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Abstract

This paper considers spectrum utilization, the probability of detection in
cognitive radio (CR) model based on cooperative spectrum sensing with both
simultaneous adaptive sensing and transmission at a transmitting secondary user
(TSU), and the bit error rate (BER) detection with variation checking at a
receiving user (RSU). In this paper, a novel detecting model is proposed in the
being considered scenario for the full-duplex TSU’s simultaneous sensing and
transmitting. A spectrum sensing scheme with an adaptive sensing window is
designed to improve the spectrum utilization with a high SNR. At RSU, the BER
variation is used further to detect whether a PU is active or not. Data fusion
based on the proposed adaptive sensing scheme and the BER detection is
processed for better decison on the spectrum holes. Simulation results show that
i) simultaneous spectrum sensing with an adaptive window improves the
spectrum utilization compared with a periodical sensing; ii) cooperative spectrum
sensing with the BER-assisted detection improves the probability of detection and
spectrum utilization compared with the single simultaneous sensing at TSU.

Keywords: Cognitive radio, cooperative spectrum sensing, spectrum utilization,
adaptive window, BER-assisted detection

Introduction
Cognitive Radio (CR) is an important strategy to enhance spectrum efficiency,

allowing the secondary user (SU) to utilize the licensed spectrum of the primary

user (PU) when PU is inactive. This kind of time slot is called as a spectrum hole

([1]-[2]). CR has two important functionalities: spectrum sensing and adaption [1].

Energy detection is conventionally used for spectrum sensing [3]. Traditionally, SU

firstly detects the spectrum band using energy collection periodically. If a spectrum

hole is found, SU will immediately utilize this time interval to transmit data by

upconverting to the PU’s frequency band. Once SU senses the activity of PU, it

will immediately stop transmitting and give the spectrum back to PU. Then SU

keeps detecting the spectrum in its own period till the coming of next spectrum

hole.

Different from the model described above where SU executes sensing only when

it does not transmit data ([4]-[5]), a couple of full-duplex spectrum sensing schemes

have been proposed in which the SU can simultaneously implement transmitting

and sensing whether PU is active or not. Researchers present a new design paradigm

for future CR by exploring the full-duplex techniques to achieve the simultaneous
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spectrum sensing and data transmission in [6] , published in a magzine to ex-

plore key research directions, and proposed an adaptive scheme to improve SUs’

throughput by switching between the ”Listen-and-Talk” and ”Listen-before-Talk”

protocols in [7]. Non-time-slotted CR has been investigated in [8] and [9] and the

full duplex spectrum sensing scheme is presented for non-time-slotted cognitive

radio networks in [8]. [10] exploits self-interference suppression for improved spec-

trum awareness/efficiency in simultaneous transmit-and-receive mode. Results in

[11] show the performance of antenna for the full-duplex transmission in CR. The

possibility of extending full-duplex designs to support multiple input, multiple out-

put (MIMO) systems using commodity hardware has been discussed in [12]. [13]

describes the basic design challenges and hardware requirements that restrain CRs

from simultaneously and continuously sensing the spectrum while transmitting in

the same frequency band.

This paper also considers the full-duplex spectrum sensing and utilization in CR.

The being considered CR in this paper consists of two SUs. One SU transmits data

and another SU receives the data. The SU which is used to transmit the data is

called TSU while the one receiving the data is called RSU. Both TSU and RSU

are radio transceivers. In this paper, a novel detecting algorithm is proposed by

combining an adaptive sensing in TSU and the BER detection in RSU, where a

dedicated line is required for the transmission of the result of BER detection to

the TSU and data fusion is processed in the TSU. The difference of our algorithm

from the existing full-duplex cognitive radio lies in the adaptiveness of the sensing

window, the feedback of BER detection and the data fusion of the sensing in TSU

and the BER detection in RSU. One point to be noted is that we ignore the over-

head effect in this paper because the data is less and negligible. The corresponding

probability of detection as well as the false alarm are provided, on the basis of

which the utilization of spectrum holes is mathematically derived. With the pro-

posed spectrum detecting algorithm, a spectrum sensing scheme with an adaptive

sensing window is designed to improve the spectrum utilization. Several schemes

based on the adaptive sensing window have been proposed in literature ([14]-[15]).

In this paper, the novel detection algorithm is followed by an adaptive spectrum

sensing algorithm to provide an improved CR. Furthermore, in order to enhance

the overall detection accuracy, this paper feeds back the detection results based on

the estimated bit error rate (BER) by RSU to TSU. By data fusion, this informa-

tion is combined with the detection algorithm using an adaptive sensing window at

TSU. The combined detection algorithm provides a better probability of detection

and consequently a higher spectrum hole utilization. Although there is a trade-off

between spectrum sensing and data transmission, it is also important to improve

its spectrum utilization [16].

The rest of this chapter is organized as follows. Section 1 mentions the problems

associated with recent developments in spectrum sensing. Section 2 describes the

system model and the spectrum sensing procedure that is proposed in our novel

P2P Cognitive Radio. Section 3 shows the energy detection algorithm at TSU and

derives its corresponding probability of detection as well as false alarm, spectrum

utilization and our proposed adaptive sensing algorithm. Section 4 describes the de-

tection algorithm that is based on estimating the BER at RSU. Section 5 gives the
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derivations of spectrum utilization under periodical sensing, simultaneously sensing

with fixed window and adaptive window, as well as cooperative sensing with simul-

taneous sensing and BER detection. Simulation results are reported in Section 6

followed by a conclusion in Section 7.

1 Problem Statement
Existing most spectrum sensing technologies have two main problems. First, at

TSU, periodical spectrum sensing cannot determine the periodical duration of spec-

trum sensing. Here, we consider simultaneous spectrum sensing and transmitting.

Secondly, spectrum sensing at TSU often brings miss detection of PU signals when

PU becomes a hidden node compared to TSU. Thus, we propose a novel BER-

assisted detection to improve the spectrum sensing.

1.1 Simultaneous Sensing/Transmitting at Full-Duplex TSU

In the majority of existing spectrum sensing technologies, spectrum sensing at

TSU is executed periodically without the transmission of SU signals. However, this

periodical sensing exists a problem when selecting its periodical duration. As shown

in Figure 1, if the duration is too long, the SU signal can represent interference to

the PU signal. It is obvious that this interference will decrease when the periodical

duration decreases. However, if the periodical duration is too short, it will cost

more time to execute spectrum sensing instead of transmitting SU signals which

will decrease the utilization of spectrum holes. In order to overcome this problem,

we propose a solution to execute spectrum sensing while transmitting SU signals.

When SU detects the existence of a spectrum hole, it transmits its signal over the

licensed channel. Meanwhile, it will start to detect whether PU is active or not

in order to minimize interfering with the SU signal. TSU in cognitive radio is a

full-duplex system which can transmit data while simultaneously perform spectrum

sensing.

1.2 Assisting Detection Based on BER At SU Receiver

We have proposed the concept of cooperative spectrum sensing between TSU and

RSU based on estimating the BER at RSU. This is useful because a PU transmitter

sometimes becomes a hidden node compared to TSU which means that TSU cannot

detect the existence of PU. There are two kinds of hidden nodes. The two cases are

shown below:

1.2.1 Case I: TSU is out of the transmitting range of a PU transmitter

In Figure 2, when TSU is out of the transmitting range of a PU transmitter, the

TSU cannot detect the presence of PU no matter whether PU is active or not. TSU

will continue to transmit data to its receiver. However, if RSU is in the transmitting

range of a PU transmitter while hidden from it, the transmission between TSU and

RSU can bring serious interference to PU.

1.2.2 Case II: PU signal is hidden from TSU

As shown in Figure 3, the energy of the PU signal at TSU is lower than the

minimum detection threshold possibly due to the existence of obstructions between



Lu et al. Page 4 of 37

TSU and PU. Thus, it is difficult to detect the existence of PU if the spectrum

sensing only happens at TSU. In this case, there will still exist serious interference

between RSU and PU when RSU is close to PU and there is no obstruction between

them.

From the two cases above, one can notice that it is necessary to assist spectrum

sensing at TSU with additional spectrum sensing at RSU based on BER measure-

ment. If the BER at RSU is large enough, the presence of PU is detected even if

the received energy of PU at TSU is below the detection threshold.

2 System Model

Spectrum sensing and transmitting at TSU in cognitive radio could be represented

as shown in Figure 4. Denote h0, h1, h2, · · · , hm−1 as spectrum holes, i.e. PU is

inactive and the spectrum is idle during these time slots. The time duration of

spectrum hole hi is represented by Di, 0 ≤ i ≤ m−1, which is also the time interval

between two adjacent transmissions by PU. In each spectrum hole, the TSU first

senses whether the spectrum is being used or not. If the spectrum is unoccupied,

the TSU borrows it to transmit data while simultaneously sense the start of a PU

transmission. Therefore, the process consists of two stages: “sensing” only, followed

by “transmitting & sensing”, as shown in Figure 4. Si denotes the duration that TSU

takes to sense the spectrum before it can find a spectrum hole, and Ti represents

the duration that TSU executes simultaneously sensing and transmitting. Spectrum

sensing includes both spectrum sensing at TSU by energy detection and spectrum

sensing at RSU by BER estimation. The whole procedure of SU spectrum sensing

and signal transmission can be summarized as follows:

• Step I: TSU senses the PU spectrum by energy detection.

• Step II: If TSU finds a spectrum hole, it awaits sensing of a spectrum hole

at RSU by BER estimation. If not, it continues spectrum sensing by energy

detection alone at TSU.

• Step III: If RSU also detects the existence of a spectrum hole, TSU starts to

transmit data. At the same time, it continues to sense the spectrum band to

detect when PU becomes active.

• Step IV: If TSU finds out that PU is active either by itself or with the help

of RSU, it stops transmitting at once and goes back to Step I.

In the following section, we discuss spectrum sensing at TSU based on energy

detection and at RSU based on BER estimation.

3 Energy Detection at TSU

The block diagram corresponding to spectrum sensing using energy detection at

TSU is shown in Figure 5 : The received signal is sampled to obtain a discrete time

signal as shown in Figure 6. Then, the system estimates the energy of the sampled

signal during a sensing window. The length of the sensing window W can be a fixed

value or a variable value. By comparing the threshold with the estimated energy,

the system can conclude whether PU is active or not.
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3.1 The Energy Detection Algorithm and corresponding Probability of Detection at

TSU

At the ith “sensing” stage, Si in Figure 4, the sensing signal at TSU can be

expressed as:

y(n) =

{
v(n) for H0

αp(n) + v(n) for H1

, (1)

where y(n), 0 ≤ n ≤ N − 1, denotes the received signal at TSU, N is the number

of samples, αp(n) denotes the PU signal at TSU, v(n) denotes the AWGN with

zero mean and variance σ2, α represents the channel gain between PU transmitter

and TSU which depends on their relative positions and surrounding environment.

Hypothesis H0 indicates that PU is inactive while hypothesis H1 indicates that PU

is active.

At the ith “transmitting & sensing” stage, Ti in Figure 4, the sensing signal at

TSU can be expressed as:

y(n) =

{
s(n) + v(n) for H2

s(n) + αp(n) + v(n) for H3

, (2)

where y(n), p(n) and s(n), 0 ≤ n ≤ N −1, have the same definition as the ones cor-

responding to the sensing stage, and s(n) denotes the received SU signal after going

through the interference cancellation module in Figure 7 . Hypothesis H2 indicates

that PU is inactive while hypothesis H3 indicates that PU is active. Without loss

of generality, it is assumed that p(n), s(n) and v(n) are all independent from each

other.

The test statistic for energy detection under the four hypotheses, H0 though H3,

can be expressed as

T (y) =
1

W

W−1∑
n=0

|y(n)|2, (3)

where y(n) is the TSU’s sensing signal as given in eq. (1)-(2), and W is the length

of the sensing window, i.e. the number of baseband samples used for each detection

decision. It can be described as:

W = fsτ (4)

where fs is the sampling frequency at TSU and τ is the duration of W . In order

to estimate the energy, TSU estimates the energy for a time duration τ , which

corresponds to fsτ baseband samples.

Based on the theory described in [16], it is easily shown that the test statistic

follows a normal distribution:

T (y) ∼

{
N
(
σ2, 2

W σ4
)

for H0

N
(
(1 + γ1)σ2, 2

W (1 + 2γ1)σ4
)

for H1

, (5)
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T (y) ∼

{
N
(
(1 + γ2)σ2, 2

W (1 + 2γ2)σ4
)

for H2

N
(
(1 + γ3)σ2, 2

W (1 + 2γ3)σ4
)

for H3

, (6)

where γ1 =
α2σ2

p

σ2 is the SNR under hypothesis H1, α2σ2
p denotes the power of

the received PU’s signal, γ2 =
σ2
s

σ2 is the SNR under H2, σ2
s denotes the power of

the received SU’s signal, and γ3 is the SNR under H3, which can be obtained as

γ3 =
σ2
s+α

2σ2
p

σ2 = γ1 + γ2.

Based on eq.(5)-(6), at the “sensing” stage, the probability of detection Pd1 and

of false alarm Pf1 can be obtained as

Pd1 = P (T (y) > λ1|H1) = Q

 λ1 − (1 + γ1)σ2

σ2
√

(1 + 2γ1) 2
W

 , (7)

Pf1 = P (T (y) > λ1|H0) = Q

λ1 − σ2

σ2
√

2
W

 , (8)

where λ1 is the assumed threshold value which needs to be selected appropriately

and Q(·) represents the Q-Function.

Similarly, at the “sensing & transmitting” stage, the probability of detection Pd2
and of false alarm Pf2 can be obtained as

Pd2 = P (T (y) > λ2|H3) = Q

 λ2 − (1 + γ3)σ2

σ2
√

(1 + 2γ3) 2
W

 , (9)

Pf2 = P (T (y) > λ2|H2) = Q

 λ2 − (1 + γ2)σ2

σ2
√

(1 + 2γ2) 2
W

 , (10)

where λ2 is the assumed threshold value to be selected appropriately. In the selection

of thresholds, we hope to strike a balance between decreasing the probability of false-

alarm and increasing the probability of detection. The threshold values λ1 and λ2

are constrained by the equations below:{
θ (1− Pd1) = θPm1

= Pf1
θ (1− Pd2) = θPm2

= Pf2
. (11)

where Pm1
is the probability of miss detection in hypothesis H1 while Pm2

is the

probability of miss detection in hypothesis H3. θ is a factor which is used to describe

the relationship between the miss detection and the false alarm. It is called control

factor. If θ is greater than 1, it means the probability of miss detection is selected
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to be lower than the probability of false alarm. If θ is less than 1, it means the

probability of miss detection is selected to be greater than the probability of false

alarm. If θ = 1, it means the probability of false alarm and the probability of miss

detection are selected to be the same. According to [14] and [17], we assume θ = 1

and substitute eq.(7)-(10) into (11). Then, we have λ1 = σ2
(

1 + γ1
1+
√
1+2γ1

)
λ2 = σ2

(√
1+2γ3(1+γ2)+

√
1+2γ2(1+γ3)√

1+2γ2+
√
1+2γ3

) . (12)

From eq.(12), it is concluded that the threshold values λ1 and λ2 depend on σ2 and

on the SNRs: γ1, γ2 and γ3, but not on the length of the sensing window W .

3.2 Discussion of Power Attenuation between PU and TSU

In this section, we discuss the power attenuation between PU and TSU according

to the channel gain α between them. As previously discussed, we have known that

p(n) denotes the amplitude of the PU signal at PU while αp(n) represents the

amplitude of the PU signal at the detection end (TSU). Thus, we can derive the

transmitting power at the PU transmitter and its received power at TSU, i.e.

ρpu ,
1

W

W−1∑
n=0

|p(n)|2, (13)

ρsu ,
1

W

W−1∑
n=0

|αp(n)|2, (14)

where ρpu represents the transmitting power at PU while ρsu represents the received

power at TSU. The relationship between ρpu and ρsu is as follows:

ρsu = α2ρpu (15)

where α depends on the transmission channel which can include path-loss and

shadow fading. According to a traditional radio channel model, the equation to

describe the fading of a radio signal can be expressed in a log scale (dB) as:

ρsu(dB) = ρpu(dB)− g1 − g2 log10 (‖zpu − zsu‖) , (16)

where zpu and zsu represents the position of PU and TSU respectively, ‖zpu − zsu‖
is the Euclidean distance which represents the relative distance, d ,between PU and

TSU while ρsu(dB) and ρpu(dB) represents ρsu and ρpu in dB. g1/10 is called the

fading constant, which is related to shadow fading such as the position of obstruc-

tions in the transmission while g2/10 is a factor which depends on the transmission

environment and is referred to as Path Loss exponent. From eq.(16), the channel

gain α can be expressed as:

α2 = 10−g1/10d−g2/10, (17)
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From eq.(15) and eq.(17), one can express α2 as:

α2 = PL−1 (‖zpu − zsu‖) · ϕ = PL−1 (d) · ϕ, (18)

where PL (d) = dg2/10 and ϕ = 10−g1/10. When the distance d becomes large, the

value of α2decreases. For Case I in Figure 2, the path loss PL (d) is large when

TSU is out of the transmission range of PU transmitter. Thus, the power gain α2

decreases to the point that TSU cannot detect the presence of PU. In Figure 3, the

value of ϕ is small because of obstructions between PU and TSU. Thus, the power

gain α2 is too small for PU signal to be detected.

3.3 Antenna Cancellation technique in Duplex TSU at P2P Cognitive Radio

In the P2P Cognitive Radio, because of the power attenuation over the radio

channel between PU and TSU, the power of the transmitted signal s(n) at TSU,

i.e. from its own transmit antenna, is much larger than the received signal at TSU

from PU αp(n). This makes it difficult to realize a full duplex operation at TSU

because of this large power difference. It is highly possible that TSU cannot detect

the energy of the weak received PU signal unless special care is undertaken. One

way is to decrease such a power difference by making αp(n) and s(n) of the same

order of magnitude.

According to [18], a technique called Antenna Cancellation can be used for full-

duplex operation. It combines the existing RF interference cancellation with digital

baseband cancellation to reduce self-interference. Self-interference cancellation aims

at decreasing the power difference between αp(n) and s(n). In Figure 7, the value

of s(n) is decreased to the same energy level as αp(n) using antenna cancellation

technique. Thus, a full-duplex operation is enabled and TSU is able to detect the

presence of PU while it is transmitting signals. In other words, once the energy

αp(n) is close to that of s(n), transmitting will not affect the detection of PU.

3.4 Spectrum Sensing with Adaptive Window

In this section, we introduce the concept of an adaptive sensing window as applied

to spectrum sensing based on energy detection, where the length of the sensing

window, W , varies from Wmax to Wmin. Denote as Wmax the maximum allowed

length of the sensing window. If W > Wmax, there is no performance improvement.

Denote as Wmin the minimum allowed length of the sensing window. If W < Wmin,

TSU cannot detect the PU signal due to an insufficient energy collection. In order

to obtain a better sensing performance, the adaptive sensing algorithm is designed

as follows:

• Step I: Initialization - Let W = Wmax so that TSU can detect a real spectrum

hole with high probability.

• Step II: Active PU - If W > Wmin, assign W = W −Wmin to reduce the

possibility of missing spectrum holes with a small duration; if W ≤ Wmin,

assign W = Wmin.

• Step III: Inactive PU - Assign W = Wmax to enhance the probability of

detecting the coming PU.
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The state transition diagram in Figure 8 can be used to represent the change in

the value of W with the state transition as a function of hypothesis H0 to H3. The

flowchart of the adaptive sensing algorithm is shown in Algorithm 1. In this algo-

rithm, we denote wcounter as a counter to keep track of the number of consecutive

windows with an active PU and denote C as the number of consecutive windows

after which the length of the sensing window is decreased by Wmin.

4 BER Assisting Detection at RSU
4.1 Novel TSU and RSU Modules

In order to accomplish the proposed BER-assisted spectrum detection scheme, a

new TSU architecture as well as a new receiver architecture are proposed based on

using a dedicated control channel.

4.1.1 Proposed Architecture for TSU

The proposed TSU architecture consists of three components as shown in Figure

9. As previously discussed, one component is used to sense PU’s activities, the

second is used to transmit data by using the idle PU channel while the last is used

to exchange control information via a dedicated channel. The first component is

used to estimate the energy of the received signal and to decide whether the PU

channel is occupied or idle. This decision, as indicated by the dotted line in Figure

9 controls a key ’K1’: if the PU channel is idle, TSU starts to transmit data using

the PU channel; otherwise, TSU does not transmit. The dedicated control channel

is used for transmitting the training sequence and for receiving the probability of

detection based on BER estimation.

4.1.2 Proposed Architecture for RSU

The corresponding RSU architecture consists of two components as shown in

Figure 10. The first component is used to receive the signal transmitted from TSU

via the PU channel. The second component is the dedicated control channel which is

used for receiving the training sequence and for transmitting the estimated BER via

a dedicated control channel. The BER is estimated using data sequences transmitted

over the PU channel. These data sequences consist of useful information.

4.2 Modulation Assumption

Without loss of generality, BPSK is assumed to be the modulation scheme for both

TSU and PU. For analysis simplification, a perfect receiving process is considered

and thus the continuous-time RF received signal can be expressed as

y(t) = AP1(t)cos(2πfct) + v(t), (19)

where AP1(t) =

{
−A Sending a bit ‘0’

A Sending a bit ‘1’
for TSU signal,

while AP1(t) =

{
−B Sending a bit ‘0’

B Sending a bit ‘1’
for PU signal,



Lu et al. Page 10 of 37

where A and B are determined by their own transmit power and their propagation

attenuation, fc is the carrier frequency and v(t) is the continuous-time white Gaus-

sian noise with its discrete form v(n) in eq.(1), with a zero mean and a variance σ2.

It is also assumed that the probability of transmitting a bit ‘0’ or ‘1’ is equal for

both TSU and PU, and that coherent detection is used at RSU.

4.3 BER With/Without a PU signal

Without a PU signal, the BER is the well known BPSK expression given in [19],

which is re-written here for convenience

Pe = Q

(
A

σ

)
, (20)

where the optimal decision threshold T = 0 is used.

On the other hand, when PU is active, the received signal at RSU can be expressed

as

y(t) = AP2(t)cos(2πfct) + v(t), (21)

where AP2(t) =

{
−A±B when TSU sends a ‘0’

A±B when TSU sends a ‘1’
.

The received signal after coherent detection is

ŷ(t) = (AP2(t)cos(2πfct) + v(t)) 2cos(2πfct)

= ((AP2(t) + vc(t)) cos(2πfct)− vs(t)sin(2πfct))

·2cos(2πfct)

= (AP2(t) + vc(t)) + (AP2(t) + vc(t)) cos(4πfct)

−vs(t)sin(4πfct), (22)

where vc(t) and vs(t) are respectively the in-phase component and quadrature com-

ponent of v(t), a random process with a variance of σ2. After the low-pass filter,

the received signal can be obtained as

ỹ(t) = AP2(t) + v(t) =

{
−A±B + v(t) when TSU sends a ‘0’

A±B + v(t) when TSU sends a ‘1’
. (23)

The probability of error is derived below based on the probabilities in eq.(24) and

eq.(25). By choosing the decision threshold value as T = 0, the probability of error

decision when transmitting a bit ‘0’, P̂e0, is given by

P̂e0 =
1

2

1√
2πσ2

∫ +∞

0

e−
(x−(−A−B))2

2σ2 dx

+
1

2

1√
2πσ2

∫ +∞

0

e−
(x−(−A+B))2

2σ2 dx, (24)
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and the probability of error decision when transmitting a bit ‘1’, P̂e1, is given by

P̂e1 =
1

2

1√
2πσ2

∫ 0

−∞
e−

(x−(A−B))2

2σ2 dx

+
1

2

1√
2πσ2

∫ 0

−∞
e−

(x−(A+B))2

2σ2 dx. (25)

Therefore, the overall BER can be obtained as

P̂e =
1

2
P̂e0 +

1

2
P̂e1

=
1

2

[
Q

(
A+B

σ

)
+Q

(
A−B
σ

)]
. (26)

4.4 Detection Algorithm and Probability of Detection at RSU

Usually, a reliable communication system has a relatively low BER, e.g. lower than

10−3 level, [19], so Q
(
A
σ

)
in eq.(20) must be small. By looking at the Q-Function

table, 1
2

[
Q
(
A+B
σ

)
+Q

(
A−B
σ

)]
in eq.(26) is much higher than Q

(
A
σ

)
in eq.(20). So,

intuitively, the change of BER could be used for detecting the spectrum hole.

4.4.1 Method I

From eq.(20) and eq.(26), one can conclude that BER estimation follows a non-

negative distribution with mean of Q
(
A
σ

)
for the case when PU is inactive and

1
2

[
Q
(
A+B
σ

)
+Q

(
A−B
σ

)]
for the case when PU is active. However, the variance is

unknown and is represented by σ2
b for both cases. Denote T as the threshold: if the

BER measurement is greater than T , it says that PU is active; otherwise, it says

that PU is inactive. The optimal threshold, T , must be selected in such a way that

the minimum probability of decision error is reached. The probability of decision

error PfT can be represented by

PfT =
1√

2πσ2
b

∫ +∞

T

e
− (x−Pe)2

2σ2
b dx+

1√
2πσ2

b

∫ T

0

e
− (x−P̂e)2

2σ2
b dx. (27)

By calculating
dPfT
dT = 0, one can solve for the optimal threshold value Top, which

corresponds to the minimum probability of decision error. A good approximation

of the optimal threshold value is Top = Pe+P̂e
2 , due to the low variance for this kind

of measurements. As such, the probability of detection and the probability of false

alarm as defined in Section II can be represented by

Pd3 = P {BER > Top|Active PU}

=
1√

2πσ2
b

∫ +∞

P̂e+Pe
2

e
− (x−P̂e)2

2σ2
b dx = Q

(
− P̂e + Pe

2σb

)
,

(28)
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Pf3 = P {BER > Top|Inactive PU}

=
1√

2πσ2
b

∫ +∞

P̂e+Pe
2

e
− (x− Pe)

2

2σ2
b dx = Q

(
P̂e − Pe

2σb

)
,

(29)

One must note that a higher P̂e leads to a larger probability of detection Pd3 and a

smaller probability of false alarm Pf3 .This makes sense because a higher P̂e results

in a bigger difference with Pe. It should be noted that when P̂e >> Pe, the optimal

threshold value T ≈ P̂e
2 .

4.4.2 Method II

This algorithm is proposed by considering the ratio between the BER in eq.(20)

and the BER in eq.(26), as a way to provide an obvious distinction between the two

cases: inactive PU and active PU. The ratio of the real measurements of BER on Pe
also follows a nonnegative distribution. The mean is obviously 1 for the case when

PU is inactive and
Q(A+B

σ )+Q(A−B
σ )

2Q(Aσ )
for the case when PU is active. The variance

can be represented by σ̂2
b =

σ2
b

P 2
e

for both cases. The optimal threshold corresponding

to the minimum probability of decision error, which can be calculated as

P̂fT =
1√

2πσ̂2
b

∫ +∞

T

e
− (x−1)2

2σ̂2
b dx+

1√
2πσ̂2

b

∫ T

0

e
−

(
x− P̂e

Pe

)2

2σ̂2
b dx. (30)

Once again, by calculating
dP̂fT
dT = 0, the optimal threshold value can be found,

which can be approximated as T = Pe+P̂e
2Pe

due to the low variance for this kind of

measurements. As such, the probability of detection and false alarm as defined in

Section II can be represented by

Pd3 = P

{
BER

Pe
> T |Active PU

}

=
1√

2πσ̂2
b

∫ +∞

P̂e+Pe
2Pe

e
−

(
x− P̂e

Pe

)2

2σ̂2
b dx = Q

(
− P̂e + Pe

2σb

)
,

(31)

Pf3 = P

{
BER

Pe
> T |Inactive PU

}
=

1√
2πσ̂2

b

∫ +∞

P̂e+Pe
2Pe

e
− (x−1)2

2σ̂2
b dx = Q

(
P̂e − Pe

2σb

)
,

(32)

which show the same performance as Method I.

4.5 Probability of Detection Based on a Cooperative Scheme between TSU and RSU

When TSU receives the BER which is estimated at RSU, it will make the final

decision of whether PU is active or not based on a threshold. Here, we can obtain
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the probability of detection based on such a cooperation between TSU and RSU.

The condition for cooperative detection is that the spectrum hole is firstly detected

at TSU. If PU is sensed by TSU, the training sequence will not be transmitted to

RSU.

In hypothesis H1 and hypothesis H3, the probability of cooperative detection is

the combination of two probabilities. The first is the probability of detection at

TSU which we have already discussed in the previous section. The second is the

probability when PU is detected at RSU though not at TSU. Thus, the probability

of cooperative detection in hypothesis H1 and H3 can be expressed as follows:

P coopd1
= P (T (y) > λ1|H1) + P (T (y) < λ1|H1,BER > Top|H1). (33)

P coopd2
= P (T (y) > λ2|H3) + P (T (y) < λ2|H3,BER > Top|H3). (34)

Here, P coopd1
denotes the probability of cooperative detection in hypothesis H1 while

P coopd2
represents the probability of cooperative detection in hypothesis H2. Because

the probability of detection at TSU and the probability of detection at RSU are

relatively independent, eq.(33) and eq.(34) can be expressed as follows:

P coopd1
= P (T (y) > λ1|H1) + P (T (y) < λ1|H1)P (BER > Top|H1)

= Pd1 + (1− Pd1)Pd3 , (35)

P coopd2
= P (T (y) > λ2|H3) + P (T (y) < λ2|H3)P (BER > Top|H3)

= Pd2 + (1− Pd2)Pd3 , (36)

In eq.(35) and eq.(36), Pd1 represents the probability of detection in hypothesis

H1 at TSU while Pd2 is the probability of detection in hypothesis H3 at TSU. Pd3
denotes the probability of detection based on BER estimation at RSU. All of these

parameters have been discussed in the previous sections.

By the same principle, we can obtain the probabilities of false alarm P coopf1
and

P coopf2
under hypothesis H0 and H2 which are the probabilities that PU is detected

though it is actually inactive.

P coopf1
= P (T (y) > λ1|H0) + P (T (y) < λ1|H0)P (BER > Top|H0)

= Pf1 + (1− Pf1)Pf3 , (37)

P coopf2
= P (T (y) > λ2|H2) + P (T (y) < λ2|H2)P (BER > Top|H2)

= Pf2 + (1− Pf2)Pf3 , (38)

According to the derivation from eq.(33) to eq.(38), we can show that the new

spectrum sensing scheme improves the probability of detection. It decreases the

interference from SU. However, it also brings an increase in the probability of false

alarm which might decrease the spectrum utilization.
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5 Spectrum Utilization

5.1 Case I: Ideally No Noise or Negligible Noise

In order to measure spectrum utilization, and compare it to the traditional peri-

odical sensing, it is necessary firstly to figure out how much time the “sensing” stage

occupies and how much time the “transmitting” stage occupies during transmission.

In our new full duplex TSU, it is also necessary to estimate the durations of the

“sensing” stage “transmitting & sensing”. Assuming that DH is the total duration of

the spectrum holes in an observation interval, such as in Figure 4, it can be written

as DH =
∑NH−1
i=0 Di, where NH denotes the number of holes in the observation in-

terval, and Di, indicates the time duration of the ith spectrum hole hi. Denoting T dH
as the total duration of the data transmission ( i.e. the“transmitting ” stage in peri-

odical sensing and the “transmitting & sensing” stage both at TSU) of all detected

spectrum holes in an observation interval, it can be written as T dH =
∑NdH−1
i=0 Ti,

where Nd
H denotes the total number of spectrum holes detected by SU during the

observation interval, while Ti, indicates the duration of the real data transmitting

stage for the ith spectrum hole hi. Denote η as the utilization of the spectrum holes.

Spectrum utilization, η, can thus be calculated as

η =
T dH
DH

=

∑NdH−1
i=0 Ti∑NH−1
i=0 Di

. (39)

5.1.1 Ideally No Noise or Negligible Noise in Periodical Spectrum Sensing

In the traditional periodical spectrum sensing, the duration of a spectrum hole,

Di, which can be regarded as a random variable, as in [16], follows an exponential

distribution with an assumed mean µ. Its cumulative distribution function (CDF)

can therefore be given as

FDi(D) = 1− exp
(
−D
µ

)
, (40)

and its probability density function (PDF) can be described as

fDi(D) =
1

µ
exp

(
−D
µ

)
. (41)

In addition, Ti can also be regarded as a random variable, since:

Ti = Di −NiW = Di −DifsensW = Di(1− fsensW ). (42)

where fsens is the frequency of periodical spectrum sensing. It is a fixed value for a

CR spectrum sensing system. Ni is the sensing instants in the ith spectrum hole.

In order to compute the CDF of Ti, for an arbitrary T , we have

P (Ti ≤ T ) = P

(
Di ≤

T

1− fsensW

)
= FD

(
T

1− fsensW

)
. (43)
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Therefore, its CDF and PDF can be obtained respectively as FTi(T ) = 1− exp
(
− T
µ(1−fsensW )

)
fTi(T ) = 1

µ(1−fsensW )exp
(
− T
µ(1−fsensW )

) . (44)

Furthermore, we have the expectation of Ti:

T̄ = E{Ti} =

∫ +∞

0

T
1

µ(1− fsensW )
exp

(
− T

µ(1− fsensW )

)
dT

= µ (1− fsensW ) (45)

One must note that fsensW ≤ 1 because the sensing period 1
fsens

is always greater

or equal to the length W of the sensing window. It is therefore reasonable to assume

that when the sensing frequency fsens increases, the duration of data transmission

decreases.

If there is no noise or negligible noise, each valid spectrum hole is assumed to be

detected. So, eq.(39) can be written as

ηideal =
T dH
DH

=

∑NH−1
i=0 Ti∑NH−1
i=0 Di

=
T̄ dH
D̄H

, (46)

where T̄ dH = T̄ and D̄H = µ. So spectrum utilization ηperiod in an ideal periodical

spectrum sensing system is obtained as:

ηperiodideal =
T̄ dH
D̄H

= 1− fsensW. (47)

where W is a fixed value when the licensed channel is sensed by a sensing window

with a fixed sized. In eq.(47), one can conclude that the utilization of the spectrum

decreases when the size of the sensing window becomes larger. This result makes

sense because the wasted time when the spectrum is not used is equal to the size

of the sensing window during the sensing stage.

5.1.2 Ideally No Noise or Negligible Noise When Sensing and Transmitting at the

same time

Similar to traditional periodical spectrum sensing, the duration Di of a spectrum

hole, at a full duplex TSU, can be regarded as a random variable foll an exponential

distribution with an assumed mean µ whose cumulative distribution function (CDF)

and probability density function (PDF) are shown in eq.(40) and eq.(41).

Similarly, Ti can also be regarded as a random variable, indicating the duration

of the “sensing & transmitting ” stage. In each spectrum hole, data transmission

always happens except during the first spectrum sensing window. Thus, the trans-

mission duration can be described as:

Ti = Di −W. (48)
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In order to compute the CDF of Ti, for an arbitrary T , we have

P (Ti ≤ T ) = P (Di ≤ T +W ) = FD (T +W ) . (49)

Therefore, its CDF and PDF can be obtained respectively as

 FTi(T ) = 1− exp
(
−T+W

µ

)
fTi(T ) = 1

µexp
(
−T+W

µ

) . (50)

Furthermore, we have the expectation of Ti as

T̄ = E{Ti} =

∫ +∞

0

T
1

µ
exp

(
−T +W

µ

)
dT

= µexp

(
−W
µ

)
(51)

If there is no noise or negligible noise, each valid spectrum hole is assumed to be

detected. So, eq.(39) can be written as

ηduplexideal =
T dH
DH

=

∑NH−1
i=0 Ti∑NH−1
i=0 Di

=
T̄ dH
D̄H

= exp

(
−W
µ

)
, (52)

where T̄ dH = T̄ and D̄H = µ. In eq.(52),W represents the size of the first sensing win-

dow in one spectrum hole. The utilization of the spectrum also decreases when the

size of the sensing window W becomes larger. The size of the first sensing window is

adaptive and changeable. Its range, Wadaptive should be Wmin < Wadaptive < Wmax.

The aim of having an adaptive window is to decrease W and improve spectrum uti-

lization. It regulates the trade-off between the probability of detection and spectrum

utilization because the probability of detection increases with W , while spectrum

utilization decreases with W .

5.2 Case II: Noisy Environment

In general, there is non-negligible noise which increases the probability of false

alarms. False alarms cause spectrum holes not to be used. Thus, spectrum utilization

is affected by the probability of false alarm.

First, when spectrum sensing is carried out only at TSU, spectrum utilization in

eq.(39) can be expressed as

ηnoise =
T dH
DH

=

∑NH−1
i=0 (Ti − T lossi )∑NH−1

i=0 Di

=
T̄ dH
D̄H

=
T̄ − T̄ loss

D̄H
, (53)

where T lossi denotes the wasted durations in the ith spectrum hole hi which are

caused by false alarms while D̄H = µ, T̄ dH = T̄ − T̄ loss, T̄ loss is defined as the

expected value of the wasted spectrum duration E{T lossi } in ith spectrum hole.
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5.2.1 Noisy Environment in Periodical Spectrum Sensing

In a periodical spectrum sensing scheme, E{T lossi } comes entirely from false-

alarms during the“sensing” stage. It can be expressed as the expected value

E{T lossi |sensing stage} of all wasted durations in one period of spectrum sensing

which denotes as W̄loss:

E{T lossi } = N̄E{T lossi |sensing stage} = N̄W̄loss, (54)

where N̄ is the expected value of the number of spectrum sensing times in each

spectrum hole. According to eq.(42), we can obtain the expression below:

D̄H = µ = N̄(W + W̄loss) + T̄ = N̄(
1

fsens
+ W̄loss), (55)

Thus, the expected value of the number of spectrum sensing times in each spectrum

hole N̄ is:

N̄ =
µ

1
fsens

+ W̄loss

, (56)

When spectrum sensing is only based on energy detection at TSU, E{T lossi |sensing stage}
depends on the probability of false alarm Pf1 . at TSU. It can be derived as follows:

E{T lossi |sensing stage} = W̄loss = WPf1

+∞∑
r=0

((r + 1)P rf1)

= WPf1(1 + 2Pf1 + 3P 2
f1 + . . . . . . . . . nPn−1f1

)

= lim
n→+∞

WPf1

[
1− Pnf1

(1− Pf1)2
−

nPnf1
1− Pf1

]
≈ WPf1

(1− Pf1)2
(57)

Here, W is the size of the spectrum sensing window. Its value is W = Wmax. This

is because, in our adaptive window algorithm the size of the sensing window does

not change when PU is inactive.

According to eq.(55) and eq.(56), E{T lossi } is expressed as:

T̄ = µ− N̄(W + W̄loss) = µ− µ(W + W̄loss)
1

fsens
+ W̄loss

, (58)

Then, according to eq.(57) and eq.(58), we can derive the utilization of the spectrum

ηperiodnoise in a periodical spectrum sensing system in a noisy environment as:

ηperiodnoise =
T̄

D̄H
=

1
fsensW

− 1

1
fsensW

+
Pf1

(1−Pf1 )2
. (59)

From eq.(59), one can conclude that spectrum utilization ηperiodnoise decreases when the

probability of false-alarm Pf1 increases. On the other hand, the utilization ηperiodnoise

becomes lower when the size of the sensing window W becomes larger which implies

that eq.(59) makes sense.
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5.2.2 Noisy Environment when Sensing and Transmitting at the same time

When Sensing and Transmitting at the same time in a full duplex TSU, the

expected value of the wasted durations T̄ lossduplex in each spectrum hole consists of

two components. The first is the expected value of the wasted spectrum durations

during the sensing stage. The other one is the wasted spectrum durations during

the transmitting & sensing stage. In other words, we have

T̄ lossduplex = E{T lossi }
= E{T lossi |sensing stage}+NduplexE{T lossi |sensing & transmitting stage},

(60)

where Nduplex represents the number of sensing times in transmitting & sensing

stage. In eq.(60) , E{T lossi |sensing stage} is the expected value of the wasted spec-

trum durations during the spectrum sensing in the sensing stage. Its expression is

shown in eq.(57). The sensing stage occurs once at the beginning of the spectrum

hole.

In eq.(60), E{T lossi |sensing &transmitting stage} denotes the expected value of

the wasted spectrum durations during the transmitting & sensing stage.

Similar to eq.(57), we can obtain the expected value of the wasted spectrum

durations during the transmitting & sensing stage as:

E{T lossi |sensing stage & transmitting stage} = WPf2

+∞∑
r=0

((r + 1)P rf1)

= WPf2(1 + 2Pf1 + 3P 2
f1 + . . . . . . . . . nPn−1f1

)

= lim
n→+∞

WPf2

[
1− Pnf1

(1− Pf1)2
−

nPnf1
1− Pf1

]
≈ WPf2

(1− Pf1)2
(61)

By comparing eq.(57) with eq.(61), one can see that the only difference between

E{T lossi |sensing stage} and E{T lossi |transmitting & sensing stage} is that the prob-

ability of false alarm in hypothesis H0 is different from the corresponding false alarm

in H2.

In addition, in order to derive the utilization of a spectrum hole, we need to know

nduplex since the average duration of the “transmitting & sensing” stage T̄ is

T̄ =
WPf1

(1− Pf1)2
+ N̄duplex

[
WPf2

(1− Pf1)2
+W

]
, (62)

Thus, N̄duplex can be expressed as:

N̄duplex =
T̄ − WPf1

(1−Pf1 )2

WPf2
(1−Pf1 )2

+W
, (63)

In eq.(62), the duration of the “transmitting & sensing” stage includes the wasted

durations in both the sensing stage and the transmitting & sensing’ stage as well
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as the used spectrum in hypothesis H2. From eq.(63), we can obtain the following:

T̄ − T̄ loss = T̄ − WPf1
(1− Pf1)2

− N̄duplex
WPf2

(1− Pf1)2

= N̄duplexW

=
T̄ − WPf1

(1−Pf1 )2

Pf2
(1−Pf1 )2

+ 1
(64)

We substitute eq.(51) and eq.(64) into eq.(53), to obtain an expression for the

spectrum utilization ηduplexnoise :

ηduplexnoise =
T dH
DH

=
T̄ − T̄ loss

D̄H

=
µexp

(
−Wµ

)
− WPf1

(1−Pf1 )2

µ(
Pf2

(1−Pf1 )2
+ 1)

(65)

In eq.(65), when the probabilities of false alarm Pf1 and Pf2 increase, the utilization

ηduplexnoise becomes smaller. On the other hand, the utilization η also becomes lower

when the size of the sensing window W becomes larger. Thus, we can conclude that

eq.(65) makes senses.

5.3 Spectrum Utilization in Cooperative Spectrum Sensing between TSU and RSU

Next, we introduce the utilization of a spectrum hole when we use our new spec-

trum sensing scheme, i.e. when we combine BER estimation with energy detection

to realize spectrum sensing. When we use the new spectrum sensing method, all

relevant expressions are the same as eq.(60) to eq.(65) except that we use P coopf1

and P coopf2
to replace the original Pf1 and Pf2 . Moreover, the duration of the “trans-

mitting & sensing” stage not only includes the wasted duration as well as the used

spectrum in hypothesis H2, but also includes the length of the training sequence

which is used in BER estimation. So eq.(62) can be rewritten as:

T̄ =
(W + W̄ts)P

coop
f1

(1− P coopf1
)2

+ W̄ts + N̄coop[
(W + W̄ts)P

coop
f2

(1− P coopf1
)2

+W + W̄ts]

=
[W + (1− Pf1)Wts]P

coop
f1

(1− P coopf1
)2

+ (1− Pf1)Wts + N̄coop[
(W + (1− Pf1)Wts)P

coop
f2

(1− P coopf1
)2

+ W + (1− Pf2)Wts] (66)

Here, W̄ts is the expected value of the length of the training sequence and Wts is

the length of training sequence in each estimation of BER. Thus, the number of
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sensing times N̄coop can be expressed as:

N̄coop =
T̄ −

(W+(1−Pf1 )Wts)P
coop
f1

(1−P coopf1
)2

− (1− Pf1)Wts

(W+(1−Pf1 )Wts)P
coop
f2

(1−P coopf1
)2

+W + (1− Pf2)Wts

=
T̄ (1− P coopf1

)2 − (W + (1− Pf1)Wts)P
coop
f1
− (1− P coopf1

)2(1− Pf1)Wts

(W + (1− Pf1)Wts)P
coop
f2

+ (W + (1− Pf2)Wts)(1− P coopf1
)2

(67)

Then T̄ loss can be expressed according to eq.(66) and eq.(67) as

T̄ loss =
WP coopf1

(1− P coopf1
)2

+ N̄coop
WP coopf2

(1− P coopf1
)2

=
WP coopf1

(1− P coopf1
)2

+W
T̄ −

(W+(1−Pf1 )Wts)P
coop
f1

(1−P coopf1
)2

− (1− Pf1)Wts

W + (1− Pf1)Wts +
(W+(1−Pf2 )Wts)(1−P coopf1

)2

P coopf2

=
WP coopf1

(1− P coopf1
)2

+
T̄ −

(W+(1−Pf1 )Wts)P
coop
f1

(1−P coopf1
)2

− (1− Pf1)Wts

1 + (1− Pf1)Wts

W +
(1+(1−Pf2 )

Wts
W )(1−P coopf1

)2

P coopf2

(68)

Finally, it is easy to derive the utilization of the spectrum ηcoopnoise as

ηcoopnoise =
T dH
DH

=
T̄ − T̄ loss

D̄H

= exp

(
−W
µ

)
−

WP coopf1

µ(1− P coopf1
)2

−
exp

(
−Wµ

)
−

(W+(1−Pf1 )Wts)P
coop
f1

µ(1−P coopf1
)2

− (1−Pf1 )Wts

µ

1 + (1− Pf1)Wts

W +
(1+(1−Pf2 )

Wts
W )(1−P coopf1

)2

P coopf2

(69)

From eq.(68) and eq.(69), we can conclude that the utilization of the spectrum de-

pends on the probability of cooperative false-alarm P coopf2
. The loss of spectrum T̄ loss

becomes larger when the cooperative probability of false-alarm at the “transmitting

& sensing” stage P coopf2
increases. This is reasonable because the “transmitting &

sensing” stage occupies most of the spectrum hole for a CR full duplex system.

If P coopf2
increases, it implies that the CR transmitter will spend more time on

spectrum sensing instead of sensing and transmitting. In other words, some of the

spectrum hole is missed without transmitting data at TSU. Thus, it is reasonable

to assume that the utilization of the spectrum ηcoopnoise decreases with the increase in

P coopf2
in eq.(69).

In addition, according to eq.(68) and eq.(69), we can also conclude that spectrum

utilization ηcoopnoise is larger when the training sequence Wts that is used in BER

estimation has a larger duration. However, it is possible that the longer length of

the training sequence causes interference to PU especially at the end of a spectrum

hole when PU might become active.



Lu et al. Page 21 of 37

6 Numerical Analysis and Simulation Results
6.1 Parameters

6.1.1 Basic Parameters for the Simulation

In this section, the proposed spectrum sensing at TSU is simulated using Matlab

2014b in a 64 bit computer with a core i7 and 8 GB RAM in order to demonstrate our

proposed theory. The duration of a spectrum hole, which is also called appearance

duration, follows an exponential distribution with a mean of µ = 30000 samples.

The arrival rate of a spectrum hole follows a Poisson distribution with an average

arrival rate ε = 20000 samples intervals. From [14], the maximum allowed length of

the sensing window Wmax is 1000 samples. The minimum allowed length of sensing

window Wmin is 100 samples. The number of consecutive windows after which the

length, C, of the sensing window is decreased by Wmin, is set as 1, 2 or 5. In BER

detection, the size of training sequence Wts is also 1000 samples. The RF parameters

which include the bandwidth of the channel B, the thermal noise spectrum density

V (f), the noise factor of the receiver NF and the variance of AWGN σ2 are all

shown in Table 1.

6.1.2 Parameters for Performance Evaluation

The probability of detection Pd of a spectrum hole is an important factor when

evaluating the performance of the proposed spectrum sensing algorithm. It is used

to weigh the ability for TSU to avoid interfering with PU when PU is active. It

is necessary to measure Pd at TSU and RSU. That is why we need to obtain the

probability of cooperative detection as well.

On the other hand, the probability of false alarm detection Pf is another important

factor when PU is inactive. It affects the utilization of the spectrum η, which is

another parameter when evaluating the performance of the proposed system. The

utilization of the spectrum is also another parameter that plays a fundamental role

in a CR system.

6.2 Probability of Detection

In the simulations, we examine the probability of detection at TSU first. As previ-

ously discussed, there exist two kinds of probabilities of detection and probabilities

of false alarm: Pd1 , Pf1 at “sensing” stage and Pd2 , Pf2 at “sensing & transmit-

ting” stage. Because the selection of the detection thresholds λ1 and λ2 is based on

eq.(12), the value of Pd1 and of Pd2 increase while the value of Pf1 and Pf2 decrease.

Thus, when we evaluate the detection performance at TSU, we must examine the

probability of detection Pd1 and Pd2 instead of Pd1 , Pd2 , Pf1 and Pf2 .

According to eq.(7), Pd1 depends on the SNR γ1, the variance of the AWGN σ2

and the length of the sensing window W . σ2 is a constant in Table 1. The SNR

γ1 depends on the PU transmitting power σ2
p and factors which affect the channel

gain α such as the transmission distance d, and shadow fading ϕ in eq.(17) and

eq.(18). In our simulations, we evaluate the performance of CR for an SNR range

from -20dB to 10dB. The length of the sensing window W is regarded as a constant

when the spectrum sensing work has a fixed window. The length of a fixed window

is between Wmin and Wmax. If spectrum sensing with an adaptive window as in

Algorithm 1 is applied, the length of the sensing window will be a variable changing
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from Wmax to Wmin. The simulation results on the probability of detection, Pd1 ,

in eq.(7) vs. SNR, γ1, are shown in Figure 11. It makes sense that the probability

of detection, Pd1 , is always larger when W = Wmax than when W = Wmin. The

reason is obvious: more energy is collected with a larger window, which has a higher

probability to be greater than the preset threshold. When spectrum sensing uses

an adaptive window, the average length of the sensing window for each sensing

interval is between Wmax and Wmin. It depends on the value of C in Algorithm

1. The average W for each sensing interval becomes smaller as C becomes larger.

Thus, when C increases, it is reasonable to assume that the probability of detection

Pd1 decreases. There is a gap between the simulation result and the corresponding

theoretical result. Based on our analysis, the number of iteration should be the

reason for this gap. Especially when the SNR is low, it requires a large iteration

to precisely find out the exact probability of detection. When the SNR is high, it

shows a better consistence between the simulation and the theoretical result. Overall

speaking, the simulation result approximately matches the derived theory. ( Similar

issue occurs again for the following simulation results. )

Because a larger window leads to a better detection, for hypotheses H2/H3, the

largest window W = Wmax is used to attain the best detection. Under this condi-

tion, the probability of detection, Pd1 , in eq.(7) for hypotheses H0/H1 is compared

with the probability of detection, Pd2 , in eq.(9) for hypotheses H2/H3. Four cases

are considered: γ2γ1 = 0.5, 1, 2, 4 with various transmitting power. When γ2
γ1

is greater

than 1, it implies that the power of the SU signal is larger than the power of the

PU signal. Figure 12 shows the probability of detection versus SNR γ1. As seen,

Pd1 is always larger than the corresponding Pd2 especially when the TSU signal is

larger than the PU signal. It is reasonable to assume that the PU signal is difficult

to detect when the TSU signal is too large to exceed the PU signal. It also explains

why we need to apply antenna cancellation techniques as previously discussed. It is

reasonable to regard Pd1 as an approximation of Pd2 when the PU signal αp(n) and

the SU signal s(n) are within the same or close order of magnitude. However, be-

cause both are based on energy detection, Pd1 and Pd2 are both imperfect when the

SNR is relatively low. Thus, our proposed cooperative detection model provides a

more precise detection. It requires detection at RSU which assists TSU in spectrum

sensing.

From section 4.4, the detection results at TSU depend on BER estimation using

training sequences at RSU as well as using the optimal threshold which is a function

of the difference between the theoretical BER Pe when PU is inactive and P̂e when

PU is active. When the difference between Pe and P̂e is large, it is easier to judge

whether PU is active or not. From eq.(20) and eq.(26), Pe and P̂e are related to A
σ

and B
σ . Because the variance of the AWGN σ2 is a fixed value, Pe and P̂e depend

on the relationship between the two signal amplitudes A and B. Here, we denote

n = B
A as the ratio between the PU signal amplitude B and the SU signal amplitude

A. The difference between Pe and P̂e vs. SNR are shown in Figure 13. The difference

between Pe and P̂e increases with the increase in n. This is reasonable because in

this case PU adds more interference to the training sequence which causes bit errors

when its transmitting power is large. In addition, when n is fixed, the difference

between Pe and P̂e also increases with the increase in SNR because the interference
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from the PU signal is much larger than the effect of the AWGN. From Figure 13, Pe

and P̂e are always very close if n = 0.25. In order to obtain a better detection based

on BER estimation, we select n = 0.5, 1, 2 by transmitting power control signals.

According to our simulations, the probability of detection Pd3 based on BER

estimation vs. SNR with different values of n = 0.5, 1, 2 is shown in Figure 14.

In Figure 14, increasing n implies that the power of the PU signal becomes larger

relative to that of the TSU signal. In this case, PU is easier to be detected which

causes Pd3 to increase. Actually, the ratio n between the PU signal power and the

SU signal power can influence the experiment substantially. From Figure 14, the

simulation results are better than theory. This is reasonable because the theoretical

results are based on statistical assumptions while each instant of BER detection

is carried out in a discrete and independent fashion in the simulations. When n

decreases from 2 to 0.5. The difference between the simulation results and the

theory becomes smaller. Regular power control technology can force A = B. In the

next simulation, we assume that the power of the SU signal is the same as the power

of the PU signal. By comparing Pd3 in Figure 14 with Pd1 and Pd2 in Figure 12,

one can see that the detection Pd3 at RSU is greater than the detection at TSU in

theory when A ≥ B It is helpful when a missed detection occurs at TSU such as in

case I and case II in section 1.2.

So far, we have discussed the values of Pd1 , Pd2 and Pd3 vs. SNR. The proba-

bility of cooperative detection under hypothesis H1, P coopd1
and the probability of

cooperative detection under hypothesis H3, P coopd2
are presented in Figure 15 us-

ing theoretical analysis from eq.(35), eq.(36) and practical simulation. They are to

be compared with the probability of detection Pd1 and Pd2 . From Figure 15, it is

obvious that the performance of detection is improved using cooperative spectrum

sensing between TSU and RSU, especially when the SNR is low. For instance, at an

SNR=-20dB, cooperative detection increases the probability of detection to around

77% from around 55%. The probability of detection can be increased because a

missed detection at TSU is compensated by the detection at RSU. When PU is

not detected at TSU, there still exists a good probability for TSU to detect PU

at RSU. Thus, the proposed cooperative detection at both ends of SU overcomes

the shortcoming of energy detection and improves the performance of detection

when the SNR is low. In addition, experimental results are better than the re-

sults obtained from theory because the theoretical result are based on statistical

assumptions while each instant of spectrum sensing is carried out in a discrete and

independent fashion in the simulations. The experimental results can not be fully

described by theoretical analysis.

6.3 Probability of False Alarm

False alarm happens when hypotheses H0 or H3 are selected even though PU is

inactive. It directly affects the utilization of the spectrum. When the probability

of false alarm is high, a number of spectrum holes are missed by TSU. For this

reason, we discuss the probability of false alarm before discussing the utilization

of the spectrum. As in previous sections, the selection of the detection thresholds

λ1 and λ2 is based on eq.(12). According to eq.(37) and (38), the probabilities of

false alarm P coopf1
and P coopf2

cannot be expressed by P coopd1
and P coopd2

directly even
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though they depend on Pf1 and Pf2 . In Figure 16, we compare P coopf1
and P coopf2

,

with Pf1 and Pf2 which shows that the probability of false alarm increases when the

cooperative spectrum sensing is applied, especially when the SNR is low. Compared

with Pf1 and Pf2 , the total probability of false alarm P coopf1
and P coopf2

are greater

because of the additional probability of false alarm Pf3 at RSU. The simulation

results are better than the theory because the simulation results for Pd1 , Pd2 and

Pd3 are relatively higher than theory while Pf1 , Pf2 and Pf3 are relatively lower.

6.4 Spectrum Utilization

In this section, we discuss the spectrum utilization by periodical spectrum sensing

at TSU, simultaneously sensing/transmitting and cooperative spectrum between

TSU and RSU.

6.4.1 Simulation results for Periodical Sensing and Simultaneous Sensing

We first compare our proposed simultaneous sensing/transmitting with the tra-

ditional periodical sensing. For both cases, the sensing window is fixed. Its value is

either Wmax or Wmin. In periodical sensing, the ratio of the sensing window size W

to the sensing period can be represented as fsensW . The value of fsensW is selected

to be 2
3 . Figure 17 indicates that the utilization of the spectrum ηduplexnoise is always

higher than ηperiodnoise in both simulation and theory. This is reasonable because the

spectrum hole is not used to transmit data in each instance of periodical spectrum

sensing while our proposed model can sense and transmit data at the same time.

The duration of the wasted spectrum hole are shown as the blue blocks in Figure

1. One can show that the simultaneous sensing/transmitting algorithm wastes less

spectrum hole durations than periodical spectrum sensing.

When the SNR is relatively low (e.g. the SNR is from -20dB to -5dB), in either

of the two spectrum sensing algorithms, the utilization of spectrum becomes higher

with the increase of W from Wmin to Wmax. This is reasonable because the prob-

ability of false alarm decreases and the probability of detection increases when W

increases.

When the SNR is greater than 0 dB, the spectrum utilization of periodical sensing

ηperiodnoise becomes a constant value equal to 60% regardless whether W is Wmax or

Wmin. In this case, the probability of false alarm is always 0 and the probability of

detection is always 1 no matter how large the sensing window W is. ηperiodnoise depends

on the ratio of sensing window size to sensing period fsensW which is a constant.

For a fixed SNR greater than 0dB, the spectrum utilization of simultaneous sens-

ing/transmitting ηduplexnoise depends on the duration of the only sensing stage. Figure

18 shows the spectrum holes before TSU senses and uses them in the simulation,

and the usage of this spectrum after TSU senses and utilizes the spectrum holes. In

each spectrum hole, the tiny white space shown in Figure 18 (b) is the only sensing

stage which is at the beginning of each spectrum hole. The value of its duration

depends on the corresponding size of the sensing window W . When W is larger, the

spectrum utilization becomes lower. Thus, the energy detection with W = Wmax

has the lowest utilization. Its bigger step causes more missing usage of the spec-

trum holes. Therefore, its spectrum utilization with high SNR cannot come close

to 100%(96.72% from simulation). Conversely, energy detection with W = Wmin
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leads to an approximate 100%(99.67% from simulation) hole utilization. It shortens

the sensing duration. Hence, in order to obtain a high spectrum utilization at high

SNR, we use the adaptive window algorithm to assist with simultaneous sensing at

TSU.

6.4.2 Simulation on Simultaneous Sensing with Adaptive Window

Figure 19 indicates the comparison of spectrum utilization between sensing with

a fixed window and sensing with an adaptive window. When C is reduced from 5

to 1, the sensing duration becomes smaller and the spectrum utilization becomes

larger at high SNR. The best performance is obtained when C=1. In this case, the

spectrum utilization improves from 96.72% to 99.6%.

Once again, the simulation results are better than theory because the expected

value of the wasted duration T lossi in eq.(57) and in eq.(61) is larger than the one we

obtain in the simulations. This is because it is less possible for false alarm to occur

twice or more. The wasted duration in the simulations is mostly W or 2W which is

less than E{T lossi |sensing stage} and E{T lossi |sensing stage & transmitting stage}.

6.4.3 Simulation on Cooperative Spectrum Sensing

Figure 19, indicates that the spectrum utilization is improved by using an adap-

tive window. In this case, spectrum utilization approaches 100% when the SNR is

between -5dB and 10dB. However, the spectrum utilization is still low when the

SNR is between -20dB and -10dB. It is because we use energy detection to imple-

ment spectrum sensing at TSU. Energy detection has a poor detection performance

when the SNR is low(i.e. it causes the increase of the probability of false alarm and

the decrease of the probability of detection). In order to improve the probability of

detection and consequently spectrum utilization, cooperative spectrum with BER

estimation is introduced.

In the simulations, Figure 20 indicates that spectrum utilization at low SNR is

improved when the BER is considered as part of spectrum detection. For instance,

at an SNR = −20dB, the proposed ”adaptive sensing + BER” algorithm increases

spectrum utilization from around 44% to around 48% using either a fixed or an

adaptive sensing window in the simulations and increases spectrum utilization from

around 37% to around 43% in theory. Its spectrum utilization is greater than the

periodical spectrum sensing.This is reasonable because, at low SNR, the BER detec-

tion uses the PU channel to transmit a training sequence. On one hand, the training

sequence is used for PU detection in order to improve the probability of detection

and decrease the probability of false alarm. On the other hand, the training sequence

occupies the spectrum hole, which increases the spectrum utilization.

7 Conclusion
In this paper, a cooperative spectrum sensing between TSU and RSU is imple-

mented in CR. Our novel adaptive spectrum sensing scheme improves the spec-

trum utilization. Both the theoretical analysis and simulations show that the usage

of an adaptive window improves the spectrum utilization from 96.72% to 99.6%.

Furthermore, BER-assisted detection greatly helps the adaptive spectrum sensing.

Simulation results demonstrate that cooperative spectrum sensing can offer a bet-

ter performance. It increases the utilization of the spectrum from around 44% to
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around 48% in the simulations and increases spectrum utilization from around 37%

to around 43% in theory when SNR is −20dB.
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periodical spectrum and simultaneous sensing/transmitting at the same spectrum hole duration,
we can find that the simultaneous sensing provides a higher spectrum utilization and less
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Figure 20 The utilization of spectrum η vs. SNR γ1 when sensing at TSU with cooperative
sensing between TSU and RSU
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Algorithm 1 Spectrum Sensing with Adaptive Window Algorithm
1: W ←Wmax

2: wcounter ← 0
3: Initialize energy detection threshold λ← λ1
4: if T (y) < λ then
5: if Last window find the spectrum hole then
6: Go to step 12;
7: else
8: W ←Wmax;
9: wcounter ← 0;

10: SU starts to transmit signal;
11: end if
12: λ← λ2;
13: Go to step 4;
14: else
15: if Last window find PU then
16: if wcounter >= C then
17: if W −Wmin < Wmin then
18: W ←Wmin;
19: else
20: W ←W −Wmin;
21: wcounter ← 0;
22: end if
23: else
24: wcounter ← wcounter + 1;
25: end if
26: else
27: SU stops transmitting;
28: W ←Wmax;
29: wcounter ← 0;
30: end if
31: Go to step 3
32: end if

Table 1 RF simulation parameters.

RF parameters Value
Bandwidth B 5MHz

Noise spectrum density V (f) -174dBm/Hz
Noise Factor NF 7dB
Noise Power σ2 -100dBm

SNR of PU signal at Detector γ1 -20dB∼10dB
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