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Abstract

Digital Communications play an important role in modern worlds, and it is crucial to consider

the security problems associated with network communication. This dissertation explores

the use of physical layer characteristics of communication channels and network multipath

to build secure and reliable communication in adversarial setting. We investigate four ad-

versarial models: limited view adversary channel, adversarial wiretap channel, adversarial

wiretap channel with public discussion, and Secure Message Transmission. The first three

models are about secure communication using physical layer characters, and the last is about

using network multipath for communication.

We first consider secure and reliable communication over a wiretap channel with an

active adversary. We consider on adversarial channel model, in which the adversary is able

to eavesdrop the communication between the sender and the receiver, and also corrupt the

communication by adding adversarial noise. The model of limited view adversary focuses

on reliable communication over this channel, and the construction of limited view adversary

code achieves reliable communication in this setting. Adversarial wiretap channel studies

secure and reliable transmission over this adversarial channel. We obtain an upper bound on

the capacity of this channel, and construct an adversarial wiretap code that provides secure

and reliable communication over this channel. By allowing communicants to have access to a

public discussion channel, secure communication becomes possible over adversarial wiretap

channel for a wider range of parameters.

We then consider on Secure Message Transmission in networks. We propose a new

construction for secure message transmission protocols using a list decodable code and a

message authentication code. Our protocol has optimal transmission rate and provides the

highest reliability among all known comparable protocols.
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Chapter 1

Introduction

Network communication plays an important role in modern world. Computer networks

allow users to connect to the Internet and access services from any part of the world. Many

applications such as online banking system, online payment services, stock market services,

social networks, and multimedia, can be accessed using the Internet. The new generation of

wireless network technologies such as LTE allow fast access to the Internet services. Devices

such as smart phones, touch pads, ultrabooks, and smart watches heavily depend on wireless

communication to access Internet.

However, network communication, and in particular wireless communication, is sensitive

to malicious attacks. It is possible for the adversary to implement eavesdropping and dis-

rupting attacks. For instance, wireless devices broadcast electromagnetic signal. This makes

it easier for the adversary to eavesdrop the packets that are transmitted in the channels.

With low cost of antenna, adversary can emit a malicious signal to influence the original

signal. Malicious attacks on network communication result in high loss to individuals and

the society.

Traditional approaches to security have been considered in computational setting, and

assume the adversary has limited computational power. Security of traditional cryptography

depends on the hardness of computational problems such as integer factorization, discrete

logarithm problem, and so on. With the increase in the CPU speed and the emergence of

quantum computing, the computational problems which are hard nowadays may be easily

solved in future. Cryptographic schemes, that are based on the hardness of computation,

may be broken in future. Information theoretic security does not depend on any hardness

assumption and so system with information theoretic security can provide security guarantee
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for the future.

1.1 Security in Wireless Communication

Unlike wired networks, wireless network signals can be easily intercepted and tampered with

by the adversary. First, wireless communication can suffer from the eavesdropping attacks.

Since the wireless communication is broadcasted, the signal can be easily eavesdropped by the

adversary. Second, wireless communication is susceptible to adversarial jamming. Openness

of wireless communication allows the adversary to implement jamming attacks to disrupt

the communication. It also allows the adversary to modify the signal and make the receiver

decode wrong messages.

Physical Layer Security

Network communication is designed in layers and security solution are implemented at dif-

ferent layers of network. For instance, SSL (Secure Sockets Layer) is at the transport layer,

and IPSec protocol is implemented at network layer.

Since wireless security is vulnerable to adversarial eavesdropping and jamming attack at

physical layer, security solutions at this layer must be considered. We study noise chan-

nel model and study behaviour of adversary over physical layer. We give construction of

protocols that achieve secure and reliable communication.

Wiretap Channel

Consider wireless communication. Alice (Sender S) wants to transmit a message to Bob

(Receiver R). Eve (Adversary A) eavesdrops the communication between Alice and Bob.

We call the channel between Alice and Bob as the main channel, and the channel between

Alice and Eve as the eavesdropper channel.

The signals that are observed by Bob and Eve are usually different. The difference can

2



be caused by the physical layer properties of wireless communication such as fading and

path losses. If the channel noise over the main channel is much weaker than the noise over

the eavesdropping channel, the signals received by Eve is expected to be weaker than Bob’s

signal. Since the degradation of signal makes it hard for Eve to decode the original signal

sent by Alice, the security solution over wireless communication can take into account the

differences of wireless communications over physical layer. It is different from the traditional

cryptographic system which only considers the case that Eve receives the same signals as

Bob.

Adversarial Jamming

Wireless communication can be easily corrupted by adversarial jamming attacks. Eve is able

to add malicious signals to the original signals transmitted between Alice and Bob. This type

of attack allows the adversary to modify the signals and messages during the transmission,

and make Bob output an error message.

1.2 Security in Network Communication

In network communication, the computer devices are connected by devices, such as routers,

switches, and cables. Network communication is vulnerable to adversarial eavesdropping

and jamming attacks. Adversary can eavesdrop, and tamper with the packets that are

transmitted in the network.

In this dissertation, we study Secure Message Transmission (SMT) and Reliable Message

Transmission (RMT) which are abstractions of network communication problem. The sender

and the receiver are abstracted as two nodes, and the network topology is abstracted as

disjoint wires that each connects the sender node to the receiver node. The adversary can

control a subset of wires and implement eavesdropping and jamming attacks on a subsets of

wires, while the communication on the rest of wires are reliable and private to the adversary.
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The aim of an SMT protocol is to achieve secure and reliable message communication between

Alice and Bob.

1.3 Contributions

We study secure and reliable transmission of message problem over a channel with is partially

eavesdropped and jammed by an adversary. Our contributions can be divided into two

categories. The first contribution is on secure and reliable communication over wiretap

channel with active adversary. We study limited view adversary channel, adversarial wiretap

channel, and adversarial wiretap channel with public discussion. The second contribution is

a new SMT protocol.

Limited View Adversary Channel

In Chapter 3, we define limited view adversary channels (LVAC) using a (ρr, ρw) wiretap

adversary who can read a fraction ρr, and modify a fraction ρw, of a sent codeword. The

code components that are read and/or modified, can be chosen adaptively, and the subsets

of read and modified components could be different. Limited View Adversary Codes (LV

codes) provide protection against an adversary who has partial view of the communication

channel and can use this view to corrupt the sent codeword by constructing an adversarial

error vector that will be added to the codeword. An LV code with δ reliability ensures

correct recovery of the sent message with probability at least 1 − δ. The motivation for

studying these codes models adversarial corruptions in wireless communications as well as

networks that are partially controlled by an adversary, with the aim of providing reliable

communication.

We have the following contributions. First we prove an upper bound on the rate of LV

codes and extend it to a bound on the rate of a code family. Second, we give two explicit

constructions of LV code family. The first construction of LV codes achieves the bound on
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the condition that Sr = Sw, which means the reading set and writing set are same, and

the second construction of LV codes relaxes the condition to ρr + ρw < 1, which means

that the total fraction of read or write is no more than 1. Both constructions have efficient

encoding and decoding algorithm. Finally we show the relationship between LV codes and

a cryptographic primitive known as RMT, and use this relation to obtain a new bound on

the transmission rate of 1-round δ-RMT protocols, and construct an optimal 1-round RMT

protocol family.

Adversarial Wiretap Channel

In Chapter 4, we use the same adversary model as above, and define an adversarial wiretap

channel (AWTP) that requires secrecy and reliability for communication over these channels.

We define security and reliability for AWTP channels and use these definitions to evaluate

security and reliability of codes for these channels.

We have three main contributions. First, we prove an upper bound on the rate of AWTP

codes for (ρr, ρw)-AWTP channels. Second, we give an explicit construction of a perfectly

secure AWTP code family with efficient decoding that achieves the bound, and hence obtain

the secrecy capacity of the AWTP channel. Finally, we show the relationship between AWTP

codes and SMT, and use this relation to obtain a new (and the only known) bound on the

transmission rate of 1-round SMT protocols.

Adversarial Wiretap Channel with Public Discussion

Protocol

In Chapter 5, we consider a model of adversarial wiretap channel with public discussion. For

adversarial wiretap channel, we have shown that secure and reliable communication with

arbitrary small ε and δ is possible if ρr + ρw < 1. For stronger adversary with reading and

writing parameter ρr + ρw > 1, secure and reliable communication is still possible when the
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communicants have access to a public discussion channel, and not all codeword components

are accessible to the adversary (neither read, nor written to).

We, first, formalize the model of adversarial wiretap channel with public discussion

(AWTPPD protocol). We define secrecy and reliability of AWTPPD protocols, and give two

efficiency measures, rate of information transmission and round complexity. Second, we

derive a tight upper bound on the rate, and a tight lower bound on the required number

of rounds for an (ε, δ)-AWTPPD. We also give the construction of a rate optimal protocol

with minimum number of rounds. Finally, we show implications of these results for Secure

Message Transmission with public discussion (SMT-PD).

Secure Message Transmission Protocol

In Chapter 6, we study SMT and RMT problem. In SMT problem, Alice is connected to

Bob through N node disjoint paths in the network, t of which are controlled by an adversary

with unlimited computational power. Alice wants to send a message m to Bob in a private

and reliable way.

We propose a new approach to the construction of 1-round (0,δ)-SMT protocol for 2t+1 ≤

N ≤ 3t using an approach inspired by private codes that employs list decodable codes and

message authentication codes. Our concrete construction uses Folded Reed-Solomon codes

and multireceiver message authentication codes. The protocol has optimal transmission rate

and gives the smallest δ among all known comparable protocols.

1.4 Organization

The thesis is organized as follow. In Chapter 2, we introduce the fundamentals of information

theoretic security, the wiretap channel model, and SMT protocol. In Chapter 3, we study

limited view adversary channel. Chapter 4 investigates adversarial wiretap channel. Chapter

5 presents adversarial wiretap channel with public discussion. Finally, in Chapter 6, we show
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a construction of an SMT protocol.
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Chapter 2

Preliminaries

This chapter provides the basic concepts and definitions. We give the notations used in this

work, introduce the information theoretic security definitions, wiretap channel models, and

adversarial channel models, and error correctable code. We also describe the model of SMT

and SMT-PD.

2.1 Information Theoretic Security

2.1.1 Notions and Definitions

We use calligraphic symbols X to denote set of elements, X denote the random variable,

and x denote an element over set. Let x denote the vector with length N , and xi be the ith

element in x. Let Pr(X) be a probability distribution of X, Pr(X, Y ) be the joint distribution

of (X, Y ), and Pr(X|Y ) be the condition distribution of X on Y . The expected value over

distribution X is shown by E(X) =
∑

x∈X xPr(x). We use X → Y → Z to show the Markov

chain between X, Y, Z. We use log() to denote logarithm in base two.

In information theory, Shannon entropy measures the amount of information contained

in a variable [74].

Definition 1. For a random variable X ∈ X , the Shannon entropy is denoted by H(X) and

is given by,

H(X) = −
∑
x∈X

Pr(x) logPr(x).

The entropy definition can be extended to a pair of random variables.

Definition 2. The joint entropy H(X, Y ) of a pair of random variables (X, Y ) with a joint
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distribution Pr(x, y) is defined by,

H(X, Y ) = −
∑
x∈X

∑
y∈Y

Pr(x, y) logPr(x, y).

We also define the conditional entropy of random variable X given Y .

Definition 3. For a random variable X and Y , the conditional entropy of X given Y is

given by,

H(X|Y ) = −
∑
x∈X

∑
y∈Y

Pr(x, y) logPr(x|y).

The mutual information entropy measures the amount of information that one random

variable contains about another random variable. It defines the reduction of the uncertainty

of one random variable due to the knowledge of the other.

Definition 4. For a random variable X and Y , the mutual information entropy of X and

Y is given as,

I(X;Y ) = −
∑
x∈X

∑
y∈Y

Pr(x, y) log
Pr(x)Pr(y)

Pr(x, y)
.

We show the relationship between entropy, joint entropy, conditional entropy, and mutual

informant entropy.

Lemma 1. [16] The following relationship holds between Shannon information measaures.

1.

H(X, Y ) = H(X|Y ) + H(Y ),

2.

I(X;Y ) = H(X)− H(X|Y )

= H(Y )− H(Y |X)

= H(X) + H(Y )− H(X, Y ).
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A stochastic process {Xi} is an indexed sequence of random variables. There can be

arbitrary dependence among random variables. A simple example of stochastic process with

dependence is the one in which each random variable only depends on the one that precedes

it. Such stochastic process is call Markov chain.

Definition 5. Random variables X, Y, Z are said to form a Markov chain (denoted by

X → Y → Z) if the conditional distribution of Z depends only on Y , and is condition-

ally independent of X. Specifically, X, Y , and Z form a Markov chain X → Y → Z if the

joint probability mass function can be written as,

Pr(X, Y, Z) = Pr(X)Pr(Y |X)Pr(Z|Y ).

We use statistical distance between two random variables to measure how similar the two

variables are distributed.

Definition 6. For two random variables X,X ′ ∈ X , the statistical distance between X and

X ′ is obtained as SD(X,X ′) = 1
2

∑
x∈X |Pr(X = x)− Pr(X ′ = x)|.

The Shannon entropy measures the expected uncertainty of information contained in

a random variable. In some security settings such as password guessing, the uncertainty

of information should be measured in the worst-case. We use min-entropy to measure the

minimum information contained in the variable.

Definition 7. For a random variable X ∈ X , the min-entropy is denoted as H∞(X) =

− log maxx Pr(x).

Suppose we know a random variable Y and we wish to guess the value of a correlated

random variable X. From Y , we calculate a function g(Y ) = X ′, where X ′ is an estimate

of X. We observe that X → Y → X ′ forms a Markov chain. The Fano’s inequality relates

the conditional entropy and probability of errors in guessing variable X. Fano’s inequality

is useful to get the bound on rate of channel from the decoding error probability.
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Lemma 2. (Theorem 2.10.1 [16]) For any estimator X ′ such that X → Y → X ′, with

pe = Pr(X 6= X ′), it holds,

H(X|Y ) ≤ H(X|X ′) ≤ H(pe) + pe log |X |,

This inequality can be weakened to,

H(X|Y ) ≤ 1 + Pe log |X |.

2.1.2 Perfect Secrecy

Let the plaintext be M and the ciphertext be C. Prefect security is defined as H(M |C) =

H(M). This implies the plaintext and ciphertext are statistically independent and the best

strategy of an eavesdropping adversary to find the plaintext from a ciphertext is to query

using apriori probability. The encryption scheme which is perfectly secure is immune to

cryptanalysis, since there is no correlation between the ciphertext and the plaintext.

Shannon one-time pad is an encryption scheme that achieves prefect security. In one-

time pad, Alice and Bob share a perfectly random secret key with size at least as long as

the message. To encrypt the message, Alice adds over F2 each bit of the message and the

key and transmits the ciphertext to Bob. Bob decrypts the ciphertext by subtracting each

bits of key from the corresponding bit of the ciphertext each bits (Figure 2.1.2). One-time

pad is information theoretically secure against eavesdropping adversary since every bits of

the ciphertext and the plaintext are uncorrelated due to the random key. Though one-time

pad achieves information theoretically secure, it needs a shared random key with the same

length as the plaintext.

2.2 Wiretap Channel Model

In Shannon’s model, the assumption is that the channel between sender and receiver is error-

free. However, from the wireless physical layer communication, there exist communication
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Figure 2.1: One-time pad

noise between the sender and receiver, as well as the sender and adversary. By allowing the

transmission noise, it is possible to achieve communication of unconditional security without

any secret key. Wyner [89] proposed wiretap channel model using a realistic communication

model. Later Csiszár and Körner [18] extended this model to a more general broadcasting

model. In wiretap channel model [18], there are two channels: one channel connects sender

and receiver and is called main channel; the other channel connects sender and eavesdropping

adversary and is called eavesdropping channel. Due to the noise of wireless communication,

the observation of the main channel by the receiver maybe different from that of the eaves-

dropper. This is different from Shannon’s one-time pad, where observation of receiver and

eavesdropping adversary are exactly the same. The difference observation makes the decod-

ing ability of the receiver stronger than the adversary if there is less noise in the main channel

compared to the eavesdropping channel. Wiretap codes are used to achieve secure communi-

cation against unlimited computational eavesdropper over wiretap channel. Wiretap channel

was initially studied over discrete memoryless channel [89, 18]. Later Leung-Yan-Cheong et

al. [55] extended the wiretap channel model to Gaussian wiretap channel model; Ozarow et

al. [66] extended it to erasure wiretap channel model. The wiretap channel model has also

been considered for other communication setting such as fading channels [10] and MIMO

channels [58]. All these models consider passive eavesdropping adversary only. Wiretap

channel model with active adversary has been considered in [2, 64].

In the following, we formally introduce the Wyner’s wiretap channel model, and wiretap
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channel II. Then we introduce modeling active adversary using arbitrary varying wiretap

channel model that models wiretap channel with an active jamming adversary. We also

introduce the proposed security definitions of wiretap channel using information theoretic

approach and cryptographic approach, and show the strongest security definition for wiretap

channel.

2.2.1 Wyner’s Wiretap Channel

Wyner wiretap model was initially proposed by Wyner [89], and later generalized by Csiszár

and Körner [18]. The wiretap channel is illustrated in Fig. 2.2. For Wyner’s wiretap

channel, sender and receiver communicate over a discrete memoryless main channel, and the

adversary eavesdrops over discrete memoryless eavesdropping channel. The wiretap channel

of Csiszár and Körner [18] is a broadcast channel, which is characterized by a finite input

alphabet X , and two finite output alphabets Y and Z, and a transition probability matrix

Pr(y, z|x) from X to Y × Z. Wyner wiretap channel is over discrete memoryless channel.

Figure 2.2: The wiretap channel of Csiszár and Körner

Definition 8. The transmission probability of N symbols over discrete memoryless channel

for the input x = (x1, · · · , xN) and the outputs y = (y1, · · · , yN) and z = (z1, · · · , zN) is

given by,

Pr(y, z|x) = ΠN
i=1Pr(yi, zi|xi)
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Secure communication over wiretap channel is realized by wiretap code. There are two

requirements for wiretap channel: secrecy and reliability. Secrecy guarantees the transmit-

ted message will not be known by the adversary (eavesdropper); reliability guarantees the

message is correctly decoded by the receiver.

Definition 9. [89] The source emits a data sequence m = (m1, · · · ,mk), which consists of

independent copies of binary random variable M , where Pr(Mi = 1) = Pr(Mi = 0) = 1
2

for

i = 1, · · · , k, where Mi is the random variable representing the ith bit of message. There

are a pair of algorithms: an encoding algorithm f : M → X , and a decoding algorithm

φ : X → M. The sender encodes the message into the codeword x = (x1, · · · , xN), and

receiver receives a noise corrupted word y = (y1, · · · , yN). The receiver outputs a data

sequence m̂ = (m̂1, · · · , m̂k). The secrecy of message M with respect to eavesdropper is

measured by,

1

N
I(M |Z) ≤ ε,

The reliability performance of the wiretap code is captured by the error probability δ such

that,

1

k

k∑
i=1

Pr(mi 6= m̂i) ≤ δ.

The secrecy rate R is achievable over wiretap channel with Pr(y, z|x) if for any ξ > 0,

there exists an wiretap code with length N such that,

1

N
log |M| ≥ R− ξ

and,

1

N
I(M |Z) ≤ ξ

and,

1

k

k∑
i=1

Pr(mi 6= m̂i) ≤ ξ.

The secrecy capacity C of wiretap channel is the supremum of all achievable secrecy rates.

The secrecy capacity provides a counter part to the usual channel capacity, which only
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considers the reliable communication over noisy channel without secrecy concerns. The

secrecy capacity of wiretap channel has been established by Csiszár et al. [18], but based on

a strong reliability definition. For any message m ∈M,

∑
x∈X

f(x|m)Pr(φ(y) 6= m|x) ≤ δ.

Here the strong reliability means for any message m ∈ M, the receiver outputs the correct

message m with probability at least 1 − δ. This leads to the following result on secrecy

capacity.

Theorem 1. (Theorem 3 [18]) The secrecy capacity of discrete memoryless wiretap channel

is,

C = max
V→X→Y,Z

(I(V ;Y )− I(V ;Z)),

where V is an auxiliary random variable satisfying the Markov chain V → X → Y, Z.

Efficient construction of Wyner’s wiretap code over binary symmetric channel can be

obtained by polar codes [43, 59], and by invertible randomness extractor and concatenated

code [6].

2.2.2 Wiretap Channel II

Wiretap channel II was studied by Ozarow et al. [66]. The model of wiretap channel II

is similar to the Wyner wiretap channel. But in wiretap channel II, the sender and the

receiver are connected by an error-free main channel, and the sender and the eavesdropping

adversary are connected by an erasure noisy channel.

Definition 10. Let X be the random variable with alphabet {0, 1}, and Y be the variable

with alphabet {0, 1, e}, where e is the erasure symbol. Erasure noise channel with erasure

probability ρ is defined by probability that Pr(Y = e|X = 0) = ρ, and Pr(Y = e|X = 1) = ρ,

and Pr(Y = 0|X = 0) = 1− ρ, and Pr(Y = 1|X = 1) = 1− ρ.
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In Wiretap channel II, the adversary’s channel is an erasure noise channel where the

eavesdropping components of the codeword are adaptively chosen by the adversary. The

adversary with parameter ρ picks a subset S ⊆ {1, · · · , N} from a codeword of length N

such that |S| = ρN , and is allowed to observe xi for i ∈ S.

Let z = (z1, · · · , zN) be defined by,

zi =

xi i ∈ S? i /∈ S

and denote the eavesdropper’s information. The eavesdropping adversary, who can select

the subset to examine, can be seen as adversarial erasure.

Secrecy and reliability of codes for wiretap channel II is defined similar to Wyner wiretap

channel [89]. The code should satisfy secrecy, that is 1
N
I(M |Z) ≤ ε, and the reliability, that

is 1
k

∑k
i=1 Pr(mi 6= m̂i) ≤ δ. The secrecy capacity of wiretap channel II is measured by the

eavesdropping parameter ρ.

Theorem 2. (Theorem 2.1 [66]) The secrecy capacity of wiretap channel II is,

C = 1− ρ

The wiretap codes over wiretap channel II can be constructed using LDPC codes [5].

2.2.3 Active Adversary Arbitrarily Varying Wiretap Channels

The Wyner’s wiretap channel model [89] and its follow up work [18, 55, 59, 66] only consider

passive eavesdropping adversary model. In reality, passive adversary model is simplistic

in wireless communication setting, the adversary can implement jamming attacks, and ac-

tively disrupt the communication. Active adversary model using arbitrarily varying wiretap

channel model has been considered in [64, 12, 44]. In this model, the adversary not only

implements eavesdropping attack, which is same as the wiretap channel model, but also ac-

tively changes the channel states. The impact of this jammer is modelled as the adversary’s
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capability of changing the state of the channel. The wiretap channel is characterized by

a finite input alphabet X , two finite output alphabet Y × Z, an arbitrary state space S,

and a family of transmission probabilities from X to Y × Z indexed by S. The transmis-

sion probability of an N -symbol input x = (x1, · · · , xN) and outputs y = (y1, · · · , yN) and

z = (z1, · · · , zN) is characterized by,

Pr(y, z|x, s) = ΠN
i=1Pr(yi, zi|xi, si)

Figure 2.3: Active Adversary Arbitrarily Varying Wiretap Channels

Wiretap codes have been defined to combat the eavesdropping and jamming adversary

over arbitrary varying wiretap channel. Similar to Wyner wiretap channel, wiretap code has

two security requirements: secrecy and reliability.

Definition 11. [64] An (N,M) wiretap code for active adversary wiretap channel consists

of a message set M = {1, · · · ,M} and a random variable (F,Φ) over family of wiretap code

(f, φ). The secrecy of wiretap code is measured as the average leakage rate of wiretap code

such that

1

N
I(M ;Z|(F,Φ)) ≤ ε,
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and the reliability performance of wiretap code is,

1

M
E(F,Φ)(

∑
m∈M

∑
z

Pr((φ−1(m))c, z|f(m))) ≤ δ.

Similar to wiretap codes, the rate R is achievable for active adversary arbitrary varying

wiretap channel if for any ξ > 0, there exists a wiretap code family such that,

1

N
log |M| ≥ R− ξ

and,

1

N
I(M ;Z|(F,Φ)) ≤ ξ

and,

1

M
E(F,Φ)(

∑
m∈M

∑
z

Pr((φ−1(m))c, z|f(m))) ≤ ξ

The upper bound on rate of active adversary arbitrary varying wiretap channel has been

given by MolavianJazi et al. [64].

Theorem 3. (Theorem 1 [64]) For active adversary arbitrary varying wiretap channel, the

rate satisfies,

R ≤ max
Pr(x)

(min
s∈S

I(X;Y )−min
s∈S

I(X;Z)),

where S = {s =
∑r

i=1 si Pr(si) : r ∈ N, si ∈ S,Pr(si) ≥ 0,
∑r

i=1 Pr(si) = 1}.

Currently there are only existence proof for active adversary arbitrary varying wiretap

codes based on random code under certain assumptions. For instance, MolavianJazi et al.

[64] show the existence of codes if the broadcast arbitrary varying wiretap channel satisfies

degrade condition. That is random variables X → Ys → Zs forms a Markov chain for all

state s. Efficient construction of active adversary arbitrary varying wiretap code is an open

problem.
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2.2.4 Security and Reliability Definition

Wiretap codes should provide security and reliability. The reliability requires the wiretap

code provide error correction for the receiver channel. This is measured by the probability

of error for the receiver when decoding the received word Y n. In coding theory, decoding

error probability is required approach to zero as the length of code approaches to infinity,

that is limn→∞ Pr(Dec(Y n) 6= M) = 0 where probability is over the randomness of messages.

This definition has been used in wiretap code schemes [2, 6, 9, 15, 42, 59, 64, 85].

We introduce the security definition of wiretap channels.

Mutual Information Security

The security of wiretap codes has been originally defined as the information rate of the secret

message that adversary is tolerated to obtain,

Adv(Enc,ViewA) =
1

N
I(M ;ZN) ≤ ε

This is called weak security [62], and is used for the security definition of wiretap channel

[89, 18, 66, 64].

Unfortunately, the total information that the adversary gains about the secret message

is not necessarily bounded though the rate is arbitrarily small. The reason is that for any

small ε by choosing large enough N , we can have εN to be a large value.

A stronger definition of security has been proposed by Maurer et al. [62] in the setting of

key agreement protocol over wiretap channel. This definition requires the information that

the adversary obtains about the secret key is negligible in absolute sense and not only in

rate. That is,

Adv(Enc,ViewA) = I(M ;ZN) ≤ ε.

The definition provides a stronger definition key agreement protocols over wiretap channel.

However, for secure message transmission over wiretap channel, this definition only pro-

vides security for uniformly distributed messages. In real world messages are not uniformly
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distributed and may take values in some small and known set. An example is the set of

messages in a voting system. So this definition cannot ensure security for secure message

communication over wiretap channel. This leads to a stronger security definition, which is

independent of the message distribution [6] and is called mutual information security, defined

via maxM I(M ;ZN). This is the definition of the information theoretic security for wiretap

channel taking into account all distributions M over the message space,

Advmis(Enc,ViewA) = max
M

I(M ;ZN) ≤ ε.

Semantic Security

In semantic security [37], the encryption algorithm must hide all partial information about

the message. That is the adversary has little advantage to compute a function f(·) of the

message given the ciphertext [37]. Semantic security definition can be extended to wiretap

setting [6]. Let k be the length of message, and S be the simulator of adversary. Semantic

security for wiretap channel is defined as follow,

Advss(Enc,ViewA) = max
M

(max
A

(Pr(ViewA(ZN)) = f(M))−max
S

Pr(S(m) = f(M))) ≤ ε.

Here m is the length of message. This implies that the maximum probability that an ad-

versary A having received information ZN , can compute the result of function f(·) on the

message, minus the maximum probability that a simulator S who only knows the message

length, can do the same given only given the length of message.

Another measure of security is distinguishing security [46]. Distinguishing security is

easy to use for security proofs in cryptographic systems and is given by,

Advds(Enc,ViewA) = max
A,m1,m2

2Pr(A(m1,m2, Z
N) = b)− 1 ≤ ε,

where b is uniformly distributed over {0, 1}, and the maximum is over all message pairs

m1,m2 ∈M and all adversaries A.

In wiretap channel setting, it is proved that semantic security is equivalent to distin-

guishing security [6].
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Lemma 3. (Theorem 1 [6]) Let Enc : {0, 1}k → {0, 1}N be an encoding scheme and ZN be

adversarial observation. Then Advss(Enc;ZN) ≤ Advds(Enc;ZN) ≤ 2Advss(Enc;ZN).

Equivalence between Mutual Information Security and Semantic Security

Mutual information security measures the difference between the adversary’s uncertainty

about the message before encoding and after eavesdropping. Bellare et al. [6] showed the

equivalence of mutual information security and semantic security over wiretap channel. The

equivalence is implied from the relations that the distinguishability security implies mutual

information security (Theorem 4), and the relation that mutual information security implies

distinguishable security over wiretap channel (Theorem 5).

Theorem 4. (Theorem 5 [6]) Let Enc : {0, 1}k → {0, 1}N be an encoding scheme, and ZN

be adversarial observation. Then Advds(Enc, ZN) ≤
√

2 ·Advmis(Enc, ZN).

Theorem 5. (Theorem 8 [6]) Let Enc : {0, 1}k → {0, 1}N be an encoding scheme, and ZN

be adversarial observation, and ε = Advds(Enc, ZN). Then Advmis(Enc, ZN) ≤ 2ε · log(2N

ε
).

2.3 Codes for Reliability

In information theory, error detection and correction codes are used for reliable communica-

tion over noisy channels. Error detection allows to detect errors, while the error correction

allows to reconstruct the original data from the error corrupted information. Error detection

and correction codes have been widely used in network communication, wireless transmission,

space telecommunication, and data storage.

Consider a sender S and receiver R that are connected by a noisy channel. S wants to

transmit a message m reliably to R. An error correcting code over alphabet Σ is a mapping

Enc : Σk → ΣN from a string of length k over alphabet Σ to a string of length N . The

length k is the length of message, and the length N is the block length of codeword. The

rate of the code is defined as R = log |M|
N log |Σ| . The set C = {c : c ∈ ΣN} ⊂ ΣN is called the code,
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and the element c ∈ C is called a codeword. In general only a small fraction of all possible

strings in ΣN are valid codewords. The redundancy built into codewords is used to decode

the message m even from a distorted version of the word.

Deterministic Encoding and Randomized (Stochastic) Encoding

The encoding algorithm can be deterministic or randomized. But the decoding algorithm is

deterministic. For deterministic encoding algorithms, the input to the encoder is the message

m. That is, the encoding algorithm is Enc : M → C. For randomized encoding algorithm,

the input to the encoder is the message m and randomness r. That is, the encoding algorithm

is Enc :M×R→ C.

2.3.1 Noisy Channel with Probabilistic Error

Communication channels are subject to channel noise, and the construction of error cor-

rection code depends on the channel error model. Historically, there are two channel noise

models. The study of noisy channel with probabilistic error is due to Shannon [74]. Shannon

demonstrated that it is possible to communicate information m nearly error free at a rate

below a maximum rate depending on the channel noise. An example is binary symmetric

channel, where the channel flips each transmitted bits with probability ρ. The flips of each

bits are independent from other bits. Shannon characterized the largest rate (capacity) of

reliable communication over such channels. He also showed the existence of codes with rates

approaching the capacity and decoding error approaching to zero. However, the noisy chan-

nel with probabilistic error is too simple to model real world communication noise. There

are many factors, which are generated by nature and mankind, may disturb the real world

communication system.
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2.3.2 Adversarial Channel

To address these issues, Hamming [41] considered adversarial error in communication chan-

nels. In Hamming model, the channel only has a limit on the fraction of errors for a block of

data, which is bounded by the error rate ρ. Both location of corrupted symbols and actual

errors are assumed to be adversarial. Hamming model is more pessimistic than Shannon’s

since it includes any arbitrary pattern of error. For adversarial channels, the code with length

N which is able to correct error rate ρ requires the Hamming distance at least 2ρN + 1 in

order that each codeword c ∈ C will not be confused with another codeword c′ 6= c. This

distance requirement limits the number of codeword C = {c ∈ C} packing in space ΣN ,

and the rate of code C. For instance, in order to correctly decode the message in F2, the

error rate must not exceed 1
4

fraction of codeword in Hamming model, whereas the error

probability is no more than 1
2

fraction of codeword over probabilistic channel. Thus the rate

over adversarial channel generally loss at the price of robustness of communication.

There are several models and techniques for reliable communication over adversarial

channel with high rate of codeword.

2.3.3 List Decodable Code

List decodable code is proposed by Elias [30] and has the capability to decode more errors.

For list decodable code, the receiverR outputs a list of messages instead of a unique message.

The list of messages corresponds to all the codewords within ρN distance from the received

word y. This relaxation of requirement on decoder enables to bridge the gap between error

correcting capability of codes for adversarial error and probabilistic error.

Definition 12. [30] A code C with the encoding function LC : Σk → ΣN is (ρ, `)-list decodable

if the number of codewords within distance ρN of any received word is at most `. That is for

every word y ∈ ΣN , there are at most ` codewords at distance ρN or less from y.
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The existential results indicating potential for list decoding has been given by Zyablov et

al. [90]. However, to achieve this potential decoding capability, one needs explicit construc-

tion of list decodable codes, and a polynomial time algorithm to perform list decoding. An

explicit and efficient construction of list decodable code using Folded Reed-Solomon codes

and Subspace Evasive Sets has been proposed in [39, 38, 29]. We will introduce the details

of Folded Reed-Solomon code and Subspace Evasive Sets in Section 3.2.

2.3.4 Private Code

Langberg [50] described private codes in which the sender S and receiver R share a secret

random key that is unknown to the adversary. A private code allows communication over a

adversarial channel that meets the rate 1− ρ, using O(logN) size joint randomness.

Definition 13. [50] Let k be the dimension of code, ` be the length of randomness, and

N be the length of code. An (N, k, `) private code is a pair of algorithm PC,PD, where

PC : Σk × Σ` → ΣN and PD : ΣN × Σ` → Σk. The code corrects ρN adversarial error with

probability 1 − δ if for all messages m ∈ M, we have PD(PC(m, r), r) = m with probability

at least 1− δ where the probability is taken over all randomness r.

Smith [78] gave a general construction of private code from list decodable code and

message authentication code (MAC). The idea is that both S and R share the random

secret key of MAC. In encoding algorithmn, S authenticates the message m, and constructs

message authentication code (m, t) where t is the MAC tag calculated using the shared secret

key. Then S encodes (m, t) using list decodable code. The decoding algorithm is inverse of

encoding. R decodes the received word y using the list decoding algorithm, and then use

MAC to verify each message in decoded list.
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2.3.5 Computational Adversarial Channel

Hamming’s adversarial channel is described in a computationally unbounded setting, Lipton

et al. [57] proposed an adversarial channel where adversary is restricted to polynomial

computation. The channel introduces adversarial error but the error is generated by a

computationally bounded adversary. By limiting the adversary’s computational power, it is

possible to decode uniquely with high error rate [25, 76, 68]. Ding et al. proposed a scheme

to achieve reliable communication over computational adversarial channel which requires S

and R to share a secret random key [25]. A reliable communication scheme based on public

key cryptosystem was shown in [68].

2.3.6 Error Detection Code

The error may happen in transmission or storage. In network transmission, error detection

techniques are used to detect noise or impairments that are introduced to data is transmitted

from the source to the destination. In storage systems, error detection techniques verify the

integrity of data on disc or memory. Error detection codes are designed to achieve error

detection in communication and storage systems. A simple example for error detection is

parity check bits, which builds the F2 addition of bits with value 1. More sophisticated error

detection codes are realized by hash function, or error correction code.

2.4 Secure Message Transmission

In Secure Message Transmission (SMT) problem, there is a synchronous network, that con-

nects Alice (sender S) and Bob (receiver R). S and R are connected by N vertex-disjoint

paths, also known as wires or channels. The network is undirected and communication on

the wire are in both directions. S and R are both honest. The goal is to enable S to send a

message mS , drawn from a message space M with a probability distribution Pr(mS), to R
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such that R receives the message reliably and securely.

SMT protocols may have one or more rounds. In each protocol round, S or R, constructs

protocol messages that are sent over wires to the other party. Protocol messages are received

by the recipient of the round, possibly in corrupted form, before the next round starts. At

the end of the protocol, the receiver outputs a message mR.

Figure 2.4: Secure Message Transmission Protocol

We consider only 1-round protocols in which the sender selects a message m and uses

the protocol description to construct protocol messages that are sent over each wire. The

adversary A has unlimited computational power and can corrupt and control a subset of

wires: the adversary can eavesdrop, block or modify communication that is sent over the

corrupted wires. A is adaptive and can corrupt wires any time during the protocol execution

and after observing communications over the wires corrupted so far. A is also rushing, that

is it sees the messages sent by S over the corrupted wires before deciding on the messages

to be sent over those wires. A can corrupt at most t out of the N wires and her selection of

corrupted wires is unknown to S and R.

Denote by ViewA(mS , rA) the random variable that denotes the view of the adversary

A when attacking the protocol assuming the sender has chosen mS and rA, which is the

random coins of the adversary.

Definition 14. [33] A message transmission protocol between S and R is an (ε, δ)-Secure

Message Transmission ((ε, δ)-SMT) protocol if the following two conditions are satisfied:
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• Privacy: For every two messages m1,m2 ∈ M and every rA ∈ {0, 1}∗ used by the adver-

sary,

SD(ViewA(m1, rA),ViewA(m2, rA)) ≤ ε, (2.1)

where the probability is over the randomness of S and R.

• Reliability: R correctly receives the correct message m with probability ≥ 1−δ, and outputs

the wrong message with probability ≤ δ. That is,

Pr(MS 6= MR) ≤ δ

Definition 15. [33] A message transmission protocol between S and R is a δ-Reliable Mes-

sage Transmission (δ-RMT) protocol if it only satisfies the reliability condition above.

Kurosawa et al. proposed a stronger reliability definition [48]. It defines the receiver

never outputs an incorrect message, and the probability that receiver outputs fail (denoted

as ⊥) is bounded by δ. That is,

Pr[Receiver outputs ⊥] ≤ δ

When ε = 0, the protocol is said to achieve perfectly security, and when δ = 0, the

protocol is said to achieve perfect reliability. The SMT protocol is called perfect secure

message transmission (PSMT) if it achieves perfectly secure and perfectly reliable. The

SMT protocol is called (0, δ)-SMT if it achieves perfectly secure and δ reliable. The RMT

protocol is called perfect Reliable Message Transmission (PRMT) if it achieves perfectly

reliable. The RMT protocol is called δ-RMT if it achieves δ-reliable.

Communication efficiency of an SMT and RMT protocol is in terms of the number of

rounds, and transmission rate.

The number of rounds of an SMT and RMT protocol is the number of interactions between

S and R. It was shown that 1-round PSMT is possible if and only if N ≥ 3t+1 [28], and two

or more rounds PSMT is possible if and only if N ≥ 2t + 1. For (0, δ)-SMT, it was shown

27



that 1-round (0, δ)-SMT protocol [33] is possible if and only if N ≥ 2t + 1. 1-round (0, δ)-

SMT protocols are attractive because they guarantee perfect privacy and by allowing a small

degradation in reliability (compared to perfect reliability), reduce the required connectivity

and communication round. For RMT protocols, it was shown that it is possible if and only

if N ≥ 2t+ 1 [33].

Transmission rate of an SMT and RMT protocol is the ratio of the total communication

to the length of the message. That is,

τ =
Total Length of Transcript

Length of Message
=

∑
i log |Vi|

log |M|

In [79, 31, 67], lower bounds on transmission rates of (0, δ)-SMT protocols are derived. The

lower bounds depend on the number of rounds. For PSMT, it was shown that the lower

bound of transmission rate for two or more rounds PSMT is bounded by τ(SMT) ≥ O( N
N−2t

)

[79], and for 1-round PSMT is bounded by τ(SMT) ≥ O( N
N−3t

) [31]. For (0, δ)-SMT, it was

shown that for 1-round (0, δ)-SMT, the transmission rate is bounded by τ(SMT) ≥ O( N
N−2t

)

[67]. For RMT, the lower bound on the transmission rate of 1-round PRMT is bounded by

O( N
N−2t

) [79], and 1-round δ-RMT is given by O( N
N−t) [67]. Protocols whose transmission

rate asymptotically matches the lower bounds associated with their number of rounds, are

called optimal. For 1-round (0, δ)-SMT protocols with N = 2t+ 1 and N = (2 + c)t, optimal

protocols must have transmission rates O(N) and O(1), respectively.

The computational efficiency of SMT and RMT protocols is the amount of computation

that is required by the protocol. A protocol that needs exponential (in N) computation for

S and R, is called inefficient. Efficient protocols need polynomial (in N) computation.

2.4.1 Secure Message Transmission with Public Discussion

Public Discussion Channel

Maurer [61] and Ahlswede et al. [3] introduced public discussion channel first in the case

of key agreement protocol over wiretap channel. S and R can use a public discussion (PD)
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channel in addition to the wiretap channel. A public discussion channel is an authenticated

communication channel that can be used by S and R, and is readable by everyone including

the adversary. They showed that in this model, secure communication is possible even if the

noise in the eavesdropper’s channel is lower than the main channel, thus showing the power

of the PD channel as a resource for communicants.

Secure Message Transmission with Public Discussion

Garay et al. [35] studied the model of Secure Message Transmission with public discussion

(SMT-PD). In this model, in addition to the wires in the standard SMT, S and R access

to a public channel. The adversary can only read but not tamper the communication over

public channel. In this new setting, SMT is achievable even if the adversary corrupts up to

t < N of the wires. In SMT-PD, there is an S and R, that can interact over N node disjoint

paths in a synchronous network, referred to as wires, and an authenticated public discussion

channel (PD channel).

Figure 2.5: Secure Message Transmission with Public Discussion Protocol

Wires and the public discussion channel provide two-way communication. An SMT-PD

protocol proceeds in rounds. In each round, S (R) sends protocol messages over wires

and/or the PD channel, which will be received by R (S) before the end of the round. A

computationally unbounded adversary A can corrupt up to t wires. A can eavesdrop, modify

or block messages sent over a corrupted wire. A is adaptive and can corrupt wires any time
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during the protocol execution and after observing communications over the wires corrupted

so far. A can also observe the communication over public discussion channel, but can not

tamper the information communicated over PD channel.

The security and reliability definition of SMT-PD protocol is same as definition of SMT.

The efficiency of SMT-PD protocol is also measured by transmission rate, number of rounds,

and computational efficiency.
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Chapter 3

Limited View Adversary Code

3.1 Introduction

Reliable communication in presence of adversarial error is first considered in Hamming model

[41] of error where the adversary sees the whole codeword and arbitrarily corrupts ρN sym-

bols, where N is the length of the codeword and ρ is a constant. More recently weaker

adversarial models have been introduced to capture real-life communication settings, where

the adversary’s access to the codeword (read, write or both) is limited because of reasons

such as inadequate transceiver in wireless communications [51], or realtime nature of com-

munication [24, 53]. A different line of work [40, 57, 76] models adversarial channels where

the error is generated by a computationally bounded process.

We consider a model of adversarial channel introduced in [73] and called Limited View

Adversary Channel (LVAC) in which the adversary is computationally unlimited but its

access to the codeword is limited as follows: for a codeword of length N , the adversary can

adaptively choose to “see” ρrN components and modify ρwN components of the codeword,

and modification is by “adding” to the codevector an error vector of weight at most ρwN

where (ρr, ρw) is the pair of constants that specify the channel. A Limited View Adversary

Codes (LV-code) provides reliable communication over an LVAC. There is no shared secret

key between the communicants.

Hamming model of error with error fraction ρ can be seen as an LVAC with ρr = 1 and

ρw = ρ. It is well known that unique decoding in Hamming model is only possible ρ ≤ 1−R
2

.

Using the same adversary model and allowing list decoding where the decoder outputs a list

of possible codewords, one can increase the fraction of correctable errors to ρ ≤ 1− R. We
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will show that for the same corruption1 fraction ρ, an LV-code for a (ρr, ρ)-LVAC can provide

unique decoding for ρ ≤ 1−R.

Motivation

The first motivation for studying LV-codes is from wireless adversary with a typical transceiver

may not be able to “see” (correctly receive) the whole codeword or “write” (introduce strong

noise) over the whole codeword. Moreover, the adversary’s goal may in fact be to partially

corrupt the codeword so that the decoder outputs a different message. This would be feasible

by targeting and changing specific symbols in a codeword. By decoupling the read and the

write sets of the adversary, one allows the adversary to use powerful strategies for modifying

a codeword. Compared with the models in [24, 53], LV-codes do not require casuality and

allow the adversary to select its read and write sets freely subject to the bound on their

sizes.

A second motivation for the study of LV-codes is to establish their relationship with

1-round RMT as noted in [73]. However no precise relationship between the two was estab-

lished. Reliable Message Transmission (RMT) [33] is a well studied cryptographic primitives

for reliable communication in networks. In the RMT setting Alice is connected to Bob

through a set of N node disjoint paths (wires) in a network, a subset of which is controlled

by the adversary. A threshold adversary fully controls a subset of size t of the N wires. The

goal of an RMT protocol is to provide reliability for communication. The relation between

LV-codes and 1-round RMT allows a unified treatment of the two problems and relate and

enrich results in the two settings.

Our Results

In this dissertation we consider (ρr, ρw)-LVACs and LV codes with δ reliability (δ-LV codes)

that guarantee reliable message transmission over these channels with probability at least

1 − δ. We use a definition of reliability that allows the decoder to output an incorrect

1As we point out in Section 3.6 when ρr = 1, any general corruption can be modelled as an additive error.
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message. We have the following results.

1) Upper bound on the code rate. For an LV code for a (ρr, ρw)-LVAC and an arbitrary

message distribution Pr(M), we derive an upper bound on H(M) (See Eq. (3.17)), and use

it to obtain an upper bound on the rate of LV codes. Using this bound for a code family

results in an upper bound on the rate of a code families, and so the the following bound on

the capacity of (ρr, ρw)-LVACs,

C ≤ 1− ρw. (3.1)

The bound is similar to the list decoding capacity of codes in Hamming error model. In

LVAC model however, the decoder outputs a single codeword and not a list of codewords.

The bound holds independent of the value of ρr and (intuitively) is the maximum possible

rate because the corrupted fraction (ρw) of a codeword is not recoverable.

2) Two constructions LV-codes. We propose two constructions of LV-codes. Our first

construction is LV-codes over restricted LVAC. We construct an δ-LV code that is non-

linear, and uses two building blocks: a message authentication code and a Folded Reed-

Solomon (FRS) code. To encode a message m, the sender first chooses N appropriately

constructed secret keys, uses the keys to construct N authentication tags for the message

using the chosen MAC (See MAC Construction II for details), and appends the tags to the

message. The tagged message is then encoded using an FRS code. The ith component of the

final codeword which is sent to the receiver consists of the corresponding component of the

FRS code and the MAC key. The decoder recovers the correct message in a conceptually

two step process: using the list decoding algorithm of the FRS code to construct a list

of possible codewords and then applying the MAC verification algorithm to output either

the correct message, or ⊥. This two step algorithm however can result in an exponential

cost decoding because the output list of the FRS decoding algorithm can be of exponential

size. To overcome this problem, we design a new decoding algorithm which combines the

system of linear equations resulting from the algebraic list decoding algorithm [38] of FRS
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codes, with a set of linear equations resulting from the verification algorithm of a specially

constructed MAC, to have a single system of linear equation whose solution gives the correct

message with a high probability. The MAC in this construction must be a key efficient MAC

that can be used for different length messages and have appropriate verification algorithm

suitable for efficient decoding. MAC Construction II satisfies these properties and could be

of independent interest. The final decoder complexity is polynomial.

Our second construction is an efficient LV code family over LVAC with ρr + ρw < 1. We

construct an efficient probabilistic LV code family whose rate R achieves the bound (Eq. 3.1)

with equality, R = 1− ρw, as the code length N approaches infinity, assuming ρr + ρw < 1.

The construction thus achieves the channel capacity for ρr < 1−ρw. The capacity of (ρr, ρw)-

LVAC for higher values of ρr remains an open question. The construction of the efficient LV

code family uses three building blocks: a list decodable code [29], a message authentication

code (referred to as authentication code) [77, 36] and a (0, δ)-Adversarial Wiretap Code

((0, δ)-AWTP code) [86]. To encode a message block m, Alice (Sender) first authenticates

the message m using a random key block r to generate a tagged message (m, t), which is

then encoded using a list decodable code. The key block r is encoded by an AWTP code.

Finally the ith component of the LV code will consist of the ith component of the AWTP

code concatenated with the ith component of the list decodable code. The receiver decodes

the corrupted list decodable codeword and generates a list of possible codewords; it also

decodes the corrupted codeword of the AWTP code to find the MAC key and uses it to

identify the sent codeword in the list. Details of the construction is in Section 3.5. Note

that the requirement ρr < 1−ρw is because of using a capacity achieving (0, δ)-AWTP code.

In [84] it is proved that non-zero rate for these codes implies ρr + ρw < 1 and so for this

construction we will have ρr < 1− ρw. It is however an open question to find capacity of the

channel when ρr > 1− ρw.
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3) Relation with RMT. We show a one-to-one correspondence between symmetric 1-

round RMTs and LV codes: a construction of an LV code gives a construction of a symmetric

1-round RMT with the same δ, and vice versa. Symmetric RMTs are RMTs with the added

requirement that the set of transmissions on each wire is the same for all wires. All known

RMTs are symmetric and so we simply refer to these protocols as RMT protocols. Efficiency

of RMT protocols is measured by their transmission rate which is the number of transmitted

bits for a single message bit. We give a new lower bound on the transmission rate of

RMTs that holds for the more relaxed definition of reliability and allows the decoder to

output incorrect messages also. Previous lower bound on transmission rate of RMT was for

the stronger definition of reliability where the decoder outputs only correct messages. The

relation between the bounds are discussed in Section 6.2.

We will also use the LV code construction in Section 3.5 to construct a family of 1-RMT

protocols when N = (2 + c)t, for which error probability δ decreases exponentially with

the number of wires. The field size in the two constructions satisfy the requirements of the

underlying FRS codes and are of similar size.

3.2 Preliminary

3.2.1 Folded Reed-Solomon Code (FRS code)

An error correcting code C over Fq is a subset of FNq . A code C of length N and rate R

is (ρ, `List)-list decodable if the number of codewords within distance ρN from any received

word is at most `List. It is assumed that `List is a polynomial function of code length. It

can be proved that for list decodable codes ρ ≤ 1 − R. An explicit construction of a list

decodable code that achieves the list decoding capacity ρ = 1 − R, is given by Guruswami

et al. [38]. The code is called Folded Reed-Solomon code (FRS code), and can be seen as a

Reed-Solomon code with extra structure. The code has polynomial time encoding and list
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decoding algorithms.

Definition 16. [38] A u-Folded Reed-Solomon code is an error correcting code with block

length N over Fuq where q > Nu. The message of an FRS code is written as a polynomial

f(x) of degree k over Fq. The FRS codeword corresponding to the message is a vector over

Fuq where each component is a u-tuple (f(γju), f(γju+1), · · · , f(γju+u−1)), 0 ≤ j < N , and γ

is a generator of F∗q, the multiplicative group of Fq. A codeword of a u-Folded Reed-Solomon

code of length N is in one-to-one correspondence with a codeword c of a Reed-Solomon code

of length uN , and is obtained by grouping u consecutive components of c. We use FRSenc

to denote the encoding algorithm of the FRS code. u is called the folding parameter of the

FRS code.

We will use the linear algebraic FRS decoding algorithm of these codes [38]. The detail

of linear algebraic FRS decoding algorithm is in Section 3.7.1.

Lemma 4. [38] For a Folded Reed-Solomon code of block length N and rate R = k
uN

, the

following holds for all integers 1 ≤ v ≤ u. Given a received word y ∈ (Fuq )N agreeing with c

in at least a fraction

N − ρN > N(
1

v + 1
+

v

v + 1

uR

u− v + 1
),

one can compute a matrix M ∈ Fk×vq and a vector z ∈ Fkq , such that the message polynomials

f ∈ Fq[X] in the decoded list are contained in the affine space Mb + z where b ∈ Fvq . The

computation is in time O((Nu log q)2).

3.2.2 Subspace Evasive Set

Subspace evasive sets are used to reduce the list size of list decodable code [29].

Definition 17 (Subspace Evasive Set[29, 38]). Let S ⊂ Fnq . We say S is a (v, `)-subspace

evasive if for all v-dimensional affine subspaces H ⊂ Fnq , we have |S ∩ H| ≤ `.
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Dvir et al. [29] gave an efficient explicit construction of subspace evasive set S ⊂ Fnq ,

with an efficient intersection algorithm that computes S ∩H for any v-dimensional subspace

H ⊂ Fnq . Theorem 1 in [29] states the following.

Theorem 6 ([29]). For any finite field Fq and parameters v ≥ 1, ξ > 0 there exists an

explicit construction of a set S ⊂ Fnq of size |S| > F(1−ξ)n
q that is (v, c(v, ξ))-subspace evasive

set with c(v, ξ) = (v/ξ)v.

We use the following construction of a (v, (d1)v)-subspace evasive set, with |S| = |Fq|(1−ξ)n,

given in Section 3 of [29]. A v × w matrix is called strongly-regular [29] if all its r × r sub-

matrixs are regular (have non-zero determinant) for all 1 ≤ r ≤ v.

Lemma 5. (Theorem 3.2 [29]) Let v ≥ 1, ξ > 0 and Fq be a finite field. Let w = v/ξ and,

assume w divides n. Let A be a v×w matrix with coefficients in Fq which is strongly-regular.

Let d1 > · · · > dw be integers. For i ∈ [v] let

fi(x1, · · · , xw) =
w∑
j=1

Ai,jx
dj
j ,

and define the subspace evasive set S ∈ Fnq to be (n/w) times cartesian product of VFq(f1, · · · , fv) ⊂

Fwq . That is,

S = VFq(f1, · · · , fv)× · · · ×VFq(f1, · · · , fv)

= {x ∈ Fnq : fi(xtw+1, · · · , xtw+w) = 0, ∀0 ≤ t < n/w, 1 ≤ i ≤ v}.

Then S is (v, (d1)v)-subspace evasive set, and |S| = |Fq|(1−ξ)n.

In above, VFq is defined as follows.

Let Fq denote its algebraic closure of Fq. A variety in Fnq is the set of common zeros of

one or more polynomials. For v polynomials f1 · · · fv ∈ Fq[x1 · · ·xw], the variety defined by

the polynomial is denoted by

V(f1, · · · , fv) = {x ∈ Fwq |f1(x) = · · · fv(x) = 0}.
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For polynomials f1 · · · fv ∈ Fq[x1 · · ·xw] define the common solution in Fwq as

VFq(f1, · · · fv) = V(f1 · · · fv) ∩ Fwq = {x ∈ Fwq : f1(x) = · · · fv(x) = 0}.

Claim 4.3 in [29] proves that the construction gives a (v, vD·v log log v)-subspace evasive set,

with the field size satisfying q < nvD·v log log v.

To use subspace evasive set for efficient list decoding of FRS codes, two efficient algorithms

are needed: (i) a bijection mapping that maps a message of the message space into an

element of the subspace evasive set S, and (ii) an intersection algorithm that computes the

intersection between S and an affine subspace H with dimension at most v. This latter

algorithm allows the FRS decoder output list, that can be expressed as an affine space,

be pruned to a constant size. The lemmas below show that for these two tasks efficient

algorithms exist for the subspace evasive set above.

Lemma 6. [29] Let v, w, n1 ∈ N, b = n1

w−v , n = bw, and Fq be a finite field. For any vector

v ∈ Fn(1−ε)
q , there is a bijection which maps v into an element of the subspace evasive set

S ⊂ Fnq . That is, SE : v→ s ∈ S. The encoding algorithm is Poly(n).

Lemma 7. [29] Let S ⊂ Fnq be the (v, `)-subspace evasive set (described above). Then there

exists an algorithm that, given a basis for any H, outputs S ∩H in time Poly(vv·log log v).

FRS codes have efficient polynomial time encoding and decoding algorithms. The list

size of FRS codes however is exponential in the code length N . A construction of FRS codes

that uses subspace evasive sets [29] has constant list size while maintaining efficient encoding

and decoding.

Lemma 8. [29] There exists an explicit family of codes {CN ⊂ ΣN}N∈N such that for every

ξ there exists N0 and codes of length N > N0 and rate R(CN) over alphabet Σ = F
1
ξ2

q , that

can list decode a fraction ρ = 1− R(CN)− ξ of errors in quadratic time. The list size is at

most O((1/ξ)1/ξ).
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3.2.3 Adversarial Wiretap Code (AWTP Code)

Adversarial wiretap codes (Chapter 4) provide secure and reliable transmission from Alice

to Bob over a (ρr, ρw)-adversarial wiretap channel. The adversary in an adversarial wiretap

channel can read a fraction ρr of a codeword components, and add error to a fraction ρw of the

components. This adversary has the same reading and writing capability of the adversary in

LV adversarial channels, however the goal of the communicants in adversarial wiretap channel

is to achieve secure and reliable transmission, while in LV channels only reliability is required.

It is proved that capacity of these channels is 1− ρr − ρw. Wang et al. [86] gave an explicit

construction of a capacity achieving code for adversarial wiretap channels with polynomial

time encoding and decoding time. In Chapter 4, we show an explicit construction of a

capacity achieving code for adversarial wiretap channels with polynomial time encoding and

decoding. This AWTP code achieves perfect security and bounds decoding error probability

to δ.

Lemma 9. (Theorem 3 [85]) For any sufficient small ξ > 0, there is a perfectly secure

adversarial wiretap code CN with length N over a (ρr, ρw) adversarial wiretap channel, such

that the information rate is R(CN) = 1 − ρr − ρw − ξ, the alphabet is Σ = F
1
ξ2

q , and the

decoding error satisfies δ ≤ (1/ξ)D/ξ log log(1/ξ)

qN
.

3.2.4 Message Authentication Code (MAC)

A message authentication code (MAC)[77] is a cryptographic primitive that allows a sender

who shares a secret key with the receiver to construct authenticated messages to be sent

over a channel that is tampered by an adversary, and the receiver to be able to verify the

integrity of the received message.

Definition 18. A message authentication code consists of two algorithms (MAC,Ver) that

are used for authentication and verification, respectively. For a message m an authentication
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tag, or simply a tag, is computed,

t = MAC(m, r),

and a tagged message (m, t) is constructed. The verifier accepts a tagged pair (m, t) if

Ver((m, t), r)) = 1. Security of a one-time MAC is defined as,

Pr[(m′, t′),Ver((m′, t′), r) = 1|(m, t), t = MAC(m, r)] ≤ δ.

MAC Construction I

We use a MAC construction that uses polynomials over Fq. This construction has been

previously used in [8]. We use the same construction over an extension field. Let m be a

vector of length `N , and r = (r1, r2) be vector with r1 and r2 of length N respectively, and

t be vector of length N over Fq. Let φ be a bijection between vectors of length N over Fq,

and elements of FqN . Define the MAC generation function MAC : F`Nq × F2N
q → FNq , where

MAC(m, r) = t as,

t = MAC(m, r) = φ−1(
`−1∑
i=0

φ(xi)φ(r1)i + φ(r2)).

Lemma 10. For the MAC construction above, the success probability of the adversary in

forging a tagged message (m′, r′) that pass MAC verification is no more than `
qN

.

The proof is a direct extension of the proof in [60].

MAC Construction II

We show a new construction of MAC that can be used for randomized LVAC code I. This

MAC is specially designed to make the decoding algorithm of LVAC code in polynomial

time. The MAC construction shares the similar form of the MAC in follow,

t = MAC(x, r) =
∑

1≤m≤d

xmrm +
∑

d+1≤m≤`

xmrm + r`+1 mod qN .

But we change the form of message, randomness, and tag into vector and matrix.

The function MAC : F`Nq × FdN+3N−2
q → F3N−2

q can be considered as system of linear

equations over Fq.

40



1. The message of the MAC is a vector of length `N with ` ≤
(
d+2

2

)
− 1,

x = (x1,0, · · · , x1,N−1, · · · , x`,0, · · · , x`,N−1).

2. The randomness of the MAC is a vector of length dN + 3N − 2 over Fq,

r = (r1,0, · · · , r1,N−1, rd,0 · · · , rd,N−1, rd+1,0, · · · , rd+1,3N−3).

We write the key in the form of a (3N − 2)× (`N + 1) matrix:

R =

[
R1 | · · · | Rd | Rd+1 | · · · | Rl | Rl+1,

]
where Rm is a matrix that, depending on the value of the index m, can take the

following forms. For 1 ≤ m ≤ d,

Rm =



rm,0 0 · · · 0

rm,1 rm,0 · · · 0

...
...

. . .
...

rm,N−1 rm,N−2 · · · rm,0

0 rm,N−1 · · · rm,1
...

...
. . .

...

0 0 · · · rm,N−1

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0



.
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For d+ 1 ≤ m ≤ `,

Rm =



ri,j,0 0 · · · 0

ri,j,1 ri,j,0 · · · 0

...
...

. . .
...

ri,j,N−1 ri,j,N−2 · · · ri,j,0

ri,j,N ri,j,N−1 · · · ri,j,1
...

...
. . .

...

ri,j,2N−1 ri,j,2N−2 · · · ri,N−1

0 ri,j,2N−1 · · · ri,j,N
...

...
. . .

...

0 0 · · · ri,j,2N−1



.

Here m = id + j − i(i−1)
2

if d + 1 ≤ m ≤ ` and 1 ≤ i ≤ j ≤ d. Each entry ri,j,k =∑
0≤a1,a2
a1+a2=k

ri,a1rj,a2 for 0 ≤ k ≤ 2N − 1.

and,

R`+1 = [rd+1,0, · · · , rd+1,3N−3]T .

3. The tag of MAC is a vector of length 3N − 2,

t = (t0, · · · , t3N−3).

4. MAC(·) algorithm: The message x is encoded to the message (x, t) using the MAC

algorithm t = MAC(x, r). Let xi = (xi,0, · · · , xi,N−1) for i = 1, · · · , `. The MAC(·)

function is as following:
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MAC(x, r) =
∑

1≤m≤d

Rmxm +
∑

d+1≤m≤`

Rmxm + R`+1

= [R1 | · · · | R` | R`+1]×



x1,0

...

x1,N−1

...

x`,0
...

x`,N−1

1



=

[
t

] (3.2)

5. Ver((x′, t′), r) algorithm: The verification algorithm Ver((x′, t′), r) for a key r is by

calculating MAC(x′, r), and comparing it with the received t′.

Lemma 11. The probability that a computationally unlimited adversary can forge a message

(x′, t′) with x′ 6= x that passes the verification is no more than 2
qN

.

Proof. We need to find the following probability:

Pr(MAC(x′, r) = t′).

The MAC function given by Eqs. (3.2), is equivalent to the MAC of the polynomial form

in Eq. (3.3). For 0 ≤ i ≤ 3N − 3, the coefficients of X i in both sides of Eq. (3.3) form the

same equation as the ith equation in Eqs. (3.2),

t(X) = MAC(x, r)

=
∑

1≤m≤d

xm(X)rm(X) +
∑

d+1≤m≤`
m=id+j− i(i−1)

2

xm(X)ri(X)rj(X) + rd+1(X) mod q. (3.3)

Here each polynomial is in following,
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xm(X) = xm,0 + · · ·+ xm,N−1X
N−1 mod q for 1 ≤ i ≤ `

rm(X) = rm,0 + · · ·+ rm,N−1X
N−1 mod q for 1 ≤ m ≤ d

rm(X) = ri,j,0 + · · ·+ ri,j,2N−2X
2N−2 = ri(X)rj(X) mod q

for d+ 1 ≤ m ≤ `, m = id+ j − i(i− 1)

2

rd+1(X) = rd+1,0 + · · ·+ rd+1,3N−3X
3N−3 mod q

t(X) = t0 + · · ·+ t3N−3X
3N−3 mod q

So if we can show the probability that the adversary forged MAC code (x′, t′) pass MAC

function Eq. (3.3), then the adversary forged MAC (x′, t′) pass MAC function given by Eqs.

(3.2) is bounded by the same probability.

Assume the adversary forges a message (x′, t′) with x′ 6= x, that passes the verification.

We write the MAC in polynomial form.

t′(X) = MAC(x′, r)

=
∑

1≤m≤d

x′m(X)rm(X) +
∑

d+1≤m≤`
m=id+j− i(i−1)

2

x′m(X)ri(X)rj(X) + rd+1(X) mod q. (3.4)

Since the correct MAC code satisfies verification, it implies,

t(X) = MAC(x, r)

=
∑

1≤m≤d

xm(X)rm(X) +
∑

d+1≤m≤`
m=id+j− i(i−1)

2

xm(X)ri(X)rj(X) + rd+1(X) mod q. (3.5)

By subtracting the two equations we will have,∑
d+1≤m≤`

m=id+j− i(i−1)
2

∆xm(X)ri(X)rj(X) +
∑

1≤m≤d

∆xm(X)rm(X) = ∆t(X) mod q.

The above equation has at most 2q(d−1)N solutions for (r1(X), · · · , rd(X)). This means that

there are at most 2q(d−1)N keys r that satisfy MAC(x, r) = t and MAC(x′, r) = t′. However,

there are qdN possible values for r satisfying MAC(x, r) = t.
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It implies that the success probability of the forgery attack is,

Pr(MAC(x′, r) = t′) ≤ 2qN(d−1)

qNd
=

2

qN
.

3.3 Model and definitions

3.3.1 Limited View Adversarial Channels

Let [N ] = {1, · · · , N}, and Sr = {i1, · · · , iρrN} ⊂ [N ] and Sw = {j1, · · · , jρwN} ⊂ [N ]

denote two subsets of [N ], and SUPP(x) of vector x ∈ ΣN be the set of positions where the

component xi 6= 0.

Definition 19. A (ρr, ρw)-Limited View Adversarial channel (or a (ρr, ρw)-LVAC), is a

communication channel between Alice and Bob, that is partially controlled by Eve with two

capabilities: Reading and Writing. For a codeword c ∈ ΣN where Σ is an additive group, the

capabilities of Eve are,

• Reading: Eve can select a subset Sr ⊆ [N ] of size at most ρrN and read the components

of the codeword c on positions associated with Sr. Eve’s view of the codeword is given

by, ViewA(LVACenc(m), rA) = {ci1 , · · · , ciρrN}, and consists of all the components that are

read (observed).

• Writing: Eve can choose a subset Sw ⊆ [N ] of size at most ρwN , for “writing”. This is by

adding an error vector e to the codeword c, where the addition is component-wise over Σ

and SUPP(e) ⊆ Sw. The corrupted components of c are {yj1 , · · · , yjρwN} and yj` = cj`+ej`.

The error e is generated according to Eve’s best strategy for making Bob’s decoder to output

in error.

We assume the adversary is adaptive and can select the components for reading and

writing one by one, at each step using their knowledge of the codeword at that time.
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The LVAC is called restricted if the reading and writing sets of the adversary are same,

that is Sr = Sw. For a restricted ρ-LV adversary channel the reading and writing parameters

satisfy ρ = ρr = ρw.

3.3.2 Limited View Adversary Code

Alice and Bob will use a limited view adversary code to provide reliability for communication.

Definition 20. A Limited View Adversary Code (or LV code) for a (ρr, ρw)-LV adversary

channel ((ρr, ρw)-LVAC) consists of an encoding LVACenc :M→ CN from the message space

M to the codeword space CN ⊂ ΣN , and a deterministic decoding algorithm LVACdec : ΣN →

M. For a message m that is encoded to c by the sender and corrupted to y = c + e by the

(ρr, ρw)-LVAC, the probability that the receiver outputs the message m′ 6= m with probability

is no more than δ. That is for any m ∈M, and adversary’s observation z we have,

Pr(LVACdec(LVACenc(m) + Adv(z)) 6= m) ≤ δ.

The above definition of reliability is for strong LV codes. In weak LV codes the decoding error

probability is averaged over all messages in the message space, and the reliability requirement

is,

Pr(MS 6= MR) ≤ δ.

In other words the reliability requirement is for a random message m ∈M.

An LV code with δ decoding error is called δ-LV code. An LV code is deterministic if the

LVACenc(·) is deterministic, and LV code is probabilistic if the LVACenc(·) is probabilistic.

A LV code family C = {CN}N∈N for (ρr, ρw)-LVAC is a family of LV codes indexed by the

code length N ∈ N.

Definition 21. The rate R(C) is achievable by a code family C if for any ξ > 0 there exists

N0 such that for any N > N0, we have 1
N

log|Σ| |M| ≥ R(C) − ξ, and the probability of

decoding error satisfies δ ≤ ξ.
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We use achievable rate of LV code families over a LVAC to define capacity of these

channels.

Definition 22. The capacity C of a (ρr, ρw) LVAC is the highest achievable rate of all LV

code families C for the channel.

3.4 An upper bound on the rate of LV codes

We derive an upper bound on the rate of an LV code and use the bound to find an upper

bound on the highest achievable rate of a code family for a (ρr, ρw)-LV adversary channel.

The rate upper bound only depends on the parameter ρw. However achieving the bound

would impose condition on ρr.

Theorem 7. The rate of an LV code CN over a (ρr, ρw)-LVAC is bounded as,

R(CN) =
H(M)

N log |Σ|
≤ 1− ρw + 2H(δ). (3.6)

The highest achievable rate of an LV code family for a (ρr, ρw)-LVAC is bounded as,

C ≤ 1− ρw. (3.7)

Proof is in Section 3.7.2.

In restricted LVACs, the adversary is restricted in their choice of Sr and Sw and so one

may expect a different upper bound. However we prove the same upper bound holds in this

case also.

Proposition 1. The rate of an LV code family for a restricted ρ-LVAC is bounded as,

C ≤ 1− ρw.

Note that this proposition does not follow from Theorem 7 as the adversary in restricted

LVAC is less powerful and one may expect a different upper bound. One however can use

the same proof method to derive the bound for codes over restricted LVACs.
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3.5 LV-codes Construction

We show two constructions of randomized LV-code. The first LV-code is over restricted

ρ-LVAC.

3.5.1 LV-codes Construction I

In this section we show the first efficient construction of randomized LV-codes family over

restricted ρ-restricted LVAC. In ρ-restricted LVAC, the adversary reading and writing sets

are same, that is Sr = Sw, and ρ = ρr = ρw. The LV-code is constructed over Fuq . The con-

struction of randomized LV-codes makes use of the MAC and FRS code with appropriately

chosen parameters.

1. MAC: we use the MAC Construction II in Section 3.2.4: The MAC function is in the

form of MAC : F`Nq × FdN+3d−2
q → F3d−2

q with ` = duR(CN)e and d = d
√

2u1e.

2. Folded Reed-Solomon Code: The FRS code has length N over Fu1q .

Let N and R(CN) denote the code length and information rate, respectively. Let the

randomness vector ri for i = 1, · · · , N with length u2. Let u2 = Nd+ 3N − 2 = Nd
√

2u1e+

3N − 2 and u = u1 + u2. The randomized LV-codes is over Fuq with u = u1 + u2. Sender

wishes to send the information block m = (m0, · · · ,muR(CN )N−1),mi ∈ Fq, to the receiver.

LV code I

r1 r2 r3
.......... rN

FRSenc(x, t1 · · · tN)

LV codes I
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Encoding: Alice performs the following steps:

1. Append vector {0} over Fq with length N(` − uR(CN)) to message

m = (m0, · · · ,muR(CN )N−1), and forms the vector x = (m,0) of length `N .

2. Randomly generate the key ri for 1 ≤ i ≤ N of the MAC Construction II. Each

key is written as a (3N − 2)× (`N + 1) matrix of MAC Construction II,

Ri = [Ri,1 | · · · | Ri,` | Ri,d+1].

3. Generate tag ti = MAC(x, ri) for i = 1, · · · , N using MAC Construction II.

The dimension of FRS code is k = `N + N(3N − 2). The message block of FRS

code is,

(x, t1 · · · tN).

4. Encode the message block to the codeword using FRS encoding algorithm,

cFRS = FRSenc(x, t1 · · · tN).

The codeword c of the LV-codes is obtained by appending randomness ri to the ith

component of the FRS code cFRSi . Each component of the codeword c is,

ci = (cFRSi , ri).

Decoding: Bob performs the following steps:

1. Receive a corrupted word y with the ith component of the word yi = (yFRSi , r̂i). Here

yFRSi and r̂i is the corrupted ith component of the FRS code and the randomness,

respectively.
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2. Use the FRS decoding algorithm to decode the FRS codeword yFRS and get Eqs.

(3.11).

3. Generate N system of linear equations. Each system of linear equations is generated

by FRS decoding algorithm and MAC key ri. The ith system of linear equation is

in the form

B0 B1 · · · Bi · · · BN

R′i 0 · · · −I · · · 0

×



x

t1

...

ti
...

tN


=

 −a′

−Ri,d+1

 (3.8)

Here the first `N + N(3N − 2) equations are generated by the FRS decoding

algorithm of Eq. (3.11): the first `N columns of the matrix of coefficients of these

equations forms B0, and for 1 ≤ i ≤ N , columns (`N + (i − 1)(3N − 2))th to

(`N + i(3N − 2) − 1)th of this matrix specify Bi. Finally, −a′ is the right hand

side vector. The last 3N − 2 equations are from MAC Construction II using key

ri, with R′i = [Ri,1 | · · · | Ri,`], and I is identity matrix.

4. Bob outputs m, if this is the unique message output by the system of N − ρN

linear equations; Otherwise Bob randomly outputs ⊥.

We show the reliability and rate of randomized LV-codes.
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Reliability

Lemma 12. If the adversary does not choose position ith to read and write, the probability

that the ith system of linear equations Eqs. (3.8) does not produce the unique and correct m

is at most 2
qN−v+1 . That is,

Pr(m′ : m′ 6= m and m′ is solution of Eqs. (3.8) ) ≤ 2

qN−v+1
.

Proof. Firstly, if any m′, which is not equal to m, is a solution Eqs. (3.8), then its associated

vector (x′, t′) must satisfy the last 3N − 2 equations in Eqs. (3.8). Since these equations

generated by MAC, that is,

[
R′i − I

]
×

x′

t′i

 =

[
−Ri,v+2

]
.

It implies,

MAC(x′, ri) = t′i.

Using lemma 11, the probability that MAC(x′, ri) = t′i is at most 2
qN

.

Secondly, from the decoding algorithm of the FRS code, there are at most qv−1 vectors

(x′, t′) which satisfy the first k equations in Eqs. (3.8). So by union the probability that

(x′, t′) is the solution of first k equations in Eqs. (3.8), and still be a solution of last 3N − 2

equations in Eqs. (3.8), the probability that the Eqs. (3.8) contain any solutions (x′, t′)

associated with m′ 6= m, is at most 2qv−1

qN
= 2

qN−v+1 .

Lemma 13. The decoding error of the LV-codes is at most δ ≤ 2N
qN−v+1 if ρ ≤ 1

2
− 1

2N
.

Proof. Firstly, we show the correct message m is always output by Bob. Since the correct

message m is always contained in decoded list of FRS decoding algorithm, and associated

with the correct MAC code (x, t), it is always the solution of Eqs. (3.8) if the ith component

of codeword is not corrupted. Since there are N − ρN components of codeword, it implies

that m will always be output by Bob.
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Secondly, we show that the probability of any message m′ 6= m output by Bob is bounded

by 2N
qN−v+1 , and so the probability of decoding error is bounded by δ ≤ 2N

qN−v+1 . The adversary

can corrupt at most ρN components on set S = Sr = Sw = {i1, · · · , iρN} of codeword, and

make m′ be the solution of Eqs. (3.8) on components in set S. Since ρN < N/2, if the

corrupted message m′ output by Bob, it must be the solution of at least one Eqs. (3.8) on

set [N ] \ S. From Lemma 12, the probability of any m′ 6= m is the solution of the ith Eqs.

(3.8) with i ∈ [N ]\S is bounded by 2
qN−v+1 . It implies that the probability of any m′ 6= m is

the solution of any ith Eqs. (3.8) with i ∈ [N ] \ S is bounded by 2N
qN−v+1 . So the probability

that m′ output by Bob bounded by 2N
qN−v+1 .

It implies for any message m, the probability of decoding error is,

Pr(LVACdec(LVACenc(m) + e) = m′ 6= m) ≤ 2N

qN−v+1
. (3.9)

Rate of LV-codes

First we study the decoding condition of LV-codes CN with length N . We show the decoding

condition LV-codes in Lemma 14.

Lemma 14. The LV-codes over Fuq can correctly decode if there is,

ρ ≤ min(
1

2
− 1

2N
,

v

v + 1
− v

v + 1

uR(CN) + 3N

N2 + u−N(
√
N2 + 2u+ 3)− v

).

Proof is in Section 3.7.3.

Then we show the rate of LV-code family C = {CN}.

Theorem 8. For any small ξ > 0, there is an LV-code CN with length N over ρ-restricted

LVAC with ρ < 1
2
. The rate of LV-code CN is R(CN) = 1−ρ−4ξ. The alphabet of LV-code is

Σ = F
2N2

ξ4
+ 2N2

ξ2

q , and the decoding error is δ ≤ ξ. The required computational time of encoding

and decoding algorithm of LV-code is polynomial in N . The LV-code family C = {CN} for

ρ-restricted LVAC channel achieves rate R(C) = 1− ρ for ρ-restricted LVAC with ρ < 1
2
.
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Proof. First, from the decoding condition ρ = ρr = ρw ≤ 1
2
− 1

2N
, it implies, ρ < 1/2.

Second, let 1/2 > ξ > 0 is a small constant, v = 1
ξ
, u = 2N2

ξ4
+ 2N2

ξ2
, N0 >

2
ξ
. From Lemma

14, the decoding condition of LV-codes of length N is satisfied if,

ρ ≤ 1

1 + ξ
− 1

1 + ξ

(2N2

ξ4
+ 2N2

ξ2
)R(CN) + 3N2

N2 + (2N2

ξ4
+ 2N2

ξ2
)−N(

√
N2 + 4N2

ξ4
+ 4N2

ξ2
)

=
1

1 + ξ
− 1

1 + ξ
((1 + ξ2)R(CN) +

3

2
ξ4).

It implies the decoding condition should satisfies if,

ρ ≤ 1−R(CN)− 3ξ. (3.10)

So if we choose the rate of LV-codes is equal to,

R(CN) = 1− ρ− 4ξ.

The decoding condition Eq. (3.10) of LV-codes will be satisfied. It implies if N > N0, there

is,

R(CN) = 1− ρ− 4ξ ≥ R(C)− 4ξ,

and the decoding error is bounded by,

δ ≤ q
1
ξ
−N ≤ q−

N
2 ≤ ξ.

So it implies the rate of LV-codes family C is R(C) = 1− ρ.

The encoding algorithm is efficient from the polynomial time in N of FRS encoding

algorithm and MAC function MAC. The decoding algorithm is efficient from the polynomial

time in N of FRS decoding algorithm and solving N Eqs. (3.8).

3.5.2 LV-codes Construction II

We construct an efficient LV code family C = {CN}N∈N for a (ρr, ρw)-LVAC. The encoding

and decoding algorithms of the LV code family C are denoted by LVACenc and LVACdec,
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respectively. The construction employs a construction of Folded Reed-Solomon codes that

uses subspace evasive sets, a message authentication code, and an adversarial wiretap code,

with the following parameters:

• FRS codes using subspace evasive sets: From Lemma 8, there is an FRS code CFRS over

alphabet ΣFRS = F
1
ξ4

q , with rate RFRS = 1 − ρw − ξ2. The construction uses subspace

evasive sets has the decoder list size bounded by (1/ξ2)
D
ξ2

log log 1
ξ2 .

• MAC: From Lemma 10, there is a MAC function MAC : FuR(CN )N
q × F2N

q → FNq , with the

probability of failure to detect a forged tagged message bounded by δMAC ≤ uR(CN )
qN

.

• AWTP code: From Lemma 9, there is an AWTP code CAWTP over alphabet ΣAWTP = F
1
ξ2

q ,

whose rate is RAWTP = 1 − ρr − ρw − ξ, and has decoding error bounded by δAWTP ≤
(1/ξ)

D
ξ

log log( 1
ξ
)

qN
.

The construction of the LV code is as follows.

LV code II

Encoding: Alice does the following:

1. For an information block m of length uR(CN)N with u = log |Σ| and Σ = F
1
ξ2

+ 1
ξ4

q ,

do the following. Generate random vectors r = (r1, r2) with ri ∈ FNq , i = 1, 2,

and use it to find the MAC tag for the message m, using the MAC construction in

Section 5.2.1,

MAC(m, r) = t.

The tagged message is of length uR(CN)N +N over Fq.

2. Encode the randomness r into a codeword cAWTP of an AWTP code of length N ,

cAWTP = AWTPenc(r).
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3. Encode the vector (m, t) into a codeword cFRS of an Folded Reed-Solomon of length

N that uses subspace evasive sets for efficient decoding. That is,

cFRS = FRSenc(m, t).

4. The codeword c of the LV code has the ith component, ci = (cAWTP,i, cFRS,i) ∈ Σ, i =

1, · · · , N .

Alice sends c to Bob over the LVAC.

Decoding: Bob does the following:

1. Bob receives a corrupted word y. Each component of y is broken into two parts

to reconstruct the (corrupted) AWTP codeword yAWTP, and the (corrupted) FRS

codeword yFRS, of the sender.

2. Bob uses AWTP decoding algorithm to decode yAWTP and obtain the randomness

vector r. The decoding error of AWTP code is bounded by δAWTP.

3. Bob uses the FRS codeword decoding algorithm to decode yFRS, and outputs a list

LFRS of size |LFRS| ≤ (1/ξ2)
D
ξ2

log log 1
ξ2 . Each element in the list LFRS is a potential

tagged message (mi, ti).

4. Bob checks whether the (mi, ti) ∈ LFRS is a correctly formed tagged message by

verifying,

ti = MAC(mi, r).

If there is a unique valid tagged message, then Bob outputs the message m corre-

sponding to the tagged message. Otherwise, outputs ⊥.
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Reliability of LV codes

Lemma 15. The probability of decoding error (strong reliability) for the LV code is bounded

by δ ≤ 2(1/ξ2)
(2+ D

ξ2
log log 1

ξ2
)

qN
.

Proof. The decoding error happens in the following two cases.

1. The AWTP decoding algorithm outputs the wrong randomness vector r′. This proba-

bility is bounded by δAWTP ≤ (1/ξ)
D
ξ

log log( 1
ξ
)

qN
.

2. If the AWTP decoding algorithm outputs the correct randomness r′, there exists a

tagged message (m′, t′) in the decoding list LFRS with m′ 6= m that passes the MAC

verification algorithm. Since the AWTP code is perfectly secure, the randomness r is

received by Bob with perfect security. So Bob can use r to verify the validity of the

tagged message (m′, t′). For each (m′, t′) with m′ 6= m, the probability of passing MAC

verification is bounded by δMAC ≤ uR(CN )
qN

. Since the size of the list containing (m′, r′) ∈

LFRS is bounded by |LFRS| ≤ (1/ξ2)
D
ξ2

log log 1
ξ2 , the probability that the decoder outputs

the message m′, such that the corresponding tagged message (m′, r′) passes the MAC

verification and (m′, r′) ∈ LFRS, is bounded by δFRS ≤ uR(CN )|L|
qN

≤ uR(CN )(1/ξ2)
D
ξ2

log log 1
ξ2

qN
.

So the total probability of decoding error is bounded as follows,

δ = δAWTP + δFRS ≤
2(1/ξ2)

(2+ D
ξ2

log log 1
ξ2

)

qN
.

Rate of an LV code family

Theorem 9. The information rate of the probabilistic LV code family C = {CN}N∈N over a

(ρr, ρw)-LVAC is R(C) = 1 − ρw. The read and write parameters must satisfy ρr + ρw < 1.

The encoding and decoding algorithms are polynomial time in N .

Proof. 1). First we show that the rate of the LV code family is R(C) = 1− ρw.
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Let 0 ≤ ξ ≤ 1
2
, u be the length of alphabet Σ, uAWTP be the length of alphabet ΣAWTP,

uFRS be the length of alphabet ΣFRS, and N0 ≥ (2 + D
ξ2

log log 1
ξ2

)(1 + 2 log 1
ξ
) + log 1

ξ
. From

uFRSRFRSN = uR(CN)N and u = uAWTP + uFRS, we have,

RFRS =
u

uFRS
R(CN) = (1 +

1

uFRS
)R(CN) ≤ R(CN) + ξ4.

Since RFRS = 1− ρw − ξ2, we have,

R(CN) ≥ RFRS − ξ4 ≥ 1− ρw − 2ξ2 ≥ 1− ρw − ξ,

and,

δ ≤ 2(1/ξ2)
(2+ D

ξ2
log log 1

ξ2
)

qN
≤ ξ.

So the rate of LV code family is R(C) = 1− ρw.

2). Second we show that the reading and writing parameter must satisfy ρr + ρw < 1.

To transmit the randomness r securely and reliably, the maximum length of r must be no

more than the maximum information that can be transmitted by the AWTP code. Lemma

9 implies that the length of the randomness r is bounded as,

N ≤ (1− ρr − ρw − ξ) log |ΣAWTP|N.

Since ΣAWTP = F
1

ξ21
q , we have,

1− ξ − ξ2 ≥ ρr + ρw.

So the reading and writing sets must satisfy 1− ξ − ξ2 ≥ ρr + ρw. Since ξ approaches zero

as N goes to infinity, we have ρr + ρw < 1.

3). The encoding algorithm is efficient since both adversarial wiretap codes and FRS

codes (with subspace evasive set message coding), have polynomial (in N) time encoding

algorithms (in Poly(N)); also the MAC function MAC is polynomial time Poly(N). The

decoding algorithm is efficient because decoding function of the first two primitives are

efficient, and the output list size of the FRS code with subspace evasive set message coding

is constant size. Finally, the MAC verification algorithm is in Poly(N).
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A comparison of LV code constructions

We compare the LV code construction. LV code [73] is deterministic while the latter two are

probabilistic. All LV codes are capacity achieving. LV code [73] and LV code III both allow

Sr 6= Sw, while LV code II needs Sr = Sw. LV code [73] has ρr + ρw < 1− 1/N and has the

restriction that ρr = ρw. LV code III has efficient decoding and has the requirement that

ρr + ρw < 1

Table 3.1: LV-Code Construction

Code Rate R(CN) Comp. Σ Adversary capability

LV code [73] 1− ρw − ξ Exp(N) F2
q

ρr = ρw =

min(R(CN)− 1
2N
, 1−R(CN)− 1

2N
)

LV code I 1− ρw − ξ Poly(N) O(F
N2

ξ4

q ) Sr = Sw, ρ < 1/2

LV code II 1− ρw − ξ Poly(N) O(F
1
ξ4

q ) ρr + ρw < 1

3.6 LV-codes and RMT

3.6.1 LV codes and 1-round RMT

LV codes are defined over an alphabet Σ and so all components of a codeword are elements

of Σ. In RMT protocols however, the set of transmissions over each wire may be different.

Definition 23 (Symmetric RMT). Let W i
j, j = 1 · · ·N, i = 1 · · · r, denote the set of pos-

sible transmissions over wire j in an r-round RMT protocol. An RMT protocol is called a

symmetric RMT protocol if W i
j =W i is independent of j.

All known constructions of threshold RMT protocols are symmetric.
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Proposition 2. There is a one-to-one correspondence between LV codes CN of length N that

provide δ-reliability for restricted ρ-LVACs, and 1-round symmetric δRMT-RMT protocols for

N wires with security against a (t, N) threshold adversary, where t = ρN .

An LV code can be used to construct a 1-round symmetric δRMT-RMT, where δRMT = δ.

The converse is also true.

Proof. Consider an LV code CN with decoding error δ for a restricted ρ-LVAC. By associating

each component of a codeword with a distinct wire, one can construct a 1-round symmetric

δRMT-RMT protocol for N wires. The protocol security is against a threshold (t, N) adver-

sary with t = ρN . The RMT encoding and decoding are obtained from the corresponding

functions in the LV code; that is, RMTenc(m) = LVACenc(m) and RMTdec(y) = LVACdec(y).

To relate the reliability of the RMT protocol to that of the LVAC-code, we note the following:

1. Decoding error is both cases requires the decoder to output the correct message with

probability at least 1− δ.

2. The corruption of a codeword in a restricted ρ-LVAC is by additive error while in

RMT the adversary can arbitrarily modify the |S| = t corrupted wires. However

in restricted ρ-LVACs, S = Sr = Sw, |S| = ρN and so modifying the components

(ci1 , · · · cit) to (c′i1 , · · · c
′
it) is equivalent to calculating an error e with SUPP(e) = S and

(ei1 , · · · eit) = ((c′i1 − ci1), · · · (c
′
it − cit)), and adding it to the codeword. This means

that for these channels additive error can be used to generate all possible adversarial

tamperings.

The theorem follows by constructing a restricted LV code with S = Sr = Sw from a 1-

round symmetric δRMT-RMT, using the same correspondence between the code components

and the wires. We will have δ = δRMT.

The upper bound on the rate (Theorem 7) of LV codes for ρ-restricted LVAC, gives a

lower bound on the transmission rate of 1-round symmetric δ-RMT protocols.
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Theorem 10. Transmission rate of 1-round symmetric δ-RMT protocols is lower bounded

by,

τ(RMT) ≥ N

N − t+ 2NH(δ)
.

Proof. Let R(CN) be the rate of a δ-LV code CN for a restricted ρ-LVAC. From Proposition

13, the transmission rate of the associated 1-round symmetric δ-RMT is given by, τ(RMT) =

N log |V|
log |M| = 1

R(CN )
.

Now consider a 1-round symmetric δ-RMT for N wires and t = ρN . Using Theorem

7, we have an LV code for a restricted LVAC with S = Sr = Sw whose information rate is

upper bounded by,

R(CN) ≤ 1− ρ+ 2H(δ).

Since the transmission rate of a symmetric δ-RMT protocol is the inverse of the information

rate of the corresponding LV code, we have,

τ(RMT) =
1

R(CN)
≥ 1

1− ρ+ 2H(δ)
=

N

N − t+ 2NH(δ)
.

Since δ ≥ 0, the right hand side of the bound is smaller than the known bound N
N−t . This

is expected as the definition of reliability used here weaker than the one used derivation of

this latter bound (Theorem 4, [67]) requiring decoder to output correct messages only.

Corollary 1. For N = 2t+ 1, we have,

τ(RMT) =
1

R(CN)
≥ 2t+ 1

t+ 1 + 2(2t+ 1)H(δ)
.

Since δ ≥ 0, the right hand side of the bound is less than the known bound 2t+1
1+t

that is

for the stronger definition of reliability. An explanation similar to what is given for Theorem

(14) applies here also.

Corollary 2. For N = 2t+ ct, we will have the following.
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1.

τ(RMT) =
1

R(CN)
≥ 2 + c

1 + c+ 2(2 + c)H(δ)
.

2. The RMT construction obtained from the LV code in Section 4.5 is efficient and opti-

mal, and the failure probability δ ≤ O( 1
qN

).

Proof is in Section 3.7.4.

3.7 Proof of Chapter 3

3.7.1 Detail of Linear Algebraic FRS Decoding Algorithm

Proof. Linear algebraic list decoding [38] has two main steps: interpolation and message

finding as outlined below. Let γ be a primitive element for Fq.

• Find a polynomial, Q(X, Y1, · · · , Yv) = A0(X) + A1(X)Y1 + · · · + Av(X)Yv over Fq,

such that deg(Ai(X)) ≤ D for i = 1 · · · v and deg(A0(X)) ≤ D + k − 1, satisfying

Q(αi, yi1 , yi2 , · · · , yiv) = 0 for 1 ≤ i ≤ n0, where n0 = (u− v + 1)N .

• Find all polynomials f(X) ∈ Fq[X] of degree at most k− 1 and coefficients f0, f1 · · · fk−1,

that satisfy, A0(X) + A1(X)f(X) + A2(X)f(γX) + · · ·+ Av(X)f(γv−1X) = 0.

The two above requirements are satisfied if f ∈ Fq[X] is a polynomial of degree at most

k − 1 whose FRS encoding agrees with the received word y in at least t components where,

t > N(
1

v + 1
+

v

v + 1

uR

u− v + 1
).

This means we need to find all polynomials f(X) ∈ Fq[X] of degree at most k − 1 and

coefficients f0, f1, · · · , fk−1, that satisfy,

A0(X) + A1(X)f(X) + A2(X)f(γX) + · · ·+ Av(X)f(γv−1X) = 0.
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Let Ai(X) =
∑D+k−1

j=0 ai,jX
j for 0 ≤ i ≤ v. Note that ai,j = 0 for i ≥ 1 and j ≥ D.

Define the polynomials,
B0(X) = a1,0 + a2,0X + a3,0X

2 + · · ·+ av,0X
v−1,

...

Bk−1(X) = a1,k−1 + a2,k−1X + a3,k−1X
2 + · · ·+ av,k−1X

v−1.

Requiring that the coefficients of X i, i = 0 · · · k− 1, in the polynomial Q(X) = A0(X) +

A1(X)f(X) + A2(X)f(γX) + · · · + Av(X)f(γv−1X) = 0 be equal to 0, is equivalent to the

following system of linear equations for f0 · · · fk−1.



B0(γ0) 0 0 · · · 0

B1(γ0) B0(γ1) 0 · · · 0

B2(γ0) B1(γ1) B0(γ2) · · · 0

...
...

...
...

...

Bk−1(γ0) Bk−2(γ1) Bk−3(γ2) · · · B0(γk−1)


×



f0

f1

f2

...

fk−1


=



−a0,0

−a0,1

−a0,2

...

−a0,k−1


(3.11)

The rank of the coefficient matrix in (Eqs. 3.11) is at least k − v + 1. This is because

there are at most v − 1 solutions for the equation B0(X) = 0 and so at most v − 1 possible

γi satisfying B0(γi) = 0, resulting in the rank of the matrix of (Eqs. 3.11) to be at least

k − v + 1. This means that the dimension of the solution space is at most v − 1 and there

are at most qv−1 solutions to (Eqs. 3.11). This gives the list size to be equal to qv−1.

3.7.2 Proof of Theorem 7

Proof. We prove an upper bound on the rate of weak LV codes for (ρr, ρw)-LVACs. For these

codes error probability is averaged over all codewords. The rate upper bound for strong LV

codes cannot be more than this upper bound as for these latter codes error probability of

decoding for any message is bounded by δ.
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The bound is for the rate of an arbitrary code and is derived for a special strategy of the

adversary given below. Noting that the adversary can always use this strategy, it follows

that the code rate cannot be higher than the bound that is derived for this special strategy.

The adversary’s strategy is the following.

1. Adversary selects a reading set Sr and a writing set Sw before the LV code transmission.

2. After the codeword is transmitted, the adversary 1) reads the ρrN components of the

codeword on the set Sr; 2) chooses an error vector e with SUPP(e) ∈ Sw, randomly

and with uniform distribution, and adds it component-wise to the codeword.

Let M denote the random variable associated with the message space, C denote the ran-

dom variable associated with the LV codeword sent by Alice, Y denote the random variable

associated with the received word of Bob, and E denote the random variable associated

with the error generated by the Adversary. We associate a random variable Ci to the ith

component of the code. Distribution of this variable can be obtained from the distribution of

C. Let YSw and YSw denote the components of a codeword on the sets Sw and Sw = [N ]/Sw

of a word Y , respectively. The proof has three steps.

STEP 1. First, we give an upper bound on H(M |Y ).

From the weak LV codes we have,

Pr(MS 6= MR) ≤ δ.

From Fano’s inequality (Theorem 2.10.1, Page 38, [16]), the decoding error probability δ

implies,

H(M |Y ) ≤ H(MR|MS) ≤ H(δ) + δ log |M|. (3.12)

Since log |M| ≤ N log |Σ|, we have

H(M |Y ) ≤ H(δ) + δN log |Σ|. (3.13)
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STEP 2. We give an upper bound on the rate R(CN) of an LV code CN of length N .

We have,

H(M) = H(M |Y ) + H(Y )− H(Y |M). (3.14)

In the following, we will bound the three terms on the right side of Eq. (3.14).

The first term has been bounded by Eq. (3.13). The second term is bounded by,

H(Y ) ≤ log |Y| ≤ N log |Σ|. (3.15)

The last term is bounded as follow,

H(Y |M) = H(YSw , YSw |M)

≥ H(YSw |M)

≥ H(YSw |M,C)

(1)
= H(E)

= ρwN log |Σ|.

(3.16)

Here (1) is because the adversary’s error is selected uniformly and independent of the

message and the codeword.

From Eq. (3.13) (3.15) (3.16), we have,

H(M) ≤ (1− ρw)N log |Σ|+ H(δ) + δN log |Σ|. (3.17)

The bound (3.17) holds for any distribution on M. In particular for uniform message

distribution, we have the bound R(CN) on the code rate,

R(CN) =
H(M)

N log |Σ|
≤ 1− ρw + 2H(δ). (3.18)

STEP 3. Let C denote the highest achievable rate of an LV code family for a (ρr, ρw)-

LVAC. We show the upper bound on C. Suppose there is an LV code family C for a (ρr, ρw)-

LVAC with rate R(C) = 1− ρw + ξ̂, for some small constant 0 < ξ̂ < 1
2
.
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Let H(p0) = ξ̂
4
. So for any ξ̂′ ≤ p0, we have 2H(ξ̂′) ≤ ξ̂

2
and ξ̂′ ≤ H(ξ̂′) ≤ ξ̂

4
. From

Definition 21, for any 0 < ξ̂′ ≤ p0, there is an N0 such that for any N > N0, we have δ < ξ̂′

and,

R(CN) ≥ R(C)− ξ̂′

= 1− ρw + ξ̂ − ξ̂′

(1)
= 1− ρw + 2H(δ) +

ξ̂

2
− ξ̂′

(2)
> 1− ρw + 2H(δ).

Here (1) is from H(δ) ≤ H(ξ̂′) < ξ̂
2
; and (2) is from ξ̂′ < ξ̂

2
.

This contradicts the bound on R(CN) in Eq. (3.18). So the upper bound on the rate of

an LV code family over a (ρr, ρw)-LVAC is,

C = max
C

R(C) ≤ 1− ρw.

3.7.3 Proof of Lemma 14

Proof. Firstly, the adversary cannot corrupt ρ ≥ 1
2

fraction of a codeword: If the adversary

can read and write on half of the components of a codeword c, they can choose another

codeword c′ and add appropriate error vector to replace components of c on the controlled

positions to obtain y which is equal to c′ on the controlled components. The decoder can

not decode y and fail because half of the components of y is the same as c and the other half

the same as c′. It implies, ρ ≤ 1
2
− 1

2N
.

Secondly, let RFRS be the information rate of the FRS code. The decoding algorithm

of LVAC adversary code need to satisfy the decoding condition of FRS code. According to

Lemma 4, the FRS code with length N and information rate RFRS can decode ρN adversary

errors if satisfying the condition:

N − ρN ≥ N(
1

v + 1
+

v

v + 1

u1RFRS

u1 − v + 1
). (3.19)
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The equation is satisfied if,

N − ρN ≥ N

v + 1
+

v

v + 1

(N(uR(CN) + 1) +N(3N − 2))

u1 − v + 1
.

It implies that the maximum error that the adversary can add is,

ρ ≤ v

v + 1
− v

v + 1

uR(CN) + 3N − 1

u1 − v + 1
.

Since u = u1 + u2 = u1 + d
√

2u1eN + 3N − 2, it implies,

u1 ≥ N2 + u− 3N + 1−N
√
N2 + 2u− 2(3N − 1).

So the decoding condition of FRS code is satisfied if the following inequality is met:

ρ ≤ v

v + 1
− v

v + 1

uR(CN) + 3N − 1

N2 + u− 3N + 2−N
√
N2 + 2u− 2(3N − 1)− v + 1

.

It implies,

ρ ≤ v

v + 1
− v

v + 1

uR(CN) + 3N

N2 + u−N(
√
N2 + 2u− 3)− v

.

3.7.4 Proof of Corollary 2

Proof. Item 1, follows directly from Theorem 14 by substituting N = (2 + c)t.

For item 2, we need to choose parameters R(CN), ρ, ξ of the LV code such that the

corresponding 1-round RMT is optimal. The selection is as follows.

1. We choose ρr = ρw = ρ = 1
2+c

.

2. Rate R(CN): we have the LV code rate R(CN) = 1
2+c

. The transmission rate τ of the

corresponding RMT is τ = 1
R(CN )

= 2 + c = O( N
N−t) which is a constant and so the

RMT protocol is optimal.

3. Parameter ξ: the code family is capacity achieving and parameter ξ determines that

the code rate is at most ξ less than the capacity.
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The parameter must be chosen with two considerations: the FRS code with the sub-

space evasive set used for the encoding of the message (appended with MAC), and the

AWTP code used for transfering the MAC key.

(a) FRS with subspace evasive set message coding: From Section 4.5, for the LV code

we have ΣFRS = F
1
ξ4

q and Σ = F
1
ξ4

+ 1
ξ2

q . Let ρ = 1
2+c

and R(CN) = 1
2+c

. From,

log |M| = RFRS(CN)N log |ΣFRS| = R(CN)N log |Σ|,

we have,

R(CN) ≤ RFRS(CN).

Since RFRS(CN) = 1− ρ− ξ, it implies that,

R(CN) ≤ RFRS(CN) = 1− ρ− ξ,

and so ξ must satisfy,

ξ ≤ 1− ρ−R(CN) = 1− 1

2 + c
− 1

2 + c
=

c

2 + c
. (3.20)

(b) AWTP code: We have RAWTP(CN) = 1− ρ− ρ− ξ and ρ = 1
2+c

, and so,

RAWTP(CN) = 1− 2ρ− ξ.

Let

ξ ≤ c

2(2 + c)
. (3.21)

From Section 4.5 the alphabet of AWTP is ΣAWTP = F
1
ξ2

q and so the rate of the

AWTP code is,

RAWTP(CN) = 1− 2ρ− ξ =
c

2 + c
− ξ =

c

2(2 + c)
. (3.22)

The required randomness vector r h for the LV code has length N . Since,

log |r|
N log |ΣAWTP|

=
N

N log |ΣAWTP|
= (

c

2(2 + c)
)2
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is less than the information rate of the AWTP code with the chosen parameters,

if we choose ξ = c
2(2+c)

, then r can be sent securely and reliably using the AWTP

code.

To satisfy both above conditions, Eq. (3.20) and AWTP code Eq. (3.21), we will

choose,

ξ ≤ c

2(2 + c)
.

From the LV code parameter R(CN), ρ, ξ above, we can determine the parameters of the

δ-RMT scheme obtained from the LV code:

1. Transmission rate: τ = O( N
N−t) and so the RMT is optimal.

2. Computational time: Since ξ = c
2(2+c)

is constant, the list size of the FRS code with

subspace evasive set encoding is constant and so the decoding algorithms of the AWTP

code and the FRS code with subspace evasive set encoding, are polynomial in N and

so the decoding algorithm of the RMT is polynomial time.

3. Decoding error: the LV code decoding error is δ ≤ 2(1/ξ2)
(2+ D

ξ2
log log 1

ξ2
)

qN
and ξ is constant.

This means that the decoding error of RMT is bounded by δ ≤ O( 1
qN

).
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Chapter 4

Adversarial Wiretap Channel

4.1 Introduction

Wyner [89] made the seminal observation that noise in the channel can be used as a resource

for cryptographers, and proposed wiretap channel model to provide (asymptotic) perfect

secrecy and reliability against a computationally unbounded adversary without requiring a

shared key. In Wyner’s original model and its generalization to broadcast channel [18], the

sender is connected to, the receiver over a noisy channel referred to as the main channel,

and to the eavesdropper over a second noisy channel referred to as the wiretap channel.

The goal is to provide (asymptotic) perfect secrecy and reliability for message transmis-

sion from Alice to Bob. Wyner and Ozarow [66] introduced wiretap II model in which the

main channels is noiseless and the wiretap channel is an erasure channel where the erasures

are controlled by the adversary: the adversary can select the subset of codeword components

that they would like to see. The goal is to provide perfect secrecy for the communicants

(the channel is reliable). Secrecy capacity of a wiretap channel is the highest possible rate

of communication with perfect secrecy and reliability. Wyner derived secrecy capacity of

a degraded wiretap channel where the wiretapper channel is a concatenation of the main

channel and a second noisy channel, and showed the existence of codes that achieve secrecy

capacity. Similar results have been proved for wiretap II, and broadcast channel in [66] and

[18], respectively.

Wiretap model naturally captures physical layer wireless communication where the sender’s

transmission can be intercepted (eavesdropped) by a third party who is within the reception

distance of the transmitter. There is a large body of research [9, 15, 20, 55, 56, 66, 61, 63,
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62, 64, 49, 59, 20] on variations of the basic wiretap model including extending the goal of

communication to key agreement. There have also been numerous implementations based

on this model [6, 9].

Considering active adversaries in wiretap model is well motivated by real life application

scenarios. In wireless communication it is relatively easy to inject signals in the channel

resulting in the transmitted symbols to be erased, or selectively modified [69]. Recent pro-

posals [64, 12, 2] for physical layer active adversaries in wiretap setting consider an adversary

that is modelled using general arbitrarily varying channels and fall short of one or more of the

following, (i) considering adaptive adversaries that use their current knowledge to perform

their next actions, (ii) using strong security definition, (iii) deriving an expression, or a tight

upper-bound, for secrecy capacity, and (iv) providing an efficient explicit construction.

In this dissertation we propose a model for a wiretap channel with active adversary, that

we call Adversarial Wiretap Channel (AWTP Channel). The model has a coding theory

approach and well captures active adversaries for a large class of real-life channel corruptions.

We achieve all the properties (i) to (iv) for this model.

Our Results

1). AWTP Channels and AWTP Codes. An AWTP channel is specified by a pair of param-

eters (ρr, ρw): for a codeword of length N , the adversary can choose a subset Sr of size up

to ρrN components to read, and a subset Sw of size up to ρwN components to write to, and

writing is by adding an error vector with non-zero components in Sw, to the codeword. The

goal is to provide secrecy and reliability for communication in presence of the above adver-

sary. Secrecy is defined as the indistinguishability of the adversary’s view of communication

for any two messages, and is measured by the statistical distance between the two views.

Reliability is given by the receiver’s probability of correctly decoding a sent message that

has been chosen by the adversary (See Definition 26).

An AWTP code provides security and reliability for message transmission over (ρr, ρw)-
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AWTP channels. An AWTP code is specified by a tuple (M, N,Σ, ε, δ), denoting the message

space, code length, alphabet set, and upper bounds on secrecy loss and error probability,

respectively. Σ is an additive group and corruption of a codeword is by adding (component

wise) an error vector to it. A code has a pair of algorithms (AWTPenc(·),AWTPdec(·)) for

encoding and decoding, respectively. Encoding is probabilistic and decoding is deterministic.

The adversary is allowed to choose the message distribution and the best tampering error

using their view of the communication. When other parameters are clear from the context,

we refer to the code as an (ε, δ)-AWTP code. In an (ε, δ)-AWTP code the information

leaked about the message and the probability of decoding error, are upper bounded by ε and

δ, respectively.

The rate of an AWTP code CN of length N is denoted by R(CN), and is defined as

R(CN) = log2 |M|
N log2 |Σ|

= 1
N

log|Σ| |M|. An ε-AWTP code family Cε is a family {CN}N∈N of

(ε, δN)-AWTP codes, indexed by the code length N . A rate R(Cε) is achievable by an ε-

AWTP code family Cε, if for any sufficiently small ξ > 0 there exists an N0 such that for

all N ≥ N0 we have 1
N

log|Σ| |M| ≥ R(Cε) − ξ, and the decoding error probability satisfies

δN ≤ ξ. The ε-secrecy capacity of an AWTP channel, denoted by Cε (C0 for perfect secrecy),

is the highest achievable rate of all ε-AWTP code families for the channel.

2). Rate Upper Bound of AWTP channels. For any (ε, δ)-AWTP code over a (ρr, ρw)-

AWTP channel, and any message distribution, we prove an upper bound on H(M) (See Eq.

4.18) and use it to obtain an upper bound on the rate of (ε, δ)-AWTP codes. Using this

bound for a code family results in the following upper bound on the secrecy capacity of a

(ρr, ρw)-AWTP channel,

Cε ≤ 1− ρr − ρw + 2ερr(1 + log|Σ|
1

ε
). (4.1)

For ε = 0, we have C0 ≤ 1− ρr − ρw.

This last bound can be explained by noting that the components of a codeword that are

either read or written to, cannot contribute to secure and reliable transmission of information.
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Since the capacity result must hold for all adversaries, that is all choices of Sr and Sw (subject

to the restrictions on the sizes of the sets), for an adversary that uses Sr ∩ Sw = ∅, the rate

will be bounded by 1− ρr − ρw. The bound implies that perfect secrecy for (ρr, ρw)-AWTP

channels is possible if ρr + ρw < 1. When the adversary is almost oblivious (ρr is small),

the rate can be positive even when the adversary writes over a large fraction < 1− ρr of the

codeword, and on the other extreme when ρr is close to 1, fewer than < 1 − ρr corrupted

components could be tolerated.

This bound is achieved by the construction in Section 4.5 (Theorem 12), and so we obtain

the perfect secrecy capacity of a (ρr, ρw)-AWTP channel,

C0 = 1− ρr − ρw. (4.2)

3). A Capacity Achieving AWTP Code Family. We construct a capacity achieving (0, δ)-

AWTP code family C = {CN : N ∈ N}, for a (ρr, ρw)-AWTP channel. For any sufficiently

small ξ > 0, the code CN has R(CN) = 1 − ρr − ρw − ξ and uses an alphabet of size

|Σ| = O(q1/ξ2). Decoding algorithm is efficient and decoding error probability satisfies

δ ≤ O(q−N). The decoding algorithm satisfies strong reliability condition which means that

the decoder always outputs a correct message, or outputs ⊥. The construction gives a code

family that achieves the capacity C0.

The construction uses three building blocks: an Algebraic Manipulation Detection Code

(AMD code), a Subspace Evasive Set, and a Folded Reed-Solomon code (FRS code), all

defined in Section 4.2. The intuition behind the construction is as follows.

To correct adversarial errors we use a list decodable code (FRS code) that can correct

up to ρwN errors in the codeword. The message of the FRS code however, is prepared with

a number of considerations. Firstly, we note that the decoder outputs a list of codewords

that includes the sent codeword. To identify the sent codeword in the list, we embed the

message in a codeword of an AMD code. This allows Bob to identity the sent message

(codeword) in the list, by applying the decoding algorithm of the AMD code on the message
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part of the codewords in the list. In constructing LV codes we used AWTP codes to send

the secret key of a MAC over the adversarial channel. To construct AWTP code we will use

a cryptographic primitive that does not require key, and yet allows detection of algebraic

manipulations. Secondly, to have an efficient decoding algorithm, the decoded list size

must be constant. This will be obtained by mapping the AMD codeword, to an element of

subspace evasive set. Finally, to guarantee perfect secrecy, the view of the adversary (given

by the ρrN read components of the codeword) must be independent of the sent message.

This is achieved by appending sufficient number (ρrN) of random elements to the element

in subspace evasive set. The FRS code encodes the resulting vector into AWTP codeword.

By carefully choosing the parameters of the above building blocks, the rate of the resulting

code family will achieve the rate upper bound of (ρr, ρw)-AWTP channels, and so the code

family is capacity achieving. Details of the encoding and decoding algorithms are given in

Section 4.5.

4). Relations with SMT. AWTP model of secure and reliable communication is closely

related to 1-round SMT [28], a model proposed for secure and reliable communication in

networks. In the SMT setting Alice is connected to Bob through a set of N node disjoint

paths (wires) in a network, a subset of which is controlled by the adversary. The most widely

studied adversary model for SMT is a threshold adversary that fully controls a subset of size

t of the N wires. The goal of an SMT protocol is to provide secrecy and reliability for

communication: an (ε, δ)-SMT protocol ensures that the secrecy loss (statistical distance of

the adversary’s view for any two messages) is bounded by ε, and the probability of error in

decoding is bounded by δ [33]. We note that in an AWTP channel the error is added to the

codeword, while an SMT adversary can replace their chosen codeword components by any

value of its choice. In Section 4.6, we show a direct relationship between the two primitives

and use it to obtain a new bound on the efficiency parameter of SMT protocols.
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Related Work

Adversarial wiretap definitions. Wiretap model and its extensions have attracted consider-

able attentions in recent years. There is a large body of excellent works on extensions of

wiretap model [18, 66, 61, 63, 49, 15], construction of capacity achieving codes [42, 6], and

implementation of codes in practice [11, 9]. We only consider the works that are directly

related to active adversaries considered here. Active adversaries in wiretap channels was

first considered in Wyner wiretap II [66] model in which the adversary selects its view of

the communication channel. The adversary however does not modify the transmission over

the main channel which is assumed to be noise-free. Physical layer active adversaries for

wiretap channels that tamper with the transmission, have been considered more recently

[64, 12, 2]. These works model active adversaries as an arbitrarily varying channel. An

arbitrarily varying channel (AVC) [21, 4, 19, 44] is specified by two finite sets X and Y of

input and output alphabets, a finite set A of channel states, and a set of channels specified

by transition probabilities Pr(y|x, a), x ∈ X , y ∈ Y , a ∈ A. The channel state in general

varies with each channel use (possibly with memory) and,

Pr(yn|xn, an) = Πn
i=1Pr(yi|xi, ai),

where an = (a1 · · · an), an ∈ An, is the sequence of channel states. An arbitrarily vary-

ing wiretap channel (AVWC) is specified by an input alphabet set X , two sets of out-

put alphabets, Y and Z, representing the legitimate receiver’s and the wiretapper’s re-

ceived values, respectively, and a family of channels, each given by a transition probability

Pr(y, z|x, a), x ∈ X , y ∈ Y , z ∈ Z, a ∈ A) indexed by the channel state a. In [64], the

jammer chooses the state ai (jamming signal) independent of the eavesdroppers’ observation

z. Transmitter and receiver know the state space, but not the state chosen by the adver-

sary. The message is chosen randomly, with uniform distribution. Encoding and decoding is

randomized; that is the system uses a family of encoder and decoder pairs, that is known

to the eavesdropper and the jammer. The pair used by the sender and receiver is specified
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by a random value (also called key) that is known to the eavesdropper but not the jammer.

Security is measured by the rate of the mutual information between the message and the

adversary’s observation, and reliability for a pair of encoder and decoder is in terms of the

expected error probability over all messages. For randomized codes security and reliability

are averaged over all realizations of the code.

In summary, the model, (i) assumes common randomness between the sender and the receiver

that is unknown to the jammer but is known to the eavesdropper, (ii) uses weak definition

of secrecy and average error probability, and (iii) the jammer’s corruption does not depend

on the eavesdropper view.

Our adversarial channel model can be seen as a special arbitrarily varying channel where

the adversary’s eavesdropping and tampering subsets are bounded, and the type of tampering

is additive. For this special class however we remove the above restrictions: (i) we do

not assume shared randomness between the sender and the receiver, (ii) we use a strong

definition of secrecy in terms of the statistical distance between the adversary’s views of

any two messages, and for reliability allow the adversary to choose the message distribution

that causes the worst case error; and (iii) consider an adaptive adversary that uses all the

information at each point to choose the next component to be read or written to.

Arbitrarily varying channels are also used in [12], where secrecy measured by the mutual

information of a random message (uniform distribution on messages) and the adversary’s

view. Our security definition using statistical distance is equivalent to the mutual information

security when the message distribution is adversarially chosen [6]. In [2] wiretap II model

is extended to include an active adversary, and two possible types of corruptions have been

considered. In the first, the adversary erases symbols that are observed, and in the second,

corrupts them. In our notations, the adversary in both cases [2] has Sr = Sw. The adversary

in our model however does not have this limitation on the choice of Sr and Sw.

Security Definitions. Wyner [89] quantified security of wiretap channels by the adver-

75



sary’s equivocation, defined as the average (per message symbol) uncertainty about the

message, given the adversary’s view of the sent codeword. This definition is strengthened

in [62, 15, 42, 6]. In [6], the relationship among security notions used in wiretap channels is

studied, and it is shown that defining security as the statistical distance between adversary’s

views of two messages, is equivalent to a security notion that is called mutual information

security and maximizes the mutual information between the message and adversary’s view,

over all message distributions. It follows that this latter is stronger than the strong security

notion in [62], as the adversary can choose the message distribution.

Adversarial Channels. Adversarial channels have been widely studied in the literature

[19, 40, 52]. A good survey can be found in [54]. An adversarial channel that is closely

related to this work is limited view (LV) adversary channel. An LV adversary is identical

to the adversary in AWTP channel, however the goal of the communication in the former

is reliability only, while transmission over AWTP channels requires secrecy and reliability

both.

Computationally unlimited active adversaries at the network layer of communication,

have been considered in [61, 63, 71, 45, 26]. Such adversaries can view, or tamper with,

the whole message, and providing protection against them requires access to extra resources

such as shared randomness [36, 77], close secrets [45], or extra channels [65]. The adversary

in AWTP setting is at the physical layer of communication, and without having access to

any other resource, the only advantage of communicants over the adversary is the limited

access of the adversary to the channel.
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4.2 Preliminaries

4.2.1 Algebraic Manipulation Detection Code (AMD code)

Consider a storage device Σ(G) that holds an element x from a group G. The storage Σ(G)

is private but can be manipulated by the adversary by adding ∆ ∈ G. AMD codes allow the

manipulation to be detected.

Definition 24 (AMD Code[17]). An (X ,G, δ)-Algebraic Manipulation Detection code ((X ,G, δ)-

AMD code) has two algorithms (AMDenc and AMDdec). Encoding, AMDenc : X → G, is

probabilistic and maps an element of a set X to an element of an additive group G. Decoding,

AMDdec : G → X∪{⊥}, is deterministic and for any x ∈ X , we have AMDdec(AMDenc(x)) =

x. Security of AMD codes is defined by requiring,

Pr[AMDdec(AMDenc(x) + ∆) /∈ {x,⊥}] ≤ δ, (4.3)

for all x ∈ X ,∆ ∈ G.

An AMD code is systematic if the encoding has the form AMDenc : X → X × G1 × G2,

mapping x to (x, r, t = f(x, r)), for some function f , and r ← G1. The decoding function

results in AMDdec(x, r, t) = x, if and only if t = f(x, r), and ⊥ otherwise.

We use the systematic AMD code in [17] over an extension field. Let φ be a bijection

between vectors v of length N over Fq, and elements of FqN , and let d be an integer such

that d + 2 is not divisible by q. Define the function AMDenc : FdqN → FdqN × FqN × FqN as,

AMDenc(x) = (x, r, f(x, r)) where,

f(x, r) = φ−1

(
φ(r)d+2 +

d∑
i=1

φ(xi)φ(r)i

)
mod qN .

Lemma 16. For the AMD code above, the success chance of an adversary in tampering with

a stored codeword (x, r, t), and constructing a new codeword (x′, r′, t′) = (x′ = x + ∆x, r′ =

r + ∆r, t′ = t+ ∆t) that satisfies t′ = f(x′, r′), is no more than d+1
qN

.
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The Lemma follows from Theorem 2 in [17], when the underlying field is FqN .

4.3 Model and Definitions

We consider the following scenario. Alice wants to a send messages m ∈ M, securely and

reliably to Bob, over a communication channel that is partially controlled by an adversary,

Eve.

Let Σ denote the channel alphabet, and C be a code, C ⊂ ΣN . We assume Σ is an additive

group with “+” and “−” denoting group addition and its inverse operation, respectively. For

a vector x ∈ ΣN , we use SUPP(x) ⊂ [N ] to denote the set of indexes i, where xi is non-zero.

Alice will use the encoding algorithm to generate a codeword c for a message m. The

adversary interacts with the codeword as described below, as a result of which Bob will

receive a word y 6= c. Bob uses the decoding algorithm to recover the message.

4.3.1 Adversarial Wiretap: Channel and Code

Let [N ] = {1, · · · , N}, and let Sr = {i1, · · · , iρrN} ⊆ [N ] and Sw = {j1, · · · , jρwN} ⊆ [N ] be

two subsets of [N ].

Definition 25. A (ρr, ρw)-Adversarial Wiretap channel (or a (ρr, ρw)-AWTP channel), is

an adversarially corrupted communication channel between Alice and Bob, such that it is

(partially) controlled by an adversary Eve with two types of abilities: Read and Write. For

a codeword of length N , Eve can do the following.

• Read (Eavesdrop): Eve selects a subset Sr ⊆ [N ] of size at most ρrN and reads the

components of the sent codeword c with index in Sr. Eve’s view of the communication

(codeword) is given by, ViewA(c) = {ci1 , · · · , ciρrN}.

• Write (Jam, Modify): Eve chooses a subset Sw ⊆ [N ] of size at most ρwN to “write

to”, and adds an error vector e with SUPP(e) ⊆ Sw, to c. Here addition is over Σ and
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component-wise. The corrupted components of c are {yj1 , · · · , yjρwN} and yj` = cj` + ej`.

The error e can be generated according to the Eve’s best strategy for making Bob’s decoder

to output in error.

We assume the adversary is adaptive and can select components of the sent codeword for

reading and writing one by one, at each step using its information about the codeword at

that time.

Let S = Sr ∪Sw denote the set of codeword components that the adversary either reads,

or writes to. Let |S| = ρN . We have ρ ≤ ρr + ρw.

An AWTP channel is called restricted if, Sr = Sw = ρN , where ρ = ρr = ρw is

a constant. A restricted ρ-AWTP channel is a special type of AWTP channel where the

adversary is limited to select Sr = Sw.

Definition 26. An (M, N,Σ, ε, δ) Adversarial Wiretap Code (or (ε, δ)-AWTP code for

short) for a (ρr, ρw)-AWTP channel, consists of a pair of algorithms: a randomized en-

coding algorithm AWTPenc :M×R→ C from the message space M to a code C ⊂ ΣN , and

a deterministic decoding algorithm AWTPdec : ΣN →M from the set of N-tuples over Σ to

the message space. The code guarantees the following two properties:

• Secrecy: For a pair of messages m1,m2 ∈M, the statistical distance between the adver-

sary’s views, for any choice of the randomness rA by the adversary, is bounded by ε. That

is,

Advds(AWTPenc,ViewA)

4
= max

m0,m1

SD(ViewA(AWTPenc(m1), rA),ViewA(AWTPenc(m2), rA)) ≤ ε.

• Reliability: For any message m that is encoded to c by the encoder and corrupted to

y = c + e by the (ρr, ρw)-AWTP channel, the probability that the receiver outputs the

correct message m is at least 1− δ. That is,

Pr(MS 6= MR) ≤ δ,
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where the probability is over the randomness of the communicants and the adversary.

Without loss of generality, we assume δ < 1/2.

In above definition, decoder always outputs a message, and with a probability at least

1 − δ the output message is the correct one. A decoder provides strong reliability if it only

output correct messages, or ⊥.

The AWTP code is perfectly secure if ε = 0.

For 1 ≥ ε > 0, an ε-secure AWTP code family Cε, is a family {CN}N∈N of codes indexed

by N ∈ N, where CN is an (M, N,Σ, ε, δ)-AWTP code for a (ρr, ρw)-AWTP channel. When

ε = 0, the family is called a perfectly secure AWTP code family.

The rate of a code R(C), achievable rate of a code family Cε, and ε-secrecy capacity of a

(ρr, ρw)-AWTP channel, have been defined in Section 4.1.

4.4 Bound on the Rate of (ε, δ)-AWTP Codes

We derive an upper bound on the rate of AWTP codes, and use it to find the secrecy capacity

of AWTP channels.

The bound is derived by considering an adversary that uses a special strategy given

below, and requiring that the AWTP code provide security against the adversary. Since the

strategy can be used against any AWTP code over the (ρr, ρw)-AWTP channel, it follows

that the bound holds for all AWTP codes over the channel.

The adversary strategy is probabilistic strategy and is described below.

1. Eve chooses uniform distribution on the message space.

2. Eve selects two pairs of read and write subsets, {Sir, Siw}, i = 1, 2, satisfying S1
r ∩S2

w = ∅

and S2
r ∩ S1

w = ∅. The set sizes satisfy, |Sir| ≤ ρrN , |Siw| ≤ ρwN , and |Sir ∪ Siw| ≤

ρN , i = 1, 2, and 0 ≤ ρ ≤ 1. This can be done by selecting S1
r and S1

w such that

|S1
r ∪ S1

w| ≤ ρN , and selecting S2
w such that S1

r ∩ S2
w = ∅, and finally selecting S2

r such
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that S2
r ∩ S1

w = ∅ and |S2
r ∪ S2

w| ≤ ρN . The adversary then uses a uniform distribution

(over Siw) Pr(S1
r , S

1
w) = Pr(S2

r , S
2
w) = 1

2
, to selects one of the two pairs.

3. Eve uses the chosen read and write pair {Sir, Siw}, (i) to read the ρrN components of

the codeword corresponding to the subset Sir, (ii) chooses an error vector e ∈ ΣρwN

with SUPP(e) ∈ Siw, randomly with uniform distribution, and adds it component-wise

to the codeword.

Note that in the above adversary’s strategy, selection of {Sir, Siw}, i = 1, 2 and e are indepen-

dent of the codeword c.

Let Ci denote the random variable associated with the ith component of a codeword in

the (ε, δ)-AWTP code, and let CSir and CSiw denote the components of a codeword on the

sets Sir, S
i
w, i = 1, 2, respectively. Let A be the random variable corresponding to the index

of the reading and writing set pair that the adversary chooses. We have A = 1 for {S1
r , S

1
w},

and A = 2 for {S2
r , S

2
w}. We use A to denote a variable whose values are A = 2 if A = 1,

and A = 1 if A = 2. Let V be random variable (vector variable) defined as V = CSAr , and Y

denote the word that Bob receives.

In the following we prove the following theorem.

Theorem 11. The secrecy capacity of an ε-AWTP code family over (ρr, ρw)-AWTP channel

is upper bounded by,

Cε ≤ 1− ρr − ρw + 2ερr(1 + log|Σ|
1

ε
).

The proof has the following steps. We first prove two Lemmas 17 and Lemma 18, that

rely on the secrecy and reliability guarantees of the code. The Lemmas are used to derive an

upper-bound on the rate of an (ε, δ)-AWTP code (Lemma 19), followed by an upper-bound

on the achievable rate of a code family, and finally on the secrecy capacity of the channel.

Lemma 17. An (ε, δ)-AWTP code for a (ρr, ρw)-AWTP channel satisfies,

I(M ;V ) ≤ 2ερrN log
|Σ|
ε
.

81



Proof is in Section 4.7.1.

Lemma 18. An (ε, δ)-AWTP code for a (ρr, ρw)-AWTP channel, satisfies,

H(M |Y,A) ≤ H(δ) + δN log |Σ|.

Proof. From Fano’s inequality (Theorem 2.10.1, Page 38, [16]) on decoding error probability

δ, we have,

H(M |Y ) ≤ H(δ) + δN log |Σ|.

So we have,

H(M |Y,A) ≤ H(M |Y ) ≤ H(δ) + δN log |Σ|.

Lemma 19. The upper bound on the rate of an (ε, δ) AWTP code CN for a (ρr, ρw) AWTP

channel is,

R(CN) ≤ 1− ρr − ρw + 2H(δ) + 2ερr(1 + log|Σ|
1

ε
).

Proof is in Section 4.7.2.

The following is the proof of Theorem 11.

Proof. (Theorem 11) Proof is by contradiction. Suppose there is an ε-AWTP code family

Cε with achievable rate R(Cε) = 1− ρr− ρw + 2ερr(1 + log|Σ|
1
ε
) + ξ̂, for some small constant

0 < ξ̂ < 1
2
.

For any 0 < ξ̂′ with H(ξ̂′) ≤ ξ̂
4
, there is an N0 such that for any N > N0, we have δN < ξ̂′

and,

R(CN) ≥ R(Cε)− ξ̂′

= 1− ρr − ρw + 2ερr(1 + log|Σ|
1

ε
) + ξ̂ − ξ̂′

(1)

≥ 1− ρr − ρw + 2ερr(1 + log|Σ|
1

ε
) + 2H(δ) +

ξ̂

2
− ξ̂′

(2)
> 1− ρr − ρw + 2ερr(1 + log|Σ|

1

ε
) + 2H(δ),
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where (1) is from 2H(δ) ≤ 2H(ξ̂′) < ξ̂
2
, and (2) is from ξ̂′ < H(ξ̂′) < ξ̂

2
.

This contradicts the bound on R(CN) in Lemma 19, and so

R(Cε) ≤ 1− ρr − ρw + 2ερr(1 + log|Σ|
1

ε
).

For ε = 0, we have the upper bound on the achievable rate of a perfectly secure AWTP

code family.

Corollary 3. The upper bound on the achievable rate of a perfectly secure AWTP code family

for a (ρr, ρw)-AWTP channel is

C0 ≤ 1− ρr − ρw.

4.4.1 Restricted AWTP channels

The above proof is general in the sense that the sets Sr and Sw can have nonempty in-

tersection. Restricted AWTP channels limit the adversary to choose Sr = Sw and |Sr| =

|Sw| = ρN . Using the above approach with the added restriction that the adversary chooses

Sir = Siw, i = 1, 2, we can derive the following bounds on C0 and Cε. Note that the proof

requires ρ ≤ 1/2 as the two subset pairs must satisfy S1
r ∩ S2

w.

Corollary 4. The perfect secrecy capacity of a restricted ρ-AWTP channel is bounded by,

C0 ≤ 1− 2ρ.

The ε-secrecy capacity of a restricted ρ-AWTP channel is bounded by,

Cε ≤ 1− 2ρ+ 2ερ(1 + log|Σ|
1

ε
).

We note that a more direct proof of Theorem 11 can be obtained by using an adversary

with a deterministic strategy in which Sr ∩ Sw = ∅, and following the same proof strategy

as used for Theorem 11. However such proof cannot be used for restricted AWTP channels
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because this adversarial strategy is not applicable to restricted channels. The above proof

with randomized adversarial strategy removes this restriction and allows us to apply the

same proof method for restricted AWTP channels.

4.5 AWTP Code Construction

The intuition behind the construction was outlined in Section 4.1. The construction uses,

(i) an AMD code, (ii) an FRS code, and (iii) a subspace evasive set. We show how to choose

the parameters of these building blocks such that for any arbitrarily small ξ > 0, we have

a code CN with R(CN) = 1 − ρr − ρw − ξ. Let ξ1 = ξ/13. Parameters of the code building

blocks are given in terms of ξ1.

1. We first choose the parameters of the FRS code. We have two considerations: the

code must correct ρwN errors, and the message of the FRS code must be an element

of the subspace evasive set construction in Section 3.2.2. We set, (i) folding parameter

u = ξ−2
1 , (ii) decoding parameter v = ξ−1

1 , (iii) the length N ≥ (1/ξ1)D/ξ1 log log 1/ξ1 , and

(iv) the field size satisfying q > uN . Here D is a constant given in Claim 4.3 in [29].

We will use linear algebraic decoding of [38] with decoding parameter v. This results

in the decoder output list to be expressible as a subset of Fq generated as in Lemma 4.

2. For simplicity assume uR(CN) is an integer. (The argument can be straightforwardly be

extended to the case that this does not hold.) The AMD code will be the code in Section

4.2.1, and will have message space X = FuR(CN )N
q , codeword space G = FuR(CN )N+2N

q ,

and δ ≤ uR(CN )+1
qN

.

3. We will use the subspace evasive set construction in Theorem 3.2 [29] and outlined in

Section 3.2.2. The construction is a (v, vD·v·log log v)- subspace evasive set S, that is a

subset of size qn1 of Fnq . The parameters n and n1 are chosen as shown below, following

the approach in Section 3.2.2.
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Let w = v2 and b = duR(CN )N+2N
w−v e. We choose n1 = (w − v)b and n = wb. Here n1 is

very close to (uR(CN) + 2)N , the codeword length of the AMD code. Using v = ξ−1
1

we have,

n1 =
w − v
w

n =
v2 − v
v2

n = (1− 1

v
)n = (1− ξ1)n.

Let γ be a primitive element of Fq, and AWTPenc and AWTPdec, denote the encoding

and decoding algorithms of the code, respectively. The encoder and decoder algorithms for

CN are given in the follow.

AWTP Code

Encoding: Alice does the following:

1. Consider a message m of length uR(CN)N , as a vector x ∈ FuR(CN )

qN
. Choose r ∈ FqN

randomly with uniform distribution, and use it to encode x using the AMD code

construction in Section 4.2.1, AMDenc(x) = (x, r, t). The AMD codeword has

length uR(CN)N + 2N over Fq.

2. Extend the AMD codeword to length n1 by appending zeros (in Fq). Encode the

resulting vector to an element s ∈ S, using the bijection mapping of the subspace

evasive set,

s = SE(x, r, t||0, · · · , 0).

Note that elements of S are from Fnq and so, s has length n.

3. Append a randomly and uniformly selected vector a = (a1 · · · auρrN) ∈ FuρrNq to s

to form the vector that will be the message of the FRS code. Use s and a as the

coefficients of the FRS codeword polynomial f(x), over Fq. That is (f0, · · · , fk−1) =

(s||a). We have k = deg(f) + 1 = n+ uρrN .
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4. Use FRSenc to construct the FRS codeword c = FRSenc(f(X)) = (c1, · · · , cN), with

ci = (f(γi(u−1)), · · · , f(γiu−1)) ∈ Fuq , for i = 1, · · · , N .

Decoding: Bob does the following:

1. Let y = c+ e, and wH(e) ≤ ρwN . Let, y = (y1, · · · , yN) and yi = (yi,1, · · · , yi,u) for

i = 1, · · · , N .

Use the FRS (linear algebraic) decoding algorithm FRSdec(y) to output a matrix

M ∈ Fk×vq , and a vector z ∈ Fkq , such that the decoder output list is of the form,

LFRS = Mb+z. M has k(= n+uρrN) rows, and for each b ∈ Fvq , gives a codeword

in the output list.

2. Let H denote the vector space spanned by the first n equations. That is

H = Mn×vb + zn,b ∈ Fvq ,

where Mn×v is the first n rows of the submatrix of M and zn is the first n elements

of z.

The AWTP decoder calculates the intersection S ∩ H and outputs a list L of size

at most vD·v·log log v. Each codeword in the list is parsed and a potential AMD

codeword (xi, ri, ti) is formed. For each such codeword (xi, ri, ti), the AMDdec

checks if, ti = f(xi, ri). If there is a unique valid AMD codeword in the list L of

the FRS decoder, the AWTP decoder outputs the first uRN components of x as

the correct message m. Otherwise, Bob outputs ⊥.

We prove secrecy and reliability of the above code, and derive the rate of the AWTP

code family.
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Lemma 20 (Secrecy). The AWTP code CN above is perfectly secure for (ρr, ρw)-AWTP

channels.

Proof. It is sufficient to show that an AWTP codeword sent over a (ρr, ρw)-AWTP channel

does not leak any information about the element of the subspace evasive set that the message

is mapped to. The codeword polynomial is of degree n + uρrN − 1 and so has n + uρrN

unknown coefficients, uρrN of which are randomly chosen and the rest represent the element

of subspace evasive set corresponding to m. The adversary sees ρrN components of the FRS

code, each an element of Fuq , resulting in uρrN linear equations over Fq. The coefficient

matrix of the equation set is a Vandermonde matrix and so the remaining n coefficients

remain completely unknown (one solution for the equation set, for each element of Fnq ) to

the adversary.



1 γ(i1−1)u · · · γ(i1−1)u(k−1)

...
... · · · ...

1 γi1u−1 · · · γ(i1u−1)(k−1)

...
... · · · ...

1 γ(iρrN−1)u · · · γ(iρrN−1)u(k−1)

...
... · · · ...

1 γiρrNu−1 · · · γ(iρrNu−1)(k−1)



×

s

a

 =



ci1,1
...

ci1,u
...

ciρrN ,1
...

ciρrN,u



. (4.4)

Hence for an adversary observation ViewA(c) = {cj1 , · · · , cjρrN},

H(S|ViewA) = H(S),

where S is the element of the subspace evasive set which the message M is mapped to.

The above FRS coding can be seen as a variant of coset coding in [66]. That is, consider

the generator matrix of the FRS code as a k×N matrix B over Fq where k = n+uρrN . The

rows of B is partitioned into two sets: a set of uρrN rows that defines a code B′, and a set of
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n rows that define cosets of B′ within the row span of B (each element of Fnq corresponding

to the element of SES is a coset leader). The final codeword is the sum of a coset leader and

a random codeword of the code B′.

Lemma 21 (Reliability). i) For N ≥ v2, The AWTP code CN described above provides

reliability for a (ρr, ρw)-AWTP channel when,

ρw <
v

v + 1
− v

v + 1

v
v−1

(uR(CN) + 3) + uρr

u− v + 1
. (4.5)

ii) The decoding error probability of AWTPdec is bounded by δ ≤ vD
′·v·log log v

qN
, where D′ =

D + 3.

The decoder always outputs the correct message, or outputs ⊥.

Proof. i) FRS decoding algorithm FRSdec [38] requires,

N − ρwN > N(
1

v + 1
+

v

v + 1

uRFRS

u− v + 1
). (4.6)

The dimension of the FRS code is bounded by,

k = uRFRSN = uρrN + n

= uρrN + wduR(CN)N + 2N

w − v
e

(1)

≤ uρrN +
w

w − v
(uR(CN)N + 3N),

(4.7)

where (1) is from N ≥ v2.

Thus, we have, uRFRS ≤ uρr+
w
w−v (uR(CN)+3). Replacing RFRS in the decoding condition

of the FRS code (4.6) gives,

ρw <
v

v + 1
− v

v + 1

v
v−1

(uR(CN) + 3) + uρr

u− v + 1
.

ii) There is a decoding error if there are at least two codewords in the FRS decoder output

list, that are AMD encodings of two messages m′ 6= m. Note that the correct message is

always in the decoder list. This is because the FRS decoder output contains all codewords
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that are at distance at most ρwN from the received word y. The message of the sent codeword

is an element of subspace evasive set also. The first n components of the decoded vectors

(ignoring the random components appended to the subspace evasive set element) defines

an affine space of dimension n. By finding the intersection of this space and the subspace

evasive set, we ensure that the correct message is always output by the decoding algorithm.

Next, we show that the probability that the message associated with any other codeword

in the decoder list is a valid AMD codeword, is small. That is,

Pr([SE(x′, r′, t′||0, · · · , 0) ∈ S ∩H] ∧ [t′ = f(x′, r′)])

≤ uR(CN) + 1

qN
.

From Lemma 20, the adversary has no information about the encoded elements of the sub-

space evasive set s, that encodes the AMD codeword SE(x, r, t||0, · · · , 0) = s. This means

that the adversary’s error, (∆xi = x′−x,∆ri = r′−r,∆ti = t′−t), is independent of (x, r, t).

According to Lemma 16, the probability that a tampered AMD codeword (x′, r′, t′), passes

the verification is no more than uR(CN )+1
qN

.

To show that the probability of decoding error is bounded as δ ≤ vD
′·v·log log v

qN
, we note

that the list size is at most |S ∩ H| ≤ vD·v·log log v, and uR(CN) + 1 ≤ u + 1 ≤ v3. Using the

union bound and letting D′ = D + 3, the probability that some (x′, r′, t′) 6= (x, r, t) in the

decoded list passes the verification t′ = f(x′, r′), is no more than vD
′·v log log v

qN
.

So the probability that decoder outputs ⊥ is no more than vD
′·v log log v

qN
.

Rate of AWTP code family

The achievable rate of the code family C0 = {CN}N∈N is given by the following Lemma.

Lemma 22 (Achievable Rate of C0). The AWTP code family C0 = {CN}N∈N achieves the

rate R(C0) = 1− ρr − ρw for a (ρr, ρw)-AWTP channel.

Proof. We show that for any small 0 < ξ < 1
2
, by choosing ξ1 = ξ

13
, decoding parameters

v = 1/ξ1 and u = 1/ξ2
1 , and N0 > (1/ξ1)D

′/ξ1 log log 1/ξ1 where D′ = D+ 3, the rate of the code

will be R(CN) ≥ C0 − ξ.
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We substitute the values in the RHS of (4.5) with the above chosen values,

v

v + 1
− v

v + 1

v
v−1

(uR(CN) + 3) + uρr

u− v + 1

=
1

ξ1 + 1
− 1

ξ1 + 1

1
1−ξ1 (R(CN) + 3ξ2

1) + ρr

1− ξ1 + ξ2
1

=
1

ξ1 + 1
−

1
1−ξ1 (R(CN) + 3ξ2

1) + ρr

1 + ξ3
1

(4.8)

≥ 1− ξ1 − (
1

1− ξ1

(R(CN) + 3ξ2
1) + ρr) (4.9)

≥ 1− ξ1 − ((1 + 2ξ1)(R(CN) + 3ξ1) + ρr) (4.10)

= 1− ξ1 − (R(CN) + 11ξ1 + ρr) (4.11)

= 1−R(CN)− ρr − 12ξ1.

Here, (4.9) is by multiplying the numerator and denominator of the first term on the RHS

of (4.8) by 1−ξ1 and ignoring ξ2
1 , and also ignoring ξ3

1 in the denominator of the second term

on the RHS of (4.8); we have (4.10) by noting that for ξ1 ≤ 1
2

we have 1
1−ξ1 ≤ 1 + 2ξ1, and

finally (4.11) is by replacing 2ξR(CN) by 2ξ (because R(CN) ≤ 1), and 6ξ2 with 6ξ (because

ξ � 1).

Hence the decoding condition (4.5) of the AWTP code is satisfied for,

ρw = 1−R(CN)− ρr − 12ξ1, (4.12)

and so, R(CN) = 1− ρr − ρw − 12ξ1.

Now since ξ = 13ξ1, for any N > N0, the rate of the AWTP code CN is

1

N
log|Σ| |M| = R(CN) = 1− ρr − ρw − 12ξ1

> 1− ρr − ρw − ξ = C0 − ξ.

Since the probability of decoding error is bounded by,

δ ≤ (1/ξ1)D
′/ξ1 log log 1/ξ1q−N ≤ Nq−N ≤ ξ,
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we conclude that the achievable rate of the AWTP code family C0, is R(C0) = 1− ρr − ρw.

The computational complexity of encoding is O((N log q)2). The computational complex-

ity of the FRS decoding algorithm is O((N log q)2), and that of subspace evasive set inter-

section algorithm is, poly((1/ξ)D/ξ log log 1/ξ). The AMD code verification costs O((N log q)2),

and so the total complexity of the AWTP decoding is poly(N).

Theorem 12. For any sufficiently small ξ > 0, there is a (0, δ)-AWTP code CN of length

N for a (ρr, ρw)-AWTP channel, such that the information rate is R(CN) = 1− ρr − ρw − ξ,

the alphabet size is |Σ| = O(q1/ξ2), and the decoding error is bounded by δ < q−O(N). The

computational complexity of decoding is poly(N). The AWTP code family C0 = {CN}N∈N

achieves secrecy capacity C0 = R(C0) = 1− ρr − ρw of (ρr, ρw)-AWTP channels.

4.6 AWTP Codes and SMT

AWTP codes are defined over an alphabet Σ and so all components of a codeword are

elements of Σ. In SMT protocols however, the set of transmissions on each wire may be

different.

Definition 27 (Symmetric SMT). An SMT protocol is called a symmetric SMT protocol if

the protocol remains invariant under any permutation of the wires.

Let W i
j, j = 1 · · ·N, i = 1 · · · r, denote the set of possible transmissions on wire j in an

r-round SMT protocol. For symmetric protocol, W i
j = W i is independent of j. All known

constructions of threshold SMT protocols are symmetric.

Theorem 13. There is a one-to-one correspondence between an (ε, δ)-AWTP code CN that

provides security for a restricted ρ-AWTP channel, and a 1-round (εSMT, δSMT) symmetric

SMT protocol for N wires with security against a (t, N) threshold adversary, where t = ρN .
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An (ε, δ)-AWTP code can be used to construct a 1-round (εSMT, δSMT) symmetric SMT,

where εSMT = ε and δSMT = δ. The converse is also true.

Proof. Consider an (ε, δ)-AWTP code CN for a restricted AWTP channel. By associating

each component of the code with a distinct wire, one can construct a 1-round (εSMT, δSMT)

symmetric SMT protocol for N wires. The protocol security is against a threshold (t, N)

adversary with t = ρN . The SMT encoding and decoding are obtained from the corre-

sponding functions in the (ε, δ)-AWTP code; that is, SMTenc(m, rS) = AWTPenc(m, rS)

and SMTdec(y) = AWTPdec(y). To relate the security and reliability of the SMT protocol

to those of the AWTP-code, we note the following:

1. Definition of privacy in both cases is in terms of the statistical distance of the adver-

sary’s view for any two messages chosen by the adversary (definitions 14 and 26).

2. Decoding error is both cases requires the decoder to output the correct message with

probability at least 1− δ.

3. The corruption of a codeword in a (ρr, ρw)-AWTP channel is by additive error, while

in SMT the adversary can arbitrarily modify the |S| = t corrupted wires. However in

restricted ρ-AWTP channels S = Sr = Sw, |S| = ρN and so modifying the components

(ci1 , · · · cit) to (c′i1 , · · · c
′
it) is t equivalent to calculating an error e with SUPP(e) = S

and (ei1 , · · · eit) = ((c′i1−ci1), · · · (c
′
it−cit)), and adding it to the codeword. This means

that for these channels additive error can be used to generate all possible adversarial

tampering.

The theorem follows by constructing a restricted (ε, δ)-AWTP code with S = Sr = Sw,

from a 1-round (εSMT, δSMT) symmetric SMT, using the same correspondence between the

code components and the wires. We will have ε = εSMT and δ = δSMT.
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Corollary 5 below follows from the one-to-one correspondence established in Theorem

13.

Corollary 5. Let R(CN) be the rate of an (ε, δ)-AWTP code CN for a restricted AWTP

channel. The transmission rate of the associated 1-round (ε, δ) symmetric SMT is given by,

τR(SMT) = N log |V|
log |M| = 1

R(CN )
.

The upper bound on the secrecy rate (Lemma 4) of (0, δ)-AWTP codes for restricted

AWTP channels, gives a lower bound on the transmission rate of 1-round (0, δ) symmetric

SMT protocols.

Theorem 14. For a 1-round (ε, δ) symmetric SMT protocol, transmission rate is lower

bounded by,

τR(SMT) ≥ N

N − 2t+ 2tε(1 + log|V|(
1
ε
))
.

For ε = 0, the bound reduces to the known bound, τR(SMT) ≥ N
N−2t

[67].

Proof. Using Theorem 4, for a 1-round (ε, δ) symmetric SMT over N wires with t = ρN ,

there is a corresponding (ε, δ)-AWTP code for a restricted AWTP channel with S = Sr = Sw

whose information rate is upper bounded by,

R(CN) ≤ 1− 2ρ+ 2ερ(1 + log|Σ|
1

ε
).

Since the transmission rate of an (ε, δ) symmetric SMT protocol is the inverse of the infor-

mation rate of the corresponding (ε, δ)-AWTP code, we have,

τR(SMT) =
1

R(CN)

≥ 1

1− 2ρ+ 2ερ(1 + log|V|
1
ε
)

=
N

N − 2t+ 2tε(1 + log|V|
1
ε
)
.
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Corollary 6. For N = 2t+ 1, we will have,

τR(SMT) =
1

R(CN)
≥ 2t+ 1

1 + 2tε(1 + log|V|
1
ε
)
.

This is the first and the only known lower bound on the transmission rate of (ε, δ)

symmetric SMT protocols. Using a similar approach one can obtain an alternative proof for

the known lower bound on the transmission rate of 1-round (0, δ) symmetric SMT protocols

(Theorem 10, [67])

4.7 Proof of Chapter 4

4.7.1 Proof of Lemma 17

Proof. From the definition of ε-secrecy we have,

Advds(AWTPenc,ViewA)

=
1

2

∑
c
S1r

|Pr(cS1
r
|m)− Pr(cS1

r
|m′)|

+
1

2

∑
c
S2r

|Pr(cS2
r
|m)− Pr(cS2

r
|m′)|

≤ ε.

(4.13)

This implies that for any pair of messages, m,m′ ∈M, we have,

1

2

∑
c
S1r

|Pr(cS1
r
|m)− Pr(cS1

r
|m′)| ≤ ε,
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and so it follows that for any m ∈M,

SD(CS1
r
|M = m,CS1

r
)

=
1

2

∑
c
S1r

|Pr(cS1
r
|m)− Pr(cS1

r
)|

=
1

2

∑
c
S1r

|Pr(cS1
r
|m)−

∑
m′∈M

Pr(cS1
r
|m′)Pr(m′)|

=
1

2

∑
c
S1r

|Pr(cS1
r
|m)−

∑
m′∈M

Pr(cS1
r
|m′)Pr(m′)|

≤
∑
m′∈M

Pr(m′)
1

2

∑
c
S1r

|Pr(cS1
r
|m)−

∑
m′∈M

Pr(cS1
r
|m′)|

≤
∑
m′∈M

Pr(m′)ε

= ε.

Using Theorem 17.3.3 (Page 664, [16]), for sufficiently small ε we have,

H(CS1
r
)− H(CS1

r
|M = m)

≤ 2SD(CS1
r
, CS1

r
|M = m) log

|Σ|ρrN

SD(CS1
r
, CS1

r
|M = m)

≤ 2ερrN log
|Σ|
ε
.

This implies,

I(M ;CS1
r
) = I(CS1

r
;M)

= H(CS1
r
)−

∑
m∈M

Pr(m)H(CS1
r
|M = m)

=
∑
m∈M

Pr(m)(H(CS1
r
)− H(CS1

r
|M = m))

≤
∑
m∈M

Pr(m)2ερrN log
|Σ|
ε

≤ 2ερrN log
|Σ|
ε
.

Similar we have,

I(M ;CS2
r
) ≤ 2ερrN log

|Σ|
ε
.
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It follows that,

I(M ;V ) = H(M)− H(M |V )

= H(M)− Pr(A = 1)H(M |CSAr )− Pr(A = 2)H(M |CSAr )

=
1

2
(H(M)− H(M |CS2

r
)) +

1

2
(H(M)− H(M |CS1

r
))

≤ 2ερrN log
|Σ|
ε
.

4.7.2 Proof of Lemma 19

Proof. We have,

H(M) = I(M ;Y,A) + H(M |Y,A)− I(M ;V ) + I(M ;V )

≤ I(M ;Y, V,A)− I(M ;V ) + H(M |Y,A) + I(M ;V )

(1)
= I(M ;Y, V,A)− I(M ;V,A) + H(M |Y,A) + I(M ;V )

(2)
= I(M ;Y |V,A) + H(M |Y,A) + I(M ;V )

= H(Y |V,A)− H(Y |M,V,A) + H(M |Y,A) + I(M ;V )

(3)

≤ H(Y |V,A)− H(Y |M,V,C,A) + H(M |Y,A) + I(M ;V )

(4)

≤ H(Y |V,A)− H(E|M,V,C,A) + H(M |Y,A) + I(M ;V )

(5)
= H(Y |V,A)− H(E|A) + H(M |Y,A) + I(M ;V ).

(4.14)

In above, (1) follows from the Markov chain M → C → {CS1
r
, CS2

r
} → CSAr = V →

{SAr , SAw} → A → A, which gives Pr(A = i,M = m|V = v) = Pr(M = m|V = v) Pr(A =

i|V = v); (2) is from mutual information chain relation; (3) is from H(Y |M,V,C,A) ≤

H(Y |M,V,A); (4) is by noting that E = Y − C (here “−” is the operation over Σ); and (5)

is from Pr(E = e|M = m,V = v, C = c, A = i) = Pr(E = e|A = i).

So we have,

H(M) ≤ H(Y |V,A)− H(E|A) + H(M |Y,A) + I(M ;V ).
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We upper bound H(M) by bounding the four terms on the right hand side (RHS) of the

above inequality.

First, we have the bound, H(Y |V,A) ≤ (1− ρr)N log |Σ|. Let Y[N ]\S1
r

be the components

of Y on the set [N ] \ S1
r . Since S1

r ∩ S2
w = ∅, if the adversary selects A = 2, the components

of Y on the set S1
r will not have error and will be equal to the components of C on S1

r . That

is,

H(YS1
r
|CS1

r
, A = 2) = 0. (4.15)

Similarly, since S2
r ∩ S1

w = ∅, we have,

H(YS2
r
|CS2

r
, A = 1) = 0. (4.16)

So we have,

H(Y |V,A) = Pr(A = 1)H(Y |CS2
r
, A = 1) + Pr(A = 2)H(Y |CS1

r
, A = 2)

=
1

2
H(YS2

r
Y[N ]\S2

r
|CS2

r
, A = 1) +

1

2
H(YS1

r
Y[N ]\S1

r
|CS1

r
, A = 2)

=
1

2
(H(YS2

r
|CS2

r
, A = 1) + H(Y[N ]\S2

r
|CS2

r
, YS2

r
, A = 1))

+
1

2
(H(YS1

r
|CS1

r
, A = 2) + H(Y[N ]\S1

r
|CS1

r
, YS1

r
, A = 2))

≤ 1

2
(H(YS2

r
|CS2

r
, A = 1) + H(Y[N ]\S2

r
)) +

1

2
(H(YS1

r
|CS1

r
, A = 2) + H(Y[N ]\S1

r
))

(1)

≤ 1

2
log |Y[N ]\S2

r
|+ 1

2
log |Y[N ]\S1

r
|

≤ (1− ρr)N log |Σ|,

where (1) is from (4.15) and (4.16).

To bound the second item notice that for any choice of A = i, i = 1, 2 by the adversary,

E is uniformly distributed and so,

H(E|A)

= Pr(A = 1)H(E|A = 1) + Pr(A = 2)H(E|A = 2)

= ρwN log |Σ|.

(4.17)
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Moreover, from Lemmas 17 and 18, we have the bounds H(M |Y,A) ≤ H(δ) + δN log |Σ|,

and H(M)− H(M |V ) ≤ 2ερrN log |Σ|
ε

, respectively. So the upper bound on H(M) is,

H(M) ≤(1− ρr − ρw)N log |Σ|+ H(δ) + δN log |Σ|+ 2ερrN log
|Σ|
ε
. (4.18)

For 0 < δ < 1
2
, we have δ < H(δ) and so,

H(δ) + δN log |Σ| ≤ 2H(δ)N log |Σ|.

The upper bound on the rate is obtained by considering uniform distribution on M and

using H(M) = log |M|.

That is,

R(CN) =
log |M|
N log |Σ|

≤ 1− ρr − ρw + 2ερr(1 + log|Σ|
1

ε
) + 2H(δ).
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Chapter 5

Adversarial Wiretap Channel with Public Discussion

5.1 Introduction

In Wyner’s [89] model of secure communication and its generalization to broadcast scenario

[18], Alice is connected to Bob and Eve through two noisy channels, referred to as the main

channel and the eavesdropper channel, respectively. The goal is to send a message from Alice

to Bob with perfect secrecy and reliability. Wyner’s pioneering work showed that commu-

nication with (asymptotic) perfect secrecy and reliability is possible if the eavesdropper’s

channel is noisier than the main channel. Importantly, security is information theoretic and

does not require a pre-shared secret key. Adversarial model of wiretap channel where the

adversary is active, dates back to Ozarow and Wyner [66]. In their model instead of the

noise corrupting the adversary’s view of the transmissed codewprd, the adversary can select

a fraction of the codeword that it would like to “see”. More recently, wiretap channels where

the active adevrsary also corrupts the communication have been considered [2, 12, 64, 85].

In these models the adversary can select its view (also, observation or eavedropping) of the

communication and is also able to partially jam the channel by injecting noise in the main

channel. In this section we consider a model of adversarial wiretap channel (AWTP channel)

that is proposed in [85, 86]. In this model, the adversary adaptively chooses a fraction ρr of

the coordinates of the sent codeword for eavesdropping, and a fraction ρw of the codeword

to corrupt by adding an adversarial noise to the channel. The adversary’s eavesdropings

and corruptions are adaptive: for each action the adversary uses all its observations and

corruptions up to that point, to make its next choice. The goal of the adversary is to break

the security and/or reliability of communication.
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Motivation

It was proved [85] that perfect secrecy and reliability for AWTP in 1-round communication

is possible if and only if, ρr+ρw < 1. We consider a scenario where in addition to the AWTP

channel, a public discussion channel denoted by PD, is available to the communicants. We

call this model AWTP with public discussion (or AWTPPD for short). Our goal is to see if

the use of this extra resource can make secure communication possible when ρr + ρw > 1

(for example ρr = ρw = 0.9).

Public discussion channels had been considered in wiretap and SMT models, both. In

wiretap setting it was shown [61, 3] that a public discussion channel substantially expands

the range of scenarios in which secure communication is possible. In particular secure com-

munication becomes possible even if the eavesdroper channel is less noisy than the main

channel. A similar result holds for SMT. Access to a public discussion channel in SMT was

considered by Garay et.al. [34] who showed that secure message tranmission will be possible

when N ≥ t+ 1 while without a PD, N ≥ 2t+ 1.

We allow communicants to interact over the PD but assume communication over the

AWTP channel is one-way and from Alice to Bob. This restriction is to simplify our anal-

ysis and as we will show, will still allow us to construct protocols that are optimal. The

assumption is also natural in settings where the sender node is more powerful such as a base

station.

Our Results

1). Model and Definitions. We define a multi-round message transmission protocol over

AWTPPD. The protocol may leak information to the adversary and the decoder may output

an incorrect message. We define secrecy as the statistical distance between the adversary’s

view of any two adversarially chosen messages, and reliability as the probability that the

decoded message being different from the sent one, for any message.

An AWTPPD protocol in general, has multiple message rounds where in each message
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round a protocol message is sent by Alice over AWTP channel or the PD channel, or by Bob

over the PD channel, each message possibly of different length. In each invocation of the

AWTP channel the adversary can choose a different read and write set. An (ε, δ)-AWTPPD

protocol guarantees that the leaked information about the message is bounded by ε, and the

probability of decoding an incorrect message is bounded by δ. The information rate R of a

AWTPPD protocol measures transmission efficiency of the protocol in terms of transmission

over the AWTP channel and is the number of message (information) bits transmitted by

the protocol, divided by the total number of transmitted bits over this channel. The secrecy

capacity Cε of an AWTPPD channel is the maximum information rate that can be achieved

by a AWTPPD protocol family as the total number of bits communicated over the AWTP

channel goes to infinity when the security loss is bounded by ε.

2). Bounds. We derive a tight upper bound on rate: we first derive a bound on H(M),

and then use the bound to prove that the highest secrecy rate of an (ε, δ)-AWTPPD protocol is

bounded by Cε ≤ 1−ρ+2ε·(1+log|Σ|
1
ε
)+2εn, where n is the total (bit) length of transmission

over the PD channel, Σ is the alphabet of the AWTP channel, and ρ = 1
N
|Sr ∪ Sw| is the

fraction of components of a codeword that are read or written to, by the adversary. For

perfect secrecy capacity we have C0 ≤ 1− ρ. When Sr ∩ Sw 6= ∅, we have ρ < ρr + ρw, and

perfectly secure communication is possible even if ρr + ρw > 1 (e.g. ρr = ρw = 0.9), as long

as ρ < 1.

A second efficiency measure is the message round complexity RC of the protocol. We

derive a tight lower bound on RC for any AWTPPD protocol (one-way communication over

AWTP) with positive rate, when ρr +ρw > 1. We show that a secure AWTPPD protocol with

ρr + ρw > 1 and ρ < 1, cannot have two message rounds and so RC≥ 3.

3). Construction of AWTPPD protocol. We construct a family of three message round

(0, δ)-AWTPPD protocols for which the rate can be made arbitrarily close to the upper bound.

That is, for any small ξ > 0, there is N0, such that for all N > N0, the rate of the AWTPPD
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protocol family satisfies, R(ΠN) ≥ 1 − ρ − ξ and so the family achieves the capacity. The

number of message rounds of the protocol is minimal and meets the lower bound on RC.

The construction is as follows: in the first message round Alice sends to Bob over the AWTP

channel a random sequence over Σ. In the second message round, Bob randomly chooses

elements of a universal hash family to calculate the hash values of each of the received

elements, and sends the hash values together with the randomness used when choosing the

hash function, to Alice over the PD channel. In the third message round, Alice, encrypts

the message using a key that is extracted from the random values that are correctly received

by Bob and sends it over the PD channel to Bob, together with sufficient information that

allows Bob to calculate the same key and recover the message.

4). Relation with SMT-PD. In Secure Message Transmission with public discussion pro-

tocol (SMT-PD) [34], Alice and Bob are connected by N node disjoint communication paths

in a network, a subset of which can be controlled by a computationally unlimited adversary,

and also an authenticated public discussion channel that can be read by everyone. The

adversary chooses a subset of wires and corrupts them arbitrarily. In Section 4.6 we define

(ε, δ)-SMT[ows]-PD , a subset of SMT-PD protocols in which the wires are used by Alice only,

and show our results for AWTPPD including bounds on the rate and round complexity, and

the construction of an optimal AWTPPD protocol give a similar results for (ε, δ)-SMT[ows]-PD.

Related Work

Maurer’s [61] introduced PD channels first in the context of key agreement over wiretap

channels; this was also independently considered in [3]. Since the PD channel is considered

free, the established key can be used to send the message securely over this channel and

so the communication cost of the message transmission will stay the same as that of the

key establishment. Our construction also has two steps: a key establishment, followed by

encrypting the message and sending it over the public discussion channel. This is also the

approach in [34] (Protocol I) and [75].
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5.2 Preliminary

5.2.1 Universal Hash Family

An (N, n,m)-hash family is a set F of N functions, f : X → T , f ∈ F , where |X | = n and

|T | = m. Without loss of generality, we assume n ≥ m.

Definition 28. [82] Suppose that the (N, n,m)-hash family F has range T which is an

additive Abelian group. F is called ε-∆ universal, if for any two elements x1, x2 ∈ X , x1 6=

x2,, and for any element t ∈ T , there are at most εN functions f ∈ F such that f(x1) −

f(x2) = t, were the operation is from the group.

We will use a classic construction of u
q
-universal hash family [82]. Let q be a prime and

u ≤ q − 1. Let the message be x = {x1, · · · , xu} ∈ Fq. For α ∈ Fq, define the universal hash

function hashα by the rule,

t = hashα(x) = x1α + x2α
2 + · · ·+ xuα

u mod q. (5.1)

Then {hashα(·) : α ∈ Fq} is a u
q
-∆ universal (q, qu, q)-hash family.

5.2.2 Randomness Extractor

A randomness extractor is a function, which is applied to a weakly random entropy source

(i.e., a non-uniform random variable), to obtain a uniformly distributed source.

Definition 29. [27] A (seeded) (n,m, r, δ)-strong extractor is a function Ext : qn× qd → qm

such that for any source X with H∞(X) ≥ r, we have,

SD((Ext(X, Seed), Seed), (U, Seed)) ≤ δ.

with the seed uniformly distributed over Fdq.

A function Ext : qn → qm is a (seedless) (n,m, r, δ)-extractor if for any source X with

H∞(X) ≥ r, the distribution Ext(X) satisfies SD(Ext(X), U) ≤ δ.
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A seedless extractor can be constructed from Reed-Solomon (RS) codes [15]. The con-

struction works only for a restricted class of sources, known as symbol-fixing sources.

Definition 30. An (n,m) symbol-fixing source is a tuple of independent random variables

X = (X1, · · · , Xn), defined over a set Ω, such that m of the variables take values uniformly

and independently from Ω, and the rest have fixed values.

We show a construction of a seedless (n,m,m log q, 0)-extractor from RS-codes. Let

q ≥ n+m. Consider an (n,m) symbol-fixing source X = (X1, · · · , Xn) ∈ Fnq with H∞(X) ≥

m log q. The extraction has two steps:

1. Construct a polynomial f(x) ∈ Fq[X] of degree ≤ n − 1, such that f(i) = xi for

i = 0, · · · , n− 1.

2. Evaluate the polynomial at i = {n, · · · , n+m− 1}. That is,

Ext(x) = (f(n), f(n+ 1), · · · , f(n+m− 1)).

5.3 AWTPPD Protocol

5.3.1 Channel Models

We consider two types of channels: AWTP channel and PD channel. A channel can be

one-way or two-way.

Definition 31. A one-way channel from Alice to Bob (Bob to Alice) is used to send messages

from Alice to Bob (Bob to Alice). A two-way channel can be used in both directions, from

Alice to Bob, or from Bob to Alice.

Let [N ] = {1, · · · , N}, Sr = {i1, · · · , iρrN} ⊆ [N ] and Sw = {j1, · · · , jρwN} ⊆ [N ].

Support of a vector x = (x1 · · ·xN) ∈ ΣN , denoted by SUPP(x), is the set of positions where

xi 6= 0.
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Definition 32. A (ρr, ρw)-Adversarial Wiretap Channel ((ρr, ρw)-AWTP Channel) is an

adversarial channel that it is (partially) controlled by an adversary Eve, with two capabilities:

Reading and Writing. For a codeword of length N , Eve selects a subset Sr ⊆ [N ] of size

|Sr| = ρrN to read (eavesdrop), and selects a subset Sw ⊆ [N ] of size |Sw| = ρwN to write to

(corrupt). The writing is by adding to c an error vector e with SUPP(e) = Sw, resulting in

c+ e to be received. The adversary is adaptive and to select a component for reading and/or

writing, it uses its knowledge of the codeword at the time. The subset S = Sr ∪ Sw of size

|S| = ρN , is the set of components of the codeword that the adversary reads or writes to.

The AWTP channel is called a restricted -AWTP channel if Sr = Sw = S.

We assume the adversarial wiretap channel is one-way and can only be used by Alice.

Definition 33. (Public Discussion Channel (PD Channel)) is an authenticated channel

between Alice and Bob, that can be read by everyone including Eve.

We assume the PD channel is two-way and can be used by Alice and Bob, both.

Hence in our AWTPPD setting Alice and Bob have access to a one-way AWTP channel and

a two-way PD channel. We consider protocols with multiple message rounds and assume in

each message round a message is sent on one of the channels available to the communicants.

In particular, in each message round Alice can use either the AWTP or the PD channel.

Definition 34. The message round complexity RCm of a protocol is the total number invo-

cations of channels (AWTP and PD) by the two the communicants.

5.3.2 AWTPPD Protocol

Alice (sender) wants to send a message (information) m ∈ M, securely and reliably to Bob

(receiver), using a multi-round protocol over a AWTPPD channel, called an AWTPPD protocol.

The protocol consists of a sequence of message rounds. Each message round is in one of

the following form: (i) Alice sends a message to Bob over AWTP channel, (ii) Alice sends
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a message to Bob over PD channel, and (iii) Bob sends a message to Alice over the PD

channel.

Let `c and `d denote the total number of invocations of the AWTP channel, and the PD

channel, respectively, and assume ` = `c + `d. Let rA and rB denote the randomness used

by Alice and Bob, respectively.

The protocol messages (also called codewords) sent over the AWTP channel and the PD

channel are denoted by ci and di, respectively.

We use ci = {c1 · · · ci} to denote the concatenation of protocol messages, transmitted over

the AWTP channel after the ith invocation of the AWTP channel. Similarly di = {d1 · · · di} is

the concatenation of protocol messages sent over PD, after the ith invocation of this channel.

Let the protocol message alphabets of the AWTP and PD channels be Σ and F2, respec-

tively. In the ith invocation of the AWTP channel, Alice sends a codeword of length Ni. In

the ith invocation of the PD channel, Alice or Bob, sends a binary message of length ni. The

number of symbols sent over the AWTP channel is N =
∑`c

i=1Ni, and the number of bits

transmitted over the PD, is n =
∑`d

i=1 ni.

Let the view of Alice and Bob when sending the ith codeword be, viA and viB, respectively.

The view of a participant consists of all the protocol messages that are received before

sending the ith codeword. When sending a message m, in the ith invocation of the AWTP

channel, Alice constructs a codeword ci using her view, local randomness, and m,

ci = AWTPPD(m, rA, i, v
i
A,AWTP).

In each invocation of the PD channel, Alice (or Bob) generates the codeword di using

their view, local randomness and m,

di = AWTPPD(m, rX , i, v
i
X ,PD),

where X ∈ {A,B} if the protocol message constructed by Alice (Bob).
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Definition 35 ((ε, δ)-AWTPPD protocol). A secure (ε, δ)-AWTPPD protocol satisfies the fol-

lowing two properties:

1. Secrecy: For any two messages m1,m2 ∈ M, the statistical distance between Eve’s

views of the protocol, when the same random coins rA are used by Eve, is bounded by

ε,

max
m0,m1

SD(ViewA(AWTPPD(m1), rA),ViewA(AWTPPD(m2), rA)) ≤ ε.

2. Reliability: For any message MS chosen by Alice, the probability that Bob outputs the

message sent by Alice, is at least 1− δ. That is,

Pr(MR 6= MS) ≤ δ.

Here probability is over the randomness of Alice and Bob and the adversary.

The AWTPPD protocol provides perfect secrecy if ε = 0. If adversary is passive, then

Bob can always output the correct message mS and Pr(MR = MS) = 1. A restricted (ε, δ)-

AWTPPD protocol is over a restricted AWTPPD channel where Ni = Nj, Si = Sj = S for any

1 ≤ i ≤ j ≤ `. An AWTPPD protocol is optimal if the message round complexity meets the

minimum requirement of round complexity.

The efficiency measures of an (ε, δ)-AWTPPD protocol Π are, (i) the information rate

R(Π) = log |M|
N log |Σ| and, (ii) the message round complexity RC(Π) = (rawtp, rpd) denoting the

number of invocations of the AWTP and PD channels, respectively.

Definition 36. An (ε, δ)-AWTPPD protocol family for a (ρr, ρw)-AWTP channel, is a family

of protocols Π = {ΠN}N∈N, where ΠN = (ε, δ)-AWTPPD is an AWTPPD protocol for the

(ρr, ρw)-AWTP channel. A protocol family Π achieves information rate R(Π), if for any

ξ > 0 there exist N0 such that for any N ≥ N0, there is δ < ξ and,

log |M|
N log |Σ|

≥ R(Π)− ξ.
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The ε-secrecy (perfect secrecy) capacity Cε (C0) of a (ρr, ρw)-AWTPPD channel is the largest

achievable rate of all (ε, δ)-AWTPPD ((0, δ)-AWTPPD) protocol families for the channel.

Note that we effectively assume communication over PD is free and consider communi-

cation cost of the AWTP only.

5.4 Bounds on (ε, δ)-AWTPPD Protocols

We derive two bounds for (ε, δ)-AWTPPD protocols: an upper bound on the rate, and a lower

bound on the minimum number of message rounds required for such protocols.

5.4.1 Upper Bound on Rate

Theorem 15. The rate of an (ε, δ)-AWTPPD protocol is bounded by,

Cε ≤ 1− ρ+ 2ε · (1 + log|Σ|
1

ε
) + 2εn.

In the following proof we assume ρr + ρw = 1, and |Sri ∪Swi | = ρN < N for i = 1, · · · , `c.

The proof can be extended to ρr + ρw > 1 and |Sri ∪ Swi | = ρN < N also. The proof outline

is as follows. We define an adversary Adv1 and prove an upper bound on the rate of any

protocol over the AWTPPD channel assuming this adversary. This gives an upper bound on

the rate of the AWTPPD protocol against any general adversary.

The proof has three steps.

First (Step1), we define a weak adversary that before the start of the protocol chooses,

(i) the reading and writing sets of all invocations of the AWTP channel, and (ii) the random

errors of appropriate weight for each AWTP channel invocation. For this adversary, we prove

two lemmas (Lemmas 5.2 and 24) related to the entropy of the transmitted message. Second

(Step 2), we use the lemmas to derive a bound on log |M|
N log |Σ| . Finally (Step 3) we prove the

bound on the channel capacity.
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Notations. Let the codeword length in the ith invocation of the AWTP channel be Ni,

and [N ] =
⋃`c
i=1[Ni]. Let Sri and Swi denote the read and write sets of the adversary in

the ith invocation of the AWTP channel with |Sri | = ρrNi and |Swi | = ρwNi, and denote

Si,r = {Sr1 , · · · , Sri } and Si,w = {Sw1 , · · · , Swi }.

Let Sai = Sri \Swi be the set of read only, Sbi = Sri ∩ Swi the set of read and write,

Sci = Swi \Sri the set of write only, and Sdi = [Ni]\(Sri ∪ Swi ) the set of neither read nor

write components, in the ith invocation of the AWTP channel. Finally, S`c,a = ∪`ci=1S
a
i ,

S`c,b = ∪`ci=1S
b
i , S

`c,c = ∪`ci=1S
c
i , and S`c,d = ∪`ci=1S

d
i .

Let ci and di be the codewords transmitted over the AWTP channel and PD channel in

the ith invocations of the two channels, respectively; ci,j and di,j denote the jth components

of codeword ci and di, respectively; ci and di denote concatenations of all codewords sent in

all invocations up to, and including, the ith invocations of the AWTP and the PD channels,

respectively. We use capital letters to refer to the random variables associated with, ci, di,

ci,j , di,j, c
i and di, as Ci, Di, Ci,j, Di,j, C

i and Di, respectively. Let C`c,r and C`c,w be the

random variables of the protocol messages on the sets S`c,r and S`c,w, and C`c,a, C`c,b, C`c,c,

C`c,d be the random variables corresponding to the sets, S`c,a, S`c,b, S`c,c, S`c,d, respectively.

Proof. The proof has three steps:

Step 1.

We define an adversary Adv1 that works as follows:

1. Selects the reading and writing sets S`c,r and S`c,w, of all AWTP channel invocations,

before the start of the protocol.

2. For each invocation, chooses a random error vector ei of appropriate weight; that is,

chooses ei, with SUPP(ei) ∈ Swi randomly with uniform distribution; we have Pr(ei) =

1
|Σ|ρwNi .
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3. During the protocol execution, uses the error vectors to corrupt the AWTP messages,

reads the transmission on S`c,r and over PD channel.

We give two lemmas that follow from ε-secrecy and δ-reliability of the (ε, δ)-AWTPPD

protocol against Adv1. Let VE denote the random variable of the adversary view at the end

of the protocol.

Lemma 23. For an (ε, δ)-AWTPPD protocol, the following holds:

I(M ;VE) ≤ 2εN · log(
|Σ|
ε

) + 2εn.

Proof is in Section 5.7.1.

Since Adv1 selects the reading sets S`c,r before the start of the protocol, we have, VE =

{C`c,r, D`d}, and so, we have,

I(M ;C`c,rD`d) ≤ 2εN · log(
|Σ|
ε

) + 2εn. (5.2)

Lemma 24. For an (ε, δ)-AWTPPD protocol, the following holds assuming Adv1 adversary,

H(M |C`c,aC`c,dD`d) ≤ H(δ) + δ log |M|.

Proof is in Section 5.7.2.

Lemma 5.2 and Lemma 24 are used to prove an upper bound on the rate of an (ε, δ)-

AWTPPD protocol, assuming adversary Adv1.

Step 2. We prove the upper bound,

log |M|
N log |Σ|

≤ 1− ρ+ 2ε · (1 + log|Σ|
1

ε
) + 2εn+ 2H(δ) + δn.

Here, N is the total number of symbols sent over AWTP channel, and n is the number of

bits sent over the PD channel. Let C`c and D`d denote the set of possible protocol messages

over the AWTP channel and the PD channel, respectively. We have,

H(M) = I(M ;C`c,rD`d) + H(M |C`c,rD`d). (5.3)
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From Lemma 5.2, the first term can be upper bound as,

I(M ;C`c,rD`d) ≤ 2ε ·N log(
|Σ|
ε

) + 2εn. (5.4)

The upper bound on the second item H(M |C`c,rD`d) is,

H(M |C`c,r, D`d)

= H(M |C`c,a, C`c,b, D`d)

= H(M,C`c,b|C`c,a, D`d)− H(C`c,b|C`c,a, D`d)

= H(M |C`c,a, D`d) + H(C`c,b|M,C`c,a, D`d)− H(C`c,b|C`c,a, D`d)

= H(M,C`c,d|C`c,a, D`d)− H(C`c,d|M,C`c,a, D`d) + H(C`c,b|M,C`c,a, D`d)− H(C`c,b|C`c,a, D`d)

= H(M |C`c,a, C`c,d, D`d) + H(C`c,d|C`c,a, D`d)

− H(C`c,d|M,C`c,a, D`d)

+ H(C`c,b|M,C`c,a, D`d)− H(C`c,b|C`c,a, D`d)

(1)

≤ H(M |C`c,a, C`c,d, D`d) + H(C`c,d|C`c,a, D`d)− H(C`c,d|M,C`c,a, D`d)

(2)

≤ H(M |C`c,a, C`c,d, D`d) + H(C`c,d).

(5.5)

Inequality (1) is from, H(C`c,b|M,C`c,a, D`d) ≤ H(C`c,b|C`c,a, D`d). Inequality (2) follows

from, H(C`c,d|C`c,a, D`d) ≤ H(C`c,d) and H(C`c,d|M,C`c,a, D`d) ≥ 0.

From H(C`c,d) ≤ log |C`c,d| ≤ N(1− ρ) log |Σ|, we have,

H(C`c,d) ≤ N(1− ρ) log |Σ|. (5.6)

Using Lemma 24, we have,

H(M |C`c,a, C`c,d, D`d) ≤ δ log |M|+ H(δ). (5.7)

From (5.5), (5.6), (5.7), we have,

H(M |C`c,r, D`d) ≤ N(1− ρ) log |Σ|+ δ log |M|+ H(δ). (5.8)
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We also have,

log |M|
(1)

≤ log |C`cD`d |
(2)

≤ N log |Σ|+ n. (5.9)

where C`cD`d are possible (error free) transcripts of the protocol generated by the protocol

encoders (at Alice and Bob), (1) is because decoding without adversarial error recovers the

message and so the number of possible encoding transcripts is ≥ |M|, and (2) is because of

the set of corrupted transcripts is larger than uncorrupted ones.

Using (5.8) and (5.9), we have,

H(M |C`c,r, D`d) ≤ N(1− ρ) log |Σ|+ δ(N log |Σ|+ n) + H(δ). (5.10)

Using (5.3), (5.4), and (5.10), gives the upper bound on H(M),

H(M) ≤ N(1− ρ) log |Σ|+ 2ε ·N log(
|Σ|
ε

) + 2εn+ δN log |Σ|+ δn+ H(δ).

The above inequality must hold for any distribution on M, and in particular for a uniform

distribution with H(M) = log |M|. Using δ ≤ H(δ) for 0 ≤ δ ≤ 1/2, we have,

log |M|
N log |Σ|

≤ 1− ρ+ 2ε · (1 + log|Σ|
1

ε
) + 2εn+ 2H(δ) + δn.

Step 3. We show that ε-secrecy capacity of a (ρr, ρw)-AWTPPD is bounded by,

Cε ≤ 1− ρ+ 2ε · (1 + log|Σ|
1

ε
) + 2εn.

Proof is by contradiction.

Let Cε = 1−ρ+2ε ·(1+log|Σ|
1
ε
)+2εn+ ξ̂, for some small constant ξ̂ > 0. From Definition

36, for any 0 < ξ̂′ ≤ min( ξ̂
5n
,H−1( ξ̂

5
)), there is N0, such that for any N > N0, we have δ < ξ̂′

and,

log |M|
N log |Σ|

≥ Cε − ξ̂′

= 1− ρ+ 2ε · (1 + log|Σ|
1

ε
) + 2εn+ 2H(δ) + δn+ ξ̂ − ξ̂′ − 2H(δ)− δn

≥ 1− ρ+ 2ε · (1 + log|Σ|
1

ε
) + 2εn+ 2H(δ) + δn+ ξ̂′

>
log |M|
N log |Σ|

.
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This contradicts the bound on log |M|
N log |Σ| , and so,

Cε ≤ 1− ρ+ 2ε · (1 + log|Σ|
1

ε
) + 2εn.

Corollary 7. The perfect secrecy capacity of a (ρr, ρw)-AWTPPD channel is bounded as,

C0 ≤ 1− ρ.

5.4.2 Lower Bound on Message Round Complexity

An efficient construction of a (0, δ)-AWTP code (one message round) with rate R = 1−ρr−ρw

is given in [86] (Section 4.5), implying that secure transmission over AWTP channels with

one message round protocols is possible if, ρr + ρw < 1. In Section 5.4.1, we proved that

for AWTPPD channels, C0 ≤ 1 − ρ and so secure communication with ρr + ρw > 1 may be

possible, as long as ρ < 1.

Theorem 16. Perfectly secure communication over AWTPPD channel requires,

(i) one message round protocol, if ρr + ρw < 1.

(ii) a protocol with at least three message rounds, if ρr + ρw ≥ 1. That is,

RC


≥ 1 if ρr + ρw < 1;

≥ 3 if ρr + ρw ≥ 1.

We use the same notations as in Section 5.4.1.

Proof. We only need to prove (ii). The protocol must have at least two message rounds and

so can have one of the following forms. Note that to achieve privacy, at least one message

round of AWTP channel is needed.

1. Rnd 1: Alice
AWTP−→ Bob; Rnd 2: Alice

PD−→ Bob.

2. Rnd 1: Alice
AWTP−→ Bob; Rnd 2: Alice

AWTP−→ Bob.
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3. Rnd 1: Alice
AWTP−→ Bob; Rnd 2: Bob

PD−→ Alice.

4. Rnd 1: Alice
PD−→ Bob; Rnd 2: Alice

AWTP−→ Bob.

5. Rnd 1: Bob
PD−→ Alice; Rnd 2: Alice

AWTP−→ Bob.

The third, fourth and fifth forms are not possible: in all these cases Bob’s decoder will

have the vector received through a one round AWTP channel and so the protocol cannot

have rate higher than 1− ρr − ρw.

We show that it is impossible to have first and second forms of AWTPPD protocol.

Lemma 25. In an (0, δ)-AWTPPD protocol of the forms (1) or (2) above, if ρr + ρw ≥ 1,

then,

2H(δ) ≥ 1− 1

|M|
.

Proof is in Section 5.7.3.

Since all forms of two rounds AWTPPD protocol is impossible, it implies the message

round complexity of AWTPPD protocol is at least three.

5.5 An optimal (0, δ)-AWTPPD Protocol

We show the construction of AWTPPD protocol. The rate of the protocol meets the upper

bound. The protocol has three message rounds and so meets the minimum message round

complexity. The construction is inspired by Shi et al. [75].

Let the AWTP channel have alphabet Σ = Fuq where q > 2uN2, and the message be

m = {m1, · · · ,m`} ∈ M, where mi ∈ Fq. Let N denote the transmission length over the

AWTP channel. Our construction uses the u
q
-∆ universal (q, qu−1, q)-hash family and the

seedless (uN, `, ` log q, 0)-extractor.

AWTPPD Protocol
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• Rnd 1: Alice
AWTP−→ Bob. For i ∈ N :

Alice randomly chooses a vector ri = {ri,1, · · · , ri,u−1} ∈ Fu−1
q , and βi ∈ Fq. Alice

sends c = (c1, · · · , cN) ∈ Fuq with ci = {ri, βi} to Bob, over the AWTP channel.

Bob receives y = (y1, · · · , yN), where yi = {r′i, β′i}.

• Rnd 2: Bob
PD−→ Alice.

Bob generates random keys, (α1, · · · , αN), αi ∈ Fq, for the hash family, and gen-

erates t = (t1, · · · , tN) where, ti = hashαi(r
′
i) + β′i mod q. Bob maps d1 =

{α1, · · · , αN , t1, · · · , tN} to a binary vector over F2, and sends d1 to Alice, over the PD

channel. Alice receives d1.

• Rnd 3: Alice
PD−→ Bob.

– Alice checks,

hashαi(ri) + βi
?
= ti mod q, i = 1 · · ·N

and constructs a binary vector v = (v1, · · · , vN), where with vi = 1 if hashαi(ri) +

βi = ti mod q, and vi = 0, otherwise.

– Let, vi1 · · · = vis = 1. Alice does the following.

–concatenates all rij for which vij = 1, and obtains (ri1|| · · · ||ris) over Fq.

–uses the extractor on this string, and obtains a uniformly random string, k =

Ext(ri1|| · · · ||ris).

– Alice encrypts the message m and obtains c = {c1, · · · , c`}, where ci = ki + mi

mod q for i = 1, · · · , `. Alice maps d2 = {c,v} (over Fq) into a binary vector and

sends it to Bob over the PD channel.

Bob receives d2.

• Bob decodes Dec(y1, d1, d2) as follows.
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– Constructs the vector (r′i1 || · · · ||r
′
is) with r′ij ∈ Fq, for all vij = 1 in v. He uses the

extractor to obtain, k′ = Ext(r′i1|| · · · ||r
′
is).

– Recovers the message m′ with m′i = ci − k′i mod q for i = 1, · · · , `.

Secrecy and Reliability

Lemma 26. The AWTPPD protocol above, provides perfect secrecy if ` ≤ (u− 1)(1− ρ)N .

Proof. First, assume the adversary reads the last ρrN components of c, and the first (1−ρ)N

components is the set of components that is neither read, nor written to, by the adversary.

Let v′A = {r(1−ρr)N+1 · · · rN , β(1−ρr)N+1 · · · βN , α1 · · ·αN , t1 · · · tN , v0 · · · vN} denote the view

of the adversary, except for c.

If ` ≤ (u − 1)(1 − ρ)N , the vector of random variables, (ri1|| · · · ||ris), corresponds to

a symbol-fixing source. The components that the adversary do not read are uniformly

distributed and are independent from the adversary’s view v′A, and the components that the

adversary reads are determined and fixed. So the randomness k that is generated from the

extractor, is uniformly distributed and is independent of the adversarial view. That is,

Pr(k|v′A) = Pr(k). (5.11)

Second, since Alice selects the message m ∈ M independent from k and v′A, we have

Pr(m|k, v′A) = Pr(m). For any message m ∈M, we have,

Pr(m) ≤ Pr(m|v′A) ≤ Pr(m|k, v′A) = Pr(m).

This implies,

Pr(m) = Pr(m|v′A) = Pr(m|k, v′A). (5.12)
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and so we have,

Pr(k|m, v′A) =
Pr(k,m, v′A)

Pr(m, v′A)

=
Pr(m|k, v′A)Pr(k, v′A)

Pr(m|v′E)Pr(v′A)

= Pr(k|v′A).

(5.13)

Third, the adversarial view for any m ∈M is vA = {c, v′A}, and so,

Pr(vA|m) = Pr(c, v′A|m)

= Pr(c|m, v′A)Pr(v′A|m)

(1)
= Pr(k|m, v′A)Pr(v′A)

(2)
= Pr(k)Pr(v′A).

where, (1) is from ci = ki +mi mod q for i = 1 · · · `, and (2) is from (5.11) and (5.13).

This means the statistical distance between adversarial views of any two messages m1,m2 ∈

M, is zero and the AWTPPD protocol is perfectly secure. That is,

SD(ViewA|m1,ViewA|m2) =
∑

vA∈ViewA

|Pr(vA|m1)− Pr(vA|m2)| = 0.

Lemma 27. The probability of decoding error in the AWTPPD protocol is δ ≤ uN
q

.

Proof. First, we show the probability that vector (ri1 , · · · , ris) 6= (r′i1 , · · · , r
′
is) is no more

than uN
q

. This is from,

Pr((ri1 , · · · , ris) 6= (r′i1 , · · · , r
′
is))

≤
N∑
i=1

Pr(ri 6= r′i)

=
N∑
i=1

Pr(ri 6= r′i, vi = 1)

≤
N∑
i=1

Pr(ri 6= r′i, [hashαi(ri)− hashαi(r
′
i)] = [β′i − βi])

≤ uN

q

(5.14)
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Second, for the two random vectors k = Ext(ri1 , · · · , ris) and k′ = Ext(r′i1 , · · · , r
′
is), we have,

Pr(k 6= k′) ≤ Pr((ri1 , · · · , ris) 6= (r′i1 , · · · , r
′
is)). (5.15)

Third, Bob correctly receives d2 = {c,v} sent by Alice and so, mi + ki = m′i + k′i mod q

for i = 1 · · · `. That is, the probability that the message m 6= m′, is the same as the

probability k 6= k′. That is,

Pr(m 6= m′) = Pr(k 6= k′). (5.16)

From (5.14) (5.15) (5.16), there is Pr(m 6= m′) = Pr(k 6= k′) ≤ uN
q

.

Rate of AWTPPD Protocol

Lemma 28. The rate of the AWTPPD protocol family is R(Π) = 1− ρ.

Proof. For a small ξ > 0, let the parameters of AWTPPD protocol be chosen as u = 1
ξ
,

q > 2uN2, ` = (u− 1)(1− ρ)N , N0 ≥ 1
ξ

and Σ = Fuq . For uniform message distribution, we

have log |M| = ` log q, and so for any N > N0, the rate of AWTPPD protocol family is given

by,

R(ΠN) =
log |M|
N log |Σ|

=
(u− 1)(1− ρ)N log q

uN log q
= (1− ξ)(1− ρ) ≥ 1− ρ− ξ.

The probability of decoding error is bounded by,

δ ≤ uN

q
≤ 1

2N
≤ ξ

2
≤ ξ.

It implies the rate of AWTPPD protocol family is R(Π) = 1− ρ.

Theorem 17. For any small ξ > 0, the protocol above is a (0, δ)-AWTPPD protocol with rate

R(ΠN) = 1− ρ− ξ. The transmission alphabet over the AWTP channel is of size |Σ| = q
1
ξ ,

and the decoding error is δ < ξ. The rate of the protocol approaches R = 1− ρ as, N →∞.

The protocol has RC=3 and the decoder computation is O((N log q)2).
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5.6 AWTPPD Protocol and SMT-PD

AWTP codes are defined over an alphabet Σ and all components of a codeword are elements

of Σ. In SMT protocols however, the set of transmissions over different wires may be different.

Definition 37 (Symmetric SMT). An SMT protocol is called a symmetric if the protocol

remains invariant under any permutation of the wires.

Let W i
j, j = 1 · · ·N, i = 1 · · · r, denote the set of possible transmissions on wire j in an

r-round SMT protocol. For a symmetric protocol, W i
j =W i is independent of j. All known

constructions of threshold SMT protocols are symmetric.

Definition 38. A one-way symmetric secure message transmission with public discussion

((ε, δ)-SMT[ows]-PD ) protocol is an SMT-PD protocol in which transmission over wires is

in one direction (from Alice to Bob, or Bob to Alice). The protocol is invariant under any

permutation of the wires. The N wires and the PD channel, can be invoked simultaneously.

We consider protocols where Alice wants to send a message to Bob and so AWTP channel

is used by Alice.

Theorem 18. There is a one-to-one correspondence between restricted (ε, δ)-AWTPPD pro-

tocols and (ε, δ)-SMT[ows]-PD protocols. The following results on the latter protocols, follow

from the results on the former in Section 5.4.

1. The lower bound on the transmission rate of a (ε, δ)-SMT[ows]-PD protocol is,

TR ≥ N

N − t+ ε′ + 2H(δ)N + δnN
. (5.17)

where ε′ = 2Nε(1 + log|W|
1
ε
) + 2εnN .

For protocols with perfect secrecy (ε = 0) we have,

TR ≥ N

N − t+ 2H(δ)N + δnN
. (5.18)
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2. The lower bound on the round complexity of (ε, δ)-SMT[ow]-PD protocol is three.

The one-to-one correspondence follows from definitions of the protocols and their security.

The lower bound on transmission rate follows by noting that the transmission rate of a (ε, δ)-

SMT[ows]-PD protocol is the inverse of the rate of the corresponding AWTPPD protocol, and so

the upper bound on the rate of AWTPPD protocols implies a lower bound on the transmission

rate of (ε, δ)-SMT[ows]-PD protocols. The lower bound on the round complexity follows from

the bound on the corresponding AWTPPD protocols. Details are given in Appendix 5.7.4.

Construction

A (ε, δ)-AWTPPD protocol gives a restricted-(ε, δ)-AWTPPD protocol with ρ = ρr = ρw. This

latter, using the protocol conversion in Theorem 18, gives an (ε, δ)-SMT[ows]-PD protocol.

In Section 5.5 we gave the construction of a (0, δ)-AWTPPD protocol with minimum number

of rounds, and rate approaching the capacity of the (ρr, ρw)-AWTP channel. This leads to

the following.

Lemma 29. There is a three round (ε, δ)-SMT[ows]-PD protocol, with transmission rate,

O( N
N−t), and decoding computational complexity equal to, O((N log q)2).

Comparison with known results

The SMT-PD protocols were first considered in [34]. It was shown that secure protocols

exist for N ≥ t+ 1, and the following lower bound on the transmission rate of the protocols

were derived.

TR ≥
N · (− log( 1

|M| + 2ε)− H(
√
δ)− 2m

√
δ)

(N − t)m
. (5.19)

where, m = log |M|. The bound also gives a lower bound on the transmission rate of

(ε, δ)-SMT[ows]-PD protocols as these protocols are a subset of SMT-PD protocols. The two

bounds, (5.17) and (5.19), are not directly comparable. For example, for ε = 0 and δ > 0,

(5.19) will be a tighter bound. For δ ≈ 0 and ε = a
|M| however, (5.17) could be higher (for
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example |M| = 2N and ε = 1
|M|). For perfectly secure SMT-PD protocols, (5.19) is a tighter

bound.

The lower bound on the round complexity of AWTPPD protocols cannot be directly used

for (ε, δ)-SMT[ows]-PD because in the latter Alice can use her two channels simultaneously.

In [75], it was shown that the minimum round complexity of general SMT-PD protocols is

three. Since (ε, δ)-SMT[ows]-PD satisfying the rate bound are a subset of SMT-PD satisfying

the rate bound, the minimum RC of the latter is lower bounded by the minimum RC of the

former. The rate-optimal (ε, δ)-SMT[ows]-PD protocol from Section 5.5 has three rounds and

so it achieves the lower bound on the RCof (ε, δ)-SMT[ows]-PD protocols.

5.7 Proof of Chapter 5

5.7.1 Proof of Lemma 23

Proof. The proof is similar to Theorem 4.9 [6] and uses Pinsker’s Lemma:

Lemma 30. Let P , Q be probability distributions. Let SD(P,Q) ≤ ε. Then

H(P )− H(Q) ≤ 2ε · log(
|P ∪Q|

ε
).

Let the random variable of the adversarial view, VE, be over the set VE. According to the

definition of ε-secrecy (Definition 35), for any pair of message m1,m2 ∈ M, the statistical

distance between the distribution of VE when Alice sends m1, and the distribution of VE

when Alice sends m2, is no more than ε. That is,

ε ≥ max
m1,m2

SD(VE|M = m1, VE|M = m2)

≥ max
m1,m2

∑
v∈VE

|Pr(v|m1)− Pr(v|m2)|.
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Assuming distribution Pr(m) on M, this implies,

SD(VE, VE|M = m)

=
1

2

∑
v∈VE

|Pr(v|m)− Pr(v)|

=
1

2

∑
v∈VE

|Pr(v|m)−
∑
m′

Pr(v|m′)Pr(m′)|

=
1

2

∑
v∈VE

|
∑
m′

Pr(m′)(Pr(v|m)− Pr(v|m′))|

≤ 1

2

∑
v∈VE

∑
m′

Pr(m′)|Pr(v|m)− Pr(v|m′)|

=
∑
m′

Pr(m′)
1

2

∑
v∈VE

|Pr(v|m)− Pr(v|m′)|

≤
∑
m′

Pr(m′) max
m1,m2

SD(VE|M = m1, VE|M = m2)

≤ ε.

(5.20)

From Pinsker Lemma and Eq. (5.20), we have,

H(VE)− H(VE|M = m) ≤ 2ε · log(
|VE|
ε

).

From |VE| ≤ 2n × |Σ|N , it implies,

H(VE)− H(VE|M = m) ≤ 2ε · log(
|Σ|N

ε
) + 2εn.

So the difference between H(M) and H(M |VE) is

H(M)− H(M |VE) = H(VE)− H(VE|M)

= H(VE)−
∑
m∈M

Pr(m)H(VE|m)

=
∑
m∈M

Pr(m)(H(VE)− H(VE|m))

≤ 2εN · log(
|Σ|
ε

) + 2εn.

(5.21)
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5.7.2 Proof of Lemma 24

Proof. Let δ′ = H(δ) + δ log |M|. The proof has two steps.

1. We show that H(M |C`c,a, Y `c,w, C`c,d, D`d) ≤ δ′.

Let δ = Pr(MR 6= MS). From Fano’s inequality,

H(δ) + δ log |M| ≥ H(MS |MR) ≥ H(MS |Y `c , D`d).

Here {y`c , d`d}, is the received vectors of Bob. Since y`c = {c`c,a, y`c,w, c`c,d}, we have,

H(MS |C`c,a, Y `c,w, C`c,d, D`d) ≤ H(MS |MR) ≤ δ′. (5.22)

2. We show that

H(MS |C`c,a, C`c,d, D`d) ≤ δ′ + I(Y `c,w;C`c,w|C`c,a, C`c,d, D`d).

Writing the conditional entropy in two ways, we have,

H(MS , Y
`c,w|C`c,a, C`c,d, D`d)

= H(MS |C`c,aY `c,w, C`c,d, D`d) + H(Y `c,w|C`c,a, C`c,d, D`d)

= H(MS |C`c,a, C`c,d, D`d) + H(Y `c,w|C`c,a, C`c,d, D`d ,MS).

and so,

H(MS |C`c,a, C`c,d, D`d)

= H(MS |C`c,aY `c,w, C`c,d, D`d) + H(Y `c,w|C`c,a, C`c,d, D`d)

− H(Y `c,w|C`c,a, C`c,d, D`d ,MS).

(5.23)

Because of the Markov chain MS → C`cD`d(= C`c,aC`c,wC`c,dD`d)→ C`c,w, we have,

H(Y `c,w|C`c,a, C`c,d, D`d ,MS) ≥ H(Y `c,w|C`c,a, C`c,w, C`c,d, D`d). (5.24)
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From (5.22) (5.23) and (5.24), we have,

H(MS |C`c,a, C`c,d, D`d)

= H(MS |C`c,a, Y `c,w, C`c,dD`d) + H(Y `c,w|C`c,a, C`c,d, D`d)

− H(Y `c,w|C`c,a, C`c,d, D`d ,MS)

≤ δ′ + H(Y `c,w|C`c,a, C`c,d, D`d)− H(Y `c,w|C`c,a, C`c,w, C`,d, D`d)

≤ δ′ + I(Y `c,w;C`c,w|C`c,a, C`c,d, D`d).

(5.25)

Note that Y `c,w = C`c,w +E`c,w where E`c,w is a uniformly distributed variable, and so,

I(Y `c,w;C`c,w|C`c,a, C`c,d, D`d) = 0. (5.26)

This means that,

H(MS |C`c,a, C`c,d, D`d) ≤ δ′.

5.7.3 Proof of Lemma 25

Proof. We only show that it is impossible to have a two message round (0, δ)-AWTPPD

protocol of form with rate higher than 1− ρr − ρw:

1. Rnd 1: Alice
AWTP−→ Bob

2. Rnd 2: Alice
PD−→ Bob

The impossible result to have a two message round (0, δ)-AWTPPD protocol of form: Rnd

1, Alice
AWTP−→ Bob; Rnd 2, Alice

AWTP−→ Bob, with rate higher than 1− ρr − ρw, can be proved

similarly.

We only consider the case that ρr = 1 − ρw. The case that ρr > 1 − ρw can be proved

similarly.

We consider a pair of adversaries, {Adv2, ˆAdv2}, both with the following properties:
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1. Adversary selects the reading and writing sets before the start of the AWTPPD protocol.

2. Adversary also chooses the error ew randomly and uniformly from ΣρwN . That is

Pr(ew) = 1
|ΣρwN | .

Adversary Adv2 uses the read and write sets, Sr = {Sa, Sb} and Sw = {Sb, Sc}.

Because of ρr = 1− ρw, we have [N ] = SaSbScSd and |Sb| = |Sd|

Adversary ˆAdv2 uses the read and write sets, Ŝr = {Sa, Sd}, and Ŝw = {Sc, Sd}.

We have the following:

• Since the reading and writing capabilities of adversary Adv2 is same as the adversary Adv1

in Section 5.4, using Lemma 24 we have,

H(M |Ca, Cd, D) ≤ H(δ) + δ(H(M)− 1). (5.27)

• Since the reading capability of ˆAdv2 is the same as Adv1 in Section 5.4, from Lemma 5.2,

we have,

I(M ;Ca, Cd, D) = 0. (5.28)

• From (5.27) (5.28), we obtain,

H(δ) + δH(M) ≥ H(M |C`,a, C`,d, D`) ≥ H(M),

and so,

H(δ)

1− δ
≥ H(M).

Since 0 ≤ δ < 1
2

and the message is uniformly distributed, we have,

1− 2H(δ) ≤ 2−2H(δ) ≤ 2−H(M) =
1

|M|
,

and, 2H(δ) ≥ 1− 1
|M| .
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5.7.4 Proof of Lemma 18

Proof. First, we show that there is a one-to-one correspondence between (ε, δ)-SMT[ows]-PD

protocols and restricted (ε, δ)-AWTPPD protocols, in the sense that given one of the former,

a corresponding one in the latter can be constructed, and vice versa.

1. Consider a (ε, δ)-SMT[ows]-PD protocol, with a fixed public numbering of wires. Recall

that in each round of the (ε, δ)-SMT[ows]-PD protocol, both the wires and the PD can

be invoked by Alice, while in our AWTPPD model, only one type channel is invoked

by Alice in each round. In both models Bob can invoke the PD in each round. We

can convert the protocol messages in round i of a (ε, δ)-SMT[ows]-PD protocol to the

protocol messages of round j and j+1, of a AWTPPD protocol. In round i, transmissions

over wire 1 to N , defines a codeword of length N in the ith round j of the AWTP. The

transmission over the PD directly defines the transmission over the PD in AWTPPD,

in the j + 1 round. Each round of the transmission over PD, when invoked by Bob

in the (ε, δ)-SMT[ows]-PD , defines a transmission over the PD for the a(ε, δ)-SMT[ows]-

PD protocol. The above transformation gives a AWTPPD from a (ε, δ)-SMT[ows]-PD .

Similarly, a AWTPPD protocol defines an (ε, δ)-SMT[ows]-PD protocol.

So a restricted (ε, δ)-AWTPPD protocol can be constructed from (ε, δ)-SMT[ows]-PD pro-

tocol. Similarly, a (ε, δ)-SMT[ows]-PD protocol can also be constructed from restricted

(ε, δ)-AWTPPD protocol.

2. AWTPPD and (ε, δ)-SMT[ows]-PD definitions of secrecy and reliability are the same.

Definition of ε-secrecy in both primitives requires statistical distance of the adversary’s

view for two messages chosen by the adversary (Compare definition 14 and definition

35), to be bounded by ε. For δ-reliability, both primitives require the probability of

outputting the correct message to be at least 1− δ, and the probability of outputting

the wrong message to be at most δ.
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Next, we show the lower bound of transmission rate for Using Theorem 18, for a (ε, δ)-

SMT[ows]-PD over N wires and t = ρN , there is a corresponding restricted (ε, δ)-AWTPPD

protocol whose rate is upper bounded by,

R ≤ 1− ρ+ 2ε(1 + log|Σ|
1

ε
) + 2εn.

Since the transmission rate of a 1-(ε, δ)-SMT protocol is the inverse of the rate of the corre-

sponding restricted (ε, δ)-AWTPPD protocol, we have

TR =
1

R

≥ 1

1− 2ρ+ 2ε(1 + log|W|
1
ε
) + 2εn

=
N

N − 2t+ 2Nε(1 + log|W|
1
ε
) + 2εnN

.

Last, we show the lower bound on round for (ε, δ)-SMT[ows]-PD protocol. Since (ε, δ)-

SMT[ows]-PD protocol is a special case of (ε, δ)-SMT-PD protocol, and it was shown that

the lower bound on round complexity for (ε, δ)-SMT-PD protocol is at least three, the lower

bound of (ε, δ)-SMT[ows]-PD protocol is also three.
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Chapter 6

Secure Message Transmission and Reliable Message

Transmission

6.1 Introduction

In a SMT system a sender is connected to a receiver throughN wires, t of which are controlled

by the adversary. The goal of the system is to provide privacy and reliability for transmitted

messages. SMT protocols can have one or more rounds and their communication efficiency

is measured by the number of rounds and transmission rate which is the total number of

communicated bits per one message bit. Protocols whose transmission rate asymptotically

matches the lower bound on the transmission rate for a given number of round, are called

optimal. The initial motivation for this model was to establish secure links between nodes

in a distributed setting (e.g., multi-party computation [7, 14, 70]), where many node pairs

are connected by communication paths, rather than direct links. In recent years however,

the protocols, and in particular 1-round protocols, have found other applications including

key agreement and key strengthening in wireless sensor networks [13, 87, 88].

In SMT systems with perfect privacy and reliability, referred to as Perfectly Secure Mes-

sage Transmission (PSMT), the adversary does not learn anything about the message, and

the sent message is always correctly received by the receiver. It has been shown [28] that

1-round PSMT is possible if and only if N = 3t+ 1. That is, only when less than one third

of wires are corrupted.

To increase the number of corrupted wires that can be tolerated by the protocol, one

may resort to more rounds, or allow less than perfect reliability. It was shown [33, 47] that

2-round optimal PSMT is possible for N = 2t + 1. It is also possible to construct optimal
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1-round protocols for N = 2t + 1 if the probability of receiving an incorrect message is

allowed to be δ (instead of zero for perfect case): a (0, δ)-SMT provides perfect privacy

and bounds probability of error in receiving the message by δ. (0, δ)-SMT is particularly

attractive because of the statefulness of multi-round protocols and the challenges (including

security) associated with using them in practice. Protocols providing no privacy and almost

perfect reliability are called δ-reliable message transmisison (δ-RMT, for short).

In this section we consider 1-round (0, δ)-SMT protocols and 1-round δ-RMT protocols.

Motivation

For N = 3t + 1, there is a simple and elegant construction of 1-round PSMT using Reed-

Solomon (RS) code that uses the traditional efficient method of unique decoding for these

codes [31] to recover the message. In this construction the dimension of the code is t + 1

and is determined by t, the number of corrupted wires. The minimum distance of the code

is d = 2t+ 1 allowing t (adversarial) errors to be corrected.

For less connectivity however, a natural question is: if this construction can be extended

to the case that 2t + 1 ≤ N ≤ 3t. That is to use RS codes (or any other error correcting

code) to construct 1-round (0, δ)-SMT protocols. Note that for N < 3t+ 1, an RS code will

have dimension k = t + 1 (the code dimension must be kept the same because of perfect

privacy) and so the minimum distance is reduced to t + 1 ≤ d ≤ 2t which makes unique

decoding of t errors impossible.

All known 1-round δ-RMT and (0, δ)-SMT protocols use elaborate combinations of se-

cret sharing (including secret sharing with cheater detection) and authentication systems,

together with elaborate verification algorithms to decode the message. A disadvantage of

these clever constructions is the difficulty of verifying their correctness. In [1] it was shown

that the proofs of security of the 1-round (0, δ)-SMT protocol in [81] were not correct and

thus the protocol was not secure. An immediate question is: if it is possible to base the

construction of optimal 1-round (0, δ)-SMT protocols on error correcting codes and provide
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a systematic approach to the construction of SMT protocols.

Our Work

1). Constructing 1-round δ-RMT from RS codes. Firstly we construct a 1-round δ-RMT

using the private code approach in [?]. This effectively reduces the construction of a δ-RMT

to the construction of a list decodable code and a multireceiver MAC. We show that an

instantiations of this construction using FRS code and our multireceiver MAC, results in an

optimal 1-round δ-RMT protocol with the smallest δ among all known optimal protocols.

2). Constructing 1-round (0, δ)-SMT from RS codes. The construction of 1-round PSMT

for N = 3t + 1 [31] encodes a message m ∈ Fq, together with k − 1 random elements of Fq,

(m, r1, · · · , rk−1), as a codeword of a (k, n) RS code. For lower connectivity however, the

construction does not work because the dimension of the code, that is determined by the

privacy requirement, must be t + 1. Noting that the minimum distance of the RS code is

d = n− k+ 1, for 2t+ 1 ≤ N ≤ 3t, the minimum distance of the code will be t+ 1 ≤ d ≤ 2t,

which is below the unique decoding capability of the RS code. One can, however, use

list decoding to correct errors beyond unique error correcting radius of the code. In a list

decodable code the decoder outputs the list of all codewords that are at (relative) distance

ρ from the received word. By introducing sufficient structure in the encoded message, the

receiver would be able to detect the correct message (with a high probability) among the

decoded list.

A similar approach is used [?] in the construction of private codes. Private codes were pro-

posed by Langberg [50] with the goal of providing reliable communication over adversarially

corrupted channels. It is well known [32] that concatenated codes achieve Shannon capacity

against random errors. However, constructing codes that achieve 1−R in adversarial error is

an open problem. In private codes Alice and and Bob share a secret key which is unknown to

the adversary and this allows them to communicate reliably at rates approaching Shannon’s

capacity.
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The explicit construction of private codes in [?] uses message authentication codes to

identify the sent codeword in the decoded list of a list decodable code. In SMT however there

is no explicit shared secret key between the transmitter and the receiver. However there are

private wires (wires that are not controlled by the adversary) that may be used to send key

information from sender to the receiver.

Using this approach, the two major challenges that must be addressed are: (i) for N =

2t + 1, correcting t adversarial errors with minimum distance d = t + 1 requires explicit

codes that achieve list decoding capacity, and (ii) efficient detection of the correct messages

in the decoded list requires an authentication mechanism that uses private wires in SMT

(instead of shared secret keys). Note that for code length N = 2t + 1 and code dimension

k = t+1, we have R = k/N = t+1
2t+1

and the percentage of errors that needs to be corrected is

ρ = t
2t+1

= 1−R. This means that using an error correcting code for SMT with N = 2t+ 1,

requires the code to reach list decoding capacity.

Our construction works as follows: the message is first appended with sufficient redun-

dancy (to guarantee privacy), and authentication information (MAC values to allow detection

of the message in the decoded list), and then encoded using a Folded Reed-Solomon (FRS)

code with well chosen parameters. FRS codes [39, 38] are explicit codes that achieve list

decoding capacity and have efficient decoding algorithm. On each wire, one component of

the code together with some key information for the MAC, is sent. The receiver uses the

decoding of the FRS-code to recover the list of code vectors that are at distance at most t

(in FRS code) from the received vector, and then uses the keys (possibly tampered) that are

received on the wires to identify the correct message. The final SMT decoding algorithm

either outputs the correct message, or outputs ⊥. That is, it never outputs an incorrect

message.

The optimal rate for the SMT is obtained by designing an authentication mechanism that

is inspired by multireceiver message authentication codes (multireceiver MAC) introduced in
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[23], and applying authentication to the information symbols only. The authentication mech-

anism is a new multireceiver MAC that effectively reduces the authentication information

symbols that need to be sent, resulting in optimal transmission rate.

We prove perfect privacy of the construction and obtain δ, the success chance of the

adversary in resulting the protocol to output ⊥. The transmission rate of the protocol is

O(N) and so the protocol is optimal. The decoding however will not be polynomial because

although the list decoding algorithm is efficient, the output list will be exponential (in N)

and so checking the elements of the list will take exponential time.

We extend this construction (N = 2t + 1) to higher connectivities of the form N =

(2 + c)t, c > 1
t
. Here the decoding parameters can be chosen such that the decoding list is

polynomial (inN). The result is an optimal 1-round (0, δ)-SMT that has efficient (polynomial

time) decoding.

An important property is both protocols also have the lowest δ compared to all known

optimal 1-round (0, δ)-SMT protocols, that only output correct messages, or ⊥.

We also present two constructions. We give new constructions for MAC and multireceiver

MACs with optimal and near optimal (different by a factor of 2) protection.

Related Work.

Patra et al. designed an efficient and optimal 1-round δ-RMT protocol [67]. There are

two optimal and efficient 1-round (0, δ)-SMT protocols for N = 2t + 1 [67, 83]. On the

other hand, for N = (2 + c)t, c > 1
t
, there are two optimal and efficient 1-round (0, δ)-SMT

protocols [83, 72].
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6.2 Preliminary

6.2.1 Multireceiver message authentication codes

Multireceiver authentication codes [23] allow a sender to send a message to a group of re-

ceivers such that each receiver can individually verify the message, using his individual shared

key ki with the sender. The sender is honest but receivers can be corrupted and attempt

to forge a message to be acceptable by an uncorrupted receiver. In a (k,N) multireceiver

message authentication system, there are N receivers and at most k − 1 receivers can be

corrupted.

Definition 39. A one-time (k, n)-multireceiver authentication code (multireceiver MAC)

with key (rs, r1, · · · , rn) with n receivers, and collusion size k − 1, is δ-secure if the best

success chance of any colluding set of receivers with access to a message, tag pair, (m, t =

MAC(m, rs)) in forging a different message, tag pair (m′, t′), where m 6= m′, and Ver((m′, t′), ri) =

1, is at most δ, and probability is over all unknown keys.

In the following we give two new constructions for multireceiver MACs that are used in

the SMT constructions in Section 6.4 for 1-round (0, δ)-SMT with N = 2t+1, and in Section

6.5 for 1-round (0, δ)-SMT with N = (2+c)t. Construction I can be seen as a generalization

of the construction in [23], when the sender sends a block of d messages. Construction II is

built on a new MAC.

Multireceiver MAC I

Let m = (m1, · · · ,md), where mi ∈ Fv′q , i = 1, · · · , d, be the message block.

• Key distribution: A trusted initializer does the following: (i) randomly generates d + 1

polynomials P1(z), P2(z), · · · , Pd+1(z), each of degree at most k − 1, over Fv′q ; chooses N

random distinct elements z1, z2, · · · , zN , where zi ∈ Fv′q , i = 1, · · · , N ; makes z1, z2, · · · , zN
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public and privately sends ri = (P1(zi), P2(zi), · · · , Pd+1(zi)) to each receiver i, for 1 ≤ i ≤

N and to the sender.

• Constructing authenticated messages: The sender computes the authentication tag as:

A(z) = P1(z)m1 + P2(z)m2 + · · ·+ Pd(z)md + Pd+1(z).

and broadcasts the message and tag pair, (m1,m2, · · · ,md, A(z)).

• Verification: Receiver i accepts (m1,m2, · · · ,md, A(z)) if and only if A(zi) = P1(zi)m1 +

P2(zi)m2 + · · ·+ Pd(zi)md + Pd+1(zi) mod qv
′
.

The above scheme is a multireceiver MAC in which each key can be used to authenticate

a block of up to d messages. The size of tag is k and only depends on the collusion size,

rather than the total number of receivers.

The following Lemma is proved in Section 6.6.2.

Lemma 31. The best success chance of colluders, given a message and tag pair (m, t), in

forging (m′, t′) where m′ 6= m and Ver((m′, t′), ri) = 1, is at most q−v
′
, where qv

′
is the size

of the underlying finite field. Here i is an uncorrupted receiver.

Multireceiver MAC II

The multireceiver MAC is built on a new one-time MAC. The MAC uses message block

of size
(
t+2

2

)
and has forgery probability bounded by 2

qv′
. The multireceiver MAC can be

constructed by using polynomials for key elements. We skip the description of the underlying

MAC, and only present the multireceiver MAC.

Using the same notations and key distribution stage, as Construction I, we define:

MAC(m, r) = m1P1(zi) + · · ·+mtPt(zi) +mt+1P1(zi)
2 + · · ·+m2tPt(zi)

2 +m2t+1P1(zi)P2(zi)

+ · · ·+m(t+2
2 )−1Pt−1(zi)Pt(zi) + Pt+1(zi) = A(zi).

P1(z), P2(z), · · · , Pt+1(z) have degree t and the MAC function is over Fv′q . The MAC function

is taking all products of at most two polynomials from the set. {P1(zi), P2(zi), · · · , Pt(zi)}.
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Therefore there are total
(
t+2

2

)
− 1 coefficients over Fv′q . Finally Pt+1(zi) is used to mask the

result.

Lemma 32. The best success chance of colluders, given a message and tag pair (m, t), in

forging (m′, t′) where m′ 6= m and Ver((m′, t′), ri) = 1, is at most 2q−v
′
, where qv

′
is the size

of the underlying finite field. Here i is an uncorrupted receiver.

The proof outline is provided in Section 6.6.3.

6.3 One-round δ-RMT for N ≥ 2t + 1

We give a general construction of 1-round δ-RMT using a list decodable code and a multi-

receiver MAC. The sender (i) generates the key information for a multireceiver MAC and

assigns the receiver key ri to wire Wi, (ii) calculates the tag value and append it to the

message, and encode the message and tag pair using the list decodable code. The sender

sends the ith component of the code together with the key ri, on the wire Wi. The receiver,

parses the received word, decodes a list of codewords that are at distance at most t from the

corrupted codeword, and use the appended MAC to the message, and the keys that are sent

on each wire, to identify the sent message.

We give a general construction of 1-round δ-RMT using a list decodable code (FRS code)

and a multi-receiver MAC.

1. FRS Code: We use u-Folded Reed Solomon Code with length N over Fq with interpo-

lation parameter v.

2. Multi-receiver MAC: We use (t+ 1, N) multireceiver MAC II in Section 6.2.1.

The sender (i) select message vector m = (m0, · · · ,m(t+2
2 )v′−1) over Fq with v′ =

⌊
u(1−3σ)
t+1

⌋
.

The message vector can be mapped into x = (x0, · · · , x((t+2
2 )−1)) over Fv′q . (ii) generates the

key information for a multireceiver MAC and assigns the receiver key ri to wire Wi, (iii)
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calculates the tag value and append it to the message, and encode the message and tag pair

using the list decodable code. The sender sends the ith component of the code together with

the key ri, on the wire Wi. The receiver, parses the received word, decodes a list of codewords

that are at distance at most t from the corrupted codeword, and use the appended MAC to

the message, and the keys that are sent on each wire, to identify the sent message.

The details of this construction is given in follow:

RMT scheme for N = 2t+ 1

Alice does the following:

1. S generates t + 1 polynomials as key rs = (P1(z), · · · , Pt+1(z)), over Fv′q , each of

degree t, randomly and makes {z1, z2, · · · , zN}, zi ∈ Fv′q public. S generates MAC

code (x, A(z)) in follow,

A(z) =MAC(x, rs) = x1P1(zi) + · · ·+ xtPt(zi) + xt+1P1(zi)
2 + · · ·+ x2tPt(zi)

2

+ x2t+1P1(zi)P2(zi) + · · ·+ x(t+2
2 )−1Pt−1(zi)Pt(zi) + Pt+1(zi) mod qv

′
.

2. For each wire Wi, S generates the key ri for authentication,

ri = (P1(zi), P2(zi), · · · , Pt+1(zi)), for i = 1, · · · , N

The tag can be obtained as follow,

A(zi) =MAC(x, ri) = x1P1(zi) + · · ·+ xtPt(zi) + xt+1P1(zi)
2 + · · ·+ x2tPt(zi)

2

+ x2t+1P1(zi)P2(zi) + · · ·+ x(t+2
2 )−1Pt−1(zi)Pt(zi) + Pt+1(zi) mod qv

′
.

3. The message block of FRS code is composed of the information part and the MAC

part. The structure of message is, (x, A(z)). The dimension of FRS code is (
(
t+2

2

)
−

1)v′ + tv′ + v′.
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4. S encodes the message to codeword c according to FRS encoding algo-

rithm in section 3.2.1 by choosing the parameter v, u, q which makes the re-

ceiver’s decoding capability up to t. Each channel j transmits a vector

(f(γju), f(γju+1), · · · , f(γju+u−1)) and rj.

Bob does the following:

1. R receives from wire i the vector (Yi,1, Yi,2, · · · , Yi,u, r̂i) from channel i, where r̂i

is the corrupted ri and Yi,j ∈ Fq, j = 1, · · · , u from the ith component of the FRS

code.

2. R applies FRS list decoding to the received codeword introduced in Section 3.2.1 to

the received vector Y with adversarial errors and decode a list of messages including

the correct one.

3. R verifies the authentication vector (MAC(x, r1) = A(z1),MAC(x, r2) =

A(z2), · · · ,MAC(x, rN) = A(zN)).

4. If there is a unique message such that at least t+ 1 equations hold, R outputs the

message (m0,m1, · · · ,m((t+2
2 )−1)v′−1) which is the secret S sent. Otherwise output

⊥.

Theorem 19. In the above construction δ ≤ t+1
qv′−v+1 and the transmission rate is optimal.

Proof. First we need to prove that the received codeword are decodable. According to the

linear interpolation decoding algorithm, the decoding condition are satisfied if we choose

parameter v = (N/σ) − 1, u = v3 and v′ =
⌊
u(1−3σ)
t+1

⌋
. We also assume that t ≥ 2 and the

case of t = 1 can be proved similarly.
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t+ 1
(1)
> σ +

t+ 2

2
+ 1− 3σ

(2)

≥ σ +
t+ 2

2
+

(t+ 1)v′

u
(3)

≥ σ +
(
(
t+2

2

)
− 1)v′ + (t+ 1)v′

u
(4)

≥ N
1

v + 1
+

(
(
t+2

2

)
− 1)v′ + (t+ 1)v′

u
(5)

≥ N
1

v + 1
+
uRN

u
(6)

≥ N
1

v + 1
+N

v

v + 1

uR

u− v + 1
(7)

≥ N(
1

v + 1
+

v

v + 1

uR

u− v + 1
).

(6.1)

Here (1) is from t ≥ 2 and σ > 0. (2) is from v′ ≤ u(1−3σ)
t+1

, and it implies 1−3σ ≥ (t+1)v′

u
. (3)

is from v′ ≤ u(1−3σ)
t+1

. Since σ > 0, it implies (t+1)v′

u
< 1, and so there is t+2

2
≥ t+2

2
(t+ 1)v

′

u
≥

(t+2
2 )−1)v′

u
. (4) is from v = N

σ
− 1. (5) is from uRN =

(
t+2

2

)
v′ ≤ (

(
t+2

2

)
− 1)v′ + (t+ 1)v′. (6)

is from u ≥ v3, and implies 1
u
≥ v

(v+1)(u−v+1)
.

Next we prove the reliability of RMT. We use the multireceiver MAC II (Section 3.2.1).

From lemma 32, the probability that another message m′ 6= m pass the authentication is

less than 2/qv
′
. The size of messages that are list decoded is less than qv−1. Therefore the

probability that any of other message pass at least one uncorrupted wire authentication is

at most 2
qv′−v+1 . Because there are totally t + 1 uncorrupted wires, the reliability is at least

1− 2(t+1)

qv′−v+1 .

Finally the transmission rate is optimal,

uN + (v′t+ v′)N

(
(
t+2

2

)
− 1)v′

= O(1).

The computational time is exponential since the list size is qv, and each must be verified.

Since v = O(N), the computational complexity of decoding algorithm is O(qN) which is not

efficient.
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Comparison with Related Work

Our protocol has the lowest δ and the optimal 1-round δ-RMT protocol of [67]. Their δ

is N2(N−1)
q

(with field size q ≥ N2(N−1)
δ

), whereas our δ is t+1
q

(with field size q > Nu).

Table 6.1: Comparison with 1-round δ-RMT protocols for N = 2t+ 1

RMT Scheme Comp. F = q δ Optimality
Outputs
Incorrect
Message

Patra et al. [67] Poly. ≥ N2(N−1)
δ ≤ N2(N−1)

q Yes No

This Work Exp. ≥ Nu ≤ t+1
q Yes No

Table 6.1 compares our protocol with 1-round δ-RMT protocols that have the property

that the output is either the correct message or ⊥. For simplicity of comparison we have

used v′ = v, resulting in δ = t+1
q

.

6.4 One-round (0, δ)-SMT for N ≥ 2t + 1

To construct an SMT from the RMT above, we need to ensure that the view of the adversary

does not leak any information about the message m, chosen by the sender.

We give an explicit construction for a 1-round (0, δ)-SMT protocol, first for the minimum

connectivity (N = 2t+1), and then extend it to higher connectivities. The construction uses

the instantiation of the 1-round δ-RMT construction above given in Section 6.3 and adds

sufficient randomness in the encoding stage, to guarantee perfect privacy. The resulting

protocol will have optimal transmission rate, and provides the highest reliability compared

to all other known 1-round (0, δ)-SMT protocol in the literature.

The 1-round (0, δ)-SMT Protocol for N = 2t + 1 is constructed from FRS code and

multireceiver MAC.

1. Multireceiver MAC: We use the Multireceiver MAC I in Section 6.2.1 over Fv′q .
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2. FRS Code: We use Folded Reed-Solomon code with length N , with interpolation

parameter v.

We use FRS code over Fq. The message block consists of three parts: (i) information

part m = (m0,m1, · · · ,mσu−1),mi ∈ Fq. The message vector can be mapped into x =

(x1, · · · , xd), xi ∈ Fv′q , with d =
⌈
σu
v′

⌉
. (ii) ut random elements (a1, a2, · · · , aut), ai ∈ Fq that

are used to ensure privacy; (iii) tags MAC(x, rs), calculated using the multireceiver MAC.

That is the message block of FRS code is given in following:

{m0,m1, · · · ,mσu−1, a1, a2, · · · , aut,MAC(x, rs)}.

The ut random elements appended to the information block will ensure perfect privacy.

The total length of the message block to be encoded by the FRS code is ut+ σu+ v′(t+ 1).

Here σ < 1 is a constant to be determined later.

The codeword of the FRS code that will be constructed for this message block, will have

N components, each an element of Fuq . The adversary’s view will contain t components, of

the FRS code.

SMT Protocol for N = 2t+ 1

Alice does the following:

1. S randomly generates the secret key from d + 1 polynomials rs =

(P1(z), · · · , Pd+1(z)). Each polynomial is over Fv′q with degree at most t. S ran-

domly chooses {z1, · · · , zN}, zi ∈ Fv′q , and makes them public. For each wire Wi, S

generates the verification key ri as follow,

ri = (P1(zi), P2(zi), · · · , Pd+1(zi)), for i = 1, · · · , N.
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2. S generates the multireceiver MAC code (m, A(z)). The tag polynomial A(z) of

multireceiver MAC code is constructed as follow,

A(z) = MAC(x, rs) = P1(z)x1 + P2(z)x2 + · · ·+ Pd+1(z)xd.

3. S generates a randomness vector a = (a1, · · · , aut). The message block of FRS code

is (x, a, A(z)), and is composed of the information part, the random part and the

tag part. The dimension of FRS code is ut+ σu+ tv′ + v′.

4. S encodes the message block into codeword using the FRS encoding algorithm in

Section 3.2.1. Each wire j transmits a vector (f(γju), · · · , f(γju+u−1)) and rj.

Bob does the fullowing:

1. The receiver receives from wire i the vector (Yi = (Yi,1, Yi,2, · · · , Yi,u), r̂i). Here r̂i

is the (possibly) corrupted ri, and Yi,j ∈ Fq, j = 1, · · · , u form the ith component

of the FRS code.

2. The receiver applies FRS list decoding introduced in Section 3.2.1 to the received

vector Y = (Y1, · · · , YN), and output a decoding list L. Each element in decoding

list is in the form (x, a, A(z)) ∈ L.

3. For each message x in the list L, the receiver checks the valid of authentication

code,

MAC(x, r1)
?
= A(z1),MAC(x, r2)

?
= A(z2), · · · ,MAC(x, rN)

?
= A(zN).

If the equalities hold in at least t+1, the message is considered acceptable. If there

is unique message acceptable, R outputs the message m. The decoder outputs ⊥

if more than one acceptable message is found.
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Theorem 20. The SMT protocol described above is a (0, δ)-SMT for N = 2t + 1, with

δ ≤ t+1
qv′−v+1 . The transmission rate is O( N

N−t). The computational time is exponential in N .

First we show the perfect secrecy of SMT protocol.

Lemma 33. The SMT protocol is perfectly secure.

Proof. The adversary knows t positions of the FRS codeword which is t blocks, each of u

components of the underlying RS code. The dimension of the FRS code (and RS code) is

ut + σu + tv′ + v′. This leaves σu + tv′ + v′ elements (coefficients of the polynomial that

is associated with the underlying RS codeword), that are independent from the adversary’s

view. We note that only σu elements forms the information block m and the remaining part

is the verification information.

This gives in total Fσuq possible codewords for correct messages and so the adversary will

be fully uncertain about the information block m.

Second we show the reliability of SMT protocol.

Lemma 34. The probability of decoding error of SMT protocol is no more than δ ≤ t+1
qv′−v+1 .

Proof. First we show the decoding condition of FRS code is satisfied.

We must choose the folding parameter u and v, and the finite field size q, to ensure

that decoding succeeds of decoding to find a list of all codewords receiver decodes a list

of codewords which is that are within radius ut from the received corrupted transcript (t

errors in the FRS code). Since the FRS code will have length N = 2t + 1 and dimension

k = ut + σu + tv′ + v′, according to the decoding condition of FRS code (Lemma 4), it

implies,

t+ 1 ≥ N(
1

v + 1
+

v

v + 1

uR

u− v + 1
).
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We set the parameter v = (N/σ)− 1, u ≥ v3, and v′ =
⌊
u(1−3σ)
t+1

⌋
, where σ is small constant

(σ ≤ 1/4). It implies,

t+ 1
(1)
> 2σ + t+ 1− 3σ

(2)

≥ σ +
ut+ σu+ (t+ 1)v′

u
(3)

≥ N
1

v + 1
+
ut+ σu+ (t+ 1)v′

u
(4)

≥ N
1

v + 1
+

v

v + 1

ut+ σu+ (t+ 1)v′

u− v + 1
(5)

≥ N
1

v + 1
+

v

v + 1

k

u− v + 1
(6)

≥ N(
1

v + 1
+

v

v + 1

uR

u− v + 1
).

(6.2)

In the above, (1) is from σ > 0, (2) is from v′ ≤ u(1−3σ)
t+1

, and implies 1 − 3σ ≥ (t+1)v′

u
. (3)

is from v = (N/σ) − 1. (4) is from u ≥ v3, and so v
(v+1)(u−v+1)

≤ 1
u
. (5) is by replacing

ut+ σu+ (t+ 1)v by k. (6) is by replacing R with k/N .

The adversary controls t lines and so t positions (u components each) of FRS code are

changed. Without loss of generality assume the first t wires are corrupted by the adversary

and so the last t+ 1 wires are private.

To break the reliability of the protocol the adversary needs to be able to change the

values sent over the corrupted wires, such that the list of codewords resulting from the list

decoding step, contain not only the correct message but also another codeword that encodes

a message m′ for which at least t + 1 verification equations are satisfied. This will result

in more than one message passing the verification test of the protocol and so, the protocol

outputs ⊥.

Note that the adversary controls the verification keys of the t corrupted wires. We

assume a powerful adversary (it is unclear how this adversary can be constructed) that can

change the t wires such that the verification tests of those t wires are successfully passed

for a message x′ = m′. Since the adversary does not know the verification keys of wires
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t+ 1, t+ 2, · · ·N , the best success chance in forging one of these values is,

Pr[MAC(x′, rt+1) = A′(zt+1) ∨ · · · ∨MAC(x′, r2t+1) = A′(z2t+1)]

≤ Pr[MAC(x′, rt+1) = A′(zt+1)] + · · ·+ Pr[MAC(x′, r2t+1) = A′(z2t+1)] =
t+ 1

qv′
.

(6.3)

The size of the decoded list is at most qv−1. The probability that any other x′ which is

different from the correct one m passing through the authentication is (t+1)

qv′
× qv−1.

Last we show the efficiency of SMT protocol.

Transmission rate: The transmission rate is uN+(v′d+v′)N
σu

= O(N) and it is optimal for

1-round (0, δ)-SMT.

Computation complexity: The list size is at most qv−1 and each must be verified. Since

v = O(N), so the complexity of decoding algorithm is O(qv) which is not efficient.

Comparison with Related Work.

Table 6.2 compares the protocol with 1-round (0, δ)-SMT protocols that have the property

that the output is either the correct message or ⊥. For simplicity of comparison we have

used v′ = v, resulting in δ = t+1
q

.

Table 6.2: Comparison with 1-round (0, δ)-SMT Protocols for N = 2t+ 1

SMT Comp. Fq = q δ Optimality
Outputs
Incorrect
Message

Kurosawa et al. [48] Exp. ≥
(

N
t+1

)
−
(
N−t
t+1

)
− 1 ≤ ( N

t+1)−(
N−t
t+1 )

q+1 Yes No

Srinathan et al. [80] Poly. ≥ 2N3 ≤ N3

q Yes No

Desmedt et al. [22] Poly. ≥ t(t+ 1) ≤ t(t+1)
q No No

Tuhin et al. [83] Poly. ≥ t(t+ 1) ≤ t(t+1)
q Yes No

This Work Exp. ≥ Nu ≤ t+1
q Yes No
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6.5 One round (0, δ)-SMT for N = 2t + ct

The construction in Section 6.4 is for minimum connectivity and is not computationally

efficient. One question is if increasing connectivity can result in efficient computation for

decoding.

We consider the case that N = 2t + ct, c > 1
t
.We use the same approach of using FRS

code and a multireceiver MAC, but use Construction II of multireceiver MAC with param-

eters that allow the SMT construction to have optimal rate and efficient computation. The

structure of the message is (m0,m1, · · · ,m((t+2
2 )−1)v−1, a1, a2, · · · , aut,MAC(x, r)). The infor-

mation block m = (m0,m1, · · · ,m((t+2
2 )−1)v−1) is mapped into x = (x0,x1, · · · ,x(t+2

2 )−1).

The multireceiver MAC is as follows:

A(zi) = MAC(x, r) =x0 + x1P1(zi) + · · ·+ xtPt(zi) + xt+1P1(zi)
2 + · · ·

+ x2tPt(zi)
2 + x2t+1P1(zi)P2(zi) + · · ·+ x(t+2

2 )−1Pt−1(zi)Pt(zi) + Pt+1(zi).

The degree of P1(z), P2(z), · · · , Pt+1(z) is t and the MAC function is over Fvq , where v is the

parameter of FRS code (instead of Fv′q for N = 2t+ 1).

We need to choose parameter that makes the receiver decode up to t errors, where t is

the errors. The number of correct wires t+ ct is

t+ ct > N(
1

v + 1
+

v

v + 1

uR

u− v + 1
).

(6.4)

We assume that u = c0t and show that a constant value for v = v0 and t� v0, the value

of c that allows successful decoding should satisfy c > v0
c0

+ 1
v0

. The details are in Appendix

6.6.1. Table 6.5 below gives example values for v0 and c, and the size of the resulting list.

The complete protocol is given in the next Section.

SMT Protocol for N = (2 + c)t, c > 1
t
.
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Table 6.3: Values of c for different values of v0

v0 list size c

v0 = 1 q0 c ≈ 1
c0

+ 1

v0 = 2 q c ≈ 2
c0

+ 1/2

v0 = 3 q2 c ≈ 3
c0

+ 1/3

Alice does the following:

1. The sender randomly generates t + 1 polynomials P1(z), · · · , Pt+1(z) over Fq of

degree at most t, randomly chooses (z1, z2, · · · , zN), zi ∈ Fq and make them public.

Then for each wire Wi, the sender generate the key ri given by,

ri = (P1(zi), P2(zi), · · · , Pt+1(zi)), i = 1, · · · , N.

The tag which is composed by the coefficient of polynomial, can be obtained by

computing

A(z) =x1P1(z) + · · ·+ xtPt(z) + xt+1P1(z)2 + · · ·

+ x2tPt(z)2 + x2t+1P1(z)P2(z) + · · ·+ x(t+2
2 )−1Pt−1(z)Pt(z) + Pt+1(z).

2. The message (m0,m1, · · · ,m((t+2
2 )−1)v0−1, a1, a2, · · · , aut, A(z)) is composed of the

information part, random part and MAC part, where (m0,m1, · · · ,m((t+2
2 )−1)v0−1)

is the secret message and (a1, a2, · · · , aut) are random values. The dimension of FRS

code is ut + (
(
t+2

2

)
− 1)v0 + tv0 + v0. The parameters v0, u, q make the receiver’s

decoding capability up to t errors (for FRS code).

3. The sender encodes the message to a codeword c using the FRS encoding algorithm.

Each wire j transmits a vector (f(γju), f(γju+1), · · · , f(γju+u−1), rj) for 1 ≤ j ≤

2t+ ct.

Bob does the following:
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1. The receiver receives the vector (ri, Yi,1, Yi,2, · · · , Yi,u) from wire i.

2. The receiver applies FRS list decoding in Section 3.2.1 to the received vector Y

and decode a list of messages. The list will always include the correct message.

3. The receiver constructs the authentication vector (MAC(x, r1)
?
=

A(z1),MAC(x, r2)
?
= A(z2), · · · ,MAC(x, rN)

?
= A(zN)) to decide whether the

decoded message acceptable. A message is acceptable if there are at least

t + 1 MAC function passing the verification. The decoder outputs ⊥ if more

than one acceptable message is found. Otherwise, it outputs the message

(m0,m1, · · · ,m((t+2
2 )−1)v0

) from the first (
(
t+2

2

)
− 1)v0 positions of the decoded

message.

Theorem 21. The protocol above is a 1-round (0, δ)-SMT for N = (2 + c)t with optimal

transmission rate, and polynomial time decoding. The value of δ is given by 2(t+1)
q

and is the

smallest among all known protocols with the same connectivity.

Proof. Perfect Privacy:

The adversary knows ut positions of codeword, while the dimension of FRS code is

ut +
(
t+2

2

)
v0 + (t + 1)v0. Therefore the first ut elements are unknown to adversary and

independent with the randomness sent in each wire. There are totally F(t+2
2 )v0

q possible

codewords that he can not make sure which one corresponds to the correct message. So

he has no information for the value (m0,m1, · · · ,m(t+2
2 )v0−1) which is independent with the

randomness sent in each wires.

δ-Reliability:

The correct message m passes through the authentication is passed though at least t+ ct

of the authentication test. Any other messages m′ in the list decoding which are different

from the correct one are failed to be checked with probability at most 2(t+ct)
qv0

. So the reliability
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of 1-round SMT for N = 2t+ ct, c > 1/t using list decoding is at most 1− 2(t+ct)
q

.

Transmission rate:

The total number of elements that are transmitted is uN + (2t + ct)(t + 1)v0. The

transmission rate is (2t+ct)c0t+(2t+ct)(t+1)v0

(t+2
2 )v0

which is O(1). Therefore our 1-round (0, δ)-SMT

for N = 2t+ ct is optimal.

Computation Complexity:

The decoding of FRS code needs O((Nu log q)2) computation. The authentication needs

O(qv0) computation. Therefore the total time is O(qv0) which is efficient.

Comparison with Related Work

There has been two other optimal (in transmission rate) and efficient (in computation) 1-

round (0, δ)-SMT protocols for higher connectivity (N = (2 + c)t, c > 1
t
) [72, 83]. But our

protocol using list decoding of FRS codes and multi-receiver MAC has better reliability than

both of them. The comparison with related work is outlined in Table 6.5.

Table 6.4: Comparison with 1-round (0, δ)-SMT protocols for N = 2t+ 1

Author Comp. δ Optimality

Outputs

Incorrect

Message

Safavi-Naini et al. [72] Poly. ≤ Nt(t+1)
q Yes Yes

Tuhin et al. [83] Poly. ≤ t(t+1)
q Yes No

This Work Poly. ≤ 2(t+1)
q Yes No
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6.6 Proof of Chapter 6

6.6.1 Details of 1-round (0, δ)-SMT for N = (2 + c)t

v

v + 1
ct >

t− tv
v + 1

+
v

v + 1

c0t
2 +

(
t+2

2

)
v + (t+ 1)v

c0t− v + 1

c >
1

v
− 1 +

c0t
2 +

(
t+2

2

)
v + (t+ 1)v

c0t2 − vt+ t
.

(6.5)

If we choose constant value v = v0 and t � v0, the value c that promise the receiver can

apply FRS code to the list decoded messages is

c >
v0

c0

+
1

v0

.

6.6.2 Proof of Lemma 31

Proof. Consider the case that there are k− 1 receivers who want to cheat an honest receiver

i. Colluders want to forge a message and tag pair, m′ = (m′1,m
′
2, · · · ,m′d, A′(z)) where

(m′1,m
′
2, · · · ,m′d) 6= (m1,m2, · · · ,md). The colluders know their k−1 keys, but do not know

the secret key of user i, given by P1(zi), P2(zi), · · · , Pd(zi), Pd+1(zi). The known message and

tag pair is given by,

A(zi) = P1(zi)m1 + P2(zi)m2 + · · ·+ Pd(zi)md + Pd+1(zi) mod qv
′
.

Since the forgery m′, A′(z), must pass the receiver i verification, it should satisfy the

equation:

A′(zi) = P1(zi)m
′
1 + P2(zi)m

′
2 + · · ·+ Pd(zi)m

′
d + Pd+1(zi) mod qv

′
.

It means the secret authentication key of receiver i satisfies,

∆A(zi) = P1(zi)∆m1 + P2(zi)∆m2 + · · ·+ Pd(zi)∆md mod qv
′
.
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So, there are qv
′(d−1) choices for receiver i’s secret key P1(zi), P2(zi), · · · , Pd(zi). On the

other hand, P1(zi), P2(zi), · · · , Pd(zi) are totally random in adversary’s view because she

sees at most k−1 points of the polynomials P1(zj), P2(zj), · · · , Pd(zj) where j is a corrupted

receiver, and the values P1(zi), P2(zi), · · · , Pd(zi) are blinded by Pd+1(zi). Therefore the

probability that P1(zi), P2(zi), · · · , Pd(zi) satisfy the above equation is 1/qv
′
. This means

that the probability that the colluders success chance in constructing another message and

tag pair m′, A′(x) that passes the honest receiver authentication is less than 1/qv
′
.

6.6.3 Proof of Lemma 32

Proof. For any message m′, A′(z) the chance of passing through the honest receiver’s au-

thentication is to satisfy:

MAC(m′, r) = m′1P1(zi) + · · ·+m′tPt(zi) +m′t+1P1(zi)
2 + · · ·+m′2tPt(zi)

2 +m′2t+1P1(zi)P2(zi)

+ · · ·+m′(t+2
2 )−1

Pt−1(zi)Pt(zi) + Pt+1(zi) = A′(zi).

which means the vector P1(zi), P2(zi), · · · , Pt(zi) satisfying

∆m1P1(zi) + · · ·+ ∆mtPt(zi) + ∆mt+1P1(zi)
2 + · · ·+ ∆m2tPt(zi)

2 + ∆m2t+1P1(zi)P2(zi)

+ · · ·+ ∆m(t+2
2 )−1Pt−1(zi)Pt(zi) = ∆A(zi).

There are totally 2qv
′(t−1) of (P1(zi), P2(zi), · · · , Pt(zi)) satisfying the polynomial. Because

the number of random values for (P1(zi), P2(zi), · · · , Pt(zi)) is qtv
′
, the adversary’s success

probability is at most 2/qv
′
.
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Chapter 7

Conclusion

Secure and reliable communication over adversarial channel is a growing area in information

security. In this dissertation, we considered four secure communication models: limited view

adversary channel, adversarial wiretap channel, adversarial wiretap channel with public dis-

cussion, and Secure Message Transmission. We studied these models and proposed protocols

to achieve secure communication in the models. We summarize our result and propose future

research directions.

7.1 Limited View Adversarial Channel

We formalized the model of limited view adversary, and proposed the definition of LV codes

to provide reliable communication. We defined the capacity as the highest rate that is

achievable over a limited view adversary channel. We gave an upper bound on the rate of

LV code families. We gave two efficient constructions of LV code families. The first LV-code

construction achieves the bound with reading and writing parameter Sr = Sw. The second

LV-code construction achieves the bound with equality when ρr < 1− ρw and so is capacity

achieving.

LV codes provide a coding theoretic framework for the study of 1-round symmetric δ-

RMT. The construction of RMT protocol obtained from the LV code in this dissertation has

the lowest δ, and provides security for the case that Sr 6= Sw.

Open questions

• Construction of LV code families with ρr > 1 − ρw and small designed δ, for example

δ < 1/2, is an open question. A list decodable code corrects errors up to 1− ρw where ρw
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is the fraction of errors and assuming the adversary can see the whole codeword (ρr = 1)

before constructing the error vector. We showed that unique decoding for this fraction

error is possible if the read fraction ρr is bounded. Finding the relationship between the

list size and ρr is an open question.

• Our current LV code assumes that the message transmission is one-way from the sender

to the receiver. Extending this work to include interaction and also other resources such

as extra channels, or allowing interaction are future works.

7.2 Adversarial Wiretap Channel

We proposed a model for active adversaries in wiretap channels, derived secrecy capacity

and gave an explicit construction for a family of capacity achieving codes. The model is

a natural extension of Wyner wiretap models when the adversary is active and can use its

view of the communication channel to introduce adversarial noise in the main channel. In

our model, the adversary’s read capability (choosing the codeword components that will be

seen) is the same as wiretap II model. However unlike wiretap II in which communication

over the main channel is noiseless, we allow this channel to be corrupted by the adversary’s

additive noise. The number of components affected by the noise is a constant fraction of the

codeword length. We allow the adversary’s eavesdropped information to be used to construct

the adversarial noise. Previous work on active adversaries (See Section 4.1) consider an

eavesdropper whose view of communication is not available to the jammer adversary that

corrupts the communication.

AWTP model provides a framework for studying SMT which so far had been studied

independent from wiretap model. The fruitfulness of this relation is demonstrated by deriving

a new lower bound on the transmission rate of 1-round (ε, δ) symmetric SMT protocols.
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Open questions

• The AWTP channel only assumes secure message transmission in one-way. More general

settings such as allowing interaction between the sender and the receiver will be interesting

directions for future work.

• Key agreement problem has been considered over wiretap channel with passive eavesdrop-

ping adversary [62]. But in reality, the adversary can implement active attacks to the

channel of key agreement protocol. So another important direction for future work is the

study of key agreement problem over adversarial wiretap channel model.

• We showed the upper bound on the rate of adversarial wiretap channels. This bound

is for any alphabet size, and for small alphabets such as F2 may not be tight. Proving

upper bounds on the rate of an adversarial wiretap channel with constant size alphabets

and in particular binary alphabets, remains a challenging open problem. Our adversarial

wiretap code is constructed over large alphabets. Constructing of capacity achieving codes

for constant size alphabets and in particular binary alphabets, remain a challenging open

problem.

• Extending the model to network setting, where each node is connected to a number of

nodes and a message passes through a number of intermediate nodes to reach the desti-

nation remains an interesting open question.

7.3 Adversarial Wiretap Channel with Public Discus-

sion

We motivated and introduced AWTPPD protocol, where Alice and Bob, in addition to the

AWTP channel, have access to a public discussion channel and showed that with this new

resource, secure communication is possible even when ρr + ρw ≥ 1 as long as ρ < 1. We
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derived an upper bound on the information rate, and a lower bound on the number of

message rounds of protocols that provide ε-secrecy and δ-reliability, and constructed an

optimal protocol family that achieve both these bounds. We showed the relationship between

AWTPPD protocol and (ε, δ)-SMT[ows]-PD protocols in which wires are used by Alice only,

and gave the construction of an optimal (ε, δ)-SMT[ows]-PD protocol with minimum number

of message rounds. A three-round protocol SMT-PD (two-way wires) with the same rate

had been constructed in [75]. Our construction shows that assuming one-way communication

over wires does not affect the number of message rounds of the optimal protocols.

Open questions

• AWTPPD protocols remove the restriction of ρr + ρw ≤ 1 and allow secure communication

when ρr + ρw ≥ 1 as long as |Sr ∪ Sw| < N . In our model although we allow interaction,

but the AWTP channel is one-way. An interesting open question is to obtain rate and

lower bounds for round complexity for the case that interaction over the AWTP channel

is possible.

• Our current AWTPPD protocol is considered over interactive public discussion channel.

This needs authenticated public discussion channel from sender to receiver, and vice versa.

An open question is to construct AWTPPD protocols over one-way AWTP channel with one-

way PD channel only.

7.4 Secure Message Transmission

In Chapter 6 we show that 1-round δ-RMT and (0, δ)-SMT can be constructed from list

decodable code and MAC. The approach is particularly interesting because, (i) it is general

and applicable to any connectivity including N = 2t + k, where k is a constant, (ii) relies

on well-studied mathematical objects (list decodable codes and MACs) and so allow a wide

range of instantiations, and direct translation of advances in those areas into better con-

154



structions for 1-round δ-RMT and (0, δ)-SMT, and finally (iii) resulting in proofs of security

and reliability to be straightforward.

Open questions

• Instantiation of this general approach, using FRS codes and our proposed multireceiver

MACs result in constructions that have optimal transmission rates and the smallest δ,

when N = 2t + 1 and N = (2 + c)t. For N = 2t + 1 however, the protocols are not

computationally efficient, and we leave construction of protocols that achieve the same

performance with efficient decoding, as an interesting open problem.

• (0, δ)-SMT protocol has perfect security and δ decoding error probability. The SMT

protocol with lower δ decoding error probability will make receiver high reliability to

recover the correct message. Another open question is how to design (0, δ)-SMT protocol

with lower decoding error probability.

• The lower bound of decoding error for (0, δ)-SMT has been considered by Kurosawa et

al. [48]. But there is a gap between the (0, δ)-SMT protocol with lowest decoding error

(Table 6.2) and the lower bound on decoding error (Corollary 2 [48]). Finding a better

lower bound for (0, δ)-SMT protocol remains a challenging open question.
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