
Title: Rank and Response Combination From Confusion Matrix Data
Author name: Dr. J.R. Parker
Address: Department of Computer science

University of Calgary
2500 University Dr. NW
Calgary, Alberta, Canada
T2N 1N4

403 220 6784 (Office)
403 284 4707 (FAX)
Abstract:
The use of prior behavior of a classifier, as measured by the confusion matrix, can yield useful information for

merging multiple classifiers. In particular, response vectors can be estimated and a ranking of possible classes can be
produced which can allow Borda type reconciliation methods to be applied. A combination of real data and the simu-
lation of multiple classifiers is used to evaluate this idea, and to compare with eleven other classifier combination
techniques. Millions of classifications were used in the evaluation.



Rank and Response Combination From Confusion Matrix Data

J.R. Parker
Laboratory for Computer Vision
Department of Computer Science

University of Calgary
Calgary, Alberta, CANADA

Abstract
The use of prior behavior of a classifier, as measured by the confusion matrix, can yield useful information for
merging multiple classifiers. In particular, response vectors can be estimated and a ranking of possible classes can be
produced which can allow Borda type reconciliation methods to be applied. A combination of real data and the
simulation of multiple classifiers is used to evaluate this idea, and to compare with eleven other classifier
combination techniques. Millions of classifications were used in the evaluation.
1.  Introduction

In the process of designing vision systems and pattern analysis algorithms, it is natural that a variety of techniques
be tried, with the overall goal of improving the rate at which patterns can be correctly classified. Many diverse algo-
rithms each have strengths and weaknesses, good ideas and bad. One way to take advantage of this variety is to apply
many methods to the same recognition task, and have a scheme to merge the results [1,5,7,9,18]; this should be suc-
cessful over a wider range of inputs than would any individual method. Indeed, it is what will be demanded of such a
multiple classifier system: it must have a higher overall recognition rate than any of the individual classifiers that
make it up, or there is no point to the extra effort involved.

Composite classifiers can be made up of similar classifier types (e.g. a collection of neural networks) or of quite
diverse types (non-homogeneous) often using different classification techniques on different features. In the latter
case it is hoped to take advantage of the diversity in the classifier set to achieve an increase in robustness. Classifiers
can differ in both the nature of the measurements used in the classification process and in the type of classification
produced. A Type I classification is a simple statement of the class, a Type II classification is a ranked list of probable
classes, and a Type III classification assigns probabilities to classes [19]. Classifier combination algorithms more usu-
ally use Type III or Type I classifications as input, and many don’t allow mixed types.

It is, of course, possible to convert between types. What will be suggested is the use of ranked classifications as a
common form, and the use of variations on the Borda count [2] to combine the ranks into a single output classifica-
tion. The use of prior information about the classifiers, in the form of the confusion matrix, will be used to construct
response vectors and ranks, and it will be shown that there are significant advantages in doing this. Section 2
describes the Borda count and some variations and its relationship to other techniques; section 3 describes a mecha-
nism for creating ranked classifications from other types; and section 4 will give some results and comparisons with
eleven other known combination techniques. The goal of this work is to provide a reliable and robust way to combine
non-homogeneous classifiers without using any retraining. While a neural network may be one of the classifiers, it is
not expected that all or most classifiers will be; in other words, the methods described are not specific to particular
classifier types.

2.  Ranks and Borda Combination

Relatively few classifiers yield ranked classes directly, and rank combination techniques have not found much
favor in the literature. The basic idea is that a classifier determine a relative order for its output classes; for example,
the input was most likely of class B, less likely to be class C, and even less likely to be of class A. This example
would be output as a list: B C A. It is not necessary to know the degree to which class B is more likely than class C.
Indeed, if this is known then the output is of Type III and it is possible to take advantage of this extra knowledge. It is
also true that Type III classifications are most easily converted into ranks, merely by sorting the output in descending
order by probability and using the corresponding classes as the ranked list.



The problem encountered when attempting to merge ranked responses is as follows: given M rankings, each hav-
ing R choices (classes), which choice has the largest degree of support? For example, consider the following 3 classi-
fier/4 class problem [14]:

C1: a b c d C2: c a b d C3: b d c a

This case has no majority winner; the first place classifications a, b and c each get one vote.TheBorda count (also
calledBorda’s method of marks) is an ancient scheme for resolving this kind of situation, in which each alternative is
given a number of points depending on where in the ranking it has been placed. A selection is given no points for
placing last, one point for placing next to last, and so on, up to R-1 points for placing first. In other words, the number
of points (the weight) given to a selection is the number of classes below it in the ranking. In the above example, the
Borda counts are:

C1: a b c d C2: c a b d C3: b d c a

3 2 1 0 3 2 1 0 3 2 1 0

So, the count for class a = 3+2+0 = 5, the count for b = 2+1+3 = 6, and the count for c = 1+3+1 = 5. The ‘winner’
(the most likely class assignment in this case) is the class having the largest Borda count, which in this case is class b.

In the general case, each potential class assignment i=1,2,...R receives some number vi1 of first place votes, some
number vi2 of second place votes, and so on. These are combined to give a desirability index Di for each class. The
Borda method for computing Di is [4]:

(EQ 1)

The multipliers Wj are, in this case, just the number of classes having a lower rank than class j, or simply the value
R-j. The class with the largest numerical desirability index is assigned. Using the outputs of the M classifiers explic-
itly, given the ranks rik from classifier k on class i gives:

(EQ 2)

The vector rk is therank vector for classifier k, where a rank of 1 is the highest (first place) and a rank of R is the low-
est (last place). Thus, rki is the rank assigned by classifier k to class i.

One question that arises concerns whether combining ranked classifications is in any sense better than combining
type I, single classifications. However, consider the following 5 classifier/3 class problem:

C1: a b c C2: a b c C3: a b c C4: b c a C5:  b c a

The Borda counts area=6, b=7, c=2, which selects b as the winner. However, a simple majority of the first place
votes would have selecteda. This presents a conflict with the simple majority rule, and has been considered to be a
problem for centuries.

Behind the Borda count is the presumption that the second most likely classification is relatively near, in terms of
likelihood or preference, to the best classification; its rank is only one away it. Consider a four-candidate vote and the
result A B C D. The sum of the ranks is 6 (in general N(N-1)/2 for N candidates). Treating these as scores, A gets 3
and B gets 2; the difference (1) is 1/6 of the total, the same as the difference between B and C, and the difference
between C and D. In other words, a Borda count assumes that the distance between each candidate, once sorted, is the
same, a presumption of uniformity.

This uniformity assumption is often flawed in the case of classifiers, although it may be the best that can be done
for elections, the domain for which the Borda count was devised. Using prior information it is possible to more accu-
rately estimate the relative distances between the ranked classifications and use these distances to calculate better
weights for resolving the rankings in a Borda fashion [6]. Neural network output values can also be used for this pur-
pose.

What is being proposed is a variable weighting of the ranked items. One suggestion is to use the measured proper-
ties of the classifier directly to assign a value to each rank position. The ranking of classes was produced from a set of

Di Wjvij

j 1=

R

∑=

Di R rik–( )
k 1=

M

∑=



measurements of a target. Without loss of generality, let fik be a numerical value actually computed by classifier k for
class i, associated with the rank rik. Thus if rik>rjk then fik<fjk; that is, larger values of fik indicate higher (= better =
smaller numerically) ranks. The value of i for which rik=1 has the largest value of fik. The weights assigned to classes
next to each other in rank, say, rik and ri+1,k should be related to fik and fi+1,k. For classifier k, the vector  is called
theresponse vector.

One rather obvious weight is the value fik itself. The rule for combination in this case would be

(EQ 3)

in this case taking the largest value of Di as indicating the class assignment. If the values of f are probabilities, then
Equation 3 is the so-calledsum rule [10] in the case where all classes have the same representation. This is related to
the min rule, the max rule, and the median rule:

(EQ 4)

The more conservativeproduct rule also belongs in this group:

(EQ 5)

There is no compelling reason to use all of the classifiers, either, and some reason to favor the discarding of outli-
ers. In particular, Tumer [15,16] suggests using only ranks M1 through M2 for some 1<=M1<=M2<=R. This he
refers to as trimmed means, and it discards the highest and lowest ranked classifiers. It is, simply stated:

(EQ 6)

In the extreme this becomes the median rule. There may also be some value in considering only the extreme values
(largest and smallest), such as:

(EQ 7)

This is called thespread combiner.

Another idea is to ignore the specific probabilities and assign simple non-uniform values to the ranked items.
These weights could still be based on the typical observed distances between classes in a given classification, or
could be constructed to achieve a specific goal. For example, again using the 5 classifier/3 class problem above, recall
that the problem was that there was a conflict between the majority vote and the Borda count. Now use a weight of R-
1 on the first ranked class, (R-2)*w on the second, and (R-3)*w2 (=0) on the third. It becomes possible to find a
weight w such that the winner found by summing the weights over all classifiers is the majority winner. In this latter
instance the weight would be w=0.67; this use of constant weights is a generalization of the standard Borda count,
referred to aswBorda in further discussion.

Finally, there are methods for minimizing some of the problems with the standard Borda count, the most obvious
of which is the fact that it sometimes fails to find the majority winner. This has been discussed previously [11] in the
context of handprinted digits. The use of the Borda count [2], Condorcet criterion [3], and the Black[14] scheme for

f k

Di f ik

k 1=

M

∑=

max rule: max
k 1=

m
max

i 1=

R
f ik

min rule: max
k 1=

m
min
i 1=

R
f ik

median rule: max
k 1=

m
median

i 1=

R
f ik

max
k 1=

m
f ik

i 1=

R

∏

Di
1

M1 M– 2 1+
------------------------------ f ik

k M1=

M2

∑=

Di
1
2
--- f i1 f iR+( )=



combining these, were used to produce a combined classifier of five components that improved the recognition rate
from 96% to over 99%. Essentially, the Black scheme uses a Condorcet (pair-wise contest) winner if there is one, thus
guaranteeing that the majority winner, if one exists, will be the overall winner. If the Condorcet method results in a
tie, the Borda winner is chosen.

3.  Ranks From Simple Classifications

The previous discussion of reconciliation of ranked classifications is of little practical use unless such ranks are
available. Most classifiers yield Type I or Type III classifications, so the problem is one of converting from these into
ranks, and the question that remains is whether anything is lost or gained by doing so. Xu [19] used a collection of
four classifiers of handprinted digits, and explored the use of Bayesian methodology, Dempster-Shafer theory, and
voting to implement a combined classifier that improved the overall recognition rate to 98.9% from 93.9%. It was
suggested here that ranked classifications could be created from the confusion matrix (a posteriori probabilities of
each classification) of a Type I classifier. The assumptions are that, first, the behavior of the classifier is known and is
characterized in a confusion matrix and, second, that the prior behavior or the classifier is representative of its future
behavior. The larger the data set on which the classifier has been tested, the more thoroughly will the second assump-
tion be true.

A confusion matrix is a matrix in which the actual class or a datum under test is represented by the matrix row, and
the classification of that particular datum is represented by the confusion matrix column. The element M[i][j] gives
the number of times that a class i object was assigned to class j. The diagonal elements indicate correct classifications
and, if the matrix is not normalized, the sum of row I is the total number of elements of class I that actually appeared
in the data set. The columns of such a matrix can be used to convert from Type I to Type III classifications, which can
then be sorted to yield the ranks.

Consider a classifier that produces only a single output class (Type I) and that has been trained and tested on many
thousands of data elements. During the this process, the following confusion matrix was generated (assume there are
four classes):

Each row sums to 6000, which was the number of elements of each class in the data set. Now as an example, pre-
sume that this classifier issues a classification of A for a given input datum. From the first column of the confusion
matrix, it can be seen that the most likely actual class is A, the second most likely class is B, followed by D, and
finally C. This is a fair ranking of the possible classes based on the past history of the classifier. In other words, given
a classification of A:

5210/5850 will be correct (class A)

320/5850 will actually be class B

210/5850 will actually be class D

110/5850 will actually be class C

This is the scheme suggested for converting simple classifications into ranks. It will be accurate to the extent that the
classifier has been thoroughly trained.

Does this improve the results over those possible using only the simple classifications? Yes. For example, in an
experiment using five classifiers to recognize handprinted digits, a majority vote of the simple classifiers gives an

Table 1
 Example confusion matrix

Classified as
Class A

Classified as
Class B

Classified as
Class C

Classified as
Class D

Actual class A 5210 159 101 530

Actual class B 320 5090 111 479

Actual class C 110 28 5813 148

Actual class D 210 12 7 5771



overall recognition rate of 99.6%. Creating ranks from the same classifications and using a Borda count for combina-
tion improves this by 0.3% to 99.9%. Xu[19] achieves better improvements.

4.  Empirical Evaluation

One of the problems with the empirical evaluation of classifier combination algorithms is the need for vast
amounts of data. In this case, the data consists of classifier output from many different classifiers and a great many
individual classification tasks. This means that the input data, with ground truth, must exist, and the classifiers must
be correctly implemented. Even if sufficient data can be found, it has certain pre-defined properties that can’t be
altered. A classifier has a given recognition rate for a given type of data, and it may not be possible to provide all
desired combinations of characteristics. For example, a classifier combination algorithm may work well when all
individual classifiers operate at over 90% recognition, or when the classifiers have nearly the same rates. It is impor-
tant to be able to determine benefits and limitations, either from a theoretical basis or empirically.

For these reasons it was decided to use both real data and a classifier simulator. The latter would generate classifi-
cations having a specified correct rate for each class as specified by an input confusion matrix.

4. 1 Real Data

A small set of classifications was available from previous experiments on handprinted digits. It consisted of 2000
digits, each classified by five distinct schemes [11]. The first thousand digits were used for training, leaving the
remainder for testing. A single file was created containing all classifications and one confusion matrix for each classi-
fier, and this was used as data for each of the classifier combination methods. This will be called thedigits data set. In
addition, four data sets were selected from the UCI archive:iris, vehicle, segment, andwaveform. For these data, clas-
sifications were obtained using the WEKA system[17 ] using five schemes: 1R [8], naive Bayes (BAY), a decision
table (DT), a nearest 2-neighbor instance learner (IB2), and C4.5 [13]. In all cases the result is five sets of classifica-
tions which are to be combined. The basic error rates for each classifier on each set of data are summarized in Table 2.

Without further training or use of prior information, the best that can be done with simple classifications of this
kind is to combine them using a vote. This will be the base for comparison with the other techniques; if, by generating
ranks and using rank combining methods no improvement can be achieved, then the method fails. The majority vote
results were compared against those arrived at using a simple Borda count, the sum rule combiner, wBorda, the
median rule, the max and min rules, trimmed means, and the spread combiner.

In addition to these, two new test combiners were included. Random1 selects one of the five classifications at ran-
dom from each classifier for each class, and selects the maximum value in the response vectors. Random2 is similar,
but selects two distinct classifications at random and selects the maximum of the sum of the two response values.
These provide a minimal level of achievement for the combiners; a successful combiner should perform better than
Random1, and a good combiner should perform better than Random2. In the limit, Randomk as k->M becomes the
sum rule.

It should be noted that all data sets exceptdigits are based on multiple classifiers on the same features. The digits
set contains five quite distinct means of classifying visual objects, whereas the others simply apply a different classi-
fier to the same numeric data. Thedigits set should yield more robust classifications, as appears to be illustrated in
Table 3.

Table 2
 Error Rates for Single Classifiers (real data)

Digits Iris Segment Vehicle Waveform

1R 4.9 4.65 39.37 50.64 46.39

BAY 5.1 7.75 20.41 56.74 19.63

DT 5.4 4.65 14.14 41.28 32.69

IB2 6.7 4.65 10.10 42.70 28.05

C4.5 4.6 6.20 7.32 36.88 25.79



4. 2 Simulated Data

As before, let there be R possible classes. A real classifier is given an input pattern and produces either a classifi-
cation, which is an integer in the range 1..R, or is unable to classify the input pattern, a situation represented by the
classification value -1. A simulated classifier is given thea posteriori probabilities of each possible classification, as
represented by a confusion matrix, and the actual class of the input; it also produces a classification as before, but
based solely on the probabilities in the confusion matrix.

Of course, the confusion matrix does not tell all that can be told about the nature of a classifier. For only one exam-
ple, the misclassification of a class A object as class B may result from two different processes, for two quite distinct
reasons. The joint probability distribution associated with these two processes may well vary as a function of time, as
the nature of the input data changes. The complexity associated with this situation may well be manageable, but as a
first approximation the view will be taken that a classifier can be considered to be a single, possibly composite, pro-
cess having relatively simple measurable properties.

There are two ways that simulated data can be used to test the classifier combination methods. One is to generate
classifications based on the actual, measured performance of a known set of classifiers. This is done using the confu-
sion matrix of the known classifiers, and the result of the combination should be similar to that obtained using the real
data. The other method is to create confusion matrices having specified properties. In this latter case, the sum of the
diagonal elements represents the correct classification rate and the off-diagonal elements represent the errors that the
classifier can make.

A simulation module [12] generates simulated classifications, and an evaluation module implements the classifier
combination algorithms and measures the properties of the composite classifiers. The combination techniques under
consideration were as before, and each evaluation consists of 1000 individual classifications from each of five simu-
lated classifiers merged and compared with the known result. For each set of five simulated classifiers, 1000 evalua-
tions were performed and the results accumulated. Thus, five million simulated classifications were performed for
each set of generated classification matrices. This was repeated over a specified range of recognition rates, using the
same set of classifications for each combination method at each step so that they may be fairly evaluated.

Table 3
 Error Rates for Combination Algorithms (real data)

Digits Iris Segment Vehicle Waveform

Majority 0.60 4.65 10.85 42.70 20.83

Borda 2.60 5.43 10.85 38.72 24.65

Sum rule 0.30 4.65 6.02 33.05 18.28

Product rule 5.60 5.43 6.47 33.05 17.45

min rule 5.60 5.43 9.76 45.39 26.39

max rule 2.50 5.43 7.91 40.99 20.52

median rule 0.30 4.65 8.26 36.17 19.34

wBorda 0.20 4.65 9.11 35.60 18.88

trimmed
means

0.30 5.43 6.12 32.91 19.03

spread 2.4 4.65 7.02 35.60 18.01

Random1 3.7 6.20 13.49 43.12 27.92

Random2 1.2 6.20 8.01 36.74 22.91



All composite classifiers were compared against each other, for all recognition rates, and for various relationships
between classifiers; for classifiers all having identical recognition rates, for classifiers within 10% of each other
(near), and within 20% (disparate). For this simulation, the error rate was collected and used as the basis for the com-
parison. The results are given in Table 4 for those combination methods that performed well on the real data sets. The
first set of three columns show error rates for classifiers providing at least 90% recognition, which is followed by col-
umns for 75% and 50% respectively.

The simulated classifiers used in this test generate independent classifications, which may partly explain the suc-
cess of the product rule on these data. As a final test, another set of simulated data was generated that contained five
classifiers, three of which were correlated to the 0.95 level. The results of the combination algorithms on these data
was significantly different, as might have been predicted, and is summarized in table 5. In this case, all classifiers had
recognition rates within 10% of each other (near).

5.  Conclusions

In Table 2 the error rates for single classifiers give a minimum acceptable error for each data set; the combined
error rate, using whatever combination rule we choose, must be better than the best single error rate. The product rule
and the min rule fail this test ondigits; all fail on iris (but a few are as good as the best single classifier); only spread,
trimmed means, the product rule and the sum rule pass for thesegment data set; majority vote, Borda, min and max
rules, and random1 fail onvehicle data; and the same methods plusrandom2 fail on waveform data. Only the sum
rule was as good or better than all single classifiers on all of the real data sets. The original data from the classifiers
was simple Type I classifications, and the response vectors on which the sum rule was based came from the confusion
matrices for the simple classifiers. It appears that this scheme is useful in practice on real data.

The results from the simulated data are more difficult to summarize. Table 4 shows a sample of the results
obtained by varying the specified recognition rates on the simulated classifiers. While not ‘real’ data, these represent
more controlled experiments than are possible with actual classifiers. All of the combination methods except for
Random1 perform better than the majority vote, again demonstrating the advantage of using response vectors based
on the confusion matrix. A small surprise was the performance of wBorda, which deserves further examination. The
degree to which the response-based methods were superior to the majority vote indicates that the small extra effort
involved was more than justified.

As was mentioned previously, the simulated classifications are essentially independent. There are many ways in
which classifiers can reinforce or conflict with each other, and these depend on the degree of correlation between
them. As only one example, table 5 shows the results from five classifiers when three of them are correlated at the

Table 4
 Initial Results from Simulated Classifiers (Error Rate)

At u=90% At u=75% at u=50%

Identical Near Disparate Identical Near Disparate Identical Near Disparate

Majority 0.86 0.85 0.89 10.3 10.4 10.4 50.1 49.9 50.3

Sum rule 0.06 0.049 0.048 1.04 1.01 0.98 5.48 5.43 5.40

Product 0.01 0.01 0.007 0.18 0.175 0.172 1.52 1.47 1.48

Median 0.072 0.065 0.057 1.08 1.07 1.03 7.94 7.83 7.80

wBorda 0.022 0.024 0.02 0.37 0.37 0.37 3.55 3.48 3.48

Trimmed
 Means

0.049 0.048 0.049 1.03 1.02 1.00 4.41 4.34 4.38

Spread 2.87 2.64 1.80 9.35 9.08 8.49 22.9 22.7 22.8

Random1 9.79 9.26 8.55 23.6 23.4 22.8 45.2 45.0 44.9



95% level. Note that the performance of the product rule, which depends more than the others on independence,
drops off significantly, while some of the other classifiers retain low error rates. In particular, the trimmed means,
sum rule, and wBorda combiners perform well over all of the data in tables 3, 4 and 5, and all of the methods outper-
form the majority vote on correlated classifications. A detail not shown in table 5 is that the trimmed mean combiner
has the lowest error rate from average individual rates between 95%-82% and below 56%, with wBorda having the
lowest rates between 56% and 81%. Of course, the point was to demonstrate the effectiveness of creating responses
from simple classifications, not to determine the best overall combination method.

The use of simulated classifiers requires further energy and study. The degree to which simulation can be used to
evaluate composite classifiers depends on the degree to which the simulated classifiers can be shown to be represen-
tative of the real thing. The degree of control available to the experimenter using the simulation makes it an extremely
attractive solution.

6.  Acknowledgments

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada.

7.  References

1. Baraghimian, G.A., Klinger, A., “Preference Voting for Sensor Fusion”,SPIE Sensor Fusion III, Orlando, Fl. April 19-20, 1990.

2. Jean-Charles de Borda, “Memoire sur les Elections au Scrutin” , Histoire de l’Academie Royale des Sciences, Paris, 1781.

3. Marquis de Condorcet, “Essai sur l’application de l’analyse a la probabilite des decisions rendues a la pluralite des voix” (Essay
on the Application of Analysis to the Probability of Majority Decisions), Paris, 1785.

4. Wade D. Cook and M. Kress, “Ordinal Information & Preference Structures”, Prentice Hall, Englewood Cliffs, N.J. 1992.

5. B. V. Dasarathy, "Asymmetric Fusion Strategies for Target Detection in Multisensor Environments", Proceedings of the SPIE,
Vol. 3067, Sensor Fusion: Architecture, Algorithms, and Applications, pp. 26-37, April 1997.

6. P. Fishburn, “Preference Structures and Their Numerical Representations”, ORDAL’96, Ottawa, Aug 5-9, 1996.

7. T.K. Ho, J.J. Hull, and S.N. Srihari, “Decision Combination in Multiple Classifier Systems”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 16, No. 1, 1994. Pp. 66-75.

8. R.C. Holte, “Very Simple Classification Rules Perform Well On Most Commonly Used Data Sets”, Machine Learning, Vol. 11,
1993. Pp. 63-90.

9. F. Kimura and M. Shridhar, “Handwritten Numeral Recognition Based on Multiple Algorithms”,Pattern Recognition, Vol. 24,
No. 10, 1991. pp 969-983.

10. J. Kittler, M. Hatef, and R.P. Duin, “Combining Classifiers”, Proceedings of the ICPR, 1996. pp 897-901.

11. J.R. Parker, “Voting Methods for Multiple Autonomous Agents”, Proc. ANZIIS’96, Perth, Australia, 1996.

Table 5:
  Initial Results from Simulated Correlated

Classifiers (Error Rate)

At u=90% At u=75% At u=50%

Majority vote 1.30 11.9 50.13

Sum rule 0.23 3.14 17.77

Product 0.40 3.45 25.30

Median 0.24 3.14 17.58

wBorda 0.27 2.75 16.06

Trimmed
Means

0.22 2.98 15.2

Spread 6.01 17.10 38.52



12. J.R. Parker, “Evaluating Classifier Combination Using Simulated Classifiers”, University of Calgary Department of Computer
Science Research Report #2000/659/11

13. Quinlan, J.R., “C4.5: Program for Machine Learning”, Morgan Kaufmann, San Francisco. 1993.

14. P.D. Straffin, Jr., “Topics in the Theory of Voting”, Birkhauser, Boston, 1980.

15. K. Tumer and J. Ghosh, “Classifier Combining through Trimmed Means and Order Statistics”, Proceedings of the international
Joint Conference on Neural Networks, pp. 757-762, May 1998, Anchorage, AL.

16. K. Tumer and J. Ghosh, “Order Statistics Combiners for Neural Classifiers,'' Proceedings of the World Congress on Neural
Networks, pp. I:31-34, July 1995, Washington, DC.

17. I.H. Witten and E. Frank, “Practical Machine Learning: Tools and Techniques with Java Implementations”, Morgan Kauf-
mann, San Francisco. 2000.

18. D.H. Wolpert, “Stacked Generalization”, Neural Networks, Vol. 5, 1992. Pp. 241-259.

19. L. Xu, A. Krzyzak, and C.Y. Suen, “Methods of Combining Multiple Classifiers and their Applications to Handwriting Recog-
nition”, IEEE Trans. SMC, vol. 22, No. 3, 1992. pp 418-435.


