished with an

initial value of n = 10. As n was increased, the percentage decrease in ADE became

relatively consistent for particular values of m, with a maximum and minimum of

8% and 3% respectively. Improved visualization can be seen in Fig. 4.11(b) were the

contour of the percentage decrease in ADE is zoomed for small values of n.
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The percentage decrease in ADE for the annealing of the 2, 3, and 4 meter

interpolated turntable radio maps can be seen in Fig. 4.12 - 4.14. The results follow

similar patterns with variations in the initial value of n. Interestingly, with small

values of n, the percentage decrease in ADE is dramatically high for all values of m.

This indicates that the annealing algorithm is able to dynamically improve the initial

radio maps with a high degree of accuracy given relatively inaccurate initial radio

maps. With increases in n, the annealing algorithm results in a relatively consistent

percentage decrease in ADE. The percentage decrease in ADE remains lower for

m = 1 as was previously shown for the annealing of the original GT turntable radio

map.
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MMSE Localization Standard Deviations (m)

Interpolated Turntable Radio Maps

With and Without Annealing - 5 APs, m = 3

No Traces

1m 2m 3m 4m

# RSS AVG AVG AVG AVG

10 2.29 2.35 2.62 2.68

25 2.20 2.22 2.02 2.53

50 2.25 2.29 2.16 2.39

100 2.32 2.32 2.18 2.38

150 2.34 2.35 2.23 2.45

200 2.37 2.38 2.22 2.38

100 Traces

1m 2m 3m 4m

# RSS AVG AVG AVG AVG

10 2.54 2.14 1.95 2.04

25 2.18 2.09 1.98 2.12

50 2.09 2.13 2.01 2.21

100 2.14 2.23 2.01 2.19

150 2.28 2.29 2.09 2.28

200 2.30 2.35 2.16 2.27

Table 4.7: MMSE Standard Deviations - With and Without Annealing - Interpolated
Turntable Radio Maps

The overall changes in the MMSE location estimation distance errors

and standard deviations can be seen in Table 4.6 - 4.7 for each of the interpolated

turntable radio maps. These include the ADE, the 50th (median) and 70th percentile

of distance error, for variations in n with a fixed value of m. The results are tabulated

for a state transition distance constraint ofm = 3 as to conform with the approximate

speed of the asset during each dynamic trace. With n = 10, which is approximately a
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20 fold decrease in the original number of fingerprint RSS measurements collected at

each ANP, the ADE decreases with the use of each interpolated turntable radio map.

Annealing the 2, 3, and 4 meter interpolated radio maps results in a decrease in the

ADE of MMSE location estimation from 2.54→ 2.46, 2.79→ 2.30, and 2.89→ 2.43

meters or 3.2%, 17.6%, and 15.9% resectively. With n = 100, which is approximately

a 2 fold decrease in the original number of fingerprint RSS measurements collected
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Figure 4.15: CDF for Annealed 1 meter Turntable Radio Map
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Figure 4.16: CDF for Annealed 2 meter Interpolated Turntable Radio Map

at each ANP, annealing the 2, 3, and 4 meter interpolated radio maps results in a

decrease in the ADE from 2.43 → 2.34, 2.34 → 2.20, and 2.83 → 2.54 meters or

3.7%, 6.0%, and 10.2% respectively. It is interesting to note that the original GT

radio map results in higher ADE compared to the sparse interpolated radio maps.

This can be attributed to higher correlation between turntable figureprints at neigh-

bouring 1 meter ANP locations. The distance errors presented in Table 4.6 can be
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seen in Fig. 4.15 - 4.18 where a CDF was used to visualize the changes in distance

error, with and without radio map annealing, for increments in n.

An interesting fact is observed that with an increase in the sparseness of finger-

printed ANPs, the annealing of the interpolated radio maps results in a general in-

crease in the accuracy of the MMSE location estimation. The effect is most prominent

with n = 10 and can be attributed to what is called deficient radio map interpolation

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1
10 RSS

 

 

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1
25 RSS

 

 

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1
50 RSS

 

 

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1
100 RSS

 

 

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1
150 RSS

 

 

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1
200 RSS

 

 

C
u
m

u
la

ti
v
e 

P
ro

b
ab

il
it

y

Distance Error (m)

No Traces

100 Traces

No Traces

100 Traces

No Traces

100 Traces

No Traces

100 Traces
No Traces

100 Traces

No Traces

100 Traces

Figure 4.17: CDF for Annealed 3 meter Interpolated Turntable Radio Map
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Figure 4.18: CDF for Annealed 4 meter Interpolated Turntable Radio Map

and is detailed as follows. The small number of initial fingerprint RSS measurements

from the ANPs used for the interpolation of a complete turntable radio map cap-

ture a marginally small statistical view of the RSS-location dependency. This limited

view was then transferred to the skipped ANP locations through the interpolation.

However, the performance of the annealing algorithm in labeling the most probable

sequence of states for each unknown asset trace was maintained regardless of the de-
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ficiency in the interpolated radio map. The online RSS measurements are added into

the initial interpolated radio map at each ANP, or state, corresponding to the now

labeled trace sequences, thus increasing the number of fingerprint RSS measurements.

Therefore, the increase in the accuracy of the MMSE location estimation corresponds

to an improvement in the statistical view of the RSS-location dependency within the

annealed radio map. As n is increased, the fingerprint RSS measurements used for

interpolation capture more statistical variations in the RSS-location dependency, at-

tributed to the rotation of the turntable setup during acquisition, and the addition of

labeled RSS measurements have less influence. Ultimately, the annealing algorithm

provided relatively small improvements to the interpolated GT radio maps.

4.3.3 Smoothing Factors of Interpolated Reference Point Radio Maps

The interpolation of radio maps in the previous section involved skipping ANPs in

the original GT turntable radio map. The skipped ANPs were then interpolated from

fingerprint RSS measurements of the two closest ANPs that were not skipped, result-

ing in a set of complete, interpolated turntable radio maps with the same number of

ANPs, or states, as the original GT radio map. The significant difference in the RP

configuration, as outlined in Fig. 3.18, is that there is no original radio map consisting

of fingerprint RSS measurements at each ANP. Therefore, the RPs will be used to

interpolate every ANP in each of the interpolated RP radio maps which results in the

addition of a 1 meter interpolated RP radio map.

As was performed in Section 4.3.1 for MMSE location estimation, an investiga-

tion into the smoothing factor was conducted with variations in both s and n for each
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of the interpolated RP radio maps. The smoothing factor for each interpolated RP

radio map was selected as the value of s resulting in the smallest location estimation

distance error at each increment of n. The interpolated radio maps resulting from

increases in the sparseness of RP locations are referred to as 1, 2, 3, and 4 meter for

convenience as shown in Fig. 4.19. The results show that as the sparseness of RPs

was increased, the smoothing factor also increased. When compared to the values

of s calculated for the interpolated turntable radio maps, s ≈ 1, these results seem

higher than expected. This was attributed to the stationarity of the fingerprint RSS

measurements acquired by the RPs, or their lack of statistical variation over time.

This is most evident in a comparison of the 1 and 2 meter interpolated RP radio

maps. The 1 meter radio map required two RPs with stationary RSS measurements

for interpolation, with the RPs attached to opposing walls directly in line with each of

the ANPs. The 2 meter radio map required the combination of 4 RPs with stationary

RSS measurements for interpolation and thus encountered a higher smoothing factor

than the 1 meter radio map. The 3 and 4 meter interpolated RP radio maps saw a

slight increase in the smoothing factor attributed to the increase in sparseness of the

RPs. The effects of deficient radio map interpolation can be seen for n = 5, where a

small statistical view of the RSS-location dependency leads to generally higher values

of s required to smooth the optimal Gaussian kernel bandwidth in the KDE required

in MMSE location estimation.

With acceptance of these relatively high values of s, there is reassurance in the

use of RPs for interpolation by noting that the values remain fairly consistent with

increases in n. The ADE contours of the variation in s and n, shown in Fig. 4.20, illus-

trate relatively small variations in both the smoothing factor and ADE with increases
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in n for each of the interpolated RP radio maps. Therefore, the use of an optimum

smoothing factor, calculated as the average of s across the variation in n, can be uti-

lized with the MMSE location estimation algorithm regardless of the selected value

of n. Optimum values were calculated as the average of s across the variation in n

for each radio map and are shown in Table 4.8. These optimum smoothing values

were fixed within the MMSE location estimation algorithm during the investigation

of annealing the interpolated RP radio maps.

4.3.4 Annealing of Interpolated Reference Point Radio Maps

The annealing of each interpolated RP radio map was performed with the identical

HMM parameters used for the annealing of the interpolated turntable radio maps

outlined in Section 4.3.2. Variations were performed on the state transition distance

constraint, for m = 1 . . . 4, as well as the initial number of fingerprint RSS mea-

surements n. The percentage decrease in ADE from the annealing of each of the

interpolated RP radio maps can be seen in Fig. 4.21 - 4.24.

The results of the 1 meter interpolated RF radio map, shown in Fig. 4.21, con-

form to the results presented for the interpolated turntable radio map, for values of

Interpolated Reference Point Radio Maps

Optimum Values of Smoothing Factor

1 meter 2 meter 3 meter 4 meter

s 3.175 5.078 5.278 6.105

Table 4.8: Interpolated Reference Point Radio Maps - Values of Smoothing Factor
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n > 10. The percentage decrease in ADE remained relatively consistent with val-

ues approximated between 5 − 9%. This was attributed to the use of only 2 RPs,

with relatively stationary fingerprint RSS measurements, in the interpolation of the

1 meter radio map. Small values of n resulted in a dramatic precentage decrease in

the ADE of > 25%. This indicated that the performance of the annealing algorithm

in labeling the most probable sequence of states for each unknown asset trace was

maintained regardless of the deficiency in the interpolated radio map resulting from

the small statistic view of the RSS-location dependency. With a value of m = 1,

the annealing algorithm performed lower, for all interpolated RP radio maps, which

was to be expected and was explained in the previous section for the annealing of

the interplated turntable radio maps where the HMM state machine could not reflect

transitions greater than 1 meter per second. The precentage decrease in ADE for

the annealing of the 2, 3, and 4 meter interpolated RP radio maps followed a similar
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Figure 4.21: Annealing of 1 meter Interpolated Reference Point Radio Map
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Figure 4.22: Annealing of 2 meter Interpolated Reference Point Radio Map

pattern for values n ≤ 10. With greater increases in n, the precentage decrease in

ADE remained remarkably high. This reiterated the fact that the annealing algo-

rithm maintained high performance in labeling the most probable sequence of states

for each unknown asset trace. This dramatic result is attributed to the use of 4 RPs,

each with relatively stationary fingerprint RSS measurements, in the interpolation of

the 2, 3, and 4 meter radio maps. These deficient radio maps maintained relatively

small statistical views of the RSS-location dependency, regardless of the value of n,

throughout the interpolation. Again, this indicated that the annealing alogrithm is

able to dynamically improve the initial radio maps with a high degree of accuracy

given relatively inaccurate radio maps.

As was presented for the annealing of the interpolated turntable radio maps, the



104

0 50 100 150 200
0

5

10

15

20

25

30

35

40

Initial Number of Interpolated Fingerprint RSS Measurements

P
er

ce
n

ta
g

e 
D

ec
re

as
e 

in
 A

v
er

ag
e 

D
is

ta
n

ce
 E

rr
o

r

100 User Traces, Interpolated Ref. Points 3m
 Grid, 5 APs, A0 = Triangular Distribution

 

 
m = 1

m = 2

m = 3

m = 4

m = 5

(a)Plot

100 User Traces, Interpolated Ref. Points 3m
 Grid, 5 APs, A0 = Triangular Distribution

Initial Number of Interpolated Fingerprint RSS Measurements

S
ta

te
 T

ra
n

si
ti

o
n

 D
is

ta
n

ce
 C

o
n

st
ra

in
t 

(m
)

 

 

20 40 60 80 100 120 140 160 180 200
1

1.5

2

2.5

3

3.5

4

4.5

5

10 20 30 40
1

2

3

4

5

P
er

ce
n

ta
g

e 
D

ec
re

as
e 

in
 A

v
g

. 
D

is
ta

n
ce

 E
rr

o
r 

(m
)

−5

0

5

10

15

20

25

30

35

(b)Contour

Figure 4.23: Annealing of 3 meter Interpolated Reference Point Radio Map
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Figure 4.24: Annealing of 4 meter Interpolated Reference Point Radio Map
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MMSE Localization Standard Deviations (m)

Interpolated Reference Point Radio Maps

With and Without Annealing - 5 APs, m = 3

No Traces

1m 2m 3m 4m

# RSS AVG AVG AVG AVG

10 2.40 2.34 3.23 2.51

25 2.31 2.55 2.75 3.64

50 2.27 2.48 2.85 3.50

100 2.29 2.58 2.70 3.66

150 2.25 2.43 2.74 3.46

200 2.29 2.41 2.74 3.47

100 Traces

1m 2m 3m 4m

# RSS AVG AVG AVG AVG

10 1.87 1.81 2.04 2.01

25 2.00 1.92 1.93 2.15

50 2.07 2.07 2.07 2.28

100 2.22 2.37 2.37 3.06

150 2.20 2.44 2.44 3.21

200 2.24 2.49 2.49 3.15

Table 4.10: MMSE Standard Deviations - With andWithout Annealing - Interpolated
Reference Point Radio Maps

overall changes in the MMSE location estimation distance errors and standard de-

viations can be visualized in Table 4.9 - 4.10 for each of the interpolated RP radio

maps and m = 3. With n = 10, which is approximately a 20 fold decrease in the

number of interpolated RP fingerprint RSS measurements at each ANP, the ADE

decreases with the use of each interpolated RP radio map. Annealing the 1, 2, 3, and

4 meter interpolated radio maps results in a decrease in the ADE of MMSE location

estimation from 3.17 → 2.78, 2.78 → 2.75, 3.56 → 2.62, and 3.40 → 2.94 meters or
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12.3%, 1.1%, 26.4%, and 13.5% resectively. With n = 100, which is approximately a

2 fold decrease in the number of interpolated RP fingerprint RSS measurements at

each ANP, annealing the 1, 2, 3, and 4 meter interpolated radio maps results in a

decrease in the ADE from 2.78 → 2.67, 3.05 → 2.70, 3.01 → 2.59, and 3.74 → 3.15

meters or 4.0%, 12.5%, 14.0%, and 15.8% respectively.
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Figure 4.25: CDF for Annealed 1 meter Interpolated Reference Point Radio Map
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Figure 4.26: CDF for Annealed 2 meter Interpolated Reference Point Radio Map

The distance errors presented in Table 4.9 can be seen in Fig. 4.25 - 4.28 where

a CDF was used to visualize the changes in distance error, with and without radio

map annealing, for increments in n. An interesting fact is that with an increase in

the sparseness of RPs, the annealing of the interpolated radio maps resulted in a con-

tinued increase in the accuracy of the MMSE location estimation. The effect is most
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prominent with n = 10 and can be attributed to deficient radio map interpolation.

The small number of initial fingerprint RSS measurements, from the RPs used for

the interpolation of a complete RP radio map, captured a marginally small statistical

view of the RSS-location dependency. However, the performance of the annealing

algorithm in labeling the most probable sequence of states for each unknown asset

trace was maintained regardless of the deficiency in the interpolated radio map. The
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Figure 4.27: CDF for Annealed 3 meter Interpolated Reference Point Radio Map
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Figure 4.28: CDF for Annealed 4 meter Interpolated Reference Point Radio Map

online RSS measurements are added into the initial interpolated radio map at each

ANP, or state, corresponding to the now labeled trace sequences, thus increasing the

number of fingerprint RSS measurements. Therefore, the increase in the accuracy of

the MMSE location estimation corresponds to an improvement in the statistical view

of the RSS-location dependency within the annealed radio map. As the sparseness

of RPs and n were increased, the performance of the annealing algorithm remained
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substantially higher than expected. This was attributed to a continued deficiency in

the interpolated RP radio maps, where the fingerprint RSS measurements of the 4

RPs used for interpolation did not accurately capture the RSS-location dependency

at each ANP location. However, the accuracy of labeling of the most probable se-

quence of states for each unknown asset trace remained high, therefore the multiple

online RSS measurements added into the deficient interpolated radio maps improved

their statistical view and RSS-location dependency.

4.3.5 Remarks

The determination of the optimum smoothing factors, for both the interpolated

turntable and RP radio maps, were explored in terms of their effects on the MMSE

location estimation ADE. Marginal fluctuations in s, with increases in n, indicated

that the average of value of s, which resulted from the smallest ADE at each incre-

ment in n, could be used as the optimal value of s for each interpolated radio map.

These optimal values were fixed for the analysis of the annealing algorithm.

The performance of the annealing algorithm, with the use of both interpolated

turntable and PR radio maps, was analyzed for variations in sparseness and in the

value of n. The results showed that the annealing algorithm was able to accurately

label the most probable sequence of states for each unknown asset traces regardless of

the level of deficiency in each of the interpolated radio maps. The annealing of the in-

terpolated RP radio maps provided the largest percentage decreases in the ADE over

the largest ranges of n. This was most notable for the 4 meter interpolated RP radio

map as shown in Fig. 4.28. The results indicate that the proposed interpolation and

annealing algorithms, combined with a sparse RP site survey configuration, can be
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used as a viable alternative to traditional fingerprinting techniques while maintaining

relatively high location estimation performance.

4.4 Discussion

An analysis of both range-free location estimation approaches was conducted for the

determination of optimal values of the parameters K and s utilizing the GT turntable

radio map. Two methods for the selection of APs within each location estimation

algorithm were compared to determine which resulted in the smallest ADE with varia-

tions in n. It was determined that the selection of d = 5 APs by the highest frequency

of online RSS measurements performed best. This method was used throughout the

analysis of radio map annealing via dynamic asset traces.

The interpolation algorithm was utilized on two different schemes: increased

sparseness of fingerprint ANPs from the original GT radio map and increased sparse-

ness of RPs affixed to opposing walls of the original ANPs. The interpolation of each

radio map, regardless of the scheme, resulted in a complete radio map of fingerprints

at each of the 71 original ANP locations. The smoothing factor was analyzed for

each of the interpolated radio maps with variation in the initial number of fingerprint

RSS measurements. Optimum values of s were then calculated for the use in the

annealing algorithm and the MMSE location estimation of all static online locations.

It is important to note that the optimum values of K and s, for WNNSS and MMSE,

were determined from a single data set specific to the location estimation environment

used for this validation. Changes to the locations of APs, building modifications, or

the density of personal would alter the influences of shadowing on the fingerprint RSS

measurements, thus resulting in inaccurate optimum values.
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Multiple unknown asset traces were utilized within the annealing algorithm to

study its effects on the MMSE location estimation distance error for increases in

sparseness of both the interpolated turntable and interpolated RP radio maps. It is

interesting to note, for both interpolated radio map configurations, the percentage de-

crease in ADE remained relatively consistent with increases to m, the state-transition

distance constraint. Therefore, a system designer could implement different HMMs,

for different assets, based on their speculated motion dynamics with pre-selected

values of m to capture the assets maximum anticipated speed throughout the envi-

ronment.
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Chapter 5

Conclusion

This thesis presented the formulation of an indoor, range-free, probabilistic loca-

tion estimation system, with the focus of improving upon the traditional approach

to site surveying an environment. This was accomplished through the reduction in

the sample time and density of fingerprint locations, which resulted in sparse, inac-

curate radio maps. Interpolation was used to construct complete radio maps from

the fingerprint RSS measurements collected at the sparse locations. An annealing

algorithm was used to dynamically improve these radio maps with multiple unknown

asset traces over time. The analysis of the proposed range-free location estimation

system provided results that indicate improvements to the sparse, inaccurate radio

maps can be achieved over time while also maintaining accurate location estimation.

This range-free location estimation system would be ideal for situations, for example

a hospital, where traditional site surveying approaches are considered too invasive

and unrealistic within the environment.

5.1 Contributions

The objectives for this thesis, as outlined in Section 1.2, were accomplished and a

summary of the contributions are as follows:
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1. Two range-free location estimation approaches, deterministic WNNSS and prob-

abilistic MMSE, were developed and implemented for a performance compari-

son, in terms of their ADE, with variations in the initial number of fingerprint

RSS measurements, the parameters K and s, and the selection of APs. The

results indicated comparable performance in the two approaches, with each re-

lying on optimal values of their selectable parameters for minimum ADE and

the optimal selection method of APs. However, due to the useful Bayesian

statistics provided by the probabilistic MMSE formulation, this approach was

chosen for further development of the location estimation system .

2. A reduction in the density of fingerprint locations, as outlined in Section 3.6.1,

was referred to as an increase in sparseness. The removal of every 2nd, 3rd,

and 4th location resulted in a decrease in the density to 1/2, 1/3, and 1/4 of

the original locations, be it ANP locations from the original GT radio map or

locations of the RPs.

3. The interpolation was implemented with the IDW algorithm, as outlined in

Section 3.6.1.1, which utilized fingerprint RSS measurements from scattered

locations. The algorithm weighted the fingerprint RSS measurements from each

of the geometrically selected sparse locations solely based on their distance to

each ANP of interest within the radio map.

4. The radio map annealing algorithm, as outlined in Section 3.6.2, was derived

from a 1st order HMM finite state machine. A GEM algorithm was utilized to

train the HMM parameters with multiple unknown asset traces. The trained

parameters represented the most probable sequences of states, for each trace,

and were used to label the online RSS measurements to their specific ANP lo-
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cations. The labeled online RSS measurements were then added to interpolated

radio maps at each of their labeled fingerprint ANP locations respectively.

5. An analysis was performed with variations in the initial number of interpolated

fingerprint RSS measurements, with and without annealing, to determine if any

improvements could be made to the interpolated radio maps, over time. The

results indicated, with an initially small number of fingerprint RSS measure-

ments, that the percentage decreases in the ADE can be significant for sparse,

interpolated RP radio maps while maintaining relatively accurate location esti-

mation.

Based on the positive outcome of the experimental validation that demonstrated a

consistent ADE of approximately 2-3 meters, it is evident that range-free location

estimation based on fingerprint RSS measurements are sufficient for enabling prac-

tical applications of indoor localization. Furthermore, the caveat of using only a

single data set for the experimental validation was addressed and supported by the

large, extensive site survey consisting of 6 APs and 71 ANPs adjoined over 3 distinct

hallways.

5.2 Future Work

Future work could be explored on many different aspects of the proposed range-free

probabilistic location estimation system. Different localization sites should be con-

sidered for further validation of the algorithms. Three noteworthy directions will be

discussed that could add significant improvements to overall system.

First, the process of constructing initial radio maps, for use with the annealing

algorithm, could be based on a blind site survey or static propagation modeling of
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the localization environment. In a blind site survey, a user would collect fingerprint

RSS measurements while walking pre-defined traces throughout an environment. The

RSS measurements would then be inferred to radio map ANP locations along each

specific trace. This would eliminate the need for multiple static fingerprint locations

and additional hardware, thus reducing invasive site survey procedures throughout

an environment. In static propagation modeling, a system could utilize the range

equation, outlined in Section 2.4, to calculate RSS measurements using heuristically

estimated PL exponents, which would vary depending on the location of each ANP

in a radio map relative to each AP in the environment.

Second, the implementation of Bayesian tracking algorithms could be explored

to calculate the posterior density location estimate recursively, modeling asset move-

ments with velocity or acceleration parameters. These are typically referred to as

dynamic motion models [22]. The formulation of the MMSE location estimate, along

with its covariance derived in Section 3.5.2.1, can be used within these posterior den-

sity estimates and was successfully demonstrated within an inverse covariance filter

in [22].

To try and alleviate the effects of attenuation from a human body, as illustrated in

the radiations patterns of Section 3.2, an orientation variable could be incorporated

into the location estimate to track an assets trajectory throughout an environment.

Furthermore, the HMM model parameters, which were trained via GEM with

multiple unknown asset traces, can be used within a HMM filter to predict a current

posterior density estimate based on the previous estimate. Once RSS measurements

have been observed, the belief in the current posterior density estimate can be up-

dated. Essentially, a prediction can be computed as to where an asset may be at
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time t, based on knowledge of the previous location at t − 1, with an update of the

prediction computed on new RSS observations.

Third, the integration of RSS measurements with other signals of opportunity

from multiple sensors such as radio frequency identification tags or inertial global po-

sitioning systems (GPS) to attempt and improve the accuracy of location estimation.

Distributed, cooperative sensor networks could also be explored.
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Appendix A

Accerometer Daughter Board

Standard 802.11 modules can easily be configured to periodically scan pre-selected

channels and collect the available RSS measurements from neighboring APs and trans-

mit these readings back to the location system. In our proposed indoor localization

system, it is important that the system be able to discern between RSS measure-

ments taken at static locations or during dynamic motion. The stock WiFlyR© RN-134

802.11b modules did not support this feature, therefore it was necessary to develop

additional circuitry to allow for the determination between static and dynamic RSS

measurements.

A.1 Specifications and Components

During the initial circuit development stage, the preferred specifications and design

requirements were outlined.

• planer, bi-directional motion detection

• no additional battery requirement

• minimal current drain during operation

• minimal number of SMD components

• small Printed Circuit Board (PCB) form factor
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A three axis, Low-g micro machined accelerometer, manufactured by Freescale Semi-

conductor, was chosen for motion detection. Notable specifications include selectable

sensitivity of ±3g or ±9g, low operating voltage of 2.2V −3.6V , low power consump-

tion at 400µA, sleep mode at 3µA, built in signal conditioning via low-pass filter,

LGA-14 packaging (3.0mm × 5.0mm × 1.0mm), and low cost. A low voltage quad

comparator, manufactured by Texus Instruments, was chosen based on its low power

consumption at 140µA, required supply voltage of 2.7V − 5.0V , TSSOP-14 pack-

aging (5.0mm × 6.4mm × 1.1mm), open collector output, and low cost. The stock

WiFlyR© RN-134 802.11b modules supply on-board power regulation to 3.3V which

was utilized for the daughter board via additional pin headers. The list of required

components based on Fig. A.3 are shown in Table A.1.

Daughter Board Component List

Part Value Description
R1, R4 100 kΩ resistor
R2 2.9 kΩ resistor
R8, R9 10 kΩ resistor
R5, R6, R7, R10, R11, R12, R13 0 Ω short resistor
P1 500 kΩ potentiometer
P2 100 kΩ potentiometer
C1, C2 33 nF capacitor
C3 1 µF capacitor
Accel1 MMA7341 XYZ accelerometer
4COMP LMV339 4× comparator

Table A.1: Daughter Board Component List
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A.2 Overview of Operation

The quad comparator is used to check the analog accelerometer output voltage of

each axis against a reference threshold voltage, Vthr, which translates to either posi-

tive or negative motion on each axis. The accelerometer output voltage will contain

numerous spikes and considerable noise, as shown in Fig. A.1, yet the comparator

will trigger a module wake-up every time the accelerometer output voltage reaches

or exceeds the threshold voltage, with RSS measurements collected every 1 second.

This is ideal for user motion where sporadic movements will never result in a con-

stant acceleration, allowing the module and the localization system to be sequentially

alerted to continued motion through the multiple wake-up triggers. The threshold

voltage is configurable through two potentiometers and allows the designer to set the

amount of positive or negative motion required on any axis to trigger a wakeup of

the WiFlyR© module. To account for user actions that do not result in a continued

motion, such as bumping the module, the localization software tracks the number of

individual wake-up triggers over a given time period and registers a unique motion

event with 3 or more sequential triggers.

The circuit schematic in Fig. A.2 illustrates the interconnections between the

WiFlyR© module and the accelerometer daughter board. The PCB gerber layers of

the accelerometer daughter board can be seen in Fig. A.3 and were sent to a local

manufacturing company for fabrication. The SMD components were reflow soldered

in house with the overall fabricated design shown in Fig. A.4. It can be seen that the

accelerometer daughter board connects directly to the stock WiFlyR© RN-134 module

via existing pin headers. If the potentiometers were replaced with fixed SMD resistor

values, the overall increase in thickness to the stock module would be 1 cm with no
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increases to its height or width.

t

V
o

VOFF

-Vthr

+Vthr

Figure A.1: Pictorial Accelerometer Output Voltage for 1 Axis

Figure A.2: Accelerometer Daughter Board Schematic
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Figure A.3: Accelerometer Daughter Board PCB Gerber Layers [mm]

(a)Size Comparison (b)Attached - Front View (c)Attached - Side View

Figure A.4: Fabricated Accelerometer Daughter Board
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Appendix B

Derivations for Hidden Markov

Model Training

B.1 Maximization of Model Parameters using Lagrange Mul-

tipliers

As outlined in Sec. 3.6.2.2, the Q function can be rewritten as the sum of each pa-

rameter allowing for the maximization to be performed individually. With knowledge

of the joint distribution for the current iteration

P (R,Q|θ) = P (q1|π)

[

T
∏

t=2

P (qt|qt−1,A)

]

T
∏

m=1

P (rm|qm,λ) (B.1)

the Q function expands to

Q
(

θ, θ(k)
)

=
∑

Q∈ S

logP (q1|π)
P
(

R,Q|θ(k)
)

P (R|θ(k))

+
∑

Q∈ S

(

T
∑

t=2

logP (qt|qt−1,A)

)

P
(

R,Q|θ(k)
)

P (R|θ(k))

+
∑

Q∈ S

(

T
∑

t=1

logP (rt|qt,λ)

)

P
(

R,Q|θ(k)
)

P (R|θ(k))
(B.2)
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where θ(k) is the previous iteration of the HMM parameters. The first term in Eq. B.2

can be evaluated further since by selecting all Q ∈ S, the values of q0 are just

repeatedly selected, or the marginal probabilities for t = 1.

∑

Q∈ S

(

T
∑

t=2

logP (qt|qt−1,A)

)

P
(

R,Q|θ(k)
)

P (R|θ(k))
=

N
∑

i=1

log π
q1,i
i

P
(

R, q1 = si|θ(k)
)

P (R|θ(k))
(B.3)

Therefore, to maximize the current iteration πi given the previous iteration θ(k) under

the constraint
∑K

i=1 πi = 1 we make use of Lagrange multipliers γ. Constructing the

Lagrangian and taking the partial derivative with respect to πi and setting the result

equal to zero

∂

∂πi

[

N
∑

i=1

log πi
P
(

R, q1 = si|θ(k)
)

P (R|θ(k))
+ γ

(

1−
N
∑

i=1

πi

)]

= 0 (B.4)

1

πi

P
(

R, q1 = si|θ(k)
)

P (R|θ(k))
− γ = 0 (B.5)

πi =
1

γ

P
(

R, q1 = si|θ(k)
)

P (R|θ(k))
(B.6)

Now the partial derivative is taken with respect to the Lagrange multiplier γ and the

result set to zero

∂

∂γ

[

N
∑

i=1

log πi
P
(

R, q1 = si|θ(k)
)

P (R|θ(k))
+ γ

(

1−
N
∑

i=1

πi

)]

= 0 (B.7)

1−
N
∑

i=1

πi = 0 (B.8)
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which is our original constraint. The result from Eq. B.6 is substituted into Eq. B.8

1−
N
∑

i=1

P
(

R, q1 = si|θ(k)
)

γP (R|θ(k))
= 0 (B.9)

γ =

N
∑

i=1

P
(

R, q1 = si|θ(k)
)

P (R|θ(k))
= 1 (B.10)

The solution to γ is finally substituted back into Eq. B.6 to reveal

π
(k+1)
i ← πi =

P
(

R, q1 = si|θ
(k)
)

P (R|θ(k))
= P

(

q1 = si|R, θ
(k)
)

(B.11)

which is maximized based on the previous iteration θ(k) and is evaluated for each S.

The second term in Eq. B.2 will become the sum of the joint-marginal probabilities

for t− 1 and t since for each t we are progressing over all state transitions from i to

j and weighting by the corresponding probability.

∑

Q∈ S

(

T
∑

t=1

logP (rt|qt,λ)

)

P
(

R,Q|θ(k)
)

P (R|θ(k))
=

N
∑

i=1

N
∑

j=1

T
∑

t=2

log a
qt,jqt−1,i

i,j

P
(

R, qt−1 = si, qt = sj|θ(k)
)

P (R|θ(k))
(B.12)

Constructing the Lagrangian with constraint
∑N

j=1 aij = 1 and taking the partial

derivative with respect to aij and setting the result equal to zero

∂

∂ai,j

[

N
∑

i=1

N
∑

j=1

T
∑

t=2

log ai,j
P
(

R, qt−1 = si, qt = sj|θ(k)
)

P (R|θ(k))
+ γ

(

1−
N
∑

j=1

ai,j

)]

= 0

(B.13)
T
∑

t=2

1

ai,j

P
(

R, qt−1 = si, qt = sj |θ(k)
)

P (R|θ(k))
− γ = 0 (B.14)
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ai,j =

T
∑

t=2

1

γ

P
(

R, qt−1 = si, qt = sj|θ(k)
)

P (R|θ(k))
(B.15)

Now the partial derivative is taken with respect to the Lagrange multiplier γ and the

result set to zero

∂

∂γ

[

N
∑

i=1

N
∑

j=1

T
∑

t=2

log ai,j
P
(

R, qt−1 = si, qt = sj |θ(k)
)

P (R|θ(k))
+ γ

(

1−
N
∑

j=1

ai,j

)]

= 0 (B.16)

1−
N
∑

j=1

ai,j = 0 (B.17)

which is our original constraint. The result from Eq. B.15 is substituted into Eq. B.17

1−
T
∑

t=2

1

γ

P
(

R, qt−1 = si, qt = sj|θ(k)
)

P (R|θ(k))
= 0 (B.18)

γ =

T
∑

t=2

P
(

R, qt−1 = si, qt = sj|θ(k)
)

P (R|θ(k))
=

T
∑

t=2

P
(

R, qt = si|θ(k)
)

P (R|θ(k))
(B.19)

The solution to γ is finally substituted back into Eq. B.15 to reveal

a
(k+1)
i,j ← ai,j =

∑T
t=2 P

(

R, qt−1 = si, qt = sj |θ(k)
)

∑T
t=2 P (R, qt = si|θ(k))

(B.20)

=

∑T
t=2 P

(

qt−1 = si, qt = sj |R, θ(k)
)

∑T
t=2 P (qt = si|R, θ(k))

(B.21)

The third term in Eq. B.2 will become the sum of the marginal probabilities for t

since for each t we are progressing over the emission probabilities for all states and
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weighting each possible emission by the corresponding probability.

∑

Q∈ S

logP (q1|π)
P
(

R,Q|θ(k)
)

P (R|θ(k))
=

N
∑

i=1

T
∑

t=1

H
∑

h=1

log λ
qt,irt,h
i,h

P
(

R, qt = si|θ(k)
)

P (R|θ(k))
(B.22)

Constructing the Lagrangian with constraint
∑H

h=1 λi,h = 1 and taking the partial

derivative with respect to λi,h and setting the result equal to zero

∂

∂λi

[

N
∑

i=1

T
∑

t=1

H
∑

h=1

log λi,h
P
(

R, qt = si|θ(k)
)

P (R|θ(k))
+ γ

(

1−
H
∑

h=1

λi,h

)]

= 0 (B.23)

T
∑

t=1

1

λi,h

P
(

R, qt = si|θ
(k)
)

δ
rt,vh

P (R|θ(k))
− γ = 0 (B.24)

λi,h =

T
∑

t=1

1

γ

P
(

R, qt = si|θ(k)
)

δ
rt,vh

P (R|θ(k))
(B.25)

where only the observations rt that are equal to vh contribute to the hth probability

value. Now the partial derivative is taken with respect to the Lagrange multiplier γ

and the result set to zero

∂

∂γ

[

N
∑

i=1

T
∑

t=1

H
∑

h=1

log λi,h
P
(

R, qt = si|θ
(k)
)

P (R|θ(k))
+ γ

(

1−
H
∑

h=1

λi,h

)]

= 0 (B.26)

1−
N
∑

j=1

λi,h = 0 (B.27)

which is our original constraint. The result from Eq. B.25 is substituted into Eq. B.27

1−
T
∑

t=1

1

γ

P
(

R, qt = si|θ(k)
)

P (R|θ(k))
= 0 (B.28)
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γ =

T
∑

t=1

P
(

R, qt = si|θ(k)
)

P (R|θ(k))
(B.29)

The solution to γ is finally substituted back into Eq. B.25 to reveal

λ
(k+1)
i,h ← λi,h =

∑T
t=1 P

(

R, qt = si|θ(k)
)

δ
rt,vh

∑T
t=1 P (R, qt = si|θ(k))

(B.30)

=

∑T
t=1 P

(

qt = si|R, θ(k)
)

δ
rt,vh

∑T
t=1 P (qt = si|R, θ(k))

(B.31)

B.2 Derivation of Partial Probabilities for Viterbi Algorithm

B.2.1 Forward Partial Probability

Utilizing the Markov assumptions of Eq. 3.35 - 3.36, along with the probability prod-

uct rule, the forward and backward partial probabilities become

αi (t) = P
(

r1, r2, . . . , rt, qt = si|θ
(k)
)

(B.32)

=
N
∑

j=1

P
(

r1, r2, . . . , rt, qt = si, qt−1 = sj |θ
(k)
)

(B.33)

=
N
∑

j=1

P
(

r1, r2, . . . , rt−1, qt−1 = sj |θ
(k)
)

P
(

rt, qt = si|qt−1 = sj , r1, r2, . . . , rt−1θ
(k)
)

(B.34)

=
N
∑

j=1

αj (t− 1)P
(

rt, qt = si|qt−1 = sj, θ
(k)
)

(B.35)

=
N
∑

j=1

αj (t− 1)P
(

rt|qt = si, qt−1 = sj, θ
(k)
)

P
(

qt = si|qt−1 = sj, θ
(k)
)

(B.36)
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=

N
∑

j=1

αj (t− 1)P
(

rt|qt = si, θ
(k)
)

P
(

qt = si|qt−1 = sj , θ
(k)
)

(B.37)

= λ
(k)
i (rt)

N
∑

j=1

αj (t− 1) a
(k)
j,i 1 ≤ i ≤ N 1 ≤ t ≤ T (B.38)

B.2.2 Backward Partial Probability

βi (t) = P
(

rt+1, rt+2, . . . , rT |qt = si, θ
(k)
)

(B.39)

=
N
∑

j=1

P
(

rt+1, rt+2, . . . , rT , qt+1 = sj |qt = si|θ
(k)
)

(B.40)

=
N
∑

j=1

P
(

qt+1 = sj |qt = si|θ
(k)
)

P
(

rt+1, rt+2, . . . , rT |qt+1 = sj , qt = si, θ
(k)
)

(B.41)

=
N
∑

j=1

a
(k)
i,j P

(

rt+1, rt+2, . . . , rT |qt+1 = sj, θ
(k)
)

(B.42)

=
N
∑

j=1

a
(k)
i,j P

(

rt+1|qt+1 = sj , θ
(k)
)

P
(

rt+2, . . . , rT |qt+1 = sj , rt+1, θ
(k)
)

(B.43)

=
N
∑

j=1

a
(k)
i,j P

(

rt+1|qt+1 = sj , θ
(k)
)

P
(

rt+2, . . . , rT |qt+1 = sj , θ
(k)
)

(B.44)

= βi (t) =
N
∑

j=1

a
(k)
i,j λ

(k)
i (rt+1)βj (t+ 1) 1 ≤ t ≤ T (B.45)


