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ABSTRACT: 

A protocol was developed whereby the outer membrane of the sulfate-reducing bacteria 

Desulfovibrio vulgaris Hildenborough could be isolated and partially characterized. The 

isolated outer membrane fractions from cultures grown under high (100 ppm) and low (5 

ppm) Fe2+ conditions were compared by SDS-PAGE, and showed that several protein 

bands were derepressed under the low iron conditions, most notably at 50 kDa, and 77.5 

kDa. Outer membrane isolated from low iron cultured cells was found to contain two 

proteins, 77.5 kDa and 62.5 kDa in size, that reacted with a heme specific stain and were 

referred to as high molecular weight cytochromes. Studies conducted to examine the 

interaction of low iron isolated outer membrane on a phosphate/mild steel hydrogen 

evolution system, showed that addition of the membrane fraction caused an immediate 

acceleration of H2 evolution. Periplasmic fractions isolated from cultures grown under 

high and low iron conditions were compared via SDS-PAGE. Several of the protein 

bands, including those corresponding to the [Fe] hydrogenase subunits, were found to be 

derepressed under low iron conditions. A new model for the anaerobic biocorrosion of 

mild steel is proposed. 
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1.0 INTRODUCTION 

Microbially induced corrosion accounts for a portion of all the corrosion of metal surfaces. 

While there is disagreement on the proportion of corrosion due to biological rather than 

chemical factors, several studies have indicated that the dollar cost is quite significant. In 

1983 it was estimated that the United Kingdom spent between 300 to 500 million pounds 

per annum to repair corrosion damaged equipment and oil pipelines (Tiller, 1983), while' 

Hamilton (1985) places the cost for the same problem at between 150 and 350 million 

pounds per annum. The Brazilian oil company PETROBRAS estimated that at the 

offshore platforms in the Campos Basin (Rio de Janeiro), 6.5 million U.S. dollars per year 

was being spent on infusion of biocides in an effort to control the effects of biocorrosion 

(De Araujo-Jorge et al, 1992). Due to the large dollar cost of biologically mediated 

corrosion, much research has been conducted in this area in an effort to understand, and 

ultimately control, the problem. 

2.0 LITERATURE REVIEW 

2.1 Corrosion 

Corrosion of materials refers to the degradation of the material due to chemical or 

electrochemical action. Specifically, corrosion of metals may be described as an oxidation 

of a metal surface, with concomitant formation of metallic ions and loss of electrons to an 

oxidizing agent, resulting in a loss of metal mass. The loss of metal ions occurs as an 

anodic reaction, while the loss of electrons is a cathodic reaction; both reactions occurring 

at the same time gives rise to a corrosion cell. In an aqueous, aerated environment, water 

and oxygen act as cathodic agents, gaining electrons from the metal to form hydroxyl ions. 

These hydroxyl ions react with the metal ions released from the anode to produce 

Fe(OH)2, more commonly recognized as rust. In anaerobic, aqueous environments the 

reaction is much different. Under these conditions, and without the presence of any other 
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corrosive factors, it has been suggested that water dissociates (H20 H+ + OH-), and 

the protons react with electrons from the cathode to form atomic hydrogen. This hydrogen 

would then form a polarized protective envelope around the metal, preventing any further 

corrosion. 

2.2 Depolarization Theory 

In 1934, the Depolarization theory was put forward by von Wolzogen Kuhr and van der 

Vlugt to explain how sulfate-reducing bacteria (SRB) can disrupt the hydrogen envelope, 

and enhance corrosion by oxidizing the hydrogen via their hydrogenase enzyme system. 

The equations governing this reaction, as put forward in the 1934 theory, are listed in 

Table 1. 

Thus it is an attempt to re-establish the anodic/cathodic equilibrium that causes more FeO 

to be oxidized, resulting in pit formation on the metal surface and metal weight loss. 

Under anaerobic conditions a number of bacterial groups can utilize the hydrogen as an 

electron donor, though it is now generally accepted that the SRB are the main corrosion 

culprits due to their ability to both oxidize H2 and produce highly reactive sulfides as 

metabolic end products via H2S production. 

2.3 The Sulfate-Reducing Bacteria 

In 1895 Beijerinck brought to the attention of the scientific community a group of bacteria 

which grew anaerobically and produced a large amount of sulfide when grown on sulfate. 

Upon subsequent investigation it was found that the bacteria used sulfate as their terminal 

electron acceptor, and hence they were named "sulfate-reducing bacteria" (Postgate, 

1979) or SRB. 
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Table 1: Cathodic depolarization theory (von Woizogen Kuhr and van der Vlugt, 1934). 

Anodic reaction: 
4Fe 

Water dissociation: 
8H20 

Cathodic reaction: 
8W+8e 

Hydrogen oxidation: 
SQ + 4H2 

Sulfide Precipitation: 
Fe + H2S 

Hydroxide formation: 
3Fe2 + 601-1-

41'e' + 

8H+8OH 

8H , 4H2 

H2S + 2H20 + 20H 

FeS + 2H 

3Fe(OH)2 

Overall reaction: 
4Fe + SO4- + 4H20 4  o. FeS + 3Fe(OH)2 + 2H0 
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In the SRB, energy is conserved via two processes. The first is substrate level 

phosphorylation (SLP), as for example in the final step of acetate production from acetyl 

-(P) in which lactate oxidation is coupled to ATP production; the second method 

associates electron transport phosphorylation (ETP) with the reduction of sulfate to 

sulfide (Pankhania, 1988). The SRB as a group possess multiple mechanisms for coupling 

the oxidation of various substrates with concomitant reduction of sulfate, and oxyanions 

of sulfur, to ETP. While the SRB are defined by their physiological ability to use sulfate as 

their terminal electron acceptor, over the past fifteen years it has been shown that they can 

use a wide range of electron donors. It has been suggested that while initial evolutionary 

pressures may have been toward utilization of geologically produced substrates, 

subsequent evolution involved the utilization of organic substrates generated by the 

degradation of photosynthetic products. Today this is seen in the ability of the SRB to 

further oxidize reduced organic end-products, produced by fermentative bacteria from 

more complex organic compounds (Postgate, 1979; Pänkhania, 1988; Peck Jr., 1993). 

Due to their diverse substrate utilization the SRB can be broadly divided into two groups: 

Group I organisms which can oxidize their substrates incompletely to acetate; 

Group II organisms which can oxidize their metabolites, including acetate, directly 

to carbon dioxide. 

2.4 Hydrogen Utilization 

Many of the lactate utilizing SRB in groups I and II can also use H2 as an electron donor, 

Desulfovibrio sapovorans and Desulfovibrio multivorans being the two exceptions to this 

generalization. Most of the H2-utilizing Group II SRB have the ability to grow 

autotrophically with H2, CO2, and sulfate, while many of the Desulfovibrio species in 

Group I are able to gain their energy solely from H2 and sulfate via ETP. The oxidation 

of the 112 in the periplasm directly generates a proton gradient, and this gradient can be 



5 

used to form ATP in the ratio of one ATP molecule per three protons (Peck Jr., 1993). 

However these bacteria require a carbon source in addition to CO2 since they are not able 

to grow autotrophically (Pankhania, 1988). 

2.5 Hydrogenase 

The ability of the SRB to utilize and produce hydrogen indicates that they posses the 

enzyme hydrogenase. Hydrogenase enzymes catalyze the reversible reaction: 

2 H + 2e- <-> H2 

The hydrogenase class of enzymes is widespread throughout the plant and animal 

kingdoms. Hydrogenases have been found in many prokaryotes, as well as some 

eukaryotes such as algae, protozoa and higher plants (Fauque et al, 1988). The presence 

of a hydrogenase system in many anaerobic microorganisms allows them to oxidize and 

produce molecular hydrogen. The concept of interspecies hydrogen transfer by which 

different physiological classes of bacteria are united into consortia, is founded upon this 

single physiological characteristic. An example of this involves the genus Desulfovibrio 

and hydrogen utilizing methanogens. The interaction can be expressed via the following 

chemical reactions: 

Desulfovibrio: 

2 Lactate +4 H20 -* 2 Acetate +2 CO2 +4 H2 

Hydrogen-utilizing methanogens: 

CO2+4H2 -p 4CH4+2H20 

Net reaction: 

2 Lactate + 4H20 -p 2 Acetate + CO2 + CH4 +2 H2O 

(Singleton Jr., 1993) 
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In the past the hydrogenase system was perceived as being comprised of a single enzyme 

responsible for both H2 consumption and production. This enzyme was envisioned as 

being connected to various metabolic activities via low molecular weight electron carriers. 

This view was upheld even when faced with evidence of multiple hydrogenase activities on 

polyacrylamide gels and chromatography columns. At the time the single enzyme view 

persisted due to three main reasons. Firstly, the techniques employed to demonstrate 

multiple hydrogenase enzyme forms were prone to artifacts. Secondly, there existed no 

physiological rationale for the existence of multiple hydrogenase activities. Finally, 

hydrogenases appear active in all the standard assays for hydrogenase activity, these being; 

1) the proton-deuterium exchange assay, 2) H2 evolution from reduced methyl viologen, 

and 3) H2 utilization with artificial electron acceptors (Fauque et a!, 1988). Due to 

renewed interest in the physiology of hydrogenases over the past twenty years, 

hydrogenases have been purified to homogeneity from crude extracts of a wide number of 

bacteria including the SEJ3. While hydrogenases show wide diversity with respect to their 

molecular weight, specific activity, subunit structure, sensitivity to various inhibitors 

including °2, electron donors and acceptors etc., they have been broadly divided into six 

classes based on their sequence homologies, metal content, and physiological function. 

The first class is made up of nine H2-uptake membrane bound [NiFe] hydrogenases from 

eight aerobic, facultative anaerobic, and anaerobic bacteria. The second class contains four 

periplasmic, and two membrane bound H2-uptake [NiFe(Se)] hydrogenases from the 

SRB. The third class is comprised of four periplasmic [Fe] hydrogenases from strict 

anaerobic bacteria. The fourth is made up of eight soluble hydrogenases from 

methanobacteria and Alcaligenes euthropus H16, which are capable of reducing methyl 

viologen, factor F420-(F420), or NAD. The fifth is comprised of the H2-producing labile 

hydrogenase isoenzyme 3 of Escherichia co/i, while the sixth contains two soluble tritium-

exchange hydrogenases of cyanobacteria. In the case of the Desu/fovibrio genus, class two 
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and class three are represented. D. vulgar/s Hildenborough has a class three [Fe] 

hydrogenase, as well as a [NiFe] hydrogenase and a [NiFeSe] hydrogenase of the class 

two variety (Wu and Mondrand, 1993). 

2.5.1 The [NiFeSe] Hydrogenase 

The [NiFeSe] hydrogenases most extensively studied have been isolated from the species 

Desulfovibrio desulfuricans (Reider ci al, 1984) and Desulfovibrio baculalus (Teixeira ci 

a!, 1985). In Desulfovibrio vulgar/s Hildenborough, this enzyme has been found to be 

localized in the cytoplasm and is believed to be associated with the cytoplasmic membrane 

(Rohde ci a!, 1990). This enzyme has, unlike the [NiFe] and [Fe] hydrogenases, a higher 

activity in H2 production than H2 uptake. The [NiFeSe] hydrogenase is made up of two 

subunits approximately 57 and 31 kDa in size (Menon et al, 1987). While the 

physiological role of this enzyme is still uncertain, it has been suggested that the [NiFeSe] 

hydrogenase is responsible for cytoplasmic hydrogen production from organic substrates 

(Fauque et a!, 1988; Rohde ci al, 1990). 

2.5.2 The [NiFe] Hydrogenase 

Data from antibody cross reaction studies suggest that the [NiFe] hydrogenases represent 

a ubiquitous class of immunologically related enzymes (Fauque c/ a!, 1988). [NiFe] 

hydrogenases of the type found in Dv. vulgaris and Dv. gigas are probably the most 

widespread among prokaryotes. In Desulfovibrio vulgar/s Miyazaki the [NiFe] 

hydrogenase has been found to be comprised of two subunits of approximately 29 and 62 

kDa, and has 80% homology to the [NiFe] hydrogenase of Desulfovibrio gigas (Deckers 

ci a!, 1990). Localization studies in Dv. vulgar/s place this enzyme on the periplasmic 

aspect of the cytoplasmic membrane (Rohde ci a!, 1990). It is proposed by Fauque et a! 
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(1988) that the [NiFe] hydrogenase activates hydrogen for the reduction of sulfite and 

thiosulfate. 

2.5.3 The [Fe] Hydrogenase 

The [Fe] Hydrogenase of Dv. vulgaris Hildenborough is a dimeric enzyme made up of 46 

and 10 kDa subunits (Voordouw et a!, 1985). This iron-sulfur hydrogenase contains two 

ferredoxin-type (4Fe-4S) clusters plus an atypical iron-sulfur centre believed to be 

involved in the activation of H2. The small subunit actually codes for a peptide 13,500 

daltons long (Prickril et a!, 1986). The extra 3,500 daltons comprises a signal peptide that 

is thought to be cleaved during translocation across the cytop!asnic men±rane to yield the 

mature small subunit. 

The [Fe] hydrogenase is periplasmically located, and has no apparent membrane 

associations. This allows the [Fe] hydrogenase to be removed from the cells by washing in 

a Tris-HCI, Sodium Carbonate, EDTA pH 9.0 buffer solution (Van der Westen et a!, 

1978). In Dv. vulgaris Hildenborough much attention has been focused on this 

hydrogenase due to the fact that while it comprises 0.2% of the total cell protein (Van 

der Westen et a!, 1978), it is responsible for -95% of the cells total hydrogenase activity 

(Badziong and Thauer, 1980). The [Fe] hydrogenase is among the most active enzymes in 

this group (Hoogvliet et a!, 1988), far outstripping the activities of the [NiFe] or [NiFeSe] 

hydrogenases. It has recently been found that the [Fe] hydrogenase of Dv. vulgaris 

Hildenborough is regulated by the levels of free Fe2 in the system. Under conditions of 

low Fe2+ (<1 ppm) availability the hydrogenase is derepressed by some, as yet unknown, 

mechanism (Bryant et a!, 1993). Although this phenomenon has not been observed before 

in SRB, the regulation of proteins by iron is well established in other genera (Bagg and 

Neilands, 1987; Dai eta!, 1992; O'Halloran, 1993). 
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2.6 Hydrogenase Inhibition 

The hydrogenase enzymes exhibit a range of diversity with respect to inhibitors such as 

°2, CO, NO, NO2 and C2H2 (Serebiyakova and Gogotov, 1991). As a group the 

Nickel-containing hydrogenases are generally oxygen stable, that is to say they can be 

reversibly inactivated. The iron hydrogenase of Dv. vulgaris Hildenborough is not rapidly 

inactivated by oxygen. This fact was not recognized until 1978 when work done by van 

der Westen et al showed the [Fe] hydrogenase to be highly stable in its oxidized form. If 

purified under anaerobic conditions, in its reduced form, the enzyme is very unstable. The 

[Fe] and [NiFeSe] hydrogenases from Dv. vulgaris Hildenborough are also very sensitive 

to low levels of CO. In contrast the [NiFe] hydrogenase of Dv. vulgaris Hildenborough is 

relatively insensitive requiring 20 to 30 times the amount of CO for the same percentage 

of inhibition to occur (Berlier et al, 1987). All three enzymes are very sensitive to low 

levels of nitric oxide, the [Fe] and [NiFeSe] being the most sensitive of the three. Nitrite 

produces a very selective inhibition, affecting the [Fe] and [NiFeSe] hydrogenases. The 

[NiFe] hydrogenase is insensitive to the NO2- effects (Berlier et a!, 1987). Acetylene 

produces an opposite effect on the hydrogenases. The [Fe] hydrogenase is unaffected by 

C2H2 while the nickel-containing hydrogenases are inhibited by the acetylene, [NiFe] 

hydrogenase being 10-50 fold more sensitive than the [NiFeSe] hydrogenase. 

2.7 The Role of Ilydrogenases In Corrosion 

Since the 1934 work of von Woizogen Kuhr and van der Vlugt, it has been shown that the 

SRB can mediate corrosion of iron either indirectly through metabolic end products such 

as H2S, or via direct depolarization of cathodic hydrogen. A main player in both of these 

scenarios is the hydrogenase enzyme. In work done by Bryant and Laishley (1990) using 

mild steel rods and cell free hydrogenase extract, several interesting effects were noticed. 

Iron rods, in the presence of dd IIO and under anaerobic conditions, did not produce 
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hydrogen gas spontaneously. An additional requirement in the form of phosphate, was 

required for H2 gas to be produced (Bryant and Laishley, 1990; Bryant and Laishley, 

1993). Under anaerobic conditions phosphate buffer (pH 7.0), reacted with mild steel to 

produce an iron/phosphate complex, subsequently identified as vivianite, and H2 gas in an 

approximate ratio of 1:1 of Fe:H2. The following chemical reaction has been proposed to 

account for the observations: 

3 FeO +4 H2P041 -> Fe3(PO4)2 +3 H2 +2 HP042 

This hydrogen generating system was used to explore the biocorrosion mechanism for 

mild steel. When H2 gas was being evolved from iron rods it was found that addition of 

either artificial or natural electron acceptors of hydrogenase, could temporarily halt H2 gas 

evolution. The electron acceptors preferentially siphoned electrons from the cathodic pole 

of the corrosion cell until they were fully reduced, at which point H2 gas evolution 

resumed. It was found that this hydrogen evolution lag due to the electron acceptors was 

concentration dependent, and the addition of cell free hydrogenase extract could lower the 

time required for electron acceptor reduction quite significantly. Finally it was observed 

that once the electron acceptor was fully reduced by cathodic depolarization, addition of 

hydrogenase to this reaction caused the enzyme to switch into its reverse catalytic mode, 

oxidizing the reduced electron acceptor, and producing hydrogen gas at an accelerated 

rate (Bryant and Laishley, 1990). As long as phosphate was present in sufficient 

concentration to elicit H2 gas evolution through its reaction on mild steel, the hydrogenase 

enzyme did not even have to be in contact with the iron rods in order to accelerate 

corrosion. This effect was demonstrated through the dual flask experiments of Bryant and 

Laishley (1993). In these experiments dual flasks were used in which H2 evolving metal in 

one flask was physically separated from a second flask containing hydrogenase. The gas 

phases of these two flasks were connected via glass tubing. The solubilization rate of the 
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metal rods, in the presence of phosphoric acid (pH 2.2), was 19% higher when active 

hydrogenase was present in the second flask. A similar flask setup, but minus the acid, 

showed no metal solubilization even when active hydrogenase was present in the second 

flask. This increased corrosion via hydrogenase agreed with similar type whole cell studies 

by Ragagopal and Le Gall (1989), and Belay and Daniels (1990). 

The relationship between hydrogenase activity level in mixed populations of SRB and 

corrosion was studied by Bryant et a! in 1991. In this study two mixed populations of 

SRB were isolated from the field. One population was taken from a corroding oil pipeline 

(hydrogenase positive activity), whilst the second was isolated from a non-corroding oil 

pipeline (hydrogenase negative activity). These two populations were used to inoculate 

two separate Robbin's devices. The Robbin's device, a circular tube (15 mm diameter by 1 

meter) made of Admiralty brass, had cleaned, pre-weighed cylindrical steel studs inserted 

into sample ports, which were separated from the brass casings by rubber 0 rings. 

Medium was circulated through the devices at a flow rate of 4 liters/minute. Studs were 

periodically removed from the devices, and the bioflim analyzed for a most probable 

number (MPN) count, as well as for hydrogenase level via the semi-quantitative Caproco 

test. Biofllms developed in both devices, with MPN values of the corrosive population 

ranging from 1.14 x 104 to 1.4 x 107 organisms/0. 5 cm2 stud, and numbers of the non-

corrosive population reaching 1.5 x 104 organisms/0.5cm2. The hydrogenase activity level 

in the corrosive population, as measured by the Caproco© test, was high (+++) and was 

associated with a significantly higher corrosion rate (7.79 mm/year) than the non-corrosive 

bioflim (0.48 mm/year) with no measurable hydrogenase activity (Bryant et al, 1991). 

While the link between SRB accelerated corrosion and the derepressible periplasmic [Fe] 

hydrogenase has been implied (Bryant and Laishley, 1990; Bryant et al, 1991; Bryant and 
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Laishley, 1993), one very important aspect of the corrosion model remains unclear. While 

the hydrogen film on the metal surface lies exterior to the bacterium and the [Fe] 

hydrogenase is located within the periplasmic space, the question remains as to how the 

organism strips the hydrogen from the metal surface. 

2.8 The Outer Membrane 

Initially the outer membrane (OM) of the gram negative bacteria was viewed as a simple 

lipid bilayer for protection and sieving of compounds up to —500 daltons. Now it is 

considered a dynamic layer interfacing with the surrounding environment. The modern 

view of the outer membrane is that of a fully asymmetric bilayer, the inner layer being 

comprised of lipid or phospholipid, while the outer layer contains the lipopolysaccharide 

(LPS). Many of the outer membrane's unique barrier properties stem from the self 

association of the anionic LPS through divalent cation cross bridging plus the strong 

association of LPS with proteins (Hancock, 1991). 

The outer membrane may have a very diverse amount of proteins present. Generally there 

are only three to eight major protein species in the OM, but these species can have 50,000 

to 200,000 copies per cell, making them the most predominant proteins in the bacterium. 

Apart from the major protein species there may be 50 to 100 minor species also present. 

Many of these proteins are associated with lipid moieties and, in addition to their various 

functions, also play a part in anchoring the outer membrane bilayer to the underlying 

peptidoglycan layer (Hancock, 1991) e.g. Braun's lipoprotein. 
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2.9 Functions Of The Outer Membrane 

2.9.1 Cell Uptake 

One of the primary functions of the outer membrane is to allow the passing into the cell of 

a restricted variety of molecules, while at the same time excluding others. With few 

exceptions all hydrophilic molecules above a certain limit are excluded from gram negative 

bacteria. This size limit cut off varies from species to species. Many of the gram negative 

bacteria also exclude some hydrophobic and amphiphilic molecules. 

There are two classes of uptake pathways. These pathways are of either the porin, or non-

porin types and determine the selective permeation of molecules across the outer 

membrane. The porin class of proteins are found throughout the different gram negative 

bacteria, and can aggregate to form water-filled channels through which small hydrophilic 

molecules can pass. While most form sodium dodecylsulfate (SDS) resistant trimers, their 

individual molecular weights can range between 30,000 and 48,000 daltons. Porins can be 

either specific or non-specific. The non-specific type forms a water-filled channel through 

which hydrophilic molecules smaller than a given size limit can pass, thus determining the 

exclusion limit of the outer membrane, and the cell. They are typically only weakly ion 

selective, and are chemically non-selective. The specific class of porins is made up of only 

six examples, and of these six only the OmpP of P. aeruginosa and LamB of E. coli have 

been well studied. It has been suggested that the iron-regulated outer membrane proteins, 

which are assumed to be important in bacterial pathogenesis, may act as a specific 

receptor proteins for iron-siderophores or iron-transferin complexes (Hancock, 1991). 

2.9.2 Cell Export 

Gram negative bacteria must also be able to selectively export or excrete end products, 

secondary metabolites, siderophores etc., into their surrounding environment. The export 
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of these products must not come at the expense of letting in unwanted substances, nor 

must periplasmically located proteins be lost to the environment. At this point there is no 

well understood method by which such specific export could occur (Hancock, 19911). 

2.9.3 Receptors 

Since the outer membrane is the first line of interaction that the gram negative bacterium 

has with its surrounding environment, it is not surprising that it contains receptors for 

binding specific nutrients and proteins. These receptors have been placed into three 

classes, the first of which are the nutrient receptors. These receptors act to concentrate 

scarce nutrients on the surface of the cell in preparation for uptake. A second class of 

receptors is involved in the cross bacterial or cross species transfer of DNA, via the 

binding of pili involved in conjugation. While the specific receptors (Postgate, 1979) 

involved are unknown, LPS has been implicated in binding other types of ph. The final 

class of receptors are those which allow the binding of bacteriophage or bacteriocins. 

While having these receptors puts the cells at risk, they also play other roles in the outer 

membrane and are required for cell functioning. 

2.9.4 Interaction with the Environment 

The outer membrane by its very nature, is in close contact with the environment around 

the organism, even if the organism is surrounded by a capsule. It is therefore no surprise 

that outer membranes can interact directly with environmental surfaces. Recently the first 

evidence showing components of an electron transport system to be present in the OM 

was put forward by Myers and Myers (1992). They discovered that cytochromes were 

preferentially located in the outer membrane of anaerobically grown Shewanella 

putrefaciens, and that these cytochromes could shuttle electrons to externally located, 
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insoluble Mn (IV) and Fe (III) oxides. These oxides were being used by the bacterium as 

external terminal electron acceptors. 

2.10 Cytochromes 

Since the discovery of cytochrome C3 in the SRB, a variety of cytochromes have been 

discovered. A tentative classification of these cytochromes has been suggested by Moura 

et a! (1991). This classification of the sulfate and sulfur reducing bacteria is based on the 

number of hemes per monomer, heme axial ligation, heme spin state, and primary 

structures. A brief overview of the cytochrome classification system follows: 

2.10.1 Monoheme Cytochromes 

Cytochrome C-553 is a 9 kDa protein containing a single covalently attached heme-C 

group with methionine and histidine as axial ligands. C-553 has a mid point redox 

potential that is around 0 mV. This value is quite negative when compared to other 

methionine histinide-ligated monochrome cytochromes. It has been proposed that C-553 

acts as a natural electron acceptor for the formate dehydrogenase system in Dv. vulgaris 

Miyazaki. 

2.10.2 Diheme Cytochromes 

When grown under sulfate or nitrate respiring conditions Dv. desulfuricans produces a 52 

kDa dimeric cytochrome protein. Two C-hemes are present per 26 kDa subunit. This 

cytochrome has bis-histidinyl axial coordination with distinct midpoint potentials of -168 

and -330 mV, The N-terminus of this protein shows no homology to any other known 

cytochrome 
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2.10.3 Triheme Cytochromes 

Cytochrome C-55 1.5 is a triheme cytochrome isolated from the sulfur-reducing bacteria 

Desulfuromonas acetoxidus. This cytochrome, named C-7, has a molecular mass of 9 

kDa. Two of the hemes have midpoint potentials of -177 mV while the third has a 

midpoint potential of -107 mV. This heme shows a high degree of homology with the 

tetraheme proteins. While the bacterium does not contain any hydrogenase, the 

cytochrome is still reduced by Desulfovibrio hydrogenase. This casts doubt on the 

"specificity" of cytochrome C3 as a cofactor for hydrogenases (Moura et a!, 1991). 

2.10.4 Tetraheme Cytochromes 

The 13 kDa tetraheme protein is characteristic of the family Desulfovibrionacae. In this 

protein four hemes are covalently bound to the polypeptide chain via the thioether linkages 

provided by cysteine residues. The axial ligands in this protein are histidines. The four 

hemes are localized in protein environments that are quite distinct from each other. The 

tetraheme cytochromes have been suggested to act as cofactors of hydrogenase and as 

such are required for the electron transfer to redox partners like ferredoxin, flavodoxin and 

rubredoxin. 

2.10.5 Hexadecaheme Cytochrome 

A high molecular weight cytochrome (HMC) with sixteen heme groups has been isolated 

from Dv. vulgaris Hildenborough by Yagi et a! (Higuci et a!, 1987). The gene encoding 

this large cytochrome has been cloned and sequenced. This work has revealed that the 

HMCholoprotein is a single polypeptide of molecular weight 65.5 kDa. Of the 16 heme 

groups, 15 have bis-hisdinyl coordination. When the arrangement of heme binding sites 

and coordinated histidines are compared between cytochrome C3 and HMC, it appears 

that the HMC has three cytochrome C3-like domains. The gene for HMC encodes for a 31 
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amino acid signal peptide with characteristics similar to those of Dv. vulgaris 

Hildenborough cytochromes C3 and C553, though of greater overall length. The HMC 

signal sequence also differs in that its three NH2-terminal Arginine residues are spaced out 

rather than adjacent, and the signal sequence peptide cleavage site is not of the AJ,-A form 

as it is in the other two procyto chromes (Pollock et a!, 1991). 

Recent sequence findings show that HMC is the first protein of an operon containing a 

total of eight open reading frames, encoding the proteins Orf 1 to 6, Rrf 1 and Rrf 2. Orf 1 

is the high molecular weight cytochrome, Orf 2 has been described as a transmembrane 

redox protein with four iron-sulfur clusters as determined by its similarity to DmsB from 

E. coli. Orf 3, 4, and 5 are highly hydrophobic proteins with similarities to subunits of 

NADH dehydrogenase, or cytochrome c reductase. Due to its similarity to the ferredoxin 

domain of [Fe] hydrogenase from Desulfovibrio, the Orf 6 protein was determined to be a 

cytoplasmic redox protein containing two iron-sulfur clusters. The Rrf 1 protein was 

identified as belonging to the family of response regulator proteins, while the function of 

Rrf 2 is as yet unknown (Rossi eta!, 1993). Rossie et al believe that the proteins from this 

operon form a large redox protein complex that spans the cytoplasmic membrane (CM), 

and is involved in the transport of electrons across the membrane. The electrons being 

provided by periplasmically located hydrogenases (Rossi et a!, 1993). 

2.11 Purpose of Research 

It is evident that SRB action is an important part of the anaerobic biocorrosion process, 

and that the hydrogenase enzyme system plays a key role (Bryant and Laishley, 1990; 

Bryant et a!, 1991; Bryant and Laishley, 1993; Bryant et a!, 1993). Our recent finding 

involving iron regulation of the [Fe] hydrogenase, and preferential electron siphoning from 

mild steel via electron carriers needed for [Fe] hydrogenase reduction activity, differs from 
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the current cathodic depolarization theory. The latter assumes atomic H forms a protective 

film on the metal surface, essentially neutralizing any further electrochemical reaction, 

however the SRB disrupt this delicate electrochemical balance by utilizing this hydrogen 

as an energy source, causing further iron oxidation in trying to maintain the initial 

electrochemical state. 

We believe the electrons at the cathodic site on mild steel are removed via an electron 

carrier system located in the OM of Dv. vulgaris, which then interacts with the organism's 

periplasmic derepressed [Fe] hydrogenase to produce H2 in the periplasmic space. This 

gas is then oxidized by the cytoplasmic membrane associated [NiFe] hydrogenase for 

energy and metabolic reducing equivalents. Therefore the purpose of this study was to 

isolate the outer membrane of the SRB Dv. vulgar/s Hildenborough, under iron stressed 

conditions, and determine if there exists an electron carrier system capable of coupling the 

metals electrons, to the bacterium's derepressible periplasmic [Fe] hydrogenase, activating 

its reductive activity for evolving H2. 
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3.0 METHODS AND MATERIALS 

3.1 Culture Conditions 

Cultures of Desulfovibrio vulgaris Hildenborough DSM 8303 were maintained in culture 

tubes containing lactate mineral salts medium (Pankhania et al, 1986), supplemented with 

0.1 g of sterile iron powder. These tubes were incubated in a stainless steel chamber 

stored at 37°C. This chamber was rendered anaerobic through the use of a BBL H2/CO2 

gas pack backed with palladium catalyst; H2S was removed through the use of traps 

containing 10% wt./vol. cadmium acetate to precipitate H2S as CdS (Laishley and 

Krouse, 1978). To gather enough material for experimentation, 2 L cultures of D. vulgaris 

were grown up in the following manner. All glassware used in the experiments was 

washed in 18N HCl and rinsed in doubly distilled (dd) 1120, to remove possible Fe 

contamination from the glass surface. A 200 mL culture of lactate mineral salts medium, 

supplemented with 100 ppm of Fe 2+, in the form of FeC12 41120, was inoculated with a 

four day old test tube culture (10 mL). This 200 mL culture was incubated at 37°C under 

an atmosphere of N2. After 48 hours this 200 mL culture was in turn used to inoculate 2 L 

of lactate mineral salts medium supplemented with either 5 ppm or 100 ppm of Fe2+, in 

the form of FeCl2 . 4H20. Cultures were grown at 37°C under an atmosphere of N2. All 

culture flasks were connected to bottle traps containing 10% wt./vol. cadmium acetate 

(Laishley and Krouse, 1978). Cultures were harvested at mid to late log phase as 

determined by pH, and acetate production. 

3.2 Growth Analysis 

3.2.1 pH Analysis 

Culture medium pH was determined using a Fisher Accumet Selective Ion Analyzer model 

750 pH meter. 
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3.2.2 Acetate Analysis 

Acetate was measured by first filtering samples through a 0.45 pm-pore-size syringe filter. 

The filtrate (1 tL) was injected into a Perkin-Elmer 3B gas chromatograph equipped with 

a flame ionization detector and a 183 cm glass column containing 10% Flourad FC-43 1 

plus 1% H3PO4 on a Chromosorb W-HP 80/100 mesh. The temperature of the column 

was maintained at 130 0 C, and the nitrogen carrier gas flowed at a rate of 30 mL/min. 

3.3 Extraction of Periplasmic Fraction 

The culture was centrifuged at 15,000 x g in a Sorval RC5B centrifuge, for 20 minutes at 

4°C. The supernatant was discarded, the cell pellet resuspended in a small amount of fresh 

salts medium and centrifuged at 15,000 x g for 20 minutes. After the wash, the cell pellet 

was resuspended in 10 mL of 10 mM Tris (pH 8.5), 1 M NaCl to help break up 

extracellular polymeric substances (BPS), and the centrifugation cycle repeated as per 

above. The resulting pellet was resuspend in extraction buffer pH 9.0 (1 mL per 100 mL 

of culture spun down). The extraction buffer was comprised of 50 MM EDTA, 50 MM 

Tris base, and 170 mM Na2CO3 (Van der Westen et a!, 1978). 

The cell/buffer mixture was incubated at 37°C for 30 minutes, stirring occasionally. The 

extraction solution was centrifuged at 20,000 rpm for 20 minutes at 4°C. The supernatant 

containing the periplasmic fraction was decanted, and the pellet containing the cells was 

saved for membrane isolations. 

3.4 Membrane Isolation 

The isolation of the outer membrane (OM) and cytoplasmic membrane (CM) was carried 

out using a modification of the protocols of Booth and Curtis (1977), and Myers and 

Myers (1992). The pellet obtained from the hydrogenase extraction procedure was 
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resuspend in 10 mM Tris (pH 8.5), 1 M NaCl. To this cell suspension was added a 10% 

volume of disodium EDTA (20 mg/mL), a 10% volume of Lysozyme (6.4 mg/mL), and a 

few crystals of DNase. The mixture was shaken gently at room temperature for 30 

minutes. Brij 58 (polyoxyethylene cetyl ether) was then added to a final concentration of 

3%, to lyse the cells (Myers and Collins, 1987), and the mixture was incubated for 30 

minutes at room temperature with gentle stirring. MgCl2 was added to a final 

concentration of 10 mM. The resulting suspension was layered onto 5 mL of 70% sucrose, 

and centrifuged at 45,000 rpm in a Beckman Ultracentrifuge using a Ti 70.1 rotor, at 4°C 

for 60 minutes. Due to its lower density the CM will remain suspended at the top of the 

70% sucrose while the higher density OM will be pelleted out (Booth and Curtis, 1977). 

After centrifugation the top layer (CM) was removed and dialyzed against 10 mM Tris pH 

7.5, 20 mM NaCl for 15 hours at 4°C. This fraction was subsequently centrifuged at 

45,000 rpm in a Ti 70.1 rotor for 1 hour to pellet the cytoplasmic membrane. 

To obtain the OM, pellets obtained from the Brij 58 treatment were re-suspended in 10 

mM Tris pH 7.5, 20mM NaCl, and Triton X-100 added to a final concentration of 3%. 

The mixture was incubated at room temperature for 30 min while stirring gently. During 

this time period the Triton X-100 solubilized any remaining contaminating CM, while 

leaving the OM untouched (Schnaitman, 1971a; Schnaitman, 1971b). The resulting 

suspension was layered onto 5 mL of 70% sucrose, and centrifuged at 45,000 rpm in a 

Beckman Ti 70.1 rotor, at 4°C for 60 minutes. The outer membrane pellets were 

resuspend in ddH20, divided into 0.5 mL aliquots, and frozen at -20°C. 
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3.5 Protein Estimation 

Protein was estimated by two methods. Periplasmic extract protein concentration was 

measures via the Bio-Rad protein dye binding assay as outlined in Bio-Rad Technical 

Bulletin No: 1051. 

The membrane fractions could not be measured by the Bio-Rad assay due to the 

interfering effects of detergents and sucrose. In these cases a modified Lowry protein 

assay was carried out as described by Markwell et al in 1978. 100 parts of Reagent A 

(2.0% Na2CO3, 0.4% NaOH, 0.16% Sodium Tartrate, and 1% SDS) were mixed with 

one part of Reagent B (4% CuSO4 5 H20) to make Reagent C. Samples containing 10 

to 100 jig of protein were made up in 1 mL volumes of dd H20. To these samples 3 mL 

of Reagent C were added. The samples were incubated at room temperature for 15 

minutes. 0.3 mL of Folin-Ciocalteau phenol reagent (diluted 1:1 with dd H20 just prior to 

use) was added to each of the tubes and mixed in vigorously. The tubes were incubated 

for 45 minutes at room temperature, then the optical densities measured at 660 nm. 

In both cases the optical densities were measured on a Perkin-Elmer Lambda 3 

spectrophotometer. Bovine serum albumin was used in construction of the standard 

curves. 

3.6 Warburg Respirometry 

3.6.1 Hydrogenase Activity Assay 

Assays for hydrogenase activity of periplasmic fractions by hydrogen uptake, were carried 

out using a Warburg respirometer apparatus. The main reaction compartment contained 

0.1 M Tris buffer (pH 8.5), 0.05 M NO2-, and 10 mM MgCl2, while 15 mM methyl 

viologen (M.V.) was placed in a side arm. A volume of the periplasmic fraction to be 
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tested, containing 10 tg of protein was added to the main reaction chamber. These flasks 

were attached to manometers and incubated at 37°C. Prior to the commencement of any 

reactions, the vessels were gassed with high purity 112 for 15 minutes. After the flask was 

sealed, the reaction was started by tipping the M.V. from the side arm into the main 

vessel. One unit of enzyme activity was defined as one xmole of 112 uptake per minute per 

mg of protein. All reactions were monitored by standard manometric techniques (Umbriet 

et al. 1959). To test the inhibitory effect of NO2 on the periplasmic [Fe] hydrogenase, 

NO2- was added to the main reaction chamber to a final concentration of 50 mM, and 

reacted in the manner described above. Since NO2- selectively inhibits the [Fe] and not the 

[NiFe] hydrogenase, any hydrogenase activity in the presence of NO2- was attributed to 

the [NiFe] hydrogenase (Berlier ci a!, 1987). 

3.6.2 Detection of Enzymatic Marker for CM and OM 

Warburg vessels were set up to test for the [NiFe] hydrogenase, a known cytoplasmic 

membrane marker (Rohde et a!, 1990). The main reaction compartment contained 0.1 M 

Tris buffer (pH 8.5), 0.05 M NO2-, and 10 mM MgC12, while 15 mM methyl viologen 

was placed in a side arm. A volume of the CM or OM fraction to be tested, containing 75 

tg was added to the main compartment, and the vessel gassed under H2 for 15 minutes at 

37°C. After the flask was sealed, the reaction was started by tipping the M.V. from the 

side arm into the main vessel. One unit of enzyme activity was defined as one tmole of 112 

uptake per minute per mg of protein. Warburg vessels to test for total hydrogenase 

activity were set up in a similar manner, but with the [Fe] hydrogenase inhibitor NO2 

replaced by dd H2O. 
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3.6.3 Investigation of the Effect of the Isolated Outer Membrane Fraction 

on Mild Steel 

The phosphate buffer/mild steel H2 generation system developed by Bryant and Laishley 

(1990) was used to observe the effects of the isolated OM on the production of H2. The 

Warburg vessels contained 2.2 mL of 0.1 M phosphate buffer and 3 mild-steel rods in the 

center well, while the OM fraction was placed in the side arm. The vessel was incubated 

under an atmosphere of N2 at 37°C for 15 minutes before the vessel was sealed, and 

readings commenced. Outer membrane was tipped from the side arm of the Warburg 

vessel into the reaction mixture after 50 minutes. This time period allowed the metal to 

equilibrate to a constant hydrogen production rate, before addition of the outer membrane. 

Gas production during this time period was compared to a control containing mild steel 

rods and phosphate buffer, but no OM. As an added control a Warburg flask containing 

mild-steel rods, 2.2 mL of de-ionized H20, and OM in the side arm, was also run to check 

if OM could elicit hydrogen production from metal without the action of phosphate. 

3.7 SDS-PAGE Analysis of Isolated Membrane Fractions 

Samples of isolated CM and OM preparations Isolated from 5 ppm and 100 ppm iron 

cultures were mixed with Laemmli sample buffer and boiled at 100°C for 5 minutes. 

Samples were analyzed using the PhastsystemTM (Pharmacia LKB Biotechnology Inc.). 

The gels had an acrylamide gradient of 8 to 25%, and were stained for total protein via 

Coomassie Brilliant Blue R250, or a combination of Coomassie followed by silver 

staining, for more dilute samples. Protein standards run on the gel were Gibco BRL 

Protein Molecular Weight Standards; Myosin (H-chain) (200 kDa), Phosphorylase B (97.4 

kDa), Bovine serum albumin (68 kDa), Ovalbumin (43 kDa), Carbonic anhydrase (29 

kDa), J-Lactoglobulin (18.4 kDa), and Lysozyme (143 kDa). 
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3.8 Detection of Cytochromes in OM Fractions Via Heme Staining 

Heme containing proteins were detected on 10% SDS-PAGE through the use of the 

hemes peroxidase activity. A 6.3 mM solution of 3,3',5,5-tetramethylbenzidine (TMBZ) 

was prepared in methanol. Immediately prior to use 3 parts of the TMBZ solution was 

added to 7 parts of 0.25 M sodium acetate (pH 5.0). The gel was immersed in this mixture 

at room temperature, in the dark, for several hours. H202 was added to a final 

concentration of 30 mM (Thomas et al., 1976). A positive band test was indicated by a 

blue colour reaction. To stop the reaction, and for short term storage, the gel was moved 

to a container containing dd H20. 

3.9 Photography of Protein Gels 

All photography was carried out using Ilford XP2TM 400 ASA black and white film. The 

camera was a CanonTM EOSTM A2E, and the lens was an UltrasonicTM 28-105, 1:3.5/4.5. 

Gels to be photographed were placed on a bottom illuminated light table, and photos were 

taken with 2 to 3 stops compensation, to adjust for the light table intensity. 
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4.0 RESULTS 

4.1 Isolation of D. vulgaris Cytoplasmic and Outer Membranes 

D. vulgaris cultures were grown in 2 L of Lactate mineral salts medium supplemented 

with 5 and 100 ppm ferrous iron (Bryant et a!, 1993), and harvested at late log phase as 

indicated by their acetate production and medium pH profiles (Figure 1). The isolation of 

the two membranes and periplasmic fraction from these cultures was outlined in Figure 2. 

Furthermore the [NiFe] hydrogenase known to be located in the cytoplasmic membrane, 

was chosen as the marker for this membrane fraction. The isolated fractions were 

measured for hydrogenase activity as shown in Table 2. Nearly all the hydrogenase activity 

(>95%) was located in the periplasm (Supernatant I), which agrees with the findings of 

Badziong and Thauer (1980), while minor amounts of the hydrogenase activity occurred 

in the membrane fractions. 

Further characterization of the hydrogenase activities in these fractions was performed in 

order to determine the percentage of [Fe] to [NiFe] hydrogenase activity. To differentiate 

between these two hydrogenases, nitrite inhibition studies were conducted. It has been 

reported that NO2- is a potent inhibitor of the [Fe] hydrogenase while having no apparent 

effect on the [NiFe] hydrogenase (Berlier et a!, 1987). After treatment with the NO2-, any 

remaining hydrogenase activity was assumed to be the [NiFe] hydrogenase. The data 

presented in Table 3 shows that the activities in both the periplasm and the OM (Pellet III) 

was mainly due to the [Fe] hydrogenase (99% and 94% of activity respectively). Only 

the cytoplasmic membrane (Supernatant II) showed a significant proportion of activity due 

to the [NiFe] hydrogenase. In this case approximately 55% of the measured activity was 

attributed to the [NiFe] hydrogenase. This asymmetric distribution of the [NiFe] enzyme 

supports previous findings that associate the [NiFe] hydrogenase with the cytoplasmic 
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Figure 1: Acetate and pH profiles of Desulfovibrio vulgaris Hildenborough cultures 

growing on lactate mineral salts medium supplemented with either 5 or 100 

2 ppm Fe. 
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Figure 2: Flow chart schematic for isolation of outer membrane, cytoplasmic membrane, 

and periplasmic fractions from Desulfovibrio vulgar/s Hildenborough. 



30 
Centrifuge culture 
at 15,000 x a for 
20 min at 40r-

Wash cell pellet. 
Centrifuge at 15,000 x g 

Resuspend pellet in 1 M NaCl 
Centrifuge at 15,000 x g 

Resuspend in extraction buffer. 
Incubate at 37°C for 30 mm. 
Centrifuge at 20,000 rpm for 20 mm. 

SUPERNATANT I 
(Periplasm) 

SUPERNATANT II 
(Cytoplasmic Membrane: 
Dialyze and ultracentrifuge 
to concentrate) 

PELLET I 
Resuspend in 1 M NaCl. 
Stirring gently at room 
temperature add Lysozyme, 
EDTA, and DNase 

After 30 mm, add Brij 
to 3% wt/vol, Incubate 
for 30 min, at room 
temperature. 
Add MgCl2 to final 
concentration of 10 mM. 

Layer onto 70% sucrose. 
Ultracentrifuge at 
45,000 rpm at 4°C 
for 60 mm. 

PELLET II 
Resuspend in 10 mM 
Tris (pH 7.5). 
Add Triton X-100 to 
final conc. of 3% wt./vol. 
Incubate for 30 min. 
Layer onto 70% Sucrose 
and ultracentifuge at 
45,000 rpm for 6(1 mm. 

SUPERNATANT Ill 
(Discard) 

PELLET Ill 
(Outer membrane) 



Table 2: Distribution of hydrogenase activity in the isolated cytopismic membrane, periplasm, and outer 

membrane fractions of D. vulgaris Hildenborough. 

Fraction* Volume Protein Total Protein Hydrogenase Total % Total 
(mL) (mg/mL) (mg) Specific Activityt Activityt Hydrogenase 

Activity 

Cytoplasmic 
Membrane 1.0 5.8 5.8 2.12 12.30 0.4 
(Sup II) 

Periplasm 20.0 0.85 17 181 3077 99.1 
(Sup I) 

Outer 
Membrane 2.0 10.2 20.4 0.80 16.32 0.5 

(Pellet III) 

* Fractions were isolated from cells grown in 2 L of Lactate mineral medium. Sup: Supernatant (Figure 2). 

t Expressed as t.tmoles of Hydrogen uptake min 1 mg 1 

Expressed as [tmoles of Hydrogen uptake min1 



Table 3: The apparent % of [Fe] and [NiFe] hydrogenase activity in the isolated cytoplasmic membrane, 

periplasm, and outer membrane fractions of D. vulgaris Hildenborough as determined by NO2 

inhibition. 

Fraction 

Hydrogenase Specific Activityt Apparent % Hydrogenase Activity 

minus NO2- plus N024 [Fe] [NiFe]* 

Cytoplasmic Membrane 2.12 1.17 44.8 55.2 

Periplasm 181.00 2.15 98.8 1.2 

Outer Membrane 0.8 0.048 94.0 6.0 

t Expressed as j.tmoles of Hydrogen uptake m1n 1 mg 1 

50 mMNO2 

* Calculations for NO2 inhibition data, assuming NO2 inhibited [Fe] hydrogenase activity and had no effect on the [NiFe] 

hydrogenase. 
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membrane (Rohde et a!, 1990). These results confirm our use of the [NiFe] hydrogenase 

as a marker for the CM. When the membrane fraction [NiFe] hydrogenase activities are 

compared (Table 3) it is seen that the [NiFe] hydrogenase activity is 24 fold higher in the 

CM compared to the OM. While the small amount of [NiFe] hydrogenase activity present 

in the OM reflects a slight cross contamination, the membrane isolation protocol that was 

developed did separate the majority of the CM from the OM. These results are also in 

agreement with other investigators who have shown that the majority of the CM of other 

genera can be isolated in Supernatant II as indicated in Figure 2 (Hancock and Nikaido, 

1978; Schnaitman, 1981). 

4.2 SDS-PAGE Analysis of the Isolated Cytoplasmic and Outer 

Membrane Fractions of D. vulgaris 

In comparing the protein profiles of the OM (Lane A) and CM (Lane B) fractions isolated 

from cells grown on 5 ppm Fe2+ by SDS-PAGE, major and minor protein band 

differences can be observed in Figure 3. These data validates the isolation procedure 

developed for these two different membrane fractions. The OM of cultures grown under 5 

and 100 ppm of Fe2+ was next examined to see if the iron concentration had any effect on 

the OM protein composition. Striking differences of the OM protein profiles are shown by 

SDS-PAGE (Figure 4), between the 100 ppm Fe2+ (Lane A) and 5 ppm Fe2+ (Lane B) 

growth conditions. The protein bands at -P77.5 (top arrow head) and 50 kDa (bottom 

arrow head) in Lane B, were very much reduced in stain intensity under 100 ppm iron 

conditions (Lane A), with the 77.5 kDa band being almost absent. Protein bands above 78 

kDa were also absent under 100 ppm iron conditions. 

The presence of heme-containing proteins was tested on the 5 ppm Fe2+ isolated OM 

fraction, by the method of Thomas et a! (1976) employing a 10% isocratic SDS 
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Figure 3: SDS-polyacrylamide gel electrophoresis (8-25%) of OM (A) and CM (B) 

fractions isolated from 5 ppm Fe2+ cultured Desulfovibrio vulgaris 

Hildenborough. Membrane fractions containing 1.3 tg of protein was applied 

per lane. Staining was carried out by Coomassie blue followed by Silver 

staining. Numbers on the right indicate molecular weight markers in kDa. 
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Figure 4: Comparison of SDS-polyacrylamide gel electrophoresis (8-25%) protein band 

profiles of OM fractions isolated from Desulfovibrio vulgaris Hildenborough 

cultures, supplemented with 5 or 100 ppm FeZ+. OM fractions, lane A (5 ppm 

Fe2+) and lane B (100 ppm Fe2 ), were applied at 0.4 Vg of protein per lane. 

Staining was carried out by Coomassie blue followed by Silver staining. 

Numbers on the right indicate molecular weight markers in kDa. 
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acrylamide gel exposed to TMBZ and H202. Figure 5 shows that two protein bands in the 

OM fraction reacted positively to the heme specific stain (lane A), giving a blue colour 

reaction. A comparison was made to a second 10% isocratic SDS acrylamide gel which 

had been run under identical conditions, and subsequently stained for total protein (lane 

B). The first heme containing protein correlated with the 77.5 kDa band (top arrowhead), 

while the second matched the 62.5 kDa band (bottom arrowhead). This positive heme test 

indicates the presence of two different high molecular weight cytochromes in the OM. 

Difficulties were encountered when trying to carry out heme staining on 100 ppm Fe2+ 

isolated OM. Low protein concentration, combined with a large amount of FeS 

contamination, prevented the testing for heme staining bands in this fraction. 

4.3 Effect of Outer Membrane on Hydrogen Evolution System 

The role of the newly found HMC in the isolated OM fraction from the 5 ppm Fe2 

grown cells, was investigated by using the phosphate/mild steel hydrogen generation 

system of Bryant and Laishley (1990). Upon addition of the OM fraction to the 

phosphate/mild steel hydrogen evolution system, an immediate acceleration of hydrogen 

gas production was observed (Figure 6). In contrast the experiment where the phosphate 

buffer was replaced by dd H20, the OM addition did not elicit hydrogen evolution from 

the mild steel even though it contained the cytochromes and [Fe] hydrogenase. This study 

showed again that phosphate was necessary to chemically react with the mild steel for 

hydrogen evolution (Bryant and Laishley, 1990; Bryant and Laishley 1993). 

4.4 Analysis of SDS-PAGE of 5 ppm and 100 ppm Periplasm 

The results of SD S-PAGE of periplasm isolated from D. vulgaris under high and low iron 

conditions are shown in Figure 7. Under low iron (5 ppm) conditions, strong bands are 

seen at -46 kDa and —13.5 kDa (Lane A), which represent the two subunits of the 
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Figure 5: SDS-polyacrylamide gel electrophoresis (10%) of the isolated OM from 

Desulfovibrio vulgaris Hildenborough grown on 5 ppm Fe2+. Heme staining 

was carried out using TMBZ and H202 (A), staining for total protein was 

carried out using Coomassie blue (B). Outer membrane fractions were applied 

at 100 tg of protein per lane. Numbers on the right indicate molecular weight 

markers in kDa. 
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Figure 6: The effect on the phosphate buffer/mild steel hydrogen evolution system by the 

isolated OM fraction (100 tg of protein), from Desulfovibrio vulgaris 

Hildenborough grown on 5 ppm Fe2+. 
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Figure 7: Comparison of SDS-polyacrylamide gel electrophoresis (8-25%) protein band 

profiles of extracted periplasmic fractions from Desulfovibrio vulgaris 

Hildenborough, grown on 5 ppm Fe2 and 100 ppm Fe2 . Periplasmic 

fractions A (5 ppm Fe2+) and B (100 ppm Fe2 ) were applied at 31 ng of 

protein per lane. Staining was carried out by Coomassie blue followed by 

Silver staining. Numbers on the right indicate molecular weight markers in 

kDa. 
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derepressable [Fe] hydrogenase (actual molecular weights of 46 and 10 kDa respectively). 

These bands are not observed under the high iron (100 ppm) conditions (Lane B, Figure 

7). Other differences are also noted between the high and low iron conditions. Protein 

bands with higher expression under low iron are also seen at -'38 kDa, 25.5 kDa, and 24.5 

kDa, while under high iron a band with higher expression appears at -18 kDa. These 

results demonstrate protein regulation by different Fe2+ concentration. The function of 

these iron regulated proteins is as yet unknown. 
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5.0 DISCUSSION 

This is the first report on the isolation and partial characterization of a SRBs outer and 

cytoplasmic membranes. These membrane fractions were isolated from Desulfovibrio 

vulgaris Hildenborough employing a modified procedure of Booth and Curtis (1977), and 

Myers and Myers (1992). A major problem encountered in this membrane isolation was 

the removal of the FeS product associated with the cell surfaces. The FeS, which was 

produced during growth, initially interfered with the separation of the two membranes 

during the sucrose density gradient step. This problem was overcome by treating the cells 

with 1 M NaCl, a chaotropic agent, at the appropriate stages in the procedure (Figure 2). 

This treatment was very effective on cells grown with low iron, but less effective with the,, 

high iron grown cells. 

Desulfovibrio vulgaris contains three hydrogenases, [Fe], [NiFe], and [NiFeSe], in various 

amounts and localized in special cell areas. The periplasmic [Fe] hydrogenase represents 

the major proportion of hydrogenase activity in the cell, approximately 95%, with the 

remaining activity mainly associated with the cytoplasmic membrane bound [NiFe] 

hydrogenase, and a minor presence due to the [NiFeSe] cytoplasmic hydrogenase 

(Badziong and Thauer, 1980). Thus the cytoplasmic membrane fraction could be detected 

from the others by the [NiFe] hydrogenase activity level, as was the case described in 

Table 3. 

Membrane fractions from Desulfovibrio vulgaris Hildenborough, grown under high (100 

ppm Fe2+) and low (5 ppm Fe2+) iron conditions, were isolated and partially 

characterized by hydrogenase content and SDS-PAGE analysis. It was found that the CM 

marker [NiFe] hydrogenase was 24 fold greater in the cytoplasmic membrane fraction than 

in the outer membrane fraction (Table 3). The particular membrane fractions identified in 
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this isolation procedure agreed with other investigators (Myers and Myers, 1992) using a 

similar type protocol (Figure 2). The modified membrane isolation technique was judged 

successful, however a small amount of cross contamination in the outer membrane fraction 

from the other fractions, was evident based on enzymatic data (Table 3). In addition the 

SDS-PAGE results comparing the cytoplasmic and outer membrane fractions supports the 

isolation of different membrane fractions, by showing major differences in their protein 

banding patterns (Figure 3). Of particular interest are the three protein bands in the outer 

membrane (low iron) located at 77.5 kDa, 62.5 kDa, and 50 kDa. The 77.5 kDa and 62.5 

kDa protein bands were identified to be high molecular weight cytochromes by heme 

specific staining reactions (Figure 5). The 62,5 kDa protein band is in the same range as 

the known FMC (65.5 kDa) of Desulfovibrio vulgaris Hildenborough (Pollock et a!, 

1991), and may possibly be that cytochrome. Further analysis would be necessary to 

confirm it. When the high and low iron SDS-PAGE banding patterns for the outer 

membranes proteins were compared (Figure 4), the 77.5 kDa and 50 kDa had increased 

stain intensities inferring increased synthesis of these proteins under low iron growth 

conditions. It suggests that these two outer membrane proteins are under Fe2+ regulation 

control, possibly in a similar manner as the periplasmic [Fe] hydrogenase (Bryant et a!, 

1993). 

SDS-PAGE analysis of isolated periplasmic fractions from Desulfovibrio vulgaris 

Hildenborough grown under different iron conditions (Figure 7), showed that the [Fe] 

hydrogenase sub units (46 kDa and 10 kDa), were derepressed under low iron and nearly 

absent under high iron growth conditions. This observation is in agreement with the iron 

regulation of this enzyme reported by Bryant et a! (1993). Several other proteins of low 

molecular weight (-3 8 kDa, 25.5 kDa, and 24.5 kDa), were also found to derepress under 

iron stress conditions, however the function of these iron regulated proteins is not known. 
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It is obvious that Fe2+ regulation plays a major role in controlling important metabolic and 

physiological activities of this organism. 

The outer membrane fraction containing the newly found HMC's (Figure 5), when added 

to the phosphate/mild steel H2 generating system, caused an immediate acceleration in H2 

evolution (Figure 6). Bryant and Laishley (1990) using the same H2 generating system, 

reported that electron carriers required for hydrogenase activity could preferentially siphon 

electrons from the metal surface curtailing H2 production, or in the presence of 

hydrogenase cause significant increase in H2 evolution. Also, Rossi et a! (1993) suggested 

that Desulfovibrio vulgaris HMC (65.5 kDa) should be able to couple with the [Fe] 

hydrogenase as three of its four heme domains are classified as being of the cytochrome 

C3 type, a known physiological electron carrier for this enzyme. Therefore a plausible 

explanation for the outer membrane action on the metal is a preferential electron 

siphoning, via HMCs coupling with the contaminating [Fe] hydrogenase to cause this 

accelerated H2 production. Whether one, or both of these FilvIC's play a major role in 

shuttling electrons across the outer membrane remains to be determined by using purified 

HMC proteins in the test system. In contrast, the outer membrane caused no H2 evolution 

from the metal when dd 1120 replaced the phosphate buffer in the test system, even 

though the membrane fraction contained the biological components for H2 generation. 

This indicated another factor was necessary to kick start the electrochemical reaction on 

the metal before significant cathodic depolarization was promoted by the outer membrane 

fraction. Once again, phosphate was shown to initiate this anodic/cathodic process on mild 

steel (Bryant and Laishley, 1990; Bryant and Laishley, 1993), which could be greatly 

enhanced by Desulfovibrio vulgar/s's outer membrane fraction. 
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These findings are translated into a new concept for biocorrosion as outlined in Figure 8, 

in which Fe2+ regulation plays a major role in controlling the synthesis of key 

proteinsassociated with Desulfovibrio vulgarists outer membrane and periplasm, for 

generating H2 and its utilization by the cytoplasmic membrane bound [NiFe] hydrogenase, 

for reducing equivalents involved in metabolic reduction processes. The present 

depolarization theory suggests bacteria like the SRB disrupt a protective hydrogen layer 

on the metal surface via the hydrogenase enzyme. This implies that the organisms 

hydrogenase would have to be localized on the OM's outer surface, to utilize the surface 

hydrogen. However SRB hydrogenases have only been found in the periplasm, 

cytoplasmic membrane, and cytoplasm (Fauque et a!, 1988), and our data also shows the 

overwhelming amount of hydrogenase was present in the periplasmic space (Table2, 

Figure 7). The proposed model suggests an alternative mechanism to this conundrum, and 

may offer an explanation for situations where large SRB populations with low 

hydrogenase levels, resulted in low metal corrosion rates, whereas SRB containing high 

hydrogenase levels were associated with severe metal corrosion (Bryant et a!, 1991; Cord-

Ruwisch and Widdel, 1986). More research is required to determine if this proposed 

biocorrosion model operates in other SRB. 
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Figure 8: Proposed biocorrosion model for cathodic electron depolarization of mild steel 

by Desulfovibrio vulgaris Hildenborough. 
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6.0 SUMMERY 

The sulfate-reducing bacteria, of which Desulfovibrio vulgaris Hildenborough is a 

member, have been associated with the corrosion of mild steel (Bryant et al, 1991; De 

Araujo-Jorge et a!, 1992). A protocol was developed whereby the outer membrane could 

be isolated and partially characterized. The isolated outer membrane fractions from 

cultures grown under high (100 ppm) and low (5 ppm) Fe2+ conditions were compared by 

SDS-PAGE analysis and showed that several protein bands were derepressed under the 

low iron conditions, most notably protein bands at 50 kDa, and 77.5 kDa. Outer 

membrane isolated from 5 ppm Fe2+ cultured cells was found to contain two proteins, 

77.5 kDa and 62.5 kDa, that reacted with a heme specific stain and were referred to as 

high molecular weight cytochromes. Studies were conducted to examine the interaction of 

isolated 5 ppm Fe2+ outer membrane fraction on the hydrogen evolution system of Bryant 

and Laishley (1990). Addition of the outer membrane fraction to this system was found to 

cause an immediate acceleration of H2 evolution. Periplasmic fractions isolated from 

cultures grown under high (100 ppm) and low (5 ppm) Fe2+ conditions were compared 

via SDS-PAGE. Several of the protein bands, including those corresponding to the [Fe] 

hydrogenase subunits, were found to derepress under low iron conditions. Fe2+ regulation 

plays a major role in controlling important metabolic and physiological activities of this 

organism. A new model for the anaerobic biocorrosion of mild steel is proposed. 
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