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Abstract 

Current status data, also known as Case I interval-censored data, arise when the 

exact knowledge about the failure time of interest is unavailable, and it can only be 

seen whether failure occurred before or after a random monitoring time. In the past 

two decades, a number of literature on the statistical analysis of current status data 

has appeared. Among them, one of the most important approaches was to use the 

semiparametric additive hazards regression models (Lin et al., 1998) to analyze such data. 

In this thesis, we will give a detailed discussion on the estimation as well as inference 

procedures for the semiparametric additive hazards regression model involved in the 

analysis of current status data. Meanwhile, we propose a new method by reformulating 

the iterative convex minorant (1CM) algorithm (Groeneboom and Weliner, 1992) as a 

generalized gradient projection (GGP) (Pan, 1999) to estimate the model. The suggested 

approach in comparison with former methods has the advantages that it is efficient and 

does not involve any modeling of the monitoring times. 
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Chapter 1 

Introduction 

Survival data, also called failure time data or time to event data, are a special type 

data structure for displaying numerical information. They concern the effects between 

certain events and their associated durations (time). Examples of the events, are often 

considered as the failures or survival events, which include death, the appearance of 

diseases or certain symptoms, the failure of a mechanical component, or the occurrences 

of critical events that people are observing. Initially, survival data analysis appeared in 

medical research (Cox, 1972 and Reid, 1994). However, due to its strong advantages on 

handling complex information, it had developed extensively to other disciplines. These 

include social-economical surveys, biological experiments, demographical investigations, 

epidemic monitoring and machinery examinations. 

A major feature of survival data that distinguishes the analysis of them from other 

statistical areas, is the existence of censorship. Censored data arise when a subject's 

incident is known to occur only in a certain period of time. Censoring mechanisms can be 

quite complicated and require special methods of treatment for the analysis. Truncation 

is another feature that some of the survival data possess and need to be specially treated 

during the analysis. Two available types of truncations, known as left truncation and 

right truncation, have been widely discussed in the literature (Lagakos et al., 1988; Klein 

and Moeschberger, 2003; Gross et al., 1992). However, in this thesis, we will only focus 

on the analysis methods that deal with Case I interval-censored data (or current status 

data). 

Before moving to any detailed discussions on censoring, we present an example here 

to give a general impression on the structure and features of survival data. 
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1.0.1 Lung Tumor data 

In medicine, tumorigenicity experiments are used to test an agent or medicine that 

has been injected into the experimental organisms (usually animals) to see its controlling 

ability, within a specific time period, for the prevention of tumor growth inside the 

carriers' bodies. In this type of study, the time to tumor onset is usually of interest 

but not directly observable. Rather, only the death or sacrifice time of an organism is 

observed, and the presence or absence of a tumor at the time is known. If the occurrence 

of a tumor causes the immediate death of the organism, then that death moment can 

be considered as the exact or right-censored observation of the tumor onset time and it 

is appropriate to apply methods that are developed for right-censored survival data to 

analyze such case. However, when the occurrence of a tumor cannot cause the death of 

the organism in a short period of time, the time to tumor onset will thus become either 

less than or greater than the observed time of death or sacrifice. This is a situation where 

both left- and right- censored observations might exist at the same time and we name 

the data that follow this type of structure as current status data. 

Hoel and Walberg (1972) reported the study of the tumorigenicity experiment for 

lung tumor; the results were reorganized by Finkelstein and Wolfe in 1985. The purpose 

of the experiment was to compare the onset time of lung tumor for untreated mice in 

a germ-free environment against a conventional environment. A total of 144 male RFM 

mice were selected into the study. At the times of sacrifice, 27 mice were found having 

lung tumors among a total of 96 mice in the conventional environment, whereas 35 cases 

out of 48 mice were discovered having lung tumors in the germ-free environment. The 

data are presented in Table 1.1. 

As mentioned previously, censoring is one of the distinguishing features for survival 

data. In most of the circumstances, it refers to the situation where the incomplete ob-
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Group Tumor status Death times 

CE With tumor 381 477 485 515 539 563 565 582 603 616 624 650 
651 656 659 672 679 698 702 709 723 731 775 779 
795 839 

No tumor 45 198 215 217 257 262 266 371 431 447 454 459 
475 479 484 500 502 503 505 508 516 531 541 553 
556 570 572 575 577 585 588 594 600 601 608 614 
616 632 632 638 642 642 642 644 644 647 647 653 
659 660 662 663 667 667 673 673 677 689 693 718 
720 721 728 760 762 773 777 815 886 

GE With tumor 546 609 692 692 710 752 773 781 782 789 808 810 
814 842 846 851 871 873 876 888 888 890 894 896 
911 913 914 914 916 921 921 926 936 945 1008 

No tumor 412 524 647 648 695 785 814 851 880 913 942 
986 

Table 1.1: Death times in days for .144 male RFM mice with lung tumors 

servation of survival time had occurred. In other words, the survival time can be known 

from a certain range instead of being observed exactly. Censored data should be differ-

entiated from incomplete data as the censoring occurred contains plausible information 

(although it is not highly accurate) that will be required for the subsequent analysis, 

whereas the missing observations existed in the incomplete data have no information at 

all for the entire data set and instead, they need to be 'filled in' by imputation methods 

based on the rest of the information. 

The most common type of censorship for survival data is the right censoring. Often it 

occurs when the failure time of interest is observed either exactly or to be greater than a 

censoring time. Examples that yield right-censored observations include situations when 

the study has to be ended due to certain restrictions such as time constraints or resource 

limitations. In these incidents, since some of the subjects' events have not occurred at the 

end of the study, their survival times are considered to be greater than the censoring time; 

and for the remaining subjects, because their events occurred before the end of the study, 

their survival times are known to be exact. One thing that needs to be paid attention for 
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censored survival data is the fact that the study end time may be varied in accordance 

with individuals' movements and a reasonable scenario is given by the withdrawal of 

the subjects from study due to their personal matters. Thus, in the censored survival 

data, there often exists a censoring variable to indicate the censoring time. For data that 

have been right censored, to let the observation be exact, the survival variable must be 

smaller than censoring variable; otherwise, the observation can be only inferred from the 

situation where the survival variable is greater than the censoring variable. 

It is very important to know that one must fully understand the structure in which 

pattern the right-censoring occurs in order to analyze such data properly. To achieve 

this, an independence assumption needs to be imposed in prior. That is, we assume 

the failure rate or hazard is the same between the subjects who are still in the study 

and the subjects who have been censored out. More specifically, under the independence 

assumption, we can claim that 

lim P(t ≤ T <t + LtlT ≥ t) = urn P(t ≤ T <t + tIT ≥ t, Y(t) =1)  
(1.1) 

(Kalbfieisch and Prentice, 2002), where T is the survival variable of interest, and Y(t) = 1. 

represents the corresponding subject is at risk at time t. As an alternative, the above 

expression is equivalent to 

lim P(t≤T<t+ztlT≥t) = lim P(t≤T<t+ztIT≥t,C≥t)  
At t'O+ At 

(1.2) 

(Sun, 2006), where C is referred to as the censoring indicator. 

Types of censorship are classified based on practical problems. For instance, the 

pattern in which all the subjects have the same stopping time for the study usually 

stands as Type I right censoring, whereas Type II right censoring often occurs when 

the study time stops after a fixed number of subjects have failed. In addition to right 

censoring, some observations may be left-censored. Left censoring means that the failure 
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time is known to be less than certain time. Interval Censoring, the focus of this thesis, 

is introduced in the later section. 

In certain types of survival data, subjects can be included in the study only if their 

failure times meet some required conditions. These situations are named by the term, 

truncation. A common example that yields the truncated survival data is a cohort study 

in which subjects are included in the study when they experience some events prior to 

the survival event. This type of truncation is called left-truncation. Truncation has 

similar properties as censoring. For information about its discussions, readers could refer 

to Kalbfleisch and Prentice (2002) and Lawless (2003). 

1.0.2 Survival Data with Interval Censoring 

Interval censoring occurs when study subjects or interested failure times are not 

under continuous monitoring and the survival/failure time is thus not always exactly 

observed or right-censored. For data that are interval-censored, one only knows a time 

interval (duration), within which the event has taken place. Exact or right-censoring 

can be treated as a special example of interval censoring as in these incidents, the time 

interval converges either to a time point or diverges infinitely on the right. Further, in a 

more general sense, the interval-censored observations can be considered as a collection 

of many of these time sub-intervals or points (Turnbull, 1976). 

Interval-censored survival data can be found in many scientific areas, some of which 

include medicine, biology, epidemiology, engineering, finance, economics, sociology, and 

psychology. A typical example is given by the clinical trial in medicine involved with 

periodic follow-ups. In this type of examples, a patient may visit the clinic at the times 

when they feel convenient rather than at the times that have been scheduled previously. 

Hence, the trial will miss out on one or more observations on the status of disease change 
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for that patient. At this stage, the data on that change are interval-censored. Note that 

in the longitudinal study, interval-censored data usually have grouped failure times, in 

which the observations of each subject are a member of the union of non-overlapping 

sub-intervals. Grouped failure time data can be analyzed in simpler ways compared with 

other interval-censored data and one may refer to Lawless (2003) for a detailed discussion. 

However, for simplicity, this thesis will not include any additional information in the 

subsequent texts on this subject. 

To formally define the interval censoring, let T be a nonnegative random variable 

representing the time when a failure occurred to an individual in a survival study. An 

observation on T is interval-censored if a time interval (L, RI is observed such that 

TE(L,R], (1.3) 

where L ≤ R. If R = co, right-censoring is occurred, whereas if L = R, an exact 

observation is obtained. In this section, four common types of interval censoring will be 

discussed in detail. 

I. Case I Interval-censored Survival Data 

Case I interval-censored survival data usually refer to the situation where all the ob-

served time intervals contain either time zeros, L = 0, or infinities, R = oo (Groeneboom 

and Weilner, 1992; Huang, 1996). In other words, the observation for each subject's 

failure time is either left- or right-censored. Case I interval-censored survival data occur 

when the failure time of interest cannot directly be observed, rather it can be known only 

by the indication as whether it's located below or above a random monitoring time. For 

convenience, here a simpler notation is used to describe Case I interval-censored survival 

data. That is, {C, 5 = I(T ≤ C)}, where C denotes a random monitoring time and I is 

an indicator function. Note that Case I interval-censored survival data are different from 

right-censored data or left-censored data, since the latter case contains exact observations 
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but the former one does not. 

Case I interval-censored survival data are also called current status data, a term 

which originated from demographical studies. Cross-sectional studies and tumorigenicity 

experiments are two common areas that frequently generate Case I interval-censored 

survival data. Note that there is a fundamental difference for the current status data 

generated from these two perspectives. Often the data obtained from the former is 

dependent on the study design whereas those produced by the latter usually results from 

the failure of measurement accuracy of the variables. 

II. Case II Interval-censored Survival Data 

Case II interval-censored data are yielded when interval-censored data include at least 

one interval (L, R] with both L and R belonging to (0, oo) (Groeneboom and Weliner, 

1992; Huang and Weilner, 1997; Sun, 1998, 2005). In other words, Case II interval-

censored data are the one in which some of the finite time intervals contain no zeros. A 

convenient notation to represent a Case II interval-censored survival data is 

{U,V51 = I(T ≤ U),82 = I(U <T ≤ V),63 = I-51- 52} (1.4) 

given the assumption that each subject is observed twice, with each of which corresponded 

to time U and V respectively, to satisfy the condition of P(U ≤ V) = 1. This formulation 

is often used in the theoretical investigation of inference procedure. Note that once letting 

U = V = C, (1.4) can be used to describe the current status data. In the literature, 

Case II interval-censored survival data are sometimes just called interval-censored data, 

which are to underlie their general properties among other types. 

Another way to present Case II interval-censored survival data is to assume a group 

of observed time points U having a order constraint, U1 (12... ≤ U1 where K is a 

random integer, for each subject. Then, the above statement becomes 

{(K,U,8 = 1(Uj_1 <T < (J)),j = 1,...,K}, (1.5) 
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where Uo = 0. This is often referred to as case K or mixed case interval-censored data 

(Schick and Yu, 2000; Weilner, 1995). It can be seen that the formulations of (1.4) and 

(1.5) offer the interval-censored survival data a natural presentation to describe certain 

"types of studies often involved with periodic follow-ups. 

All three expressions, (1.3) to (1.5), will eventually lead the likelihood function to have 

a similar form. Meanwhile, aside from the sensible structure and ease of understanding 

of models (1.4) and (1.5), one usually needs to impose assumptions such as independence 

with T on them. Given any data following (1.4) or (1.5), one can easily transform the 

corrsponding model into the form of (1.3). However, the reverse is currently difficult 

to achieve with the absence of extra information, and special treatments are thus being 

called for to resolve the issue. 

III. Doubly Censored Survival Data 

Suppose that a survival study involves two related events and let X and S be the 

corresponding times for these two events. Define T to be the survival time of interest 

with the relationship, T = S - X. Thus, a doubly censoring occurs where in place of 

knowing X and S exactly, one only observes two intervals (L, R] and (U, V] so that 

XE(L,R], SE(U,V] 

subject to the conditions L ≤ R and U ≤ V. This is different from the types of interval-

censoring that so far have been discussed. However, it can be seen that a double-censoring 

is formed when the observations on both X and S are interval-censored. 

Consider a special type of doubly censored data where S is only right-censored and 

in this case, one has either U = V or V = oo. An alternative description for this special 

type can be expressed by involving a censoring variable C, which is often assumed to 

be independent of 8, so that the observation on S consists of 5* = min{ S, C} and 

= 1(5* = 8), where I is the indicator function as defined before. 
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IV. Panel Count Data 

In studies of recurrent events, a panel count data are yielded when each subject is 

observed only at finite discrete time points instead of continuous time points (Sun and 

Wei, 2000; Kalbfleisch and Lawless, 1985). In those settings, one only knows the number 

of occurrences of the events between observation times and no information however is 

available on subjects between the observation time points. In addition to the term, panel 

count data, others also name it as interval count data or interval-censored recurrent data 

(Lawless and Zhan, 1998; Tháll, 1988) in the sense where, if the event can occur only 

once, then the data become interval-censored survival data. 

Panel count data arise in many applications, some of which include demographical 

and biological investigations. A typical example which can demonstrate its form is the 

cancer follow-up study. In these types of studies, one would be interested in the recurrent 

rate of various types of tumors or of these tumors at various locations. However, due to 

the difficulties of following the subjects continuously, all that is known is the information 

about the number of occurrences of the events between observation times, thus a panel 

data set is obtained. Another example is economic surveys in the labour market. 

V. Independence for Interval Censoring and Miscellaneous Remarks 

In terms of independence for interval-censoring, we mean that the censoring pattern 

that follows a structure of interval-censored survival data is independent of the variables 

of interest. For current status data, this implies that C and T are independent. For 

interval-censored data described by the expressions (1.4) and (1.5), this means the joint 

likelihood function of U and V or Ui's has no information at all to the parameters 

that involve with the event time T. Given a data set that follows the general expression 

(1.3), the independence assumption for interval-censoring assumes that the interval (L, R] 

should include all the information that the event time T has possessed. Transforming it 
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into mathematical expression, this can be formulated as 

P(T≤tIL=l,R=r,L<T<R)=P(T<tll<T<r) 

(Self and Grossman, 1986; Zhang et al., 2005). Under the setting of independence, 

one does not have to be concerned with the censoring pattern in analyzing an interval-

censored data set. Throughout the thesis, independence for interval-censoring is assumed 

unless otherwise specified. 

To express an interval-censored observation, one could also use [L, R], [L, R), or (L, R) 

(Peto, 1973; Turnbull, 1976). If T is continuous, there will be no dissimilarities among 

these expressions as they represent the same information being observed about T; how-

ever, if T is discrete, an inconsistency can occur because the information they contain 

about T is different from each other. Ng (2002) discussed this circumstance in a great 

detail. But in this thesis, we will use the notation (L, R] as the standard expression for 

the rest of the chapters. As mentioned earlier, the exact and right-censored observations 

can be treated as a special example of the interval-censored data. Suppose that T is 

continuous, then for an exact observation T = to, its likelihood function is f(t0). And for 

an interval-censored observation (L, R], the likelihood function has the form 8(L) - S(R). 

Here f(t) and 8(t) = P(T > t) represent the density function and survival function for 

T, respectively. 

Throughout the remaining chapters, we will focus our attentions on Case I interval-

censored survival data, known as the current status data. The main objective of this 

thesis is to demonstrate the estimation and inference procedures for the additive hazards 

regression model applied to such data. To achieve this, the article is organized as the 

following. In Chapter 2, we will discuss the concepts of counting processes with some 

basic quantities that are commonly used in survival analysis. Chapter 3 will give an 

introduction to Nonparametric Maximum Likelihood Estimator (NPMLE) and illustrate 
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the 1CM algorithm which is designed to provide the empirical results for nonparametric 

estimators. Chapter 4 will talk about the regression models, particularly with a special 

emphasis on the analysis of the additive hazards regression. Simulation studies and a real 

example demonstration will be presented in Chapter 5. To end this thesis, conclusions 

including extra knowledge remarks, current issues as well as comments on future work 

will be provided in Chapter 6. 
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Chapter 2 

Basic Quantities and Counting Processes 

2.0.3 Basic Quantities for Survival Data 

In this section, some basic identities that are often used in survival analysis will be 

discussed. The content of the discussion will include the definition of these identities as 

well as their interrelationships. However, to keep our demonstration simple at this stage, 

we don't consider any effects generated by covariates. Let T be the time to the occurrence 

of some specific events. These events, on one hand, might include death, appearance of 

disease, machine breakdown; and on the other hand, may refer to remission of some 

treatments, conception, cessation of smoking and so forth. More specifically, in this 

section, T is a nonnegative random variable from a homogeneous population. Three 

functions can be used to describe the distribution of T, namely, the survival function, 

which is the probability of a subject 'surviving' beyond time T; the hazard rate function, 

also called risk function, which describes the conditional chance a subject at time t 

experiences the event in the next instant and the probability density function, as referred 

to be the probability of the event's occurring at time t. If any one of these three identities 

is known, the other two can be explicitly determined. In practice, these three functions, 

together with another important quantity, the cumulative hazard function are used to 

illustrate different aspects of the distribution of T in survival analysis. In the later 

chapters of this thesis, we will see how these functions are estimated and how inferences 

are developed based on their estimation. 

The survival function is defined as 

8(t) = P(T > t), (2.1) 
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which describes the likelihood of which an subject survives after an event occurs at some 

specific time t. If T is continuous, then S(t) is a continuous and strictly decreasing 

function. Moreover, the survival function becomes the complement of the cumulative 

distribution function, namely, S(t) = 1 - F(t) so that F(t) = P(T ≤ t). In general, the 

above expression can be formulated as 

8(T) P(T > t) = it f(x)dx, (2.2) 

where 

ds(t) 
f(t) dt 

Note that f(t) is the probability distribution function with the properties of being non-

negative and of being equal to one after integrating it from —co to +oo. When T is 

discrete, say its probability mass function P(t) = P(T = t),j = 1,2, ..., counts on 

values tj where j = 1, 2, ... and t1 < t2 < ..., then the survival function of T will be 

defined by 

8(t) = P(T> t) = >'p(t). (2.3) 
tj>t 

Despite of various types of survival function that might present in survival analysis, 

they all share common characteristics with each other and have same properties. Specifi-

cally, they are monotone non-increasing functions having values between 0 and 1 as time 

progresses. Their rate of decline varies upon the risk of experiencing the event at time t 

and can be very useful in comparing multiple failure patterns. 

Another quantity that is fundamental and crucial in survival analysis is the hazard 

function. This function is also known as the intensity function in stochastic processes, 

or simply as the hazard rate. The hazard function is defined by 

= lim P[t≤T<t+LtIT≥t]  (2.4) 
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When T is continuous, 

A(t) = f(t)/S(t) = —dln[S(t)]/dt. (2.5) 

In terms of the cumulative hazard function A(t), it has the form 

A(t) = f A(u)du =—ln[S(t)]. 
Hence, for the continuous case, 

tS(t)=exp[—A(t)]=exp[— A(u)du]. 

(2.6) 

(2.7) 

It can be seen from (2.4) that the chance for a subject at time t experiencing the event in 

the next instant will likely be as A(t) t. This function is very useful in determining the 

failure distributions describing the information about the pattern of failure and the way 

in which the likelihood of experiencing the event changes over time. Like the survival 

function, the hazard rate, A() must be nonnegative as well. 

When T is discrete, the hazard function is given by 

A(t) =P(T=tIT≥t) = 8 t) ),j 1,2 (2.8) 

Since the survival function, in the discrete case, can be written as 

8(t) = [J S(t)/S(t_1). (2.9) 
ti ≤t 

Therefore, it can be expressed in terms of hazard function by 

S(t) = 11 [1 - A(t)]. (2.10) 
tj≤t 

The interrelationships of these identities, for a continuous case, is summarized as the 
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following 

S(t) = rt f (x)dx 

exp[_fA(u)du] 

= exp[—A(t)], 

f(t) = —S(t) 
dt 

A(t) = •—lm[S(t)] 
dt 

- f  

2.0.4 Counting Processes 

Counting process is an important approach to develop the inference procedures for 

censored and truncated data. This methodology was first introduced by Aalen (1975). 

He combined components of continuous time martingale theory, stochastic process and 

counting process theory into an area which allows survival quantities to build their in-

ference properties based on the censored and truncated data. Although the complete 

explanation of this theory is beyond the scope of this thesis and in this section, we will 

only give a brief illustration; for more detailed information in this regard, one could 

consult books by Andersen et al. (1993), Fleming and Harrington (1991) and Klein and 

Moeschberger (2003). 

We begin with our demonstration by defining the counting process as the following. 
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Suppose a stochastic process, N(t), t ≥ 0, is a counting process if it has the property 

that N(0) = 0; N(t) < 00 with probability one; and the sample paths of N(t) are 

right-continuous and piecewise constant with jumps of size one. Given a current status 

example, the counting processes are, N(t) = J[G ≤ min(T, t)], i = 1,2,. .. n, which 

jumps by one at time t when Ci t and T ≥ t. Here, the censoring indicator under 

this setting is defined by Ji = I(C ≥ Ti). The sum of the individual counting processes, 

N(t) = > N(t) is also a counting process and it simply counts the number of failures 

in the sample at or prior to time t. 

The counting process shows us the occurrence time of the event. Besides knowing of 

it, we also have information about the subjects at time t. For example, given a current 

status data, this information at time t contains message of who failed at or prior to time 

t and who has been censored prior to time t. The sum of this information that presents 

the occurrence of the events to subjects up to time t is called the history of filtration of 

the counting process at time t and is denoted by J. As time moves on, an increasing 

knowledge from the sample can be learned so that .7 C Ft will be obtained for s ≤ t. In 

the case of current status data, the history at time t, J, consists of information about 

one group of subjects whose Ci ≤ t and Ci > t for the other group of subjects that are 

still under the study at time t. Let's denote the history just prior to time t by J... The 

history J, t ≥ 0 for a given problem depends on the information available up to and 

including time t. 

For current status data, given the independence assumption among the monitoring 

times, Cis, the likelihood of an event at time t given the history prior to time t has the 
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form (Lin et al., 1998), 

P(t ≤ Ci ≤ t+ dt, Ji = 0IJ_) = 

P(t≤C≤tH- dt,T≥C1IC>t)==h(t)dt ifC≥t 

0 ifC<t 

(2.11) 

where h(t)dt = dHo(t) = e_1o(L)dA(t) is a hazard rate function (details are shown in 

Chapter 4). 

Let's define dN(t) = N[(t + dt)j - N(t—) (Here t is a time just prior to time t) 

to be the change in the process N(t) over a short time interval [t, t + dt). Given the 

current status data (assume no ties are present), dN(t) is one if Ci = t and a subject 

has been failure-free up to t or 0, otherwise. If we define the process Y(t) as the number 

of subjects i such that Ci ≥ t, 1 ≤ i ≤ m, then by (2.11), 

E[dN(t)IJ_] = E[Number of observations with 

t≤Cz≤t+ dt,T≥CI_] 

= Y(t)h(t)dt 

(Klein and Moeschberger, 2003). The process a(t) = Y(t)h(t) is called the intensity 

process of the counting process. Further, it is a stochastic process that relies on the 

information included in the history, J, through Y (t). 

The cumulative intensity process, A(t) is defined by j a(s) ds, t ≥ 0. This process 

has the property that E[N(t)_] = E[A(t)_] = A(t); The stochastic process M(t) = 

N(t) - A(t) is called the counting process martingale. This process has the property that, 

given the strict history, F_, the future increments of this process have zero expected 
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value. To verify this, 

E(dM(t)I.Ft_) = E[dN(t) - dA(t)IJ.] 

= E[dN(t)IJ_] - E[a(t) dtlF_] 

=0 

(Anderson et al., 1993; Fleming and Harrington, 1991). Since a(t) has a fixed value given 

j..., the last equality holds. 

In general, a stochastic process can be called a martingale if such process is integrable 

and adaptable and its expected value at time t, given its past at time s < t, has the same 

value as when it is at time s. That is, M(t) is a martingale if 

E[M(t)l.F8] = M(s),for all s < t. (2.12) 

To see this quantity is equivalent to having E[ dM(t)I._] = 0 for all t, note that, if 

E[dM(t)I.P_] = 0, then, 

E[M(t)I.23] - M(s) = E[JVI(t) - M(s)I28] 

= E[f dM(u) 3] 

= f E[E[dM(u)]3] 
=0 

(Klein and Moeschberger, 2003). 

The counting process martingale, M(t) = N(t) - A(t) is formed by two parts. The 

first part is the process N(t), which is a non-decreasing step function. The second part 

A(t) is a smooth process where its value is fixed at time t. This function is called a 

compensator of the counting process. The martingale has a zero mean, since E(M(t)) = 

E(E[M(t)lF]) = E(M(0)) =0. 
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Another important identity needed for the counting process theory is a quantity called 

the predictable variation process of M(t), symbolized by (M) (t). This quantity acts like 

a compensator of the process M 2 (t) and the name of it, predictable variation process, 

comes from the fact that var( dM(t)l_) = d(M)(t) for a martingale M(t). To see this, 

we use the property, E[dM(t)] = 0. Now, 

dM2(t) = M[(t + dt)]2 - M(t)2 

= [M(t) + dM(t)]2 - 

= [dM(t)]2 + 2M(t) dM(t). 

(Klein and Moeschberger, 2003). 

Therefore, 

Var[dM2(t)l_] = E[(dM(t))2I] 

= E[(dM(t))IP_] - 2E[M(r)dM(t)I...] 

= d(M)(t) - 2M(r)E[dM(t)I._] 

= d(M)(t) 

(Klein and Moeschberger, 2003) and M(t-) is a fixed number as E[dM(t)J_] = 0. 

For Var[dM(t)_], it can be shown that Var[dM(t)I_] a(t) = Y(t)h(t) given the 

scenario when no ties will be present in the censored data. 

In counting process theory, K(t) is usually denoted to be a predictable process, which 

is considered as a stochastic process that can be known, given the history just prior to 

time t, ._. An example of it is the process Y(t). Over the interval 0 to t, the stochastic 

integral for this type of process, with respect to a martingale, is defined by f K(u) dM(u). 

Such stochastic integrals themselves are martingales in terms of t and their predictable 

variation process can be found from the identity, 

It I t 

K] K(u) dM(u)) = K(u)2d(M)(u) (2.13) 
0  



20 

(Anderson et al., 1993; Fleming and Harrington, 1991; Klein and Moeschberger, 2003). 

These quantities can be used to estimate the cumulative hazard rate H(t) based on 

current status data. Recall that dN(t) = Y(t)h(t) dt + dM(t). Then, according to Klein 

and Moeschberger (2003), if Y(t) is nonzero, 

dN(t) dMt  
= h(t) dt + 

Y(t) Y(t) 

And the expectation of it, given the fixed value of Y(t) prior to time t, will be 

E dM(t) - E[dM(t)I...] - 0 
Y(t) - Y(t) - 

In the mean time, the conditional variance has the form 

dM(t) Var[dM(t)lJ_] - d(M)(t)  
Var[ Y(t) Y(t) - Y(t)2 

(2.14) 

Suppose a J(t) is defined to indicate whether Y(t) is positive and let 0/0 = 0, then, by 

integrating both sides of equation (2.14), we can obtain an identity, of which 

f dN(u) = Lt J(u)h(u) du + f 
The integral f - dN(u) = ft(t) is the Nelson-Aalen type estimator of H(t). The 

stochastic integral, W(t) = dM(u), is the predictable process !jJ with respect 

to a martingale (Note that the integral itself is also an martingale). Again, this inte-

gral can be considered as random noise in our estimate. The random quantity H* (t) = 

f0 J(u)h(u) du, for current status data is equal to H(t) under the condition that by ignor-

ing the random noise in W(t) in the present data, the statistic ft(t) is a nonparametric 

estimator of the identity H* (t). 

Note that the expectation of H*(t) is equal to H(t). The predictable variation process 
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of W(t) can be derived, using equation (13), as 

(W) (t) = J(u)  ]2 d(M)(u) 
Y(u) 

- J [ t J(u)  
-  y(U)]2Y(u))th1 

= f [j]h(u)du 

(Anderson et al., 1993; Fleming and Harrington, 1991; Klein and Moeschberger, 2003). 

The last definition that needs to be discussed here for the counting process approach 

is the martingale central limit theorem. To illustrate, we treat Y(t)/n and N(t)/n to be 

sample averages for a given data set and if the sample size is large enough, the variation 

in both terms should be small. For large m, suppose that Y(t)/n is close to a function 

y(t), which can be simply determined. Let Z'(t) = .fiiW(t) = /ii[.ET(t) - H*(t)]. This 

process is nearly equal to \/[f-l(t) - H(t)]. Thus, based on the historical information 

that has been given, the variance of the changes in ZTh(t) will converge to h(t)/y(t). To 

check this 

Var[ dZTh(t) I9:_] = nVar[dW(t)IF_] 

= nVar{I_] 

- d(M)(t) 

a(t) dt 
= Y(t)2 

- Y(t)h(t) dt - h(t) dt 
- Y(t) - Y(t)/m 

(Anderson et al., 1993; Fleming and Harrington, 1991; Klein and Moeschberger, 2003), 

which converges to h(t) dt/y(t) for large n. Also, ZTh will have jumps of order 1//, which 

are almost continuous and a predictable variation process of it will be approximately equal 

to 

JO 

th(u)du 

(ZTh) y(u) (2.15) 
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It turns out that the limiting process, Z°° is unique given the condition of having it a 

martingale with continuous sample paths and of which its predictable variation (Zoo) 

is exactly equal to (2.15). This limiting process follows finite-dimensional normal dis-

tributions along with independent increments. According to (Klein and Moeschberger, 

2003), a process has independent increments if, for any set of nonoverlapping intervals 

(t_1) ti), i = 1, ..., k the random variables Z°°(t) - Z°'°(t_1) are independent, whereas 

the limiting process follows finite-dimensional normal distributions if the joint distri-

bution of {Z°° (ti), ..., Z°° (tk)J is multivariate normal for any value of k. For the process 

Z°°, [Z°°(t1, ..., Z°°(tk)] has a k-variate normal distribution with mean 0 and a covariance 

matrix with elements 

cov[Z°°(t), Z°°(S)1 = 
min(s,t) h(u) du 

Y(U) 

(Klein and Moescherberger, 2003). 

Moreover, \/[ft(t) - H*(t)] will approximately normally distributed with mean 0 

and variance 

which can be replaced by the form 

= fo h(u) du  
y('u) 

ft  dN(u)  Y(u)2 

due to the fact that we can estimate y(t) by Y(t)/n and h(t) by dN(t)/Y(t). Thus, the 

convergence will enable us to find confidence intervals for the cumulative hazard rate at 

a specific time. 

Counting processes can be also used to construct the likelihoods for survival data. To 

derive a likelihood function, let's consider each individual process, Ni(t), in the study. 

Based on the historical information which is known up to time t, dN (t) follows approx-

imately a Bernoulli distribution with the corresponding probability, P( dN(t) = 1) = 
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a(t) dt. The function of likelihood at a given time is, then, proportional to 

aj(t)dIni(t)[l - a(t) dt]l_dl'i(t) 

(Anderson et al., 1993; Fleming and Harrington, 1991; Klein and Moescherberger, 2003). 

For current status data, where a1(t) = Yj(t)h(t), with (t) = 1 if t ≤ C; 0 if t > G, 

so 

1, oc H[exp(—H(Cj))5 (1 - 
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Chapter 3 

Nonparametric Maximum Likelihood Estimation for 

Current Status Data 

Estimating survival function is perhaps the most commonly needed task for the anal-

ysis of survival data. There can be many reasons for such a task and an example among 

these reasons might be that an assumption of a particular regression model requires to 

be evaluated by an estimated survival function for the underlying survival variable of 

interest. Additionally, one may also need to estimate survival functions to calculate cer-

tain survival probabilities, to graphically perform the comparison of different treatments, 

or to predict the chance of survival for future patients. In the situation where a para-

metric model is assumed for the underlying survival function, the estimation process is 

relatively simple and an maximum likelihood estimation approach can be used for such 

case; yet when semi-parametric models are present, the conventional method will not be 

appropriate for the analysis and a solution for this instant is needed. In this chapter, we 

will introduce a new estimation approach, namely, nonparametric maximum likelihood 

estimation, to estimate the distribution function of semi-parametric regression models. 

For a right-censored survival data, the nonparametric maximum likelihood estimator 

(NPMLE) of a distribution function is the well-known Kaplan-Meier estimator (Kaplan 

and Meier, 1958; Kalbfleisch and Prentice, 2002). It is formed in a product-limit way and 

has been studied extensively for several decades. Its variance estimate becomes available 

after the Greenwood's formula (Greenwood, 1926) has been used. Unlike parametric 

inference, in the case of interval-censored survival data, nonparametric inference is more 

complicated than that for the right-censored data from both practical and theoretical 
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points of views. Specifically, the NPMLE of a distribution function does not have a 

closed form in general and can only be determined by using an iterative algorithm. 

At first, we will discuss the derivations for the NPMLE of distribution functions based 

on Case I interval-censored or current status data. For this special type of interval-

censored data, a closed form is available for the non-parametric maximum likelihood 

estimator. Then, an illustration about the algorithms that are used for determining the 

NPMLE applied to the same data structure will be followed. 

3.0.5 Nonparametric Maximum Likelihood Estimator for Current Status Data 

Let Ti's be the survival time of interest with distribution function F(t). We suppose 

that the observations in such type data take the form 

I Ci I Ji =I(Ti ≤ C)}, 

where i = 1, ..., n for a finite sample size. Here, Ci represents the observation time for an 

individual i independent of Ti and Ji = I(T ≤ C) is the indicator function for censoring 

status. Then, based on this information, the likelihood function can be constructed as 

n 

L(F(c)) = IJ[' - 

For the log-likelihood function, it has the form 

l(F(t)) = [(1 - )log(1 - F(C)) + 5log(F(C))J. (3.1) 

Let C ) where j = 0,...,?' be the j-th order statistics of {0,C;i = 1,...,m}. Define 

a =  En  5,(C = C )), the number of failed subjects observed at and n = 

En i=1 I(C = C )), the number of subjects observed at Cj), j= 1, ..., 'i'. Then the log-
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likelihood function l(F(t)) can be re-expressed by 

l(F(t)) = [(ni - a)1og(S(C ))) + (a)1og(1 - 

[(a)log(F(C ))) + (n - a)log(1 - 

(3.2) 

j=1 

which can be considered as the log-likelihood is formed upon an r-dimensional binomial 

sample with F(t) = 1 - S(t). 

The log-likelihood function 1 provides the estimation of S or F only through its values 

at the C )'s. Therefore, we can show that maximizing l(F(t)) with respect to F(C )) is 

equivalent to minimizing 
r 

- F(C ))]2 
j=1 • 

subject to F(C 1)) ≤ •.. ≤ F(C) (Robertson et al., 1988). The set of values of C1) 

that minimize this summation is commonly referred to as the results solved from the 

least squares problem for isotonic regression of {ai/n1, ..., a./n.} with weights {n1, ..., fl.} 

(Barlow et al., 1972; Robertson et al., 1988). By using the max-min formula for isotonic 

regression, the NPMLE of F at time C&) can be derived as 

F . (C( /'.)=maxmm  
s(j) r>—(j) >J=S nj 

Hence, the NPMLE of F has a closed form. To compute P(C )), one could adopt some 

algorithms that are often used to calculate the isotonic regression, e.g. the pool adjacent 

violators algorithm (PAVA). 

3.0.6 Iterative Convex Minorant Algorithm for Current Status Data 

For the past two decades, there has been an increasing research interest in the 

development of computational algorithm for determining the NPMLE of the survival 
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function or the cumulative distribution function. Among these algorithms, three of the 

well-known ones include, the Self-Consistency algorithm that was developed by Turnbull 

(1976) and can be considered as a specific application of the EM algorithm; the Iterative 

Convex Minorant (1CM) algorithm written by Groeneboom and Weilner (1992), and a 

hybrid EM-ICM algorithm proposed by Weliner and Zhan (1997), which combines both 

the self-consistency algorithm and the 1CM algorithm as a whole. Since we used the 1CM 

algorithm to implement the estimation process for the additive hazards regression model, 

in this section, detailed discussions will only be given for that algorithm. For the rest 

of them, readers can find their descriptions from the sources that have been mentioned 

above. 

To illustrate the 1CM algorithm, first let 

W{F(Fi,...,Fr_i)'EP';O≤Fi≤ ... ≤Fr_i≤1}, 

be a subspace of r-1, and define F(C )), j = I, -, r as the corresponding distribution 

function for the distinct order statistic such that F(C O)) = 0, F(C) = 1 and 

Fa' = (F (C11)), ..., F(C_ l) ))'. Then, the NPMLE of the distribution function can be 

obtained by maximizing the log-likelihood function l(F(t)) in (3.2) over W. 

The realization of the 1CM algorithm relies on the following two conditions. First, 

suppose that g and W are a differentiable concave function mapped from r-1 to R and 

a convex cone in respectively. We let Q be a positive definite (r - 1) x (r - 1) 

matrix with a fixed point y in R' and assume that g(F) attains its maximum over 

region W at F. Define 

g*(Fy, Q) = —(F - y)'Q(F - y) 

for F E '' and suppose that P' E W maximizes g*(Fy, Q) over W. Then, g*(Fy, Q) 

can be maximized by F* over W if and only if F* = F. In the former statement, 
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y = P + Q-' 7 g(P), in which Vg(F) is the derivative vector with respect to g at F 

(Groeneboom and Weliner, 1992). 

The second condition concerns maximization of a quadratic function over region W. 

Suppose P = (Pr, ..., P_1)' has the same definition as before in W and define Q = 

diag(q) a positive definite diagonal matrix. Furthermore, we let P0 = (0, 0) and 

Pm ( 
i=1 

qy),1 m≤r- 1, 

be the points in R 2 for the constants y = (Vi, ..., yr-i)' E The vector which contains 

the values of points {Pm ;m = 0, ..., r - 1} is commonly referred to as a cumulative sum 

diagram because the coordinates of Pm is obtained by adding up the vectors (qi, ..., qr-i)' 

and (q1y1, ..., qr-iyr-i)' cumulatively. Then .P is considered as the left derivative of the 

convex minorant of, i.e. the largest convex function below the cumulative sum diagram 

{Pm ;m = 0, ..., r - I  evaluated at P,. 

While the first condition reveals the equivalence between the maximization of a gen-

eral function g(F) and the maximization of the quadratic function g*(F) for a given P, 

the second condition pinpoints the location at which the maximization has occurred for 

a special quadratic function. Together, the two conditions motivate the 1CM algorithm 

as follows: 

Step 1. Select an initial estimate P, of Fe'. 

Step 2. At the lth iteration, let the updated estimate Fe), which is equal to (P(1)(C 1) ), 

..., P(O(c,.. 1) ), of Fc' be the P that maximizes g*(Fy, Q(P[l))) with 

- p(i- l) Q_1(fr(ll)) v - C, - 

and Q(Pl)) being positive definite diagonal matrix that may depend on pt'), where 

lw(Fc') is the log-likelihood function. In other words, P,9 is taken to be the derivative 

of the convex minorant of the cumulative sum diagram {Pm; m = 0, ..., r - 1} given by 
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Po = (0, 0) and 

m m 

for 1 ≤ m < r - 1, where q'') is the ith diagonal entries of Q(frl)). Note that, in the 

1CM algorithm, a natural choice for Q(Fc') is to take 

q=q(Fci)=  52 

assuming it exists for j = I, -, r - 1. 

Step 3. Return to step 2 until the algorithm converges. 

Jongbloed (1998) shows that there exists problems associated with increments of log-

likelihood and global convergence in the 1CM algorithm, and suggests to add a line search 

into the algorithm based on the following fact. 

Let g,g, W and P be as given in the first condition. For given F and a positive 

definite diagonal matrix Q(F) that may depend on F, also let A(F) be vector z at which 

g*(zy, Q) achieves its maximum with 

7J = X - Q'(F) 1w(-

P)-Then for F P and all arbitrary A > 0, 

g(F + A(A(F) - F)) > g(F). 

This fact shows once a line search is added into the algorithm, it will guarantee the 

log-likelihood function increases and the algorithm globally converges. 

Define 0 < e < 0.5 a constant that controls the line search process. The following 

step can be inserted between steps 2 and 3 of the 1CM algorithm. 

Step 2.1. If 

(1) (1-i) 
lw(Pj)) > lw(PT") + (1 - )[vlw(Pj,')}'(P, - c' ) 
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then the algorithm proceeds to step 3. Otherwise, find a point z such that 

= p(l1) + (p(lj) — (l— i)) 

for 0 ≤ A ≤ 1 that satisfies 

(i —i) 
€[71w(Fc, )]'(z — pg-i)) ≤ lw(z) - Y 

1)J(z — pg1) 

Let P' denote the estimate given by the 1CM algorithm. Then the NPMLE of F is 

given by ft (t) = P(C )) if C ≤ t < for j = 0, ...,r - 1. 

Aragon and Eberly (1992) discovered that one could have difficulty with the selection 

of initial values for the iterative convex minorant algorithm achieving global convergence. 

From the experiments they did, the results reveal that the steplength of the algorithm is 

too large in some precedents. Although Groeneboom (1990) considered using a buffer to 

prevent F or 1—F from being negative, this adjustment has a lack of available convergence 

results. Therefore, in order to resolve these issues, they developed a modified version of 

the algorithm and namely, a damped iterative convex minorant algorithm. 

The damped iterative convex minorant algorithm is defined as the following 

F 1 (k) k 
C/ F, — o (3.3) 

(k) ii Ic (Ic) 
where B(Fc,) = diag(-11(F (,) )). When F, approaches the maximal point F, (at 

which the maximization of log-likelihood has achieved) very closely, the damped 1CM 

algorithm will eventually become the regular 1CM algorithm. To-maintain the proper 

status of F as being a cumulative distribution function, the steplengths &c are small 

initially to ensure that the range of it will be bounded within the interval, [0, 1]. A few 

methods will be discussed later on obtaining the steplength variable, which will satisfy 

1 as k —* oo. 
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For the exposition of global convergence, Aragon and Eberly (1992) used results from 

Ortega and Rheinholdt (1970, p.502) and provided the following theorem. 

Theorem 2. (Aragon and Eberly, 1992) Assume that g : D C R - f RT is continu-

ously differentiable on the open set D, that there is an F, E D such that L := L(g(F,)) 

is compact, and that g has a unique critical point F, E L. Suppose that A(Fc') E rxr 

is positive definite for all F0 E L. Then the iterates 

,(k) _i I 

FC1 = - a'A(ic,) g (F), k ≥ 0 

converge to F, for any sequences of cxk such that F C £ and limk_+ 

= 0 where (k) = A(F)_1g'(F). 

Let g(F0 ) = —l(Fc), D = R°max which contains all the maximal points of 1 and 

A(Fc) = diag( - l (F0i)), respectively. Then, one could follow the mechanism given in 

(3.3) to run the algorithm. Because g is strictly convex, L in the statement of theorem is 

compact for any E R,,,,. A number of ways for computing steplengths are available 

to ensure that C L. Among them, the Goldstein-Armijo algorithm is probably the 

one that has been used mostly (Ortega and Rheinboldt 1970). In the application of 

damped 1CM algorithm, Aragon and Eberly (1992) selected 

ak = max{(1/2)m : m ≥ 0, - (1/2)mB(F))_hl'(F)) E Wil 

and set F' = -- akB(F y,))hl(F). 

The damped 1CM algorithm will not only achieve its global convergence by starting 

with any initial values of F0 within a close set, W; more importantly, when the initial 

value exceeds W, the convex minorant portion of the algorithm should also be able to 

project it onto the boundary of W in the later iterates. Accordingly, Aragon and Eberly 

(1992) developed an alternative iteration for the algorithm which resulted in the following 
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expression. 

= FJ' - C , F' = if E TO, I CI, 

= Proj() if C 0 T°. 

Furthermore, it guarantees that —l(F') > —l(F) when the number of k increases. 

Pan (1999) pointed out that the damped iterative convex minorant algorithm is in 

fact a generalized gradient projection (GGP) scheme. Moreover, it can be regarded as a 

Newton-type iterative algorithm in the problem of constrained optimization (Mangasar-

ian 1996; Bertsekas 1982). 

Based on his derivation, suppose we want to maximize the log-likelihood function 1 

in a closed convex set X. The algorithm will then iterate by 

F' = Proj[F + a(m)H(m)' l(F), H(m), W] (3.4) 

(Pan, 1999), where 71 represents the first derivative of 1 with respect to F' and H is 

taken by the negative second order derivatives, which is often referred as a symmetric 

positive definite matrix for letting 1 be strictly concave. The projection operation, Proj, 

is defined as 

Projy, H, W] := argmin{(y - Fct)'H(y - Fa') F' E W}. 
F0, 

Then, the desired solution of F0 can be obtained once the algorithm converges at the 

maximum value of 1. 

Bertsekas (1982) and discussed the theoretical properties of the GGP. Among them, 

three of the important ones are (Pan, 1999), 

E argmaxF0,w {l(Fct)}; 

11. F6, = Proj[F, + aH' v l(F,), H, W] for any a > 0; and 

III-F6, = Proj[F,, + aH' 7 1(F,), H, W] for some a > 0. 
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• He argued that if 1 can be differentiated with respect to Fc', then condition II can be 

u1fih1ed by condition I, whereas if 1 is convex, condition III can deduce condition I. 

Also, if we neglect the second order information of l(F,) and reduce H to be an iden-

tity matrix, then the generalized gradient projection (GOP) method will be degenerated 

as the gradient projection (GP) method. For other theoretical discussions about GGP 

(e.g. its linear convergence and superlinear convergence rate), one could refer to Polak 

(1971). 

Although Zhan and Weilner (1995) discussed some potential problems that might 

exist in the proof of Aragon and Eberly (1992), the damped iteratvie convex minorant 

algorithm revealed its superiority in global convergence and likelihood increment as op-

posed to the original iterative convex minorant algorithm. Naturally, it becomes one of 

the ideal options which can be applied for estimating the distribution function in the 

analysis of semiparametric model. In the following section, we will give a detailed dis-

cussion on how the damped iterative convex minorant algorithm is implemented in the 

estimation of the additive hazards regression model. 
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Chapter 4 

Additive Hazards Regression Model for Current 

Status Data 

In the previous sections, we discussed some of the applications from which current 

status data arise. These applications often include animal turnorigenicity experiment, 

demographical surveys and epidemiology studies. In situations where tumorigenicity 

experiment is conducted, current status data as composed of tumor onset time is the 

only available information about underlying survival variables of interest (Dinse and 

Lagakos, 1983). In other situations such as cross-sectional studies, current status data 

offer relatively simple but rather reliable information about occurrences of the event than 

that complete data provide. One example about such case is in epidemiological studies, 

we want to examine whether certain chronical diseases are presented within a specific 

time period (Keiding, 1991; Keiding et al., 1996; Shiboski and Jewell, 1992). Another 

example would be the pregnancy or marriage surveys in demographical studies. 

For the past two decades, there has been a tremendous amount of research in the 

analysis of current status data. For instance, the articles that studied the proportional 

hazards model including Huang (1996), and Huang and Weliner (1997) where they de-

veloped a profile maximum likelihood approach to estimate the parameters of interests. 

Huang (1995) and Rossini and Tsiatis (1996) investigated the proportional odds model 

by using sieve maximum likelihood method, and the authors who discussed the additive 

hazards model for current status data include Ghosh (2001), Lin et al. (1998) and Mar-

tinussen and Scheike (2002b). Moreover, Sun (2005) studied the linear transformation 

model and developed some estimating equation approaches for estimation of regression 
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parameters. Shiboski (1998) proposed some generalized additive models and applied 

maximum likelihood approach with the use of step function approximation for inference. 

Other models that have been researched include the accelerated failure time model (Shen, 

2000; Xue et al., 2004), the binary choice model (Huang and Wellner, 1996; Klein and 

Spady, 1993), generalized linear models (Jewell and Shiboski, 1990), and spline models 

(Grummer-Strawn, 1993). 

The objective of this chapter is to discuss the estimation as well as inference proce-

dures for some commonly used semi-parametric regression models, merely the additive 

hazards regression model, involved in the analysis of current status data. In this regard, 

one of the well-known approaches is the maximum likelihood estimation. Although this 

is rather a quite common method, the likelihood in the current status data yet contains 

both finite-dimensional regression parameters and infinite-dimensional nuisance param-

eters (e.g. the cumulative baseline hazard or cumulative distribution function). It is 

not easy to achieve by usifig the approach. Apparently, one of the means that yields 

the solution for such case is to estimate the regression parameters and nuisance terms 

simultaneously by the damped 1CM algorithm introduced in Chapter 3. This approach 

differs from the method that we often used to estimate the proportional hazards model 

for right-censored survival data because the latter method only deals with partial likeli-

hood that does not involve any of the nuisance parameters and the properties associated 

with the parameters of interest can be easily derived by martingale theory. However, in 

current status data, the partial likelihood fails to capture the function of the nuisance 

parameters and therefore, is not suitable for the specified estimation procedure. Instead, 

one has to work with the full likelihood. In the following sections, we will describe these 

procedures for specific semi-parametric models in detail. 
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4.0.7 Proportional Hazards Regression Model 

This section will introduce analysis principles of using the proportional hazards model 

in current status data. This model was first proposed by Cox (1972) and was developed 

in order to estimate the effects of different covariates influencing the time-to-event of a 

system. The model has been widely used in the biomedical field and recently, there has 

been an increasing interest in its application in reliability engineering. The basic form of 

the model is specified as follows: 

A(tIZ) = )o(t)exp(f3tZ), (4.1) 

where .N0 (t) is an arbitrary baseline hazard rate function of t, Z is a vector of covariates 

and ,8 = ..., ,@)t is a parameter vector. 

The likelihood function is proportional to 

L(f3,A0) = IJ{[1 - exp(_Ao(Cj)e19tZi)]öi [exp(—Ao(C1)e0 )]' 5} (4.2) 
i=1 

where A0 is the cumulative baseline hazard function, which is defined as AO (t) = f Ao(s) ds 
and 

In terms of /3 and F0, the baseline distribution function, the likelihood can be re-

written as 

n 

L(/3, F0) = hi' - (1 - F0(C))e'u]5i . [(1 -  Fo  (4.3) 
i=1 

Maximum likelihood estimation are used to estimate /3 and F0 by calculating the 

maximum value of the likelihood function L(3, F0) given in (4.3). For this and a given 

set of current status data, only the values of F0 (t) at the monitoring time C 's affect 

the likelihood function. Hence, without loss of generality, one can focus only on the 

maximization of L(/3, F0) over all nondecreasing stepwise functions with jumps only at 

the Ci's for Fo(t). 
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Let 0 < C1 < C2... < Cm be the ordered distinct time point of {C} 1 and n F, the 

set of all baseline cumulative distribution functions F0 (t). Thus the log-likelihood of Cox 

proportional hazards model for current status data has the form 

n 

l()3, F0) = 
1=1 

{ólog[1 - (1— Fo(C))] + (1— ö)log[(1 - F0(C))]}. (44) 

Then, the maximization of 1(13, F0) can be solved by using the Newton-Raphson algo-

rithm which requires the corresponding partial derivatives of the log-likelihood function 

with respect to the parameter space /3 and the cumulative distribution function F0, re-

spectively. 

4.0.8 Additive Hazards Regression Model 

As with the proportional hazards model, the additive hazards model specifies the 

effects of covariates on the failure time through the hazard function. Particularly, it 

assumes that the hazard function of T at time t, given the history of a p-dimensional 

covariate process Z(.) up to t, has the form 

)(tIZ) = ).0(t) +,8tZ(t), (4.5) 

where ).0(t) is an unspecified baseline hazard function, and /3 stands for a p-vector of 

unknown regression parameters of interests (Lin et al., 1998). Overall, The effects of 

covariates in such regression model are to additively increase or decrease the hazard 

function. 

Although both the proportional hazards model and the additive hazards model con-

centrate their forms on hazard function, the effects of covariates have different meanings. 

Under the proportional hazards model, the parameters of interests /3 denote the loga-

rithm of the ratio between risk factors and failure rates, whereas in the additive hazard 

models, /3 represents the difference of that risk with respect to such factors and failure 
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rates. This can be easily seen at the situation where Z takes only binary values, 0 or 1. 

In this case, we have 

= 1) = A(tIZ = 0) + /3. 

One attractive feature of the additive hazards model is that it provides a relatively 

simple method for analyzing survival data when the latent variables or frailties are 

present. For the additive frailty model, the marginal model is still in the form of the 

additive hazards model and the parameter of interests ,8 has the identical meanings in 

both the additive frailty model and the marginal model (Lin, Oakes and Ying, 1998; Lin 

and Ying, 1997). However, the result will not be true when the similar setting applies to 

the proportional hazards model. 

There exists an extensive literature on the theoretical discussions and applications 

of the additive hazards model. Sources, include Breslow and Day (1987), Kim and Lee 

(1998), Kulich and Lin (2000), and Lin and Ying (1994). Some methodologies of the 

additive hazards model have been developed to make it more flexible when applying it to 

the right-censored survival data. For instance, we could let Z be time-dependent, and as 

a result, inferences about /3 can be derived similarly to those when Z is time-independent. 

Lin and Ying (1995) introduced an additive-multiplicative hazard model which combines 

the proportional hazards model and the additive hazards model together. Martinussen 

and Scheike (2002a) and Scheike and Zhang (2002) provide developments of the models 

in a further depth. 

As discussed previously, the additive hazards model (4.5) is another commonly used 

semi-parametric regression model in survival analysis in addition to the Cox proportional 

hazards model. For the purpose of fitting and making inference on it to the current status 

data, we assume that given a set of covariates Z, the model can be expressed, in terms 
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of the cumulative distribution function, as 

F(tIZ) = 1 - [1 - Fo(tIZ)]exp(—/3tZ(t)). (4.6) 

Let 0 < C1 < C2... < Cm be the ordered distinct time points of {C} 1 and Qp' 

the set of all baseline cumulative distribution functions F0 (t). Thus, the log-likelihood 

function of the additive hazards model for current status data is' proportional to 

l(F0,) = (1— ö)log((1— F0(C))e-t(°)) + 6log(1— (1— Fo(C))e tzt(ci)) , 

(4.7) 

where Ji If Ci ≥ Ti} and Z(C) = Z . C. The main advantage of this parametrization 

is that the log-likelihood function is concave with respect to the cumulative baseline 

distribution function, F0. 

To estimate F0 and ,@, a natural approach is to use the nonparametric maximum 

likelihood estimation. For its implementation, we adopt the method developed by Aragon 

and Eberly (1992) and Pan (1999), which yields a process that is to apply the damped 

iterative convex minorant (1CM) algorithm in the formulation of generalized gradient 

projection (GOP) to generate the estimates. 

So far for what we have discussed, the damped TOM algorithm (Aragon and Eberly, 

1992) is only available for current status data without covariates. The original version 

of the 1CM algorithm developed by Groeneboom and Wellner (1992) was illustrated 

in the form of stochastic processes. We transform it into a GGP scheme (Pan 1999; 

Mangasarian 1996 and Bertsekas 1982) and extend it to the situation where both cumu-

lative distribution function and covariates exist so that it can be used to 'estimate these 

parameters simultaneously. By doing this, its connection with the Newton-Raphson al-

gorithm becomes quite obvious because, if we focus our attentions on the inner part of 

the iteration which is included by the projection operation, that expression is exactly 

the Newton-Raphson iteration. Estimating parameters of covariates, 6, only requires the 

1=1 i=1 
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use of the Newton-Raphson iteration; since there is no constraints on ,B, the projection 

operation becomes unnecessary. 

In general, the damped 1CM algorithm needs the first and second derivatives of the 

log-likelihood function to estimate the parameters of interest. Now let 17, and V2 be the 

first derivatives with respect to F0 and /3, respectively. Then, 

V11(F0,/3) = 

and 

V21(F0,,8) = 

n 

i=1 

s-pt Z (a1) 
{(l - - F0 (c1) + 61 - (1— F0(c))etZr(d1) } 

—1 

{(l - O)(—Z4'(C)) + Ji 
(i - Fo(C))e_13tzr(di)(Zt(C)) 

1 - (1 - Fo(C))ePtZt(d1) }. 

Similarly, denote G, (FO, 9) and G2 (FO, 9) to be the corresponding diagonal matrices 

of the negative seccond order derivatives. Therefore, 

and 

—52l(Fo,18)/8F 

i=1 

1 
(1— 8) (1— F0(C))2 + 6 [1 — (1 - Fo(C))e izr(di)]2 } 

G2(F0,f3) 0, p)11qp2 

[(1 - Fo(Cj))e_13t(c1)Zt(Cj)]2  
+ [1 - (1 - 

+ [(1 Fo(Cj))e tZr(d1)Z 2(C)] 

[1 - (1 - F0(c))_tZr(d1)] 

Then the damped 1CM algorithm will iterate as 

= pl.oj[F(k) + aGi(Fç, /3(k))_1Vil(F(k) , /3(k)) G1(F,/3(k)) , R] , 

/3(k+1) = /3(k) + a' G2 (F',/3) 'V21 (F', /3(k)) 
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where 

max{1/2 : l(F',/3( ')) > l (FO ,fi )),i = O,l,2,...} 

and Proj is defined as in Chapter 3 to ensure that the estimate of F0 is a proper distri-

bution function ,(i.e. nondecreasing and ranging between 0 and 1). 

In addition to the above procedures, one also needs to select initial values of /3 and 

F0 in order to start the algorithm. A natural choice for obtaining F0 is to use a stepwise 

distribution function. However, it is optional that one could also adopt the derivations 

developed by Lin and Ying (1998) which will be introduced later in this section. 

As Pan (1999) pointed out, despite the trivial process for inverting G1 and G2, to avoid 

the occurrence of zeros in the diagonal entries, the Levenberg-Marquardt adjustment 

is used (Thisted 1988). Specifically, Gj' and G' are replaced by (G1 + 6o1)' and 

(G2+6oI) 1 with a carefully selected arbitrary number e > 0 when they are near singular. 

By intuition, the damped 1CM algorithm will converge, as the log-likelihood function has 

an upper limit and each step of the modified algorithm increases the log-likelihood. If 

we ignore the second order information and let G be an identity matrix, the GOP will 

simply become the gradient projection (GP), which only yields a linear converge rate. 

But, if G is carefully selected (e.g. to be partially diagonal), then the GOP can have a 

superlinear convergence rate (]3ersekas 1982. Propositions 3 and 4). Since the Hessian 

matrix G in our 1CM algorithm is between them, we can expect the convergence rate of 

the algorithm will lie between linear and superlinear; moreover, if the diagonal elements 

of the Hessian matrix exceed the nondiagonals, the convergence rate of the algorithm 

will be minimally close to superlinearity. 

We remark that although the damped 1CM algorithm generally works well, the com-

putation involved could become intensive, and one may face unstable estimation problems 

for some data sets such as those that have a large number of different observation time 

points. As an alternative, for a given data set, one could maximize the log-likelihood 
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function 1(13, A0) over /3 and A0 in lieu of 1(13, F0). As a result, the log-likelihood function 

takes the form 

n 

l(A0, /3) 
i=1 

{(l - S) log(e_A0()_flt(cj)) + 8, log(1 - 

It can be shown that l(A0, 13) is concave with respect to A0 for given /3. Huang (1996) and 

Huang and Weliner (1997) studied a similar situation for the Cox proportional hazards 

model and suggested a profile maximum likelihood approach to estimate parameters of 

interests. It is likely that their estimation method can be also applied to the additive 

hazards regression model. 

Lin, Oakes and Ying (1998) developed a simple equation approach to estimate the 

additive hazards regression model. To have a better understanding on their method, 

let us assume that for any given set of current status data, the monitoring time C is 

independent of the failure time T and covariates Z. Then, following the discussions we 

had in Chapter 2, the counting process for the number of observations is defined by 

Ni (t) = 4Ci ≤ min(T, t)], which jumps by one whenever the subject i where i = 1, ..., N 

is surveilled at time t and found to be failure free. N (t) is considered as censored if a 

subject i has experienced failure under the surveillance at time t. It follows that the 

intensity function dN(t) takes the form 

dH(t; Z) = (t)exp(—flt(Z(t)))dHo(t), (4.8) 

where Y(t) = I(C1 ≥ t),Z(t) = fZ(t)dt,dHo(t) = exp(—Ao(t))dA(t) with A0(t) 

J' t t 0 ,\o(s)ds and A(t) = f0 )(s)ds. Thus, equation (4.8) yields the form of the Cox pro-
portional hazards model. In the meantime, it suggests that the counting process 

pt 

M(t) = N(t) - J Y(s)exp(—/3t(Z(t))dH0(s) 
0 

is a martingale defined in the cr-filtration 

= 0-{N(s), 1'(s), Z(s) : s ≤ t, i = 1,..., m}. 

(4.9) 
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Hence, one can apply partial likelihood approach to model (4.8) for inference about  

Suppose 
N 

S(&- (t; 3) 
i=1 

Yi (t)exp(—/3t(Z(t)))(Z (t))øm, 

where Z(t)®° = 1, Z(t)®' = Z(t) and Z(t)®2 = Z(t)Z(t)' up to m = 0, 1, 2. By the 

partial likelihood approach, the score function is yielded as 

N 00 [Zi* S(1)(t;13)1 d 
N(t) S(°) (t; /3)] 

Similarly, the information matrix for /3 has the form 

N 1S(2)(t;,t3) S(')(t;,8)®2  LS(0) (t;/3) S(o)(t;/3)2 ] 

Then one can estimate /3 by defined as the solution to U(/3) = 0 by the Newton-

Raphson algorithm. It can be shown that under some regularity conditions, ,â is consistent 

(Kalbfieisch and Prentice, 2002; Lin, Oakes and Ying, 1998). Also for large m, the 

distribution of /i(â —/3) and \/iU(,8) can be approximated by the multivariate normal 

distribution with mean zero and variance-covariance matrices Th' and f, respectively, 

where f2 = 1imn 11(/3). 

It is required that one needs to input the initial vector of /3 and A, namely, /3 

and A0 (t), to utilize the Newton-Raphson algorithm. A natural option for 00 is to 

use the results directly produced from the Cox PH model, whereas for A0, Lin, Oakes 

and Ying (1998) proposed that it could be obtained by solving the equation ft(t) = 

exp (—A0 (u) )dA,o (u), where ft and A,0 are the Aalen-Breslow type estimators of H(t) 

and A,0 given by 

and 

t En ft(t)  dN(s)  =f 
0 

A0,0 (t) = 
i=1 ft 

dNc(s) 

I_Yi(s) 
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Here, Nf(s) = I(C ≤ s) and it is the complement of the counting process Ni(s) defined 

previously. Note that Lin et al.(1998)'s proposition on estimating initial guess of A0(t) 

can be also used in our damped 1CM algorithm. 

It can be seen that Lin et al. (1998) 's approach here eventually transforms the analysis 

problem to regression analysis of right-censored survival data using the proportional 

hazards model, which can be quite easily performed. As a result, one can apply the 

pre-existing software for the proportional hazards model to estimate the parameters of 

the additive hazards model. 

Note that unlike the approaches we have given in the previous section, the above 

estimation procedure requires that the Cs follow the proportional hazards model. This 

may be restrictive and could lead in biased estimates of regression parameters if the model 

is incorrect. In general, an estimating equation approach has the disadvantage that it 

may not be as efficient as the damped 1CM algorithm approach. This is true because the 

distribution of the censoring time for N (t) contains regression parameter,@ (Lin, Oakes, 

and Ying, 1998; Martinussen and Scheike, 2002b), which are usually informative and the 

method discussed here represents a trade-off between simplicity and efficiency and the 

amount of efficiency loss under specific circumstances. 

In addition to our damped 1CM and Lin et al. (1998)'s approaches, one can also apply 

other methods to estimate 16 for additive hazards regression. For example, Martinussen 

and Scheike (2002b) developed an efficient score function for 16, which has the form 

fl poo A 
*  Y-/-''-O  

f  exp [—A0 (t) t (z (t))1  dN*t (t; A0) 

1—exp[—Ao(t) -16t(Z(t))1 - 

where Ni*(t) = I(c <t) - N(t) and 

N exp(—Ao(t) - 16t (Z(t))) 
(Z 16, Ao) = i: (t)a(t; Zfl (t))®m. 1 - exp(—Ao(t) - fit(Z(t))) 

i=1 
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In the above expression, a(t; Zfl represents the hazard function of Ci given Z, which 

does not have to follow model (4.8). To apply this approach, one needs to estimate both 

A0(t) and a(t; Zfl initially, then 8 can be obtained from the solution U—,,(/3; A0) = 0 

where both A0(t) and U,,,(18; A0) are fulfilled by their estimates. Martinussen and Scheike 

(2002b) showed that the efficient estimator has the consistency property and follows 

a multivariate normal distribution asymptotically with covariance matrix reaching the 

information lower bound. However, this approach is very difficult to be materialized in 

computational program in comparison with our damped 1CM algorithm. 
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Chapter 5 

Numerical Studies 

5.0.9 Simulation Results 

In this section, we report the results of simulation studies. We used Monte Carlo meth-

ods to illustrate that the damped 1CM algorithm provides good accuracy and efficiency 

for the estimation of the additive hazards model. 

To evaluate our estimation procedure, we conducted the same simulation as Lin, 

Oakes and Ying proposed in their 1998's paper. According to their proposal, the failure 

times were produced based on the form of the model (4.5), in which the baseline hazard 

function AO and the true value of parameter of covariate, ,8o, were assigned to be 1 

and 0.5, respectively; and the covariate, Z, is treated as a random variable following a 

uniform distribution between 0 and \/i. Consider an exponential distribution with a 

scale parameter ), thus one could obtain the examining time Ci by generating random 

numbers from such distribution with the scale parameter specified. In Lin, Oakes and 

Ying (1998), C was generated in accordance with ) = 0.5, 1.0 and 1.5, respectively. 

Sample sizes of 100 and 200 were considered and each group of the simulation parameters 

had run in 1,000 simulated samples. 

All the programs, including damped 1CM algorithm and simulation codes, have been 

implemented in R. The initial guess for the baseline cumulative distribution function 

is in a form of a stepwise discrete function which satisfies the conditions of monotone 

nondecreasing and being restricted in a range from 0 to 1. The convergence criterion, 

6, was set to be equal to 1O. Therefore, the algorithm will be stopped once both the 

log-likelihood increment and the change of the regression coefficient from two consecutive 

iterations are less than that value. 
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During the process of simulation, we discovered that the damped 1CM algorithm 

had a relatively faster convergence speed than that other algorithms achieved. This fact 

motivates us to attempt using some intensive computational methods, such as bootstrap, 

incorporated with the extended 1CM algorithm to obtain the confidence intervals. The 

bootstrap is used to measure the variability of the NPMLE /. For related work on this 

subject, one could refer to Efron and Tibshirani (1986). 

Our bootstrap scheme is similar to what has been discussed in Burr (1994), where a 

bootstrap sample is formed by taking the same number of observations randomly with 

replacement from the original sample. We used 100 bootstrap samples and the results are 

reported in Table 5.1. Noticeably the NPMLE tends to be more biased when = 0.5. 

The reason behind this might be that there is a tremendous amount of information 

had been lost from censoring, particularly a large proportion (almost 70 percent) left-

censoring as opposed to roughly the rest 30 percent right-censoring within an individual 

data set. For a left censored observation (0, Cr1, Z1), its contribution to the log-likelihood 

can be written as 

Li = log{1 - (1 - F(C1))exp(—/3tZ1)} 

so that the maximization of it can be achieved when ,8 approaches to the infinity with 

a nonnegative Z. On the other hand, the bootstrap estimate for the variance of the 

NPMLE is quite sensible. One could see the result based on the situation where A0 = 1.5, 

the proportion of left-censoring is reduced to 56 percent. Overall, the bootstrap estimate 

improves along with the NPMLE and we can thus claim that it works reasonably well. 

As reviewed in Lin, Oakes and Ying (1998), their estimation method is to use the 

partial maximum likelihood approach applying for a right-censoring setting by alternating 

the form of the additive hazards regression into ordinary Cox proportional hazards model. 

In contrast, we propose to estimate the baseline distribution function and regression 
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n=100 n=200 
= 0.5 1.0 1.5 A 0.5 1.0 1.5 

Mean of ,8 0.51 0.51 0.50 0.51 0.50 0.50 

Stand. error of 18 0.17 0.22 0.13 0.10 0.10 0.15 
Bootstrap mean of SE(3) 0.19 0.25 0.17 0.12 0.14 0.18 

Bootstrap S.D. of SE(,8) 0.15 0.23 0.13 0.09 0.10 0.12 
Coy. prob. of 95% CI 0.96 0.96 0.96 0.97 0.96 0.96 

Table 5.1: NPMLE of the regression parameter, 18, and the bootstrap estimate of its 
standard error. 

coefficients simultaneously from maximizing the full likelihood function by using the 

damped iterative convex minorant algorithm. We compare these two methods by testing 

each one of them in the same simulation environment and the results are shown in Table 

5.2. 

(a) Simulation results from the damped 1CM algorithm 
n=100 n200 

= 0.5 1.0 1.5 ) = 0.5 1.0 1.5 

Mean of â 0.51. 0.51 0.50 0.51 0.50 0.50 
Stand. error of 18 0.17 0.22 0.13 0.10 0.10 0.15 

Bootstrap mean of SE() 0.19 0.25 0.17 0.12 0.14 0.18 
Bootstrap S.D. of SE(4) 0.15 0.23 0.13 0.09 0.10 0.12 
Coy. prob. of 95% CI 0.96 0.96 0.96 0.97 0.96 0.96 

(b) Simulation results from Lin et al. (1998) 
n=100 n=200 

AC = 0.5 1.0 1.5 Ac = 0.5 1.0 1.5 
Mean of ,8 0.56 0.54 0.53 0.53 0.52 0.51 

Stand. error of 18 0.45 0.40 0.40 0.29 0.26 0.27 
Mean of SE(/) 0.42 0.38 0.39 0.28 0.26 0.27 
Coy. prob. of 95% CI 0.96 0.96 0.95 0.96 0.96 0.95 

Table 5.2: Summary statistics for the comparisons of two methods between the damped 
1CM algorithm and Lin et al.(1998) 

The comparison suggests that the bias of & estimated from the damped 1CM algorithm 

is smaller than that obtained from Lin et al. (1998). The standard error estimate from 
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the damped 1CM algorithm tends to be smaller as opposed to the one from Lin et al. 

(1998). Both methods are able to provide coverage probabilities close to the nominal 

level. As expected, the proposed algorithm provides better accuracy and efficiency than 

Lin, Oakes and Ying (1998) did. 

In addition to the above results, more simulation studies are conducted. Here, the 

covariate Z is considered as a binary random variable generated from a binomial distri-

bution with the probabilities equal to 0.5, 0.4 and 0.6, respectively. Keeping any other 

factors unchanged, we want to investigate how close the estimate is to the true parameter 

= 0.5 and ,8 = 1. The outputs are shown in the following tables. 

The simulation yields similar results as those were discussed previously. The estimated 

standard errors tend to be higher in the case of sample size 100 but it is becoming lower 

in the case of sample 200. This might be due to the fact that less number of observations 

in the case of sample size 100 contributes information to the log-likelihood function as 

opposed to the case of sample size 200. When ) increases, the estimate, /, tends to 

be closer to the true value, ,8 = 0.5 and the corresponding estimated standard errors 

become smaller. This is because more amount of information has gained from right-

censoring. Once we changed the probability, that result becomes clearer. From p = 0.4 

to p = 0.6, the number of left-censored observations decrease dramatically, which, on 

the contrary, increases the number of right-censored observations and let the data set be 

able to contribute more information to the log-likelihood function. This provides a better 

condition for the damped 1CM algorithm to perform its estimation power and helps the 

estimate of parameter eventually to become unbiased. 
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5.0.10 A Real Example 

To illustrate the application of the damped 1CM algorithm to Additive Hazards Re-

gression model, we apply it into a real example. This example concerns the lung tumor 

data described in Chapter 1. 

As mentioned before, lung tumors are usually considered as nonlethal, thus one can 

reasonably assume that the data has a current status characteristic with respect to the 

time to tumor onset. Also the death times, which are sometimes called observation times, 

can be assumed to be independent of tumor onset times within each treatment group. 

To compare the tumor incidence rates between the two treatments groups, we first note 

that for the data given in Table 1.2, the number of animals who had developed tumors at 

their deaths are 27 and 35 in the conventional and germ-free environments, respectively. 

This gives empirical tumor development rates of 0.28 and 0.73 without considering death 

time information and suggests that there is a difference between the tumor rates in the 

two groups. 

Define Zi = 0 for the animals in the conventional environment (CE) and 1 for those in 

the germ-free environment (GE). Also let Ti's be the occurrence times of lung tumors for 

the animals in the study and suppose that they can be described by the additive hazards 

regression model (4.5). For estimation of the effect of the environmental factor on tumor 

growth, the damped 1CM algorithm approach gives / = 0.00073 with estimated standard 

deviation equal to 0.00032357. This gives a p-value of 0.024 for comparison of the two 

groups, which indicates that the distributions of the observation times differ. Overall, 

the results here suggest that the animals in the germ-free environment had significantly 

higher lung tumor incidence than those in the conventional environment. Figure 5.1 also 

presents the NPMLE of the survival functions of times to lung tumor for animals in 

the two environmental groups based on the estimation procedure of the damped 1CM 

algorithm. 
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The above data were also analyzed by Lin et al. (1998). They obtained a coefficient 

estimate of 0.00071 with an estimated standard error of 0.00041. Their z-test statistic 

was equal to 1.73 for testing the environmental difference in tumor incidence, which 

resulted a P-value of 0.084. Comparably, our method yields a stronger evidence for the 

difference between the two environmental impacts on tumor growth. This discrepancy 

of the results reveals that our damped 1CM algorithm gained more efficiency than the 

approach of Lin et al did. (1998). 
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Figure 5.1: Estimates of survival functions of time to lung tumor onset for both conven-
tional environment (CE) and germ-free environment (GE) 
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n=100 n=200 
= 0.5 1.0 1.5 ) = 0.5 1.0 1.5 

Mean of /3 0.50 0.50 0.51 0.50 0.50 0.51 
Stand. error of /3 0.26 0.27 0.30 0.23 0.26 0.26 
Bootstrap mean of SE(4) 0.29 0.31 0.32 0.25 0.28 0.28 

Bootstrap S.D. of SE(,8) 0.24 0.27 0.28 0.22 0.25 0.25 
Coy. prob. of 95% CI 0.95 0.95 0.95 0.96 0.95 0.95 

Table 5.3: Simulation results for /3 when p = 0. 5, = 0.5 and /3 = 0.5. 

n=100 n=200 
= 0.5 1.0 1.5 ) = 0.5 1.0 1.5 

Mean of /3 0.51 0.51 0.51 0.50 0.50 0.51 

Stand. error of ,8 0.43 0.47 0.49 0.36 0.37 0.40 
Bootstrap mean of SE(,8) 0.45 0.49 0.50 0.38 0.38 0.43 

Bootstrap S.D. of SE(4) 0.38 0.46 0.48 0.32 0.32 0.34 
Coy. prob. of 95% CI 0.95 0.95 0.95 0.96 0.96 0.95 

Table 5.4: Simulation results for /3 when p = 0. 4, Ao = 0.5 and 3 = 0.5. 

n=100 n=200 
= 0.5 1.0 1.5 A, = 0.5 1.0 1.5 

Mean of /3 0.50 0.50 0.51 0.50 0.50 0.50 
Stand. error of /3 0.24 0.25 0.27 0.21 0.21 0.22 

Bootstrap mean of SE(3) 0.26 0.28 0.30 0.23 0.25 0.24 

Bootstrap S.D. of SE(4) 0.23 0.23 0.23 0.20 0.19 0.20 
Coy. prob. of 95% CI 0.96 0.95 0.95 0.96 0.96 0.96 

Table 5.5: Simulation results for ,8 when p = 0.6, Ao = 0.5 and /3 = 0.5. 

n=100 n=200 
P = 0.5 0.4 0.6 p = 0.5 0.4 0.6 

Mean of 0.99 0.98 0.99 1.00 0.99 1.00 
Stand. error of /3 0.28 0.34 0.28 0.23 0.29 0.24 

Bootstrap mean of SE(4) 0.32 0.39 0.37 0.23 0.26 0.24 
Bootstrap S.D. of SE(3) 0.28 0.36 0.26 0.22 0.25 0.22 
Coy. prob. of 95% CI 0.96 0.95 0.95 0.96 0.95 0.96 

Table 5.6: Simulation results for /3 when ) = 0. 5, A0 = 0.5 and /3 = 1. 
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Chapter 6 

Conclusion 

As what we have mentioned previously, there exists extensive literature about current 

status data in the context of demographical studies (Diamond and McDonald, 1991; Di-

amond et al., 1986) and tumorigenicity experiments (Dinse and Lagakos, 1983; Dewanji 

and Kalbleisch, 1986). Nevertheless, the literature about current status data from the 

areas of survival studies is limited, especially about modeling current status data under 

the commonly used semiparametric survival models. From the early discussion, the arti-

cles that highlighted rigorous studies for the use of the additive hazards regression model 

including Ghosh (2001), Lin et al. (1998) and Martinussen et al. (2002b). Among them, 

the asymptotic study of some of the other similar inference procedures are introduced. 

The authors who discussed the Cox proportional hazards model for current status data 

include Huang (1996) and Huang and Wellner (1997). 

The purpose of this thesis is to demonstrate the estimation and inference procedures 

for additive hazards regression model in the context of current status data. By far, we 

have given a throughful discussion on types of methods for analyzing such model. Addi-

tionally, some of the essential concepts in survival analysis such as structures of survival 

data, basic quantities and counting processes as well as the illustration of Cox propor-

tional hazards model, NPMLE and likelihood construction are also included. Through 

the comparisons in both theory and application (i.e. simulation and an example demon-

stration), the damped 1CM approach, which has the least constraints and high effi-

ciency, proved its most superiority among the other pre-existing methods. In the mean 

time, the fast convergence speed of the algorithm facilitates its use combing with other 

computing-intensive methods like bootstrap, so that one could obtain the empirical con-
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fidence intervals and other related results easily and conveniently. Finally, its robustness 

on application reveals that the damped 1CM algorithm can be easily extended to other 

types of interval-censored survival data. 

Despite of many advantages by using the damped 1CM algorithm, we are certain 

that it has some weaknesses as well. Particularly, an issue related to deal with high-

dimensional parameter space. Although, in theory, the use of the complex Hessian matrix 

makes it possible to generate multiple estimates for the underlying model which contains 

more than one coefficients, by the time when we were running simulation, the Hessian 

matrix was difficult to maintain its positive definiteness and consequently, the algorithm 

was often unable to converge or produced the results which were far from what we were 

expecting. Therefore, it is necessary to have further investigation on such problem. 

A more complicated alternative for estimating additive hazards regression is to pursue 

a Bayesian method proposed by Henschel et al. (2009) for right- and interval-censored 

data. Their estimation procedures are classified into two independent processes, of which 

one is used to calculate the nonparametric term, )'o, and the other is responsible for es-

timating the vector of parametric term, P. For estimating ), they adopt theories from 

spatial statistics (Rue, 2001) in which a sampling is conducted from Gaussian Markov 

Random Field (GMRF). As regarded with the parametric estimation, the likelihood func-

tion of Cox proportional hazards model is transformed into a generalized linear format 

with the log link so that the expectation of the form follows immediately a Poisson 

distribution. Then they use Metropolis-Hasting algorithm for generalized linear model 

(Gamerman, 1997) incorporated with the values obtained from the estimation of AO to 

provide the estimates of parametric term, ,@. After, they considered the situation where 

the frailty term(s) are present and suggest a solution for it. 

Several other types of current status data are excluded from our discussions here and 

for their analyses, inference approaches which are able to yield special characteristics 
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of each type of the data are needed. These types include the current status data with 

time-dependent covariates (van der Laan and Robins, 1998), doubly censored current 

status data (Jewell and van der Laan, 1997, 2004a; Robinowitz and Jewell, 1996; van der 

Laan and Andrews, 2000; van der Laan et al., 1997; van der Laan and Jewell, 2001), and 

case-cohort current status data (Jewell and van der Laan, 2004b; Shiboski and Jewell, 

1992). The doubly censored current status data usually refers to the situation while two 

consecutive events are present, only current status data are available. Case-cohort current 

status data, literally, means current status data obtained from case-cohort studies. Also 

in competing risk studies, one may face current status data (Jewell et al., 2003) that are 

generated from a cure survival model (Lam and Xue, 2005) involved in truncation and 

censoring simultaneously (Kim, 2003a). 

As in any regression analysis, the criteria of selecting optimal model among other 

options can always attract special attentions from statistical scientists. In particular, 

this is also true during the process of modeling current status data with the underlying 

semi-parametric regressions. Within this area, many statistical procedures and diagnosis 

tools have been proposed, mostly for right-censored data (Klein and Moeschberger, 2003; 

Lawless, 2003), but there exists few methods specifically developed for current status 

data. One famous example is given by Ohosh (2003), where he discussed the goodness-

of-fit of the additive hazards model (4.5) and developed some numerical and graphical 

methods based on the inference approach described in Chapter 4. Babineau (2005) also 

provided some illustrations about the goodness-of-fit for the fitting of parametric models 

to current status data. More detailed information on this is included in Sun (2006). 
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