
THE UNIVERSITY OF CALGARY

MOGL: A MOTION GEOMETRY LANGUAGE

by

JOHN HARRISON

•A THESIS

SUBMITIED TO THE FACULTY OF GRADUATE STUDIES

llsT PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF

COMPUTER SCIENCE

CALGARY, ALBERTA

OCTOBER, 1989

© JOHN HARRISON 1989

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

Wautorisation a fitfi accord6e
& la Bibliothque nationale
du Canada de microfilmer
cette thse et de prter ou
de vendre des exemplaires du
film.

L'auteur (titulaire du droit
d'auteur) se rserve les
autres droits de publication;
ni la thse ni de longs
extraits de celle-ci ne
doivent Atre imprirns ou
autrement reproduits sans son
autorisation crite.

ISBN 0-315-61648-2

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled, "MOGL: A Motion Geometry Language"

submitted by John Harrison in partial fulfillment of the requirements for the degree of

Master of Science

Supervisor,

Dr. K. D. Loose

Department of Computer Science

Dr. A. W. Co jn

Departmen .f Computer' ence

October, 1989

Prof. T. P. Keenan

Department of Computer Science

Dr. W. B. Clark

Department of Curriculum and Instruction

Abstract

Motion geometry is currently taught to students using various hands-on and

mathematical techniques which tend to obscure the underlying concepts. This situation can

be improved by creating a computer environment in which to explore motion geometry.

This thesis involves the research of various techniques including human-factors design,

graphics, microworids, and theories of human learning, to create this environment.

A prototype system, MOGL, is described. MOGL is an environment which allows

the user to create and manipulate graphical objects using motion geometry functions (such

as rotation, translation, enlargement, reduction, and reflection). New shapes can be

constructed by combining previously defined shapes using programs written in the MOGL

language. All this can be accessed through an interface incorporating a pointing-device,

menus, and windows to display the results.

The design of MOGL is discussed, including why various techniques are used as

well as how they are implemented.

MOGL is then evaluated according to user response, and how well the design goal

of creating an effective niicroworld for the exploration of motion geometry is met.

Preliminary results of the investigation are encouraging,t indicating that a complete

version of MOGL should be implemented. Moreover, it is demonstrated that by allowing

for the functioning of the user as part of the design of the system, by designing the system

as a microworld, by paying a good deal of attention to the user interface, and by using

more traditional computer science techniques, an effective computer subsystem can be

created.

Acknowledgements

I would like to thank my supervisor Dr. K. D. Loose for his valuable advice and

patience throughout this project. Thanks are also due to Professor T. P. Keenan for his

encouragement and help, to Dr. D. B. Harrison for his proofreading, and to various

students from the Shad Valley summer program and elsewhere for their help in the

evaluation of the project. Special thanks to Professor R. R. Skemp for his insights into

human learning, and for planting the seeds that eventually grew into this project.

- iv -

Table of Contents

Abstract iii

Acknowledgements iv

List of Figures xi

Chapter 1. Introduction 1

1.1. The Current Situation 1

1.2. Improving the Situation 1

1.3. Creating the Environment 3

1,4. Scope of the Project 4

1.5. Organization of the Thesis 5

Chapter 2. Background Literature 6

2.1. Introduction 6

2.2. Graphics Systems 6

2.2.1. GROPER 6

2.2.1.1. General Description of GROPER 7

2.2.1.2. Transformations in GROPER 7

2.2.1.3. Implementation of GROPER 8

2.2.1.4. Summary of GROPER 8

2.2.2. Microworids 9

2.2.2.1. What is a Microwor1d9 9

2.2.2.2. Building Concepts Using Microworids 10

2.2.2.3. Logo io

2.2.2.4. MOTIONS 11

2.2.2.5. Summary of Microworlds 11

2.3. Human-Computer Interaction 12

2.3.1. User Modelling 12

2.3.2. The User's Model of the System 13

2.3.3. Interface Design 14

2.4. Theories of Learning 15

2.4.1. Jean Piaget 15

2.4.1.1. Schemata 15

2.4.1.2. Phases of Development 16

2.4.1.3. Summary of Piaget 17

2.4.2. R. R. Skemp 18

2.4.2.1. Goal Directedness 18

2.4.2.2. Reality Testing 19

2.4.2.3. Noise 19

2.4.2.4. Summary of Skemp 20

2.5. Summary of the Literature 20

Chapter 3. Design Issues 21

3.1. Introduction 21

3.2. MOOL's Roots in Logo 21

3.3. The Basic Concepts Used in MOGL 22

3.4. The Motion Geometry Operations to be Used in MOGL 23

-vi -

3.5. Sprites in MOGL 25

3.6. Types of Values Available in MOGL 26

3.7. Shape Design and Recursion 27

3.8. The User Interface 27

3.8.1. The Format of the Screen 28

3.8.2. Menus 29

3.8.3. Pointing Device Input 30

3.9. Summary of the Design Issues 31

Chapter 4. The MOGL Language 32

4.1. General Analysis of the MOGL Language 32

4.2. Objects in MOGL 32

4.2.1. Assignable Objects Available in MOGL 32

4.2.2. Types in MOGL 33

4.3. Commands Available in MOGL 33

4.3.1. Basic Graphics Commands 34

4.3.2. The Control Commands 37

4.3.4. Miscellaneous Commands 38

4.4. Variables 39

4.5. Expressions 40

4.5.1. Numerical Expressions 40

4.5.2. Boolean Expressions 41

4.5.3. Constants 41

4.6. Programming 42

- VII-

4.6.1. Simple Programs 42

4.6.2. Programs to Create Sprites 43

4.6.3. Recursion 44

4.7. Variables in MOGL 45

4.7.1. Global Variables 45

4.7.2. Local Variables 45

4.7.3. Parameters 46

4.8. The User Interface 48

Chapter 5. Details of Implementation 55

5.1. Choice of Implementation Language 55

5,2. Structure of the Interpreter 55

5.2.1. Mathematical Basis for Motion Geometry 55

5.2.2. Input tothe Interpreter 58

5.2.2.1. Direct Input 59

5.2.2.2. Interpreting User Programs 59

5.2.3. Error Processing

5.3. Data Structures

60

61

5.3.1. Storage of Sprites 61

5.3.2. Storage of Variables 61

5.3.3. Storage of Programs 64

5.3.4. The Stack 64

5.3.5. Other Minor Data Structures 65

5.4. Interpreting MOGL commands 65

5.4.1. The line Command 65

-yin-

5.4.2. Transformations 66

5.4.3. Making New Sprites 66

5.4.4. Flow of Control Commands 67

5.4.5. Expressions 68

5.4.6. Graphics 70

5.4.7. Variables 71

5.4.8. Communication with the User Interface 71

5.5. Structure of the User Interface Module 73

5.6. Conclusion 75

Chapter 6. Evaluation and Discussion 76

6.1. Introduction 76

6.2. A Survey of Users 76

6.3. Comparison of MOGL and LOGO 84

6.3.1. Possible Additions to MOGL's Commands 84

6.3.2. Variable Names 85

6.3.3. Different Objects in MOGL 86

6.4. MOOL's Motion Geometry Commands 86

6.5. Does MOGL Meet the Educational Goals'? 88

6.6. The User Interface 89

6.7. Implementation of MOOL 91

6.8. Summary 93

Chapter 7. Conclusion 95

7.1. Introduction 95

7.2. The Problem to be Solved 95

7.3. Related Literature 96

7.4. Design Considerations 97

7.5. Implementation 97

7.6. Findings 98

7.7. Justification 99

7.8. Future Work 100

7.9. Conclusion 101

References 103

List of Figures

Fig. 1. Windows in MOGL 49

Fig. 2. The Sprite Menu 50

Fig. 3. The Move Menu 50

Fig. 4. The Enlarge Window 51

Fig. 5. The Turn Window 52

Fig. 6. The Mirror Menu 53

Fig. 7. The LEARN Screen 54

Fig. 8. Data Structure for a Two Line Sprite 62

Fig. 9. Data Structure for Storing Variables 63

Fig, 10. Data Structure for Storing Programs 64

Chapter 1

Introduction

1.1. The Current Situation

Currently, motion geometry (also known as transformational geometry) is taught by

having students draw set shapes, and having them transform each point of the shape to a

new position using formulae. This can be a tedious task, and often the underlying concepts

of motion geometry can be lost in the tedium of formulae.

Some attempts are made to have students explore operations by using hands-on

techniques to avoid dealing with formulae, such as using tracing paper or translucent

mirrors (called MIRAs) to simulate the various operations. However, these techniques can

be frustrating to the students, because of the difficulty of tracing an image. As well, many

students find the operations pointless, doing apparently mindless activities (to satisfy the

teacher).

Some motion geometry operations (such as the enlargement and reduction of

shapes) do not translate well to hands-on activities. For these operations, students will

again have to resort to formulae, plotting each point of the transformed shape individually.

1.2. Improving the Situation

Computers by their very nature are very useful for manipulating numbers; so the

task of dealing in complicated formulae could be done by the computer, leaving the student

with more of a chance to learn motion geometry concepts.

This task could be undertaken in many different ways. The computer could simply

be used as a sophisticated calculator, with students entering the required formulae, and co-

2

ordinates of each point, and the computer giving back the new co-ordinates so that the

student could plot the points.

Alternatively, .a computer environment to allow the transformation of a set shape

could be created, showing the transformations using graphics and hiding the formulae from

the student. Such an environment, called MOTIONS, has been created (Thompson, 86-

92). The MOTIONS environment is a step in the right direction, allowing students to

explore motion geometry concepts without too much additional "noise" (such as formulae

or MIRAs), using both the mathematical and graphical capabilities of the computer.

However, this environment is somewhat limited. Students still have to use a set shape (a

pennant), and the transformations to enlarge and reduce shapes are not included. As well,

the environment does not include a very good user interface.

This could be improved upon by creating a complete "niicroworld." Seymour

Papert has formulated the concept of a microworid as a limited but consistent computer

world for students to explore (Mindstorms, 117). This type of exploration allows students

to expand their knowledge by experimenting with the system. Concepts could then be

assimilated as described by Piaget (quoted by Papert; Mindstorms, 120). MOTIONS is a

microworld by these definitions, but not necessarily as general as it could be.

A further step can be taken by integrating many different areas of computer science

with this concept of a microworid to create a more useful environment for motion geometry

than others currently available. This environment should allow all the major

transformations, and it should allow students to create their own shapes. A good user

interface must be created to allow effective interaction with the environment. This allows

exploration of a more general version of motion geometry than in MOTIONS, with the

experimental aspect of microworids, and the ease-of-use of a good interface.

3

Perhaps an attempt could be made to model the concepts that the student using this

system has, and to direct the student's activities according to "bugs" in the concepts that the

student already has. However, as Brown and Burton have discovered (156), this can be a

very complex and difficult task. This would be beyond the scope of this thesis.

So, the goal of this thesis will be to create an environment for the exploration of

motion geometry, allowing all major transformations on shapes that can be arbitrarily

defined. By using the idea of microworids, combined with computer science and human

factors design theories, this should become an effective computer subsystem.

This problem is a viable problem to study, as it will require investigation into many

different areas of computer science. As well, it also will include some investigation of how

the user of such an environment will operate, requiring research into learning and human-

computer interaction. All of this can be brought together to create a useful computer

subsystem.

1.3. Creating the Environment

Many pieces have to be put together to create this new environment.

First, the operations of motion geometry and computer systems conducive to

learning will be investigated. Other computer systems using motion geometry systems will

be explored to discover operations that are used, and to investigate techniques of presenting

graphics. As well, the concept of microworlds will be investigated.

Second, human-computer interaction must be considered. When a new computer

environment is created, the computer scientist must be aware of many aspects of the

potential environment. The behavior of the environment must be planned. However, the

potential interaction of the user with the environment must also be considered. Indeed, a

4

view of the environment in use could be taken as having two systems interacting with each

other. One is the computer system, and the other is the user (Holinagel and Woods, 584).

It is important to design a system that is actually useful to users, and which will help the

users achieve their goals.

Third, to ensure that users of this system will actually be able to learn using the

system, how students learn in general will be researched.

Once all of this research has been completed, it will be necessary to implement a

prototype of the environment. To do this, the environment must first be designed. All of

the major operations and the features the user has available will be defined at this point.

When the design is complete, it must be implemented on a computer.

To ensure that the prototype is actually useful, a survey of some users will then be

done; having them use the program and determine how useful they found it in learning and

using motion geometry concepts.

1.4. Scope of the Project

The environment to be created will be a prototype of a microworid for learning

motion geometry. While the result will not be a complete system, it should be enough to

give an effective idea of how a complete version would work.

By the careful design, implementation, and testing of this environment, it will be

discovered whether following the theories chosen will actually produce an effective

environment. If successful, this will allow the future creation of a complete sub-system for

learning motion geometry. More importantly, success would guide future researchers

along a design path shown to work in at least one area. If unsuccessful, then it will be

known that this design path can lead to a dead end.

The success of the project can be judged by the reaction of users of the system, and

5

by comparing the completed system to the original design goals. Problems related to the

system being a prototype can be factored out, and then an overall assessment of the success

of the project made.

The goal of this thesis, then, is to create a computer sub-system according to certain

design principles from computer science and certain theories of learning. This system

should allow users to effectively explore and learn about the world of motion geometry.

1.5. Organization of the Thesis

The current chapter details the need for this research. Chapter two investigates

motion geometry, computer science, and human-computer interaction concepts (including

some learning theory). Chapter three integrates these concepts into a general design for the

environment. Chapter four is a description of the detailed design. Chapter five is a

description of the implementation of the system. Chapter six is an analysis of the system,

including the testing of the system and suggestions for improvements. Finally, chapter

seven investigates whether or not the the goal of the study has been reached.

Chapter 2

Background Literature

2.1. Introduction

The goal of this thesis is to produce a prototype computer subsystem in which users

can explore and learn motion geometry concepts. A review of work from several areas

pertinent to this project will be presented under three topics.

First, graphics systems based on motion geometry will be presented. Second,

human factors design will be reviewed with respect to good techniques for presenting

information to the user. Finally, some related research on theories of how people actually

learn will be presented.

2.2. Graphics Systems

As the prototype system being designed is to be used for motion geometry,

graphics will be necessary. This section presents three representative systems used for

dealing with graphics. GROPER is a motion geometry based graphics system. Logo and

MOTIONS are microworlds designed to investigate geometrical concepts.

2.2.1. GROPER

GROPER is a motion geometry based graphics language, developed by Brian

Wyvill. Wyvill defines a graphics language as "A language which defines and manipulates

pictorial data in a way comparable to that performed by the operation of a procedural

language on numerical data" (Wyvill, 2). Here, the concept of a special-purpose language

designed only for graphics is introduced, with GROPER being designed as a language of

7

this kind.

2.2.1.1. General Description of GROPER

GROPER (GRaphics OPERating system) allows the user to create and manipulate

graphical primitives called "pictures."

A picture is a graphical object made up of other pictures, with the most basic picture

being the pre-defined picture line. Each picture must be defined by referring to other

pictures. To make up a picture called "square," for example, the line picture can be called

up and added to the picture as many times as needed. When adding a line to the square, it

may be transformed so that the line is placed in the appropriate position. Once the square is

defined, it may be used to create other pictures.

2.2.1.2. Transformations in GROPER

GROPER allows many different kinds of transformations on shapes, including

translation (using the command 'ORIGIN'), magnification (using MAGNIFY'), rotation

(using 'ROTATE'), and a general transformation function called 'BETWEEN' (Wyvill,

110-112). These allow linear transformations of a shape so that it can be positioned as

necessary. The 'BETWEEN' function is especially interesting, as it allows' a

transformation to be defined as that which would move a single line from an arbitrary

position on the screen to a different position, and then apply that transformation to the

whole picture.

One common motion geometry transformation that GROPER does not include is

reflection. This additional operation would be useful in a system to explore motion

geometry concepts.

8

GROPER allows recursive definitions of shapes. That is, a shape can be made up

of smaller versions of itself. As part of this feature, a recursion limit can be be set. Thus,

a shape could be defined as being made up of copies of itself, without worrying about

infinite recursion. The recursion limit is set to an integer value, and the recursion will only

go to the specified depth.

2.2.1.3. Implementation of GROPER

GROPER is implemented as an interpreter. Version 3.2 runs on a Unix system,

and uses an English-like command language (Greenberg and Wyvill). For example, to turn

a line 90 degrees and add it to a picture of a square, the command would be:

.add line to square rotate by 90

GROPER is highly interactive. A shape that is being created can be viewed at any

time, and errors can be detected as the user makes them. It is a good environment for an

artist with a basic understanding of co-ordinate geometry, as lines can be placed where

required in a picture using the basic motion geometry commands described above. The

concept of multiple recursion also allows very complex pictures to be created, such as

shapes which are made up of sm1ler copies of themselves.

2.2.1.4. Summary of GROPER

GROPER is an effective system for artists to create pictures using motion

geometry. However, it is a system to help in drawing pictures. It is not designed as a way

to learn motion geometry, and knowledge of some geometrical concepts is necessary before

the system can be used.

Two main features from GROPER seem especially meaningful in designing other

9

systems: the idea of using various motion geometry commands to position lines in

pictures, and the notion of putting several commands together to create a program which

allows the creation of a picture.

Geometry Toolbox (Allen, 3-4) also uses these two major features in constructing

three dimensional manipulations.

2.2.2. Microworlds

Seymour Papert defines a microworld as "a little world; a little slice of reality"

("Microworids," 79). A microworld is a model of some portion of the real world, but

without all the noise that would be present if that concept was dealt with in real life. The

concept of a microworld is well demonstrated in the programming language Logo,

designed by Papert, and discussed in his landmark book, Mindstorms.

2.2.2.1. What is a Microworid?

Papert describes a microworld as a limited environment that is laden with

possibilities for discoveries. It is non-threatening. In a microworld, there is no right and

wrong, only what "works" or "doesn't work" in producing a desired effect.

A student can be left with a microworld to explore it, and to discover what is

embedded in it without the need for programmed instruction or textbooks. Students using

microworlds are in control of their own learning processes.

An advantage of microworids over other forms of computer-based instruction (such

as drill-and-practice and video games) is that they include the "factors that compel" as

discussed by Lewin (274). That is, the student can set a goal, perhaps use attractive

graphics in the system, use it in many different ways (bringing imagination into the

activity), get feedback, and find the system rewarding in itself (i.e. not requiring an

10

external motivation).

2.2.2.2. Building Concepts Using Microworids

Fragmented knowledge can be very useful in a microworid environment. A student

may discover a new piece of information about a microworid (say a new command in

Logo), and then use that new fragment of knowledge as a basis for experimentation to

discover more. By discovering more about the microworid, the student will discover more

about the concepts embedded in the microworid. Students can start with very little

understanding about a concept, and then build it up into much fuller understanding by

using their own initiative.

A student can also have a more intimate connection with knowledge gained from a

microworld. A student can become very attached to a concept, and use that as a motivation

to find out more about it.

2.2.2.3. Logo

An important feature of a microworid, and one particularly relevant to the field of

motion geometry, is that objects between solid objects (in actuality) and abstract objects (in

math and physics) are available.

Logo uses the idea of turtle graphics to allow students to explore a geometrical

microworid. This turtle is a link between the idea of a real turtle, and the abstract ideas of

geometry. The turtle appears as an arrow on a computer screen, and can be instructed to

move forwards and turn. The turtle leaves behind a "trail" showing where it has moved.

By commanding the turtle to move in different directions, students can build up geometrical

pictures. This type of geometry is called "turtle geometry."

11

2.2.2.4. MOTIONS

Patrick W. Thompson (86-92) describes a microworld called MOTIONS, designed

for the teaching of motion geometry. It was designed so students could understand motion

geometry as a mathematical system. It allows transformations of a pennant in a Cartesian

coordinate system. Commands are available to translate, rotate, or flip (reflect) the

pennant.

Transformations can be composed in several ways in MOTIONS. First, several

commands can be placed on a single line, allowing the user to watch each individual

command occur in rapid succession. Second, the commands can be enclosed in brackets,

so that only the final result of applying all the commands is visible. Third, a new command

can be defined, incorporating several commands.

Students can use MOTIONS with a set of problems designed to take them through

various transformations and understand the concepts of motion geometry.

2.2.2.5. Summary of Microworids

Papert envisions that at some point in the future, there may be complex networks of

microworlds, containing many sectors of knowledge. Papert believes (perhaps somewhat

optimistically) that this could replace the current concept of "curriculum."

It should be possible to create a microworid based on motion geometry. A system

could be created which allows exploration of various motion geometry concepts. It may

motivate students to learn new concepts, for the avenues of exploration that a new concept

can open up. And the objects on the computer screen may be good for illustrating abstract

mathematical concepts in a way more real than dealing with numbers and points on paper.

12

2.3. Human-Computer Interaction

Of the research available on the interaction between systems and humans, three

areas seem particularly important. These are user modelling by the system, the user's

perception of the system and the design of interfaces.

2.3.1. User Modelling

Holinagel and Woods (583) state that a Man-Machine System (MMS) must be

designed by taking into account the cognitive functioning as well as the physical

functioning of the user. A system designed to provide a motion geometry environment

would deal primarily with the cognitive functioning of the user, so this issue is a very

important one.

The computer system must somehow facilitate the exploration of motion geometry

concepts by a constantly changing user (Brown and Burton; Paliès et. al.; Park and

Tennyson).

Ideally, the system should build an explicit model of how the user functions (e.g. a

representation of the user's concepts), and use this model to determine exactly what the

user would need to explore. A different system would be presented to each user,

depending on the individual's needs (Rich, 200). The system could even change as the user

understands more. This technique has been used in systems where the interaction of the

user with the system is relatively easy to describe (Greenberg and Witten, 31). However,

initial investigations into this area showed that developing an explicit model of a user's

understanding of even a "simple" task (such as addition) can be difficult (Burton, 182).

Modelling a user's motion geometry concepts would be beyond the scope of this thesis.

13

It would be comparatively easy to design a system for the canonical user (i.e. a

system for a "typical" user of the motion geometry environment), rather than trying to

model each individual user. A degree of stereotyping within this model could allow a

distinction between novice and expert users.

It would be desirable to understand the mental functioning of a "typical" student, so

that an environment appropriate for exploration could be provided. To attempt to address

this issue, section 2.4 contains an investigation of two theories of human learning.

2.3.2. The User's Model of the System

The user will form a model of any computer system that is used, forming mental

models of how the system works (Carroll and Thomas, 107). It is important to ensure that

the user forms appropriate models. Carroll and Thomas give eight recommendations,

including the following:

Metaphors, or analogies to explain the operation of the system, should be explicitly

stated to novice users of a system (Carroll and Thomas, 111-113). The metaphors should

cover as many aspects of the system as possible. The limits of the metaphors should be

made known to the user. The possible consequences to the user and the system should be

taken into account. Thus, when the motion geometry system is being designed, it is

appropriate to develop analogies to explain how the system operates to the user. For

example, a metaphor for enlargement could be developed by having the user imRge that the

shape is printed on a balloon that is being inflated. The screen could be presented as a

window onto a part of this balloon. Then, if the shape disappears all together, the

metaphor helps the user understand that the shape has been enlarged so much that it is

outside of the confines of the window.

By keeping these design principles in mind when designing the system and the

14

supporting documentation, the system should be easier for a novice user to use.

2.3.3. Interface Design

The various design principles for a human-computer system have been described by

Hill (6-12). Thirteen principles are cited which will guide the development of a good user

interface.

The principles applicable to this thesis are as follows:

1. Know the user

2. Design the tools the user needs

The first two principles are of primary importance. Firstly, the designer should

become acquainted with exactly what the user needs. This is similar to building a canonical

user model into the system, as described in section 2.3.1. Secondly, the tools designed

should be those the user needs, suited to the tasks at hand.

3. Make. the system easy to learn and remember

Short term memory is limited to about 7±2 items (Miller, 14-43), so this must be

catered to in any presentation of multiple items. As well, the system should be designed

according to the models that a human will most naturally use.

4. Avoid both human and machine failure modes.

Deal with errors in a positive way to avoid machine or user "breakdown."

5. Structure the interaction

The interface should be structured in a way easy for the user to follow, so that

commands can be easily found in menus.

6. Convey a feeling of control to the user

Provide feedback on what the system is doing.

15

7. Consider division of labour

8. Take into account human performance limits

9. Provide facilities to monitor system activity

By following these principles, an interface could be designed which allows

effective interaction between the student and the computer.

2.4. Theories of Learning

As this thesis involves the design of an environment to promote learning, two

pertinent theories of learning have been chosen as paradigms to follow. These are relevant

parts of the theories by Jean Piaget and R. R. Skemp.

2.4.1. Jean Piaget

Piaget's theory (Piaget and Inhelder) shows a way of looking at the intellectual

development of humans that emphasizes the mental processing humans do. Application of

these theories by R. R. Skemp and others in educational environments have produced some

very encouraging results, as discussed in section 2.4.2. Some of these concepts seem

particularly applicable to the design of a computer system which will better meet the needs

of those using it.

2.4.1.1. Schemata

As a human develops, the intellect is organized into schemata, or structures

representing the outside world. This organization allows the human to adapt to the

environment. This adaptation is a two-way process.

The first part of adaptation is called assimilation. Here, all the information that

16

comes into the human through the senses is modified so that it can be made to fit existing

mental structures.

The second part of adaptation is called accommodation. This is the process of

making new connections in existing schemata as a result of the information from the

assimilation process. Connections observed in the outside world allow connections to be

made internally.

2.4.1.2. Phases of Development

Piaget hypothesized a sequence of development which appears to occur for every

human. The phases of development may not occur exactly at the ages described, but they

always seem to come in the same sequence. It is important to be aware of the stages when

designing educational systems. Only those stages relevant to this thesis will be discussed.

The stages when a child would be most likely to learn most motion geometry

concepts are the concrete operations and formal operations stages.

The concrete operations phase occurs from 7 to 11 years of age. In this phase, the

child has not yet learned formal reasoning, but can reason with operations relating directly

to concrete objects.

As well, a child is also able to classify objects in this phase, creating concepts by

combining similar examples. The child is able to form a semi-lattice, or a hierarchy, of

concepts, similar in structure to a tree. Each element in this hierarchy is known as a class.

The child's mental operations at this stage exhibit the characteristics of a group, as

follows:

1) closure - combining any two or more elements of a set produces another

element of the set.

17

2) associativity - the order elements are combined does not affect the result.

3) general identity - one element of the set, when combined with any other

element, leaves the result unchanged.

4) reversibility - for every element, there is another element, called its inverse,

which when combined with the original element, produces the identity.

Piaget calls these structures groupings, because in addition to the mathematical

properties of groups, they exhibit two additional special identities, as follows:

1) resorption - Each class may have sub-classes underneath it in the hierarchy.

If any of these sub-classes is added to the original class, the result will be

the original class.

2) tautology - Each class is an identity for itself, because Pdriing a class to

itself results in the original class.

In the concrete operations phase of reasoning, a child relies on direct experience to

solve problems. This can lead to incorrect reasoning. A higher form of reasoning is

needed to be able to analyse the operations that have been built up, seeing ways in which

other analyses may be possible rather than only accepting what has been experienced. This

is the formal operations phase of reasoning, usually occurring after 11 years of age.

The thinking a child does in the formal operations phase is also more coherent,

bringing the two logics of classes and relations into a single logical way of thinking.

2.4.1.3. Summary of Piaget

A motion geometry system can benefit from the work of Piaget. Since this system

would be a learning environment, it should allow opportunities for a student to assimilate

the concepts being presented, and to accommodate them into schemas being produced.

The phases of development are also important. This system is likely to be used in

18

students learning in the Concrete Operations phase (if it is used in an Elementary school),

and in the Formal Operations phase for older students.

Older students and adults should find it easier if the geometrical concepts are first

presented in a concrete way, and then presented allowing formal operations to be carried

out. So, the system should allow a progression from the concrete to the formal.

In this way, the motion geometry concepts could be learned in a natural way.

2,4.2. R. R. Skemp

Professor R. R. Skemp has synthesized a comprehensive theory about the process

of learning, with origins traceable to the work of Piaget. This theory has been used with

much success in school environments. Activities based on this theory have been created by

Skemp (Structured), and these have been shown to help children learn more effectively

(Marilyn Harrison and Bruce Harrison, 34; Bruce Harrison et. al., 297).

This section is a summary of those parts of the theory applicable to creating an

environment for exploring motion geometry.

2.4.2.1. Goal Directedness

Skemp's theory (Intelligence; Psychology) recognizes that much of what humans

do is goal directed. That is, humans will try to achieve desirable states, or goals, and avoid

undesirable states, or anti-goals. This is similar to the idea of goal-directedness in

computer systems designed to mimic human intelligence, such as STRIPS and ABSTRIPS

(Cohen and Feigenbaum, 523-530) and SAM and PAM (Barr and Feigenbaum, 306-3 15).

Goals can exist in a hierarchy. For example, a student may want to draw a picture

on a computer's screen. To attain this goal, the student will have to set several sub-goals,

19

such as positioning lines, or learning how to draw certain shapes.

If the student is operating under goals that he or she has set, rather than being

forced to do activities, the student is more likely to learn.

To achieve the goals that are set in this motion geometry system, the student will

build up a set of concepts related to motion geometry.

2.4.2.2. Reality Testing

It is important to be able to test the accuracy of one's concepts. This process is

called "reality testing."

There are three forms of reality testing.

In the first and most basic mode of reality testing, one tests against his or her

expectations of events in actuality. In the second mode one tests against the realities of

other people (e.g. by discussion). The third mode involves testing for consistency with

other knowledge and beliefs that one already has.

In the design of a motion geometry system, allowances should be made for all three

modes of reality testing.

2.4.2.3. Noise

Noise refers to everything that is not relevant to the activity being learned. This

factor can influence how easily a concept is learned. The less noise that there is, and the

more that an activity is contributing directly to the formation of a concept, the better the

concept will be learned.

Skemp (Intelligence) maintains that when a concept is first being formed, a

minimum amount of noise should be present. When a concept is better formed, more noise

20

can be tolerated. And finally, as a concept's formation is continuing, a higher noise level is

optimal so that the student is better able to separate the concept from the noise.

2.4.2.4. Summary of Skemp

A motion geometry system should be created which allows goals to be set (such as

the goal of drawing a picture), and which allows a student to construct and test an accurate

representation of the actuality of motion geometry in his or her reality, using all three

modes of reality testing.

The system should also promote learning, allowing students to experiment to learn

new concepts and applications. Noise should -be kept to a minimum as much as possible in

the early stages of learning, but can be increased (with concepts such as programming) later

on in the learning process.

2.5. Summary of the Literature

A system to encourage the learning of motion geometry can be created, building on

computer science concepts illustrated in GROPER and in Human-Computer Interaction

research. However, some attention must also be paid to research done in the field of

education and cognitive psychology to create a system which will be effective for the

people who will be using it.

By putting all of these concepts together, it should be possible to create a very

effective motion geometry system.

Chapter 3

Design Issues

3.1. Introduction

The goal of this thesis is to produce a computer subsystem based on the concept of

a microworld. This would allow users to explore motion geometry concepts.

Additionally, the system will be used for a wide range of users. At one end, it will be used

for children from the ages of 10 through 14. This corresponds approximately to the

transition from the concrete operations phase to the formal operations phase as described by

Piaget. Thus, the students using this language will be quite comfortable with classifying

concepts, and will be getting ready to deal with more complex operations than those

exhibited by a grouping. An effective microworld for Motion Geometry will allow for the

development and use of these operations. This system will also be used for older children

and adults, who find the formal operations natural.

The microworld produced in this thesis will be an interactive computer language

called MOGL, for a MOtion Geometry Language.

3.2. MOGL's Roots in Logo

Papert's microworld, Logo, has been found to be very useful in introducing

children to basic concepts in mathematics and geometry, and is used widely in the public

school system. Commands in MOGL will have the same format as commands in Logo

(Abelson and Klotz, 25-41; Abelson, 175-193), but rather than using Turtle geometry,

MOGL will include commands based on motion geometry. By basing the design on Logo,

students who already know Logo will only have to learn motion geometry commands to

22

use MOGL. As well, LOGO has been extensively used and modified, and is therefore a

good format to build upon.

While the control flow and variables in MOGL will be much the same as in Logo,

the graphics commands will be radically different. The main focus of the discussion will

be on the criteria for making design decisions.

3.3. The Basic Concepts Used in MOGL

The MOGL language will allow the exploration of motion geometry concepts.

Thus, the design of the language will allow a person to use basic motion geometry concepts

to build up a picture on the screen, similar to MOTIONS and GROPER. In this way, the

user can set a goal of trying to draw a specific picture, and then learn and use the motion

geometry commands to help achieve this goal.

The language is designed to be easy to use for a student in the concrete operations

phase of development. So, objects to be manipulated will be available on the screen.

A picture will be drawn by invoking a shape, and moving this shape to the

appropriate location on the screen; perhaps changing its size and orientation. This shape

will be called a "sprite," thus building an explicit model for the user of a dynamic shape.

Once a sprite is moved to an appropriate location on the screen, it will be possible to

give a command which will leave a "footprint" behind. In this way, when the sprite moves

on, a mark in the shape of the sprite will be left behind on the screen. Again, an explicit

model of what happens is available to the user.

By moving the sprite around, and leaving footprints behind it will be possible to

build up pictures of arbitrary complexity.

MOGL will be written as an interpreter, as it would often be used in this "direct

23

mode" (just issuing single commands and watching the results).

The above would provide a basic system for students in the concrete operations

phase of development.

For higher level students using formal operations, the system will include the

capability to create new sprites. This can be naturally introduced into the language by

allowing programs to be written. Thus, the user will be able to give, as a program, the

moves needed to make a new sprite. These moves will be given as combinations of

commands and footprints. Once the program is completed, the name of the program will

be typed, and a new sprite would appear based on the footprints given in the program (a

mode is available where the program is simply stored and can be called up later).

This will produce a real challenge, and many interesting possibilities for a more

advanced student to explore. Motion geometry may be learned on a deeper level, through

more complex operations and greater noise. As well, computing concepts are easily

illustrated, such as order of execution of commands, looping, and recursion.

This progression of learning could be used just as well for an adult as for a child.

First, experimentation could progress in the direct mode, corresponding to concrete

operations. Second, the adult could learn to write programs, corresponding to formal

operations.

3.4. The motion geometry operations to be used in MOGL

Since MOGL is designed to provide an environment in which to learn geometry, the

basic motion geometry operations taught in the public school curricula will be available.

These are similar to the operations that GROPER uses, with the addition of reflection. The

main operations to include would then be:

24

1) Rotation - rotating the sprite around some point.

2) Translation - "sliding" the sprite to a new position on the screen.

3) Enlargement / Reduction - changing the size of the sprite.

4) Reflection - reflecting the sprite through a flat "mirror."

These operations have traditionally been taught by using paper and pencil and

moving shapes around by translating each point individually. The translations are carried

out by applying mathematical formulae to each co-ordinate. The concepts being illustrated

tend to get lost in the noise from having to apply the formulae. To avoid this, MOGL will

use simple commands that execute in a obvious way.

The commands will be simple in form (such as turn, slide, enlarge, reduce, and

reflect) with arguments to indicate the degree of transformation.

Each of these commands will have the basic group properties (i.e. closure,

associativity, general identity, and reversibility), for easy use by students in the concrete

operations phase of development.

For the rotation command, turn, one argument will be necessary; that is, how far

to turn. This will be given in degrees, since it is the most common measure of angles in the

schools.

The translation command, slide, will require two arguments. These could be given

in rectangular or polar coordinates. The decision was arbitrarily made to use polar

coordinates. The arguments will be given as the distance first, then the direction.

The commands to change the sprite's size, enlarge and reduce, will each require a

single argument. In this case, the identity will be one, since it makes sense to think of

making a shape multiples of itself. Thus, an enlargement of two would result in a shape

twice as large.

Finally, the reflection command, reflect, will require some sort of "mirror" to be

25

available to reflect the shape in. This mirror will appear as a dashed line on the screen, and

could be moved to anywhere on the screen. It is possible that some sort of activity will

require multiple reflections in several mirrors, so several mirrors will be made available.

Thus, the reflect command will require one argument; that is, the number of the mirror to

reflect the shape in.

3.5. Sprites in MOGL

Since MOGL allows the user to create sprites using programs, only the basic

building blocks will be required as the elementary sprites. A library of programs allowing

the user to use any number of more complex sprites could be programmed using MOGL.

The most basic building block in graphics is the pixel. So, a sprite could be made

available consisting of a single point. However, this sprite would have limited

applications, since building up a shape out of single points would be quite tedious, and it is

likely that the transformations on the object would appear quite slow (as every single point

in the resulting shape would have to be transformed individually to a new location).

The next step up from a pixel is a simple line. This makes more sense to use as a

basic building block, as most shapes that elementary students would like to create are likely

to be made up of straight lines. If a point is ever required, the line sprite could be reduced

until it is a line of negligible length.

An advantage of using a line as the basic building block is that in any linear

geometrical transformation, only the end points of the line have to be transformed. This

saves transforming every pixel in a picture to get a new picture.

The basic sprite in MOGL, then, will be a line. This is similar to the basic "picture"

in GROPER. Based on this line, many shapes could be created.

26

The size of this line as it initially appears would be one unit, and it would appear

with one end at the centre of the screen.

3.6. Types of Values Available in MOGL

As MOGL is a programming language, various values will be required in the

writing of programs. Here, the design is based on Logo, where five different types of

objects are available:

1) Booleans - logical true or false values.

2) Integers - positive and negative whole numbers; written as a

sequence of digits possibly preceded by a negative sign (for

example, -43).

3) Reals - decimal fractions; written as an optional negative sign

followed by a sequence of digits, with a decimal point (for example,

3.1415).

4) Words - a sequence of characters; starting with a double quote, and

with no spaces or punctuation (for example, "fred).

5) Lists - a sequence of words (without double quotes), separated by

spaces. These are contained within square brackets (for example

[fred joe jim]).

Note that lists and words are not the same thing; a word is an element of a list (a list

consisting of one word is not a word, it is a list containing a word).

A variable name is given as a word; so if the user is referring to the name of a

variable, it would be preceded by a double quote. However, the value of a variable is

27

referred to as a colon followed by the alphanumeric part of the variable's name. This keeps

references by name and by value distinct. An example of where this might be used is when

the name of a variable rather than its value is to be passed to a procedure.

In Logo, variables are not typed; and don't have to be declared before they are

used. This same convention is followed in MOGL. However, some operations (such as

multiplication) will require a certain type of argument. Thus, a run-time error will occur if

a variable does not have the correct type of value at the time the operation is executed.

3.7. Shape Design and Recursion

The goal of producing a complex shape can be broken up into several sub-goals of

making simpler shapes, and then putting all of the shapes together to produce the final

object. This naturally falls into developing several small modules, and integrating them as

a large program (a bottom-up approach). A shape could even be made up of smaller copies

of itself. This is a natural way to build up complex geometrical shapes, and can also prove

to be a very easy introduction to recursion.

Students will concentrate on breaking a problem down into sub-problems; and

solving those sub-problems with separate programs. Thus, it is easy for a student to create

a hierarchy of goals (as in Skemp's theory), and explicitly break down a goal into several

sub-goals. Similar operations could be done using iteration, so this will also be available

in MOGL.

3.8. The User Interface

For a good environment, a good user interface is needed. This interface must allow

exploration in transformational geometry with a minimum of unnecessary noise.

28

It would be counter-productive to force the user to type in commands to do each

operation. This presents extra noise, in requiring keyboarding skills. Most beginning

users (especially children) may find it easiest to use some sort of pointing device such as a

mouse or a light pen as an input device. However, such options are limited due to the

hardware available, and are not implemented in this project. Instead, step keys will be used

to move a crosshair on the screen to simulate a pointing device (see section 3.8.3.).

As well, if the commands were to be typed in, this implies memorizing the

commands. This is also extra noise, which can be eliminated by allowing the commands to

be selected from menus. More advanced users, however, may wish to enter the commands

on the keyboard for speed. Thus, the user interface will be designed with this in mind; to

require a minimum of typing for the novice, but allowing typing to be used by the expert.

The system will be set up allowing selections to be made from a window (for

novices), but allowing experts to type their commands in without needing to use a pointing

device. This is effectively designing a canonical model of the user, but allowing the user to

choose whether to use novice or expert interaction at any given point.

3.8.1. The Format of the Screen

• The user interface for the system will attempt to present all pertinent information

from MOOL in an easy to understand format. This structuring of the information will

follow the 13 principles of human-computer interface design (Hill, 6-12).

The screen will be divided into four windows, with different functions. These are:

1) Graphics window

2) Menu window

3) Text window

4) Message window

29

The first window is to contain the graphics. That is, it will allow the user to see the

shape being used. Since this is the main function of MOOL, this window will be in the

centre of the screen.

The second window is used to present a menu to the user. This will appear to the

right of the graphics screen. Since a light-pen or touch screen may be used for input at

some stage, this is the best location for a right-handed user to make a selection without

covering the graphics area with his or her hand. This window should be moveable to the

left side of the graphics screen for left-handed users (allowing a degree of user modelling).

The third window, to the left of the graphics screen, is used to show the text of the

commands being entered. So, as a user selects commands from the menu or types in

commands, they will appear in this window. Therefore, even as a user makes selections

from the menu, he or she can see how the text of the commands looks if entered from the

keyboard.

The fourth window, at the bottom of the screen, is to show messages from the

system. This would be used to indicate any errors, and to give any other messages from

the system (such as whether programs were loaded into MOGL successfully or not). Of

course, error messages will be positive and instructive, as described by Hill (9).

These four windows will allow the user to work in direct mode with MOOL using

"user friendly" techniques.

3.8.2. Menus

The menu system will allow the user to access the majority of the graphics

commands, so that shapes can be called up, manipulated with all the possible

transformations, and made to leave footprints behind without having to resort to the

30

keyboard. This would make the system easy to learn for the novice, and caters to students

who may not be able to type effectively.

The system will also follow the general rule that humans can only deal with 7±2

concepts in short-term memory at a time (Miller, 15-43) so each menu should have a

maximum of nine selections available.

Thus, all the commands won't be available on the top level. Instead, like

commands will be grouped together, and a sub-menu used to access the commands.

On the main menu, there will be a selection to indicate that a transformation of the

shape is desired. A sub-menu will then appear with all the possible transformation

commands, from which one could be selected.

Similarly, a sub-menu will be used to select a sprite. The names of all of the sprites

currently available will be available on this menu (it may require several screens to show all

the sprites if many are defined).

3.8.3. 'Pointing Device Input

The easiest way to use MOGL through the user interface would be to make

selections from the various menus by pointing to them. This requires some kind of

pointing device to point to the selections desired.

One kind of pointing device is a touch screen. The user could point with his or her

finger at the operation desired. Alternatively, a light pen could be used to point to a specific

operation. If either of these pointing devices were used, it would be good to have the

monitor mounted inside a desk so that the user has a horizontal surface to work with. This

reduces fatigue in using a light pen or touch screen.

This sort of technology is not available at many schools, so MOGL must be

31

designed for the possibility of using a less expensive form of positional input.

One such device would be a mouse. Compared to other inexpensive devices such

as text keys, step keys and a rate-controlled joystick, the mouse is the fastest and most

accurate pointing device (Card et. al., 1978). The disadvantage of a mouse is that it can

take quite a bit of practice to discover how a pointer moves on a screen as a device is

moved on a desk. Some people find this separation confusing.

Due to hardware limitations, step keys will be used to simulate input from a mouse

in this prototype version of MOGL.

3.9. Summary of the Design Issues

The design of MOGL will be based somewhat on LOGO, but allowing motion

geometry operations instead of the turtle geometry used in LOGO. All the essential motion

geometry operations will be available. Sprites can be combined to produce new sprites,

using programs consisting of geometrical transformations. Various other objects and

'techniques are included to simplify programming using MOGL. The language is designed

to be interactive, so that commands can be executed as they are typed. Many commands

can be put together to allow more complex geometrical operations and the definition of new

sprites in programs. As well MOGL can handle recursive programs.

All the geometrical operations in MOGL are designed to "make sense," so that the

user can understand what is happening during the transformation of a sprite. Algorithms

will be chosen to maximize execution speed during manipulations of the sprite.

Finally, a good user interface will be provided between MOGL and the user, to

allow easy interaction and learning. This interface will include windows for different types

of output from the program, menus of commands, and pointing device input.

Chapter 4

The MOGL Language

4.1. General Analysis of the MOGL Language

A typical session in MOGL might include calling up a line sprite and transforming it

in various ways. Each possible transformation is taken from the concepts of motion

geometry. When the user has moved the line to the appropriate place, a mark can be left

behind. In this way, pictures can be built up. The user can also define his or her own

sprites by writing simple programs.

This chapter presents the structure of MOGL and defines the parameters and actions

for each command. Any parameters for commands will be given within parentheses, to

distinguish them from the actual commands.

4.2. Objects in MOGL

There are several different types of objects in MOGL that the user can use. The

most important is the sprite, which can be transformed in various ways. However, the

attributes of this object such as its orientation and location are not available to the user, the

sprite is simply visible on the screen.

Other kinds of objects will be required if programs are to be written in MOGL.

These are objects to represent words and numbers, which can be assigned to variables and

used in various ways.

4.2.1. Assignable Objects Available in MOGL

Numbers in MOGL are either reals or integers. An integer is simply a string of

33

digits, and a real is a number with a decimal point (there must be at least one digit before

the decimal point). These numbers can be used anywhere that a number makes sense in the

MOGL language (i.e. as values for variables, and arguments for certain commands).

It is also possible to use true/false values in MOGL.

MOGL also allows the use of words. A word is a sequence of alphanumeric digits,

prefixed by a double quote. These can be used as variable names, for example.

Finally, it is possible to use lists in MOGL. A list is any sequence of numbers and

characters enclosed in square brackets. These can be used to store strings, or sequences of

commands.

4.2.2. Types in MOGL

MOGL does not require the user to explicitly define the type of a given variable

before assigning a value to it. All type checking is done as the commands are being

interpreted, and any inconsistencies (such as trying to add an integer to a word) are

reported at run-time. This is in keeping with the way that Logo is usually implemented.

4.3. Commands Available in MOGL

The commands in MOGL can be broken into several logical groups. These are:

1) Basic graphics commands which allow the user to call up a sprite, and make

transformations.

2) Control commands which allow looping and branching. These can be used

directly or in programs.

3) Programming commands which allow the user to write named programs.

4) File commands for storing and recalling programs.

34

5) Miscellaneous commands that implement housekeeping tasks.

4.3.1. Basic Graphics Commands

These commands are the heart of the system. They are the commands that help the

user understand the principles of motion geometry.

The line command simply calls up a simple sprite consisting of a straight white

line, one unit long. This line appears with one end at the centre of the screen, and the other

end one unit to the right.

The enlarge and reduce commands have the syntax:

enlarge (amount)

reduce (amount)

(here, (amount) is a numerical expression, as defined in section 4.5.1.). The enlarge

command makes the sprite (amount) times as large (e.g. enlarge 4 would make the sprite

four times as large). The sprite is enlarged around the centre of the screen, NOT around

the centre of the sprite. This decision was made because it would be diffiôult to calculate

the centre of an arbitrary sprite, slowing down processing time more than necessary.

The reduce command is the inverse of the enlarge command. It causes the sprite to

shrink around the centre of the screen. If a shape is enlarged, then reduced by the same

amount, the original shape will be restored.

The turn command has the syntax:

turn (degrees)

It allows the sprite to be rotated around the centre of the screen. The expression gives the

number of degrees to be rotated. The sprite will be rotated in a clockwise direction; if a

counter-clockwise rotation is desired, the argument simply needs to be negated.

35

The slide command is used to move the sprite to a different location on the screen. It has

the syntax:

slide (distance) (direction)

The sprite will be moved (distance) units in the direction given by (direction)

degrees, where 0 degrees is to the right, and 90 degrees is upwards.

The reflect requires a mirrorline to be visible before it is used. There are eight

mirrorlines available, arbitrarily numbered 0 through 7.

To activate a mirrorline, the command:

mirror (number)

is used. This calls up mirror (number). This mirrorline will appear along the x-axis, and

can be moved with the commands:

mturn (number) (degrees)

mslide (number) (distance) (direction)

These commands work exactly like the turn and slide commands, except that the

first expression gives the number of the mirror to be transformed. In this way, the user is

using concepts previously learned with sprites to move the mirrors.

The reflect command is used to reflect the sprite through an arbitrary mirrorline. It

has the syntax:

reflect (number)

where (number) gives the number of the mirrorline to be used.

A mirrorline can be moved to any position on the screen, and then the sprite can be

reflected in a given mirror. Because up to 8 mirrors can be active at once, complex

sequences of reflections can be done

If the user decides that a mirror is not necessary, the command:

hidemirror (number)

36

can be used. This command will remove the given mirror from the screen.

If the user wishes to use a transformation not included in the language, the matrix

command can be used to allow any kind of linear transformation. This command has the syntax:

matrix (expi) {exp2} (exp3} (exp4) (exp5} (exp6)

where (expi) through (exp6} are numerical expressions.

Each point on the sprite, given by (x, y), is taken as a 1x3 matrix, p:

P = [x y 1]

This matrix is then multiplied by a 3x3 matrix, M:

M

(expi) (exp2) 0

(exp3) (exp4} 0

(exp5) (exp6) 1. 1•
and the first two elements of the resulting 1x3 matrix give the new x and y co-ordinates of

the point.

Once the user has transformed the sprite to the desired position, the sprite can be

made to leave a "footprint" behind. This is done using the mark command. This

command has the syntax:

rnnrk

and will leave a grey line on the screen in the current position of the sprite. This line is

fixed, and will not move under further transformations of the sprite.

Thus, pictures of arbitrary complexity can be built up by transforming the line sprite

to various positions, and leaving marks behind.

37

4.3.2. The Control Commands

The control structures available in MOGL are similar to those available in Logo, and

allow repetition and decision making.

Often, when writing a program, a user will want to repeat some task many times.

The repeat command provides a simple way of doing this.

The repeat command has the syntax:

repeat (exp) [(commands)]

Here, { exp } is a numerical expression, and (commands) is a list of commands that

are to be executed, enclosed in square brackets.

The expression is evaluated, giving the number of times that the action is to be

repeated. Then the list of commands is executed that number of times.

A user may wish to execute some command conditionally on the result of some

comparison. The if command allows this, and can be in one of the following two forms:

if (bool-exp) [(commands)]

if (bool-exp} [{commands}] [(commands)]

Here, {bool-exp) represents a boolean expression (as defined in section 4.5.2.),

and (commands) represents a list of commands.

In the first form of the if command, the conditional expression is evaluated. If it

has the value TRUE, then the list of statements is executed. Otherwise, the list of

statements is ignored.

In the second form of the if command, the conditional expression is also evaluated.

If it is true, then the first set of statements is executed. However, if it is false, the second

set of statements is executed.

As the statements to be executed must be contained within square brackets, the

38

problem of matching a set of statements to an if command is avoided.

MOGL also includes some commands for saving and retrieving programs.

At any time, all the programs that have been defined can be saved in a file. This is

done by simply issuing the save command. It has the syntax:

save "(filename)

where (filename) is the name of the file in which the programs are to be saved. All of the

programs defined so far will then be saved in whatever directory was active when the user

started MOGL, under the name (filename).mogl, overwriting any file by that name.

As well, extra programs can be added to the MOGL environment by using the load

command, in the form:

load "(filename)

Here, (filename) is a word which gives the name of the file that the programs are to be

loaded from. If the file (filename).mogl exists, it will be opened, and.áll the programs it

contains will be read in. If a program in the file has the same name as a program that

already exists, it will be skipped over, and a message printed.

4.3.4. Miscellaneous Commands

Several additional commands are available for various other tasks.

The print command allows the user to print the values of variables, or constants,

and to print out text messages. It can be used in one of two forms:

print (expression)

print [(text—string)I

In the first form, the expression (expression) is evaluated, and the result is printed.

In the second form, all of the text within the list is printed, but the brackets are not printed.

39

This second form allows the user to output text messages to the text window.

Another command, the clearscreen command, is used to clear the graphics screen.

It has the syntax:

clearscreen

and it erases everything on the graphics screen, with the exception of the active sprite, and

any active mirrorlines.

The view and noview commands allow the user to specify whether or not to show

each sprite as it is created by a program. A complex sprite may take a long time to be

drawn on the screen if several smaller sprites have to be created and transformed. If this is

a concern, the user could issue the noview command, and only the finished sprite will

appear when a program is run. The default state can be restored with the view command.

However, it may be tedious to see a complex sprite being created. So, the noview

command can be given so that the new sprite will appear instantly rather than being created

line by line on the screen.

4.4. Variables

A variable in MOGL can contain a number (real or integer), a list (any text inside

square brackets), or a word (a single word preceded by a double quote). Variables are not

typed; so any of these types could be assigned to any variable.

Variables are set using the make command, as follows:

make "(identifier) (exp)

make "(identifier) "(word)

make "[identifier) [(text_string)]

Here, (identifier) is a character string representing the variable's name.

40

In the first format, the numerical or logical expression (exp) is evaluated, and the

result is assigned to the variable.

In the second and third formats, a single word (word) and a list (text_string) are

assigned to variables, respectively.

The value of the variable can be extracted by using:

(variable_name)

Wherever this occurs in a MOGL program, the value of the variable is taken. So, if

a number variable is part of an expression, the number contained in the variable is used in

the expression. An interesting consequence of this is that a list variable could be used as

the second parameter for a repeat command if the variable contains a list of the commands

to be repeated. The language functions this way for completeness, so that all objects can be

used in any appropriate place.

Since the variables are not typed, the variables do not have to be defined before they

are set, and if a variable that contains one type of data has another type of data assigned to

it, there is no problem. However, a variable must have a value before it is used.

Otherwise, an error message will be printed. A discussion of the scope of variables is

contained in the programming section (4.6.).

4.5. Expressions

MOGL allows the standard kinds of mathematical operations to be performed on

numbers and variables. Expressions can return either a numerical or a boolean result.

4.5.1. Numerical Expressions

A numerical expression in MOGL can be made up of constants and variables. These

can be combined using the operators "+" for addition, "-" for subtraction, "*" for

41

multiplication, and "I" for division. Expressions can also contain parentheses.

MOGL uses the algebraic order of operations when evaluating expressions. First,

anything inside brackets is evaluated. Next, any multiplications and divisions are done

(from left to right). Then, addition and subtraction is done.

An expression can be used anywhere a number is allowed in a MOGL program.

The type of the result of a mathematical operation depends on the type of the

arguments. If both arguments to the addition, subtraction, or multiplication operations are

integers, then the result will also be an integer. If either or both of the arguments are reals,

the result will be a real. The result of division is always a real.

4.5.2. Boolean Expressions

The results of two numerical expressions can be combined to form a boolean

expression. This will result in a TRUE or FALSE value being generated. This is generally

used for the if statement, to determine if a sequence of operations should be undertaken.

Numerical expressions can be combined using the operators "<" for less than, ">"

for greater than, and "=" for equality. As well, these operators can be combined to. get

"<z=" (or "=<z") for less than or equal to, '5.=" (or "=>") for greater than or equal to, and

"<>"(or"><") for unequal to.

4.5.3. Constants

Integer constants are simply made up of a sequence of digits, without any spaces or

punctuation between them.

Any number with a decimal point in it (even if no digits follow the decimal point)

will be considered to be a real.

42

4.6. Programming

There are two modes of operation within MOGL, direct and programming mode.

So far, only the direct mode of MOGL has been discussed. In this mode a prompt, "5.," is

given, and any of the commands explained above can be entered directly into the

interpreter. The commands will execute immediately.

However, a sequence of these commands can also be entered for future execution

and stored as a MOGL program.

A program in MOGL is like a procedure in other programming languages. Any

number of MOGL programs can be available at once, and they can can each other

arbitrarily. The words "program" and "procedure" are used interchangeably in MOGL.

4.6.1. Simple Programs

A simple program can be created by entering the command:

to "(program—name } (' (variable—name)) *

where (program—name) is a word representing the name of the program being

created, and ("(variable—name)) * represent the names of zero or more variables that the

program will use for parameters.

When this command is entered, the prompt will change to"?", which indicates that

a program is being entered. Now, the program can be typed in as a sequence of direct

commands.

To exit this mode, the user must type the command

end

on a line of its own to indicate the end of the program.

Now, whenever the name of the program is typed (with expressions for the

43

parameters, if required), the sequence of commands in the program will be executed. The

program is essentially a new command.

4.6.2. Programs to Create Sprites

Programs can also be written which produce new sprites. This is one of the most

interesting features of MOGL, since it allows the user to define his or her own graphical

objects to use. Rather than leaving static footprints behind (as in the regular programs),

each mark command defines a part of a new sprite.

These programs work in the same way as a regular program, except that the

program is first defined using the sprite command rather than the to command:

sprite "(program_name) ("(variable_name) } *

Here, a program is produced with the given name, and it is understood to represent

a sprite. This kind of program is entered in the same way as a regular program.

When a sprite program is executing, however, a new sprite is being defined. Each

mark command in the sprite program leaves behind a footprint which becomes a part of the

sprite being defined. Thus, any kind of sprite can be defined by the user.

A user could build up a library of sprite programs, which could be used in the

creation of many different kinds of pictures. The following program could be used to

define a square, for example:

sprite square

line (call up the line sprite)

slide 0.5 90 (move it off centre)

slide 0.5 180

repeat 4 { (repeat four times...)

44

turn 90 (turn the sprite 90 degrees)

mark (leave a mark behind)

]

end

Of course, this new sprite could be used within another program which defines

sprites; so that sprites of arbitrary complexity could be created. Note that the current

implementation of MOGL does not allow comments as part of programs; the comments

above were inserted into the program listing for convenience in explanation.

4.6.3. Recursion

Any program name could be used as a command within another program, or within

its own body. As a result of this, recursion is possible. For example, a program could be

written to compute the factorial of a number, recursively; putting the result into a global:

to factorial "n

if:n=0[(if n=0)

make ttf 1 (factorial is 1)

] { (if n<>0)

factorial (:n - 1) (compute factorial of n- 1)

make "f :f * :n (multiply this by n)

I

end

Then, if the program is called as:

factorial 4

the global variable "f will be set to 24.

45

4.7. Variables in MOGL

There are three major classes of variables in MOGL:

1) Global variables

2) Local variables

3) Parameters

4.7.1. Global Variables

By default, any variable used is a global variable. Global variables never need to

be declared in MOGL; any variable name can be used in a MAKE statement, and that

variable will be created (if necessary) and have a value assigned to it.

The command:

make 'tx 4

would, if x is not defined yet, make a global variable called x, and would assign the value 4

to it. This variable would then be available in the direct mode, as well as in all procedures.

4.7.2. Local Variables

A global variable can be used anywhere in the program, no matter where it is

defined. This could cause a lot of problems with side-effects from two procedures using

the same global variable for different purposes. To solve this problem, local variables are

also available in MOGL.

A local variable has to be declared within the procedure that it is local to, using the

local command with the name of the variable as a parameter. Thus the command:

local "x

will set up a local variable in the procedure in which the command is used.

46

This variable is available in the procedure defining it, and in any procedures that

this procedure calls.

As soon as the procedure with a local variable is finished, however, the variable

ceases to exist.

4.7.3. Parameters

Finally, parameters are also used in MOGL. These are defined at the start of a

procedure, and give storage for the values passed into the procedure. These parameters

have the same scope as if they were defined as local variables within the procedure.

Parameters only allow values to be passed into a procedure. Thus, if the value of a

parameter is changed within a procedure, no effect is made on the calling program's

variables. Thus if the following procedure were defined:

to demoparanis "x -

print :x

make "x 4

print :x

end

and the procedure called as follows:,

make "y 5

demoparams :y

print :y

then the following output would be obtained:

47

5 (printing the value of x inside the procedure; as passed from y)

4 (printing the new value of x within the procedure; y should not be

changed)

5 (printing the value of y after the procedure is completed; it has not

changed)

In this way, the parameters have no side-effects.

However, sometimes it is necessary for a procedure to change 'a global variable, for

example if the procedure is being used as a function of some sort. Using the definition of

scope that has been used, it is possible to do this without having to use the global variable's

name directly within the procedure. This could be done by passing the name of the

variable to the procedure rather than its value.

So, the above program could be rewritten so that that value of y is changed. Then,

the name of the variable to be changed (y) can be passed to the procedure as a parameter:

to demoparams "x

print :x (x contains the name of the variable to be

changed to 4)

make :x 4 (make the variable whose name is in x equal

to 4)

print :x

end

and the procedure called as follows:

make "y 5

demoparams "y

print :y

48

The output would be as follows:

"y (this is the value of x; it contains the name of variable y)

"y (the value of x hasn't changed)

4 (however, y is changed to 4)

So, using these techniques, the names or the values of variables can be passed into

procedures.

Care must be used when passing names of variables in recursive procedures, as

what the name represents may change as the procedure is returning.

4.8. The User Interface

The user interface to MOGL is designed to make MOGL into an environment that

can be used by both novices and experts to explore the motion geometry microworid.

When MOGL is started up, the user is presented a screen with four separate

windows (fig. 1).

The TEXT window is used for the user to type commands. The user can use any

of the MOGL commands just by typing on the keyboard, and the command will appear in

the TEXT window, and execute.

Any drawing that is done in MOGL will appear in the GRAPHICS window. If

shapes are larger than the window, only the parts within the window will be visible. There

is no facility to zoom out to see objects outside of the window.

The MESSAGE window, on the bottom, will be for any status or error messages

coming from MOGL.

Finally, the window labelled MAIN is the menu window, and it is currently

showing the main menu. A crosshair will be available on the screen, and arrow keys can

49

be used to move this crosshair to any position on the screen. When the crosshairs are

positioned on the appropriate menu entry, the spacebar can be pressed to make the selection

from the menu. Any commands that are selected sk'ill appear in the TEXT window (as if

they had been typed), and will execute.

TEXT GRAPHICS MAIN

>1
SPRITE...

MOVE...

mark

MIRRORS...

clearscreen

LEARN...

MESSAGES

Fig. 1 Windows in MOGL

If a selection is made from the menu, the word selected will flash, and the action

will take place. Any of the words in lower-case letters are names of commands. Words in

upper-case letters are new menus that will appear when selected. If a word in the menu

ends in three dots, this means more information will have to be given before the command

is complete.

So, if the user selects clearscreen from the menu, the graphics screen would clear

immediately.

If the user chooses SPRITE.., from the main menu, a new menu will appear,

50

listing all of the available sprites (fig. 2).

SPRITE

line

square

triangle

flag

Fig. 2 The Sprite Menu

The user could then select the desired sprite, and it would appear on the screen.

This list of sprites is updated as the user defines more sprites.

If the user selects MOVE... from the main menu, the MOVE menu will appear

(fig. 3).

MOVE

enlarge...

reduce...

turn...

slide...

reflect...

Fig. 3 The Move Menu

51

This menu lists all of the available motion geometry commands. Each command

requires at least one parameter, and that is supplied by going into further menus. For all of

the parameters that are not angles, the menu presented will consist of a scale. So, if the

user selects enlarge..., the enlarge window will appear in the menu area, with a scale (fig.

4).

enlarge

Select a Number

— 10

—0

ACCEPT

Fig. 4. The Enlarge Window

Here, the user can select any number from the scale by moving the crosshair to the

number and pressing the space bar (an arrow will appear with the selected number beside

it). When the desired number is selected, the user can select ACCEPT to complete the

operation. Only integers can be selected from the scales.

If the user, however, selects turn.., from the MOVE menu, a dial will appear.

This dial allows the user to select an angle to be turned (fig. 5).

52

tam

Select an Angle

90

180

270

ACCEPT

0

Fig. 5 The Turn Window

Here, the user can point to any point on the circle, and a line will appear at that

point with a number indicating the selected angle. Once the desired angle is selected, the

user can select ACCEPT to complete the operation. The available angles are in 15 degree

increments.

Each of the commands on the MOVE menu use, either the dial or the scale (as

appropriate), or a combination of the two. The slide command, for example, uses a scale

(to indicate the distance to slide) followed by a dial (to indicate the heading for the slide).

Another menu that is available from the MAIN menu is the menu allowing the

definition of mirrors. If the user selects MIRRORS... from the MAIN menu, the mirror

menu will be available (fig. 6).

53

MIRRORS

mirror...

hidemirror...

mturn...

mslide...

Fig. 6 The Mirror Menu

Here, the user can select one of the mirrors to make it visible (using mirror...),

hide one of the mirrors (using hidemirror ...), or position a mirror (using mturn... and

msllde ...). These commands use scales and dials to enter values, as appropriate.

Finally, if the user wishes to create a sprite using the user interface, he or she can

select LEARN..., and a whole new screen will overlap the old one, to allow the

commands for the sprite to be entered (fig. 7). This facility is currently available for the

sprite command, but not for the to command.

The LEARN screen is just like the original screen, with the exception that the

clearscreen command isn't available (that shouldn't be necessary when defining a sprite),

and an end.., command is available to end the program.

The user can now enter the moves to make the sprite on this screen, and be able to

see how each command works as it is being entered. This is a vast improvement on

conventional programming in MOOL by typing commands without any graphics appearing

54

on the screen. Even users who are comfortable with typing all their commands could select

this screen to be able to create their program while watching how the sprite looks (typed

commands will still work, and will become part of the program).

TEXT GRAPHICS
PAATNT

LEARN

>1
SPRITE...

MOVE...

mark

MIRRORS...

end...

MESSAGES

Fig. 7 The LEARN Screen

Once the user has defined the sprite, he or she can select end.., and the original

screen will appear. The user will be asked for a name for the sprite in the message

window, and the new sprite will be added to the sprite menu.

Notice that this feature is just for creating simple sprites with no parameters.

Recursive programs and parameters will not be allowed in this mode.

With this menu structure, the novice user can explore much of the power of MOGL

without typing a single command. The expert user may also use the interface for the

structured output, and the LEARN feature. All normal MOOL commands can be typed in

the main mode, and programs may be typed in without using the LEARN mode.

55

Chapter 5

Details of Implementation

5.1. Choice of Implementation Language

If MOGL is to be used in the schools, it should be written so that it can eventually

be moved to the computers that the schools use. As a result of this, using a fourth-

generation language such as LISP to implement it in would be counter-productive as LISP

requires a support environment that would tax the limits of micro computers that the

schools use.

So, it was decided to write MOGL in C, as ,C is flexible and compilers exist for

many machines. This should mean that the language is quite portable; requiring mainly

modification of the graphics portion (and this can be minimized by careful planning).

A preliminary version of the language has previously been implemented in C on an

Apple] [computer by the author (Novel), and a rudimentary user interface implemented on

a VAX computer (User). From these two experiments, MOGL has been significantly re-

structured, and a complete prototype of MOGL with the full user interface has now been

implemented on a Sun computer, designed to use a Visual 550 terminal for output.

5.2. Structure of the Interpreter

This section is a discussion of the various programming considerations when

developing the MOGL interpreter.

5.2.1. Mathematical Basis for Motion Geometry

The variety of geometry used in MOGL is a linear transformational geometry.

56

Thus, for any of the operations on lines of a shape, it is only necessary to transform each

of the end-points of the line, and draw a line through the new end-points. General curves

are not allowed in MOGL, but could be simulated creating shapes consisting of many short

lines.

Each of the points is given as an (x,y) co-ordinate; which defines the location of

each point in the conceptual plane used by the program. This location is then translated to

appropriate co-ordinates for the output device being used.

The transformation of each point can be accomplished through the use of simple

mathematical formulae. For example, to enlarge the shape, the number for each x and y

co-ordinate can be multiplied by a constant.

Rather than using a unique formula for each transformation, it is possible to use a

general matrix multiplication; using different matrices to get different transformations

(Foley and Van Dam).

Each (x,y) co-ordinate can be represented by the matrix:

P =X y I

This matrix, p, can be multiplied by a 30 matrix, M, to achieve a new matrix,

p', as follows:

p1 = I X y'

where x' and y' are the points after transformation.

In other words:

p'=p.M

Various matrices can be used for M, to achieve different transformations, as

follows:

57

1) Rotation

To rotate a shape around the centre of the screen through an angle, a, the following

matrix is used:

M

2) Translation

[
cos(a)

sin(a)

0 I
To translate a shape n units in the direction a, the following matrix can be used:

1 0 0

M= 0 1 0

n*cos(a) n*sin(a) I

It I
3) Enlargement

To make a sprite n times as large, the following matrix is used:

n 0 0

M= 0 n 0

0 0 1

The reduction matrix is the same, except that to do a reduction of m units, n can

58

be defined as follows:

n= 1/ni

4) Reflection

To reflect the point in a line running through (x,y) that is rotated by a degrees,

define:

s = 1 - 2 * sin(a) * sin(a)

c = 2 * sin(a) * cos(a)

Then, the matrix to use is given by:

S C 0

M= c -s 0

x*2 y*2 1.

A procedure called "exmatrixO" takes as arguments the numbers in the first two

columns of M (as the final column is always the same). This procedure transforms the

current sprite. So, to write a procedure to execute a motion geometry command, it is only

necessary to read in the arguments from the motion geometry command, and call the

exmatrix() procedure with the appropriate arguments, as described above. This simplified

the writing of the geometry portion of MOOL considerably.

5.2.2. Input to the Interpreter

Input to the interpreter can come from direct commands typed on the keyboard or

selected from menus (supplied a line at a time by the user interface), or from stored

programs.

59

5.2.2.1. Direct Input

When operating in direct mode, the user interface prompts the user for a line of

input, and once the user has typed the line it is passed to the interpreter.

The interpreter has a procedure called getsymb() which scans the line a character at

a time, scanning for symbols. This procedure returns the type of symbol found; returning a

lexeme if it is a command (indicating the appropriate command), or a lexeme indicating

what kind of object it is (e.g. LIST, WORD, REAL, etc.). Expressions are evaluated, and

the results are stored in a global for future use.

The symbol returned by getsymb() is interpreted. Thus, if it is a command, a C

procedure is called which executes the actions necessary to carry out the command

(possibly calling getsymb() again to get the values for any arguments). If it is the name of

a program, the appropriate program is executed.

These actions occur for every line the user types; completely interpreting the

previous line before the next line is typed. A side-effect of this approach is that each line

must have complete commands; one of the arguments to a command can't occur on the line

entered after the command in direct mode (in program mode, commands can be split across

several lines). Several commands could be given on the same line, however, separated by

spaces.

5.2.2.2. Interpreting User Programs

If the user enters a command that indicates that a program is to be entered, the

prompt changes to show that the user is entering a program. This program is stored as a

text string, which can be interpreted later. This string is stored in a data structure which

also includes the name of the program (for when the interpreter is looking up a particular

60

program), and pointers to the locations of the main body of the program, and the names of

the parameters the program uses.

When a program is to be executed, the parameters to the program are evaluated and

stored as variables (any variables with the same names as the parameters are saved as

described in section 5.3.2.). The old text input position, and pointers to any shapes that

were being created are all stacked. This old text input position may be NULL (indicating

direct input from the terminal), or it may have indicated that text was being read from

another program.

Now, the text from the new program is used as the source of input, and the

commands are executed as if they were typed in direct mode. If the program is defining a

sprite, the position of any lines marked are added to a data structure.

When the end command is reached, indicating the end of the program, the sprite

pointers, text input position, and variables are all popped off the stack. TI the program was

defining a sprite, the current sprite is set to the sprite defined by any marks left by the

program.

5.2.3. Error Processing

All of the C procedures used to interpret commands (except those dealing with

interpreting expressions, as described in section 5.4.5.) return a value to indicate if an error

has occurred while interpreting the command. If an error is encountered at any point, the

stack is unwound, and control returns immediately to the top level of the interpreter. An

error message is printed indicating the type of error that occurred, and all the structures

containing programs, variables, and so forth are left intact. No debugger is available.

61

5.3. Data Structures

Four main data structures are used within the MOGL interpreter. The functions of

these are:

1) to store a sprite being defined or being used

2) to store variables

3) to store programs

4) to provide a stack.

5.3.1. Storage of Sprites

A sprite is stored as a linked list, with each element in the list containing a pointer to

a structure defining a single line in the sprite (line), and a pointer to the next line in the

sprite (next).

A pointer (shape) is kept to the currently active sprite, and to any sprites being

defined by a program.

Each line in the sprite is stored as four pointers, which point to double accuracy real

numbers indicating the x and y co-ordinates of the end-points of the line in the conceptual

plane (x I, yl, x2, and y2). If the MOGL program is moved to a microcomputer, the most

accurate numbers available should be used to avoid rounding error accumulating during

transformations of the sprite.

The structure for a sprite consisting of two lines is diagrammed in figure 8.

5.3.2. Storage of Variables

Variables are stored in a hash table with chaining. A doubly-linked list is used for

the chain to make deletions simple. The variable structure for two variables hashing to two

62

different numbers is shown in figure 9.

Here Table is the hash table. Each entry in table is a pointer to a chain of variables.

Each variable in the chain has a name (represented as a string), a type (either integer, real,

or string; represented by a number), and a value pointer. The value of the variable is

pointed to by the appropriate pointer, according to the type of variable. If it is an integer

variable, an integer pointer (ivalue) points to the value. Similarly for real (rvalue) and

string (svalue) variables.

Shape
next
 00

line

xl

yl

x2

y2

next

1.07

21.23

2.07

21.23

xl

yl

x2

y2

Null

Fig. 8 Data Structure for a Two Line Sprite

1.07

L_ 21.23 -

15.23

Each variable also has a pointer to the next variable in the chain, and the previous

variable in the chain.

The data structure represented in figure 9 contains two variables; an integer variable

called "count" containing the number 42, and a list variable called "alist" containing the list,

[demo].

Along with this data structure are procedures to add a variable to the list; to delete a

variable from the current list and to find the current value of a variable.

63

Table[O]

[1]

[2]

 00
 /4 name
Null type

ivalue

Null rvalue

Null svalue

Null

225
cIoIu(nJ t I\°I

Null

Null

prey
next Null

00.
name
type
ivalue

rvalue

svalue

42

227

Null

Null

prey
next Null

d e m 0

Fig. 9 Data Structure for Storing Variables

The chaining is used in such a way that any insertions involving variables with an

identical name to a variable already existing will be placed before the existing variable in the

chain. A new variable will be added when the variable name is not found when a make

statement is encountered, when local variables are defined, and when parameters are

defined within a procedure. A list of pointers is used to keep track of any parameters or

locals (but not globals added by use of the make statement) added by the procedure.
When the procedure ends, the locals and parameters used by the procedure are deleted and

the variable table is left the way it was when the procedure was called. In this way, there is

no need to use a stack to keep track of variables within a procedure; the features of the

variable data structure are used as a stack instead. This reduces the load on the main stack.

64

5.3.3. Storage of Programs

Programs are stored as entries in a table of programs. A hash table is not currently

used for this. A maximum of 255 programs can be defined at once.

Each entry in the table (fig. 10) is a pointer to a structure consisting of the name of

the program, the text of the, program, and the type of program it is (i.e. whether it is

defining a sprite or not).

Proclist [0]

[1]

[2]

[3]

[4]

name
fullproc

params

address

type

 'I

7

IV I

M 0

to demo "x print :x end'L)
£

Fig. 10 Data Structure for Storing Programs

When an unknown identifier is found, the table of programs is searched to see if the

identifier is a program name. If it is a program name, the parameters to the program are

given their initial values. Then, input is taken from the text of the program until the END

statement is reached. All the housekeeping regarding the stack is carried out.

Error checking is done to check if too many programs have been defined, and an

error message printed if there is no more storage in the table.

5.3.4. The Stack

Since MOUL is a recursive language in its design, the stack is a very important part

of the interpreter.

The stack is simply an array of pointers. Pointers are placed on and removed from

65

the stack using the push() and popO procedures.

Everything that is pushed on the stack must be given as a pointer. Due to the type

flexibility of C, the pointer could be a pointer to any type of data; it is the responsibility of

the procedure using the stack to keep these types straight.

Error checking is done to check for an overflow.

5.3.5. Other Minor Data Structures

Other data structures are required within MOGL for some minor tasks.

For example, the mirrors are stored as an array of pointers to structures

representing the mirrors. Each structure contains an angle that the mirror is turned, and the

x and y co-ordinates of the centre of the mirrorline.

5.4. Interpreting MOGL commands

A cross-section of the MOGL commands will be described to indicate how the

interpreter was implemented to allow these commands.

5.4.1. The line Command

This command calls up the line sprite. This sprite is the basic building block for all

other sprites.

The line command first erases the old sprite by drawing it (all sprites are drawn

using Exclusive-Or on each of the points in the sprite. Thus, if a sprite is drawn once, it

will appear. If it is then drawn in the same place again, it will be erased). The pointers

used in the previous sprite are deleted. Space is obtained for a single line, and the end-

points of the line are set to (0,0) and (1,0) in the conceptual plane to make a line one unit

66

long lying along the x-axis.

The line is then drawn, so it appears on the screen.

5.4.2. Transformations

The procedures that do the various transformations to the sprite first read in any

values required as arguments. Then, the transformation is done by calling the exmatrix()

procedure and passing as parameters the appropriate matrix. All values used here are

double precision reals, to ensure maximum accuracy.

The transformation procedure works by first drawing the current sprite (thus

erasing it). Then, each point in the list representing the sprite is transformed by the

appropriate matrix. Once all points have been updated, the sprite is drawn again (so it

appears in the new location).

5.4.3. Making New Sprites

When a new sprite is being created by a program, pointers are kept to the beginning

and end of the sprite being created. Each time a mark command is encountered, the list

representing the currently active sprite is appended to the end of the list representing the

sprite being created.

If a line overlaps another line exactly, and the sprite is drawn, the line would

disappear completely; this is due to the exclusive-or technique of drawing points. So, each

of the lines in the newly appended list are compared to the lines already in the sprite, to

check for overlaps. If any lines are found that completely overlap each other, one is

deleted.

Normally, each line is drawn on the screen as the sprite is being created, so that the

67

user can see the shape being created on the screen. However, this may be tedious for large

sprites that are created recursively. The user would have to watch each sn,iller sprite being

created separately, and how these fit into the.larger sprite. To prevent the input/output

intensive drawing of each line individually, a noview command is available. If this

command is given in direct mode, each sprite will simply appear after it has been created.

The internal processing is the same, but only the final sprite is drawn on the screen. The

default mode can later be restored using the view command.

5.4.4. Flow of Control Commands

MOGL has two commands controlling the flow of statements (other than

recursion); the if command and the repeat command.

The if statement is interpreted by first evaluating the expression, by calling the

getsymb() procedure.

Next, the first list is read in using getsymbO, and a pointer stored to the text

contained in the list. If the character after the list is an opening square bracket, the second

list is read in, and a second pointer points to it. If there is no second list, this pointer is set

to NULL.

Finally, if the condition was TRUE, then the first list is executed by pushing the

current text input position on the stack, and then setting the text input to come from the list.

Control would then return to the top level of the interpreter.

If the condition was FALSE, the second list is executed in the same manner (if it

exists).

Once the interpreter has reached the end of the list, the old input position will be

popped off the stack, and interpretation will resume normally.

The repeat statement is interpreted in much the same way as the if statement.

68

First, the expression is evaluated to see how many times it is to repeat. Next, the list of

commands to repeat is read in using getsymbO, and a pointer kept to the location of this

list.

To actually execute the commands repeatedly, first the old input position is pushed

on the stack. Input is then set to come from the list returned by getsymbO. The number of

times to repeat is pushed on the stack.

Control is returned to the top level of the interpreter. When the end of the list is

reached, the interpreter will pop the number of times to repeat off the stack, decrement it,

and check if it is less than 0. If not, it is pushed on the stack again, and the list is

interpreted again. This process continues until the commands in the list have been

interpreted the required number of times.

5.4.5. Expressions

If the getsymb() procedure finds a value (either a constant or a variable), and a

mathematical operator follows that value, then an expression has to be evaluated to come up

with the final number. This is done by calling a procedure called readexpO, passing itthe

type of value read in so far (the actual value is stored in a global variable).

If the getsymb() procedure finds a bracket or negative sign, it also assumes that an

expression has been entered. A recursive call to getsymb() is made to evaluate the contents

of the brackets or the number to be negated.

The readexp() procedure evaluates the expression recursively. It first initializes a

global flag to keep track of errors. This is necessary because the procedures will be

returning numerical values, so an error flag can't be returned by the procedures (as

elsewhere in the program). Once the initialization is done, the value of the expression is

69

determined by calling readexplO. The type of value is then returned by the readexp()

procedure to the main interpreter, and the actual value is placed in a global.

The readexpl() procedure deals with bbolean operators. It evaluates the expression

by calling readexp2(), and then checking for the compound operators <,>, =, <=, =<, >=,

=>, <>, and ><. If no boolean operator is found, the value returned by readexp2() is

returned directly. If an operator is found, readexp2() is called again to get the second half

of the expression, and the result of applying the boolean operator is determined and

returned.

The readexp2() procedure works in a similar way, except recognizing and

evaluating the addition and subtraction operators. Any number of values can be added

together, so it calls readexp3() as long as addition and subtraction operators are

encountered; keeping track of the overall sum.

The readexp3() procedure deals with multiplication and division. Any values used

by readexp3() are found by calling the getsymbO procedure. Thus, the hierarchy of

operators is maintained, as well as bracketing and negation.

The type returned by the readexp() procedures depends on the type of operation

done. If a boolean expression is evaluated, the type boolean is returned. If integers are

added, subtracted, or multiplied, then the type integer is returned. Otherwise the type

returned is real, because at least one real number is used in the calculation, or a division

was done.

The relational operators = and <>, when applied to reals, check that the two reals

are equal or unequal according to a tolerance that is defined in the program. If two reals are

within 0.000001 of each other, they are considered to be the same.

70

5.4.6. Graphics

One module of the program deals with the details of the graphics. If the program

were to be used on a different terminal or a microcomputer, this would need to be rewritten

for the new hardware.

A program, tek.c, consists of driver routines to send the control sequences to the

Visual 550 terminal, saving some of the tedious details of developing a graphics interface

from scratch. -

The graphics section of the MOGL interpreter has procedures which call the

appropriate tek.c procedures to initialize the graphics, clear the graphics and text screens,

and draw lines.

The MOGL interpreter includes a line-clipping procedure to make sure that all lines

will fit within the screen or window being used (Newman and Sproull, 66-67).

The graphics in MOGL is a three-layered approach, similar to that discussed in van

de Bos (95). The top layer is device independent, using an imaginary plane with the co-

ordinate (0,0) in the centre and with units approximately a centimeter long. The middle

layer is a simulation layer. Here, co-ordinates in the top layer are converted to those

appropriate for the terminal being used. Measurements are converted to pixels, and the

plane converted to that used by the terminal (e.g. with (0,0) in the bottom left corner for the

Visual 550). All these conversions are done by function calls; the functions would need to

be rewritten if the program was used with graphics device using a different co-ordinate

system than the Visual 550. The bottom layer consists of the basic device driver,

containing the necessary commands to draw lines on the given device. Naturally, the

bottom layer would need to be completely rewritten if MOGL were used on a different

machine.

71

5.4.7. Variables

Variables implemented in MOGL are set up so that the user does not need to be

overly concerned about how the variables operate. Thus, variables do not need to be

declared before a value is assigned to them, and the type of a variable does not need to be

defined in advance. A variable must have a value before it is used in an expression,

however.

If the make statement is used to give a value to a variable that doesn't yet exist, an

entry is made in the variable table to make a variable of the given name, and to assign to it

the type as reflected by the second parameter to the make statement.

If a subsequent make command is used to assign a value to the variable, the old

value and type are deleted (and the space they used is freed), and new space allocated for

the new value. In this way, if a different type of object is assigned to the variable, it is just

updated to the new value and type.

The local command creates a variable of the name given which is local to the

current procedure (i.e. it is added on to the beginning of the variable chain and to the list, of

variables to be deleted at the end of the procedure). This is done by creating a new variable

with no value, and adding it to the beginning of the variable chain and to the list of

variables which are to be deleted (see section 5.3.2.).

Whenever a variable is found preceded by a colon, the interpreter will replace 1t

with its value before continuing on the interpretation. If the variable has no value, or

doesn't exist, an error message is printed.

5.4.8. Communication with the User Interface

The interpreter for MOGL can work in two modes; with a user interface, and

72

without it. MOGL can operate without the interface, if desired, by calling it with a "-ni"

flag. If used without the user interface, MOGL will simply print any text directly on the

screen, and draw graphics behind the text. Both text and graphics can take up the full

screen.

If a user interface is attached, however, the interpreter must be able to provide the

interface with the appropriate information, and receive commands from the interface.

A boolean global, interface, is true if a user interface is attached. If an interface is

attached, the input and output routines in MOGL must accommodate the interface.

Communication between MOGL and the interface is attained by having MOGL call

various procedures in the interface module, and vice versa.

For example, when the interface is in effect, MOGL may only have a limited

window to produce graphics on. Thus, special line clipping must be done. So, if an

interface is attached, MOGL will first call a procedure gwindsize() to find the coordinates

of the graphics window. All future drawing is done within those confines.

MOGL will also send textual output to appropriate procedures in the interface to

print the messages in an appropriate place. Error messages, status messages, and output

that the user has requested will all be passed to different procedures for processing.

The interface for MOGL requires that the screen be destroyed when the LEARN

mode is entered, and later redrawn. Thus, all the marks done in direct mode must be

remembered. This is done by creating a sprite-like structure, containing marks. When

necessary, all the marks done so far can be re-drawn.

MOGL is designed to be able to receive text from the interface as if it had been

typed. When MOGL is expecting input from the user with the interface in place, a

procedure in the interface module will be called to return the appropriate text. MOGL will

73

then act on the text as if it had been typed by the user.

By designing the interaction between MOOL and the interface in this way, they

remain relatively independent; with only a few procedure calls required to transfer control

between the two modules.

5.5. Structure of the User Interface Module

The user interface module for MOGL has to have many capabilities to be able to

handle some windowing operations, as well as allowing for pointing device input and

graphical output.

It would be easiest to write the interface using an existing windowing system, but

systems such as the Maryland window system don't allow windows containing graphics.

Thus, a unique windowing system had to be designed. Some information on this

task is available (Rochkind) but information on graphical or pointing device operations is

not included.

Graphics are limited to a pre-defined rectangle on the screen. Thus, there is no

need to worry about advanced windowing operations such as the capability to move

windows. The interpreter is told the confines of the graphics screen, and given new

coordinates if the screen is moved (if the LEARN mode is entered, for example).

No provision is available for dealing with the pointing device input on the visual

550 terminals, so that is custom designed as well. The user can choose to use the arrow

keys or the regular text keys. If an arrow key is pressed, the cross hairs move in the

appropriate direction (this capability is built in to the visual 550 terminals). When the space

bar is pressed, the coordinates of the crosshairs from the terminal are passed to a procedure

which handles the menus. This part of the program is not portable to other terminals, and

74

will need rewriting. If the user types alphabetic characters, they are stored and printed out

within the confines of the text window. As soon as a string has been entered it is passed

directly back to the MOGL interpreter for processing.

All window coordinates throughout the interface module are given as textual x and

y coordinates, indicating the position of characters on the screen. Functions are used to

convert these to absolute graphical coordinates for the drawing of appropriate lines.

The windows are stored as an array of records. Each window has a name (which

appears at the top), x and y coordinates of its top left-hand corner, a width and a length, a

position of the text cursor within the window, and the textual contents (if appropriate).

The menus for the menu window are also stored as an array of records. Each menu

has a name, and a list of its submenus (anywhere from 0 to 8 submenus are possible).

Thus, if the MAIN menu is displayed, the names of all the' submenus are printed. If, for

example, the clearscreen submenu is selected, it has no submenus, so the command

"clearscreen" is directly passed to the MOGL interpreter. If there are submenus, the menu

structure is traversed until the end is reached, with the necessary pieces of the commands

being assembled as the structure is followed, and the complete command is passed to the

MOGL interpreter at the end.

Some menus are special cases (such as the LEARN menu which requires a new

screen to be created, or the SPRITE menu which needs to get the current list of sprite

names from the interpreter). These menus are indicated by having a negative number of

submenus. The negative number tells the interface to use a special procedure.

Some submenus are special cases as well. If a negative number occurs in the list of

submenus, this means the submenu is a dial or a scale. If the number is -1, the submenu is

a dial; if it is a lesser number (-2 or less), a scale is made with a range anywhere from 2

75

units up (according to the number used). The numbers selected from the dial or the scale

are printed, and included in the string that is to be passed to the MOGL interpreter.

Several special printing procedures are used in the interface, so that messages are

printed in the appropriate windows. Commands are printed in the TEXT window as they

are entered; any textual output from the commands is also printed there. Error messages

and status messages are printed in the MESSAGES window. All of the printing

procedures call a common text handling procedure, which makes sure the text wraps

properly within the window, and handles scrolling if the window is full.

The user interface is conceptually quite simple. However, the procedures to draw

the windows and the menus, as well as deal with crosshair selections made by the user to

traverse the menu structure, can be quite complex. Many support procedures had to be

written (such as those to draw the dial and scale), and custom input and output routines

were written to ignore any characters not within the character set used by MOGL. All of

this has led to a relatively robust and easy to use user interface.

5.6. Conclusion

The programming of MOGL was an involved process. It included using matrices

for transformations, dealing with both typed and programmed input, processing errors,

creating and implementing data structures for many kinds of objects, and interpreting the

individual commands. The graphics portion of the language used a three layer approach for

simplicity. As well, an entire windowing system had to be designed. The end result is a

prototype of the MOGL interpreter, with enough functionality to get a good idea of how the

language works, and to do some preliminary testing on the use of MOGL.

Chapter 6

Evaluation and Discussion

6.1. Introduction

The evaluation of MOGL will be attempted by looking at several topics. These are

as follows:

(a) The user response to MOGL.

(b) A comparison with another microworid - an implementation of LOGO - will be

made.

(c) Comparison of the motion geometry features of the MOGL language to the design

goals.

(d) Comparison of the user model implied in the design of MOGL to theory, to see

how well it meets the needs of users and learners.

(e) An analysis of the user interface to see how well it meets the various criteria for

user interfaces. And finally,

(f) A discussion of the actual implementation, to discover possible programming

improvements.

6.2. A survey of users

User response to MOGL was determined by surveying a group of six users who

were taught various commands in MOGL and asked to make comments on how the

language worked. The users consisted of both males and females from 16 to 27 years old

with many different levels of computer experience ranging from near-novices to experts.

As this is a prototype version of MOGL, this should be a sufficient survey. The comments

77

these users made will indicate areas to look for improvements in the MOGL language and

user interface.

The survey (Appendix A) was given to six people, and allowed them to use the

turn, slide, and reflect commands, as well as letting them define a new sprite.

The users came up with many useful comments, and discovered several

shortcomings of the current implementation of MOGL. Each user issue will be addressed

individually, and at the end of this section the user suggestions will be summarized.

The user comments are as follows.

Some users had difficulty with the term "sprite" for the shape being moved on the

screen, suggesting it should be called a "shape" instead. This can be easily changed in the

interface.

When moving the sprite around the screen, and leaving marks, users found that the

mark can be confusing; whenever a mark was left behind, the sprite could no longer be

distinguished (this was explained in the survey by saying the sprite was behind the mark).

It would be better if the sprite stayed on top of the footprints. However, this would present

a programming problem, as the sprite is currently drawn using an exclusive-or technique.

This problem could be solved by using two graphics layers, one containing the marks and

the other containing the sprite. If the sprite is on the top layer, the problem would be

solved. The Apple] [computer (used in the Calgary school system) does have two

graphics screens available, so this would be reasonably easy to program. The Visual 550

terminal does not have this capability, so to program this type of feature would require

computing the intersection points between lines in the sprite and the footprints. This could

slow the program down somewhat, but would solve the problem by ensuring that lines that

overlap are drawn correctly.

78

Other confusion was caused by the positioning of the line sprite initially; users

wondered why it was the length given, and positioned with one end on the centre of the

screen. Sometimes, users had difficulty telling the position of the sprite on the screen in

relation to the centre. These problems might be solved by having an option to make the X

and Y-axis visible in the background, possibly with markings for each unit of length. This

may have to be experimented with, to ensure the screen does not become too cluttered.

Using the turn command caused some confusion. Because a dial was used to

indicate how far the line sprite was to turn, users thought that it was to give the desired

orientation of the sprite. It was not obvious that this was a turn relative to the current

position of the sprite. There were other problems, with users unsure about which direction

the sprite would turn. One way to solve this problem would be to animate the turns;

showing the sprite every 5 degrees or so as the turn is done. In this way, the direction of

turning would be obvious, and the total distance turned easier to visualize. Although for a

line sprite it might seem simpler to position the dial to fit the original orientation of the

sprite, some other shapes (such as a square) do not have an obvious orientation.

Users were confused about which point on the screen defined the centre of rotation

for the sprite. This could be simplified by having the X and Y-axis visible. Some users

would prefer the sprite to turn on its own axis. This would violate the motion geometry

concepts being taught, in that the sprite should be seen to rotate around a point on the plane

rather than its own centre. An advanced user, however, could write a turn procedure

which would turn the sprite around an arbitrary point, and learn quite a lot about motion

geometry in the process.

One user found that the dial used in the turn command was difficult to get used to

at first, having trouble in selecting a position on the dial and then selecting accept to accept

79

the position. Using a mouse might solve this problem, with the concept of dragging a

pointer around the dial easier to visjlili7e.

In comparison, the slide command caused few problems. The menus came up in

the order the arguments were required, and the dial was used for the absolute heading.

Both of these things made the slide command straightforward to use, and users commented

on its ease of use.

Some users expected the clearscreen command to clear the entire screen, rather

than just the graphics window. The command can be renamed to cleargrap hi cs instead.

Reflections caused a little confusion. One problem was that the users expected the

mirror to act like a real-life mirror; showing an image of the sprite rather than moving the

sprite to a different location. Some left a mark before reflecting to show both the original

and the reflected position. This was a good way to visualize the reflection transformation,

and could be used from the beginning. It should not be available automatically, though,

since reflection is a movement in motion geometry, not a doubling of a shape.

When more than one mirror was on the screen, there was some confusion as to

which mirror was which. This problem could be solved by having a number visible beside

each mirror. This is not really a suprising problem, and the numbering of the mirrors was

not implemented because this is only a prototype implementation.

Users generally enjoyed creating a new sprite, using words like "fun" and "neato"

to describe this experience. This part of MOGL seemed to be very successful, and users

often tried creating several sprites enthusiastically.

One source of confusion occurs in creating new sprites. In the direct mode, the

mark command would leave a permanent "footprint" on the screen, but in the sprite

program mode, it defines a part of the new sprite. This confusion could be removed by

explaining this difference to the user before programming is attempted (this should have

80

been done in the survey). The feature of the mark command working in a different way

when programming allows users to expand on concepts previously learned, so it does help

the users in the learning process.

Another problem is that one user thought he had crashed the program when

selecting LEARN because it took a long time to draw the LEARN screen. Perhaps

having a clock on the screen during long operations would help.

Two of the subjects made errors while typing in their programs, and were unable to

correct these errors. A text editor would be helpful for fixing any mistakes made in

programming.

In loading sprites, one user mentioned it would be nice to have a directory

command to see what sprites are available. This would be straightforward to implement,

requiring a bit of interfacing with the operating system.

When typing commands, one user found that using a negative number as a second

argument to a command (e.g. -5), a formula would be evaluated (such as 4- 5) rather than

using the two numbers separately (4 and -5). The problem is caused by the arguments to

commands needing to be separated only by spaces. This could be rectified by warning

users to type negative numbers inside brackets, although this isn't necessarily a good

solution. Using a comma as a delimiter between arguments would also solve this problem,

although this would make MOGL different from Logo.

The users gave many comments about the user interface, and quite a few

improvements will have to be made in this area.

A user commented that he would like to see commands that have scrolled off the

screen. This could be rectified by logging all the commands, and using a scroll bar to

retrieve old commands.

81

Users found that some error messages were not helpful. These error messages can

easily be re-written to be more descriptive.

Most users liked the option of being able to type or select commands, and used both

methods throughout. This integration of the beginner and expert users seems to be

enjoyed, especially by experts learning the system. One mentioned that he thought the

menus were a good way to learn the commands, and would then type them after using the

menus a couple of times.

Almost all the users found typing commands in easier than using the crosshairs, but

most thought a mouse would improve the selection process. One user mentioned that he

would prefer typing over a mouse. The crosshairs are difficult to use, and a mouse

interface must be added to MOGL.

Once or twice, a user would start typing, and then be frustrated because the

crosshairs would not be available again until the return key was pressed. Perhaps a mode

could be used where the menus will follow what is being typed on the keyboard, so the

correct menu for a given part of any command is visible while typing is done. This may be

distracting to the expert user, though, so should be added as an option for non-experts.

There was some confusion about hitting space to select a command with the

crosshairs and hitting return to enter a typed command. This would no longer be a problem

if a mouse were used.

Some users did not like the way the menus were set up; preferring instead to have

all the commands on one menu (indicating that Miller's 7±2 concepts in short term memory

may not be applicable) or at least having the commands on the main menu grouped

together, away from the sub-menus. The grouping of the menus could be improved by

grouping commands and sub-menus on separate parts of the menu screen. However,

82

having all the commands on one menu would make it more difficult to find and choose the

desired command, as any sprites that are defined would have to be displayed along with

twelve commands.

Some found they went to the MIRRORS... menu when trying to reflect, even

though reflect was a movement and under the MOVE.., menu. This again is confusion

with motion geometry concepts rather then MOGL, as reflection is a movement in motion

geometry. In this case, the interface was implemented in the best way possible.

An escape menu to get back from a menu without executing the command would

also be an option. This can be done in the current implementation by selecting an empty

menu slot; but this produces an error message. An escape command can be added to the

bottom of every menu, instead.

Several users mentioned that an undo command would be useful when mistakes are

made in the drawing. This command could be added to the main menu, so the last entire

operation is undone. Since all the operations in MOOL have the characteristics of a group

(as defined by Piaget), any action can be undone by executing its inverse. For example, to

undo a rotation, another rotation could be done by the negative of the original turn. The

specific inverses for each command would need to be programmed as part of the undo

command.

One user overloaded the one character keyboard buffer several times; allowances

will have to be made for fast typists. This modification will be difficult, since the UNIX

buffers can't be used. A buffer will have to be added to the interface, with periodic checks

to make sure nothing has been typed every time a long operation is done.

Generally, the people using the program seemed to enjoy working on the computer.

They found MOOL "friendly." It was interesting to notice that while doing the survey,

83

three of the subjects completely forgot about the survey, and started experimenting with

MOGL on their own and creating new and interesting shapes on the screen. This was not

discouraged, as the whole point of MOGL is that it is supposed to be a microworid; a place

to explore. All the subjects were quite complimentary in rating MOGL, even with the flaws

that they noticed.

MOGL seems to have achieved the main goals for the system. Users found it fun

to use, so were highly motivated to explore the MOGL microworid. The motion geometry

commands worked as expected most of the time, and when an unexpected effect was

discovered, it was due to a misunderstanding of motion geometry on the users part rather

than an inconsistency in the system.

Many extensions to this prototype of MOGL are suggested by the experimentation.

The X and Y axis should be made visible. The turn command could be animated. A

mouse must be added to the interface. A clock should indicate long operations taking

place. A directory command would be useful. Having the menus optionally follow the

typed commands could help intermediate users. And finally, a keyboard buffer should be

added. These were issues not addressed in the design that should be dealt with in a future

re-design.

Some of the design features were not implemented as this is a prototype. Some of

the many minor features were omitted. Most notable of these are the escape command (to

go back a menu) and the undo command (to undo an operation). As well, the mirrors

should be numbered to indicate which mirror is which. The error messages are not as

helpful as they could be. And finally, the marks could be rewritten so as not to hide the

sprite (although this could be difficult to program).

Some of the decisions made in the design process were in error, and now could be

changed. The word "sprite" should be changed to "shape," for a more natural way to talk

84

about objects on the screen. The clearscreen command is misleading; cleargraphics

would better indicate that only the graphics screen is cleared. A directory command would

help the user find available MOGL programs before loading. Some way of logging

commands that scroll off the top of the screen would be good as well, so users could check

on old work when doing new operations.

The menus were grouped so that the user would follow the menus in order in a

typical session; starting with the top menu and working down through the menus on the

main menu. Thus, a sprite could be defined, moved, and then made to leave a mark

behind. Users would prefer to have commands grouped so menus are separated from

commands that execute immediately.

6.3. Comparison of MOGL and Logo

The basic format of commands in MOGL is based on Logo, to make it easier for

students who have learned one microworld to quickly learn the other. However, there are

some differences between MOGL and Logo (besides the different types of geometry used).

MOGL will be compared to Apple Logo, which is used widely in the public schools.

6.3.1. Possible Additions to MOGL's Commands

MOGL has no facility for accepting any kind of input into variables from the user of

a program other than using parameters when calling a procedure. It would be good to

implement commands like Logo's readlist or readword commands to read information in

while a program is operating. Users could use this in programs to define shapes where

questions must be asked while the shape is being defined. As well, teachers may need this

facility to create programs for the students to use. Other commands would be necessary

85

with the input commands, to break lists down into words and convert words to integers or

reals.

An operation that can be quite frustrating in MOGL is the save command. This

command saves all of the procedures currently defined. However, the user may only want

to save one procedure. Logo uses a command called savel to save only those procedures

named in a list given as a parameter to the command.

There are many other commands in Logo that may be useful to MOGL, but these

two major commands are the only ones needed to make MOGL more useful as a motion

geometry microworid.

6.3.2. Variable Names

Variables are passed between MOGL procedures in two ways. First, they can be

passed by value (only the variable's value is passed), or they can be passed by name (the

name of a variable is passed). There is no facility to pass variables by reference. This is

similar to the way that Logo handles variables, but can be confusing in recursive

procedures to a programmer used to passing values by reference. It may be desirable to

add a capability of referring to variables by reference in MOGL.

MOGL does have a local command to make variables local to the procedure in

which they are defined. Otherwise, all variables defined anywhere are global. This is the

same as Logo.

One difference in the use of variables between Logo and MOGL is that when a

procedure is defined, MOGL requires the names of any parameters at the beginning of the

procedure. For example,

to demo "ni "n2

86

This was designed in this way because it makes sense to think of a procedure being

defined along with the names of its variables.

Logo requires procedures to be defined using the symbols for the contents of

variables (using a colon rather than a quotation mark). For example,

to demo :nl :n2

This is not as logical as the way MOGL is written. However, MOGL might be re-

written so that procedures are written in the same way as Logo, to avoid confusion when a

young user switches between the two languages. This small logical inconsistency is

outweighed by avoiding confusing the user with a new format of writing procedures.

6.3.3. Different Objects in MOGL

In Logo, all objects are implemented as text strings. Thus, even the orientation and

position of the turtle is available to the user through special commands, returning a list

containing the coordinates and orientation. This allows consistency with Logo as a

complete programming environment.

MOGL, however, uses a special data structure to represent sprites. Because speed

is important, it would be inefficient to represent it as a text string. Since MOGL is really an

environment for exploring motion geometry rather than exploring general programming,

this lack of information about the sprite is unimportant, and more than compensated for by

faster speed than would be realized with a text representation.

6.4. MOGL's Motion Geometry Commands

The main emphasis in designing the command set for MOGL has been the creation

of a number of motion geometry commands. However, now that the language is

87

implemented, it is apparent that some of the commands could be improved.

In using MOGL, it would be reasonable to allow default parameters for some

commands to increase simplicity for novice users. For example, if no distance is given to

the slide command, it could slide the shape one unit in the direction given. Unfortunately,

MOGL is written to allow several commands on one line, and it would be difficult to parse

the slide command if it could have a variable number of parameters. A more reasonable

approach might be to create a library of default commands which could be loaded as MOGL

procedures. These commands could have the desired number of parameters, and operate in

a default way. For example, to create a command called si which would slide the sprite

one unit in the direction indicated, the following program could be used:

to si "angle

slide 1 :angle

end

Another difficulty with MOGL is that the enlarge command can unexpectedly cause

a sprite to disappear. Since the sprite is being enlarged around the centre of the screen, if it

is off-centre and enlarged too far, it will seem to disappear. This feature could be explained

to the user by having him or her imagine the sprite as drawn on a large balloon, where the

screen looks at just a part of the balloon. If the balloon is blown up too far, the sprite will

no longer be visible on the window; but it still exists off the screen.

The enlarge command was written to bea simple linear enlargement, as this is what

is covered in the motion geometry curriculum at the outset. If a user desires, it would be

possible for him or her to use MOGL to write a more general enlarge command, which

enlarges around an arbitrary point on the screen; or enlarges only in the horizontal or

vertical direction.

The turn command caused quite a few problems in the survey given to various

88

potential users. The turn command was designed to turn in only one direction for

simplicity. In an early design, it was decided to have a turncw command and a turnccw

command which turn clockwise and counterclockwise, respectively. Some potential users

expressed confusion with these commands, so they were omitted. Users can instead use a

negative number with the turn command to turn the sprite backwards.

Many users complained that MOGL always turns, reduces and enlarges around the

centre of the screen. To address these concems,MOCL could be given a function to return

the centre of a shape. Using this, an experienced user could write custom turn, enlarge,

and reduce commands which all operate around the centre of the shape, and in the process

learn a lot about how motion geometry operates.

6.5. Does MOGL Meet the Educational Goals?

MOGL appears to be a successful microworid. It is a self-contained universe that is

essentially consistent and can be explored quite readily. With the addition of the user

interface, this exploration is quite easy. In fact, some of the subjects in the survey

completely forgot they were doing a survey and started exploring MOGL on their own.

They would get quite excited, and start experimenting with different menus and creating

different shapes. The subjects were not discouraged from doing this, because MOGL is

designed to be explored. MOGL shouldn't really be used according to a worksheet.

Because of the motivation that users seem to have while using MOGL, and the way

MOGL works consistently with established principles of motion geometry, it seems that it

will be easy to get students to use it. As well, since it was designed with current

educational theories in mind, MOGL should be an effective educational medium.

89

6.6. The User Interface

To do an analysis of how effective MOGL's user interface is, it is useful to refer to

some of Hill's 13 design goals (Hill, 6-12).

1. Know the user

Research was done into the ways that people learn, and this has been applied to the

design of MOGL. Since it is designed as an interface for school aged children and older

people, there are various ways of interacting with the system. A pointing device can be

used, and direct typing of commands is also possible.

2. Design the tools the user needs

MOGL allows the user to use all of the major motion geometry operations. Pictures

could be drawn in a more straightforward way (such as pointing to a location to slide to

rather than giving a distance and direction to the slide command), but this would not allow

the user to really understand the underlying concepts of motion geometry. The emphasis

throughout has been to design an educationally viable environment for learning these

concepts.

An omission from the current MOGL system is a text editor. At the moment, if the

user makes a mistake entering a program, he or she must save the program, leave the

MOGL environment and use one of the Unix editors. This is unacceptable. A good editor

should be included as part of the MOGL environment, perhaps within the TEXT window.

3. Make the system easy to learn and remember

The interface to MOGL is designed as a menu structure, making it quite easy to

learn the commands, as users have commented. The words used for the commands usually

have obvious meanings. The structure of the menu as a hierarchy follow the way humans

may structure the concepts used as a mental hierarchy (as described by Piaget).

90

4. Avoid both human and machine failure modes.

Comprehensive error checking is done throughout MOGL to make sure that any

errors won't cause the program to crash. However, the break and delete keys can cause the

program to stop. In the experiments, this problem was solved by physically disabling

those keys. A software solution to this problem would be preferable. This requires

rewriting some of the input/output routines for MOGL.

To avoid human failure, the system is designed to be reasonably friendly, and

commands are available to do repetitive tasks (using recursion or the repeat command).

5. Structure the interaction

MOGL's interface is highly structured, allowing the novice user to follow the menu

hierarchy to execute commands. However, the structure could be better represented to the

user. All the menus will appear in the same place on the main screen, no matter how deep

the user is in the structure. It might be better to do something similar to the overlapping

done by the LEARN screen, and overlap any new menus slightly. In this way, the user

could see how deep she or he is in the menu structure.

6. Convey a feeling of control to the user

The users tested in the survey indicated that they did feel quite a lot of control over

the system. Having the menus meant not having to guess at commands, and being able to

execute desired actions without too much trouble.

7. Consider division of labour

The computer should only do what it is suited to do, and the user what he or she is

to do. Thus, the computer should be dealing with almost everything not concerned with

the learning of motion geometry.

Rather than having the user guess where the sprite is when there are marks on the

screen, the computer should do the necessary computations to ensure the sprite is visible at

91

all times.

Otherwise, the MOGL interface seems to take care of most of the details. Some

things could be automated, such as the naming of new sprites the user creates, but it is

better to give the user some control in these areas.

8. Take into account human performance limits

The interface is set up in a way that allows easy interaction. The main focus of

attention is the graphics screen, so that has been placed in the middle.

9. Provide facilities to monitor system activity

There are, as yet, no facilities to monitor activity on MOGL. Many types of

monitoring should be implemented. Each error encountered should be logged, so

weaknesses of the system can be determined. A facility should be available to record the

timing of each selection and keystroke, for future analysis with the keystroke level model

(Card and Newell). And a gripe facility might be a good idea, so users can offer

complaints and suggestions for the system.

Perhaps the first improvement to MOGL should be to add a mouse to the system.

A difficulty would be having the program communicate with the mouse, but languages

have been designedto help deal with this problem (Cardelli and Pike). Using these

techniques, it should be relatively easy to add the mouse capabilities to MOGL.

6.7. Implementation of MOGL

There are some considerations in the implementation of MOGL that should be

addressed.

The implementation of all the procedures so that they return a value indicating if an

error has occurred seems to be quite effective. Thus, if a single error does occur, the user

92

can be returned to the top level without any major problems. Most of the error messages

are effective, but some must be improved (for example, if the user selects an empty slot on

the menu, the error message received is "slot unbound"). As well, better garbage collection

must be implemented, as MOGL has a tendency to run out of data space when heavily

recursive programs are run.

The implementation of MOGL in C seems to work well. It is portable; only

requiring re-writing of the graphics module and some of the text input filters. The three-

layered approach to the design of the graphics system should make the redesign of the

graphics system fairly straightforward.

There are many minor improvements which should be made to the program.

Variable names are stored in a hash table with chaining, but program names are not.

This means that although the number of variables available is limited only by memory

available, the number of programs that can be defined at once is only 256. And since the

program list must be linearly searched each time a program is called (an 0(n) operation),

recursive programs are slower than necessary.

When a sprite is defined, each line that is added to the sprite is checked to make

sure there is no overlap. This is designed so that lines won't mysteriously disappear when

two lines are in the same location, since the sprite is drawn using an exclusive-or

technique. However, it is a very slow operation (0(n2)), depending on the number of lines

already defined. Another problem with drawing the sprite using this exclusive-or technique

is that if the sprite is drawn over top of a mark, it seems to disappear behind the mark. A

final problem with drawing the sprites with the exclusive-or technique is that if the sprite is

to leave a mark, it must first be re-drawn (to erase it), the mark drawn in the shape of the

sprite, and the sprite re-drawn again (to make it reappear). This can take a long time for

93

larger sprites.

It might be best to draw the sprites directly as solid lines, perhaps keeping track of

what the sprite covers. Then, when the sprite is removed, the objects the sprite had

covered could simply be redrawn. This would mean the sprite always appears as made up

of solid lines, and the checking for overlapping lines within the sprite would be

unnecessary. However, more overhead is brought into play by having to somehow keep

track of what the sprite covers.

MOGL needs additional programming to ensure it is absolutely "bombproof." At

the moment, it will crash if it runs out of memory, or if the delete or break key is pressed.

The memory problem can be fixed by having more stringent error checking for space, and

producing an "out of memory" error message which allows the user to at least save the

workspace. The problems with mistaken keypresses can be fixed by removing the filters

that the Unix operating system puts each keystroke through before passing it to the

program (this would also increase MOGL's portability). Apart from these three problems,

MOGL appears to be relatively secure.

As well as the problems noted above, the program requires some extensions to

allow a more complete command set for MOGL. No major problems are foreseen with this

process.

6.8. Summary

The MOGL language and interface seem to be quite effective. In the process of

surveying users, it was found that they had fun using the current version of MOGL, and

generally enjoyed learning motion geometry. However, some improvements and

modifications can be made to MOGL.

94

The user survey indicated that MOGL should be completed according to the design,

including a mouse interface and commands to skip menus and undo operations. As well,

some additional features will have to be added to MOGL that were unanticipated in the

design phase. These include many extra features (such as optional display of axes) to make

the user more comfortable using the system.

MOGL compares favourably to the microworid Logo, when it is considered that

MOGL is only an environment for using motion geometry, and not a complete

programming language.

The motion geometry commands are complete and consistent in MOGL, and appear

to require no additions or modifications.

The user interface could have several improvements, including the addition of an

editor, and a better visual structuring of the layers of menus.

The implementation of MOGL appears to be quite robust, and copes with errors in a

reasonable manner. It is not yet completely bomb-proof, and requires some additional

programming effort to ensure its security.

Overall, MOGL appears to be a general success with some relatively minor

problems. Most of the design goals were achieved, and the final product appears to be a

useful microworid for learning motion geometry.

Chapter 7

Conclusion

7.1. Introduction

This chapter will summarize the development of the MOGL sub-system in several

sections, as follows:

(a) The problem to be solved

(b) Related Literature

(c) Design Considerations

(d) Implementation

(e) Findings

(f) Justification

(g) Future Work to be Done

7.2. The Problem to be Solved

MOGL has been designed as a computer subsystem, to provide an environment for

users to explore concepts of motion geometry. Motion geometry has been taught in the

past by having students compute formulae to transform each point of a shape on paper,

having students use various hands-on techniques, and with limited computer environments

(such as MOTIONS). MOGL has been designed to provide a better environment for

learning motion geometry than is already available, including the use of all the important

motion geometry commands and allowing arbitrary shapes to be defined; as well as

including the best from the other environments.

This new environment was to be designed by applying principles from many

96

different areas of computer science. The investigations for this thesis included looking at

other motion geometry systems, human-computer interaction, and some aspects of learning

theory.

All of these theories would be used to design a system for motion geometry.

To ensure that these techniques did indeed produce a useful system design, a

prototype was to be implemented, and this prototype used by several users.

7.3. Related Literature

Research has been done into many areas to determine the requirements for such an

environment, by searching the related literature.

First, another motion geometry language, GROPER, was explored. This provided

the idea of creating picthres by moving lines with motion geometry, and creating pictures

using programs. As well, it used various motion geometry commands; but not including

reflection.

Second, microworlds were investigated, and were found to be an effective way to

present abstract geometrical concepts to students. Logo (Papert) and MOTIONS

(Thompson) were both analyzed and concepts from both were to be used in MOGL.

Third, methods of human-computer interaction were researched, including user

modelling and interface design. It was decided to model how students actually learn, and

to create a system to encourage this. The model students have of the system is also

important. The design of the interface to MOGL was made by following some of the

thirteen principles of interface design suggested by Hill.

Fourth, current educational theory (by Papert and Skemp), was investigated to try

and build up a model of how students can learn.

97

7.4. Design Considerations

The design was built on these concepts to create a microworid with a similar

command structure to Logo, allowing a user to manipulate a sprite to create a picture on the

screen. The sprite was designed to be moved around the screen by various motion

geometry commands (including rotation, translation, enlargement, reduction, and

reflection), and could leave a mark behind at any point. A framework for complex work

with sprites was built, including creating new sprites, using variables and recursion. A

user interface for the language was also included in the design, allowing the use of

windows, menus, and pointing device input.

As this design was elaborated, commands to do all the motion geometry operations,

control commands, and file commands were added. The capacity for programming in

MOGL was included. Finally, the user interface was also designed to allow the selection

of these commands from menus, using windows and pointing device input.

7.5. Implementation

The implementation of MOGL was done in C on a Sun computer under the UNIX

operating system. MOGL was implemented as an interpreter. Matrices were used for the

motion geometry operations, so that any linear transformation could be described by six

numbers, allowing for easy extensions of the motion geometry commands. Error

processing was well defined, ensuring that most errors would not cause MOGL to crash.

Data structures were designed to deal with the information. The storage of

variables and programs was considered, and a stack had to be implemented to cope with the

recursion. Those data structures dealing with the storage of sprites were designed to

98

operate efficiently so that sprites could easily be moved around the screen.

The graphics system was designed using a three-layered approach to allow easy

portability of the MOGL language, requiring only the bottom layer or two to be rewritten

for use on a different graphics system.

A windowing system had to be created from scratch to accommodate the user

interface. This included designing a menu system as well as techniques to select numbers

using dials and scales.

7.6. Findings

The prototype of MOGL that was implemented was tested by a group of users

using a survey to find how the system worked for each user.

MOGL was found to achieve most of the design goals. Users using MOGL found

the commands and the interface quite easy to use, and explored motion geometry

enthusiastically. The creation of new sprites was especially appreciated, and users enjoyed

experimenting with the language.

Some problems were encountered, including the lack of a mouse for pointing

device input, the lack of an undo command, and the fact that there was no way to escape

from a menu once it is entered.

MOGL was also compared to Logo, and some suggestions made as to extra

commands that could be added to MOGL, such as readlist to accept input in a program,

and savel to save only specified programs when saving the environment.

Some motion geometry commands caused a little confusion for the users.

However, this initial confusion was often caused by lack of understanding of the motion

geometry concepts. After using MOGL for a while, users became used to the way it

operated, and further increased their knowledge of motion geometry. Examples of this

99

included confusion about the original image not being visible once a reflection was done,

confusion about sprites rotating around the centre of the screen, and confusion about

sprites that are enlarged too much disappearing:

The principles of user interface design seem to have been followed for the most

part, however when comparing the final version of the MOGL prototype to these

principles, some omissions were found, such as the need for a text editor and

"bombproofing" of the system.

7.7. Justification

MOGL is an improvement on the ways that motion geometry has been taught in the

past, and appears to be a successful implementation of a computer environment.

MOGL certainly improves on some of the hands-on techniques for investigating

motion geometry, since it is not necessary to transform each point in a shape by hand, or to

use tracing paper and MIRAs to do simple transformations. As well, there is immediate

feedback rather than having to go through a process of manually drawing each line.

MOGL allows the exploration of motion geometry to occur in a consistent environment,

and allows operations such as enlargement which can not be simulated easily and accurately

in the "real world." By keeping students from having to worry about co-ordinates, and

formulae, the underlying concepts of motion geometry can be more easily grasped.

MOGL improves on MOTIONS, the environment for exploring motion geometry.

MOGL allows enlargements and reductions, two operations not available in MOTIONS.

As well, MOGL allows the user to draw pictures using motion geometry commands, and

even create new sprites to use. This encourages the user to explore, and increases interest

and motivation on the part of the student. MOGL also is contained within a complete

100

environment, allowing the user to point to commands rather than having to type them, and

keeping separate parts of the interaction in different windows on the screen. By basing the

design on many areas of computer science as well as using a little learning theory, it seems

that many pitfalls have been avoided so that a good system is created.

The implementation of MOGL has been quite successful. The language was

programmed with good error-handling techniques, so that errors do not cause the program

to crash. A windowing system was successfully designed, and the graphics capabilities of

MOGL appear to work very well. One flaw in this area is that the sprites disappear behind

the footprints, and due to the speed of the serial line between the computer and the terminal,

some shapes can take a while to draw. Generally, however, the data structures work

efficiently, and quite complex sprites can be moved with relative ease.

The user response to MOGL has been very positive, with some suggestions as to

improvements to the language. Users enjoyed using the language, and were very happy to

sit and explore the microworid of motion geometry, hardly realizing they were learning

about an area of mathematics all along.

7.8. Future Work

The prototype of MOGL has been successful enough to make the prospect of a full

implementation of the language attractive. This implementation should be done on

computers that are readily available in the public school environment, allowing for some

sort of pointing device input. The recommendations from the analysis can be implemented

in this full version of the language.

Once a full version of the language has been implemented, a more thorough

analysis should be made of how effectively a user can use the system. A keystroke level

101

analysis (Card and Newell) and an analysis of user complexity (Kieras and Poison) could

be done on the system. Perhaps another experiment could be done, comparing versions of

the language with and without the user interface, to see if the interface actually does help

the users. These experiments are not really appropriate for use on the prototype, since the

mouse is not yet implemented, and the full language not available.

It may also be useful to try integrating MOGL with other software. The two

languages MOGL and Logo could both be investigated by students, since they have a very

similar command structure. This follows Papert's idea of using microworlds to allow the

exploration of mathematical concepts rather than the conventional view of curriculum.

Other similar environments for other fields could also be created.

7.9. Conclusion

The goal of creating a better computer environment for exploring motion geometry

appears to be realized in the design of MOGL. Students do not have to go through tedious

calculations to explore motion geometry; instead they can explore it directly by using

commands and moving shapes on a computer screen. MOGL outperforms conventional

hands-on techniques (such as using tracing paper and MIRAs) in that enlargements and

reductions are possible, and all of the motion geometry commands work in the same

environment, requiring only different selections for different transformations. MOGL is

also a better environment than MOTIONS, because MOGL has been designed as a

complete environment; allowing selections from menus, including enlarge and reduce

commands, and creating extra incentive for exploration by allowing students to create

pictures on the screen and even their own sprites.

Some modifications can be made of MOGL to improve its effectiveness, and a full

102

implementation is still necessary before it can go into more general usage. However, the

results from this study have been encouraging enough to make this type of future work

appear reasonable. Perhaps other similar microworids could also be created for the

exploration of other mathematical concepts.

This thesis involved graphics research, the concept of microworlds, human factors

research, and some learning theory as part of the initial design. By taking these steps, and

then using more traditional computer science techniques for the detailed design and

implementation, it has been possible to build an effective computer subsystem for the

exploration of motion geometry.

103

References

Abelson, Harold. Logo for the Apple H. Peterborough: BYTE/McGraw-Hill, 1982.

Abelson, Harold and Leigh Klotz, Jr. Logo for the Apple II Technical Manual.

Cambridge: Terrapin, Inc., 1982.

Allan, Jeff. Geometry Toolbox (GD Programmer's Manual. University of Calgary,

1987.

Barr, Avron and Edward A. Feigenbaum, eds. The Handbook of Artificial Intelligence.

Vol. 1. Stanford: HeurisTech Press, 1981.

Brown, John Seely and Richard R. Burton. "Diagnostic Models for Procedural Bugs in
Basic Mathematical Skills." Cognitive Science 2 (1978): 155-192.

Burton, R. R. "Diagnosing bugs in a simple procedural skill." Intelligent Tutoring

Systems. Eds. Sleeman, D. and Brown, J. S. London: Academic Press, Inc.,

1982. 157-183.

Card, Stuart K., William English, and Betty J. Burr. "Evaluation of Mouse, Rate-

Controlled Isometric Joystick, Step Keys, and Text Keys for Text Selection on a

CRT." Ergonomics 21, no. 8 (1978): 601-613.

Card, Stuart K., Thomas P. Moran, and Alien Newell. "The Keystroke-Level Model for

User Performance Time with Interactive Systems." Communications of the ACM

23, no. 7 (1980): 396-410.

Cardelli, Luca and Rob Pike. "Squeak: a Language for Communicating with Mice."

Siggraph '85 19, no. 3 (1985): 199-204.

Carroll, John M. and John C. Thomas. "Metaphor and the Cognitive Representation of

Computing Systems." IEEE Tranactions on Systems, Man, and Cybernetics 12,

no. 2 (1982): 107-116.

Cohen, Paul R. and Edward A. Feigenbaum. The Handbook of Artificial Intelligence.

Vol. ifi. Stanford: HeurisTech Press, 1982.

104

Foley, James D. and Andries Van Dam. Fundamentals of Interactive Computer Graphics.

Reading: Addison-Wesley, 1984.

Greenberg, Saul and Ian H. Witten. "Adaptive personalized interfaces - A question of

viability." Behavior and Information Technology 4, no. 1 (1985): 31-45.

Greenberg, Saul and Brian Wyvill. A Tutorial Guide to Groper. University of Calgary

Research Report, no. 83/131/20, 1983

Harrison, Bruce, Selwyn Brindley, and Marshall Bye. "Allowing for Student Cognitive

Levels in the Teaching of Fractions and Ratios." Journal for Research in

Mathematics Education, 20,110. 3 (1989): 288-300.

Harrison, John. A Novel Computer Language Based on Transformational Geometry.
Third Year Project University of Warwick, 1985.

A User Interface for a Programming Language. Term Project for Computer Science

481. University of Calgary, 1986.

Harrison, Marilyn and Bruce Harrison. "A Math Lab for Every Student" The Alberta

Teachers' Association 64, no. 1 (1983): 32-35.

Hill, D. Designing for Human-Computer Interaction: some rules and their derivation.

University of Calgary Research Report, no. 84/166/24, 1984.

Hoilnagel, Erik and David D. Woods. "Cognitive Systems Engineering: New wine in

new bottles." International Journal of Man-Machine Studies 18 (1983): 583-600.

Kieras, David and P. G. Poison. "An approach to the formal analysis of user complexity."

International Journal of Man-Machine Studies 21(1985).

Lewin, Ann White. "Down with Green Lambs: Creating Quality Software for Children."

Theory into Practice 22, no. 4 (1983): 272-280.

Miller, George A. Psychology of Communication. New York: Basic Books, Inc., 1967.

Newman, William M. and Robert F. Sproull. Principles of Interactive Computer

Graphics. New York: McGraw Hill Book Company, 1979.

105

Paliès, Odile et. al. "Student modelling by a knowledge-based system." Computer

Intelligence 2 (1986): 99-107.

Papert, Seymour. "Microworlds: Transforming Education." Artificial Intelligence and

Education Volume One. Eds. Lawler, Robert W. and Yazdani, Masoud.

Norwood: Ablex Publishing, 1987. 79-94.

Mindstorms. Sussex: The Harvester Press, 1980.

Park, Ok-choon and Robert D. Tennyson. "Computer-based Instructional Systems for

Adaptive Education: A Review." Contemporary Education Review 2, no. 2 (1983):

121-135.

Piaget, Jean, and Baibel Inhelder. The Psychology of the Child. New York: Basic

Books, Inc., 1969.

Rich, Elaine. "Users are individuals: individualizing user models." International Journal

of Man-Machine Studies 18 (1983): 199-214.

Rochkind, Marc J. Advanced C Programming -for Displays. Englewood Cliffs: Prentice

Hall, 1988.

• Skemp, Richard R. Intelligence. Learning and Action. Chichester: John Wiley & Sons,

1979.

The Psychology of Learning Mathematics (Expanded American Edition'). Hillsdale:

Lawrence Eribaum Associates, 1987.

Structured Activities for Primary Mathematics. vol. 1. London: Routledge, 1989.

Thompson, Patrick W. "Mathematical Microworlds and Intelligent Computer-Assisted

Instruction." Artificial Intelligence and Instruction. Ed. Kearsley, Greg P.

Reading: Addison-Wesley Publishing Company, 1987. 83-107.

van den Bos, Jan. "Whither device independence in interactive graphics?" International

Journal of Man-Machine Studies 18, (1983): 89-99.

Wyvill, Brian. An Interactive Graphics Language. Ph.D. diss., Bradford Univ., 1975.

106

APPENDIX A

The Survey Used in the Experiment

107

MOGL Survey

You will be given a number of tasks to complete using the computer
language called MOGL, which allowsyou to create pictures on the
computer screen, using motion geometry.

Try to complete all of the tasks indicated, and don't be afraid to ask
for help. If you have problems with anything, write them down or
mention them to the supervisor. Also write down any improvements
you would like to see made to the system.

MOGL allows you to use shapes called "sprites." A sprite can be
moved to different positions on the screen, and made to leave a
"footprint" behind at any time. By putting footprints together, you
can build up a picture.

This exercise uses menus to make selections rather than typing
commands in. The menu is on the right side of the screen. To select
items from the menu, move the cross hairs over the item to be
selected (using the arrow keys on the keyboard), and then press the
space bar. The item you select will either cause another menu to
appear for further selections, or will cause a command to appear on
the left side of the screen, as if you had typed it.

1. Call up the line sprite by selecting the SPRITE... menu, and then
selecting line from that menu.

Comments:

108

2. Make the sprite leave a footprint by selecting mark.

Notice that the sprite is now hidden behind the grey footprint
that it has left. You can think of this footprint as a mark left
behind on the glass of the terminal screen.

Comments:

3. Turn the sprite so we can see it again by selecting MOVE.., to get
the menu of various ways to move the sprite, and then turn.., to
turn the sprite. You can select the amount to turn from the dial
that is now presented; select various positions around the circle
until the line points to the number 45. Now, select ACCEPT to
accept that value.

Experiment with the turn command until the sprite is straight up
and down. Notice that the sprite always turns around the centre
of the screen.

Comments:

109

4. Now, try sliding the sprite across the screen by selecting MOVE.,.
and slide.... You will be asked for a distance to slide the sprite.
You will be given a scale; experiment with selecting different
positions on the scale until you have selected the number 1.
Select ACCEPT to accept this entry. Now, you will be asked for a
direction to slide the sprite (using a dial, as in step 4), so select
a direction of 0.

This should slide the sprite about 1 centimeter to the right. Try
the same thing again, except selecting a direction of 180.

Which direction does the sprite move this time?

Experiment with sliding the sprite in different directions. Then,
try changing the distance so that the sprite slides further than 1
centimeter (try not to slide the sprite off the edge of the
screen!).

Comments:

5. Select clearscreen to clear the screen. Select line to get the
line sprite back in the original position. Now, using the
commands turn, slide, and mark, try to draw a square made up of
footprints on the screen. Write down the commands you use on
the following sheet of paper (the commands will appear on the
left side of the screen as you select them).

110

Comments:

111

6. MOGL allows you to make your own new sprites. For example, you
might want to make a sprite which is a square rather than a line.
This can be done using a program. A program is a sequence of
steps you enter into the computer which can be executed later
simply by typing the name of the program.

To make a new sprite which is a square, select LEARN.... You
will be given a new screen, and MOGL will remember all the
commands you type.

You can now give the commands to create a square that you wrote
down above, except that as you enter them, the computer
memorizes them. Start by selecting line, and continue with your
own commands. Every time you use the mark command, the
footprint left behind becomes part of the sprite you're defining.

When you have entered all the commands to make up a square,
select end to tell MOGL your program is done. Now, the program
screen will disappear, and you will be given the original screen
back.

You will be asked for a name for the new program, so type in
square and press the RETURN key.

You have now defined a new sprite called "square." Now whenever
you select square from the SPRITE... menu, the sprite you have
defined will appear on the screen. It can be manipulated in the
same way as the line sprite.

Select SPRITE... and then square to bring your sprite to the
screen, and try various commands such as turn, slide, and mark on
it.

Comments:

112

7. You can also make more complex sprites. For example, say you
wanted to make a flag that looks like the following:

This flag is made up of two parts; a triangle and a line. It could
be made by defining a triangle sprite, and using that and a line
sprite.

This has already been done for you; to load in this pre-defined
program, type exactly the following:

load "flag

This defines two new sprites, called "triangle" and "flag." They
will be available on the SPRITE menu.

Comments:

113

8. Call up the flag sprite using SPRITE... and flag.

The flag sprite you have loaded can now be reflected in a mirror.
To call up a mirror, select MIRRORS... then mirror. Select 1
from the scale. This calls up the first mirror (there are 8
mirrors available, numbered from 0 to 7). Notice that it is
represented as a dashed line.

Now, reflect it in this mirror by selecting MOVE.., and then
reflect. Select 1 from the scale to reflect it in mirror number
1.

You can move the mirror into a different place using MIRRORS...
and then the selections mturn and mslide. These work just like
turn and slide, except that you have to tell which mirror to use.
For example, try turning the first mirror 45 degrees. See what
happens when you reflect the flag in this mirror. Now, using just
the reflect and , mturn commands, try to return the flag to its
original position.

Comments:

9. Now, use the commands you have learned to draw a picture of
some sort. Any new shapes you need can be defined using
programs, and you can put all the shapes together to make
anything you can imagine.

Comments:

114

Rating of MOGL

Rate MOGL in each of the following areas. Circle a number from 1 to
5, where 1 is poor and 5 is excellent:

1. The idea of sprites 1 2 3 4 5

Comments:

2. Doing rotations of shapes 1 2 3 4 5

Comments:

3. Doing slides of shapes 1 2 3 4 5

Comments:

115

4. Changing sizes of shapes 1 2 3 4 5

Comments:

5. Doing reflections of shapes 1 2 3 4 5

Comments:

6. Making new sprites 1 2 3 4 5

Comments:

116

7. Drawing pictures using MOGL 1 2 3 4 5

Comments:

8. The menus

Comments:

12345

9.. Overall ease of use 1 2 3 4 5

Comments:

117

Comments

Write down any comments you have on this page. Anything you
find interesting about MOGL, or things that caused you frustration
are the types of things to write here. How would you improve
MOGL?

