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ABSTRACT 

Inertial measurement units (IMU)s have been in use for decades.  When first developed the 

uses were usually limited to space travel and military applications.  With the development 

of new technologies and new sensors IMUs are being used in many more applications like 

street mapping, airborne surveying, down-hole logging and directional drilling, unmanned 

vehicles, and even in smart phones.  The variety of applications has lent itself to a wide 

variety of sensors being developed with costs ranging from a few dollars to few thousand 

dollars.  While the development of these sensors and IMUs has led to more widespread 

uses and a general improvement in the performance to cost ratio, there has remained a gap 

in understanding of the effects of vibration on the accuracy of the system.  The result of this 

gap is poor performance under vibration. Both the designer and user must be made aware 

of the vibration related errors to avoid them. 

This thesis explores the effects of nonlinearity, system noise, computational error, filtering, 

and system dynamics with the goal of providing an understanding of the errors and their 

interactions when subjected to vibration or high dynamics. By providing methods of 

analyzing and in many cases compensating for errors, it is possible to design a more robust 

system.   
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CHAPTER 1: INTRODUCTION 

1.1 Background 

The recent shift to low cost sensors has led to an exponential growth in the range of 

applications for inertial measurement.  Some examples are airborne surveying, airborne 

gravimetry, down-hole directional drilling and logging, unmanned aerial vehicles, vehicle 

navigation, personal navigation, attitude referencing, camera stabilization, etc.  Many if not 

all of these examples are situations where vibration is present at some level.  This vibration 

when combined with various sensor and system errors causes vibration rectification and 

harmonic distortion.  

According to standard definitions, vibration rectification is an apparent shift in acceleration 

due to sinusoidal excitation [1]. While this is an accurate definition, a broader definition is 

needed to account for all error sources. Vibration rectification is any DC error caused by a 

systems response to sinusoidal input.  Vibration rectification errors are often dependent on 

the vibration patterns. As these patterns change, so too do the errors.  This change often 

takes place before the errors can be quantified [2].  As a result the only reliable method of 

resolving the error is to compensate for them directly rather than quantify them over time. 

Vibration can in many ways be thought of as high rate dynamics. In this way the 

requirements for measurement under vibration are similar to those already described in 

literature.  Many sources stress the requirement for high sampling and processing speeds 

when under high dynamic rates. The compensation of nonlinearity, which is a key source of 

vibration rectification error, is among the primary means of reducing the error however it 

is not commonly used.  Many systems filter the sensor outputs to eliminate vibration 
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altogether which does not allow for the detection or removal of VRE. Few inertial systems 

are even capable of measuring the vibration and performing the computations at the 

required rate.  This has led to a tendency to ignore vibration related errors relying instead 

on aiding devices to correct for error buildup. 

1.2 Problem Description 

This research seeks to create an IMU for high vibration environments. This has been driven 

mainly by requirements for airborne surveying in locations where GPS coverage is not 

ideal and where aircraft attitude during turns causes outages. The clear answer is inertial 

measurement integrated with GPS. While this has improved positioning accuracy, problems 

still exists with the inertial measurement under certain conditions. The dynamic and 

vibratory environment caused by the aircraft’s engines, turbulence, and high rate 

maneuvers cause the inertial measurement to be unreliable due to vibration related errors.  

Inability to measure the dynamics and vibration fully results in an inability to determine 

the root cause of the errors. 

The objective of this research is to develop an inertial measurement unit and data 

acquisition system capable of accurate measurement under high dynamics and vibration. 

To achieve this it is necessary to investigate vibration rectification and other vibration 

related errors in order to better understand the requirements for system design, 

calibration and compensation. Furthermore, a system is required for the analysis and 

evaluation of compensation techniques and inertial integration. To allow for the evaluation 

of different algorithms or hardware, this system should be highly adaptable.  
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1.3 Thesis Outline 

The thesis is divided into 6 chapters. Chapter 2 reviews related technology, sensor errors 

and related research. Chapter 3 provides an in depth coverage of data acquisition and 

sensor errors, focusing of vibration related errors. Examples are provided and 

recommendations are given for avoidance or compensation of many of these errors.  

Chapter 4 introduces an alternate calibration method for nonlinearity, as well as 

formulations for the estimation of parameter using least squares and Kalman filtering.  

Chapter 5 presents the design for an IMU data acquisition system. Finally, Chapter 6 

presents conclusions and recommendations for future work. 

The main contributions in this thesis are: 

 Improved definition of vibration rectification error 

 Development of test and calibration methods to easily identify and compensate 

for nonlinearity and vibration rectification. 

 Discussion of numerous system design issues which affect the performance of 

inertial measurement units. Focus is given to errors which are caused by 

vibration. 

 Development of an IMU system designed specifically for operation in high 

vibration or high dynamic environments. 
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CHAPTER 2: REVIEW OF RELATED TECHNOLOGY AND RESEARCH 

2.1 Inertial Navigation Systems 

Although not a navigation system, the gyrocompass was among the first practical 

implementations of an inertial sensor used for navigation aiding.  World War II saw the 

introduction of inertially guided rockets [4].  Development of the 50s and 60s were focused 

on the stabilized platform navigation system intended for missiles, aircraft and space 

vehicles.  In this system a set of gimbals are forced to maintain a fixed attitude with respect 

to the navigation frame.  One of the benefits of this method is that the gyros need not 

measure the full rate.  In fact the gimbal system is driven to practically eliminate the rate 

measurement all together.  As a result non linearity and scale factor issues in the gyros are 

irrelevant. The other advantage is that the accelerometers are maintained in a particular 

direction where their behavior can be accurately modeled.  The net result is still among the 

most accurate navigation systems to date. 

While the stabilized platform is highly accurate, its downfalls are size, complexity, cost, and 

ruggedness.  Almost since the original development of inertial navigation, the idea of a 

strapdown inertial system has been seen as the solution to these problems.  Strapdown 

systems have added complications, one of which being the gyros are now required to 

measure the full angular rate accurately and the accelerometers are not maintained level.  

The leveling of the accelerometers is done analytically. Originally many of the 

computations were done using analog computers.  Strapdown inertial systems have in 

recent decades become more feasible in part due to the improvements in sensor 

technology but mainly due to the improvements in computers.   
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The relatively new developments of MEMS inertial systems has lowered the cost and size of 

the systems opening the door to more applications.  This latest shift has in some cases led 

to complacency with regards to the errors which have been well known for decades [2]. 

This disregard for common errors results in performance which is very poor in some 

conditions. 

2.2 Ideal Strapdown Inertial System 

Newer Low Cost IMUs are being created for numerous applications from vehicle navigation 

to UAVs. The priority and focus of the design of these systems is on cost and in many cases 

power and size reduction.   These priorities have, according to Farrel [2], led to tendency to 

overlook many of the system errors which have been known for decades.  Among these are 

the g-sensitive and vibration sensitive errors. It is Farrel’s opinion that these errors are 

even more prevalent in low cost sensors and should be given greater emphasis.  He lays out 

his ideal system design goals, some of which are: 

 Accuracy commensurate with the best constituent subsystem 

 Higher Sample Rates 

 Versatility 

 Maintainability 

 Precise Time Tagging 

 Adaptability 

Of key importance to him is the availability of raw data throughout the system which 

enables many more of these traits to be realized. The author also hints to the possibility in 

the future of massively parallel processing in inertial instruments as a means of improving 

performance. 
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From recommendations and analysis given by [4], [5], [2], [3] the biggest issue with 

vibration and high dynamics seems to be sampling and processing rates. A quote from [4] 

seems to exemplify the concept. “The bandwidths of the sensors and the speed of the 

computations must be high enough to sense and record the actual motion, otherwise 

significant errors can arise, even if ‘perfect’ sensors were available.” 

2.3 Accelerometer Technology 

Although many acceleration measurement devices exist, their scale usually allows them to 

be defined as either mechanical or solid-state [6] [4]. Mechanical sensors have been 

developed since the 1950s where solid state sensors are relatively new.  Recent 

development has led to MEMs devices with similar specifications to that of mechanical 

sensors as is shown in Figure 2.1. 

 

Figure 2.1 Bias and Scale Factor Stability [7] 



 7 

2.3.1 Proof Mass Accelerometer 

Proof mass accelerometers are among the simplest devices and most common.  Essentially 

they measure the deflection of a proof mass inside the sensor body.  In some cases a 

rebalance force is applied to prevent the displacement with respect to the case.  These force 

rebalanced sensors usually output a signal proportional to that force rather than the 

displacement. 

 

Figure 2.2 Capacitive Servo Accelerometer [8] 

Figure 2.2 shows an example of a MEMS accelerometer using a pendulous proof mass and 

capacitive sensing and forcing in a servo loop.   A similar sensor can be made open loop by 

not including the rebalance and servo mechanism.   
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Figure 2.3 Q-Flex Servo Mechanism [9] 

While the MEMS sensor shown above uses capacitive sensing and driving which is possible 

at the small scale, the Q-Flex sensor shown in Figure 2.3 uses an electromagnetic torquer 

coil to rebalance the proof mass.  Apart from this difference the structure and operation of 

the two sensors is very similar. The proof mass, flexure and flexure support of the Q-Flex 

are formed from a single fused quartz blank [9].   Although the Q-Flex sensor was originally 

designed over 40 years ago, variations of this sensor are still sold with few differences in 

the overall design. They are in many ways the standard by which many navigation grade 

sensors are compared. 

2.3.2 Pulse Integrating Gyro Accelerometer (PIGA) 

In a PIGA device an integrated acceleration measurement is derived using a single degree 

of freedom gyro.  The measurement is obtained by applying the acceleration along the 

input axis of the gyro. This force produces a precession in the gyro.  The integral of the 

acceleration is proportional to the rotation angle of the vertical cylinder with respect to the 

outer case. 
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2.3.3 Vibrating String 

A vibrating string accelerometer is essentially a proof mass accelerometer which measures 

the displacement differently. These accelerometers use two thin metal tapes with a sliding 

mass between them.  As acceleration is applied in the sensitive axis, the frequency of the 

two strings change due to the differences in tension. The acceleration output is 

proportional to the difference in these frequencies. 

2.3.4 Fiber Optic 

Fiber optic accelerometers are another form of proof mass sensor. In this case the force 

required to accelerate the mass causes micro bends in the optical fiber.  These bends 

modulate the intensity of the light and provide the output signal. 

2.4 Accelerometer Errors 

Regardless of the sensor type and cost, every accelerometer has errors. Many have the 

same errors, differing only in the character and magnitude.  A nearly complete listing of the 

accelerometer errors and calibration methods can be found in [1]. Below is a short list of 

the common errors described with their test. 
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Table 2.1 IEEE Accelerometer Errors and Calibration Procedures 

Error Test/Calibration Procedure 
Bias Stability  Long term stationary measurement 

 Tumbling 
Bias Temperature 
Sensitivity 
 

 Centrifuge (in Oven) 
 Tumble tests (in Oven) 

Scale factor 
Stability 
Temperature 
Sensitivity 
 

 Centrifuge (in Oven) 
 Tumble tests (in Oven) 

 

Vibration 
Rectification 

 Vibration test 

Nonlinearity  Centrifuge test 
Intrinsic Noise  Long term stationary measurement 
Axis Misalignment 
 

 Tumble tests 

 

In order to convert the sensor output of an accelerometer to specific force a model is used 

which accounts for these imperfections. The complexity and completeness of the sensor 

error models is usually determined by the user based on application.  The models are 

usually very similar between Gyros and Accelerometers. A basic representative model is 

shown below. 

                        ( 2.1 ) 

Where      represents the specific force acceleration, b is the bias, S is the scale factor, and 

       is the accelerometer output.  The above sensor model is the most basic version and is 

used only when the precision of the measurement is not highly important.  For higher 

precision applications terms are added to compensate for nonlinearity, cross axis g 

sensitivity, bias sensitivity to temperature, scale factor sensitivity to temperature, axis 
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misalignment, and non-orthogonality.  A possible model is represented by the following 

equations 

         (              
       

 ) ( 2.2 ) 

             (       ) ( 2.3 ) 

where      is the alignment matrix,       are coefficients of the nonlinearity of the 

acceleration.  Equation ( 2.3 ) also expands on Equation ( 2.2 ) to say that every coefficient 

is also a function of temperature, specific force, and time.   

2.5 Mechanization Algorithms 

The process of mechanization is used to compute the position, velocity and attitude from 

the sensor measurements. The development of mechanization algorithms has followed 

closely the development of inertial systems.  The optimization of the algorithms to 

minimize computing requirements was driven mainly by the limitations of the technology 

of the 50s and 60s.  Some systems resorted to performing parts of the calculations with 

analog computers.  One example of this was developed by Bortz [10].  

Many sources of information exist for strapdown inertial mechanization.  A handful are 

referenced here [6] [2] [4] [5] [11]. To allow for high frequency dynamics, high speed 

computation is required. Performing all computations at this rate presents a significant 

burden on the computer. A common technique in fully digital implementations uses multi-

rate computation.  These algorithms carefully weigh the accuracy of each computation 

based on the rate of change of the signals.  One such method is shown below. 
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Figure 2.4 Multi-Rate Strapdown Mechanization [4] 

Algorithms such as this one are still used in current systems as they reduce the 

computational requirements while maintaining accuracy. 

2.6 Airborne Gravity Measurement Using Strapdown INS 

The concept of gravity measurement using airborne gravity meters has only recently 

become viable with the aid of high accuracy GPS.  The local gravity measurement is taken 

as the difference in the acceleration determined by GPS and by the accelerometer.  The 

minimum precision required for useful measurements is on the order of 10 mGal or lower 

which equates to      .  

The PhD theses, from [12] and [13], describe the development of an airborne gravity meter 

using a strapdown inertial navigation system (SINS) which is compared to a Lacoste Stable 

platform gravity meter.  The size and cost advantages are immense.  Where the Lacoste 
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meter is almost a cubic meter in volume, the SINS system is roughly a cubic foot. The 

weight and power reduction is significant as well.  

The SINS system was built using various GPS receivers as well as a Honeywell Laseref III 

IMU which uses QA2000 accelerometers sampled at 50Hz.  Both theses discuss the bias 

stability and random walk of the QA2000 but do not make any reference to nonlinearity or 

vibration rectification.  

The thesis from Bruton [12] discusses the use of INS/GPS integration for the measurement 

of the local gravity field using airborne techniques.  This thesis discusses problems with 

uncompensated bias in the accelerometer. His results and the results of Glennie [13] 

indicate uncompensated bias errors of the 10 to 20 mGal magnitude which seems to 

worsen in flight. At the time of publication neither had determined the cause of the errors. 

From the analysis of the errors as described by the authors, it is possible to postulate that 

these errors may have been caused by a combination of vibration rectification, 

nonlinearity, time synchronization and thermal drift.   
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CHAPTER 3: ENHANCEMENT OF INERTIAL MEASUREMENT UNDER VIBRATION 

3.1 Introduction 

In order to fulfill the requirement of designing an IMU which has better accuracy under 

vibration, a complete analysis is required to determine how inertial sensors are used in the 

measurement, how the errors accumulate, and what types of errors are most affected by 

vibration.  In this chapter this investigation begins with a review of the mechanization of 

the inertial measurement.  This process converts raw measurements of acceleration and 

angular rates into position, velocity and attitude.  The next stage is an investigation into the 

sensor related errors.  At this stage emphasis is given to vibration related errors such as 

vibration rectification error from nonlinearity, self-heating, and integration. As the ADC 

and signal conditioning circuits are an integral part of the inertial data acquisition, an 

analysis of the noise, resolution, and stability is conducted to determine its contribution to 

system errors.  

The next section demonstrates vibration rectification error from nonlinearity, and 

numerical integration. It also demonstrates the compensation method and provides 

examples for optimal and sub-optimal results. The final part of this investigation looks 

again at the mechanization to determine the impact of computational approximations 

when subjected to high rate movements. 
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3.1.1 Two Dimensional Strapdown Inertial Navigation 

As an introduction, a simplified example is considered to demonstrate the principles.  If a 

strapdown INS is restricted to navigate in a flat vertical plane, it requires two 

accelerometers and one gyro [4]. Figure 3.1 demonstrates the arrangement of sensors as 

well as the schematic diagram of the computation for position, velocity and attitude. 

 

Figure 3.1 Two Dimensional Strapdown Navigation [4] 

The following set of equations is sufficient to fully determine the position         and 

attitude   of the system above in the inertial reference frame.  

 ̇      ( 3.1 ) 

          ( )        ( ) ( 3.2 ) 

           ( )        ( ) ( 3.3 ) 

 ̇           ( 3.4 ) 

 ̇           ( 3.5 ) 

 ̇      ( 3.6 ) 

 ̇      ( 3.7 ) 
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Equation 3.1 constitutes the attitude update equation for a single axis. Equation 3.2 and 3.3 

represent the conversion of the body frame accelerations to inertial frame.  The remainder 

of the set allow for the determination of velocity and position in the inertial frame.   

3.1.2 Three Dimensional Strapdown Navigation 

When navigating in the vicinity of Earth, a number of reference frames are used to compute 

position. The following reference frames are used in the equations to follow. 

 i-Frame:  Inertial Non Rotating 
 e-Frame: Earth Centered Earth fixed 
 n-Frame:  Navigation Frame 
 b-Frame: Body Frame 

 

Figure 3.2 Reference Frames [4] 

If navigation outputs are to be obtained in the navigation frame, the following differential 

equation can be used to describe the translation [4]. 

 ̇    
    [    

     
 ]        ( 3.8 ) 
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where   
  is a direction cosine matrix used to transform any vector from body to navigation 

frame. This matrix can be expressed in terms of Euler angle rotations in order       which 

represent yaw, pitch, and roll respectively.  

  
  [

                           
                           
           

] 
( 3.9 ) 

      ( )           ( )  

The following differential equation is then used to describe the change in attitude 

described by the direction cosine matrix. 

 ̇ 
    

    
  ( 3.10 ) 

where   is the skew symmetric of the angular rate vector    
 . The notation below uses a 

cross product after the vector to denote skew symmetric. 

   
     

    [

      

      

      
] 

( 3.11 ) 

   
     

    
 [   

     
 ] ( 3.12 ) 

The following block diagram is a representation of the navigation frame including the 

realistic system components required to correct the accelerometer output.  
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Figure 3.3 Inertial Mechanization 

The majority of this thesis is devoted to the block which collects data from the 

accelerometers and corrects the output. The elements of this block are nearly identical to 

that of the gyro compensator block. The implementation issues for the mechanization will 

be discussed near the end of this chapter as they are relevant to the realization of an 

complete inertial navigation system. 
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3.2 Sensor and ADC Errors 

The heart of the inertial measurement unit is the sensor data acquisition chain as seen in 

Figure 3.4.  This collection of filters, converters, digitizers and integrators performs one of 

the key tasks of converting raw sensor measurements to digital positions and velocities.  

 

Figure 3.4 IMU Accelerometer Acquisition System Model 

When considering the system design and operation in terms of minimizing error, this 

system must be decomposed so that each error can be isolated. Table 3.1 lists errors 

considered for this system.  Because of the linear progression of the signal through the 

system, all the models are cascaded such that the errors of any particular element of the 

system are nearly indistinguishable from the others. Thorough system testing and 

identification is required to separate system behaviors.  Among the key items discussed in 

this thesis are the errors related to nonlinearity and vibration rectification.    
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Table 3.1 IMU Sensor Acquisition Model 

Component Function and System Models Errors 

Mechanical Filter Reduce bandwidth measured by 

accelerometers and gyros 

 Spring Mass Damper 

 Linear and nonlinear Lowpass Filter 

 Vibration Isolation 

 Misalignment due to mass imbalance 

 Phase delay 

 Altered magnitude response 

 VRE and THD from nonlinear effects 

Accelerometer  

or  

Gyro 

Convert linear acceleration to voltage or 

current  

Convert rotation rate to voltage or current 

 Mechanical filter 

 Analog filter (Electrical) 

 Servo control dynamics 

 Nonlinearity 

 Hysteresis 

 Intrinsic noise 

 VRE and THD from nonlinear effects  

 Temperature sensitive bias and scale 

factors 

 Random bias drift 

 Self Heating 

Analog Filter 

(Electrical) 

Reduce bandwidth of analog signal prior to 

ADC. 

Signal conditioning for ADC 

 Analog filtering 

 Amplification 

 Analog Addition or Subtraction 

 Nonlinear effects THD VRE 

 Random bias drift 

 Temperature sensitive bias and scale 

factors 

 Intrinsic noise 

ADC Convert the analog voltage to digital data. 

 

 Sample and Hold, Modulator, 

Demodulator, Decimator 

 Analog and digital filtering 

 

 Nonlinear effects THD VRE 

 Random bias drift 

 Temperature sensitive bias and scale 

factors 

 Intrinsic noise 

 Quantization noise 

 Clock jitter related conversion noise 

 Time synchronization errors 

 delays 

Digital Filter Reduce signal bandwidth, sometimes as a 

part of ADC conversion process.  

 

 Digital filtering (normally Lowpass) 

 Nonlinear effects 

 Delays 

 Finite Precision Errors 

Digital 

Compensation  

 

Digitally compensate for known 

temperature dependent bias drift, scale 

factors, nonlinearity, alignment, cross axis 

sensitivity, etc. 

 Nonlinear effects 

 Errors from inaccurate modeling or 

calibration 

Integration or 

INS 

Mechanization 

Digitally integrate the data and combine 

with  

 

 Numerical Integration 

 Rotations 

 Vector and Matrix Operations 

 Integration errors causing VRE 

 Approximations and truncation errors 

cause error build up 

 Time synchronization errors causing VRE, 

sculling, coning, various other errors. 
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3.2.1 Bias Stability 

It is standard practice when analyzing drift to perform a stationary long term bias drift test.  

To determine the properties of sensors considered in this thesis, 4 accelerometers were 

tested. Figure 3.5  shows the bias drift of these sensors whose outputs have been low-pass 

filtered so the drift is visible. Usually the quantization, intrinsic and cultural noise exceed 

the drift by 10 to      times. The term “Digital” is used to describe an Applied MEMS 3 axis 

digital accelerometer, “Kistler” represents an 8330 capacitive force rebalanced servo 

accelerometer, “PCB” represents a 3701G capacitive accelerometer, and QA700 is a 

Honeywell Quartz servo accelerometer.   

 

Figure 3.5  Bias Drift of Selected Accelerometers 
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Although it is evident that each of the accelerometers drifts, the relative quantities are 

difficult to compare due to the random nature of the drift. A method commonly used to 

characterize and compare these drifts along with other sensor characteristics is the Allan 

Variance.  “Allan variance is a method of representing root mean square (RMS) random 

drift error as a function of averaging time” [1].  Figure 3.6 shows a sample Allan Variance 

from [14] which describes the various components of drift which can be distinguished in 

Allan Variance.  Figure 3.7 shows the Allan variance of the 4 investigated sensors.  It should 

be noted that the QA700 was tested at a different time of day.  The resulting difference in 

the character of the noise added sinusoidal like oscillations in the Allan variance in 

frequencies corresponding to 10 to 500Hz.  This is common seismic and cultural noise.  

 
Figure 3.6   Sample Allan Variance [14] 
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Figure 3.7   Allan Variance for Selected Sensors   

With the Allan variance it is possible to determine precisely the effects of each noise 

contribution for a given timescale. For instance the magnitude of the random walk noise 

can be obtained using the following formula having evaluated  ( ) and   on the allan 

variance plot where the slope is 1/2 [1]. 

   ( ) √(   ) ( 3.13 ) 

  
 where   is the random walk. For instance it is possible to estimate the expected drift for 

the PCB sensor over a 10 second period as              .   The bias instability   can 

also be estimated at the point where the slope of the variance is zero. 

        ( ) 
 

( 3.14 ) 
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Quantization noise can also be calculated using the following formula where  ( )       are 

evaluated on the plot where the slope is   . 

  
 ( )  

√ 
 

( 3.15 ) 

  
The sensors tested above cost between $500 and $1500. All sensors are of the proof mass 

type. All of the sensors except the PCB are force rebalanced accelerometers.  Of interest is 

the similarity of the Kistler and QA700, one of which is a MEMS where the other a “meso-

scale” mechanical sensor.  

3.2.2 Nonlinearity and Vibration Rectification Error 

Nonlinearity is an intrinsic property of many systems such as accelerometers, gyros, 

electronic and mechanical components. The common causes are the nonlinearities of 

flexures, sensing or driving capacitors, driving coils, fluid motions, thermal changes, and 

other electrical elements.  Nonlinearities can also be induced in accelerometers by analog 

or digital filters if they are incorporated in their sensors. 

Nonlinearity is usually described in one of two ways according to [1], as a percent of full 

scale, or in terms of vibration rectification.  The decision of which to use is usually based on 

the type of sensor and the application.  It is common for MEMS sensors to be specified in 

terms of percent, where navigation grade sensors are given in terms of vibration 

rectification error from the g-squared term which has units      .    

Nonlinearities can be divided into two major types, static and dynamic.  Static 

nonlinearities are those which are not a function of time and are thus continuously 

predictable as functions of measured parameters.  Dynamic nonlinearities are those which 
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have time dependence.  Examples of dynamic nonlinearities are hysteresis, and self-

heating.   

While many forms of nonlinearity exist, an nth order polynomial is used in this derivation 

because of its ability to approximate a broad range of continuous static nonlinearities 

which account for a significant portion of total error.  A discussion on the choice of order 

will be presented later.   

The first step is to define a static nonlinearity such that the output  ( ) is a nonlinear 

function of the input  . 

 ( )            
     

     
     

       
    ( 3.16 ) 

A sinusoidal excitation of the input is introduced where   is the magnitude of excitation,   

is the frequency, and    is time. 

 ( )        (   ) ( 3.17 ) 

By substituting  ( ) from equation ( 3.17 ) into equation ( 3.16 ) the following equation is 

obtained. 

 ( )           (   )     
     (   )           (   )    

    
     (   )       

     (   )        
     (  )   

( 3.18 ) 

To make the results more useful it is necessary to reduce the powers of the sine terms 

using either the multiple angles theorem discussed in [15] or using the trigonometric 

Fourier series as shown in [8].  In this derivation the latter method is used. The series 

expansion takes the following form. 
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 ( )          (  )       (   )       (   )    

      (  )       (   )       (   )    

( 3.19 ) 

 The series coefficients can be calculated using the following relations. 

   
 

 
∫  ( )   

    

  

 
( 3.20 ) 

   
 

 
∫  ( )    (   )   

    

  

 
( 3.21 ) 

   
 

 
∫  ( )    (   )   

    

  

 
( 3.22 ) 

where   is the period of oscillation,   is the average value of  ( )     and    are the higher 

order terms.  The series has been truncated to show coefficients for the 5th order 

polynomial which are shown in the following table. 
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Table 3.2  Trigonometric Fourier Series Coefficients for 5th Order Polynomial 
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The resulting equation yields. 

 ( )      
 

 
   

  
 

 
   

  
( 3.25 a)  
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 )    (  ) 
  ( 3.25 b) 
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( 3.25 c) 
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( 3.25 d) 

 
 

 
   

    (   ) 
( 3.25 e) 

 
 

  
   

     (   ) 
( 3.25 f) 

   

From the form of this equation it is possible now to identify both the constant vibration 

rectification error as seen by the constant terms in equation ( 3.25 a) and the harmonic 

distortion terms described by equation ( 3.25 c-f).  The original frequency is also distorted 

in amplitude as seen by extra the terms found in equation ( 3.25 b).   

It is the constant error response that explains the definition of vibration rectification.  “A 

Steady-State error in the output while vibratory disturbances are acting on an 

accelerometer” [16]. Although vibration rectification is defined for accelerometers, they are 

by no means the only sensors affected.  In theory all sensors or systems with nonlinearities 

can suffer from some form of vibration rectification.  

Equation ( 3.25) also leads to the conclusion that harmonic distortion is a result of the 

same nonlinearity.  To illustrate this with a simple example, a 5th order polynomial 

nonlinearity is introduced into a signal as shown in Figure 3.8.  This system is then excited 

with a sinusoid and the resulting frequency response is plotted.  It is not surprising that the 

harmonic distortion from this nonlinearity is very large, as the nonlinearity in this example 
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represents about 15% of full scale. By comparison a medium grade accelerometer will have 

between 1% and 0.1%.  A navigation grade accelerometer will have less than 0.01%. It 

should also be clear why it contains only 5 harmonics. The number of harmonics is equal to 

the order of the nonlinearity.    It is possible to quickly determine the order of the 

nonlinearity by applying a constant sinusoidal excitation and counting the number of 

visible peaks.  However in real signals it is possible that these harmonics will be hidden in 

noise.  This noise practically limits the ability to identify and correct nonlinearity. 

 
Figure 3.8 Sample Nonlinearity 

 
Figure 3.9 Sample Frequency Response 

Various sources of error for the Q-Flex accelerometer are identified in Jacobs [9].  Among 

the first considered are possible nonlinearities from the deflection of the proof mass on the 

pendulous beam.  The angle of deflection is related to the servo stiffness which is a function 

of the capacitive displacement sensor and the strength and response time of the servo 

control. By minimizing this displacement the effects of nonlinearity and cross axis 

sensitivity are minimized.   It is stated that the angle of displacement in this sensor is 

limited to                  .   Other error sources are identified such as the nonlinearity 

of the rebalance servo.  
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In each case described above, the design of the accelerometer has been modified to 

compensate for these errors.  The residual error is reflected by a reasonably low 

nonlinearity seen in the Q-Flex Accelerometers.   

The nonlinear performance of 3 of the tested sensors is shown in the following table for the 

same 1 g range.  MEMS and mechanical sensors are specified differently. As a result, this 

data is a mix of specifications from the data sheets [17] [18] [19] and actual testing. The 

excellent performance of the QA700 is contrasted by the relatively poor performance of the 

MEMS sensors.  Recall that these sensors all fall within a relatively close price range around 

$500 to $1500.  These results indicate the importance of nonlinear compensation when 

under vibration, especially for MEMS accelerometers with high nonlinearity. 

Table 3.3 Nonlinearity and VRE of Tested Sensors 

Sensor Non-
linearity  
[ ] 

VRE Tested from 0 to 
1 g 
 [  ] 

VRE Tested 
from 0 to 1g  
Post 
Compensation 
 [  ] 

1 minute displacement 
error 
Pre/post 
Correction 

QA700 0.001¹        ¹    50²          ¹ 17 cm / 1.7 mm 

PCB 1²           ¹         ¹ 35 m / 0.35 m 

Kistler 0.2²              ¹          ¹ 26 m / 0.26 m 

¹ Experimentally Tested    ²From Data sheet 

3.2.3 Vibration Rectification vs Amplitude 

While it is convenient to think of VRE as a constant, it is apparent from equation ( 3.25 a) 

that it is in fact a relation of the vibration amplitude. This becomes a major problem as the 

vibration amplitude in many situations is not constant nor is it of a single frequency. As the 

vibrations change the magnitude of the vibration rectification does as well. This problem 
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alone prevents the use of Kalman filters to track the bias drift due to VRE unless they have 

been specifically designed to model these errors.   

3.2.4 Vibration Rectification vs Frequency 

Due to the complex interactions of mechanical, electrical and fluid elements inside an 

accelerometer, a frequency dependent component of nonlinearity exists.  The physical and 

electrical dynamics of every accelerometer limit the bandwidth in much the same way as a 

filter.  In a servo accelerometer the rebalance electronics mostly compensate for these 

dynamics up to certain frequency, leaving a mostly flat frequency response for lower 

frequencies [9].  These dynamics are not as well compensated in non-servo accelerometers 

which do not limit the movement of the proof mass. 

The variation of damping characteristics over different frequency ranges causes a variation 

in the nonlinearity and thus the vibration rectification. An example of this is seen in the 

datasheet of a QA700 accelerometer [17] which specifies             at 50-200Hz and 

             for the range 750-2000Hz. 

3.2.5 Self-Heating and Temperature Sensitivity 

The temperature sensitivity of many sensor parameters is well known.  This is particularly 

well understood for temperature dependent bias which can vary from 10 to         . 

The method of compensation for this error requires precision temperature measurement.  

By measuring the temperature and applying compensation, the temperature dependent 

drift can be removed.  

Power dissipation of various components in the sensor results in heat generation.  The 

quiescent power dissipation will result in a constant elevated temperature.  This 
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temperature can easily be monitored by temperature sensors placed inside or even outside 

of the sensor.  Dynamic power dissipation will cause additional thermal gradients within 

the sensor whose effects are not measured until a considerable time has passed. 

Dynamic self-heating is a greater concern when using force rebalanced accelerometers, 

particularly the larger mechanical accelerometers which require more power. This is due 

to the variable level of power dissipation required to hold the proof mass. If the 

temperature sensor could measure directly on the sensitive element the problem would be 

easily managed.  Depending on the distance between the elements and the thermal 

resistance between them a delay of seconds to minutes could result.  Under highly variable 

conditions or rapidly changing vibrations, the sensitive element can be elevated 0.1 to    

from the measured temperature which results in an uncompensated bias error .  For this 

reason it is recommended to model the power dissipation and effectively estimate the 

temperature well before it is sensed. IEEE Std 836-1991 [20] recommends the following 

equation to model the temperature rise. 

  ( )    ( ) (    
 
 ) 

( 3.26 ) 

where: 

   = temperature rise at a critical location of accelerometer 

 ( ) = power dissipation as a function of acceleration 

  = thermal resistance to the heat sink 

  = thermal time constant 

  = time since onset of acceleration 

The best solution is to perform this calculation in real time on the continuously changing 

signal adding it to the measured temperature.  
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Of the sensors being tested only two are equipped with onboard temperature sensors. The 

QA700 outputs a current proportional to temperature which can be measured with an ADC 

to a resolution better than       . The Digital accelerometer has a digital temperature 

sensor with a    resolution. The other MEMS sensors are not equipped with internal 

temperature sensors.  The following table lists the temperature sensitivities of the tested 

sensors as given in their datasheets [21] [17] [19] [18] [22].  The QA2000 was added to this 

list to demonstrate the similarity to the QA700.  

Table 3.4  Temperature Sensitivities of Selected Sensors 

Sensor Bias 
Sensitivity  
[    ] 

Scale-Factor 
Sensitivity 
[     ] 

Displacement error due to 
   measurement error 
 for 1 minute [meters] 

QA700 70 200 1.23 

PCB 5606 910 99 

Kistler 200 100 3.53 

Digital 100 75 1.76 

QA2000 30 180 0.529 

 

Based on these results the PCB again seems to be a poor choice for a navigation instrument.  

Even small temperature measurement errors will result in large errors.  The other sensors 

seem to have similar sensitivities. 

3.2.6 ADC Noise Analysis 

During the process of system design and analysis one of the key tasks is to determine the 

performance of the ADC as operated in the system.  ADCs and their supporting circuitry are 

responsible for adding further noise to the system, while the clock jitter is usually a major 

factor in the noise performance of the ADC [23]. Other noise sources include “1/f” noise, 
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shot noise, Shottky noise, resistor noise, and external factors such as electromagnetic and 

conducted interference.  The following analysis are performed both to determine the 

required specifications and design parameters for the hardware and to determine the 

performance once operational. 

3.2.6.1 Clock Jitter and ENOB 

The signal to noise ratio SNR and effective number of bits ENOB1 are used to describe the 

true performance of the ADC.  One of the major contributors to SNR loss is the clock jitter. 

According to [24] jitter is a variation in the placement of a clock edge.  This error can be 

represented by various types of jitter such as period jitter, phase jitter, duty cycle jitter and 

others.  These timing errors cause direct errors in the amplitude and frequency of 

instantaneous ADC conversions.  A relationship exists to determine the signal to noise ratio 

of the ADC for a given sample rate and jitter. The following equation defines the SNR (dB) 

for an ideal ADC a with clock jitter of period    operated at frequency  . 

        (    )         [
 

        
]    ( 3.27 ) 

For comparison, the SNR of a jitter free ADC with   bits of resolution is found using the 

following equation. 

      ( )  [          ]      ( 3.28 ) 

Figure 3.10 combines these equations to determine the effective number of bits from a 

given oscillator jitter and sampling frequency. 

                                                        

1 ENOB Effective number of bits.  Specifies the number of bits in the digitized signal above the noise floor. 
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Figure 3.10 SNR and ENOB Due to Clock Jitter 

According to this figure, if a 24bit ADC is used at 50kHz with a clock that has a 1 ps jitter, 

the effective resolution will be closer to 21 bits.   

To determine if an improvement was indeed possible with the ADC used in this testing, a 

shorted input test was conducted with the original oscillator and with a lower jitter 

oscillator featuring 1 ps jitter.  The results in Figure 3.11 show a clear reduction in higher 

order harmonics present in the spectrum.   
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Figure 3.11 Noise Test for Clock Jitter Analysis 

3.2.6.2 Input Noise 

The noise floor of the ADC is determined by a number of intrinsic factors but the overall 

noise is also affected by the front end amplifier noise. It is necessary to choose an amplifier 

which does not significantly increase noise. Moghimi recommends using the following 

equation to determine the net SNR degradation [23]. 

               (
  

√  
  

 

 
 (

        
   

)
 
)    ( 3.29 ) 

where: 

     rms noise of ADC in    

      -3 dB input bandwidth of ADC in MHz 

G    amplifier gain 

      equivalent input noise voltage spectral density of amplifier in    √   

FSR   full scale input span of ADC in V 
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Using this equation, the SNR degradation can be found for various amplifier noise 

specifications.  The following values are obtained from the ADS1278 datasheet [25].  

                                                     FSR=5V 

The first two amplifiers shown in Table 3.5 are the two fully differential1 amplifiers 

recommended for this ADC. The second two amplifiers are used for buffering the 

accelerometer signal at the source. The operational specification of the parts are similar 

except that the THS4521 operates at 1 mA quiescent current where the OPA1632 operates 

at 14 mA.   

Table 3.5 SNR Reduction Due to Input Amplifier Noise 

Amplfier    (   √  )         (dB)     mA 

OPA1632 1.3 0.002 14 

THS4521 4.6 0.02 1 

LT1012 14 0.27 0.4 

OPA211 1.1 0.002 3.6 

 

It would seem that these numbers indicate that the amplifier does not significantly impact 

the noise of the system.  This is the case in this system given the relatively low gain of 1.0, 

however if a higher gain is required or if multiple amplifiers are cascaded these errors 

become more significant. While the choice may seem obvious from a noise analysis point of 

view to pick the lowest noise part, the reduction in power consumption over 16 channels 

using the THS4521 vs the OPA1632 is over 6 watts.  This power would generate a 

                                                        

1 Fully differential amplifiers have differential inputs and outputs as opposed to single output. 
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significant amount of heat which would contribute to thermal drift throughout the system 

as well as draw more current which could cause more power supply noise. A similar 

tradeoff is present in selecting between the buffer amps.  While the lower noise is better, 

the proximity of the amplifiers to the sensors can directly conduct heat to the sensors 

causing thermal drift.  

3.2.6.3 Thermal Noise 

Thermal noise, a.k.a. johnson noise or resistor noise, represents a source of white noise 

which occurs in resistors.   A simple relationship exists to calculate the rms voltage noise of 

a given resistor [26].  

    √            ( 3.30 ) 

where: 

      Thermal noise voltage (V rms) 

     Boltzmann’s constant (           ) 

    Absolute temperature (Kelvin) 

     Resistance (ohms) 

    Noise bandwidth Hz (     ) 

It is clear from this relationship that reducing resistor values is important to reducing 

thermal noise.  There is however a tradeoff as mentioned by [26], in that reducing the 

power consumption by scaling up the resistors may reduce 1/f noise and related drift.  

While it is important for an IMU acquisition system to have low noise at high frequencies, it 

is also necessary to minimize long term drift. Further analysis and testing will be required 

to determine the optimal configuration. 
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3.2.6.4 “1/f” and White noise 

The noise components listed above are useful for determining the noise sources for design 

purposes.  The following analysis is used to determine the overall performance based on 

noise testing. White noise, also known as broad band noise, represents the flat part of the 

noise spectrum. The “1/f” noise, also called pink noise, goes up inversely proportional to 

frequency. A simple relation exists to determine the total rms voltage noise    as a function 

of the white noise voltage   , corner frequency    , and the bandwidth defined by    and    

[26]. 

     √     
  

  
 (     )     ( 3.31 ) 

The noise spectrum shown in Figure 3.12 represents the results obtained while shorting 

the input pre-amplifier of the ADC.  
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Figure 3.12 Noise Spectrum  in the ADC with Shorted Amplifier Inputs 

Given a      √   noise floor and a corner frequency of 20Hz, the noise can be calculated 

for a selection of bandwidths. Given that DC terms are required, a lower band frequency of 

0.001 Hz is kept in all cases. 

Table 3.6 ADC Voltage Noise Analysis 

       (µV) 

50000 7.85 

10000 3.56 

1000 1.25 

100 0.636 

10 0.487 

1 0.412 
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This analysis is supported by the specifications in the data sheet for the ADS1278 ADC 

which states        of noise in high resolution mode at 50kHz bandwidth. The extra noise 

is likely a result of the amplifiers and supporting components which are not present in the 

datasheet specifications for the ADC. It should also be noted that the noise spectrum in 

Figure 3.12  at frequencies below 1Hz is higher than the theoretical 1/f noise. This can be 

attributed to thermal and other drift terms. To verify the results, the Allan Variance of the 

noise test is generated. Figure 3.13 shows that about 6uV of noise is present at the highest 

frequency (left side of Allan Variance).  

 

Figure 3.13 ADS1278evm Allan Variance, Shorted Amplifer Input 
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3.2.7 Delay Errors 

A delay is present in most dynamic systems, including mechanical and electrical filters, 

digital data paths, ADCs, digital filters, etc.  It can also be generated simply by a lack of 

precise timing as one signal is compared to another or against a reference clock.  This delay 

can cause serious errors for high vibration environments or in situations where the 

dynamics are at high frequencies. In this research the two major issues are the differences 

in delays of different sensors and, during calibration, delays between the reference sensor 

and the tested sensor. 

In navigation systems where accelerometers and gyros are combined, delay effects can 

cause errors between the changes in attitude and the acceleration. This can result in 

“artificial” coning and sculling which, when interacting with the mechanization can cause 

attitude and position drift.  

The following equation describes the normalized error1   for a given delay    and a given 

frequency of oscillation  . Figure 3.14 plots error for a selection of oscillation frequencies 

for delays between 1 us and 1 ms. 

        (     )      ( 3.32 ) 

                                                        

1  Dimensionless 
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Figure 3.14 Normalized Delay Errors 

  It is clear that as the frequency of oscillation increases the error increases.  For example, 

with a 1 V sinusoidal oscillation at 1 Hz,      accuracy can be obtained with delays as large 

as 200 μs.  However for 10 Hz, a maximum       delay is needed. This is even more critical 

with higher frequencies such as 100 Hz where only      is allowable.   

3.2.8 Sampling and Integration Errors 

Inertial measurement units are used to measure accelerations and rotation rates but in 

most cases these signals are integrated to obtain position, velocity and attitude.  Therefore 

an important part of the inertial system is the integration process.  In the continuous 

domain the integration of a signal regardless of its content will be exact.  This is not the 

case for the discrete domain.  Errors in numerical integration can cause unpredictable 
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position, velocity and attitude shifts which can grow over time. This error in integration 

can cause a type of vibration rectification where a continuous average of the errors is not 

zeros mean.  This type of error is not predictable. The best solution is to improve the 

accuracy of integration.  While higher order approximations are available an alternate 

solution is to decrease the step size of the integration.  This solution not only improves the 

approximation of the integral, but it also reduces the time delay and synchronization errors 

which can cause a number of errors in the INS mechanization. These errors are described 

in [5]. 

3.3 Analysis and Compensation of Errors 

To demonstrate some of the errors described above and develop correction algorithms an 

accelerometer simulator was developed. Using a simulator it is possible to isolate types of 

errors in a manner not usually possible in real systems.  The compensation methods can be 

developed and verified before testing on real systems. 

3.3.1  Vibration Rectification Due To Nonlinearity 

The following example is a demonstration of vibration rectification error caused by 

nonlinearity in the accelerometer.  It is also an example of Least Squares estimation 

method being used to estimate the nonlinear model of a simulated burst series.  A series of 

3 bursts with amplitude          of 1 second length are applied to a simulated 

accelerometer with nonlinearity and bias drift.  The nonlinearity of the simulated 

accelerometer can be described by a polynomial with coefficients shown in Table 3.7. 
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Table 3.7  Coefficients of Sample Nonlinearity 

Coefficients Values 
   0.0 

   1.0 

   1.642e-5 

   1.3665e-6 

   -1.286e-7 

   -1.17e-8 

 

The plots are presented in velocity as the bias and VRE errors are more easily noticed.  At 

this scale Figure 3.15 shows little error in drift or VRE as the magnitude of the errors is too 

small to see. 

 

Figure 3.15 Burst Test Simulation 

By subtracting the estimated drift from the original integrated acceleration the VRE is now 

easily distinguished, as shown in Figure 3.16, and can be calculated directly.  As stated 

before, the definition of VRE is an apparent bias shift in acceleration due to oscillation.  As 

this is a zero mean excitation, the expectation is that when no excitation is present, no 

velocity change is seen, which is supported by the example.  It should also be clear that 
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during excitation the bias shift in acceleration causes a change in velocity which is 

proportional to the length of excitation.  

 

Figure 3.16 Burst Test Simulation VRE 

To verify that the change in velocity is only occurring during oscillation a different part of 

the test is shown. Figure 3.17 zooms in on the bottom of the oscillations where the 

envelope of the oscillations for the reference and the integrated acceleration are visible. It 

can be seen that the velocity changes steadily under excitation. Reference lines have been 

placed on the figure to show that there is negligible drift between bursts as opposed to the 

steady change during. VRE can be computed as the slope of the change during excitation. 

 

Figure 3.17 Burst Test Simulation VRE 
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The magnitude of the expected VRE can be calculated using equation ( 3.25 a),  rewritten 

below 

        
 

 
   

  
 

 
   

        ( 3.33 ) 

Using this equation the expected VRE can be computed for  =12.5 as                

which is also shown in Figure 3.16.  The above equation leads to the conclusion that the 

VRE is dependent on the vibration amplitude which, when plotted for this simulated 

sensor, produces Figure 3.18.  It is apparent that the bias changes with varying amplitude 

which is why VRE cannot be resolved by applying a constant bias adjustment, but only by 

correcting the nonlinearity. 

 

Figure 3.18 VRE vs Amplitude Simulated Data 
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3.3.2 Computational Vibration Rectification from Integration 

The following example will demonstrate the problems of computational VRE using 

experimental data from a Kistler 8330 capacitive servo MEMS accelerometer.  The test 

conducted was a 10 second triple burst test at 1 g amplitude shown in Figure 3.19. The data 

was sampled at 50 kHz, 1 kHz, 100 Hz and 50 Hz.  The burst frequency is 10 Hz. 

 

Figure 3.19 Burst Test with Kistler, Sample rates from 50 Hz to 50 kHz 

It is common practice in signal analysis to choose a sample rate to be double that of the 

frequency of the signal to prevent aliasing.  In the example here the lowest sampling 

frequency is 5 times the burst frequency.  However that is not to say it is a good 

representation of the signal.  Figure 3.20 shows the bottom of a single sinusoid to show the 

degree to which each of the sample rates was able to describe the signal.  The high 
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frequency vibration shown only on the 50 kHz signal is a result of the stage drive noise and 

cultural noise. 

 

Figure 3.20 Burst Test Kistler Zoomed In 

For the next part of the example the best available estimate of the inverse nonlinearity is 

used to correct the sensor output. The results of the integrated acceleration are shown in 

Figure 3.21. It is apparent that the 50 kHz and 1 kHz data have almost negligible vibration 

rectification.  The 100 Hz and 50 Hz signals on the other hand were not fully corrected.  The 

remaining error is due to the computational VRE introduced by errors in the integration 

caused by insufficient sample rate. This error cannot be resolved or predicted and will 

therefore be perceived as system drift or noise. The only way to avoid this is to sample at 

frequencies well above those seen. Experimental tests or simulations can be used to predict 

performance. 
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Figure 3.21 Burst Test Kistler Mult Rate Integrated Acceleration Corrected 

3.3.3 Compensation of vibration rectification  caused by nonlinearity 

Inertial measurement units are generally designed for a certain bandwidth of dynamics.  In 

aircraft navigation, depending on the type and size of airplane, the dynamics are slow.  

These dynamics can be represented by a bandwidth from DC to about 20 Hz.  There are 

however vibrations from the engine which can be detected by the accelerometer at higher 

frequencies as well as impact shocks during landings which have very high bandwidth.  It is 

common place to use a combination of mechanical (spring-mass-damper) filters, analog 

(electrical) filters, and digital filters to remove these vibrations prior to any mathematical 

operations.  The following analysis shows potential problems with some implementations 

of these filters. 

In this example, the nonlinearity  ( ) is defined as a polynomial with coefficients      . 

This polynomial is not usually known nor can it be perfectly represented. It can however be 
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approximated by a finite order polynomial for the purposes of estimating VRE. The inverse 

polynomial  ̂( ) which is found by calibration has coefficients      .  Compensating the 

sensor nonlinearity is simply a matter of applying the inverse non-linearity to the output 

signal to effectively reconstruct the input without distortion as is shown in Figure 3.22. 

 

Figure 3.22 Compensation Block Diagram 

3.3.3.1 Ideal Case, No Filtering 

To demonstrate the best case in compensation the following example is presented.  The 

coefficients of the nonlinearity and it’s inverse are shown in Table 3.8 and Table 3.9. 

Table 3.8  Polynomial Coefficients of Sensor Nonlinearity 

Coefficients Values 
   0.0 

   1.0 

   1.642e-5 

   1.3665e-6 

   -1.286e-7 

   -1.17e-8 

 

 

 

 

𝑦(𝑥) �̂�(𝑦) 
𝑥(𝑡) 𝑥(𝑡) 𝑦(𝑡) 
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Table 3.9  Inverse  Polynomial Coefficients of Sensor Nonlinearity  

Coefficients Values 

   6.999e-8 

   1.0 

   -1.642e-5 

   -1.368e-6 

   1.286e-7 

   1.17e-8 

 

To illustrate the effect of VRE, this example assumes the system to be stationary with some 

undesirable vibration at frequency above the band of interest. The input  ( ) is defined as a 

sinusoidal signal with frequency   and amplitude        . 

 ( )          (  ) ( 3.34 ) 

This input is used in  ( ) to obtain a distorted output  ( ).  

 ( )                        (  )               (   ) 
             (   )                 (   )                  (   )  

( 3.35 ) 

  

When the inverse polynomial is applied to this function by applying  ̂( ) the reconstructed 

input is given by. 

 ̂( )                     (  )               (   ) 

                (   )                (   )                  (   )    

( 3.36 ) 

The key points of interest in this corrected signal is that the VRE has been significantly 

reduced, the vibration input has been restored to its original magnitude and other higher 

harmonics are reduced.  Figure 3.23 shows the frequency spectrum of the corrected signal. 
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Figure 3.23  Polynomial Compensation of Full Bandwidth Data 

Higher order harmonics (greater than input) occur as a result of the inaccuracy of the 

inverse polynomial. However in real systems, if the polynomial is accurate enough these 

harmonics will be reduced below the noise floor.  

Even in the ideal compensation with a known system nonlinearity a perfect inverse cannot 

be generated within a finite order compensating polynomial. However the significant 

reduction in VRE and in the magnitude of the harmonics now permits the use of filters to 

allow for down-sampling.   

3.3.3.2 Worst Case: Filtering of all vibration prior to compensation 

First assume that no mechanical filter exists and all system accelerations are measured by 

the sensor.  Its output will then have both harmonic and constant errors due to the 

nonlinearity according to equation ( 3.25).  A filter with cutoff frequency    which is below 

the vibration frequency   is used to remove the undesired vibration from   to get    as 

shown in Figure 3.24.  
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Figure 3.24 Compensation Block Diagram Filtered 

In this case    will take the following form. 

  ( )             ( 3.37 ) 

 The VRE error which is represented by a DC term in equation ( 3.35 ) is still present in the 

signal after filtering.  This error can no longer be corrected because all information 

about the vibration has been eliminated.  This is the worst case, it will result in no 

correction of VRE. 

3.3.3.3 Filtering of harmonics prior to compensation 

This problem can also be represented by another situation.  Similar to the above case, no 

mechanical filter is present, but in this case the bandwidth and sample rate are chosen to 

encompass the fundamental frequency of vibration but not the harmonics, i.e.        .  

If the signal is filtered to remove the 2nd and higher order terms in equation ( 3.35 ) the 

result is. 

  ( )                        (  )     ( 3.38 ) 

Now if the inverse polynomial is applied to this function the following reconstruction, 

plotted in Figure 3.25, is obtained. 

 ̂( )                     (  )              (   ) 
             (   )              (   )              (   ) 

( 3.39 ) 

𝑦(𝑥) �̂�(𝑦) 
𝑥 𝑥 𝑦  𝑦  

𝑓  

Filter 



 54 

 

Figure 3.25 Polynomial Compensation of Reduced Bandwidth Data 

 

While a reasonable reduction in VRE is achieved, the error is still 10 times that of the fully 

corrected solution.  As expected the harmonics, or rather their inverses, which were 

filtered out previously reappear after correction.  This effectively causes an increase of the 

bandwidth of the signal. If the sample rate is insufficient this bandwidth increase could 

result in aliasing or an increase if VRE due to insufficient sampling frequency. 

3.3.4 Summary 

Given the cases described above the following recommendations are given: 

 Sample as fast as possible and maintain a broad bandwidth until after the 

nonlinearity correction.  

 Reduce the system bandwidth before the accelerometer using a mechanical filter 

unless an accurate measurement of the vibration is required. 
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3.4 Implementation Issues with Mechanization 

The previous sections have discussed the factors related to the conversion and 

compensation of the accelerometer output to obtain specific force.   A similar process 

facilitates correcting gyros to measure angular rate. Once these signals are obtained it is 

necessary to integrate them in the inertial mechanization to obtain position, velocity, and 

attitude.   

Prior to the design or selection of a computer or microprocessor, it is necessary to evaluate 

the algorithm to be used in the mechanization to determine the computational 

requirements.  This is particularly important when designing a system for high vibration or 

dynamics environments as a high rate of computation is required to maintain the accuracy 

[2] [4].   

The following equations and analysis represent a subset of that presented in [4].  They are 

used to demonstrate the errors encountered when high dynamics or vibrations are 

encountered. With such an analysis it should be possible to determine the minimum 

computation rate and the required accuracy of approximations. 

3.4.1 K-Cycle Attitude Update 

As shown in section 3.1.2, the updated direction cosine matrix can be calculated by 

integration of the differential equation ( 3.10). While it is possible to integrate the equation 

as written, it is a computational burden as 9 differential equations must be solved. Two 

main techniques exists to solve this problem. One uses quaternions to represent the DCM1 

                                                        

1 Direction Cosine Matrix 
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and perform the computation. The other method, which will be discussed below calculates 

a rotation vector and corresponding rotation matrix to update the DCM.  The derivation 

follows closely from [4]. 

Firstly, equation ( 3.10) is written as an integral over a single cycle, in this case the k-cycle 

which is the medium rate computation cycle. 

           [∫     
    

  

] 
( 3.40 ) 

 Assuming the orientation of the angular rate vector   remains nearly constant over the 

interval, the above equation can be written as: 

          [  ]       ( 3.41 ) 

   [

      

      

      
] 

 
( 3.42 ) 

  
  
Where     is a rotation vector1 and    is a direction cosine matrix which transforms the 

DCM from time k to k+1.   Expanding the exponential term in the above equation gives: 

     [  ]  
[  ] 

  
 

[  ] 

  
 

[  ] 

  
     ( 3.43 ) 

The exact representation of this equation can also be written as follows: 

     
    

 
[  ]  

      

  
[  ]  

( 3.44 ) 

                                                        

1 It is called a rotation vector, but in skew symmetric form it is a matrix 
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  √  
    

    
    

( 3.45 ) 

Equation ( 3.44), when used in equation ( 3.41) allows for the update of the direction 

cosine matrix with significantly lower computational time.  The requirement is that the 

angular rates must be integrated to form a rotation vector.  This integration is performed in 

the j cycle. 

When implementing this rotation update algorithm in a computer, especially one with 

limited capability, it is extremely important to avoid the operations which are time 

consuming.  Among the operations which are excessively long are division and 

trigonometric functions.  For this reason approximations are used to reduce computation 

time.   

   
    
 

   
  

  
 

  

  
  

( 3.46 ) 

   
      

  
 

 

  
 

  

  
 

  

  
  

( 3.47 ) 

Further simplifications can be made by truncating the series expansion. While this 

truncation can significantly reduce computation time, the accuracy of the rotation update 

can be significantly reduced under some situations. Based on equation ( 3.44 ), the DC 

angular drift error can be calculated for a single axis of rotation [4].   

    
 

  
(       ( )     ( )          ( )      ( 3.48 ) 

where: 

    is the angular drift after one cycle 

  is the angular increment 
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   is the update interval 

                  first order algorithm 

                    second order algorithm 

     
  

 
                third order algorithm 

     
  

 
        

  

  
         fourth order algorithm 

The following table shows the attitude drift error for a selection of angular rates, sample 

rates and algorithm orders.  This table represents the error in the k-cycle update for 

continuous attitude changes, primarily due to dynamics.  It may not be affected by 

vibration if it is zero mean, and at a frequency much higher than the update rate.  This does 

however require a rotation vector which has been computed in the j cycle at a rate higher 

than the vibration.  So the conclusion is that the k-cycle update speed is linked to the rate of 

dynamics, where the j cycle must account for vibration. 

Table 3.10 K-Cycle Attitude Drift Errors 

 Attitude Drift Error        
Order              

         
             

          
            

         
            

          
1 0.006875 6.875e-5 6868 68.75 
2 0.003437 3.43e-5 3427 34.37 
3 6.83e-10 2.55e-12 6.86 6.87e-4 
4 1.7e-10 2.64e-12 1.7 1.7e-4 
 

3.4.2 J-Cycle Rotation Angle Computation 

The previous section presented an equation for computing the direction cosine matrix 

update based on the rotation vector   and discussed the accuracy of that calculation.  In 

this section I will discuss the calculation of the rotation vector in the high speed processing 

part of the mechanization. The rotation vector is effectively the net change in attitude from 
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time    to     . Computation of the rotation vector is effectively integrating the angular rate 

measurements. The high speed j-cycle is used for the computation of the rotation vector 

angle. If the direction of the angular rate   remains unchanged over the interval, the 

rotation angle   is determined simply as the integration of    over the k cycle time. 

  ∫  
    

  

   
( 3.49 ) 

If however the rotation direction does not remain constant the issue of non-commutativity1 

of the rotations becomes a problem. To address this issue the following algorithm is 

proposed [5]. 

                 ( 3.50 ) 

where           

  ∫  
     

  

   

      ∫       
    

  

 

The above method essentially truncates the equation for the rotation vector to produce a 

simple algorithm suitable for high rate integration. As this is a numerical integration, 

higher processing rates reduce the errors due to approximation.  The j cycle is also used for 

the integration of acceleration to obtain a velocity increment. 

 

 

                                                        

1 The order of rotations is important 
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3.4.3 I-Cycle Rotation Updates 

As stated in [4], the i-cycle is a slow cycle used for the update of the navigation frame which 

changes at a very slow rate.  The equations are essentially the same as the k cycle 

mentioned above. The following equation shows the continuous form of the navigation 

frame update. This is used to update the DCM relating the navigation to the earth frame.  

This change would be a result of the change of position. 

 ̇ 
    

    
  ( 3.51 ) 

where 

   
       ( 3.52 ) 

    [
  

    

   

    

      ( )

    
]

 

 
( 3.53 ) 

   = East Velocity 

   = North Velocity 

  = Latitude 

   = Radius of Earth 

  = Height above earth surface 

 The rotation of this matrix is done in an identical way to that for the body to navigation 

frame matrix using equation ( 3.44 ). 

3.5 Velocity and Position Updates 

Once the attitude is computed, it is possible to transform the specific force measurements 

into the navigation frame and integrate to get the new velocity and position.  

     
         ( 3.54 ) 
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 The new velocity can be expressed using the following equation. 

    
    

  ∫   
    

  

   ∫ [        ]    
    

    

  

 ∫      
    

  

 
( 3.55 ) 

where: 

      specific force acceleration in navigation frame 

      Earth rotation vector:  Rotation of Earth frame with respect to inertial frame 

      Transport rate: Rotation of Navigation frame with respect to earth frame 

    velocity in navigation frame 

    gravity vector in navigation frame 

Position at this point can be integrated to find the change in position in the navigation 

frame. In general this is used to compute a change in latitude, longitude and altitude. 

     
  ∫   

    

  

   
( 3.56 ) 

Although not shown, the integration of specific force requires special consideration to 

account for rotation of the body during the k-cycle. This process is examined in detail in [4]. 

3.6 Conclusions 

This chapter has demonstrated a number of system errors. The focus on vibration, noise 

and delay related errors has led to some recommendations for compensation and 

requirements for system design. 

To combat vibration rectification from nonlinearity and from computational errors, a high 

sample rate is required.  This sample rate must, for large vibrations, be several times the 

high end of the frequency bandwidth. It is at this high frequency that the compensations for 

nonlinearity and integration must take place.   



 62 

Noise must be reduced whenever possible, however considerations must be made for 

different types of noise which impact the system in different ways.  For example some 

amplifiers with lower noise specs may use more power and cause increased thermal 

instability and drift.  

Delay errors result from many sources such as poorly synchronized ADCs, mismatched 

filter components, and poor timing resolution.  This error can cause problems for many 

mechanization algorithms and especially for calibration in dynamic testing. Care must be 

taken to identify, characterize, and if possible minimize these synchronization delays. 

Finally, an overview of the inertial mechanization has demonstrated the need for high 

speed processing when fast dynamics are present.  The presence of integration and 

rotation approximations introduces errors which are magnified when signals are not 

stationary.   

The overall conclusion from this chapter is that high sample rates and high processing 

rates are required to measure high dynamics or vibration. If the dynamics of the base signal 

are slow but have higher frequency vibration, it is only necessary to run the ADC and 

nonlinearity compensators at high sample rate. It is then possible to filter the data to allow 

for lower processing rates. 
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CHAPTER 4: IDENTIFICATION OF NONLINEARITY AND ESTIMATION OF PARAMETERS 

The previous discussion of sensor errors has focused on their nonlinearity.  The result of 

nonlinearity is a DC error related directly to the acceleration, or in the case of a gyro, 

angular rate.   

To mitigate these errors, it is necessary to obtain a model for the sensor to correct the 

output.  As previously mentioned, a commonly used nonlinearity model is the polynomial. 

Its simplicity and adaptability make it useful in many applications.  The standard means by 

which this model is identified are multipoint and centrifuge testing.  Multipoint tests use a 

“dividing head” to apply fractions of gravity to the accelerometer to obtain a polynomial in 

the range    .  The centrifuge test uses rotation to apply acceleration from zero to the 

limit of the accelerometers range [1].  The main disadvantage of the multipoint test is the 

limited range, although the accuracy is very good.  The main disadvantage of the centrifuge 

is the necessity to stop and turn the accelerometer around for negative acceleration. 

Another less conspicuous problem is the one of self-heating. As discussed in [20], 

centrifuge and multipoint testing applies a DC acceleration to the sensor.  For force 

feedback servo accelerometers the rebalance force is proportional to the acceleration.  In 

these devices self-heating of the torquer and electronics can cause bias shifts.  The result of 

these shifts will effectively add to the nonlinearity during static acceleration tests like 

centrifuge calibration. Further, at different acceleration levels, different settling 

temperatures will be experienced. This will result in the improper estimate of the entire 

nonlinearity for a given temperature.  A representative block diagram of an accelerometer, 

with self-heating taken into account, is shown in Figure 4.1.  
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The method proposed in this thesis seeks to calibrate the a portion of the range of the 

accelerometer in the positive and negative directions while minimizing the effects of self-

heating. By applying a short duration vibration to the sensor using a linear exciter, this 

range of the accelerometer can be tested in one burst.  The short duration of the burst 

prevents any significant heat generation.  This calibration can then be performed at 

different steady temperatures to determine the variation of bias and nonlinear terms with 

temperature.  Similarly, different frequencies can be tested to determine the effect of 

system dynamics on nonlinearity.  

 

Figure 4.1 Accelerometer Model with Self-heating 

The process of identification and parameter estimation with the goal of producing a 

compensator is not a straight path.  It requires some iteration and alternate paths.  The 

following flow chart provides a road map to this process. 
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Figure 4.2 Sensor Identification Flow Chart 
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4.1 Experimental Results 

The following experimental results demonstrate the effectiveness of the linear exciter as a 

calibration tool in the investigation on nonlinearity.  The equipment used was an Aerotech 

air bearing linear stage, a Polytec laser vibrometer, and a custom built FPGA based data 

acquisition system developed in this research, capable of continuous high sample rate 

recording. The results of three of the sensors are shown for the tested range    .  All are 

examples of very short duration testing with 3 short bursts at 10 Hz.   The data in this case 

was analyzed using least squares. The formulation is described later along with a review of 

the least squares and Kalman filtering methods. 

 

Figure 4.3 Burst Test Setup 
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4.1.1 Investigation of PCB and Kistler MEMS accelerometers 

The first set of tests shown here are burst tests of the Kistler and PCB accelerometers. 

These accelerometers have specifications of 0.2 % and 1 % FSR nonlinearity respectively. 

Both are rated for    .   

A 10 Hz sinusoidal burst of 1g amplitude is applied to both accelerometers. Three different 

burst periods are used to verify that the velocity shift is proportional to the period of 

vibration. The output is integrated resulting in the velocity profile shown in Figure 4.4.   

 

Figure 4.4 Burst Tests of PCB and Kistler with Uncorrected Velocity 

Least squares estimation was used to determine the nonlinear polynomial, the coefficients 

of which are shown in Table 4.1. From this polynomial the vibration rectification vs 

amplitude graph was plotted as seen in Figure 4.5.  Of interest in this plot is the crossover 

of the Kistler Servo accelerometer. It appears that at certain amplitudes no vibration 

rectification will occur.  



 68 

Table 4.1 Non-Linear Coefficients for PCB and Kistler 

Coefficients  Kistler PCB 

   0.01262 0.002145 

   1.02559 0.9725 

   -0.00101 -8.68e-5 

   -6.558e-4 2.457e-4 

   9.4611e-6 5.4568e-6 

   6.175e-6 4.4478e-7 

 

 

Figure 4.5 VRE vs Amplitude PCB and Kistler 

The estimated nonlinearity is used to correct the accelerometer output and again the result 

is integrated to velocity.   
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Figure 4.6 Burst Test of PCB and Kistler with Corrected Velocity 

Figure 4.6 shows the result after correcting the nonlinearity. The vibration rectification 

error is reduced 100 to 1000 times leaving only bias drift errors.  Something to note is the 

drift of the PCB whose slope changes after each burst.  This may be a result of self-heating 

even though it is not a force rebalanced accelerometer.  The heat may be a result of power 

dissipation in the amplifiers which output the signal. 

4.1.2 Investigation of QA700 

A similar test was performed for the QA700.  This time, multiple amplitudes of excitation 

were tested.  Vibration rectification from this accelerometer is significantly lower than 

either of the MEMs sensors test above even though the sensors are similar in cost. The 

figure below demonstrated the combined effect of drift and vibration rectification.  The 

blue line is the estimated drift from the least squares estimation. Figure 4.8 shows the same 

data with the estimated drift subtracted to clearly show the predictable vibration 
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rectification.  The staircase step size was used to directly measure the vibration 

rectification. 

The “corrected integrated accel” indicates the signal if drift and VRE are removed.  The 

degree of matching between it and the laser indicates the accuracy of the model for 

estimation.  Thus it can be claimed that a fixed nonlinearity and a bias drift are the major 

components of the error and no significant change in the nonlinearity occurs over the 

length of the test. 

 

Figure 4.7 Burst Test of QA700 With Drift 
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Figure 4.8 Burst Test QA700 Drift Removed 

Following all the tests a VRE vs Amplitude graph, Figure 4.9, was generated showing the 

comparison between the measured VRE and the analytically predicted VRE. It can be used 

to determine the accuracy of the estimated polynomial.  It is of particular interest that each 

amplitude of excitation produced a different polynomial. Although following the measured 

trend reasonably, each is valid only for a subset of the range.  The highest amplitude test 

obviously covers the widest range.  The lowest amplitude test does not well reflect the 

experimental data.  This may be a result of noise or other dynamics which are normally 

overshadowed by large excitations.  Using the polynomial from the largest magnitude test 

does seem to reliably reduce the VRE to well below the bias drift level.  Future testing will 

be necessary to check for variations of the curves at different temperatures and 

frequencies. 
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Figure 4.9 VRE vs Amplitude for QA700 

The most representative calibration from above was used to correct other data sets such as 

the one shown in Figure 4.10 and Figure 4.11.  This test uses just two 1 second bursts at 1g 

pk-pk.  Here the displacement error is shown before compensation in Figure 4.10, and after 

in Figure 4.11.  Although the total deviation after compensation is around 0.1 mm, the 

vibration related drift accounts for only 0.01 mm indicating the success of the 

compensation.   
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Figure 4.10 QA700 Burst Test Displacement Error 

 

Figure 4.11 QA700 Burst Test Displacement Error Zoomed 

These test results have indicated that this type of calibration can estimate the nonlinearity 

well enough to reduce VRE to well below that of the bias drift.  In the above example the 

corrected signal shows no noticeable effect from VRE, however bias drift is still clearly an 
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issue.  It may be possible to attribute this, at least partially, to temperature sensitivity and 

thus reduce it further by calibration. Beyond that, having reduced VRE, it is now possible to 

track the bias drift with a Kalman filter as is normally done in aided inertial systems. 

4.2 Estimation Review 

4.2.1 Least Squares 

The method of least squares is used to estimate the unknown coefficients in mathematical 

models given noisy data [27].  Least squares has the advantage of finding the optimal 

solution for over-determined systems of equations.  The basis for the linear least squares 

problems must take the following form 

     ( 4.1 ) 

where   is the design matrix,   is a vector of unknowns, and   are the measurements. In 

order to solve for  , an equation is written based on the previous one where a value  ̂ being 

an estimate of   is used to minimize the sum of squared measurement errors  . 

   |  ̂   |        ( 4.2 ) 

The minimum error is found where its derivatives with respect to  ̂ are zero.  

  

  ̂
      [  ̂   ]       ̂           ( 4.3 ) 

 ̂  (   )             ( 4.4 ) 

This form of the equation is called the normal equation.  The assumption of this equation is 

that all measurements are equally weighted.  A solution exists when the Gramian matrix 

          ( 4.5 ) 



 75 

is nonsingular.  The least squares solution can be extended by weighting each 

measurement. This approach is described in [28]. The form of this equation is given as 

follows 

 ̂  (       )                 ( 4.6 ) 

where R is the weighting matrix.  The computation of     becomes increasingly time 

consuming as the number of measurements increases. This problem can be resolved using 

recursive least squares which sequentially updates the solution with new measurements 

rather than doing so all at once.  For consistency, the equations below are written using the 

same notations as in Kalman filtering. 

        
 (                

 )
  

        ( 4.7 ) 

   (  
   

    )
        ( 4.8 ) 

     (          )        ( 4.9 ) 

 ̂   ̂    (      ̂ )       ( 4.10 ) 

The Kalman gain matrix   is calculated in the same way as in Kalman filtering. 

4.2.2 Kalman Filter 

Another common estimation method, which can be adopted for parameter identification, is 

Kalman filtering.  Originally Kalman filters were developed as optimal observers for the 

states of linear dynamic systems.  Its adaptability and functionality in control systems and 

navigation applications have led to its widespread use in nearly every GPS and inertial 

system currently in use.  The following overview presents the basic principles and 
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equations as well as how Kalman filters can be used for the estimation of model 

parameters.  A comprehensive discussion can be found in [27].  

A common method of expressing the system model uses the following state space form. 

 ̇                  ( 4.11 ) 

where   is the state vector,   is the dynamics matrix,   is the input coupling matrix,   is the 

input vector,   is the noise coupling matrix, and   is the system noise vector.   This system 

is usually converted to the discrete form for use in the Kalman Filter and takes the 

following form. 

                         ( 4.12 ) 

where    and      are the current and future time steps of the state vector,        is the 

state transition matrix which propagates the state vector from time k to k+1.   The state 

transition matrix is the fundamental solution to the homogeneous differential equation. 

 ̇          ( 4.13 ) 

 (   )    (   )       ( 4.14 ) 

An approximation of this matrix exponential, based on Taylor series expansion, is 

commonly used. 

  (   )     (   )  
  (   ) 

  
       ( 4.15 ) 

The Kalman filter uses a combination of prediction and correction to obtain an estimate of 

the state vector. The basic steps of the algorithm are as follows: 
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1. Extrapolate the a priori estimate of the state vector  ̂   
  by multiplying the state 

transition matrix   with the a posteriori estimate from the previous time step  ̂ 
  

 ̂ 
     ̂   

          ( 4.16 ) 

2. Extrapolate the apriori estimate of the error covariance     
   

  
        

                (3.17) 

3. Compute the Kalman gain matrix    

     
   

 (         
 )        ( 4.17 ) 

4. Update the a posteriori estimate of the error covariance   
   

  
  (      )  

       ( 4.18 ) 

5. Update the a posteriori estimate of the state vector  ̂ 
  

 ̂ 
   ̂ 

    (      ̂ 
 )      ( 4.19 ) 

 

Although it is possible to predict and update at the same rate as described by these 

equations, in practice, for navigation applications the measurement updates are infrequent 

compared to the prediction steps.  It must also be noted that this implementation assumes 

a linear time invariant model. In many problems, the system is neither time invariant nor 

linear. This leads to a method of Kalman filtering referred to as the extended Kalman 

filtering where the assumption is made that the model is sufficiently linear over a small 

enough time frame.  It is then linearized about the current estimate of the state vector. 

Examples of this can be found in [27] 

4.3 Estimation Formulations 

For both of the estimation examples the solution is formulated to compute parameters 

from the burst test. 
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4.3.1 Least Squares 

In order to solve for the nonlinearity of the accelerometer using least squares, the problem is 

formulated in the following way. Defined in equation ( 3.16 ),  ( ) is the nonlinear output of the 

accelerometer. Assuming that      is the acceleration reference, a nonlinear polynomial  ( ( )) 

is introduced which will correct the distorted output. 

 ( ( ))       ( 4.20 ) 

To account for the bias drift and offset of the accelerometer a component  ( ) is 

introduced, which in this research is assumed to be a polynomial.  The order of this 

polynomial is dependent on the length of the data set, and the magnitude of the bias drift 

variations.  When broken down into individual coefficients and adding the bias drift terms 

equation ( 4.20 ) becomes. 

      ( )     ( )
     ( )

          
     

                    ( 4.21 )  

The equation is then written in a matrix form to match the form of equation ( 4.1 ).  The 

time sequence is broken into discrete times of period    corresponding to the sample 

period.  
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 ( 4.22 ) 

By using the above formulation the vector of unknown coefficients for the nonlinear 

polynomial and the bias drift can be estimated. This version of the formulation is designed 
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to solve for the compensating polynomial but it can be written to solve for the “forward 

nonlinearity” as well. 

It is also possible to write the least squares observation model to fit a velocity reference.   

This version can have advantages if an accurate velocity reference (e.g. Doppler laser) is 

used instead of an acceleration reference. The observation equation can be rewritten as 

follows. 

∫(      ( )     ( )
     ( )

  )   ∫(       
     

  )             ( 4.23 ) 
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  ( 4.24 ) 

In these formulations for least squares the bias drift has been approximated as a time 

varying polynomial. The choice of the polynomials order should be based on the variability 

of the bias and the length of the signal.  Practically, the limit is the computing precision.  

From experimentation with this formulation, tests have shown polynomials with order 

greater than 15 cause the Gramian matrix to become ill conditioned and near singular, 

which can be attributed to the finite precision computations. This causes a loss of accuracy 

and eventually results in meaningless solutions.  The recommendation is that the least 
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squares solution for this formulation should only be used with lower order bias drift 

functions and for short data sets.  For longer data sets the recommendation is to use a 

Kalman filtering approach described in the next section.   

4.3.2 Kalman Filter 

While least squares provides a quick solution for short data sets, some problems exist in 

the determination of an appropriate order for the bias drift function. As the data set 

becomes longer or the variations more frequent the polynomial order must become 

increasingly large to properly describe it.  

An alternative approach for estimating the compensating polynomial is to use a Kalman 

filter, which allows for a bias model which is not limited by order. The requirement is that 

the problem must be changed so that the coefficients are arranged as elements of the state 

vector.  The first step is to define the dynamics model starting with the following equation, 

 ̇( )        ( )     ( )
     ( )

     ( )
     ( )

      ( 4.25 ) 

 If all the terms of the above equation are assumed to be “random constants”, a dynamics 

model can be defined as in equation ( 4.27 ). However consideration must be made for the 

additional dynamics which will be present in the bias drift    .  This parameter is modeled 

as a random walk. Under the linear formulation of the Kalman filter the dynamics matrix,  , 

is assumed to be linear time invariant.  The following formulation maintains the 

assumption of the linearity as no linearization is required to write the matrix, however the 

matrix is not time invariant. As a result the state transition matrix is recalculated each time 

step using the 2nd order Taylor series approximation.  
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 ̇   ( )     ( 4.26 ) 
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The use of numerical approximation for the state transition matrix is analyzed to 

determine the percent error for a given step size.  The errors are compared for one of the 

terms    .  

Table 4.2 Numerical Approximation Errors in Individual Steps 

% error ∆t=1 ∆t=0.1 ∆t=0.01 ∆t=0.001 ∆t=0.0001 ∆t=0.00002 

     26.4 0.467 4.96e-3 4.99e-5 5e-7 1.99e-8 

     
   

 
 

8.03 0.0154 1.65e-5 1.66e-8 1.66e-11 1.33e-13 

     
   

 
 

   

 
 

1.89 3.84e-4 4.13e-8 4.17e-12 <2e-16 <2e-16 

  

Table 4.2 illustrates a relationship between the time step size and the approximation order 

required to maintain accuracy.  For large step sizes, a high order approximation will be 
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required to maintain accuracy.  Due to the increasing number of operations when using 

smaller step sizes, the accumulation of error must also be considered. 

Table 4.3 Numerical Approximation Errors Accumulated For 1 Second Interval 

% error ∆t=1 ∆t=0.1 ∆t=0.01 ∆t=0.001 ∆t=0.0001 ∆t=0.00002 

     26.4 4.67 4.96e-1 4.99e-2 5e-3 5e-4 

     
   

 
 

8.03 0.154 1.65e-3 1.66e-5 1.66e-8 6.65-9 

     
   

 
 

   

 
 

1.89 3.84e-3 4.13e-6 4.17e-9 <2e-12 <2e-12 

 

 This result exemplifies a general trend seen throughout this thesis.  As the step size is 

reduced it is possible to use lower order approximations with similar results.  However in 

the area of post processing (not real-time), it is possible to use higher order 

approximations without significant impact on time of computation. Just for record, the data 

I collect is sampled at above 10 kHz and the Kalman filter is updated at every sample. 

The measurement model to introduce the laser reference data is simple.  The laser 

reference is equal to the first state in the state vector. Thus the measurement matrix is a 

unit vector with the first element 1. 

  [        ]       ( 4.29 ) 

To illustrate the results with the Kalman filter a simulated burst series is generated using 

the accelerometer simulator. The series is shown in Figure 4.12 with a subsection showing 

that each burst is a 1 second duration, 10 Hz sinusoid.  This signal is chosen as it will 

illustrate the apparent bias shift when not corrected.   
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Figure 4.12 Kalman Filter Simulated Input 

To improve the speed of convergence of the Kalman filter, a least squares estimate is used 

to initialize the state vector.  

To verify that the Kalman filter converges given an initial error in the state estimate, an 

initialization error has been introduced into the C2 term which results in vibration 

rectification error during oscillation. As the Kalman filter converges the pulsation of VRE 

error in the C0 term is reduced indicating that the solution has improved.  



 84 

 

 

Figure 4.13 Convergence of Kalman Filter Estimates in the Case of Poor Initial Estimate 

When a better initial estimate is given, as in Figure 4.14, the states change very little from 

the initial. The C0 term appears to be constant and appears not to contain any resemblance 

of the vibration rectification.  However, it contains a visible bias drift. 
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Figure 4.14 Kalman Filter Results with Good Initial Estimate 

The analysis of residuals is used to determine if and when the Kalman filter has converged 

as well as the level of fit. The residual in Kalman filtering is the innovation matrix   which 

defines the difference between the current estimate and the measurement. 

         ̂ 
       ( 4.30 ) 

  Analysis of the frequency content of this signal can determine if the filter has converged.  

If the filter converges and the solution is a good fit, only white noise is left in the innovation 

sequence. Figure 4.15 shows the frequency spectrums of the innovation sequence for 

various levels of the convergence starting from the zero initial condition. The filter start 



 86 

and most of the midway results show clear indications of residual harmonics. The final 

result shows a nearly white spectrum indicating that the filter has converged and fit well.  

Just for reference the least squares initialization will start the KF at what is shown here as 

KF end. 

 

Figure 4.15 FFT of Kalman Filter Residuals  

While testing the innovation sequence is usually enough to determine if the Kalman filter 

has functioned.  For the purposes of determining if the polynomial model is correct it is 

also necessary to evaluate the bias for the same results. During the operation of the filter a 

certain amount of error is attributed to the bias. This is to allow it to drift in response to the 

accelerometer drift but also to allow for some modeling errors.  In this model, most of the 

modeling errors, which are large when the filter has not yet converged, get added to the 

bias term.  As a result the bias term absorbs some of the remnants of the uncorrected 

harmonics.  Setting the process noise for the bias too small will prevent convergence 

altogether as the filter is unable to immediately change the other coefficients to eliminate 

the error. When converged, the bias should be reduced to a nearly white noise spectrum 

with no visible harmonics from the excitation as it does in Figure 4.16.   
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Figure 4.16  FFT of Kalman Filter Bias Noise, C0 term 

This Kalman filter formulation, while essentially performing the same task as the least 

squares, has a significantly longer convergence time and more data is required.  As a result 

it is not as applicable for the short burst testing.  It does however have the potential use in 

tracking changes in nonlinearity over time or through various temperature ranges. 

4.3.3 Determining Polynomial Order 

When using a polynomial representation of nonlinearity a key question is always asked:  

what order of polynomial is required to correct the nonlinearity? This question can only be 

answered in terms of an acceptable error. Since the inverse polynomial is an 

approximation, the higher the order the better the approximation.  High order polynomials 

are however undesirable due to computational time and precision so a compromise must 

be made based on the minimum acceptable error.   

The first test is in the estimation procedure. It was mentioned in the Kalman filtering 

example that the residual and bias can be examined to determine if harmonics were left. If 

these harmonics are significant (above the noise floor), this would be an indication that the 

polynomial has an insufficient order.  
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Figure 4.17 Residual Harmonics for Various Compensating Polynomials 

The second test is to directly test the vibration rectification for various amplitudes and 

frequencies using a given polynomial order.  Keep redoing the test with increasing order 

until a plateau is reached where the error is acceptable or not further correctable. 

4.4 Conclusions 

This chapter has described a testing method for accelerometers which allows the entire 

nonlinearity to be identified over a short time period.  This method is useful as it limits the 

amount of self-heating thus allowing better separation of the temperature and acceleration 

related nonlinearities.  This chapter has also presented estimation methods suitable for this 

type of calibration.  
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CHAPTER 5: IMU SYSTEM DESIGN 

Through identifying some of the major contributors to the sensor error, a set of 

specifications can be generated for a system designed for high vibration and precision 

inertial measurement.  These design requirements are independent of the sensor types 

used. 

Table 5.1 Hardware Design Requirements 

Error Requirements for resolution 

Vibration 

rectification 

 High sample rate 

 Maintain broad bandwidth prior to compensation 

 High processing throughput 

 Vibration damping shock absorbers if applicable to reduce 

bandwidth of vibration prior to sensors 

Noise  Low jitter oscillator for ADC 

 Low noise amplifiers and ADC 

 Low Noise Power Supply 

Drift  Precision resistors and capacitors 

 Low self-heating 

 Low drift amplifiers 

 Low drift power supply 

 Monitoring the temperature of sensors, amplifiers, and 

ADCs 

Delay and 

Synchronization 

 Minimum necessary filtering to reduce delays 

 Precision timing of samples 

 Higher sample rates to minimize sample size 

 Simultaneous sampling ADC or similarly synchronized 
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The priorities of reducing size, cost and power have meant that many inertial systems are 

not capable of meeting all of these requirements.  Some other constraints have been the 

availability of devices and components. Only recently has the technology for ADCs and 

FPGAs made it possible to achieve high sample rates with high resolution converters. This 

is coupled with many other improvements in electronic component designs which lower 

power consumption without significant increases in noise or cost.  

5.1 Inertial Measurement Unit  

The data acquisition system is essentially all components required to take raw 

measurements from the sensors and convert them to position, velocity and attitude.  This 

process includes signal processing, data conversion, timing, compensation, mechanization 

and communication.   A sensor cluster was designed using the QA700 accelerometers.  The 

superior linearity make them the best choice even given the ability to compensate. 

5.1.1 Data Acquisition Hardware 

The data acquisition hardware is essentially motherboard which provides signal and power 

routing to the FPGA board as well as to a set of ADCs.  The FPGA essentially has dedicated 

resources for each device so the addition of other sensors does not impact the timing or the 

ability for the data to be processed.  In this way, this system is easily extensible.  To test 

concepts of the design, a prototype, laboratory grade data acquisition system was 

assembled using the TI ADS1278 ADC [25]and an Opal Kelly XEM6001 FPGA board [29].  

This was used to determine system noise, drift, sample rate requirements, and analyze 

timing and delays.  The test results were used to develop a more complete system which 

used the enhanced FPGA, model Opal Kelly XEM6010-LX150 [30]. 
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Figure 5.1 IMU Data Aquisition System 

5.1.2 Implementation of Mechanization in FPGA 

Implementing the inertial mechanization in a strong vibratory or high dynamic 

environment has high demands on processing power.  As mentioned previously in this 

thesis, one approach to maximize performance is to implement a multi-rate processing 

technique.  The technique discussed in [4] uses 3 different rates: 

 J cycle:   Very High Speed used for computation of the rotation vector from angular 
rates and integration of the specific force.  This cycle speed is also used for 
application of corrections to sensors. 

 K cycle:  Reasonably Fast used for attitude update, Velocity and position updating 

 I cycle:  Slow Speed used for navigation frame rotation update as well as coriolis and 
gravity calculation 

In most systems all these operations take place in a single processor or a few processors.  

The disadvantage of this solution is that processes are not independent.  The completion of 

one process is required before the next can start.  The architecture of an FPGA allows for 
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the implementation of both parallel and sequential processing algorithms. The key 

advantage for this solution will be the implementation of the j cycle algorithms in direct 

hardware.  Instead of using a processor, the compensation, integration, and other low level 

operations can also be implemented using FPGA Floating Point cores and state machines.  A 

comparison of representative processing capability between a DSP and FPGA is shown 

below. 

Table 5.2 Computation Comparison Single Precision Multiplications Additions 

Device Computation Rate, 
Single Precision 
multiplications or 
additions  per second 

Device Utilization 
Percentage of Time or Logic Used 

DSP 37,000,000 100% of DSP 
Microblaze Softcore 
Processor 

16,000,000 100% of Core 
5% of FPGA Logic Spartan 6 LX150 

Dedicated 
Multiplier/Adder 
Core 

200,000,000 0.2% of FPGA Logic Spartan 6 LX150 

 

Table 5.3 Computation Comparison Single Precision Divisions 

Device Computation Rate, 
Single Precision 
divisions per second 

Device Utilization 
Percentage of Time or Logic Used 

DSP 1,000,000 100% of DSP  (Division not directly supported 
by instructions) 

Microblaze Softcore 
Processor 

2,500,000 100% of Core 
5% of FPGA Logic Spartan 6 LX150 

Dedicated 
Multiplier Core 

200,000,000 0.7% of FPGA Logic Spartan 6 LX150 

 

The computation comparison table clearly demonstrates that the replacement of a DSP 

with the softcore processor would result in a large reduction in computation capacity for 

multiplication and addition but not for division which is directly supported by the softcore.  
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However the use of dedicated math operators in the FPGA logic would see a massive 

increase in potential processing capability.  It should be possible to implement the 

relatively simple high speed j-cycle operations as well as the sensor compensation 

algorithms using these dedicated operators.  The lower speed k and i cycle operations can 

then be performed by one or multiple soft-core processors. This is represented 

schematically in the block diagram on Figure 5.2. 

 

Figure 5.2 FPGA IMU Data Acquisition and Processing Architecture 
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5.2 Power Supply 

The development of a precision power supply was one of the first tasks of the design 

process.  It was clearly stated in the datasheet for the accelerometers and gyros as well as 

the amplifiers and other parts that the scale factor, bias and various other factors would be 

affected by changes in power supply voltage.  Tests were performed to identify the 

sensitivity of standard linear regulators to the load current change.  It was found that a 

change of almost 3% of the nominal output would occur over a 0.5 A range. This is 

compounded by the voltage losses due to path resistance.  To minimize the errors 

associated with these variations, the power supply was designed with precision power op 

amps intended for lab power supplies [31]. The output voltage was sensed at the sensor 

cluster to minimize the path resistance effects.  This was combined with a precision 

reference to make an output voltage that changed no more than       over a change of 0.5 

A of current draw, a 3 order of magnitude improvement.   

 

Figure 5.3 IMU Power Supply 
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5.3 Sensor Cluster 

The sensor cluster for this system was designed to support a set of 3 Honeywell QA700 

accelerometers and 3 Systron Donner LCG-50 gyros [32].  The system could easily be 

reconfigured for different types of sensors as the data acquisition system has universal 

inputs.  The QA series accelerometer uses a scaling resistor to set the feedback loop 

strength and also the output scaling.  To reduce self-heating and improve accuracy for the 

smaller dynamic range, the scaling resistor was chosen to allow for    .   

 

Figure 5.4 IMU Sensor Cluster 

5.4  System Testing 

While the system has not been tested in a navigation setting, many of its components have 

been evaluated using the experimental facility at the University of Calgary.  Parts of this 

system were used to generate many of the experimental results already shown.  

During lab testing the cluster was used with and without the shock absorbers.  The results 

indicate that the absorbers effectively reduce the high frequency vibrations but are highly 
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nonlinear and non-symmetrical.  This would not normally be a concern unless the system 

was required to accurately measure the movements of the base or was referenced to the 

base as it is in system testing.  For these tests the mounts were replaced with hard 

mounting blocks to prevent any movement between the cluster and base.   

 

Figure 5.5 Cluster Hard Mounted 

5.5 Conclusions 

The system described above was designed during this research to fulfill the requirements 

of precision measurement under strong vibration. At the time the thesis was written the 

system had not yet been completed.  Specifically the mechanization had not been 

implemented. The system designed has the following features. 

 Accelerometers and Gyroscopes sampled with 24bit ADC at 50 kHz 

 Non-linearity compensation at 50 kHz using hardcoded FPGA Logic 

 Temperature measurement using internal and external temperature sensors on 

accelerometers and gyros. 
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 Xilinx Spartan-6 LX150 FPGA for data collection and real time processing 

o Multiple soft core microprocessors 

o Dedicated logic for high speed repetative calculations 

 Highly modular, expandable, and reconfigurable. 

 Availability of all raw data to a host computer through USB 
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CHAPTER 6: CONCLUSIONS AND RECOMENDATIONS 

The primary objective of the research described in this thesis is to improve the accuracy of 

inertial measurement under vibration.  The focus of this objective was vibration 

rectification error (VRE).  This thesis has redefined VRE to describe a number of vibration 

related errors. It has demonstrated the major source of VRE as the sensor’s nonlinearity 

but also some less obvious sources, such as the numerical integration errors, self-heating 

and mechanization.  This thesis has also sought to provide solutions to these problems 

through analysis, estimation and testing methods. 

The investigations have shown that many vibration related issued can be directly 

compensated or avoided by using high sample rates. To this end a system was designed 

which can consistently operate at 50 kHz sample rate. This is achieved using an advanced 

ADC coupled with the use of an FPGA based data acquisition and processing unit. A 

processing architecture was proposed for this system which will allow for computations to 

be performed at high rate, potentially allowing the system to completely measure the 

vibrations and high dynamics up to approximately 10 kHz.  Many other errors can be 

eliminated by employing additional sensors.  In particular measuring the temperature of all 

inertial sensors and acquisition components will allow for compensation of thermal related 

errors. 

Specific contributions 

The major contributions of this research include: 

a. The definition and analysis of errors which impact the accuracy of the IMU when under 

vibration.  These include, VRE due to nonlinearity, errors in integration, self-heating, 
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timing or signal delay, and mechanization related errors.  The relation of these errors 

to sensor specifications has been identified.  The key parameters identified are 

nonlinearity, bias stability and temperature sensitivity.  These parameters are tested 

for a selection of accelerometers.  The relative magnitudes of the errors are calculated.   

b. Analysis and recommendations for the compensation of vibration related errors.  This 

research has identified a direct link between the sample rate and the accuracy under 

vibration.   

 Reducing errors due to numerical integration. 

  Providing sufficient bandwidth to measure vibration so that non-linearity and 

thus VRE can be compensated 

 Reducing errors in mechanization due to finite series approximations  

 Reducing delay and time synchronization errors 

These effects are rarely considered independently.  The example of section 3.3.2 

showed that when combining the nonlinearity compensation and integration, a sample 

rate of 1 kHz was the minimum requirement for a vibration of 10 Hz. This indicates the 

need to sample significantly faster than the 100 Hz normally used of inertial systems. 

Another link has been made to vibration related self-heating.  The error is not 

generally considered vibration rectification however the result is the same.  Vibration 

may cause self-heating of the sensor.  This heating manifests as a DC output when 

combined with the temperature sensitivities.  To compensate this error, the 

temperature of the sensitive element must be known.  Limitations on the placement of 

temperature sensors necessitate prediction of the temperature rise based on 

acceleration. 
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c. A calibration method has been identified which enables the parameters of the non-

linearity to be estimated while minimizing the effects of self-heating. A method based 

on the vibration testing, but utilizing a linear stage, is used to identify the nonlinearity 

for both positive and negative accelerations.  Results from this thesis have indicated 

that this method of testing can estimate the nonlinearity in 10 seconds sufficient to 

reduce VRE 10 to 1000 times depending on the initial level of nonlinearity.  In most 

cases the VRE could be reduced to below the bias drift level.  This method has the 

advantage of being able to test a larger range of acceleration  and broader frequency 

range than the commonly used tilt table.  It also allows both directions to be tested 

simultaneously.   

d. Requirements for IMU system design are given based on the research and testing.  

Along with these, a system has been developed which meets the requirements.   

Among the key objectives was achieving the high sample rates and processing rates.  

An ADC was selected allowing for continuous simultaneous sampling of 8 channels at 

50 kHz in high, 24 bits resolution.  To accommodate the data collection rates and 

achieve the timing accuracy, an FPGA is used instead of a microcontroller.    

Recommendations 

This work has brought to light a number of important topics which could not be fully tested 

within this MSc research.  Among them is the verification of self-heating by accurate 

temperature measurement.  The degree of self-heating on sensors such as the MEMS PCB 

accelerometer is small, however the sensitivity of bias drift due to temperature is high. It 

was determined that a measurement accuracy of         was required to properly 

compensate the error.  To obtain measurements on that order special equipment was 
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required, which was developed in this research.    It is readily available to study and 

characterize the power dissipation vs acceleration. 

Another issue is one of power consumption.  This is a concern with regard to the self-

heating of IMU as a whole.  Some areas have already been identified where power can be 

conserved. Work is ongoing to reduce this further.  A long term option would be lower 

power FPGAs. Xilinx currently has lower power devices and is continually improving them.  

The currently used FPGA should be swapped out for a lower power version when possible. 

This research focused on acquisition of signals and suppression of the effects of sensor 

imperfections. It will be the task of future research to implement full inertial mechanization 

and conduct complete system test in various environments.  It is also recommended to 

continue the research to determine if other models can be used to more suitably represent 

the sensor nonlinearities. 
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 Appendix A 

Accelerometer Simulator 

During the development of some of these mathematical techniques and for verification of 

error behaviors an accelerometer simulator was developed.   This model includes 

nonlinearity as well as random walk bias shift.  It was used to verify the least squares and 

kalman filter estimation techniques as well as to predict the expected behavior of an 

accelerometer to a particular type of test or analysis.  The following equations describe the 

simulators behavior. 

Firstly this simulator is a simple input output model as seen in equation A.1 .  Its input is 

the true acceleration x; its output y(x) is a signal which imitates an accelerometer output 

with a nonlinearity.   

 ( )            
     

     
     

                ( A.1 ) 

The terms    to    represent the nonlinearity.  The bias term is the random bias drift and is 

modeled as a random walk which is by definition the integral of a random sequence. 

Equation 3.35 describes this integral where w(t) is zero mean white noise. 

     ∫ ( )    

      ( A.2 ) 

To add some extra realism some extra noise is added to simulate quantization and intrinsic 

noise.  This is done simply by adding some more white noise q(t). 

       ( )     ( A.3 ) 
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The overall simulator model is as follows. 

 ( )        ( )     ( )
     ( )

     ( )
     ( )

    ∫ ( )     ( ) 

 ( A.4 ) 

Where    to   , w(t) and q(t) are simulated model parameters, x(t) is the input 

acceleration, and y(t) is the output signal.   

As a test of the approximated bias drift and noise performance the Allan variance can be 

produced for the simulated data and compared to a real accelerometer.  As you can see 

from Figure A., the plot for the simulator generated output has similar quantization noise, 

bias instability and random walk drift to that of a QA700 shown in Figure 3.7. 

 

Figure A.1 Allan Variance of Simulated Accel 
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Appendix B   FPGA’s Explained 

In a standard microcontroller a processor is attached to peripherals and memory. 

Operations are performed by sequentially moving instructions and data in and out of 

memory. The processing capability of a processor is the frequency of the clock and the time 

required to execute each operation.  An FPGA on the other hand is an array of simple logic 

components which can be “wired” together to perform more complex tasks. An example of 

this architecture is shown in Figure  which shows a small section of the logic in a Xilinx 

Spartan 6 FPGA.  The FPGA is programmed using VHDL (very high-speed descriptive 

language). VHDL has been compared to assembly from the perspective that the 

programming is done at a very low level, often dealing directly with the signals. It is 

however considered a high level language in FPGA development as it is not usually 

necessary to directly target specific logic elements.  During synthesis (equivalent to 

compiling) the VHDL is converted to RTL (resistor transistor logic) as shown in Figure .  

This RTL is then mapped onto the FPGA fabric during implementation. 

 

Figure B.1 FPGA Sample Architecture from Xilinx ISE PlanAhead 
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Figure B.2 FPGA RTL Schematic Sample 

The benefit of the FPGA in high speed and time sensitive tasks is the distribution of tasks 

into parallel logic. For example in a system with multiple ADCs, sensors, input and output 

data streams, an FPGA can perform all the tasks simultaneously without interruption or 

delay because each task has been mapped to its own logic and runs independent of the 

others.    

In microcontrollers, peripherals like serial interfaces are implemented in built in dedicated 

logic. As a result the maximum number of peripherals is fixed.  Sometimes devices in 

microcontrollers are multiplexed so that one peripheral or I/O cannot be used 

simultaneously with another.   This limitation does not exist in FPGAs, as long as the logic 

space and additional I/O ports exist, new peripherals can be added without issue.   

With a microcontroller, instructions and data are stored in memory. The size of the 

memory naturally limits the complexity of the tasks to be performed.  An FPGA is similarly 

limited by its area.  More complexity requires more logic.  For this reason FPGAs are 

usually scalable within a family.  The VHDL written for a smaller part will run identically on 

the larger part. 


