
THE UNIVERSITY OF CALGARY

SUPPORTING DOMAINS IN RELATIONAL

DATABASE SYSTEMS

BY

Zhao Zhang

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

June, 1992

© Zhao Zhang 1992

I.' National Library
of Canada

Bibliotheque nationale
du Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1AON4

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1AON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Canad1+8 a

Your (lie Votre rélérence

Our (lie Noire référence

L'auteur a accordé une licence
irrevocable et non exclusive
permettant a la Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa these
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des

personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protege sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

ISBN ø-315-7915-5

4'Name ZWO MUG G
Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

Nmrlor 3c4ce
SUBJECT TERM

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES

COMMUNICATIONS AND THE ARTS
Architecture 0729
Art History 0377
Cinema 0900
Dance 0378
Fine Arts 0357
Information Science 0723
Journalism 0391
Library Science 0399
Mass Communications 0708
Music 0413
Speech Communication 0459
Theater 0465

EDUCATION
General 0515
Administration 0514
Adult and Continuing 0516
Agricultural 0517
Art 0273
Bilingual and Multicultural 0282
Business 0688
Community College 0275
Curriculum and Instruction 0727
Early Childhood 0518
Elementary 0524
Finance 0277
Guidance and Counseling 0519
Health 0680
Higher 0745
History. of 0520
Home Economics 0278
Industrial 0521
Language and Literature 0279
Mathematics 0280
Music 0522
Philosophy of 0998
Physical 0523

Psychology 0525
Reading 0535
Religious 0527
Sciences 0714
Secondary 0533
Social Sciences 0534
Sociology of 0340
Special 0529
Teacher Training 0530
Technology 0710
Tests and Measurements 0288
Vocational 0747

LANGUAGE, LITERATURE AND
LINGUISTICS
Language

General 0679
Ancient 0289
Linguistics 0290
Modern 0291

Literature
General 0401
Classical 0294
Comparative 0295
Medieval 0297
Modern 0298
African 0316
American 0591
Asian 0305
Canadian English) 0352
Canadian French) 0355
English 0593
Germanic 0311
Latin American 0312
Middle Eastern 0315
Romance 0313
Slavic and East European 0314

THE SCIENCES AND ENGINEERING
BIOLOGICAL SCIENCES
Agriculture

General 0473
Agronomy 0285
Animal Culture and

Nutrition 0475
Animal Pathology, 0476
Food Science and
Technology 0359

Forestry and Wildlife 0478
Plant Culture 0479
Plant Pathology 0480
Plant Physiology 0817
Range Management 0777
Wood Technology 0746

Biology
General 0306
Anatomy 0287
Biostotistics 0308
Botany 0309
Cell 0379
Ecology 0329
Entomology 0353
Genetics 0369
Limnology 0793
Microbiology 0410
Molecular 0307
Neuroscience 0317
Oceanography 0416
Physiology 0433
Radiation 0821
Veterinary Science 0778
Zoology 0472

Biophysics
General 0786
Medical 0760

EARTH SCIENCES
Biogeochemistry 0425
Geochemistry 0996

Geodesy 0370
Geology 0372
Geophysics 0373
Hydrology 0388
Mineralogy 0411
Paleobotany 0345
Paleoecology 0426
Paleontology 0418
Paleozoology 0985
Palynology 0427
Physical Geography 0368
Physical Oceanography 0415

HEALTH AND ENVIRONMENTAL
SCIENCES
Environmental Sciences 0768
Health Sciences

General 0566
Audiology 0300
Chemotherapy 0992
Dentistry 0567
Education 0350
Hospital Management 0769
Human Development 0758
Immunology 0982
Medicine and Surgery 0564
Mental Health 0347
Nursing 0569
Nutrition 0570
Obstetrics and Gynecology 0380
Occupational Health and
Therapy 0354

Ophthalmology 0381
Pathology 0571
Pharmacology 0419
Pharmacy 0572
Physical Therapy 0382
Public Health 0573
Radiology 0574
Recreation 0575

PHILOSOPHY, RELIGION AND
THEOLOGY
Philosophy 0422
Religjon

General 0318
Biblical Studies 0321
Clergy 0319
History of 0320
Philosophy of 0322

Theology 0469

SOCIAL SCIENCES
American Studies 0323
Anthropoaelogy

Archology 0324
Cultural 0326
Physical 0327

Business Administration
General 0310
Accounting 0272
Banking 0770
Management 0454
Marketing 0338

Canadian Studies 0385
Economics

General 0501
Agricultural 0503
Commerce-Business 0505
Finance 0508
History 0509
Labor 0510
Theory 0511

Folklore 0358
Geography 0366
Gerontology 0351
History

General 0578

Speech Pathology
Toxicology

Home Economics

PHYSICAL SCIENCES
Pure Sciences
Chemistry

General 0485
Agricultural ' 0749
Analytical 0486
Biochemistry 0487
Inorganic 0488
Nuclear 0738
Organic 0490
Pharmaceutical 0491
Physical 0494
Polymer 0495
Radiation 0754

Mathematics 0405
Physics

General
Acoustics
Astronomy and

Astrophysics
Atmospheric Science
Atomic
Electronics and Electricity
Elementary Particles on
High Energy 0798

Fluid and Plasma 0759
Molecular 0609
Nuclear 0610
Optics 0752
Radiation 0756
Solid State 0611

Statistics 0463

Applied Sciences
Applied Mechanics 0346
Computer Science 0984

0 0 4
SUBJECT CODE

U.M.1

Ancient 0579
Medieval 0581
Modern 0582
Black 0328
African 0331
Asia, Australia and Oceania 0332
Canadian 0334
European 0335
Latin American 0336
Middle Eastern 0333
United States 0337

History of Science 0585
Law 0398
Political Science

General 0615
International Law and

Relations 0616
Public Administration 0617

Recreation 0814
Social Work 0452
Sociology

General 0626
Criminology and Penology 0627
Demography 0938
Ethnic and Racial Studies 0631
Individual and Family

Studies 0628
Industrial and Labor

Relations 0629
Public and Social Welfare 0630
Social Structure and
Development 0700

Theory and Methods 0344
Transportation 0709
Urban and Regional Planning 0999
Women's Studies 0453

0460 Engineerina
0383 General 0537
0386 Aerospace 0538

Agricultural 0539
Automotive 0540
Biomedical 0541
Chemical 0542
Civil 0543
Electronics and Electrical 0544
Heat and Thermodynamics 0348
Hydraulic 0545
Industrial 0546
Marine 0547
Materials Science 0794
Mechanical 0548
Metallurgy 0743
Mining 0551
Nuclear 0552
Packaging 0549
Petroleum 0765
Sanitary and Municipal 0554

0605 System Science 0790
0986 Geotechnology 0428

Operations Research 0796
0606 Plastics Technology 0795
0608 Textile Technology 0994 0748
0607 PSYCHOLOGY

General 0621
Behavioral 0384
Clinical 0622
Developmental 0620
Exoerimental 0623
Industrial 0624
Personality 0625
Physiological 0989
Psychobiology 0349
Psychometrics 0632
Social 0451

Nom
Dissertation Dissertation Abstracts International est organisé en categories de sulets. Veuillez s.v.p. choisir le sujet qui décrit le mieux votre
these et inscrivez le code numérique approprié clans I'espcice réservé ci-dessous.

UMI
SUJET

Categories par sulets

HUMANITES ET SCIENCES SOCIALES

COMMUNICATIONS ET LES ARTS
Architecture 0729
Beaux-arts 0357
Bibliothéconomie 0399
Cinema 0900
Communication verbole 0459
Communications 0708
Danse 0378
Histoire de 'art 0377
Journalisme 0391
Musique 0413
Sciences de l'information 0723
Théôtre 0465

EDUCATION
Généralités 515
Administration 0514
Art 0273
Colleges communoutaires 0275
commerce 0688
conomie domestique 0278
ducotion permonente 0516

Education prescolaire 0518
Education sonitaire 0680
Enseignement agricole 0517
Enseignement bilingue et

multiculturel 0282
Enseignement industriel 0521
Enseignement primaire. 0524
Enseignement prolessionnel 0747
Enseignement religioux 0527
Enseignement secondaire 0533
Enseignement special 0529
Enseignement supériour 0745
Evaluation 0288
Finances 0277
Formation des enseignants 0530
Histoire de 'education 0520
Longues et litterature 0279

Lecture 0535
Mothematiques 0280
Musique 0522
Orientation et consultation 0519
Philosophie de 'education 0998
Physique 0523
Programmes d'études et
enseignement 0727

Psychologie 0525
Sciences 0714
Sciences sociales 0534
Sociologie de l'educotion 0340
Technologie 0710

LANGIJE, LITTERATURE ET
LINGUISTIQUE
Lan gues

Généralités 0679
Anciennes 0289
Linguistique 0290
Modernes 0291

Littérature
Génerolités 0401
Anciennes 0294
Comparee 0295
Mediévale 0297
Moderne 0298
Alricoine 0316
Américaine 0591
Anglaise 0593
Asiotique 0305
Canoctienne Anglaise) 0352
Canodienne Francaise) 0355
Germanique 0311
Latino-américaine 0312
Moyen-orientale 0315
Romano 0313
Slave et esteuropeenne 0314

SCIENCES ET INGENIERIE

SCIENCES BIOLOGIQUES
Agriculture

Générolités 0473
Agronomie. 0285
Alimentation et technologie

alimentaire 0359
Culture 0479
Elevage et alimentation 0475
Exploitation des péturoges 0777
Pathologie animole 0476
Pathologie véétale 0480
Physiologie 't le 0817
Sylviculture et toune 0478
Technologie du bois 0746

Biologie
Généralités 0306
Anatomie 0287
Biologic (Stotistuques) 0308
Bioloqie moléculaire 0307
Botanique 0309
Cellule 0379
Ecologie 0329
Entomologie 0353
Genetique 0369
Limnologie 0793
Microbiologie 0410
Neurologie 0317
Oceonographie 0416
Physiologie 0433
Radiation 0821
Science vétérinaire 0778
Zoologie 0472

Biophysique
Généralités 0786
Medicale 0760

SCIENCES DE LA TERRE
Biogeochimie 0425
Géochimie 0996
Géodésie 0370
Géographie physique 0368

Géologie 0372
Geophysique 0373
Hydrologie 0388
Mineralogie 0411
Oceonographie physique 0415
Paleobotanuque 0345
Paleoecologie 0426
Paléontologie 0418
Paléozoologie 0985
Palynologie 0427

SCIENCES DE LA SANTE ET DE
L'ENVIRONNEMENT
Economie domestique 0386
Sciences de l'environnement 0768
Sciences de Ia sante

Généralités 0566
Administration des hipitoux 0769
Alimentation et nutrition 0570
Audiologie 0300
Chimiothéropie 0992
Dentisterie 0567
Developpement humoin 0758
Enseignement 0350
Immunologie 0982
Loisirs 0575
Médecine du travail et

thérapie 0354
Médecine et chirur9ie 0564
Obstetrique et gynecologie 0380
Ophtalmologie 0381
Orthophonie 0460
Pathologie 0571
Pharmacie 0572
Phormacologie 0419
Physiotherapie 0382
Rodiologie 0574
Sante mentale 0347
Sante publique 0573
Soins unfirmiers 0569
Toxicologie 0383

PHILOSOPHIE, RELIGION ET
THEOLOGIE
Philosophie
Religjon

Généralités
clerge
Etudes bibliques
Histoire des religions
Philosophie de Ia religion

Theologie

SCIENCES SOCIALES
Anthropologie

Archeologie
Culturelle
Physique

roit
Economie

Généralités
Commerce-Affaures
conomie ogricole
Economie du travail
Finances
Histoire
Théorie

etudes américaines
etudes canadiennes
Etudes fCminustes
Folklore
Geographie
Gérontologie
Gestion des affaires

Généralités
Administration
Ban ques
Comptabilité
More

Histoire
Histoire generale

CODE DE SUJET

Ancienne 0579
Médiévale 0581

0422 Moderne 0582
Histoire des noirs 0328

0318 Africaine 0331
0319 Canadienne 0334
0321 Etots-Unis 0337
0320 Europeenne 0335
0322 Moyen-orientale 0333
0469 Latino-américaine 0336

Asie, Austrolie et Océonie 0332
Histoire des sciences 0585
Loisirs 0814

0324 Plonification urbaine et
0326 régionole 0999
0327 Science politique
0398 Générolités 0615

Administration publique 0617
0501 Droit et relations
0505 internotionoles 0616
0503 Sociologie
0510 Généralités 0626
0508 Aide et bien-àtre social 0630
0509 Criminologie et
0511 établissements
0323 pénitentiaires 0627
0385 emographie 0938
0453 Etudes de I' individu et
0358 . de la famille 0628
0366 Etudes des relations
0351 interethniques et

des relations raciales 0631
0310 Structure et dCveloppement
0454 social 0700
0770 Théorie et méthodes. 0344
0272 Travail et relations
0338 industrielles 0629

Transports 0709
0578 Travail social 0452

SCIENCES PHYSIQUES
Sciences Pures
Chimie

Genéralités 0485
Biochimie 487
Chimie agricole 0749
Chimie onoytique 0486
Chimie minerole 0488
Chimie nucléoire 0738
Chimie organique 0490
Chimie phormoceutique 0491
Physique 0494
Polymcres 0495
Radiation 0754

Mathematiques 0405
Physique

Genéralités 0605
Acoustique 0986
Astronomic et
astrophysique 0606

Electronique et electricité 0607
Fluides et plasma 0759
Méteorologie 0608
Optique 0752
Porticules (Physique

nucléoire) 0798
Physique otomique 0748
Physique de l'étot solide 0611
Physique moléculaire 0609
Physique nucléaire 0610
Radiation 0756

Stotistiques 0463

Sciences Appliqués Et
Technologie
Informatique
Ingenierie

Générolités 0537
Agricole 0539
Automobile 0540

Biomédicale 0541
Chaleur et ther
modynomique 0348

Condituonnement
(Embolloge) 0549

Genie ciérospotial 0538
Genie chimique 0542
Genie civil 0543
Genie électronique et

électrique 0544
Genie industriel 0546
Genie méconique 0548
Genie nucléoire 0552
lnénierie des systämes 0790
Meconique novole 0547
Metollurgie 0743
Science des motérioux 0794
Technique du pétrole 0765
Technique minière 0551
Techniques sonitoires et
municipales 0554

Technologie hydroulique 0545
Meconique appliquée 0346
Geotechnologie 0428
Matières plostiques

(Technologie) 0795
Recherche operationnelle 0796
Textiles et tissus (Technologie) 0794

PSYCHOLOGIE
Généralités 0621
Personnolité 0625
Psychobiologie 0349
Psycho ogle clinique 0622
Psycho ogie du comportement 0384

0984 Psycho ogie du développement 0620
Psycho ogie experimentale 0623
Psycho ogle industrielle 0624
Psycho ogie physiologique 0989
Psycho 09ie sociale 0451
Psychometrie 0632

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Grad-

uate Studies for acceptance, a thesis entitled "Supporting Domains in Relational

Database Systems" submitted by Zhao Zhang in partial fulfillment of the require-

ments for the degree of Master of Science.

June 26, 1992
Date

I'

Supervisor, D' Anton W. Colijn
Department of Computer Science

Dr. J(D Bradley
Department of Computer Science

Dr. Wayne Eberly ff
Department of Computer Science

Dr. Peter R. Newsted
Faculty of Management

Abstract

The concept of domains is one of the most fundamental concepts of the relational data

'model; without support for domains database systems would not be fully relational.

Existing relational systems do not fully support domains, and hence inevitably suffer

from many domain-related problems. Although some of the problems (but only a

few) have been studied before, the real causes of the problems' have never been

properly pinpointed, and hence the problems have not been solved thoroughly.

In this thesis, we first examine the major domain-related problems in existing

relational database systems: data comparability; domain-oriented data manipula-

tion; domain update anomalies; domain integrity and "referential integrity", etc.

We strongly recommend supporting domains in relational database systems to solve

these problems. The main features of domain support are described and SQL/D, an

extension to the SQL language with domain features, is proposed.

In addition to discovering domain-related problems and proposing solutions, this

thesis also clarifies several common misconceptions about domains and the relational

data model. For example, the so-called "referential integrity" problem is identified

as a special case of the domain integrity problem on "derived domains".

Our current implementation of the Interactive SQL/D Interface on the SYBASE

database manager is briefly described. Although only part of the proposed SQL/D is

implemented, the running results tend to show that with domain si'ipport, database

systems will become more reliable, flexible and natural. Some long-term perplexing

domain-related problems of traditional systems could eventually be solved and the

full potential of the relational data model could be fulfilled.

111

Acknowledgements

I would like to express great thanks to my supervisor, Dr. Anton W. Colijn, for his

guidance over the course of this research. His interest in and excitement over the

topic of this dissertation was often inspirational. His editorial suggestions made a

substantial improvement to the literary quality of this dissertation.

I would also like to extend special thanks to Dr. James Bradley for providing

valuable advice and suggestions, especially to my thesis proposal.

I would also like to thank Dr. Wayne Eberly, whose careful comments make this

thesis more accurate.

I would like to thank Andrew Ginter, Mengchi Liu and Chengfu Yao for their

helpful discussions and comprehensive comments.

I am deeply indebted to my family, especially to my mother who passed away

during this research period, for their love and continuous encouragement.

Finally, I would like to thank the office staff at the Department of Computer

Science for their cooperation. Without their hlp, this research would not have been

possible.

iv

Contents

Abstract iii

Acknowledgements iv

List of Figures viii

1 Introduction 1

1.1 Domains in Relational Databases 1

1.2 Related Research 5

1.3 Domains in Current RDBMS 9

1.4 Thesis Outline 12

2 The Problems Involving Domains 15

2.1 What Is a Domain? 15

2.2 Comparability 21.

2.3 Domain-Oriented Data Manipulation 24

2.4 Domain Update Anomalies 27

2.5 Referential Integrity as Domain Integrity 31

2.5.1 The Current Conception of Referential Integrity 32

2.5.2 Derived Domains 35

2.5.3 Integrity of Derived Domains 39

3 Supporting Domains in Relational Databases 43

3.1 General Domain Support 43

V

3.2 Data Definition Facilities 46

3.2.1 Types of Domains 48

3.2.2 Defining a Database 55

3.2.3 Other Features 56

3.3 Data Manipulation Facilities 57

3.3.1 Data Dictionary Inquiries 57

3.3.2 Domain-Oriented Operations 58

3.3.3 Impact of Relation-oriented Operations 62

3.4 Adopting Internal Representation Techniques 65

4 SQL/D - Domain Extension to SQL 67

4.1 A Brief Review of the SQL Language 68

4.2 The Syntax of SQL/D 69

4.2.1 Syntax Conventions 70

4.2.2 Syntax of the Proposed SQL/D Extension 71

4.3 Data Definition in SQL/D 74

4.3.1 Defining Domains in SQL/D 75

4.3.2 Defining Relations in SQL/D 84

4.3.3 A Comprehensive Example 86

4.4 Data Manipulation in SQL/D 88

4.4.1 SELECT 88

4.4.2 INSERT 89

4.4.3 DELETE 90

4.4.4 UPDATE 91

vi

4.4.5 GRANT and REVOKE 92

5 The Implementation of SQL/D 94

5.1 Overview of SYBASE 94

5.2' Overview of ISQLD 96

5.3 Data Definition in ISQLD 97

5.3.1 Types of Domains Implemented in ISQLD 98

5.3.2 Define Domains and Relations 100

5.3.3 Drop Domains and Relations 101

5.4 The ISQLD Data Dictionary 101

5.5 Data Manipulation in ISQLD 104

5.5.1 Restricted Data Comparison 104

5.5.2 Domain-oriented Data Manipulation 105.

5.5.3 Other Features 107

5.6 Remarks 108

6 Conclusions 112

6.1 Summary and Conclusion 112

6.2 Future Research 115

Appendix 118

Bibliography 137

vii

List of Figures

1.1 Overall Data Structure Comparison 4

1.2 The Example Data Base 14

viii

Chapter 1

Introduction

1.1 Domains in Relational Databases

Since E. F. Codd proposed. the relational model for database systems in his mile-

stone paper [0odd70], various relational database management systems (RDBMS)

have been developed in the past two decades. Although the number of aspects of

the relational data model implemented in these systems varies, according to Codd

[Codd82] and Date [Da.te9l], none of the existing systems support all aspects of the

relational model, or in other words, none of the existing systems are fully relational,

so they all fail to realize the full potential of the data model. Among the few common

aspects which are not supported in the existing RDBMS, the notion of domain is

a very important and essential aspect which could have great impact on the overall

structure of a relational database system.

The notion of domain is the most primitive concept of the relational model. It

is the domains along with relations (and nothing else) that constitute the structural

part of the data model. Informally, a domain is simply a pool of legal data values

of the same type' [Date91, Ul1m88, Mair83]. While a domain dendtes a set of data

values from which one or more attribute(s) may assume values, an attribute is merely

the name for a column in the tabular representation of a relation. A relation in turn

'We argue that data values in a domain should be of the same semantic type, not necessarily
be of same syntactic type.

1

CHAPTER 1. INTRODUCTION 2

is just a subset of the Cartesian product of a collection of domains. Hence we always

say that a relational database is based on a certain collection of domains or we say

that domains are the basis of relational databases.

During the evolution of the relational data model, some obvious misunderstand-

ings about domains made the relational database developers mistakenly neglect to

implement domains in their products. For example, the consensus that domains are

primarily conceptual in nature is the main reason for most of the current systems

not physically storing any domains. By observing the misunderstandings about do-

mains, we strongly recommend supporting domains in relational database systems,

preferably in the following manner. First, domains, especially some special ones,

should be explicitly stored in databases independently of ordinary relations. For

most types of domains, the system can generate a unary relation for each domain and

store all the distinct data values of the domain into the corresponding domain rela-

tion. Second, comprehensive domain definition and manipulation facilities should be

added into the database language, enabling users to precisely define domains and to

properly handle domains. Third, with domains supported, relations and attributes

of a database must be defined on the underlying domains of the database. That

means when designing a relational database, prior to declaring relations and their

attributes, database administrators and/or database designers must define domains

first. Finally, some new facilities should be added into domain-supported systems.

For example, data comparison should be strictly confined to attributes that are based

on the same domain.

By explicitly supporting domains in relational database systems, the overall data

CHAPTER 1. INTRODUCTION 3

structure of relational databases will be changed. Figure 1.1 illustrates the different

overall data structures of relational databases with and without domain support.

In the figure, it seems that domain-supported relational database systems have

become more complicated. But this is not really true. In fact, with domains as

real objects in databases we can (and sometimes we have to) manipulate data via

domains instead of via relations. This will simplify data processing rather than

complicate it. Also with (and only with) domains supported, relational databases

will be built on their original theoretical basis. Then some long-term perplexing

problems of traditional database systems could be solved in natural ways.

This research is mainly motivated by the authors' database system development

experiences. Although relational database systems have improved very much during

the twenty years of development, we can always find some flaws from existing systems

when using them and some of the problems seem to be too difficult, or too cumber-

some to be solved under the current structure of the relational systems. By analysing

the problems, we found that many of the problems involve the fundamental concept

of relational databases: domains. This research was not intended to introduce a new

model of database systems; instead it was an attempt to extend existing relational

database systems - focusing in particular on those using the SQL language - to

support domains. We will see later that the goal can be achieved without too much

effort and that, with the proposed domain support, many of the flaws of relational

database systems will be eliminated or reduced.

CHAPTER 1. INTRODUCTION 4

RELATION1

ATTRIBUT1 ATTRIBUTE2 ATTRIBUTEi

RELATION1

RELATIONn

ATTRIBUTE1 ATrRIBUTEj

(a) Database without domain supported

ATTRIBUTE1 ATTRIBUTE2 ATTRIBUTE[

I I S

RELATIONn

ATTRIBUTE1 S ATTRIBUTEJ

DOMAIN1 DOMAIN2 I DOMAINk-1 DOMAINk
 I I

REAL
Data Type

(b) Database with domain supported

Figure 1.1: Overall Data Structure Comparison

CHAPTER 1. INTRODUCTION 5

1.2 Related Research

Although in the past twenty years, many papers have been published on the subject

of database systems, only a few of them ever discuss the domain concept and the

role of domains in relational databases. The reason for the neglect of domains by

database researchers is rather difficult to understand. Perhaps people just thought

that domains were too simple to be studied. Date [Date86] certainly realised that

domains were more complex than it might appear at first sight, and proposed ex-

tensive support for domains in relational database sys'tems. However, his proposals

require an undersirable amount of user-supplied code. Furthermore, they failed to

solve at least some of the domain related problems discussed in this thesis.

As early as 1976, McLeod [McLe76] published his research result on a high level

domain definition language. His paper might be one of the most valuable contribution

to the topic of domains so far. In the paper, he outlines the main features of a

high level domain definition language and discusses the data integrity and data

comparability problems in domain-supported systems. The paper suggests that four

components should be included in a domain definition; they are:

1. Domain name.

2. Domain description, which specifies the set of data values constituting the

domain.

3. The ordering of data values in the domain.

4. The violation-action which is to occur if data integrity of the domain is violated.

CHAPTER 1. INTRODUCTION 6

In addition to the above, some implementation considerations are briefly discussed

in the paper. But this pioneering paper did not attract much attention from other

researchers because the importance of supporting domains in relational databases is

not recognized in the paper.

Although all the relational database books have some coverage on the subject

of domains, only the discussion in Date's famous textbook [Date91, Date86] is de-

tailed enough. Date almost reaches the conclusion that relational database systems

should support the domain concept. He suggests that at least domains should be

specified as part of the database definition, and attributes of the database should

be defined on the underlying domains. A database definition example on a pseudo

SQL data definition language with domain support is given to show how domains

and relations should be defined. The book also describes some other domain related

topics like simple and composite domains, the operational significance of domains,

etc. Date argues strongly for (what he feels to be) full support for domains in rela-

tional databases. However, he also seems to feel that any such support is necessarily

very complex, and suggests this as a reason why current systems fail to provide this

support.

Osbron and Heaven [OsHe86] extend relational databases to accept user-defined

abstract data types for domains and user-coded operations on the data types2. In

the paper they describe their experimental prototype which implements part of their

idea. Now their idea has been adopted in some newly-developed commercial systems

2Note: the proposed system can only accept abstract data types but can not provide such data
types; and the main purpose of DBMS is providing the users with more functions and reducing
the burden of coding on the users. In their system, the users must code their own procedures to
process the domains.

CHAPTER 1. INTRODUCTION 7

because of the high demand of such facilities from CAD and engineering database

applications. Unlike the above papers, this paper does not discuss the basic problems

related to so-called plain domains, which are dealt with by current RDBMS, so it is

not directly relevant to our research.

It is very interesting that Kocharekar {Koch89], while revising the "maybe" oper-

ations on null values in relational databases, introduces the concept of dynamically

defined domains. The problem for which the new concept is proposed is that a query

which involves "maybe" matching of a foreign key value, no matter if the value ex-

ists in the referenced relation or not, will always get the same result provided there

are some tuples with "null" or unknown values on the foreign key attribute of the

referencing relation. Although the paper suggests that if there were "dynamically

defined domains" in a relational database, the problem discovered would be solved

by answering "unknown" to an existing value and "False" to a non-existing value

respectively, the paper does not discuss how this special kind of domain could be

dynamically defined, nor if there should be any other domains in the databases.

After we finished the implementation of our proposed SQL/D and during the

time of writing this thesis, we found Date's newest paper [Date9OA] on the topic of

domains. According to the author's own description of the paper in the paper itself,

the paper is a "systematic and comprehensive tutorial on the relational domain

concept". The paper argues strongly that a domain is basically nothing more or

less than a data type, either built-in or (more generally, though few systems provide

any such support today) user-defined. It identifies the following "aspects of domain

support" (i.e. features that DBMSs need to provide in order to be able to claim full

CHAPTER 1. INTRODUCTION 8

support for domains):

• An operator for defining new domains (specifying at least a name and a repre-

sentation for the domain)

• The ability to specify the relevant domain for each attribute

• Operators to drop and alter domains

• Domain-level integrity checking

• Support for appropriate literals

• Appropriate data type conversion or coercion rules, including in particular

certain domains

• The ability to specify the operators that apply to each domain or combination

of domains

• Appropriate catalog support for all of the foregoing

Many of the ideas in this paper are also summarized in the domain section of the

latest edition of the author's database textbook [Date91]. Although the paper is the

newest publication specifically on the concept of domains, and it intends to serve

as a convenient single-source reference in which to find a comprehensive answer to

the question "What is a domain?", it does not appear to be as comprehensive as it

claims, because it does not cover most of the domain-related problems discussed in

this thesis, for example, the domain-oriened data manipulation.

CHAPTER 1. INTRODUCTION 9

The relative scarcity of related studies on the topic of supporting domains made

this research more interesting. The original question, whether relational database

systems should support domains can now be answered in the affirmative after this

research.

1.3 Domains in Current RDBMS

We mentioned before that none of the existing relational database management sys-

tems, no matter whether they are commercial systems or research prototype systems,

fully support the concept of domains. Not everyone may agree with this claim until

a consensus is reached on the meaning of "full support of domains". In order to

avoid disagreement, at this point we will not examine the existing database systems

in terms of "full support of domains",. Instead we will evaluate them in terms of

"minimum support of domains".

In our point of view, a database system with minimum support of domains should

have at least the following domain features.

• The system should explicitly distinguish domains of the database from at-

tributes of relations and from the built-in data types. If needed, some domains

should be physically stored independently of relations.

• Databases along with relations and attributes must be defined on underlying

domains.

• Data comparisons between attributes based on different domains should be

restricted or controlled to prevent certain nonsensical query conditions, like

CHAPTER 1. INTRODUCTION 10

"S.STATUS> P.WEIGHT", from happening.

The existing mainframe relational database management systems could be clas-

sified into two broad groups, i.e. SQL-based systems which range from System

R, SQL/DS, DB2 to ORACLE and SYBASE, and non-SQL systems which include

INGRES3, SABRINA, SUPRA, UNIFY, ADABAS, etc. The systems in the former

group share the same standard relational data language, the SQL language, as the

main vehicle for expressing data requests. The systems in the latter group invent

their own main data languages even if some of the systems provide interfaces to SQL.

Because in the proposed ANSI/ISO SQL standard [Date89, YaCh88], which is the

sole relational language standard today, there is no notation about domains, there is

no doubt that all the current SQL-based systems, whose data .languages are merely

a subset of the SQL standard, do not support the domain concept at all. On the

other hand, the majority of non-SQL systems, like those listed above, neither distin-

guish domains from attributes nor restrict inter-domain data comparisons [VaGa89];

therefore they all fail to support domains, too. Kruglinski [Krug86] evaluates more

than ten MS-DOS based PC database systems, including the most popular systems

like dBASE, KnowledgeMan, Informix, etc. None of these systems seems to have

any support for domains.

According to some authors [Date91], there are quite a few systems that do have

some sort of support for domains. For instance, Query-By-Example. (QBE for short)

is claimed by Date [Date91] as an explicitly domain-supporting relational database

system. In QBE, domains are distinguished from columns of tables, or attributes of

3INGRES, though supporting SQL now, is not a SQL-based system

CHAPTER 1. INTRODUCTION 11

relations. Each column of a table is defined on some underlying domain and each

domain in turn is assigned a certain data type. Column names may be the same

as or different from the corresponding domain name. Several columns can share

the same domain and most importantly, data comparisons are restricted to columns

based on the same underlying domains, especially when tables are linked together

on common columns. Although possessing more domain features than most other

relational database systems, QBE still fails to be classified as a minimum supporter

of domains, since no domain is ever physically stored in QBE.

Another system with similar domain features is R:BASE from MicroRim, Inc.

R:BASE is the PC-based descendant of a mainframe DBMS product called Microrim,

which was developed for NASA in support of the space shuttle program. In the data

definition part, R:BASE comes closer than any other PC-based systems to supporting

domains. To create a database in R:BASE, one must define all the "attributes" for

the entire database first, though the definition of an attribute consists of a data type

declaration only. Then the relations are formed by assigning some of the attributes

to each of the relations. Since the same attribute can appear in several relations, we

can say in a sense that "attribute" in R:BASE means both attribute for tables and

domain for the entire database. So domains are somehow separated from attributes.

R:BASE employs relational algebra in data manipulation but has no restrictions on

inter-domain data comparisons. In fact, it is peculiar that R:BASE really needs inter-

domain data comparison when joining several relations together, since the "JOIN"

command of R:BASE only applies to attributes whose names are different from each

other.

CHAPTER 1. INTRODUCTION 12

Now it is clear that even in terms of minimum support of domains, none of

the existing relational database management systems have explicit support for the

domain concept. The main reasons for that are twofold. First the lack of systematic

studies on the roles of domains in relational database systems gave the database

vendors such an incorrect impression that domain support is not necessary in their

products. Second, as Date [Date86] pointed out, supporting domains is considerably

more complex than it might appear at first sight.
11

1.4 Thesis Outline

In the next chapter, we will discuss the domain related problems in current relational

databases. The main topics are: inter-domain data comparisons, data integrity,

domain update anomalies, and data manipulation via domains. We will also discuss

some misunderstandings about domains and the relational data model. It is those

misunderstandings which have led to the development of relational database systems

without supporting domains. During the discussion, we will also introduce some new

ideas about domains and relational databases.

In chapter 3, in addition to outlining the main features of a domain-supported

system, we will explain how a domain-supported system can solve the problems

listed in Chapter 2. The benefits of supporting domains in relational databases will

be described in this chapter, too.

In chapter 4, SQL/D, an extension to the SQL language with domain features

will be proposed. First we describe the syntax of the SQL/D language. Then data

definition and data manipulation facilities of SQL/D will be explained in detail.

CHAPTER 1. INTRODUCTION 13

In chapter 5, our current implementation of SQL/D on the SYBASE database

management system will be presented. Although the prototype is only an interactive

SQL/D interface to the SYBASE RDBMS and it only implements a subset of the

proposed language, it does demonstrate that the domain concept could be supported

in relational databases without too much effort and that relational database systems

could be significantly improved in many respects.

In some examples of the thesis, we will use the SQL language to illustrate data

operations on the example database. For the details of the language please refer to

reference [Date89].

Throughout this paper, a "Suppliers-and-Parts" example database similar to that

in [Date91] is used for explanation purposes. The only change to the the database

is that the attribute COLOR is replaced with a PRICE attribute in relation P. The

final structure of the database is:

S(SNUMB, SNAME, STATUS, CITY)

P(PNUMB, PNAME, PRICE, WEIGHT, CITY)

SP(SNUMB, PNUMB, QTY)

The sample data are listed in Figure 1.2.

CHAPTER 1. INTRODUCTION 14

P

S# SNAME STATUS CITY
Si Smith 20 London
S2 Jones 10 Paris
S3 Blake 10 Paris
S4 Clark 20 London
S5 Adams 30 Athens

P# PNAME PRICE WEIGHT CITY
P1 Nut 9.99 12 London
P2 Bolt 14.99 17 Paris
P3 Screw 14.99 17 Rome
P4 Screw 9.99 14 London
P5 Cam 4,99 12 Paris
P6 Cog 19.99 19 London

SP P# QTY
Si P1 300
51 P2 200
Si P3 400
Si P4 200
Si P5 100
Si. P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

Figure 1.2: The Example Data Base

Chapter 2

The Problems Involving Domains

In current relational database systems, there are many problems directly or indi-

rectly involving domains. Also in database publications, there is a certain amount

of confusion about domains. In this chapter, we will mainly examine the problems,

disclose and clarify the confusions and then in the next chapter we will present our

solutions to the problems: supporting domains in relational databases.

2.1 What Is a Domain?

Before discussing any other confusion about domains, it is necessary to clarify the

fundamental concept of this thesis: What is indeed a domain.

Below are six typical definitions of domains from authoritative sources.

1. E. F. Codd [Codd7O]: "Each of these domains is, in effect, a pool of values,
some or all of which may be represented in the data bank."

2. C. J. Date [Date91]: "We define a domain to be a named set of scalar values,
all of the same type ... Thus domains are pools of values, from which the actual
values appearing in attributes are drawn."

3. J. D. Ullman [U1lm88]: "Formally, a domain is simply a set of values, not
unlike a data type. For example, the set of integers is a domain. So are the
set of character strings, the set of character strings of length 20, and the set
{0,i}, for additional examples."

15

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 16

4. D. J. McLeod [McLe76]: "A domain is a set of atomic data values (objects).
In particular, a domain is a subset of one of the two 'natural' domains: real
number and character string."

5. D. Maier [Mair83]: "Corresponding to each attribute name is a set of permis-
sible values for the associated column. This set is called the domain of the
attribute name."

6. C. Yang [Yang86]: "The domain or value-set of an attribute Aj is a finite set
of the values of Aj, which must be of the same data type."

7. J. Bradley [Brad82]: "A domain is the set of values from which the set of
attribute values of a relation may be taken; that is, from which a column of a
table may be formed."

Now let us analyze the above definitions of domains. First, we can easily draw

a consensus from the aboe six definitions, that is: A domain is a set of values. We

agree with them on this fundamental aspect of definition of domains. As simple

examples, the domain of supplier numbers is the set of all valid supplier numbers

and the domain of shipment quantities might be the set of integers between 0 and

1,000 (say).

Second, two of the definitions (2, 4) explicitly indicate that the data values

of a domain must be atomic or scalar—that is, data values of a domain are non-

decomposable. In other words, domains are not composite at all and values of a

domain are of the smallest unit as far as the relational model is concerned. We

endorse this with some reservation since it seems that in some situations compound

domains are unavoidable. For an extreme example, a domain of birth date, of which

values are the combination of year, month and day values, may need to be (and of

course could be) decomposed into its three components in some situations. However,

because domains are invariably assumed to be simple in most database literature,

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 17

we will follow this convention throughout this thesis unless explicitly stated to be

otherwise.

Third, two of the definitions (2, 6) confine values of a domain to be of one data

type. That means no domains can take values of different data types. If the domain

of shipment quantities is of the type integer number, then it would not accept any

character string or any real number as a valid value. We could not agree that this

assertion is reasonable. As we stated in the beginning of this thesis, we feel that

values of a domain must be of same SEMANTIC type, but need not to be of same

SYNTACTIC data type. For example, the domain of month should probably allow

two different data types or two different formats: integer and character string so

that the integer 12 and the character string 'December' could both represent the last

month of a year.

More interesting, definition 3 (and perhaps 4) implies that a domain is simply a

data type or a subset of a data type. We could not say that this is totally incorrect

as far as computerized databases are concerned but in the real world a domain is

certainly not just a data type and some domains can even accept values of different

types.

Finally, three of the definitions (2, 5, 6) describe that one or more attributes can

draw values from a domain. That means domains provide attributes with all the legal

values to appear in the attribute(s). This reflects the main role that domains play

in a database system. For example, the domain of supplier numbers provides all the

permissible values for attribute S# of relation S, while the domain of city contains

all the possible city values to appear in the attribute CITY of relation S and the

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 18

attribute CITY of relation P. Here attribute CITY of relation S and attribute CITY

of relation P share the same domain CITY.

Summarizing the above domain definitions, a domain is described as: a named

set (or pool) of atomic (or scalar) values, all being of the same data type. The actual

values appearing in attributes (or in a database) are drawn from underlying domains.

A domain is not unlike a data type or it is a subset of the two "natural". domains:

real numbers and character strings.

In contrast to the above definition, our definition of domain is as follows.

Definition 2.1: A Domain D, like a relation, is a named independent object in a

database. It consists of a finite or potentially infinite set of values. In the case of

a finite set of values, the set many be denoted by { dl, d2,

the cardinality of the domain. Each value of D, di (i = 1, 2,

dn }, where n is

n) is generally

an atomic value and the values of a domain, while not necessarily being of the same

syntactic data type, must be of the same semantic type. One or more attributes may

draw actual values from a domain and all the values in the domain are legal for the

attribute(s). It then follows that data comparisons among several attributes make

sense if and only if these attributes are drawing values from the same domain,

Our definition disagrees with the above definitions in at least two major respects.

First, the other definitions do not specify that a domain is an independent object.

In fact most of authors describe domains as being primarily conceptual in nature.

This leads to the misconception that it is not necessary to physically store domains

as objects in databases and it is not necessary to implement (or support) domains

in database systems. Second, it is not mentioned as a major role of domains in the

'As long as a digital computer is involved even floating point numbers are really a finite set.

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 19

other domain definitions that only intra-domain data comparisons, which compare

like with like, make sense. This rule of data comparability should be explicitly

enforced in any system which supports domains.

We will discuss some more disagreements between our definition of domains in

more detail later in this chapter.

To conclude this section, we adopt Date's definition of relation [Date91] as our

formal definition of relation.

Definition 2.2: A relation R on a collection of domains D = {D1, D2, . . ., Dn}

(Dl, D2, . . ., Dn are not necessarily distinct) consists of two parts, a heading and

a body.

• The heading consists of a fixed set of attributes, or more precisely attribute-

domain pairs, { (Al:Dl), (A2:D2), . . . , (An:Dn.) } such that each attribute

Aj corresponds to exactly one of the underlying domains Dj (j = .1, 2, . .

n). The Aj's must all be distinct.

• The body consists of a time-varying set of tuples, where each tuple consists of

a set of attribute-value pairs { (A1:vil), (A2:vi2), . . . , (An:vin) } (i = 1, 2,

M, where m is the number of tuples in the set). In each such tuple, there

is one such attribute-value pair (Aj:vij) for each attribute Aj in the heading.

For any given attribute-value pair (Aj:vij), vij is a value from the domain Dj

that is associated with attribute Aj.

• The values m and n are called the cardinality and the degree, respectively, of

relation R. The cardinality changes with time, whereas the degree does not

except that the relation is otherwise reorganized. A relation of degree one is

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 20

called unary, a relation of degree two binary, a relation of degree three ternary,

., and a relation of degree n n-ary.

Notation: In the following discussion, we will use the conventional format:

relation_name.attribute_name

to refer an attribute of a relation. For example S.S# refers to the attribute S# of

relation S.

With the above formal definitions about domains and relations, we will use the

formal relational terms almost exclusively in our following discussion; however some

less formal terms may be used occasionally, especially when quoting other authors

and in the keywords of the proposed domain extension to the SQL language. That is

instead of using the "standard" SQL term "table", we will use "relation" and so on.

The following table summarizes the terms we will use and the corresponding terms

of SQL:

Formal term SQL term

domain pool of legal values

cardinality of domain number of legal values

relation table

tuple row or record

attribute column or field

cardinality of relation number of rows

degree of relation number of columns

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 21

2.2 Comparability

The term comparability here refers to the general problem of determining whether

two or more data values may be compared or otherwise manipulated. In existing

relational database systems where domains are not supported, data comparability is

a very confusing problem. In these systems, the only mechanism for determining the

validity of a data comparison is data type checking. If a data comparison involves

data of the same data type, say two integers, then it will be accepted and performed,

otherwise it will be rejected. This simple mechanism causes the following problems.

First, on the one hand, database operations with syntactically valid data com-

parison may yield nonsensical results in existing systems. For example, the following

SQL retrieval

SELECT *
FROM P, SP
WHERE P.WEIGHT < SP.QTY

may produce some resulting tuples, but nothing in the result is valuable. The data

comparison in the retrieval involves two attributes which are presumably of same

data type, say integer, so the comparison is syntactically valid and performable and

hence so is the retrieval itself. Then in the current SQL systems, the operation

will certainly be executed and result only in some (72 from the sample database)

nonsensical tuples.

Semantically, the above retrieval would be interpreted as: retrieve all the detailed

information for each pair of a part and a shipment where the weight of the part is less

than the quantity of parts shipped in the shipment. The semantics of the retrieval

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 22

implies that no resulting tuple from such a retrieval would make much sense because

of the nonsensical data comparison. This data comparison involves two different

domains, domain of part weight for attribute P.WEIGHT and domain of shipment

quantities for attribute SP.QTY. Although the data- in the to domains are probably

of the same data type, say integer, semantically they are different. So a comparison

of data from the two domains is not comparing "like with like"; hence the result of

the comparison is meaningless, and so is the retrieval result itself.

Generally, comparisons of data from different domains' are just mistakes. Ac-

cording to the definition of domains, a domain is the set of values of same type, or

in other words all values of the same type are contained in the same domain. So for

any meaningful data comparison which is comparing "like with like" or is compar-

ing data of the same type, the data compared must come from the same domain.

Otherwise if a data comparison involves data from different domains, then it is to

compare data of different types or to compare "like with unlike". Such comparisons

would not make sense and any possible result from the comparisons is just garbage,

hence the comparisons should be rejected.

The foregoing discussion shows that it is the underlying domains which determine

the comparability of data in relational databases. Now the question is how to find

out if two attributes are defined on the same domain. In a system which does not

support domains, it is absolutely impossible to find out whether an inter-attribute

comparison involves two different domains, so it is almost inevitable for the system

to perform some silly inter-domain data comparisons. Conversely, in a system with

'Except from compatible domains, like a DERIVED domain and its parent domain; see next
chapter for more details.

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 23

domain support, every attribute is defined on an underlying domain, so the system is

aware of which attributes are comparable with one another and which are not. Then

nonsensical inter-domain data comparisons are detectable and could be rejected by

the system.

While data comparisons in a domain-supported system are principally limited to

values from the same domain, a "forced comparison" option, which may take the

format of any ordinary comparators prefixed with a '0' sign, should be provided in

case of some inter-domain comparison insisted on by a user. For example, if one

insists on doing the above retrieval, the following "forced" version of SQL query

could be used:

SELECT *
FROM F, SF
WHERE P.WEIGHT 0< SP.QTY

In contrast to the above inter-domaiii data comparison problems, there are some

intra-domain data comparison problems in existing relational database systems.

That is, sometimes a reasonable and semantically correct data comparison may be

rejected by the system for reasons of syntactic errors and sometimes a data query

with comparisons of similar data may not get the desired result. Suppose values

of a domain are represented in different formats, in different units (WEIGHT in

pounds and in kilograms) or just in different data types. Then comparisons of the

values of the domain may confuse the systems. For example, if alues of domain

MONTH are represented in multiple formats. That is the value for the last month

of a year is represented as character strings "December" in some attribute, and as

"Dec." in some other attribute, and even as the integer 12 in another attribute of

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 24

a database. Then data comparison between those "different" values would either

produce a "NOT EQUAL" (between "December" and "Dec") result or be rejected

by the system for a data type mismatching error (between "December" and 12). But

in fact those are just different representations of the same value.

Another kind of intra-domain data comparison problem is calculation of the dif-

ference between data values. For the domain MONTH, sometimes we may need to

find out the difference between value "October" and value "December", that is the

number of months from October to December. This kind of calculation, though rea-

sonable in practice, seems impossible or illegal in most existing systems because it

is impossible to calculate the difference between two character strings.

To make database systems capable of handling the above intra-domain data com-

parison requests we will need a special kind of domain, namely MULTITYPED do-

main, of which data values could be represented in multiple formats or multiple

types. This kind of domain will be discussed in the next chapter.

2.3 Domain-Oriented Data Manipulation

In existing relational databases, all data operations are expressed and carried out in

terms of relations3, no matter if the operations are really relation-oriented or not.

The data manipulation facilities available in the systems are all relation-oriented

data operations; that is, you can retrieve data from relations, you can insert new

data into a relation, or you can delete unwanted data from a relation and so on. But

31n SQL, one can express data operation in terms of views, which are virtual relations derived
from base relations. Even in this case, the actual operation is carried out on the base relations on
which the views are defined.

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 25

you cannot manipulate data on domains, although domains should be independent

objects in databases. No system today provides any domain-oriented data manipu-

lation facilities, such as insertion of a new value into a domain or update of existing

values in a domain, etc. Even in some so-called domain-oriented data languages,

like Domain Relational Language [LaPi77] which is a relational calculus language,

domains are not the direct objects of data operation. Instead, domains only provide

the value ranges for calculus variables. So it seems that in relational databases there

might be no need of direct data manipulations on domains.

But this is not true in real world situations. In fact, although most data requests

in database systems are relation-oriented, there are some other data requests which

are intrinsically domain-oriented. That is to say, in addition to manipulating data

via relations, sometimes we also need to manipulate data via domains. For example,

when a part is to be allocated in a city, we may wish to get a list of all the permissible

CITY values in the Suppliers-and-Part database. Such a data request is apparently

aimed at the domain CITY, not at the relations which contain attributes based on

the domain CITY. In existing relational systems, because the domain CITY has no

physical existence, it is, totally impossible to retrieve all the legal values of domain

CITY. What we can retrieve is the values existing in the attribute CITY of relation

S and of relation P. But usually that is only part of the values of domain CITY.

Generally speaking, without domain support, a retrieval of all values of a, domain is

impossible in relational database systems.

Besides domain-oriented retrieval requests, we may have domain-oriented update

requests. For example, we may want to add a new value, say "Stockholm", into

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 26

the domain CITY without inserting the value into any relation. This request is

apparently impossible in the systems without domain support. We refer to this sort

of problems as domain update anomalies and discuss it later in a separate section.

Another typical domain-oriented update example is an increase of all the values of

the domain PRICE by ten percent. Such a request will affect not only the values in

the domain itself (if the domain is physically stored) but also the values spread over

all the attributes that are defined on the domain. Despite the inability to update the

domain itself in existing systems, updating all the values in the related attributes is

not an easy task. First we must know which attributes are based on the domain, then

we need to issue a separate update request for each of the relations that contains

the attributes. If any of the attributes is forgotten during the updating then the

database will become inconsistent.

The last kind of domain-oriented data request is an inquiry on the relationships

between domains and attributes of databases. For example, we might want to list the

attributes which are defined on the domain CITY or to find the underlying domain

of attribute CITY of relation S, etc. In a system that supports the domain concept,

the requests could be translated into a simple interrogation against the system data

dictionary. But in existing systems, it is obviously not possible to interrogate the

system dictionary regarding domains because there is nothing about domains ever

recorded.

Now we can say that in relational database systems, in addition to relation-

oriented data requests, there are also domain-oriented data requests. Because of the

lack of domain-oriented data operations and, more importantly, the lack of physical

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 27

existence of domains in existing systems, to realize a domain-oriented data request,

the only thing we can do is to translate the request into (a series of) relation-oriented

operations and then perform them by relation-oriented data operations provided by

the system. This solution is obviously not a natural .way to solve the problems. Even

worse, in many cases such a translation is impossible. The only natural solution is

explicitly to implement domains. That means the system must:

1. Physically store domains, especially some special domains.

2. Provide facilities to manipulate domains directly.

The detailed features of domain support will be discussed in the next chapter.

2.4 Domain Update Anomalies

When Codd first introduced the relational data model [Codd7O], one of the most

significant contributions he made was the introduction of the principle of database

normalization. The intent of normalizing a database is not simply to make relations

in some particular normal form; instead it is to eliminate data redundancy in the

database, and hence to solve so-called "update anomalies" problems. This problem,

which is solved by normalization of relations, concerns data from at least two at-

tributes, or in other words, concerns relationships between at least two attributes.

For instance, suppose all suppliers in the same city have a fixed status. Then the

relationship between the two attributes, CITY and STATUS, is totally independent

of other attributes. But with the current structure of relation S, a pair of CITY and

STATUS values could not exist in the database unless there is at least one S# (the

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 28

primary key of relation S) value associated with the pair. So the anomaly is that

the existence of the independent relationship between attributes CITY and STA-

TUS is dependent on some other attribute, say S#, in the relation. The cause of the

anomaly is improper relation structures and the anomalies could be avoided by "nor-

malization" of relations. Since this kind of update anomaly is related to relations,

we call it a relation update anomaly.

In relational database systems, there exists another kind of update anomaly,

namely a domain update anomaly. In the previous section, we have already seen a

simple example showing the problem. However the entire domain update anomaly

problem is much more complex than that in the example. In existing relational

database systems, since domains are not explicitly stored, the set of values for a

domain never exists on its own in a database. The only existing values of a domain

in the database are the values occurring in the attributes based on the domain. The

set of values for a domain changes whenever relations are updated. So the physical

existence of a domain totally depends on the existence of relevant relations and the

survival of an individual domain value in turn depends on its occurrence in relations

with attributes based on the domain. Then we will encounter the following domain

update anomalies:

• Insertion anomaly: It is impossible to insert a value (directly) into a domain

without inserting the value into a relation with an attribute based on the do-

main. Consider, for example, the attempt to directly insert value "Stockholm"

intO domain CITY.

9 Deletion anomaly: If a domain value has only one occurrence in a database and

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 29

the sole occurrence is deleted from the relation containing it, then the value

will disappear from the domain and hence from the database. For example, the

valid value "ATHENS" of domain CITY will disappear if the following SQL

expression is executed,

DELETE FROM S WHERE S#='S5'

though it only intended to delete the tuple containing the CITY value of 'A-

thens'.

• Modification anomaly: If a domain value has only one occurrence in a database

and the sole occurrence is replaced by another value of the same domain, then

the original value may disappear from the database. For example, the valid

value "ATHENS" of domain CITY will disappear if the following SQL expres-

sion is executed,

UPDATE S SET CITY'LONDON' WHERE CITY='ATHENS'

Generally speaking domain update anomaly problems are side-effects of certain

relation-oriented data operations. That is, when manipulating data via relations, not

only are values in the relations affected, but the corresponding values in the "would-

be" domains will also be affected. The reason for such anomalies is quite simple:

domain-oriented updates are not distinguished from relation-oriented updates so that

only relation-oriented updates are provided in existing systems.

• Whether an update is domain-oriented or relation-oriented depends on the se-

mantics of the update. Simply speaking, if an update is made with the intention

of altering the value(s) of a domain then the update is domain-oriented and if it

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 30

aims only at occurrence(s) of value(s) of a domain in a relation then it is relation-

oriented. For example, "delete value 'Si' from the domain of supplier numbers" is

domain-oriented and "delete value 'Si' from relation S" is relation-oriented. The

first deletion will not only delete value 'Si' from the corresponding domain but will

also automatically delete all the occurrences of the value from the entire database.

The second deletion will only delete the occurrences of the value in relation S (and

probably the occurrences of 'Si' in relation SP for reasons of referential integrity).

They are apparently different deletions and should be treated differently. But un-

fortunately in a system which does not provide domain-oriented data manipulation

facilities, the two deletions may be expressed as the same. For example in SQL it

would be:

DELETE FROM S WHERE S# = 'Si'

It seems to the system that this is to delete all occurrences of value 'Si' in relation

5, but in fact it might actually intend to delete the value from the entire database or

from the corresponding domain'. We argue that relational database systems should

provide domain-oriented update facilities in addition to the relation-oriented update

facilities so that users can always use the correct update facilities without risking

domain update anomalies.

These domain update anomalies problems have never been mentioned in the

database literature before. This seems to be one of the major misconceptions about

domains. The direct cause of the problem is that there is no physical existence of

domains independently of relations in databases. Although it is widely acknowledged

'To delete values from the entire database we need to delete all its occurrences from all relations
which contain occurrences of the value.

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 31

that domains have an abstract existence apart from the database relations, in ex-

isting relational database systems the only existence of domains is the occurrences

of domain values in the relations of the database. The lack of physical existence of

domains leads to the lack of domain manipulation facilities and then to the domain

update anomalies.

Domain update anomalies differ from relation update anomalies in at least two

respects. First, domain update anomalies usually involve only one domain. For

example, in the above update only domain CITY is involved; but relation update

anomalies always involve two or more attributes. For example, you cannot insert a

value of attribute CITY into relation S unless it is associated with a value of attribute

S#. Second, while relation update anomalies could be avoided by normalization of

the database or properly designed database structures, domain update anomalies

could not be avoided by any efforts from database designers. They will only be

eliminated by explicitly implementing domains in relational database systems, i.e.

through physical storage of domains plus domain-oriented data manipulation facili-

ties.

2.5 Referential Integrity as Domain Integrity

Another data integrity problem involving domains is referential integrity. Referential

integrity is one of the most important and difficult problems in relational database

systems. In this section, we will analyze the problem and point out that referential

integrity is just a special case of domain integrity, assuming the general notion of

domain defined in this thesis.

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 32

2.5.1 The Current Conception of Referential Integrity

The intent of referential integrity constraints is simply that if a data value v2 refers

to some other data value vi, then vi must exist in the database. For example, the

attribute S# of relation SP, as a referencing attribute, must represent an existing

supplier. Then its values must have a counterpart in the referenced attribute S# of

relation S, since relation S is the list of all existing suppliers. In general, if a value

in the referencing relation does not have a counterpart in the referenced relation,

then the referential constraint between the two relations is violated and the invalid

referencing value should be rejected by the system.

The referential integrity concepts are of paramount importance in the field of

database technology. Although in the past twenty years a great amount of research

has been done on the subject, Date[Date9OB] still described the situation on the

conception of the referential integrity in 1990 as:

Yet they (the referential integrity concepts) are surrounded by an ex-
traordinary degree of confusion— confusion in the open literature, confu-
sion in the database community at large and (especially) confusion in the
database marketplace. There are certain numerous conflicting definitions
in various books, papers, trade journals, and elsewhere. Clarification is
urgently needed.

And hence he offers his clarified definition of the concepts in the same paper as:

• Primary key: Loosely, a primary key is just a unique identifier. A little more

precisely: The primary key for a table Ti is a column PK of Ti such that, at

any given time, no two rows of Ti have the same value for PK.

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 33

• Foreign key: Loosely, a foreign key in one table is a column whose values are

values of the primary key of some other table (or possibly the same table). A

little more precisely.: A foreign key is a column FK of some table T2 such that

at any given time, every nonnull value of the FK in T2 is required to be equal

to the value of the primary key in some row of some table Ti. Table T2 here

is a referencing table, table Ti the referenced or target table. The two tables

are not necessarily distinct.

• Referential integrity: Since a given foreign key value obviously represents a

reference to the row containing the matching primary key value (the referenced

row or target row), the problem of ensuring that the database does not contain

any invalid foreign key values is known as the referential integrity problem.

The constraint that values of a given foreign key must match values of the

corresponding primary key is known as a referential constraint.

According to the above definition, referential integrity always happens between

the primary key of a relation and a foreign key of a relation. An integrity constraint

implies that if any value appears in a foreign key attribute then it must have a

counterpart occurrence at the corresponding primary key attribute. In our example

database, the primary key of relation S is attribute S# and the foreign key of relation

SP that references to the primary key is attribute S#. The integrity constraint

between the two relations is that every value of attribute S# in r'elation SP must

match some value of attribute S# in relation S. By the definition, we will always

need such a pair of primary key and foreign key to establish a referential integrity

constraint.

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 34

Referential integrity constraints are quite difficult to satisfy. In some current

relational database systems, in order to maintain referential integrity, a great deal of

code that checks all the possible constraint violations must be included in whatever

programs update the database. In some other systems, one can make the system en-

force constraint checking by explicitly declaring primary keys and referencing foreign

keys (perhaps plus some other .utilities). For example in DB2 [DaWh88, HeHe89]

and some other SQL-based systems[VaGa89], to enforce a referential integrity con-

straint, say that between the two relations S and SP, the user has to declare S# of

S the primary key in S and S# of SP a foreign key in SP referencing to relation S.

In addition to defining keys, a unique index on attribute S# of relation S must be

created and a similar index on attribute S# of relation SP is strongly recommended.

It is really difficult to see the point that, in order to enforce data integrity, creation

of indices on relations is needed. Such a solution is certainly not concise nor natu-

ral. Even worse, in Date's six-step recipe [Date86] to enforce referential integrity on

relational databases, not only are coding and extra data structures needed but also

some unacceptable restrictions are to be imposed. For example, in some systems it

is necessary simply to prohibit all on-line operations that may violate the referential

constraints because there is no way to force all the on-line users to check all the

possible constraint violations.

The above definition of referential integrity and related concepts is the latest

that could be found. It reflects the most recent understanding of the concept by the

database community. But even this is not all correct. We will discuss our conceptions

about referential integrity in the next section.

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 35

2.5.2 Derived Domains

During the period of this thesis research, we found some problems in the current

interpretation of the concept of referential integrity. First of all, the common under-

standing that the referencing and the referenced attributes involved in a referential

integrity relationship share a common domain (or the attributes draw values from

the same domain) is true but not sufficient. According to the definition of domains,

a domain is the set of all valid values from which an attribute may draw its actual

value. If all that is needed is that a referencing attribute and its referenced attribute

share a common domain then any value in the domain should be usable to both

attributes without any constraint. But this is obviously not true for the referencing

attribute.

Observe the foregoing example again. It is well accepted that attributes S.S#

and SP.S# share a common domain, say domain S# which contains all the possible

valid supplier numbers of the database. Then according to the above formulation of

the domain integrity rule, all values of domain S# are allowed to appear in both the

attributes without any restriction. But the database semantics, which is described by

the referential integrity constraint between relation S and relation SP, clearly states

that values in the referencing attribute SP.S# must be values in the referenced

attribute S.S#. That is to say, a value of domain S# could not appear in the

referencing attribute SP.S# unless the value exists in the corresponding referenced

attribute S.S#. So the referencing attribute SP.S# can not freely assume any value

from the alleged underlying domain S#. Therefore the "common" domain is not

the underlying domain of the referencing attribute SP.S# but only the "private"

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 36

underlying domain of the referenced attribute S.S#. The underlying domain of the

referencing attribute SP.S# is the set of supplier numbers of the existing suppliers;

that is the set of values in the referenced attribute S.S#.

Now we are ready to introduce a new concept or a special type of domain: de-

rived domain.

Definition 2.3 Derived domain. A derived domain is composed of all values

from specified attributes of a relation5.

In general, a derived domain could be a composite domain which is composed of

values from several attributes of a relation. But to make our discussion simple, we

will only consider derived domains that only involve one attribute of one relation.

This assumption coincides with Date's opinion [Date9OA] that relations should have

a single-attribute primary key.

In our example database, there should be at least two derived domains. One

is composed of values of attribute S# of relation S, which could be used as the

underlying domain of attribute S# of relation SP. Currently this domain contains

five distinct values: 'S1','S2','53','S4','S5'. Another similar derived domain is the set

of P# values in relation P. Each value in this derived domain represents a part which

could be shipped by any supplier, hence the value is usable for the attribute P# of

relation SP. For reasons of simplicity we will refer to the underlying domains of the

deriving attributes as parent domains of the derived domain. So the domain S# is

the parent domain of the derived domain from attribute S.S#.

A derived domain differs from other domains. Other domains are "static" because

51t is possible for a domain to be composed of values from several relations. In this case the
domain could be formed by uniting several derived domains, each deriving values from a single
relation.

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 37

their values seldom change. A derived domain is dynamic since the domain takes

values from a relation and the relation is time-varying. The existence of a derived

domain depends on the relation from which the domain takes values. A derived

domain is somewhat similar to the concept of view in the SQL language. While

a view is a virtual relation which acquires values from actual relation(s), a derived

domain could also be seen as a unary relation which acquires values from an attribute

of a relation.

The fact that domains can be derived from relations clarifies that it is not always

true that domains have abstract existence apart from relations. Because the derived

domains dynamically acquire values from relations, the existence of the domains

depends on the existence of the relations. Hence we say that at least some of the

domains (like derived domains) are really dependent on relations.

Another concern involving referential integrity is that we do not think a referen-

tial integrity constraint must always involve a primary key and a foreign key; that

is, the referencing attribute must be a foreign key in a relation referencing a pri-

mary key attribute of a (usually different) relation. The following case represents a

counterexample.

Suppose we have a university administration database with five relations:

• LECTURERS(L#, LNAME, ADDRESS), describes all lecturers of the univer-

sity. Primary key: L#.

• COURSES(C#, CNAME, DESCRIPTION), describes all courses ever avail-

able in the university. Primary key: C#:

• STUDENTS(S#, SNAME) describes all students of the university. Primary

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 38.

key: S#.

• OFFERS(L#, C#), each record describes that a lecturer identified by L# is

currently teaching a course identified by C#. Note that not all the courses in

relation COURSES are being taught. Primary key: (L#, C#).

• TAKES(S#, C#, MARK) each record describes that a student identified by

S# is currently taking a course identified by C#. Note that it is not of interest

to the database users which lecturers are teaching which students. Primary

key: (S#, C#).

Let us consider the referential integrity problem concerning attribute C# of rela-

tion TAKES only. The values of the attribute C# in the relation TAKES represent

courses that are being taken by students. But which courses can students take?

All the courses ever available in the university, or the courses currently taught by

some lecturer? In database terms, the question is: What is the underlying domain

of the attribute C# of relation TAKES? Is it a derived domain from attribute C#

of the relation COURSES, or a derived domain from the attribute C# of the rela-

tion OFFERS? Obviously, the answer is that the,, courses must be courses taught by

some lecturers and the domain must be the domain derived from the attribute C#

of relation OFFERS, because a student can only take a course which is currently

offered. No "idle" course which is in the relation COURSES but not in the relation

OFFERS could appear in the attribute TAKES.C#.

The referential constraint between the two relations is that any value of attribute

C# of relation TAKES must have a counterpart value in attribute C# of relation

OFFERS. The most important point here is that the referenced attribute C# of

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 39

relation OFFERS is not the primary key of the relation (the primary key is the

combination of attributes C# and L#) and it is to this non-key attribute that

the relation TAKE must refer. This illustrates that a referential constraint is not

always based on the primary key and a foreign key.of the relevant relations; instead

sometimes a reference may happen between non-key attributes. Then it follows

that the concept of foreign key, which was initially invented to describe referential

integrity, is no longer sufficient. We will see in the next section that referential

integrity is nothing but a special case of domain integrity which confines an attribute

to a derived domain.

There is another major drawback of the primary key/foreign key approach to the

referential integrity problem: The approach does not apply to a relation with more

than one attribute to be referenced by different referencing attributes, because only

one primary key is allowed in a single relation. In practice this situation will not

even be very rare. For example, in a personal information relation, person's name

and social insurance number could be both referenced by two different attributes of

some other relations.

2.5.3 Integrity of Derived Domains

With the concept of derived domains, referential integrity would become simpler to

specify and to maintain. The original definition of referential integrity constraints

just states that a value in the referencing attribute must match a ia1ue in the cor-

responding referenced attribute. That is, the referencing attribute can only assume

values existing in the referenced attribute. Therefore in a relational database system

which supports the concept of derived domains, the referenced attribute could be

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 40

regarded as the source of a derived domain and the derived domain would become

the underlying domain of the referencing attribute. Since the referencing attribute

can only draw values from its underlying domain - the derived domain containing

values of the referenced attribute in this case - the referential constraint that the

referencing attribute can only assume values of the referenced attribute is just an

domain integrity constraint that any attribute can only assume values from its un-

derlying domain. In the foregoing example, the referential integrity constraint that

each supplier number in the shipment relation SP must have a counterpart supplier

number in the supplier relation S could become a simple domain integrity constraint

that attribute S# of relation can only assume values from a derived domain which

is composed of values in the attribute S# of relation S.

If relational database systems did support the concept of derived domains it would

be very easy to achieve referential integrity as a special case of domain integrity.

First, one could simply define a derived domain on the referenced attribute. Next,

declare the refeencing attribute based the derived domain. That is all to specify

a referential integrity constraint. We no longer need the concept of foreign keys

or of indexes on primary key and foreign key. Perhaps the concept of primary key

can also be abandoned as long as we can use the "NOT NULL" declaration to

protect so-called entity integrity [Date91], which just prohibits nullified primary key

values. For the domain-supported system no special facility is needed to maintain

the referential constraint, since the system will certainly guarantee that all the values

in any attribute, including the referencing attributes, are drawn from the underlying

domains of the attributes regardless of whether th'e domain is an ordinary domain or

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 41

a derived domain. With the concept of derived domains, referential integrity would

be achieved naturally during the database design stage. There is no need to code any

constraint-checking procedure and the prohibition of on-line updates on the related

attributes can be lifted.

It is possible that a referencing attribute may reference multiple attributes from

more than one relation. That is referred to as the "multiple-target" reference prob-

lem. For the current primary key/foreign key solution to referential integrity prob-

lem, it is impossible to have a foreign key referencing several primary keys. But with

the concept of derived domains, the problem could be solved by simply defining a

derived domain as collecting values from several relations. For example, suppose that

in a database there are two relations, say MANAGER and EMPLOYEE, containing

ID numbers (attribute EMP#) of existing employees (Note: managers are employees

too):

MANAGER(EMP#,...)

EMPLOYEE(EMP#,...)

Suppose a third relation, say ASSIGN, needs to use the ID numbers of existing

employees from the two relations. Then the attribute EMP# in this relation could

be defined on a derived domain like the view XEMP# created by the following SQL

statement:

CREATE VIEW XEMP# AS

SELECT EMP# FROM MANAGER

UNION

SELECT EMP# FROM EMPLOYEE

In contrast to the primary key/foreign key approach, the derived domain in-

CHAPTER 2. THE PROBLEMS INVOLVING DOMAINS 42

tegrity approach can also be used in the case that multiple attribute of a relation are

referenced individually by multiple referencing attributes. We can create a derived

domain on each of the referenced attributes and define each referencing attribute on

the corresponding domain. But in the primary key/foreign key approach, only one

attribute could be referenced since only one primary key is allowed in a relation.

In this chapter, some domain-related problems, including data comparability,

domain-oriented data manipulation, domain update anomalies and domain integrity

in existing relational database systems have been discussed. The significance of this

chapter is that the majority of the problems discussed in the chapter do not ap-

pear to have been discussed before in the database literature. Further, some serious

misunderstandings about domains have been discovered, for the first time again, in

this chapter. And it is these misunderstandings that have led to the unfortunate

situation that the majority of existing relational database systems do not support

domains and hence have domain-related problems. Although people may argue that

some (only a few in fact) of the problems discussed in this section have some res-

olutions in existing relational database systems, we must p9int out that most of

the resolutions are unnatural and tedious. There is no doubt that in order to solve

the problems in natural and proper ways, we must support domains in relational

databases. In the next chapter, we will discuss the basic features of domain support

in relational database systems.

Chapter 3

Supporting Domains in Relational

Databases

When examining the domain-related problems in existing relational database sys-

tems, we suggested that the natural solution to the problems is supporting domains

in relational database systems. In this chapter we will describe the main features

of domain support in relational database systems and explain how systems which

support domains can solve the problems.

In the first section, we will present the general features of domain support. Then

in the following two sections, detailed description of data definition and data manip-

ulation facilities in domain-supported systems will be given. Finally, it will be shown

that internal representation techniques can be adopted more easily in systems that

support domains than in systems that do Snot provide this support.

3.1 General Domain Support

Relational database systems with domain support will have many new features that

cannot be found in systems without domain support. First of all, domains, as inde-

pendent objects in relational databases, should have physical existence in databases.

That means domains, at least some special ones, should be explicitly stored in

43

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 44

databases independently of relations. Second, domain definition and manipulation

facilities should be incorporated into the database language to enable the database

users properly to define domains, to specify domain integrity constraints and to con-

duct domain-oriented data operations. With domain support, relational database

systems will be free of the domain-related problems.

One of the basic aspects of domain support in relational database systems is that

some domains should be physically stored, in order to avoid the domain-related prob-

lems - especially the domain update anomalies problems - described in Chapter

2. As mentioned before, none of the existing relational database systems have ever

physically stored any domain' independently of relations. Such systems do suffer

from those domain-related problems.

When all the values of a domain are physically stored, independently of relations,

say in a unary system relation of which each tuple stores a distinct value of the

domain, a relation-oriented deletion or update on relations which contain values of

the domain would only affect the occurrences of the values of the domain but would

not affect the values stored in the system domain relation. So the deletion and update

anomalies problems would be avoided. Also with the system domain relations, an

insertion of a new domain value directly into a domain could be carried out on

the corresponding system domain relation and there is no need to insert the same

value into any relations which contain values of the domain, so the domain-insertion

anomalies problem can also be avoided.

With domains being physically stored, not only can the domain update anomalies

11n fact in these systems a domain is just a "would-be", because there is no such a concept in
these systems at all.

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 45

problems be avoided, but data manipulations on domains will also become possible.

We will see domain-oriented data manipulations in Section 3.2.

Do all the domains of a database need to be stored in their entirety? The answer

is no. Suppose that domain QTY consists of all integers between 0 and 1000 and

the system is aware that any integer greater than 1000 or smaller than 0 is illegal

for the domain. Then the 1001 different legal integer values of the domain obviously

need not be explicitly stored separately from the relations of the database. For such

a domain the system is capable of maintaining the integrity of the domain by storing

the lower bound and the upper bound of the domain.

In contrast, a domain whose values are enumerated needs to be physically stored

separately from relations. For example, suppose the domain of cities contains four

values 'London', 'Paris', 'Rome', 'Athens'. Then only these four values can be used

in any attribute defined on the domain. If the four values were not stored then the

system would not be able to validate any value to be used in any attributes based

on the domain, and would thus be unable, to maintain the integrity of the domain.

Also, if there is no place to store values of the domain, then an attempt to insert a

new value into the domain would fail unless the value was inserted into a relation at

the same time.

In practice, which domains need to be stored and which domains do not need to

be stored is a question that should be primarily decided by the database adminis-

trators or the database users, and not by the system. The major decision-making

considerations are:

• Once a value is inserted into the database, should it be retained in the database

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 46

forever? If so, then the domain needs to be stored.

• Is it.necessary to be able to insert a new value into the domain without insertion

of the value into any relation? If so, then the domain needs to be stored.

However, there are some domains that ought to be stored automatically. For

example if the values of a domain are enumerated at the database design stage then

all the values should definitely be stored. Otherwise there would be no way for the

system to validate any newly inserted data value against the enumerated values. We

will discuss such kinds of domains in more detail in the next section.

Supporting domains in relational databases is not just a matter of storing do-

mains; there are more features of domain support, which are the topics of the fol-

lowing sections.

3.2 Data Definition Facilities

In existing relational database systems which claim to support domains, the only do-

main definition facility seems to be the ability to specify the data types for domains.

For example, in QBE, domain QTY could be specified as being of INTEGER data

type and domain S# of character string type. The data types available in relational

systems vary among systems, from the fundamental types INTEGER, REAL and

STRING to some more complicated types such as DATE, MONEYS, etc.

In the literature, data types are regarded as primitive [Date83] domains and

natural [McLe76] domains. These "data type" domains are so primitive that in

reality no attributes of relations can take all the valid values of the data types as

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 47

their actual domains. In fact, just about every "data type" domain contains some

values which are useless to attributes based on the data type. For example, if the

domain QTY is of INTEGER data type then its valid value -1 will not be ñsed

in some attribute, say QTY of relation SP, based on the domain. Therefore the

"useless" values, though theoretically legal in the domain, are in practice invalid for

attributes.

In existing systems, once a data type is assigned to a domain then all the values

of the data type are considered valid values for every attribute based on the domain,

and there is no way for the systems to validate each i'ndividua], domain value for each

individual attribute. Thus specifying a data type for a domain could hardly prohibit

useless (and sometimes illegal) values from being used in the attributes based on

the domain. Then the fundamental purpose of domain support in database systems,

that i6 to guarantee the domain integrity, is never achieved in the systems.

Actually, the only benefit of the above simple domain definition mechanism is

the so-called "global column definition" [Date9OA]. When several attributes share

the same data type, then instead of specifying the same data type to each of the

attributes, the data type could be assigned to a domain and all the attributes could be

defined on the domain. Such a mechanism not only saves keystrokes but also prevents

multiple attributes that ought to have the same definition from inadvertently being

given different definitions.

From our point of view, the main purpose of domain definition in relational

databases is to inform the system of the exact contents of each domain, so that the

systems will be able to maintain the integrity of the domains on its own initiative.

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 48

Therefore the definition of a domain should describe, as precisely as possible, the

actual set of values of the domain. And in order to achieve such a goal, sometimes

the legal values of the domain may have to be enumerated in the definition of the

domain. However there are also other ways to specify the set of values of the domain.

For example, suppose the domain QTY consists of integers from 0 to 1000. Instead

of enumerating all the 1001 integers in its definition, we can describe the domain as

a set of integers which ranges between 0 and 1000 or as the set of integers which

are greater than -1 and less than 1001. According to the different ways of specifying

the contents of domains, we can classify domains into different domain types. For

example, the domain QTY is in fact of "ranged" domain type whose values fall into

a range between the lower bound value 0 and the upper bound value 1000.

There are several other domain types, and each domain type has its own integrity

constraint which is implied by the domain type. For example, the integrity constraint

of domain QTY is implied by the "ranged" domain type: the values of the domain

are equal to or greater than the lower bound value of the domain (0 in this case), and

are less than or equal to the upper bound value of the domain (1000 in this case).

3.2.1 Types of Domains

Now we describe the most common domain types. Note: the domain types are not

mutually exclusive, or in other words, a domain can possibly belong to more than

one of the domain types if it bears all the properties of the types.

1. Enumerated domain - A domain is enumerated if the values of the domain

could be explicitly listed. For an enumerated domain, the data values are

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 49

usually enumerated during the domain definition stage while in some cases the

values of the domain could also be inserted into the domain via explicit domain-

oriented insertion operations. But it is not possible to insert any new value

into the domain through any relation-oriented insertion operation. In other

words, any attempt to insert a value into an attribute based on an enumerated

domain will invoke a check on the existence of the value in the enumerated

domain. Only if the value has already been enumerated or inserted into the

domain, will the operation be accepted and will the value be inserted into the

attribute; otherwise the insertion will be rejected. The enumerated domain is

useful in practice to define domains whose values are all known at the database

design stage.

In the example database, suppose there are certain valid CITY values, say

the set {'London', 'Paris', 'Rome', 'Athens'}, for the attributes S.CITY and

P.CITY, then we can define a domain CITY enumerated with the values in the

set. If the the attributes P.CITY and S.CITY are defined on the domain, then

only the values in the above set would be allowed to appear in any relation

based on the domain.

In standard SQL there is a mechanism to enumerate values for an attribute of

a relation: the CHECK clause in CREATE TABLE command. But if more

than one attribute assumes values from the same set, or from the same domain,

then the same declaration must be repeated for each of the attributes. Another

problem for the SQL approach is that after the table has been created, there is

no way to add any new legal value into the set. In this case, it will be necessary

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 50

to redefine the database for adding only a single new value to the enumerated

set.

2. Pictured domain - A domain is pictured if the values of the domain share

a similar pattern and only values matching the pattern will be allowed in the

domain. For example, the domain of attribute S.S# could be pictured as

character strings starting with a capital letter 'S' and followed by one or two

digits. Then values like 'Si', 'S99' will be accepted by the attribute defined on

the domain while values 'si', 'SSl' and 'SiOO' will not be accepted. Pictured

domains are very common in applications. Especially when entities need to

be assigned some unique identifiers, it is usual to give the identifiers a similar

pattern, as in the example of S# as identifier of suppliers.

3. Calculated domain - A domain is calculated if its values are "calculated" from

values of some other domain(s). For example, with domains YEAR, MONTH

and DAY, a fourth domain DATE whose values are the combinations of values

from the three domains can be composed. The other possible ways to generate

new domains from existing domains is applying the traditional set operations,

such as union, intersection, difference and Cartesian Product2, to domains. It

seems that the most common calculated domains are domains formed from

existing domains by the set operation UNION so in the next chapter we will

only propose "united" domains instead of generic calculated domains.

4. Ranged domain - A domain is ranged if its values are all in some specified

data interval. In practice, most numerical domains are indeed ranged domains

'These operations are basic relational algebra operations.

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 51

since at least in a computerized database no domain could be infinite. In our

example database, if the weight of a part can only range from 1 to 100 then the

domain of attribute P.WEIGHT should be defined as a set of integer numbers

ranging between 1 to 100. Therefore any value to appear in the attribute must

be within the interval between 1 and 100. It is possible that the values of a

ranged domain span several separate intervals; in that case the domain should

be a "united" domain of several ranged domains of which each range is an

interval.

5. Derived domain - A domain is derived if its values are derived from an

attribute of a relation. This kind of domain is a little like the concept of active

domain [Mair83, Yang86]3. But the purpose of derived domains is entirely

different from that of active domains. As described in the previous chapter, a

derived domain can be used to specify so-called referential integrity constraints,

which we treat as a special cases of domain integrity constraints. Since our

previous discussion on derived domains is detailed enough, we will only briefly

describe the data comparison issues of derived domains here.

A problem concerning derived domains is data comparison. In the previous

chapter, we suggested that in domain-supported systems, data comparison

should be restricted to attributes based on the same domain or on compatible

domains. Here we must point out that derived domains are not independent

domains; rather they are dependent on some other domains. All the values

of a derived domain come from the underlying domain of the attribute, from

3An active domain is composed of the current occurrences of domain values in the database.

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 52

which the derived domain acquires values. That means the derived domain is

just a dynamic subset of the underlying domain. Thus data comparison and,

more importantly, joining of relations on a derived domain and its underlying

domain should be allowed in domain-supported systems.

6. Exclusive domain - A domain is exclusive if each value of the domain can

only be assumed once in the database. That means each value of the domain

can have only one occurrence in the database. For example, in an enterprise,

each employee and each manager is assigned an employee number and in the

database of the enterprise two relations are used to store employee information

and manager information separately. The domain of the employee numbers

should be exélusive within the two relations, since an employee number could

not be shared by two different persons, no matter whether they are managers

or ordinary employees. The scope of an exclusive domain is not always the

entire database; instead it may be only one relation or several relations of the

database like the two relations for the domain of employee numbers in the

above example.

7. Multityped domain - A domain is multityped if the values of the domain

can be represented using different data types. This domain type is used to solve

the intra-domain data comparison problem when data of the same domain are

represented in different data types. Each multityped domain should have a

main data type and one or more alternative data types and often the main

type should be a numerical data type so that ordering of the values of the

domain would be possible. Since the data types available in many database

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 53

systems are limited, we doubt that most multityped domains will allow two

basic data types: integer and character string with the former one as the main

type.

For each value of a multityped domain, the number of different representations

is not necessarily limited, even when only two data types are allowed in the

domain. For example in the multityped domain MONTH, the value of the last

month in a year could be represented as the integer 12 and as the character

strings 'December', 'Dec.', etc.

The main problem with multityped domains is that there must be a mechanism

to recognize equality between different representations of the same value and

to distinguish between some value and an alternative representation of some

other value. We will discuss this problem in the next section. However we must

point out that all the different representations of a multityped domain must be

stored in the database separately from relations, perhaps in a binary system

relation with one attribute as the value in the main data type and another

attribute for the alternative representation in any other data type.

8. Multiunit domain - A domain is multiunit if its values could be represented

in several units of measurement. The multiunit domain may be seen as a

special case of multityped domain. But there are some differences between

them. First, the values of a multiunit domain are all in one data type, say real

numbers, instead of in multiple data types for a multityped domain. Second,

the actual values of a multiunit domain stored in the database are all in one,

unit, the default unit of the domain, so there is no need for a system relation

I)

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 54

to store values of different units.

We suggest that the best way to handle the multiunit domains is to assign a

default unit and several alternative units to the domain. Then at any time one

of the units is the "current" unit of the domain. So every piece of data input

into and output from the database is represented in the current unit. Once the

current unit is changed to another unit, the data will appear in the new current

unit. We certainly cannot use multiple units simultaneously unless data are

explicitly accompanied by their unit, like 10 pounds, 1 Dollar, etc. It is not

convenient for both the users and the systems to attach unit information to

the data values.

The main purpose of the multiunit domain, similar to that of the multityped

domain, is further to improve data comparability and make the database more

flexible.

9. Stored domain - A domain is stored if the values of the domain are physically

stored in the database separately from all relations. As pointed out before, only

if domains are physically stored separately from relations can domain update

anomalies be avoided. If a domain needs to be free of update anomalies, then

it should be stored. The system will only automatically store enumerated do-

mains and multityped domains. For other domains the database administrator

may decide whether they should be stored or not. As stored domains have been

discussed extensively in the previous section, we will not repeat the discussion

here.

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 55

In the above discussion domains have been classified into several domain types,

not according to the data types of the domain values, but according to the different

types of domain integrity constraints of the domains. Domains of the same type

share similar integrity constraints, so with these different domain types, it becomes

unnecessary to describe the integrity constraints for each individual domain. Because

the integrity constraints are implied by the domain type, defining domain integrity

constraints becomes a problem of choosing the appropriate domain type for a domain.

Note again: Sometimes a domain may hold several integrity constraints, so a domain

can be a combination of several types. For example, domain QTY could be both

ranged and multiunit.

3.2.2 Defining a Database

Defining a database in a domain-supported database system is quite different from

defining a database in an ordinary database system. It takes two steps rather than

one step as in ordinary systems.

First of all, before defining a relation, all the underlying domains of the relation

must have been defined, because relations in such a system are built on domains.

In order to precisely define a domain, we need to specify the domain type(s) for the

domain which in turn sets up the corresponding domain integrity constraints on the

domain/attribute. Also we need to specify the data type of the domain'.

Secondly, with domains being properly defined, relations can be built on the pre-

defined domains. Building relations on domains is simpler than building relations

41f the domain is of multityped type, what needs to be specified is the main data type of the
domain.

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 56

on "data type domains". For each attribute of a relation, we just need to specify an

appropriate domain as the underlying domain of the attribute. We do not need to

specify the data type of the attribute because that is already defined as the data type

of the underlying domain. For a relation we only need to define all the attributes

of the relation. Some other aspects of relation definition in traditional systems, like

primary keys and foreign keys, no longer need to be specified because they were origi-

nally used to specify so-called "referential integrity" constraints which become simple

domain integrity constraints on "derived" domains in domain-supported systems.

3.2.3 Other Features

In a domain-supported system, it is desirable to be able to specify whether NULL

or unknown values are allowed in a domain in addition to the ordinary NULL spec-

ification on relations. If NULL is not allowed in a domain then NULL will not be

allowed in any attribute based on the domain. But if NULL is allowed in a domain,

then some attributes which are defined on the domain may still not accept NULL.

When NULL is allowed, it is possible to have a default value for NULL in a domain.

In addition to all the above, there are more features which can be incorporated

into data definition facilities. For example, one might include the ability to create

a view or a subdomain of an existing domain, and the facility to drop a domain

definition and so on.

A RDBMS with perfect domain definition and relation definition facilities will

relieve database programmers and database administrators of a significant burden

of maintaining data integrity. For instance, if the domain WEIGHT is declared

as ranged from 0 to 100, a negative value or a value greater than 100 would be

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 57

automatically rejected by any attribute defined on the domain. Programmers thus

no longer need to specify any code to validate the values to be used in any of the

attributes based on the domain.

3.3 Data Manipulation Facilities

In domain-supported relational database systems, some domain manipulation facili-

ties should be implemented. The facilities differ from the domain calculus [LaPi77]

which is used for expressing data manipulations on relations; instead, they are the

facilities that manipulate domains. In addition to domain manipulation facilities, or-

dinary relation-oriented operations will certainly have some side-effects on domains.

This section discusses these facilities and side-effects.

3.3.1 Data Dictionary Inquiries

In a domain-supported system, the database administrators (DBA) and/or database

programmers need some facilities to obtain structural information about domains

from the data dictionary of the system. When designing or maintaining a database,

a DBA will typically refer to the data dictionary for the characteristics of domains.

When coding applications, a database programmer may need to check associations

between domains and attributes. Typical system catalogue inquiries on domains are:

1. List all the underlying domains of a database or a relation;

2. List the domain on which a particular attribute is defined;

3. List all the attributes that are defined on a particular domain;

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 58

4. List all the relations of which one or more attributes are defined on a particular

domain;

5. List the name of the derived domain(s) that is based on a particular attribute

or relation;

6. List the attribute or the relation from which a derived domain acquires values.

To handle the above inquiries in a domain-supported system, we do not need any

special facilities; instead the above inquiiies could be expressed in terms of ordinary

database query languages such as SQL, provided that the system catalogue is or-

ganized to facilitate them. For example, a system relation which stores names and

other properties of all domains is suitable for answering the first query, and a re-

lation which lists all the attributes and their underlying domains could be used for

answering the second query, and so on.

In addition to the above retrieval inquiries on the data dictionary, it might be

desirable to have some domain-related data dictionary update operations, such as

changing a domain's name, changing the underlying domain of an attribute, etc.

These can also be achieved by the ordinary data manipulation language provided

the data dictionary is properly organized. Some other operations, like changing the

definition of a domain, should be controlled carefully to prevent certain problems,

like data type conversion, from happening.

3.3.2 Domain-Oriented Operations

As indicated in the previous chapter, some database operations are intrinsically

domain-oriented instead of relation-oriented. A typical example of such operations

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 59

is increasing all values of domain PRICE by ten percent. In existing relational

database systems, due to the lack of domain implementation, such domain-oriented

inquiries are forced to be expressed as relation-oriented data queries and to be carried

out on the relations. But in a domain-supported system, domains are considered to

be independent objects, so it should be possible to carry out domain-oriented data

manipulations on the domains themselves, provided that direct domain manipulation

facilities are available.

The typical domain-oriented data operations should be:

• Retrieve a single value, several values or even all values of a domain, regardless

of whether the value(s) have corresponding occurrences in relations or not. The

purpose of such retrievals might be to check the existence of particular domain

values or to list some or all legal values for attributes defined on the domain.

• Insert a single new value or several new values directly into a domain. The

newly inserted value(s) will not have occurrences in relations until the value(s)

is otherwise explicitly inserted into relations.

• Update a single value, several values or all values of a domain. All the cor-

responding occurrences of the updated domain value(s) in relations should be

updated too. Such updates are intended to update domain value(s) and the

corresponding occurrences in relations regardless of whether the value(s) has

occurrences in relations or not.

• Delete a single value, several values or even all values from a domain. The

corresponding occurrences of the deleted values should also be deleted from

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 60

relations. Like domain-oriented updates, such deletions are aimed at both

the value(s) and the occurrence of the value(s). Note: Deletion of values di-

rectly from domains should be strictly controlled, because it may endanger the

database.

• Other operations, like changing the current unit of a multiunit domain and

insertion of alternative representatives for a value of a multityped domain.

As indicated in section 3.1, in domain-supported systems, each stored domain can

be implemented as a unary system relation which explicitly stores all the valid values

of that domain. Therefore the stored domains can be manipulated just as ordinary

relations, and thus domain-oriented operations can be expressed as operations on

the system domain relations. For example, when we want to insert a new data value

into a domain, especially into an enumerated domain, we just insert the new value as

a new tuple into the corresponding system domain relation. Also, with all values of

a domain stored in a system domain relation, to retrieve all the values of the domain

we just retrieve all tuples in the system domain relation.

For a domain whose values are not stored separately from relations, we can always

use some system facility to form a virtual system domain relation which contains all

the distinct occurrences of domain values in relations5. Then we can treat the virtual

relation as if it were a real system domain relation and domain-oriented operations

thus can be also expressed as ordinary relation-oriented retrieval ojerations on the

virtual system domain relation, though the operations themselves will be carried out

on the relations involved.

51n SQL, we can use "CREATE VIEW" to form such a virtual relation.

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 61

At this point, it seems that to accomplish most domain-oriented operations no

special domain-oriented facilities are needed, provided that the system creates and

maintains some system relations that are either system domain relations storing

all values of domains, or virtual system domain relations which contain values of

domains that have occurrences in relations. In other words, we do not need special

operations to directly manipulate domains; instead we can use the ordinary relation-

oriented operations to manipulate domains. The only change is on the object of

the operation: from ordinary relations to system relations that represent domains.

Usually the system relations are just implied by the names of domains and if the

names of domains are distinguished from the name of relations, then the syntax of

data manipulation languages will remain unmodified to identify the different objects

of data operations. For example in SQL, retrieval of all values of domain CITY can

be expressed as:

SELECT * FROM CITY

Since there is no relation named CITY, the system therefore selects all the tuples

from the system domain relation corresponding to domain CITY.

There are some exceptions which need special domain-oriented operation and thus

cannot be supported without changing the syntax of the original data manipulation

language. For example, in a multityped domain we do need some special facilities

to handle values and their alternative representatives. In order to insert a value into

a multityped domain we need to specify if the value is a brand new value that has

no other representative in the domain or if the value is a new representative of an

existing value in the domain. In an SQL-based system, we may modify the syntax

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 62

of the INSERT statement to:

INSERT INTO [DOMAIN] domain-name

VALUES (constant ['constant] ...)

[WHERE VALUE = constant]

An insertion without the WHERE clause adds the constant(s) of VALUES clause to

the specified domain as brand new values. An insertion with WHERE clause inserts

the values in the VALUES clause into the domain as alternative representatives for

the value indicated by the constant in the WHERE clause. Compared with the

original INSERT statement of SQL, the only minor modification here is the new

key-word "VALUE" which indicates that this is a true domain-oriented insertion on

multityped domains. In the next chapter we will see how much the SQL language

has been modified in our proposed SQL/D, which is a domain extension to the SQL

language.

In a domain-supported system, the database programmer's awareness of the

domain-oriented operations is more important than the existence of the operations

themselves. The programmers must be able to distinguish domain-oriented inquiries

from relation-oriented inquiries so that the data can be properly manipulated and

the integrity and accuracy of the database can be guaranteed.

3.3.3 Impact of Relation-oriented Operations

In this section, we examine the impact of relation-oriented updating operations on

domains. Generally speaking, ordinary relation-oriented updating operations, such

as deleting a tuple from a relation, inserting a new tuple into a relation and replacing

an existing tuple with a new one, may have some side-effects on the underlying

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 63

domains. The effect varies according to the types of domains and the types of the

operations. For domains which are not physically stored separately from relations,

the side-effects of relation-oriented updates are straightforward. If a new value is

added into an attribute of a relation, then the value is automatically inserted into

the underlying domain. If a tuple is deleted from a relation, the component values

in the tuple will be removed from their corresponding domains if the values have no

other occurrences in the database. But for some special types of domains, the case

is more complicated. The following are some important ones.

For an enumerated domain, the natural way to insert, delete or update data

values is via some domain-oriented operations. An attempt to update data on an

attribute which is defined on an enumerated domain should have no effect on the

domain. That is if a value is deleted from a relation, the value should remain in the

domain and if a new value which is not enumerated in the domain is to be inserted

via an attribute defined on the domain, the insertion should be rejected. Actually in

order to make the system more flexible, we may suggest an option allowing users to

insert new values into an enumerated domain via successful insertions of the values

on some special attribute defined on the domain. These special attribute(s) should

be carefully chosen by the DBA.

For a stored domain the situation is similar to an enumerated domain with only

one exception: a new value can be inserted into a stored domain via an insertion of

the value into an attribute based on the domain. But when the last occurrence of

value is deleted from relations, the value should remain in the domain because it is

"stored" in the domain.

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 64

The case of multityped domains is different from the above domain types because

in this type of domain there are principal values and their alternative representatives.

First, the principal values should be treated as ordinary values of a plain domain.

Then the alternative representatives should be treated similarly to the values of

enumerated domains since each alternative representative must be explicitly inserted

into the multityped domain via a domain-oriented insertion before it can be used in

relations.

The case of derived domains is more complicated. The scope of an update on the

attribute from which a derived domain derives values is the whole database including

the derived domain itself and all the attributes defined on it. But an update on any

attributes which are defined on a derived domain should not affect the referential

attribute and its underlying domain. For example, an update on attribute S# of

relation SF will not affect the attribute S# in relation S and its underlying domain.

Ironically while domain-oriented data manipulation facilities are introduced for most

of the domain types, no domain-oriented update operations can apply to a derived

domain because the values of a derived domain are drawn from a relation and do

not have their own existence apart from the referential relation. However, an update

on an attribute which is defined on a derived domain is allowed provided the update

does not violate the integrity of the derived domain. The scope of such an update is

limited only to the relation which contains the attribute.

For a calculated domain, the situation is similar to that of derived domains

because the values of a calculated domain are derived from another domain while

the values of a derived domain are derived from an attribute or are derived indirectly

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 65

from another domain.

When implementing domains in relational database systems, in addition to incor-

porating the domain-oriented data manipulation facilities into the data manipulation

language, the relation-oriented data manipulation facilities must be modified to in-

corporate the above-discussed side-effects on domains. We will see such impact in

our implementation discussed in chapter 5. Also the database programmers must be

aware of the side-effects so that databases can be properly manipulated.

3.4 Adopting Internal Representation Techniques

In most existing database systems, data are stored in files on their original format.

An integer is stored as a binary integer; a 10-character string is stored as a 10-byte-

long field with each byte containing the binary code of a character, and so on. Such

a simple data storage scheme is easy to implement but has a major disadvantage:

more storage space.

It has been suggested for years to use some kind of internal representation to

replace the original data in database files. But for some reasons, the techniques are

not widely adopted. One of the considerations is that the original data must be kept

somewhere in the database. That will need some extra storage space.

Now in a domain-supported system, since domains (at least some of domains)

are physically stored in system relations, it becomes possible and easy to adopt

internal representation techniques. The simple way is using binary relations to store

domains. The first attribute of the relation is used to store the original data and the

second attribute is used to store the corresponding internal representations. Then in

CHAPTER 3. SUPPORTING DOMAINS IN RELATIONAL DATABASES 66

database files, which represent relations, the internal representations6 will be used.

In addition to saving storage space, adopting internal representation techniques

may also benefit database systems in some other respects: security and portability.

Security is gained because the actual data values are hidden by their internal rep-

resentations in the files. Portability is improved by the fact that data of different

formats or data in different human languages, say in English and in Chinese, would

be exchangeable when the data are represented in the same standard internal format.

Internal representation is an old technique. In relational databases that do not

support domains, it is hard to implement it, but in thd systems that support domains

the scheme is easier to implement especially for the "stored" domains. Then, to

efficiently implement such techniques, some careful studies on the techniques are

still needed.

In this chapter we have described the main features of domain support in rela-

tional databases. In the next chapter we will see how the features could be added

into a relational system without rebuilding the system from the bottom.

6 A least for the attributes based on the stored domains, the internal representatives can be
used.

Chapter 4

SQL/D Domain Extension to

SQL

In the previous chapters, we have already shown that it is worthwhile to support

domains in relational database systems. Now a new question arises: how much

effort does it take to achieve that goal? Is it necessary to rebuild relational database

systems in their entirety to get the extra domain features? In this chapter and the

following chapter, we will answer this question by introducing our proposed SQL/D,

a domain extension to, the SQL language and our current (partial) implementation

of SQL/D on the SYBASE database system.

We choose SQL as a vehicle for illustrating domain support in relational databases

for the following reasons. First, "for better or worse, SQL is intergalactic dataspeak"

[CADF9O]. During the evolution of the relational data model various systems and

languages have been developed and proposed. But after twenty years of competition,

SQL is apparently the overwhelmingly dominant language in the relational database

market. Some non-SQL systems, like INGRES, had to adopt an SQL interface before

being commercialized. So it seems that SQL must be the most common language

that both we and our readers are fluent in. The second reason for choosing SQL

is that current SQL does not support the domain concept at all. It is obviously

67

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 68

more convincing to show how domain features could be incorporated into a totally

domain-free environment.

4.1 A Brief Review of the SQL Language

The SQL language was first designed as the sole data language to be used in System

R, which in turn was IBM's first prototype relational database system. Because

of its advanced features and its simplicity, SQL rapidly became the internationally

recognized standard relational data language. Although SQL is an abbreviation for

"Structured Query Language", the language itself is much more than a "query"

language. In fact, SQL is a unique relational data language which integrates data

definition, data manipulation and data control facilities all into a single language.

The principal SQL data definition statements are:

CREATE/ALTER/DROP TABLE - Create, alter or drop a base table.

CREATE/DROP VIEW - Create or drop a "virtual" table.

CREATE/DROP INDEX - Create or drop an index on a. base table.

The four powerful SQL data manipulation statements are:

SELECT - Retrieve data from relation(s).

INSERT - Enter data into a relation.

UPDATE - Update data in a relation.

DELETE - Remove data from a relation.

Two typical SQL data control statements are:

GRANT/REVOKE - Authorize data manipulation privilege to user(s).

COMMIT/ROLLBACK - Commit or rollback a transaction.

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 69

In addition to the above statements, SQL also provides some aggregation func-

tions, for example, SUMO, COUNTQ, etc., which are mainly embedded into SE-

LECT statements to tailor sophisticated data requests. SQL is also characterized as

an English-like language. It is easy to understand and easy to use, especially for its

famous SELECT-FROM-WHERE "Query Block" structure.

As early as 1986, SQL had been adopted as an official standard language for

relational database systems by the American National Standards Institute (ANSI),

but even now none of the actual SQL systems support exactly the pure ANSI version

of the language; every system has its own particular dialect of SQL. Besides, ANSI

seems to modify its standard draft every year. This makes it a little difficult to

choose an appropriate SQL version to illustrate our domain extension. However,

we finally selected the SYBASE dialect because SYBASE is a relatively new SQL

product, so its SQL is closer to the standard SQL. Also, SYBASE, the only SQL

resource available at this department, is the system on which we are implementing

our proposal.

4.2 The Syntax of SQL/D

Before presenting the syntax of the proposed SQL/D, it is necessary to point out

that SQL/D is not a completely new version of the SQL language. Instead it is a pro-

posed extension to SYBASE SQL with domain definition and domain manipulation

features. Therefore, we will only include the extended statements in the following

syntax presentation. Those trivial SQL components, like CREATE INDEX, COM-

MIT, etc., which are not relevant to the domain concept and require no change to

CHAPTER 4. SQL/D - DOMAIN EXTENSION TOSQL 70

their syntax, will not be covered.

In designing the proposal, one of our main criteria is to stay as close as possible

to the standard SQL language and to introduce as few new keywords as possible.

We will see the effect later.

4.2.1 Syntax Conventions

We will not use the formal Backus-Naur Form (BNF) to describe our SQL/D pro-

posal; instead the more conventional "upper case/lower case and brackets" method

will be used. The reason is simply that this method, which nowadays is not only

prevalent throughout the data processing industry but also widely adopted in the lit-

erature, is the dominant method used to describe SQL and any proposed extensions

to SQL in related books and papers.

The elementary syntactic notations which we will use throughout this chapter

are explained below.

Square brackets ([]) denote optional element(s).

• Curly brackets ({ }) denote an obligatory group of elements from which one

and only one element must be chosen.

• The vertical bar separates (I) alternatives from a multiple choice list of ele-

ments.

• Ellipses (...) indicate elements that may be repeated one or more times. If a

comma appears prior to the ellipses (,...), a comma must then be used as a

separator between any two consecutive elements. For example,

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 71

{literal}... means literall 1itera12 1itera13 and so on, while

{literal},... means literal1,literal.,literal3 and so on.

• Words in upper case and lower case letters are KEYWORDS and elements

respectively. Elements are written in underscore-hyphenated words in the gen-

eral format for a more precise presentation. For example, the word 'domain

name' is written as 'domain-name' in the format. The format of user-provided

elements, like domain-name and so on, is not significant to the domain concept

and is not specified.

4.2.2 Syntax of the Proposed SQL/D Extension

In this section we present the syntax of the proposed SQL/D extension to SQL. Then

in the following section we discuss the details of the proposal. Note that, except for

the reserved keywords, the standard SQL terms "table" and "column" are replaced

by SQL/D terms "relation" and "attribute" respectively. This is because SQL/D is

more relational than the original SQL.

CREATE DOMAIN domain-name

{ [DERIVED] AS selectionsubquery

UNION (domain-name {,domain-name}...)

I ({domain_name [[NOT] NULL]},,..)

I data-type-description

[[NOT] NULL]

[{UNIQUE I EXCLUSIVE} [IN {(relation_name[.attribute_name]

{ ,relation_name[.attribute_name] }...

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 72

[MULTIUNIT [DEFAULT=]defau1tunitname

{ ,alternative_unit_name=constant } . . .1

[RANGE FROM lower-bound TO upper-bound]

[ENUMERATED [({constant},...)] [INSERTION [ALLOWED]

{relation_name[.attribute_name] },...]]

[PICTURED picture-description]

[MULTITYPED {datatypedescription},...]

[CARDINALITY integer_cardinality [OCCURRENCE integer-occurrence]]

[STORED] }

The data-type-description in the SYBASE environment could be as below.

{ BIT I BOOLEAN

I TEXT

I {CHAR I VARCHAR}[(length)]

I {FLOAT I REAL}

I {BINARY I VARBINARY}[(length)]

I {INT I SMALLINT I TINYINT}

I {MONEY I SMALLMONEY}

I {DATETIME I SMALLDATETIME}

I {IMAGE I TIMESTAMP I SYSNAME }

}

DROP {DOMAIN domain-name I TABLE relation-name I VIEW view-name}

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 73

CREATE TABLE relation-name

{attribute-name [ON] domain_narre [[NOT] NULL [UNIQUE]]},...

[UNIQUE {({attribute-name

ALTER TABLE relation-name ADD

({attribute_name [ON] domain-name [UNIQUE]}....)

SELECT

{ [ALL I DISTINCT] {* {value-expression},...,}

FROM {relation-name [alias-name]}....

[WHERE search-condition]

[GROUP BY {{relation_name I alias_name].attributename},...]

[HAVING search-condition]

I VALUE FROM domain-name

}

INSERT INTO

{ relation-name [({attribute-name}....)]

{ VALUES ({constant},...) I select_subquery}

I [DOMAIN] domain-name VALUES ({constant},...

[WHERE VALUE=constant]

}

)

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 74

DELETE [cASCADE]

FROM {relation-name I domain-name}

[WHERE search-condition]

UPDATE

{ relation-name [CASCADE] SET {attribute-name =. expression},...

[WHERE search-condition]

I domain-name SET VALUE=expression [WHERE search-condition]

I UNIT SET CURRENT=unit_name WHERE DOMAIN=domain_name

}

{GRANT I REVOKE}

{ALL I {SELECT I INSERT I DELETE I UPDATE},...}

ON {domain-name I relation_name[. attribute_name] }

TO {PUBLIC I {username},...}

[WITH GRANT OPTION]

4.3 Data Definition in SQL/D

Data definition in SQL/D is quite different from that of ordinary SQL. First, SQL/D

domain definition facilities make it possible to precisely define various types of do-

main described in Section 3.2.1. Then with domains created, relations are no longer

defined on the system-provided "data type" domains but are established on top of

pre-defined domains. Data base definition in SQL/D consists of two parts: domain

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 75

definition and relation definition.

For simplicity, from now on our discussion of SQL/D, except where indicated,

will be limited to atomic domains only. In other words, we will assume that all

domains in SQL/D are atomic. -

4.3.1 Defining Domains in SQL/D

The only domain definition statement in SQL/D is CREATE DOMAIN. It provides

all the domain definition features discussed before. This statement is totally new to

SQL. The features of CREATE DOMAIN include:

. domain-name

Domain name is the unique identifier for the domain being defined. It is desired

that domain-names be distinct from relation names so that the syntax of some

SQL/D data manipulation statements can be simplified. For more detail see,

later discussion.

[DERIVED] AS selection....subquery

This option is used to specify that the named domain is a derived domain.

The selectionsubquery works in a similar manner as the selection subquery in

CREATE VIEW of SQL. It determines the set of valid values for the named

domain. For example, the derived domain S_S#, which consists of all S# values

in relation S, is specified as:

CREATE DOMAIN S.5# DERIVED AS SELECT S# FROM S

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 76

The data type' of a derived domain is always inherited as that of the parent

domain of the named derived domain. In the above example, the data type of

domain S_S# is the same data type of domain of attribute S.S#. The optional

keyword DERIVED has no special effect, it is just for precision.

• UNION (domain-name {,domain-name}...)

This option is used to form a united domain from at least two existing domains,

which are listed between the parentheses. The united domain consists of all

distinct values of the participating domains. The participating domains are

required to be compatible, that is, they must be of same data type. Therefore

the data type of a united domain is the same as that of the participating

domains.

Note: The key word UNION could be INTERSECT or DIFFERENCE to form

a domain by the corresponding set operations on domains. In order to simplify

the SQL/D syntax, we did not include them here.

• ({domain....name [[NOT] NULL]},...)

This is used to show how a composite domain, which is the Cartesian product

of several existing atomic domains, could be formed if SQL/D did support this

type of domain. For reasons mentioned before, we would not discuss this type

of domain here.

The above three exclusive options define domains which derive values from

other existing domains. The next option is used to create new domains inde-

'In fact, not only the data type but all the properties of the parent domain should be inherited
by derived domain.

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 77

pendently of other existing domains.

data_type_description

This specifies the data type for the named domain. If the domain is a multi-

typed domain, then the data type specified here is the main data type for the

domain (see MTJLTITYPED option for more detail).

We suggested before that a domain support system must provide rich data

types, or in our terms, rich built-in domains. The data types supported in

SYBASE are listed below the CREATE DOMAIN syntax. We can see that

SYBASE does provide relatively richer data types than earlier SQL systems.

However, as the selection of data types is not a main topic of this proposal, we

prefer to leave it as a further research subject to interested readers.

Note that the following options are not exclusive' we suspect that in practice

most domains will have only a few of the properties.

• [[NOT] NULL]

This specifies whether null is globally allowed in all the attributes which are

defined on the named domain. "Globally" here means that the scope of the

domain NULL specification is the entire database. The option NOT NULL

prohibits null in all attributes defined on the named domain, since null is not

allowed in the named domain. The option NULL allows null in any attributes

defined on the domain unless it is otherwise prohibited in relation definition

(see CREATE TABLE for more detail). If this option is not chosen, the default

is NULL.

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 78

. {{UNIQUE J EXCLUSIVE). [IN { (relation_name[.attribute..name]

{ ,relation..name[.attribute_name] }...) } ,.. .J]

The keywords UNIQUE and EXCLUSIVE have the exactly same meaning.

While the former is a well known SQL preserved word, the latter is more

meaningful in this context. This specifies that the values of the named do-

main are assumed exclusively. If the IN clause is omitted then each value of

the domain can only be assumed once in the entire database, while the IN

clause otherwise specifies alternative scopes for the values of the domain. The

alternative scope must consist of at least two attributes, since the UNIQUE

clause in CREATE TABLE could prohibit redundant values in a single rela-

tion. The attributes could be identified by names of their containing relations,

or be explicitly identified by the unique identifiers of the attributes. The fol-

lowing example specifies that each value of domain EMP# can only appear

once either in the EMPLOYEE relation or in the MANAGER relation:

CREATE DOMAIN EMP# char(4) EXCLUSIVE IN (EMPLOYEE, MAN-

AGER)

• [MULTIUNIT [DEFAULT=]default.unitname

I, alternative-unit-name =constant }. . .1

This indicates that the named domain is a multiunit domain. It assigns a

default unit, plus one or more alternative units, to the named domain. At

different times, the values of the domain can be represented in different units,

though the actual domain values stored in the database are always in the

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 79

default unit. At any given time, only one of the multiple units is in effect and

the effective unit is called the CURRENT unit of the MULTIUNIT domain.

In the definition, the default-unit-name and alternative-unit-name specify the

names of the default unit and the name of each alternative unit respectively,

while the constant2 provides the value used to convert data represented in

an alternative unit to data in the default unit and vice versa. Note that a

MULTIUNIT domain must be of numerical type, usually of type real number,

since the constants used in conversion are almost always real numbers.

The following example indicates that values of domain WEIGHT could be

represented in one of the three units: a default unit KG (kilogram) and two

alternative units LB (pound) and GRAM (gram). Suppose the CURRENT

unit of domain WEIGHT is LB. Then any newly inserted WEIGHT values will

be divided by 2.2046 before being stored into the database and all WEIGHT

values retrieved from the database will be multiplied by the corresponding

conversion constant 2.2046 before being submitted to the user.

CREATE DOMAIN WEIGHT real MULTIUNIT

DEFAULT='KG', 'LB'=2.2046, 'GRAM'=lOOO

In order to switch among the multiple units, we extend the SQL UPDATE

statement with the following option.

UPDATE UNIT SET CURRENT=unit..name

WHERE DOMAIN=domainname

2 In more general cases, to convert values in one unit to values in another unit, we may need a
formula or a procedure instead of a constant. For example, conversion of Celsius temperatures to
Fahrenheit temperature. But for reasons of simplicity we only use constants in SQL/D.

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 80

It states that the system updates CURRENT UNIT of the domain-name do-

main to unit-name unit. It will seem to the database users that this statement

changes all the values of the domain from the current unit to a new CURRENT

UNIT, namely unit-name unit. For example, to change unit of WEIGHT do-

main from default 'KM' to 'LB', we use:

UPDATE UNIT SET CURRENT='LB' WHERE DOMAIN=WEIGHT

• [RANGED FROM lower-bound TO upper-bound]

This indicates that the named domain is a ranged domain. The lower-bound

and upper-bound set the interval for values of the named domain. The data

type of a ranged domain can be either numerical or character string as for the

domain. The lower-bound and upper-bound should be of the same type, too.

The following example specifies that values of QTY domain cannot exceed the

integer interval between 0 and 1000.

CREATE DOMAIN QTY mt RANGED FROM 0 TO 1000

If a domain has several separated ranges, we will first use this option to create

several separate domains for each of the ranges, and then use the UNION

option to unite all the ranges to form the required "multi-ranged" domain.

• [ENUMERATED {({constant},...)]

[INSERTION [ALLOWED] {relation_nàme [. attribule_name] },...]]

This indicates that the named domain is an enumerated domain. The format

({constant},...) is used to enumerate the valid values of the domain. Usu-

ally such an enumeration should be a mandatory part in the definition of a

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 81

enumerated domain. But in some cases, it is possible that, at the database

design stage, the valid values are not yet available and thus the enumeration

is infeasible. So here this enumeration part is optional. To append new values

directly into an enumerated domain after the completion of domain definition,

we will use the amended SQL INSERT INTO statement:

INSERT INTO [DOMAIN] domain-name VALUES ({constant},...)

Another way to add new values into an enumerated domain is indirectly through

an ordinary relation insertion operation. But this will only happen in some

exceptional cases and it should be strictly restricted. The INSERTION AL-

LOWED option specifies the restricted relation(s) and/or attribute(s) from

which new values are allowed to be indirectly added to the enumerated domain

when the data are implicitly inserted into the relation. If an attribute-name is

specified (and the attribute is defined on the named domain) then, whenever

a value which is new to the enumerated domain, is inserted into the specified

attribute, it will also be inserted into, the domain. If relation-name is specified,

the same will apply to all attributes of the relation which are defined on the

enumerated domain.

The following example specifies that CITY is an enumerated domain with

three initial values and indirect insertion of new values is allowed through the

attribute CITY of relation S.

CREATE DOMAIN CITY char(20) ENUMERATED

('LONDON', 'PARIS) 'ATHENS') INSERTION ALLOWED S.CITY

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 82

• [PICTURED picture-description]

This specifies the literal "picture" or pattern for the named domain. All values

in the domain must match the specified picture. The special symbols used to

describe the picture coincide with those used in the "LIKE" predicate of the

SQL SELECT statement. In SYBASE, an underscore (_) represents any single

character while a percentage mark (%) represents a sequence of n characters

(where n may be zero). All the other characters simply stand for themselves.

The following example indicates that values of domain S# must start with

character "S" then followed by one any other character.

CREATE DOMAIN S# char(2) PICTURED 'S'

• [MULTITYPED {datatype_description},...]

This specifies that the named domain can take values of multiple data types.

The data-type-description here specifies the alternative data types for the do-

main. As indicated earlier, usually a multitype domain should also be an

enumerated domain. The format to attach alternative values, which are en-

closed in the parentheses, to a value of the main data type, which is specified

by the VALUE clause, is:

INSERT INTO [DOMAIN] domain-name VALUES ({constant},...)

WHERE VALUE=constant

The following example specifies that domain MONTH is an enumerated multi-

typed domain. The main data type- and alternative data type are integer and

character string respectively.

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 83

CREATE DOMAIN MONTH mt ENUMERATED (1,2,3,4,5,6,7,8,9,10,11,12)

MULTITYPED char(10)

And the following makes "January" and "Jan" as aliases of MONTH 1:

INSERT INTO DOMAIN MONTH VALUES ('January', 'Jan.')

WHERE VALUE=1

• [CARDINALITY integer-cardinality

[OCCURRENCE integer-occurrence]]

This specifies the estimated cardinality of the named domain (the approximate

number of distinct values in the domain) and the estimated total number of

occurrences of the values database-wide. This information is useful for the

system in determining whether to use internal representation storage scheme

for the domain if the technique is adopted. The following example domain

provides a typical case for using internal representation. The values of domain

COUNTRY are one hundred characters long. The cardinality of the domain

is relatively low compared with the number of occurrences of the domain; the

former is only one hundredth of the latter. Note as mentioned in Section 3.4, in

most cases the DBA is responsible for determining whether to store the domain

or not.

CREATE DOMAIN COUNTRY char(100)

CARDINALITY 200 OCCURRENCE 20000

• [STORED]

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 84

This indicates that the named domain should be physically stored in the

database as an independent object. Once a domain is declared to be STORED,

direct insertion of values into the domain becomes possible while indirect inser-

tion of values via an ordinary relation-oriented insertion is also allowed. The

STORED property will further help in avoiding "update anomalies". For more

detail see the discussion in previous chapter.

To couple with CREATE DOMAIN, SQL/D provides DROP DOMAIN to remove

a domain from database. The statement is:

DROP DOMAIN domainname

Note that, before dropping a domain, it is necessary to drop all relations which

are defined on the domains; otherwise the domain would not be dropped to prevent

unexpected loss of data.

So far we have shown that using SQL/D, various types of domains, from a plain

domain with only data type specification to a complex one with several properties,

could be defined. Domain definition is the most primitive step in supporting do-

mains in databases. We will see how domains affect relation definition and data

manipulation in Section 4.4.

4.3.2 Defining Relations in SQL/D

The SQL/D relation definition statement is similar to the SQL counterpart. The

only difference is that attributes are defined on user-created domains in SQL/D and

in SQL columns are defined on built-in data type domains.

CREATE TABLE relation-name

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 85

({attribute-name [ON] domain-name [[NOT] NULL [UNIQUE]]},...

[{UNIQUE ({attribute_name },...)} ...])

Each attribute must be assigned a previously created domain. Because all do-

mains have specified data type(s), it is no longer needed to assign data types to

attributes. The option [[NOT] NULL [UNIQUE]] specifies whether the attribute is

allowed to accept null and whether duplicated values are allowed in the attribute.

Note that if the underlying domain does not allow null in the entire data base, then

the NULL choice is unavailable here, because the decision at the domain level applies

to the entire database. The keyword ON is optional and is used for ease of reading.

[UNIQUE {({attribute-name },...)}]

This option is used to specify candidate keys of the relation, especially composite

candidate keys, since a single attribute candidate key could be specified by choosing •

the UNIQUE option in the attribute definition. In SQL/D, no explicit foreign key

specification is available since it is not the best way to achieve referential integrity.

In SQL/D referential integrity constraints are achieved by defining a derived domain

on referenced attribute(s) and making it the underlying domain of the referencing

attribute. We will see such an example in the comprehensive SQL/D database defi-

nition example at the end of this section.

Like relations in standard SQL, relations in SQL/D are expandable by adding

attribute(s) with the ALTER statement. The added attribute(s) must be defined on

previously created domains too. The amended ALTER syntax is:

ALTER TABLE relation name ADD

({attribute-name [ON] domain-name [UNIQUE]},...)

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 86

The new attribute could be UNIQUE but could not be NOT NULL, since in

existing tuples the newly-added attribute will necessarily contain NULL.

4.3.3 A Comprehensive Example

To summarize our discussion on SQL/D data definition facilities, we present the

SQL/D version of the definition of the "Supplier-and-Parts" database below:

CREATE DOMAIN S# char(2) PICTURED 'SJ;

CREATE DOMAIN SNAME char(1O);

CREATE DOMAIN STATUS int;

CREATE DOMAIN CITY char(20) ENUMERATED

('LONDON','PARIS','ATHENS','ROME','OSLO');

CREATE DOMAIN P# char(2) PICTURED 'P';

CREATE DOMAIN PNAME char(1O);

CREATE DOMAIN PRICE int;

CREATE DOMAIN WEIGHT real MULTIUNIT

DEFAULT='KG', 'LB'=2.2046, 'GRAM'=lOOO;

CREATE DOMAIN S...S# DERIVED AS SELECT S# FROM S;

CREATE DOMAIN P-P# DERIVED AS SELECT P# FROM P;

CREATE DOMAIN QTY int RANGED FROM 0 TO 1000;

CREATE TABLE S (

S# ON S# NOT NULL UNIQUE)

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 87

SNAME ON SNAME,

STATUS ON STATUS,

CITY CITY);

CREATE TABLE P (

P# ON P# NOT NULL UNIQUE,

PNAME ON PNAME,

PRICE ON PRICE,

WEIGHT ON WEIGHT,

CITY ON CITY);

CREATE TABLE SP (

S# ON SS# NOT NULL,

P# ON P2# NOT NULL,

QTY ON QTY,

UNIQUE (S#,P#));

Because most of the domain definitions in this example have been explained

before and the relation definitions are straightforward, we will only discuss some

necessary parts of the example below.

• S# ON S# NOT NULL specifies that attribute S.S# is defined on domain

S# and null is not allowed in this attribute. The same applies to all the other

attributes.

• The primary key of relation S is specified by indicating UNIQUE on the key

attribute S#; this also applies to P# in P. But the primary key of relation SP

is specified by a separate UNIQUE (S#,P#) clause.

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 88

• Attributes S.CITY and P. CITY are defined on the same domain, namely CITY.

In the definition, the optional keyword ON is omitted for S.CITY.

• The derived domain S_S# sets up a reference from attribute SP.S# to attribute

S.S#. The only legal values for SP.S# are the existing values in S.S#. And

the same applies to domain P..P# for SP.P#and P.P#.

4.4 Data Manipulation in SQL/D

The SQL/D data manipulation facilities consist of two parts: ordinary relation-

oriented manipulation and special domain-oriented manipulation. In this section, we

will mainly discuss the latter part since the first part is similar to ordinary SQL. As

in SQL, there are four data manipulation statements in SQL/D: SELECT, INSERT,

DELETE and UPDATE. They will be 'discussed separately.

4.4.1 SELECT

The only SQL/D modification to the SQL SELECT statement is the new option:

SELECT VALUE FROM domain-name

This is used to retrieve all values of the named domain. If the domain is an enumer-

ated domain, then the system SELECTs all values from the corresponding system

relation storing the enumerated values. If the domain is a derived domain then the

system SELECTs all distinct values from the attribute(s) from whith the domain is

derived. If values of the domain are spread over several relations then the system

SELECTs all distinct values from all the relations involved. The keyword VALUE

here indicates that this is a domain-oriented SELECT. The following statement re-

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 89

trieves all values of domain CITY, which provides all the legal values for attributes

S.CITY and P.CITY.

SELECT VALUE FROM CITY

When discussing data comparability problems, we suggested that "forced" inter-

domain comparison should be allowed in domain support systems. In SQL/D a

"forced" comparator is expressed by prefixing any ordinary comparator with an '0'

sign. For example, the following SELECT statement compares values in S.STATUS,

which is defined on domain STATUS, with values in P.WEIGHT which is defined on

another domain WEIGHT:

SELECT SNAME FROM S,P WHERE S.STATUS 0= P.WEIGHT

The forced comparator can also be used in other data manipulations.

4.4.2 INSERT

Domain-oriented insertion is used to insert new values into some domain which is

explicitly stored in the database. The domain could be an enumerated domain,

a multityped domain or simply a stored domain. To insert new values into an

enumerated domain or a stored domain, the format is:

INSERT INTO [DOMAIN] domain-name VALUES ({constant},...)

Here domain-name specifies the domain into which the values are to be inserted and

the inserted values are listed enclosed in parentheses. The format to insert aliases

for a value of a multityped domain is:

INSERT INTO [DOMAIN] domain-name VALUES ({constant},...)

[WHERE VALUE=constant]

The aliases are listed enclosed in parentheses and the WHERE clause contains the

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 90

main value to which the aliases are to be inserted. The keyword DOMAIN indicates

that this is a domain oriented insertion. If domain names are distinct from relation

names, then this keyword could be omitted. We recommend that every domain name

be distinct from every relation name in order to simplify the syntax of this and other

data manipulation statements.

4.4.3 DELETE

Domain oriented deletion is used to remove values from any explicitly stored domain

and it takes the following format:

DELETE [CASCADE] FROM domain-name [WHERE VALUE=constant]

Here domain-name indicates the domain from which values are to be removed. The

CASCADE option indicates whether Or not to delete indirectly any value of some

other domain which is a derived domain from an attribute based on the named

domain. The WHERE option specifies the particular value to be deleted. If the

WHERE clause is omitted then the DELETE is interpreted to remove all values of

the domain. If the domain is a multityped domain then any aliases of the specified

value will be removed too.

Note that the CASCADE option can also be used in a relation-oriented deletion:

DELETE CASCADE FROM relation-name

This indicates that if there is any derived domain defined on any attribute of the

named relation then the deletion will cascade to any relation whose attribute is

defined on the derived domain. This is necessary to maintain referential integrity

between the named relation and the relations which are deriving values from the

named relation.

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 91

As indicated before, direct deletion of values from a domain should be strictly

controlled to protect the database from being damaged because such a deletion may

destroy the database.

4.4.4 UPDATE

The domain-oriented SQL/D UPDATE is more complicated than other domain-

oriented data manipulation statements. In SQL/D, UPDATE is not only used to

update values of domains but, as indicated in the discussion of multiunit domain

definition, it is also used to set one of the multiple units as the current unit of a

multiunit domain. The format is:

UPDATE UNIT SET CURRENT = unit-name

WHERE DOMAIN = domain-name

This could be interpreted as "change CURRENT UNIT of DOMAIN domain-name

to unit-name". Readers may argue that the statement is a little too obscure and

farfetched. But this is the result of our way to extend SQL language. We tried to add

as few. new statements or new keywords as possible, while at the same time trying

to obey the syntax of the original SQL in our SQL/D extension. It follows that to

be able to switch among multiple units of a multiunit domain we only add two new

keywords: CURRENT and UNIT (They are definitely needed in the above-shown

interpretation, too) and the syntax of the UPDATE statement is not changed at all.

In fact, in our SQL/D implementation, we do have a system relation to record the

current unit of each multiunit domain. The structure of the relation is as below:

UNIT(DOMAIN,CURRENT)

'The keyword DOMAIN is already needed elsewhere.

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 92

so that the system could interpret and execute the UPDATE UNIT statement as an

ordinary UPDATE statement. We think that such a trade-off between simplifying

the language extension and the meaningfulness of the language is acceptable.

To update values of a domain which is not necessarily an explicitly stored domain,

the format is:

UPDATE domain-name SET VALUE=expression [WHERE search-condition]

The keyword VALUE indicates that this is a domain-oriented update while the

WHERE optional clause specifies which value or values are to be updated. If the

WHERE clause is omitted, then all values of the named domain and hence all the

occurrences of the values in the entire database will be updated. The following

example UPDATE increases all PRICE values by ten percent.

UPDATE PRICE SET VALUE = VALUE * 1.1

The amended relation-oriented UPDATE may also include the CASCADE option

with a similar effect as CASCADE in DELETE. Whenever a referenced attribute

is updated and the CASCADE option is selected, all the referencing attributes are

updated too. For example, the following update means supplier 'S6' takes over 'Si'

as well all shipments supplied by 'Si'.

UPDATE S CASCADE SET S#='S6' where S#='Sl'

The cascaded update is useful to simplify the effort to maintain referential integrity

constraints.

4.4.5 GRANT and REVOKE

Before ending our discussion on data manipulation in SQL/D, it is necessary to

mention briefly the only data control operation in our SQL/D proposal, the extended

CHAPTER 4. SQL/D - DOMAIN EXTENSION TO SQL 93

GRANT and REVOKE statement. Since domains are regarded as objects in SQL/D,

it is natural to enforce privilege control on domains. The domain-level privilege

control possibilities provided by SQL/D GRANT and REVOKE are very similar to

those that SQL GRANT and REVOKE provide to relations. So it is not necessary

to discuss them in nore detail here.

In this chapter we have proposed SQL/D, the domain extension to the SQL

language. In the next chapter we will describe our current implementation of SQL/D

on the top of the SYBASE database manager.

Chapter 5

The Implementation of SQL/D

In this chapter we describe our current implementation of SQL/D on the SYBASE

database management system. This implementation is an interactive SQL/D inter-

face built on SYBASE. For simplicity, we will call the implementation ISQLD, since

the interactive SQL interface of SYBASE is called ISQL.

In this chapter we will not show any results from running the ISQLD program,

in order to keep the length manageable; instead we will present some results in the

Appendix of the thesis.

5.1 Overview of SYBASE

Produced by Sybase Inc., Berkeley, California, SYBASE is one of the newest SQL-

based mainframe RDBMSs. SYBASE is primarily designed for DEC VAX computers

under the VMS and UNIX operating systems, and SUN computers under UNIX. Our

ISQLD is written in the C language on the SUN version of SYBASE.

SYBASE is acknowledged [VaGa89] as the leading RDBMS for distributed on-

line applications. It is also characterized by its ability to handle dath integrity in the

database itself rather than in each application. Like the other SQL-based systems,

SYBASE provides both an interactive interface and an application programming in-

terface to the SQL language, but the programming interface of SYBASE is distinctly

94

CHAPTER 5. THE IMPLEMENTATION OF SQL/D 95

different from so-called "embedded SQL" of most other systems. First, while most

RDBMSs embed SQL into a programming language via a precompiler, SYBASE

employs a different approach by providing a unique programming language inter-

face, namely DB-Library, which is a set of C routines and macros to manage the

communication between any front-end process and the system. Second, in SYBASE

there is no similar notation as so-called "cursors" of the other SQL-based systems,

which provide some kind of bridge between the set-at-a-time level SQL language

and the record-at-a-time level "host" language. SYBASE always keeps the set level

result of a DB-Library routine in the system buffer and lets the application program

fetch the result one-record-at-a-time with some special DB-Library routines, such as

"dbnextrow".

The TRANSACT-SQL language, SYBASE's version of SQL, while providing

standard SQL data definition and data manipulation facilities, does not support do-

mains at all. Although SYBASE has some outstanding data integrity maintenance fa

cilities, like rule; trigger, primary/foreign key, it still suffers from the domain-related

problems discussed in previous chapters. For example, the following retrieval:

SELECT * FROM S,P WHERE S.STATUS > P.WEIGHT

will yield a nonsensical result in SYBASE, as described earlier.

The lack of domain support in SYBASE makes it an ideal candidate to implement .

our SQL/D proposal. In the following sections we will discuss the details of our

ISQLD implementation.

CHAPTER 5. THE IMPLEMENTATION OF SQL/D 96

5.2 Overview of ISQLD

The main purpose of ISQLD is to investigate the feasibility and ease of supporting

domains, especially with the features proposed in our SQL/D, in relational databases.

Since the time for this thesis research was limited, it was not practical to implement

the entire SQL/D proposal. What we did is build an interactive SQL/D interface

on top of SYBASE with part of the SQL/D facilities implemented: That means the

domain features of some SQL/D commands are available only through the ISQLD

interface. For example, if the foregoing retrieval is submitted from ISQLD then it

will be rejected because of the inter-domain data comparison, but if it is issued via

a SYBASE program then it will be executed because our current SQL/D implemen-

tation has no effect on SYBASE programs.

Simply speaking, our ISQLD is a SYBASE/C program which can read an SQL/D

cbmmand from a terminal, interpret the command, reduce the command to one or

more TRANSACT-SDL command(s) and finally pass the commands to SYBASE

for execution. To achieve the SQL/D domain features, we did not use any special

SYBASE facilities like rules and primary/foreign keys; instead we simply coded the

features in C, since we believe this is a better way to meet our feasibility study goal.

We did not modify the SYBASE source files because we were not allowed to do so.

To make our ISQLD more compatible with ISQL, the interactive TRANSACT-

SQL interface on SYBASE, we also implemented some other non-database features

of ISQL. Examples of the features include: the command to call a UNIX editor

to edit the SQL command buffer'; the command to read SQL commands from an

ORACLE and the other SQL-based systems, SYBASE does not provide a built-in editor.
To edit the SQL command buffer, an editor must be called.

CHAPTER 5. THE IMPLEMENTATION OF SQL/D 97

operating system file into the SQL command buffer; the command to clear or reset

the SQL command buffer, the command to quit SYBASE, etc. Our ISQLD parser

can also detect some syntactic/semantic errors. For example, you cannot CREATE

a new domain with a name conflicting with the name of an existing domain.

Our ISQLD works in the same manner as ISQL except for some minor limitations

on the ISQLD parser. For example, while the "joined" multiple-relation SELECT

is implemented in ISQLD, a "nested" SELECT or a SELECT with "subquery" will

not be interpreted as an SQL/D SELECT, because in most cases they are just

different ways to express a data request from multiple relations and they make no

difference to our goal: examining the impact of domains on the data requests from

multiple relations. In ISQLD, to find the names of suppliers who supply part 'P1',

the corresponding SQL/D command should be:

SELECT S.SNAME FROM S,SP

WHERE S.S# = SP.S# AND SP.P# = 'P1'

rather than a "nested" one like:

SELECT SNAME FROM S WHERE S# IN

(SELECT S# FROM SP WHERE P# = 'P1')

In the next two sections, we will describe the details of the ISQLD data definition

facilities and data manipulation facilities respectively.

5.3 Data Definition in ISQLD

In ISQLD, database definition takes two .steps: first you define domains and then

you define the relations. A relation can be defined only after all the underlying

CHAPTER 5. THE IMPLEMENTATION OF SQL/D 98

domains of the relation are defined, otherwise ISQLD will not accept the relation

definition. In contrast, to drop (delete) a domain you have to drop all the relations

with attribute defined on the domain first, and then you can drop the domain.

5.3.1 Types of Domains Implemented in ISQLD

ISQLD does not support all the domain types proposed in SQL/D. Currently we

have only implemented the following:

• Plain domains. A plain domain is the simplest domain which takes any values

that match the specified underlying data type for the domain. Usually values

of a plain domain are not stored separately from relations unless "STORED"

option is explicitly specified. Note: in ISQLD we do not store values for any

plain domain because the option is not implemented.

• ENUMERATED domains. The legal values of an enumerated domain are either

enumerated at the domain definition stage or are explicitly inserted into the

domain via domain-oriented insertions. Each enumerated domain is physically

stored in a separate system relation whose name is prefixed by "ED_" mean-

ing Enumerated Domain. Any attempt to insert new values into the domain

via a relation-oriented insertion will be rejected, because the SQL/D optional

"INSERTION" clause in derived domain definitions is not implemented.

• MULTIUNIT domains. The values of a multiunit domain can be represented

in any of the pre-defined units when the data are input into the database

or are output from the database. Although all the data values stored in the

database are in the default unit of the domain, by changing the "current" unit

CHAPTER 5. THE IMPLEMENTATION OF SQL/D 99

of the domain to any of the alternative units specified in the domain definition

with the UPDATE UNIT command, the data values could be automatically

converted back and forth between the default unit and the current unit. The

conversion is transparent to the users and may take place whenever needed.

Multiunit domains are not stored.

• RANGED domains. The values of a ranged domain are limited to within an

interval and the interval is specified in the domain definition by a lower bound

and a upper bound. Whenever a new value is to be inserted into any attributes

based on the domain, it is automatically verified against the interval. Usually

it is not necessary to physically store ranged domains separately from relations

and we did not store any ranged domain in our implementation.

• DERIVED domains. This is the most important domain to be implemented

in ISQLD. A derived domain is composed of data values from a specified at-

tribute of a relation. The derived domain is used to specify and maintain the

"referential" integrity constraint between relations. Since the values of a de-

rived domain are kept in the referenced attribute of the referenced relation, it

is therefore not necessary to store them again in any system relations.

We chose the above domain types for implementation because we believe they

are either relatively hard to implement, like the MULTIUNIT domains, or more

interesting to try, like the DERIVED domains. The rest of the domain types seem

easier to implement or can be implemented in ways similar to the implementation of

the above types.

CHAPTER 5. THE IMPLEMENTATION OF SQL/D 100

5.3.2 Define Domains and Relations

In ISQLD, a domain is defined by the "CREATE DOMAIN" command. A domain

can be assigned to one or several of the implemented domain types. Once a domain

type is assigned to a domain the corresponding domain integrity constraints will be

automatically maintained on the domain by ISQLD. When a "CREATE DOMAIN"

command is executed, ISQLD will record the domain definition in the relevant system

relation and, in some necessary cases, create a system relation to physically store the

values of the domain. For example, a system relation will be created automaEically

for each enumerated domain to store its values.

The proposed "CREATE TABLE" SQL/D command, which is used to define

relations on the pre-defined domains, is almost completely implemented. The only

exception is the UNIQUE clause which is used to specify a candidate key of the rela-

tion. This is partly because the option itself is not available in SYBASE and partly

because we do not need the concept of primary key to specify the critical "referen-

tial" integrity constraints in ISQLD. An ISQLD "CREATE TABLE" command is

actually translated into an equivalent TRANSACT-SQL "CREATE TABLE" com-

mand and is executed to generate a new relation. The major modification from

an ISQLD command to a TRANSACT-SQL command is that domain-name in the

ISQLD command is replaced by the data type of the corresponding domain, which

could be found in the system relation "sysdomains".

CHAPTER 5. THE IMPLEMENTATION OF SQL/D 101

5.3.3 Drop Domains and Relations

The DROP DOMAIN and DROP TABLE commands are implemented in ISQLD as

proposed in SQL/D with two things to note: First, a domain can be dropped only if

all the relevant relations which have attributes defined on that domain are dropped

beforehand. Second, if there is a derived domain acquiring values from an attribute

of a relation, then the relation cannot be dropped because the derived domain needs

the relation to survive in the database.

In this section, we outline the main data definition features of ISQLD. The data

manipulation aspects of the implemented domain types will be discussed later.

5.4 The ISQLD Data Dictionary

To implement the proposed SQL/D domain features on top of SYBASE it is certainly

necessary to have some new entries in the system catalogue (or the system data

dictionary), but in order to keep the system simple, we must try to add as few

system relations as possible to the data dictionary and only maintain the necessary

information in the relations. The following are the system relations created and used

exclusively by ISQLD:

• sysdomains - In this relation some very basic information about each domain

is recorded: the name of the domain and the data type of the domain. If the

domain is a DERIVED domain then the data type is set to the name of the

corresponding parent domain. And if the domain is a MTJLTITYPED one

'Actually, we could not add any relation to the SYBASE data dictionary. Instead we created
some user relations and treat them as if they were system relations.

CHAPTER 5. THE IMPLEMENTATION OF SQL/D 102

then the data type would be set to the main data type of the domain, though

currently ISQLD does not support this type of domain. A new tuple is inserted

into this relation when an SQL/D CREATE DOMAIN command is successfully

executed.

• sysattdom - In this relation there are three attributes: name of relation,

name of attribute and name of domain. Each tuple in this relation records an

attribute of a relation and its underlying domain. Whenever a new relation is

successfully created by an SQL/D CREATE TABLE command, each attribute

of the relation will cause a tuple to be inserted into this system relation.

• sysderived - In this relation the information about each derived domain

is recorded. The structure of the relation is similar to that of the relation

"sysdomains", but the data in the relation represent different information.

Each tuple in this relation indicates from where (the attribute of the relation)

the domain is deriving values. Each time a derived domain is successfully

created a new tuple will be inserted into this relation showing the source of the

derived domain.

• sysunit - In this relation the information about MULTIUNIT domains is

kept. The three attributes in the relation represent the name of the domain,

the name of each alternative unit of the domain, and the constant used in

conversion of data values between the default unit and each of the multiple

units. The default unit is identified by the special conversion constant: 1. In

addition to the sysunit relation, there is another system relation relevant to

CHAPTER 5. THE IMPLEMENTATION OF SQL/D 103

multiunit domains: UNIT, which is used for accommodating the format of the

UPDATE UNIT command, the command to set the current unit of a multiunit

domain.

• sysranged In this relation there are three attributes to record the name of

a ranged domain, the lower bound and the upper bound of the values in the

domain. Each ranged domain has one tuple in this relation.

• System relations for enumerated domains - For each enumerated domain, a

unary system relation will be created to store all the enumerated values of

the domain. As mentioned before, the name of such a relation is the name

of domain prefixed with string "ED_". For example, the system relation for

enumerated domain CITY is named ED-CITY. When a value is to be inserted

into any attribute which is based on an enumerated domain, the value will be

looked up in the corresponding system relation. The insertion will be executed

only if the value exists in the system relation; otherwise the insertion will be

rejected.

Our ISQLD program does not modify the structure of any SYBASE system re-

lations. But the data in the relations might be affected by some SQL/D command

executed in ISQLD. For example, a successful CREATE TABLE command will cause

new tuples to be inserted into the system relation sysobjects, which contains infor-

mation about relations of a SYBASE database.

CHAPTER 5. THE IMPLEMENTATION OF SQL/D 104

5.5 Data Manipulation in ISQLD

The ways to manipulate data in ISQLD are quite different from those in a standard

SQL-based system like SYBASE because, as proposed in SQL/D, it becomes possi-

ble to manipulate data via domains in ISQLD. Besides that, relation-oriented data

manipulation in ISQLD is also enhanced with some new features. The following are

the main data manipulation features implemented in ISQLD.

5.5.1 Restricted Data Comparison

Data comparisons are restricted to data from the same domain or data from two

compatible domains. In ISQLD, if an SQL/D command contains a comparison of

data from two different domains, then the command will not be accepted unless

the two domains are compatible, which means the two domains must be a derived

domain and its parent domain. This restriction is one of the basic requirements

of domain support in relational databases. ISQLD checks every data comparison

for any incompatibility on domains and rejects SQL/D commands which violate the

restriction.

To make the system more flexible, we also implemented the "forced" inter-domain

comparators proposed in SQL/D, so that if data comparisons between two incom-

patible domains are really needed, we can just prefix the corresponding comparison

operator with a '©' sign to make the data comparison a "forced" pne and override

the restriction. The following are four typical data comparisons and their fate in

ISQLD:

S.CITY = P.CITY - Same domain, accepted.

CHAPTER 5. THE IMPLEMENTATION OF SQL/D 105

S.S# = SP.S - Compatible domains, accepted.

S.STATUS > P.WEIGHT - Incompatible domains, rejected.

S.STATUS @> P.WEIGHT - "Forced" comparison, accepted.

5.5.2 Domain-oriented Data Manipulation

In ISQLD, we implemented most of the domain-oriented data manipulation facilities

proposed in SQL/D. Here are the major ones:

• INSERT new values into a domain. New values can be inserted directly into an

ENUMERATED domain via an explicit domain-oriented INSERT command

as proposed in SQL/D. The newly inserted value is actually inserted into the

corresponding "ED_"-prefixed system relation and may exist there regardless

of whether there is any occurrence of the value in any relation.

• SELECT all values from a domain. Retrieval of all the (distinct) values of a

domain is completely implemented for all domain types supported in ISQLD.

If the values of the domain are physically stored in a separate system relation,

then the retrieval will be carried out on thesystem relation and all the values

in the system relation will be retrieved. If the values of the domain are not

stored separately from relations but are spread out in a user relation, or even in

several user relations, then the retrieval will be carried out on all the relations

concerned. The result will be all the distinct values in the rela)ion(s) which are

in fact the current occurrences of some legal values of the domain rather than

all the possible legal values of the domain. For example, the retrieval of all the

values of domain QTY, though it might contain all the integers between 0 and

CHAPTER 5. THE IMPLEMENTATION OF SQL/D 106

1000, will only result in the distinct values in attribute QTY of relation SP,

which is the sole relation with an attribute defined on the domain. The actual

result of the domain-oriented retrieval command "SELECT VALUES FROM

QTY" would be the set of {100, 200, 300, 400} in our example database. And in

contrast, the retrieval command "SELECT VALUES FROM CITY" will result

in all the five distinct values of the enumerated domain even if, for example,

the value 'BERLIN' has no occurrence in the relations.

• Domain integrity is well maintained in ISQLD. The various domain integrity

constraints of the implemented domain types are properly maintained. For

example, any attempt to insert into relation SF a new QTY value which exceeds

the interval of the ranged domain QTY will be rejected. Whenever a database

updating command, including UPDATE, INSERT and DELETE, is issued in

ISQLD, the program will automatically check all the domains involved for any

possible violations of the domain integrity constraints. If any potential integrity

violation is detected, the command will be rejected. The so-called "referential

integrity" is also well maintained in ISQLD, and we will discuss it in the next

section.

• Switching among multiple units for a MULTIUNIT domain. With the pro-

posed UPDATE UNIT command which deals with the MULTIUNIT domains,

the current unit of a MULTIUNIT domain can be changed in ISQLD. Despite

the fact that all data stored in the database are in the default unit, any data

retrieved from or to be inserted into the database are represented in the current

unit. As long as the current unit is not the default unit, ISQLD will automati-

CHAPTER 5. THE IMPLEMENTATION OF SQL/D 107

cally convert every piece of data between the current unit and the default unit

before displaying or storing the data.

5.5.3 Other Features

The following are some other domain-related data manipulation features which have

been implemented in ISQLD.

• Interrogation of the system data dictionary for domain information. As men-

tioned before, information about domains is recorded in some specially created

system relations. In ISQLD, this information can be retrieved by an ordinary

SELECT command in the same manner as retrieving system information in

other SQL-based systems.

• Referential Integrity in ISQLD. Although we had pointed out before that the

so-called "referential integrity" problem is exactly a special case of the do-

main integrity problem on derived domains, we prefer to continue using the

term "referential integrity" to address the problem for reasons of accuracy and

clarity.

Referential integrity constraints can be well maintained in ISQLD provided the

constraints are correctly specified. To specify a referential integrity constraint

between a referencing attribute and its referenced counterpart, a derived do-

main on the referenced attribute must be created and the referencing attribute

must be defined on the derived domain. Then ISQLD will take the responsi-

bility of maintaining the integrity between the two attributes.

CHAPTER 5. THE IMPLEMENTATION OF SQL/D 108

When a value is to be inserted into the referencing attribute, ISQLD will look

the value up in the derived domain which in fact is the referenced attribute.

Only if the value exists in the domain will the insertion be carried out; otherwise

it will be rejected. Similarly, when a value is to be deleted from the referenced

attribute, ISQLD will check if there is any occurrence of the value in the

referencing attribute, and if there is no such occurrence then the deletion will be

carried out, otherwise it will be rejected. There is one exception in the case of

deletion: if the CASCADE option is included in the DELETE command then

ISQLD will simply delete the value together with all its occurrences in both of

the referencing and the referenced attributes without any referential checking

because such a cascaded deletion will not result in violations of referential

integrities.

We selected the above data manipulation facilities to implement in ISQLD be-

cause we believe that they are more essential than the other features in adomain-

supported system. There are fewer features left for further implementation in the

data manipulation aspect of SQL/D than in the data definition aspect.

5.6 Remarks

Although our ISQLD is not a complete domain-supported relational database system,

and is even incomplete in regard to the SQL/D proposal, the resul't of the program

is positive and encouraging. It is positive in that the proposed domain features are

fulfilled in the program, and it is encouragiiig because the program and the associated

data structures are not very complex. The experimental program convinces us that

CHAPTER 5. THE IMPLEMENTATION OF SQL/D 109

full support of domains in relational database systems is achievable and with domains

being supported, relational databases will become more usable and some long-time

perplexing domain-related problems of relational database systems will be eventually

solved.

In the Appendix of the thesis we will show some script files of the ISQLD program.

Most of them have been edited to include comments and explanation. The files

include:

• The contents of the ISQLD system relations and the example database.

• Create/drop domains and relations;

• Data comparability;

• Derived domains and "referential integrities";

• Implemented domain types;

• Domain-oriented data manipulation;

• Typical error messages and other interface features;

It took approximate 500 man-hours to develop the entire ISQLD program and

the size of the executable file of our current implementation is shown as:

-rwxr-xr-x 1 zhang 376832 May 15 02:57 isqid'

This project represents approximately 2000 lines of code including a few program

comments. Here is the list of the source programs.

CHAPTER 5. THE IMPLEMENTATION OF SQL/D 110

1 zhang

1 zhang

1 zhang

1 zhang

1 zhang

1 zhang

1 zhang

1 zhang

1 zhang

1856 May 15 03:23 isqld..c

7702 Feb 4 03:34 creation.c

2340 Feb 4 02:05 deletion.c

2171 Jan 16 15:05 drop.c

7723 May 15 03:50 imp.h

3975 Jan 26 23:52 inertion.c

10427 Jan 28 20:52 selection.c

1360 Jan 16 20:42 syb.h

2033 Jan 27 00:09 update.c

The main program of our implementation of ISQLD is called "isqld.c" which

includes two header files "imp.h" and "syb.h" that in turn contain most basic func-

tions used in parsing SQL/D commands, especially the command editor and the

functions emulating SYBASE ISQL user interface. The SQL/D data definition and

data manipulation functions are contained in the following files:

• creation. c: the functions to create various types of domains and the functions

to create relations on pre-defined domains; the functions to insert domain def-

inition information into ISQLD system relations.

• deletion. C: the functions to delete tuples from relations while maintaining the

referential integrity constraints, especially the "CASCADE" deletion of refer-

encing attribute values from relations.

• drop.c: the functiohs to drop domains and the functions to drop relations.

CHAPTER 5. THE IMPLEMENTATION OF SQL/D 111

• insertion. C: the functions to insert values into domains and the functions to in-

sert tuples into relations; the functions to maintain domain integrity constraints

for various types of domains, like DERIVED domains, RANGED domains; the

function to convert values in the current unit to values in the default unit for

MULTIUNIT domains.

• selection. c: the functions to select values from domains and the functions to se-

lect tuples from relations; functions to check data comparability and functions

to conduct "forced" inter-domain comparisons; functions to convert values from

the default unit to values in the current unit for MULTIUNIT domains.

• update.c: the functions to directly update values in domains.

The main program calls the functions contained in the above files according to the

type of command typed in by the user and the corresponding result or error message

is displayed on the screen. The functions to conduct ordinary SQL operations, like

SELECTion from relations, are written to include domain features. The specially

created data dictionary relations are used to get information about domains and

their relationships with relations and attributes of relations.

Chapter 6

Conclusions

In this chapter we will review and summarize the contributions that this thesis made

to the relational data model. As well we will suggest the possible directions of future

research on the subject of supporting domains in relational database systems.

6.1 Summary and Conclusion

Theoretically, the domain concept is the most fundamental concept of the relational

data model. In relational database systems, relations are just subsets of the Cartesian

product of domains, attributes draw actual values from underlying domains, and the

most data integrity constraints are related to domains. Almost all aspects of the

data model involve domains, so that without domain support, a database system

would not be fully relational.

Unfortunately, the significance of domains has, to a large extent, not been recog-

nized in the database community and hence no existing relational database systems

support the concept of domains. Therefore the systems inevitably suffer from many

domain-related problems, especially those described in this thesis.' Although some

of the problems (only a few) had been studied before, the real causes of the prob-

lems had typically not been properly pinpointed: the lack of support for domains in

relational databases.

112

CHAPTER 6. CONCLUSIONS 113

In this thesis, we first examined the major domain-related problems in exist-

ing relational database systems of which none fully supports domains. The main

problems discussed include: data comparability; domain-oriented data manipula-

tion; domain update anomalies; domain integrity and "referential integrity". To get

rid of the problems in a natural way, we strongly recommend the support of domains

in relational database systems. The man features of domain support have been de-

scribed and SQL/D, a domain extension to the SQL language which enhances the

SQL language with the domain features has been proposed. Whereas Date claimed

that his recent paper on the subject of domains[Date9OA] is a comprehensive answer

to the question "What is a domain?", we would suggest that this thesis is the first

to answer the question "Why and how should domains be supported in relational

databases?". In addition to discovering and solving domain-related problems, this

thesis has also clarified several misconceptions about domains and misconceptions

about the relational data model. For example, the so-called "referential integrity"

problem is identified in this thesis as a special case of domain integrity problem on

derived domains.

With domains being supported in relational database systems, not only are the

overall data structures of the systems changed, but so are the ways of handling the

databases themselves. In a domain-supported system, domains are precisely defined

and (at least some of them) are physically stored so that data manipulation via do-

mains becomes possible. Also relations are properly built on their theoretic basis,

domains, and are treated differently than their counterparts in ordinary databases.

New facilities of domain-supported systems, from data definition to data manipula-

CHAPTER 6. CONCLUSIONS 114

tion, make it reasonable to expect that the systems will have these properties:

• Easier to use. For example, the complicated "referential integrity" constraints

become easier domain integrity constraints on derived domains. Neither for-

eign keys nor indices on key attributes are needed to maintain such integrity

constraints. Database designers no longer need to establish indexes for the

purpose of maintaining this type of data integrities.

• More reliable. Domains are precisely defined so that the correctness of data can

be more easily guaranteed by the system. Database integrity is thus improved

significantly and databases become more reliable. For example, semantically

incorrect inter-domain comparisons will be.prohibited by the system.

• More flexible. The physical existence of domains makes it possible to manip-

ulate data via domains instead of only via relations as in ordinary systems.

Domain-oriented data inquiries are carried out on the corresponding domains.

It is no longer necessary to translate (if possible) the domain-oriented inquiries

into relation-oriented data inquiries and carry them out on relations.

• More natural: Domain-related problems are solved naturally by explicit sup-

port for domains. For example, complex domain update anomalies no longer

exist in domain-supported systems. The systems are more relational than

"table" systems which do not really have underlying domains-for the tables to

acquire values.

Although currently only some of the proposed features of domain support are im-

plemented in our experimental SQL/D interactive interface on the SYBASE database

CHAPTER 6. CONCLUSIONS 11'5

manager, the running result is very positive. 1 All the implemented features con-

firm the expected results and the system resources used to support the features are

relatively low. From our experience with the current implementation of SQL/D, we

can predict, that full support of domains in relational database systems is feasible

and beneficial, and with domain support, a relational database system will be fully

relational and the potential of the relational data model can be fulfilled.

It must be noted, however, that our implementation was not intended to be more

than a prototype or feasibility study, and that much more work needs to be done

before the success of our approach can be considered proven.

6.2 Future Research

There are some topics about domain support in relational database systems which are

not mentioned or are not elaborated on in this thesis. Here are the most extensions

that could be made to our proposal in order to consider these topics.

1. The order of data values in domains. It is obviously necessary to be able

to specify the order of data values of a domain. While data values of some

domains, like integers, are naturally ordered, data values in some other domains

are not initially ordered. For example, there is no particular order for suppliers'

names, except the lexical order of the character strings representing the names.

The order of data values is useful in comparisons of one value with another and

'The program was demonstrated to some of graduate and undergraduate students of the De-
partment of Computer Science at The University of Calgary. They were impressed in the program's
improvement over SYBASE. A major SQL vendor also became interested in the SQL/D proposal
and our implementation.

CHAPTER 6. CONCLUSIONS 116

might be needed in calculation of the "distance" between values.

2. More built-in domains. There are several "popular" domains which will be

used in almost every database. Examples include the domain of month and

the domain of person's names. The data values of the domains likely have

similar properties in every databases. Such domains should become built-in

ones so that the users could avoid redundant defining of the domains.

3. The ability to convert (or combine) values of one or more domains into value(s)

of some other domain(s). Examples include the ability to convert a value of

domain CENTURY to 100 values of domain YEAR; to convert, values of domain

MONTH into values of domain CALENDAR-YEAR and values of domain

FISCAL-YEAR; to yield a value of domain DISTANCE by multiplying a value

of domain VELOCITY with a value of domain TIME, and so on.

4. Composite (compound) domains. It is perhaps not as widely recognized that

the relational data model permits composite domains. For example, the domain

DATE may have three components, say MONTH, DAY, and YEAR. There are

many problems to be investigated about composite domains.

5. More domain-oriented data manipulation facilities. For example, the opera-

tions to split values of a composite domain into atomic values and to compare

data values decomposed from composite domains, etc.

According to "The Committee for Advanced DBMS function" [CADF9O], the next

generation of database systems will not be of a brand new data model, for example

the object-oriented database systems, but will be relational database systems with

CHAPTER 6. CONCLUSIONS 1.17

advanced function. The relational database systems are neither finished nor perfect.

The concept of domain is certainly one of the aspects that should be taken into

account in functional enhancement of relational database systems.

Although as the title suggested, this thesis mainly discusses why and how to

support domains in relational database systems, we must point out that the principles

of domain support discussed in the thesis also apply to database systems of other

data models, since databases of the other models are not free of domain-related

problems. Even in an object-oriented database system [Alag89] domains should also

be regarded as independent classes 'of objects which therefore could be handled in a

similar manner as relations.

Let us conclude this thesis with the Chinese idiom "Cast a brick to attract

jade". We wish our introductory remarks about supporting domains in relational

database systems, as a little brick to us, could draw more valuable opinions on the

subject, as jade to database community, and could eventually bring the relational

database systems to support domains.

Appendix

fsb: sqld

* *

* Welcome to Interactive SQL/D on SYBASE *

* *

* Developed by Zhao Zhang *

* Supervised by Anton Colijn *

* *

**

The example database with additional relation PART;

The ISQLD system relations for implemented domain types.

1> select * from S

2> go

SNUM SNAME STATUS CITY

S2 JONES 10 PARIS

S4 CLARK 20 LONDON

Si SMITH 20 LONDON

S3 BLAKE 30 PARIS

SS ADAMS 30 ATHENS

(5 rows affected)
1> select * from P

2> go

PNUM PNAME COLOR WEIGHT CITY

P2 BOLT GREEN 17 PARIS

P3 SCREW BLUE 17 ROME

PS CAM BLUE 12 PARIS

P1 NUT RED 12 LONDON

P4 SCREW RED •14 LONDON

P6 COG RED 19 LONDON

118

APPENDIX 119

(6 rows affected)
1> select * from SP
2> go

SNUM PNUM QTY

S2 P1 300

S2 P2 400

S4 P2 200

S4 P4 300

S4 P5 400

Si P1 300

Si P2 200

Si P3 400

Si P4 200

Si P5 100

Si P6 100

S3 P2 200

(12 rows affected)

1> select * from PART

2> go

PID PNA COL WEI LOC

P2 BOLT GREEN 17 PARIS

P3 SCREW BLUE 17 ROME

PS CAM BLUE 12 PARIS

P1 NUT RED 12 LONDON

P4 SCREW RED 14 LONDON

P6 COG RED 19 LONDON

(6 rows affected)
1> sp_help

2> go

Name Owner Object-type

currentunit zhang view

ranged zhang view

samedomain zhang view

ED-CITY zhang user table

P zhang user table

PART zhang user table

S zhang user table

SP zhang user table

UNIT zhang user table

sysattdom zhang user table

sysderived zhang user table

sysdomains zhang user table

APPENDIX 120

sysranged zhang user table

sysunit zhang user table

sysalternates dbo system table

syscolumns dbo system table

syscomments dbo system table

sysdepends dbo system table

sysindexes dbo system table

syskeys dbo system table

syslogs dbo system table

sysobjects dbo system table

sysprocedures dbo system table

sysprotects dbo system table

syssegments dbo - system table

systypes dbo system table

sysusers dbo system table

1> select * from sysdomains

2> go

DOMAIN DATATYPE

SNUM char(4)
SNAME char(6)
STATUS smallint

WEIGHT tinyint

PNUM char(4)

PNAME char(6)

COLOR char(S)

QTY smal].int

SSNUM SNUM

PPNUM PNUM

CITY char(20)

(11 rows affected)
1> select * from sysattdom

2> go

ATT REL DON NUN

SNUM S SNUM 1

SNUM SP SSNUM 1

PNUM P PNUM 1

PNUM SP PPNUM 2

qTY SP qTY

STATUS S STATUS 3

CITY S CITY 4

CITY P CITY 5

WEIGHT P WEIGHT 4

COLOR P COLOR 3

PNAME P PNAME 2

SNAME S SNAME 2

APPENDIX 121

PNA PART PNAME 2

PID PART PNUM 1

COL PART COLOR 3

WEI PART WEIGHT 4

LOC PART CITY 5

(17 rows affected)

1> select * from sysranged

2> go

DOM LOW UP

QTY

(1 rows affected)
1> select * from sysderived

2> go

DOM REL

0 1000

ATT

SSNUM S SNUM

PPNUM P PNUM

(2 rows affected)
1> select * from sysunit

2> go

DOM UNIT CON

WEIGHT KG 1.000000

WEIGHT LB 2.204600

WEIGHT GRAM 1000.000000

(3 rows affected)

1> select * from ED-CITY

2> go

VALUE

LONDON

PARIS

ROME

ATHENS

BERLIN

(5 rows affected)

Domain-oriented data manipulation (retrieval & update)

APPENDIX 122

1> select VALUES from CITY

2> o

VALUE

LONDON

PARIS

ROME

ATHENS

BERLIN

(5 rows affected)
1> select VALUES from SNUM

2> go

VALUE

Si

S2

S3

S4

S5

(S rows affected)

1> select VALUES from SSNUM

2> go

VALUE

Si

S2

S3

S4

S5

(5 rows affected)
I> select SNUM from S

go

2> SNUM

S2

S4

Si

S3

S5

(5 rows affected)
1> select distinct SNUM from SP

2> go

SNUM

APPENDIX 123

Si

S2

S3

S4

(4 rows affected)
1> select VALUES from QTY

2> go

VALUE

100

200

300

400

(4 rows affected)

1> select QTY from SP

2> go

QTY

300

400

200

300

400

300

200

400

200

100

100

200

(12 rows affected)

1> select VALUES from WEIGHT

2> go

VALUE

12

14

17

19

(4 rows affected)
1> select * from P -

2> go

PNUM PNAME COLOR WEIGHT CITY

APPENDIX 124

P2 BOLT GREEN 17 PARIS

P3 SCREW BLUE 17 ROME

P5 CAM BLUE 12 PARIS

P1 NUT RED 12 LONDON

P4 SCREW RED 14 LONDON

P6 COG RED 19 LONDON

(6 rows affected)

1> update DOMAIN WEIGHT set VALUE = VALUE + 1

2> go

(12 rows affected)

1> select * from P

2> go

PNUM PNAME COLOR WEIGHT CITY

P2 BOLT GREEN 18 PARIS

P3 SCREW BLUE 18 ROME

PS CAM BLUE 13 PARIS

P1 NUT RED 13 LONDON

P4 SCREW RED 15 LONDON

P6 COG RED 20 LONDON

(6 rows affected)

1> select * from PART

2> go

PID PNA COL WEI LOC

P2 BOLT GREEN 18 PARIS
P3 SCREW BLUE 18 ROME

PS CAM BLUE 13 PARIS

P1 NUT RED 13 LONDON

P4 SCREW RED 15 LONDON

P6 COG RED 20 LONDON

(6 rows affected)
1> update DOMAIN WEIGHT set VALUE = VALUE - 1

2> go

(12 rows affected)
1> select * from P

2> go

PNUM PNAME COLOR WEIGHT CITY

P2 BOLT GREEN 17 PARIS

P3 SCREW BLUE 17 ROME

PS CAM BLUE 12 PARIS

P1 NUT RED 12 LONDON

P4 SCREW RED 14 LONDON

P6 COG RED 19 LONDON

APPENDIX 125

(6 rows affected)

1> select * from PART
2> go

PID PNA COL WEI LOC

P2 BOLT GREEN 17 PARIS

P3 SCREW BLUE 17 ROME

PS CAM BLUE 12 PARIS
P1 NUT RED 12 LONDON

P4 SCREW RED 14 LONDON

P6 COG RED 19 LONDON

(6 rows affected)

Define domains of the implemented types

dl: plain character string domain;

d2: derived domain from PART.LOC;

d3: ranged domain (integers from between 1 and 9);

d4: multiunit domain with units ul, u2 and u3;

d5: enumerated domains {'A', 'B', 'C', 'D'}.

1> create domain CITY char(4)
2> go

Cannot create domain 'CITY', because there already exists a domain 'CITY'.

1> create domain dl char(4)

2> go

This domain dl is created.

1> select * from sysderived

2> go

DOM REL ATT

SSNUM S SNUM

PPNUM P PNUM

(2 rows affected)

1> create domain d2 as select LOC from PART

2> go

This DERIVED domain d2 is created.

1> select * from sysderived

2> go

DON REL ATT

SSNUM S SNUM

APPENDIX 126

PPNUM P PNUM

d2 PART LOC

(3 rows affected)

1> select value from d2

2> go

VALUE

LONDON

PARIS

ROME

(3 rows affected)
1> select * from sysranged

2> go

DON LOW UP

QTY 0 1000

(1 rows affected)

1> create domain d3 jut ranged (1,9)
2> go

This RANGED domain d3 is created.

1> select * from sysranged

2> go
DON LOW UP

QTY 0 1000

d3 1 9

(2 rows affected)

1> select * from sysunit

2> go

DON UNIT CON

WEIGHT KG 1.000000

WEIGHT LB 2.204600

WEIGHT GRAM 1000.000000

(3 rows affected)

1> create domain d4 mt multiunit ('ul',1,'u2',10 ,'u3',100)
2> go

This MULTI-UNIT domain d4 is created.

1> select * from sysunit

2> go

DON UNIT CON

WEIGHT KG 1.000000

APPENDIX 127

WEIGHT LB 2.204600

WEIGHT GRAM 1000.000000

d4 ul 1.000000

d4 u2 10.000000

d4 u3 100.000000

(6 rows affected)

1> create domain dS char(S) enumerated ('A,'B' I C','D')
2> go

This ENUMERATED domain d5 is created.

1> select * from ED_dS

2> go

VALUE

A

B

C

D

(4 rows affected)

1> select * from sysdomains

2> go

DOMAIN DATATYPE

SNU!1 char(4)

SNAME char(6)

STATUS smallint

WEIGHT tinyint

PNUM char(4)

PNAME char(6)

COLOR char(6)

QTY smallint

SSNUM SNUM

PPNUM PNUM

CITY char(20)

dl char(4)

d2 CITY

d3 mt
d4 mt
d5 char(5)

(16 rows affected)

(

Define a relation (t) on the predefined domains;

Insert some tuples into the relation;

The effect of the domain integrity constraints of various domain types.

APPENDIX 128

1> create table t

2> (al dl,
3> a2 d2,
4>a3d3,

5> a4 d4,

6>a5d5)

7> go
Table 't' created.

1> select * from sysattdom

,2> go

ATT REL DON NUN

SNUM S SNUM 1

SNUM SP SSNUM 1

PNUM P PNUM 1

PNUM SP PPNUN 2

QTY SP QTY 3

STATUS S STATUS 3

CITY S CITY 4

CITY P CITY 5

WEIGHT P WEIGHT 4

COLOR P COLOR 3

PNAME P PNAME 2

SNANE S SNAME 2

PNA PART PNAME 2
PID PART PNUM 1

COL PART COLOR 3

WEI PART WEIGHT 4

LOC PART CITY 5

al t dl 1

a2 t d2 2

a3 t d3 3

a4 t d4 4

as t d5 5

(22 rows affected)

1> select * from t

2> go

al a2 a3 a4 as

(0 rows affected)

1> insert into t values C 'R1','LONDON',5,5,'A')
2> go

(1 rows affected)
1> select * from t

APPENDIX 129

2> go

al a2 a3 a4 a5

Ri LONDON S BA

(1 rows affected)

1> insert into t values ('R2','ATHENS',20,1O,'E')
2> go

Insertion failed, value of t.a2 does not exist in referenced relation PART.
1> insert into t values ('R2','PARIS',20,iO,'E')
2>go
Insertion failed, value of t.a3 exceeds the range of domain d3.

1> insert iitto t values ('R2','PARIS',8,1O,'E')
2>go
Insertion failed, value of t.a5 does not exist in domain d5.

1> insert into t values ('R2','PARIS',8,10,'B')
2>go

(1 rows affected)
1> select * from t

2> go
al a2 a3 a4 aS

Ri LONDON

R2 PARIS

(2 rows affected)

S

8

GA

10 B

Multiunit domain

1> update UNIT SET CURRENT = 'u2' where

2> DOMAIN = 'd4'

3> go

(1 rows affected)
1> select * from t

2> go

al a2 a3 aS

Ri LONDON

R2 PARIS

BA
8B

a4 in u2

a4 in u2

(2 rows affected)

1> insert into t values ('R3','ROME',2,200,'C')
2> go

(1 rows affected)

1> select * from t

50.000000

100.000000

APPENDIX 130

2> go

al a2 a3 as

RI LONDON

R2 PARIS

R3 ROME

5A

8B

2 C

a4 in u2

a4 in u2

a4 in u2

(3 rows affected)
1> update UNIT set CURRENT = 'ul' where DOMAIN =ld4l

2> go

(1 rows affected)
1> select * from t

2> go

al a2 a3 a4 as

RI LONDON S 5A

R2 PARIS 8 10 B

R3 ROME 2 20C

(3 rows affected)
1> select * from P

2> go

PNUM PNAME COLOR WEIGHT CITY

P2 BOLT GREEN 17 PARIS

P3 SCREW BLUE 17 ROME

P5 CAM BLUE 12 PARIS

P1 NUT RED 12 LONDON
P4 SCREW RED 14 LONDON

P6 COG RED 19 LONDON

(6 rows affected)

1> update UNIT SET CURRENT = 'LB'

2> go

(1 rows affected)
1> select * from P

2> go

PNUM CITY COLOR PNAME

50.000000

100.000000

200.000000

P2 PARIS GREEN BOLT WEIGHT in LB

P3 ROME BLUE SCREW WEIGHT in LB

PS PARIS BLUE CAM WEIGHT in LB

P1 LONDON RED NUT WEIGHT in LB

P4 LONDON RED SCREW WEIGHT in LB

P6 LONDON RED COG WEIGHT in LB

(6 rows affected)

1> update UNIT set CURRENT = 'KG'

37.478200

37.478200

26.455200

26.455200

30. 864400

41.887400

APPENDIX 131

2> go

(1 rows affected)

1> select * from P

2> go
PNUM PNAME COLOR WEIGHT CITY

P2 BOLT GREEN 17 PARIS

P3 SCREW BLUE 17 ROME

P5 CAM BLUE 12 PARIS

P1 NUT RED 12 LONDON

P4 SCREW RED 14 LONDON

P6 COG RED 19 LONDON

(6 rows affected)

Data comparability:
restricted and forced inter/intra domain comparisons.

1> select * from S, P

2> where S.STATUS > P.WEIGHT

3> go

Attributes S.STATUS and P.WEIGHT are not in the same domain.

1> select * from S. SP

2> where SP.QTY > S.STATUS * 10

3> go

Attributes SP.QTY and S.STATUS are not in the same domain.

1> select * from P. SP
2> where SP.QTY > P.WEIGHT * 10

3> go

Attributes SP.QTY and P.WEIGHT are not in the same domain.

1> select * from P, SP

2> where SP.QTY Q< P.WEIGHT * 10

3> go
PNUM PNAME COLOR WEIGHT CITY SNUM PNUM QTY

P2 BOLT GREEN 17 PARIS Si P5 100

P2 BOLT GREEN 17 PARIS Si P6 100

P3 SCREW BLUE 17 ROME Si P5 100

P3 SCREW BLUE 17 ROME Si P6 100

PS CAM BLUE 12 PARIS Si P5 100

PS CAM BLUE 12 PARIS Si P6 100

P1 NUT RED 12 LONDON Si P5 100

Pi NUT RED 12 LONDON Si P6 100

P4 SCREW RED 14 LONDON Si P5 100

P4 SCREW RED 14 LONDON Si P6 100

APPENDIX 132

P6 COG RED 19 LONDON Si 'P5 100

P6 COG RED 19 LONDON Si P6 100

(12 rows affected)

1> select * from S, P

2> where S.CITY = P.CITY

3> go

SNUM SNAME STATUS CITY PNUM PNAME COLOR WEIGHT CITY

S2 JONES 10 PARIS P2 BOLT GREEN 17 PARIS

S2 JONES 10 PARIS PS CAM BLUE 12 PARIS

S4 CLARK 20 LONDON P1 NUT RED 12 LONDON
S4 CLARK 20 LONDON P4 SCREW RED 14 LONDON

S4 CLARK 20 LONDON P6 COG RED 19 LONDON

Si SMITH 20 LONDON P1 NUT RED 12 LONDON

Si SMITH 20 LONDON P4 SCREW RED 14 LONDON

Si SMITH 20 LONDON P6 COG RED 19 LONDON

S3 BLAKE 30 PARIS P2 BOLT GREEN IT PARIS

S3 BLAKE 30 PARIS PS CAM BLUE 12 PARIS

(10 rows affected)

1> select * from S, PART

2> where S.CITY = PART.LOC

3> go

SNUM SNAME STATUS CITY PID PNA COL WEI LOC

S2 JONES 10 PARIS P2 BOLT GREEN 17 PARIS

S3 BLAKE 30 PARIS P2 BOLT GREEN 17 PARIS

S2 JONES 10 PARIS P5 CAM BLUE 12 PARIS

S3 BLAKE 30 PARIS PS CAM BLUE 12 PARIS

S4 CLARK 20 LONDON P1 NUT RED 12 LONDON

Si SMITH 20 LONDON P1 NUT RED 12 LONDON

S4 CLARK 20 LONDON P4 SCREW RED 14 LONDON

Si SMITH 20 LONDON P4 SCREW RED 14 LONDON

S4 CLARK 20 -LONDON P6 COG RED 19 LONDON

Si SMITH 20 LONDON P6 COG RED 19 LONDON

(10 rows affected)

1> select * from S, SP

2> where S.SNUH = SP.SNUM

3> go

SNUM SNAME STATUS CITY SNUM PNUM QTY

S2 JONES 10 PARIS S2 P1 300

S2 JONES 10 PARIS S2 P2 400

S4 CLARK 20 LONDON S4 P2 200

S4 CLARK 20 LONDON S4 P4 300

S4 CLARK 20 LONDON S4 PS 400

APPENDIX 133

Si SMITH

Si SMITH

Si SMITH

Si SMITH

Si SMITH

Si SMITH

S3 BLAKE

20 LONDON Si Pi

20 LONDON Si P2

20 LONDON Si P3

20 LONDON Si P4

20 LONDON Si PS
20 LONDON Si P6

30 PARIS S3 P2

300

200

400

200

ioo

100

200

(12 rows affected)
1> select * from S, P

2> where S.CITY = P.CITY

3> and S.STATUS > P.WEIGHT

4>

5> go

Attributes S.STATUS and P.WEIGHT are not in the same domain.

1> select * from 5, P

2> where S.CITY = P.CITY

3> and S.STATUS (> P.WEIGHT

4>

5> go

SNUM SNAME STATUS CITY PNUM PNAME COLOR WEIGHT CITY

S4 CLARK 20 LONDON Pi NUT RED

S4 CLARK 20 LONDON P4 SCREW RED

S4 CLARK 20 LONDON P6 COG RED
Si SMITH 20 LONDON Pi NUT RED

Si SMITH 20 LONDON P4 SCREW RED

Si SMITH 20 LONDON P6 COG RED

S3 BLAKE 30 PARIS P2 BOLT GREEN

S3 BLAKE 30 PARIS PS CAM BLUE

(8 rows affected)

12 LONDON

14 LONDON

19 LONDON

12 LONDON

14 LONDON

19 LONDON

17 PARIS

12 PARIS

Effects of various domain types on the example database.

Insert tuples into a relation;

Delete tuples from a realtion;

Drop relations and domains;

1> insert into SP

2> go

Insertion failed,

1> insert into SP
2> go

Insertion failed,

VALUES ('sO','po', 10000)

SP.SNUM value does not exist in referenced relation S.

VALUES ('Si', 'p0', 10000)

SP.PNUM value does not exist in referenced relation P.

APPENDIX 134

1> insert into SP values ('Si', 'P1', 10000)
2> go

Insertion failed, value of SP.QTY exceeds the range of domain.

1> insert into SP values ('Si', 'P1' ,-1)
2> go

Insertion failed, value of SP.qTY exceeds the range of domain.

1> select * from SP

go

2> SNUN PNUM QTY

S2 P1 300

S2 P2 400

S4 P2 200

S4 P4 300

S4 P5 400

Si P1 300

Si P2 200

51 P3 400

Si P4 200

Si P5 100

Si P6 100

S3 P2 200

(12 rows affected)
1> insert into SP values ('Si', 'P1', 999)
2> go

(1 rows affected)

1> select * from SP

2> go

SNUM PNUM QTY

S2 P1 300

S2 P2 400

S4 P2 200

S4 P4 300

S4 P5 400

Si P1 300

Si P2 200

Si P3 400

Si P4 200

Si P5 100

Si P6 100

S3 P2 200

Si P1 999

(13 rows affected)
1> delete from P where PNUM = 'P1'

2> go

APPENDIX 135

Deletion denied, because of referencial integrity violation.

1> delete cascade from P where PNUM = 'P1'

2> go

(4 rows affected)

1> select * from P

2> go

PNUM PNAME COLOR WEIGHT CITY

P2 BOLT GREEN 17 PARIS

P3 SCREW BLUE 17 ROME

P5 CAM BLUE 12 PARIS

P4 SCREW RED 14 LONDON
P6 COG RED 19 LONDON

(5 rows affected)

1> select * from SP

2> go

SNUN PNUM QTY

S2 P2 400

S4 P2 200

S4 P4 300

S4 PS 400
SI P2 200

Si P3 400
Si P4 200

Si PS 100

51 P6 100

S3 P2 200

(10 rows affected)

1> delete from S

2> where CITY = 'LONDON'

3> go

Deletion denied, because of ref erencial integrity violation.

1> delete cascade from S

2> where CITY = 'LONDON'

3> go

(10 rows affected)

1> select * from S

2> go

SNUM SNAME STATUS CITY

S2 JONES 10 PARIS

S3 BLAKE 30 PARIS

SS ADAMS 30 ATHENS

(3 rows affected)

APPENDIX 136

1> select * from SP

2> go

SNUM PNUM QTY

S2.P2 400

S3 P2 200

(2 rows affected)

1> drop domain SNUM

2> go

Cannot drop domain 'SNUM', because there are relations defined on it.

1> drop DOMAIN QTY

2> go

Cannot drop domain 'QTY', because there are relations defined on it.
1> drop table SP

2> go

1> drop domain QTY

2> go

1> select VALUES from QTY

2> go

Domain. QTY does not exits.

1> select * from SP

2> go

Msg 208, Level 16, State 1:

Line 1:

Invalid object name 'SP'.

1> drop DOMAIN WEIGHT

2> go

Cannot drop domain 'WEIGHT', because there are relations defined on it.

1> drop DOMAIN dl
2> go

Cannot drop domain 'dl', because it does not exist.

1> exit

fsb:

For reasons of thesis length, we did not include the

script file of running SYBASE ISQL in this appendix.

Bibliography

[Alag89] Alagic, S. "Object-oriented Database Programming", Springer-Verlag,

New York, New York, (1989).

[Brad82] Bradley, J. "File and Data Base Techniques", Holt, Renehart and Win-

ston, New York, New York; (1982).

[CADF9O] The Committee for Advanced DBMS Functions "Third Generation

Database System Manifesto", SIGMOD Record Vol. 19, No. 3, (Sept.

1990), 31-43.

[Codd82] Codd, E. "Relational Database: A Practical Foundation for Productivity

- The 1981 ACM Turing Award Lecture", CJ4CM, Vol. 25, No. 2, (Feb.

1982), 109-117.

[Codd70] Codd, E. "A Relational Model of Data for Large Shared Data Banks",

CA CM Vol. 13, No. 6, (June 1970), 377-387.

[Croo91] Crooks, T. "Using ORACLE", QUE Corp., Carmel, Indiana, (1991).

[Date91] Date, C. "An Introduction to Database Systems, Volume I", 5th Edition,

Addison-Wesley, Reading, Mass., (1991).

[Date90A] Date, C. "What is a Domain?", in Date, C., "Relational Database Writ-

ings 1985-1989", Addison-Wesley, Reading, Mass., (1990) 27-57.

137

BIBLIOGRAPHY 138

[Date90B] Date, C. "Referential Integrity and Foreign Keys"; in Date, C., "Rela-

tional Database Writings 1985-1989", Reading, Mass., (1990) 99-169.

[Date89] Date, C. "A Guide to the SQL Standard", Addison-Wesley, Reading,

Mass., (1989).

[Date87] Date, C. "A Guide to INGRES", Addison-Wesley, Reading, Mass.,

(1987).

[Date86] Date, C. "An Introduction to Database Systems, Volume I", 4th Edition,

Addison-Wesley, Reading, Mass., (1986).

[Date83] Date, C. "An Introduction to Database Systems, Volume II", Addison-

Wesley, Reading, Mass., (1983).

[DaWh88] Date, C. and White, C. "A Guide to DB2", 2nd Edition, Addison-Wesley,

Reading, Mass., (1988).

[HeHe89] Heydt, R. & Heydt, D. "DB2 Database Design and Administration, Ver-

sion 2", John Wiley & Sons, New York, (1989).

[Koch89] Kocharekar, R. "Nulls in Relational Databases: Revisited", ACM SIC-

MOD Record Vol. 18 No. 1, (March 1989), 68-73.

[Krug86] Kruglinski, D. "Data Base Management Systems, MS-DOS: Evaluating

MS-DOS Data Base Software", Osborne McGraw-Hill, Berkeley, Califor-

nia, (1986).

BIBLIOGRAPHY 139

[LaPi77] Lacroix, M. and Pirotte, A. " Domain-oriented Relational Languages",

in Proceedings of 3rd International Conference on Very Large Data Bases

(October 1977), 370-378.

[McLe76] McLeod, D.' J. "High Level Domain Definition in a Relational Data Base

System", ACM SIGPLAN Notices Vol. 11 Special Issue, (1976), 47-52.

[Mair83] Maier, D. "The Theory of Relational Databases", Computer Science

Press, Rockville, Maryland, (1983).

[OsHe86] Osborn, S. and Heaven T. "The Design of a Relational Database System

with Abstract Data Types for Domains," ACM TOD Vol 11 No. 3, (Sept.

1986), 357-373.

[U1lm88] Ullman, J. D. "Principles of Database and Knowledge-base Systems",

Volumn 1, Computer Science Press, Rockville, Maryland, (1988).

[VaGa89] Valduriez, P and Gardarin, G. "Analysis and Comparison of relational

Database Systems", Addison Wesley, Reading, Matt. (1989).

[YaCh88] Yannakoudakis, E. J. and Cheng, C. P. "Standard Relational and Net-

work Database Languages", Springer-Verlag, Berlin, (1988).

[Yang86] Yang, C. "Relational Databases", Prentice-Hall, Englewood Cliffs, New

Jersey, (1986).

