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ABSTRACT

The Froude pendulum is a classical nonlinear mechanical system exhibit-
ing friction induced, self excited oscillations. This system has not been stud-
ied completely from the analytical viewpoint. The nonlinearity arises from a
cubic damping term and the sine function of the displacement in the equa-
tions. In this work. the averaging technique used by Sanders and Cushman
is applied to the Froude pendulum and the planar bifurcations of the pa-
rameters are studied. This is achieved by averaging over orbits in the phase
space of the unperturbed hamiltonian, deriving the Picard-Fuchs and Ric-
catti equations and numerically solving the latter. The bifurcation diagram
enables the identification of limit cycles and various phase portraits. In the
non-autonomous case. a Melnikov analysis vields a criterion for the onset of
chaos. Thus this work provides interesting insights into the analytical aspects

of the motion of the Froude pendulum.
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Chapter 1

Introduction

Nonlinear dynamical svstems have attracted a great deal of attention since
the early vears of this century. Beginning with the pioneering work of
Poincaré [33. 34] and followed by the seminal work of Andronov [1], Lya-
punov [24, 25], Birkhoff {3, 4] and others, the theoretical developments gath-
ered momentum with the fundamental contributions of Smale [37], Arnold
(2] and others.

Even though the importance of applying the new results to problems in
physics and engineering was recognised, the action was mostly confined to the
theatre of mathematics. This situation changed drastically with the discovery

of what has come to be known as deterministic chaos. Starting with the now
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famous discovery of Lorenz [23] in 1963 in his studies involving a simplified
model of fluid convection related to the atmosphere, this phenomenon made
its presence felt. almost in an ubiquitous fashion. in a broad class of non
linear svstems which model the real world.

Scientists were faced with the stark reality of unpredictability and extreme
sensitivity to initial conditions even in the sacred territory of Newtonian me-
chanics [20]. This. inevitably. has led to a paradigm shift in the approach to
noulinear svstems from the engineering point of view into an era when terms
like experimental error are viewed through the prism of caution. The crucial
insight that has been gained out of these intense efforts has been that non-
linear svstems demonstrate fundamentally different behaviour in comparison
with linear svstems and demand treatment on a different footing. Hence.
every linearization or neglect of nonlinear terms of any order in a problem
needs rigorous justification and a cavalier approach in this respect can lead
to highlyv erroneous conclusions.

Having observed that linear and nonlinear systems are fundamentally
different, simultaneously it must be noted that there exists a remarkable
correspondence between the two. There exists a battery of powerful theorems

in the arsenal of the mathematician, such as the Hartman-Grobman theorem
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(15] and the Stable Manifold theorem [6], which affirm the correspondence
between a linear system and its nonlinear cousin. In fact, it is this relationship
which allows one to draw meaningful conclusions about a nonlinear system
under a linearization. It is again. this feature that vitalizes the attack on
nonlinear svstems and makes the whole exercise worthwhile.

Thus. the series of developments in both the theoretical and observational
aspects of nonlinear systems has ushered in a revolution in our understand-
ing of physical phenomena, which ranks on par with the other two towering
achievements of the human intellect in the present century. viz. the rela-
tivistic and quantum revolutions. But. perhaps. the omnipresent nature of
nonlinear phenomena in the world around us, ranging from biological and
social syvstems to quantum field theories and cosmological models make this
area outstandingly unique.

It is quite pertinent now to examine the implications of these develop-
ments to engineering. Engineers have, for long, encountered apparently ran-
dom effects in a wide variety of systems. The classical examples are mechan-
ical, electrical, fluid, optical and control systems. In mechanical systems,
nonlinear elastic or spring elements, friction and damping effects and the

like contribute to the nonlinearities. In electrical circuits, nonlinear resistive,
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inductive or capacitative circuit elements and electromagnetic fields are a
prime source. Turbulence, a purely nonlinear phenomenon is well known in
fluid mechanics and its applications. The importance of nonlinear effects in
servomechanisms and feedback control cannot be overemphasized.

Thus. the presence of nonlinearities in engineering applications has been
long recognized. The interesting question is the implication cf the theoret-
ical and computational developments for these applications. It remains a
fact that due to limitations in our understanding of nonlinear systems and
also due to the inadequate percolation of ideas from the pure sciences to
engineering. often these nonlinear effects were either ignored or swept under
the rug during design or analysis. That this led sometimes to disastrous
consequences is an unfortunate but valuable lesson of engineering history.
The collapse of the Tacoma suspension bridge in the United States under
self-excited oscillations is a case in point.

A more accurate understanding of nonlinear phenomena and application
of the new developments to engineering problems is highly desirable. Even
though the elimination of nonlinear effects in engineering problems borders
on the impossible, a better insight undeniably leads to better analysis, design

and control.
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Guided by this philosophy. this thesis examines the nonlinear effects in a
classical svstem that exhibits friction induced, self-excited oscillations, viz.
the Froude pendulum. We shall study this svstem in detail in the subsequent
chapters but it is perhaps appropriate here to highlight the features of this
svstem. The oscillations in the Froude pendulum are caused by friction. Thus
this pendulum serves as an effective model in the analysis of friction induced
motion. That. friction effects, albeit being of crucial import, have not been
exhaustively explored in any approach to mechanics, adds to the mystery.
The two features. which contribute to the nonlinear effects in this system are
a cubic damping term (arising out of friction effects) and the sine function
in the equations. In our analysis, we confront these terms as such, making
no attempt to linearize them. That an effective analysis can be carried out
and meaningful conclusions drawn with this approach is a highlight of the
present work.

The Froude pendulum has a considerably long history. It has been long
recognized as an interesting mechanical system and has found mention in
some of the classical treatises in nonlinear oscillations [28, 5]. It has also
been treated as a paradigm for nonlinear friction in oscillatory systems [26].

But the treatment of this system in these works is far from being complete.
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With the possible exception of the work of the Soviet school, it does not seem
to have enjoved the extent of attention it deserves, from the analytical point
of view. But recent work [9. 8] has drawn attention to the Froude pendulum
and this served as the main motivation for the present work.

On the other hand. interesting strides have been taken in the develop-
ment of averaging techniques applied to nonlinear differential equations. The
exposition of Sanders and Verhulst [36] is a good survey of this area. Of par-
ticular interest in this context is the work of Sanders and Cushman 35} which
develops and applies a unique averaging technique to the Josephson equa-
tion. In that work. the Josephson equation is treated as a perturbation of
the mathematical pendulum. Averaging is then carried out on the system.
Two appropriate functions are defined and the averaged equation is then
studied using the properties of these functions. This leads to an interesting
bifurcation picture and as a consequence, the limit cycles are classified and
the entire phase portrait is generated for the Josephson equation.

The crucial element in the present work is the observation that the Froude
pendulum too, can be treated as a perturbation of the mathematical pen-
dulum, a well-understood hamiltonian system. It then becomes feasible to

studyv the pendulum using the geometrical methods developed by Sanders
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and Cushman [33]. This leads to a bifurcation analysis and consequently to
a classification of limit cvcles and a clear view of the phase portrait.

The Froude pendulum is also found to be interesting from the point of
view of chaos. Despite the amazing amount of work in the area of deter-
ministic chaos. to this day. very few systems exist as paradigms for chaotic
behaviour. The standard list of these systems, which includes the Lorenz
svstem [23]. the Van Der Pol oscillator [40] and the Duffing equation [11],
almost exhausts the number of systems that have been extensively investi-
gated from the chaos viewpoint. It is noteworthy that none of the above
svstems demonstrates friction induced. self-excited, oscillations. Also. none
of the equations. which model these systems has a cubic damping term. In
the work of Dai and Singh [9], it was shown that the Froude pendulum can
behave chaotically.

\erv few analytic criteria exist for predicting the onset of chaos in a non-
linear dynamical system. But among the techniques available, the Melnikov
analysis [27] is a powerful method. This method shall be dealt with in detail
in a later chapter. Suffice to say here that this yields an analytic criterion
for the transversal intersection of the unstable and stable manifolds about a

hyperbolic critical point, which leads to the creation of a homoclinic tangle
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and chaos.

In the present work, the Melnikov method is applied to the Froude pendu-
lum in the non-autonomous case and a condition for the onset of homoclinic
chaos is obtained. This condition is an inequality involving the parameters
in the svstem viz. the damping coefficient, the stiffness coefficients and the
amplitude and the frequency of the forcing function. Thus, respecting the
inequality during design shall eliminate the possibility of chaos in the system.

The thesis is set as follows:

Chapter 2 introduces nonlinear systems in general. We survey the general
properties using some examples. We also examine the important properties
of linear svstems, the process of linearization, and the Hartman-Grobman
and Stable Manifold theorems [14] that establish the correspondence between
linear and nonlinear systems. The concepts related to critical points and the
stability types of critical points are introduced.

Chapter 3 is a deeper examination of the characteristics of nonlinear
svstems and their behaviour. Properties such as existence of limit cycles are
studied. We also look into the interesting phenomena of bifurcations and
chaos. The averaging technique, which is extremely useful in the analysis of

nonlinear systems, is surveyed. This chapter focuses on the phenomena that
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we study in the context of the Froude pendulum.

Chapter 4 introduces the Froude pendulum. The physical system and the
context in which it arises are described. The equations governing this system
are established and the stage is set for the analysis that follows.

Chapter 5 forms the core of the thesis. Here, we apply the averaging
technique to the autonomous Froude pendulum. The chapter begins by es-
tablishing that the Froude pendulum can be viewed as a perturbation of
the mathematical pendulum. After appropriate scaling of the equation of
the Froude pendulum. we identify two svstem parameters. We study the
bifurcation phenomenon with respect to these parameters. The next step is
averaging. This is carried out by defining two functions and then setting up
Riccatti equations for these functions. These functions are then integrated
numerically and the results are used in plotting the bifurcation diagram for
the system. Further. numerical plots based on this diagram show the inter-
esting phase space behaviour.

Chapter 6 deals with the Melnikov analysis. The method is introduced
first in the framework of a general dynamical system and then applied to
the non-autonomous Froude pendulum. The criterion for onset of chaos is

then obtained. Further, we plot the phase portrait using numerical values
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for the svstem parameters obtained from the analysis and show that chaos
does exist in a region where it is expected. This confirms the validity of the
analysis.

Chapter 7 highlights the conclusions and explores the possible directions
of further research in this area.

The numerical work associated with this thesis and the graphs have been

done using the software packages Mathematica © and MAPLE ©.



Chapter 2

Nonlinear Systems

2.1 Introduction

As we have mentioned in Chapter 1. the objective of this thesis is the analysis
of a nonlinear. oscillatory, engineering system, viz. the Froude pendulum.
This pendulum being a classical nonlinear dynamical system, techniques from
the theory of nonlinear differential equations have to be applied to this system
in order to achieve our objective. To this end, we survey some of the useful
concepts and results from the mathematical theory in this chapter. The
material presented here is available in all the standard treatments of nonlinear

differential equations and nonlinear mechanics such as {14, 21, 31, 19].

11
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Linear systems are well known in engineering. Due to the intimate rela-
tionship and the unique correspondence between a nonlinear system and its
linear counterpart, any discussion of the former has to include a treatment
of the latter as well. Hence. we also discuss linear svstems in this chapter. In
many practical considerations. the nonlinear system under question is trans-
formed to a linear system via an approximation. This procedure, termed
linearization deserves attention and hence also enters our discussion.

The theory of dvnamical systems, which has found extensive applications
in engineering in recent times. is the study of mathematically and physically
interesting systems with respect to a parameter termed ‘time’. Since differ-
ential equations offer the most convenient framework for such a study, the
analysis of a dvnamical svstem reduces to the study of the corresponding
svstem of differential equations. In a discrete case, this goes over to the
study of the associated map. Indeed, in most modern treatments, a dvnam-
ical svstem is identified with the differential equation or the map. Thus,
the analyvsis of the physical system reduces to the study of the differential
equation governing its evolution.

It follows from Newtonian mechanics that oscillatory mechanical systems

are modeled using second order differential equations. The classical model in
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this context is that of the simple harmonic oscillator represented by a simple
pendulum. Hence we shall introduce the essential features of the theory using
this example.

Consider the simple pendulum (Fig 2.1).

The svstem comprises an inextensible string of length L. pivoted at point
O. and carrving a bob of mass m. which is free to swing in the plane of the
paper. In order to formulate the exact equation of motion, we consider the
pendulum in a displaced position. as shown. where the angle x designates the
deviation from the vertical equilibrium position. As shown, the forces on the
mass are the vertical gravitational force mg and the tension T in the string.

Given this setting, neglecting frictional and other dissipative forces, the
equation of motion of the pendulum can be written. applying Newton’s sec-
ond law as

mLi+mgsinz =0 (2.1)

which can be rearranged as

£+ k?*sinz =0 (2.2)

where k = \/%
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4 N - na Cosx

. l A
.
|

The Simple Pendulum

Figure 2.1: The Simple Pendulum
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Expanding sin r as a power series. one obtains

. I
51n1'=1'-§!—+-5—!— ........ (2.3)
Substituting (2.3) into (2.2) we obtain
3 5
f+k2[.r-f~+f—~ ..... =0 (2.4)
R

It is obvious that (2.4) is a nonlinear differential equation due to the presence
of r® and the higher order terms. It is also well known that, considering all
the terms. (2.4} has closed form solutions only in terms of the jacobian elliptic
functions. But. for the moment. we shall assume that the angle of oscillation
is small. This allows us the approximation sinz = z for small r and this

leads us to the linear differential equation
F+k’z=0 (2.5)

It is a crucial step that we have taken here, with this assumption. We have
used an approximation to linearize the system. Further, if one includes linear
damping effects in the system and considers a pendulum driven by a harmonic

forcing function, the equation of motion can be written as

# + k*z +cz = F coswt (2.6)
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where ¢ is the damping coefficient. F and w the amplitude and frequency of
the forcing function respectively. The equation (2.6) is the basic equation for

periodic motion. We shall return to this equation as well as modifications
of it. in detail at a later stage. but for the present. we consider (2.5) in order

to study a linear svstem and to develop the theoretical framework.

2.2 Linear Systems

The equation (2.5) represents a simple linear oscillatory mechanical system.
the undamped. unforced. harmonic oscillator. This system is readily inte-
grable in terms of the standard functions and is conservative (hamiltonian).

The general solution to (2.3) can be written down as
z(t) = Asinkt + B cos kt (2.7)

where A. B are arbitrary constants of integration. Now let us consider a

more general linear system
t=Az, zeR" (2.8)

We note that r is a vector valued function with n components and. A is an

n x n matrix with constant coefficients. A solution of (2.8) is a vector valued
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function r(rg.t) depending on time t and the initial condition z(0) = .
Fundamental theorems of differential equations theory [13, 2] guarantee the
existence and uniqueness of solutions to (2.8). for allt € R and ro € R™. It
is appropriate to mention here that such global existence of solutions in time
does not. in general. hold for nonlinear systems.

However. for the linear system (2.8), the solution can be written down as
1(zo.t) = ez (2.9)

where €' is the matrix obtained by exponentiating A. defined by the con-
vergent series 't =[] +t4 + % + .....]. A general solution to the system
(2.8) may be obtained by a linear superposition of 'n’ linearly independent

solutions r!(t). r(t). ....z*(t) as

z(t) = zn: c;z! (t) (2.10)

j=1
We note here that the superposition principle that led to the general solution
is unique to linear equations. If A has ‘n‘ linearly independent eigenvectors
v/.j = 1,2,...n, then 7/(t) = e**'y’ where ); is the eigenvalue associated
with v?. This provides a basis set in the space of solutions.

Referring back to (2.9), we can consider e'4 as a mapping of R® onto

itself. In other words, e!* maps point zq to z(zo,t) after time 't". Thus, the
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operator e*! defines a flow on R™ and this flow is generated by the vector
field Az.

If we look at the flow as the set of all solutions to the system (2.8). those
solutions that lie in the linear subspaces spanned by the eigenvectors are
invariant under the flow. For example, if v/ is a real eigenvector of A, then a
solution based at a point ¢,;27 € R™ remains on spen{v,} for all time, where
span{r,} is the vector space for which v, is the set of basis vectors and so
on. If this property is satisfied (that is, points in a certain subspace remain
in the saine subspace for all time under the flow), then the subspace is called
an invariant subspace of the flow. Thus. the eigen spaces of A are invariant
subspaces of the flow.

This leads to a classification of the subspaces spanned by the eigenvectors

as follows:

—

. Stable subspace, E* = span{v!,...,v"}

[3V]

. Unstable subspace E* = span{u!....,u™}

3. Centre subspace, E¢ = span{w!,...,w™}

where %, u?, w* are eigenvectors with negative, positive and zero real parts

for eigenvalues. respectively. Also, n = ns + n, + n., where n is the dimen-
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sionality of the eigenspace.

We also note here that solutions in E*® exhibit exponential decay (mono-
tonic or oscillatory), those in E* grow exponentially and E° is characterized
by solutions which do neither.

The above classification provides the framework for the two important

theorems for nonlinear svstems that we take up in the following section.

2.3 Critical Points And Their Classification

In the analvsis of dvnamical systems, the idea of critical (equilibrium) points
plays a kev role. As we shall see in the sequel. these are points in phase space
which represent solutions to the given equation for all times and the constant
nature of these equilibria suggests these as good starting points for the study
of the (often) complex behaviour in their vicinity. Also, the phenomenon of
asvmptotic convergence of nearby solutions to these points leads us to name
them as attractors. The stability of solutions in the neighborhood of the
critical points is another issue which adds to the importance of the analysis

of equilibrium points.
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Consider a dynamical system
= f(z) (2.11)

A point r = a such that f(a) = 0is called a critical point (equilibrium point)
of the svstem. We note that a critical point corresponds to an equilibrium
solution. since r(t) = a satisfies the equation for all time. It is also useful to
recall the fundamental uniqueness theorem (13, 2|, which implies that there
exists a unique solution curve corresponding to any given point in phase
space. As a consequence. an equilibrium solution can never be reached by

other solutions in finite time.

2.3.1 Linearization

Before advancing to the analysis of critical points and their classification,
we show. in general. how nonlinear systems can be linearized. Consider
(2.11). Assuming the existence of a Taylor's series expansion for f(z), in the

neighbourhood of the critical point z = a, we write

af(z)
oz

= (z — a) + higher order terms.

I=a

The linearized equation is, then,

:i:=a—f-gg)-(:z:-—a)

oz
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We note here, once again, that the justification of this process of linearization
vielding meaningful results in the case of nonlinear systems is a consequence
of the Hartman-Grobman and Stable Manifold theorems [14] referred to in
section 2.5 (pp. 27-28) of the thesis.

For simplicity, the point ‘a’ is shifted to the origin of phase space and putting
I =1 - ayvields

df(a)
oz

z

F=
If we abbreviate ?-g:—’ = A, an n x n matrix with constant coefficients, and
omit the bar over r. we get
= Az
This is the system that we shall be dealing with. The characteristic equation
for this system is
det(A— M) =0 (2.12)
Let the eigenvalues be denoted by A;, Ag, ...., Aq.
We now classify the critical points based on the nature of these eigenval-

ues at the points, assuming a two dimensional case, for simplicity. In this

case, we will have only two eigenvalues, A; and A,.
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Figure 2.2: The Node

Case 1 The Node

The eigenvalues are real and have the same sign. If A, # A;. we have parabolic
orbits in the phase space (Fig. 2.2).

This type of critical point is called a node. If A;, A, < 0 we have an at-
tractor while A;, A > 0 implies a repeller. If A; = A,, the orbits are straight

lines through the origin.
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Figure 2.3: The Saddie Point

Case 2 Saddle Pownt(Hyperbolic Critical Point)

In this case, the eigenvalues are real and have different signs. The be-
haviour of the orbits is hyvperbolic (Fig. 2.3 and there exist two solutions
which converge to the point as ¢ — > and two solutions with the same
property for t = —oc. The first two are called stable manifolds of the saddle
point while the other two are called unstable manifolds.

Case (3): The Focus

The eigenvalues are complex conjugate, the orbits spiral in or out, de-
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Figure 2.4: The Focus

pending on the sign of their real parts. with respect to the critical point
(Fig. 2.4) and it is called a focus. In the case of an inward spiral, the point
is an attractor and a repeller in the other case.
Case (4): The Centre

If the eigenvalues are pure imaginary, the point is called a centre. The
orbits in the phase space are circles centred about the critical point (Fig.

2.3). The point is, obviously, not an attractor in this case.
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Figure 2.5: The Centre
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2.4 Stability Of Solutions About Critical Points

The stability of the critical points was alluded to, in our discussion of at-
tractors and repellers in the previous section. The general rule in this is
the following. If all the eigenvalues of the coefficient matrix have negative
real parts. the solutions are stable about the critical point. If. at least one
eigenvalue has non-negative real part. there exists instability. This may also
be intuitively understood as follows. In the case of a linear equation (or the
linearized version of a nonlinear system). the solutions are of the form e**
where \, are the eigenvalues of the coefficient matrix. If A, has negative real
part for all .. then we get solutions that die out in time. In other words.
the solutions asvmptotically approach an attractor. This implies stability.

Alternatively, if at least one eigenvalue has positive real part, the solutions

grow in time and one can expect instability.

2.5 Nonlinear Systems
Consider the nonlinear system

= f(z),zr e R", z(0) =z (2.13)
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(3]
~1

Invuking the basic existence and uniqueness theorems [[13. 2|] for differential
equations, we can associate (at least locally) a flow ¢, : R® — R" defined by
o:(ry) = r(t. 1q). for the vector field (2.13).

Cunsider critical points of (2.13). Let I be such a critical point. We

linearize (2.13) about f in the following way.
£ =Df(Z)E.E€R" (2.14)

where Df = {24! is the Jacobian matrix of the first partial derivatives of
the function f(r). Since (2.14) is a linear system. we can write the following

equation for the flow

Do, (z)€ = e'P/*)¢ (2.15)

Given this background. we state (without proof), the following two theorems

that form the pillars of nonlinear analysis [14]

Theorem 1 Hartman-Grobman:

If Df(%) has no zero or purely imaginary eigenvalues then there is a homeo-
morphism h defined on some neighbourhood U of R" locally taking the orbits
of the nonlinear flow ¢, of (2.13) to those of the linear flow e*P/(F of (2.15).

The homeomorphism preserves the sense of orbits and can elso be chosen to
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preserve parameterization by time.

Now. we define the local stable and unstable manifolds of Z, W*,(Z) and

174, (1) as follows.

N oe(f) =€ U] or) > F. ast = x.ando,(z) € UVt >0

N (Fy=rellolr) = I ast = —xc.ando(r) e UYt <0 (2.16)

where {7 € R" is a neighbourhood of the fixed point Z. The invariant man-
ifolds 117°,,(7) and W%, (Z) provide nonlinear analogues of the flat stable
and unstable eigenspaces E* and E* of the linear problem. The next theorem

states that 117,,.(F) and 11", (F) are tangent to E°. E* at T.

Theorem 2 Stable Manifold Theorem for a Fized Point

Suppose that £ = f(z) has a hyperbolic fized point Z. Then there ezist local
stable and unstable manifolds VW *e(Z) and Y% ,.(I) of the same dimension
n, and n, as those of the eigenspaces E* and E* of the linearized system,

and tangent to E, E*at T. W*oe(Z), W"1oc(Z) are as smooth as the function
f

Concluding the section we note that no comments have been made in the

case when the real parts of the eigenvalues vanish (i. e. the eigenvalues are
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zero or pure imaginarv). This involves the centre manifold theory which is
not essential to our discussion and hence we leave it here with the note that
the theory of centre manifolds via normal forms treats this important aspect

of nonlinear svstenis.

2.6 Conclusion

In this chapter. we took a closer look at nonlinear systems. Two important
theorems that establish the connection between linear and nonlinear systems
were stated. Further. the concept of linearization was stated. Also. ideas
related to critical points of linear and nonlinear systems. their classification
and stability issues were examined. On the basis of the framework so far, the
next chapter explores the phenomena of bifurcations and chaos in nonlinear

svstems as well as the method of averaging.



Chapter 3

Bifurcations and Chaos in

Nonlinear Systems

3.1 Introduction

In this chapter. we shall discuss some deeper aspects of nonlinear systems. We
shall begin with cyclic attractors and go on to chaotic attractors in dynamical
systems. This leads us to the interesting phenomenon of chaos. Bifurcation
is another aspect that shall be dealt with. Finally, we briefly examine the
method of averaging which is a powerful technique in the context of nonlinear

svstems. In the subsequent chapters the averaging method is applied to the

30
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Froude pendulum and this leads to a bifurcation analysis and a classification

of the limit cycles thereby. The chaotic behaviour of the Froude pendulum

is also explored. This explains our focus on these aspects in this chapter.
The general references pertinent to the material in this chapter are 39,

13. 41. 14. 36. 10. 22].

3.2 Cyclic Attractors (Limit cycles)

In the previous chapter. the idea of point attractors of dynamical systems
was discussed. These are fixed point (equilibrium) solutions that attract
nearby solutions. It turns out that there exist other types of equilibrium
solutions too viz. cyclic and chaotic attractors. We discuss the limit cycle
(evelic attractor) first.

A limit cycle is an isolated periodic solution of an autonomous system.
represented in the phase plane by an isolated closed path, as shown in (Fig.
(3.1)

The neighbouring paths are not closed but spiral into or away from the
limit cycle C as shown. In the case illustrated here which is a stable limit

cycle, the device represented by the system will spontaneously drift into the
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Figure 3.1: A Limit Cycle
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corresponding periodic oscillation from a wide range of initial states. A stable
limit cycle represents a stable stationary oscillation of a physical system, akin
to the representation of a stable equilibrium by a stable critical point. The
existence of limit cvcles hence assumes great practical importance since they
represent the stationary states of oscillations. The theory of limit cycles is
also important in the study of self-sustained oscillations, the simplest example
of which would be the motion of the pendulum of a clock [19]. The nearby
trajectories approach the limit cycle. Thus, the initial conditions become
immatetial as all motion appruaches and settles on the cycle. In the case of
the pendulumi of a clock. the amplitude of oscillation at the start does not
affect the final. stable. periodic motion. This is characteristic of all motion
that approaches a stable limit cycle. This phenomenon is also found in the
case of self-excited oscillations.

Linear svstems with constant coefficients do not exhibit limit cycles. Since
nonlinear equations cannot be solved in general, it is important to be able

to establish the presence of limit cycles, if any, by other means.
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3.3 Chaotic Attractors

We now examine the phenomenon that has occupied the centre stage in
nonlinear dvnamics. in recent times.

To begin with a rather formal definition [39], a chaotic attractor may be
geometrically identified as a stable structure of long term trajectories in a
bounded region of phase space which folds the bundle of trajectories back
onto itself, resulting in mixing and divergence of nearby states.

From a physical point of view. this means that. a svstem that exhibits
chaotic behaviour can start off with two nearby initial states and end up
in final states far away from each other after a certain period of time. In
other words. the response of a chaotic system is highly sensitive to initial
conditions.

In 1963, Lorenz [23] published an analysis of a simplified model of con-
vection in the atmosphere of the earth which involved a set of nonlinear
differential equations in three variables. A numerical approximation of any

solution to this set of equations has the following interesting properties.

(a) The orbit is not closed.

(b) The orbit does not represent a transition stage to well known regular
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behaviour. for some open regions of parameter space.

(c) The orbit and the intricate geometrical structure it creates depend on
the initial conditions in a very sensitive way. Thus. a slight perturbation

of the initial conditions produces a very different picture.

(d) The orbits with different initial conditions possess qualitative similarity
in the sense that theyv are bounded within a certain region of phase

space.

(e} The svstem is very much deterministic. That is. if one were to start

from identical initial conditions one would recover identical orbits.

A graphical representation of this phenomenon is given in Fig. (3.2}

Due to the bounded nature of the trajectories, the presence of an at-
tracting region is quite evident in this case. But within the bounded region
there exists an unpredictable, non-periodic pattern and this is termed chaotic
behaviour. An attractor of this type is called a chaotic attractor.

The interesting discovery was that chaotic behaviour is generic to a class
of nonlinear systems.

Here we consider the following nonlinear equation with a periodic forcing
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Figure 3.2: Divergence from adjacent initial conditions - Chaos
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function:

Ff+azi+bz1’=Fcost (3.1)

We focus on the phase space i. e. the (r,z) plane and observe two numer-
ical solutions with arbitrarily small difference in the initial conditions. The
solutions diverge exponentially with time. Continuing the solutions in time
reveals the chaotic nature of the system.

The motion is non-periodic. The system is deterministic. Also, the expo-
nential divergence makes it impossible to establish any long term correlation
hetween the two solutions by reducing the difference in the initial conditions
since each order of magnitude improvement in initial agreement vanishes in
a fixed increment of time. In other words, solutions starting off with nearby
initial conditions do not stay close to each other as they evolve in time. Yet,
the set of trajectories exist in a bounded region of phase space and hence
there does exist an attractor. Thus. (3.1) shows chaotic behaviour.

From an engineering point of view, unpredictability and chaos may be
undesirable. There exists a correlation between this phenomenon and the
svstem parameters. In other words, chaotic behaviour is seen only for cer-
tain ranges of values of the system parameters. Thus, for nonlinear systems

amenable to analysis it is possible to identifv chaotic regimes. The effort
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would then be to avoid these regimes. Hence, the identification of chaotic
attractors in engineering systems is of prime importance.

A technique of identifying ranges of parameter values for which chaotic
hehaviour can he observed in a nonlinear system is the Melnikov analysis
7.22.14]. In chaprer 6. we apply this method to the Froude pendulum and

derive an analvtic criterion for the onset of chaos.

3.4 Bifurcations

The phenomenon of bifurcation refers to the significant qualitative changes
that occur in the orbit structure of a dynamical system as the system pa-
rameters are varied [13. 17, 14, 7). These changes have serious implications
for the ultimate fate of the system and often this is a prelude to the onset of
chaos.

In a broad class of systems it is observed that as the parameters go
through a range of values, the qualitative nature of the phase space is dras-
tically affected. These changes could range from anywhere between a change
of stability type to fundamental variations in the topology of the phase space.

Collectively, these phenomena are termed bifurcations. Bifurcations may be
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mainly classified as local and global and we briefly examine both, below.

3.4.1 Local Bifurcations

The qualitative changes in the global structure of phase space, due to varia-
tions in the system parameters. that can be detected and studied locally (i.
e. with respect to a critical point), are called local bifurcations.

In the previous chapter. it was observed that the nature of the eigenvalues
under a linearization leads to a classification of the equilibrium points as
saddles. nodes. foci and centres. Also. the sign of the eigenvalues dictates
the stability tvpe of the point. The principal idea in local bifurcations is
the following. For parameter dependent systems, under a linearization, the
eigenvalues would be functions of the parameters. It follows, then, that
a change in the values of these parameters can affect the eigenvalue and
hence the nature of the critical point may be altered. This is called a local
bifurcation.

To make the idea more precise, let us consider a dynamical system =
f(z.p) that depends on the parameter u. For the present discussion, we
consider only a single parameter but it is evident that most practical prob-

lems involve more than one parameter. For example, the general oscillatory
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mechanical syvstem depends on the mass, stiffness. and damping coefficients
as well as on the amplitude and frequency of the forcing function.
Let rg(st) be a critical point of the above system. Hence, f(zo(u): u) = 0

For convenience. we shift ro(u) to the origin by the following transformation.

z =1 — zo{p) =2 = A(p) z + 0(%)

Of (zo(n): p)

where A(u) = 3z

and O(z?) represents the higher order terms in the expansion. The stability
ot ay(yt) 1> dependent on the eigenvalues of A(p). Let the eigenvalues be

A.(u). Further.
1. if Re(\(p)) < 0. ¥V i. zo(u) is uniformly and asvmptotically stable.
2. if 3 at least one j such that Re(\,(x)) > 0. zo(p) is unstable.

Here. we note that 4 is a function of ;¢ and hence the eigenvalues are
also functions of p. Thus. as u evolves. the nature of the eigen values may
change affecting the stability of the critical point. A change in stability may
be expected whenever, for some u = g, Re{Ai(uo)} = 0 where Re{):(uo)}
represents the real part of the eigenvalue. The values of yy for which the

above condition is satisfied locate the bifurcation points of the system.
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Further, if we restrict ourselves to the condition that A(u) is a real valued
matrix, that is, it can have either real values or complex conjugate pairs of

eigenvalues only, bifurcation points can arise in the following ways:
1. Am(to) =0 and An(uo) <0V m #n and A(n) is real.

2. Mn(p) = An(p) = a(po) + i B(po) for some m, n; a(po) = 0; B(1o) # 0

and Re{Ar(uo)} <0V k #m, n.

Case 1 is called a one dimensional bifurcation and case 2 is called a Hopf

bifurcation.

3.4.2 Global Bifurcations

When a change in a parameter value alters the qualitative behaviour in phase
space, a global bifurcation is said to have taken place. These are not local in
the sense that their analysis cannot be restricted to the neighbourhood of a
critical point. This behaviour is exceedingly complex and is yet to be under-
stood exhaustively. Associated with global bifurcations are the appearance
and disappearance of limit cycles, formation and destruction of homoclinic

loops, saddle connections and sc on.

Oscillatory engineering systems involve various parameters. Hence, the
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analvsis of bifurcations that result in abrupt changes in svstem behaviour
are important in the analvsis and design of these engineering systems.
Bifurcations may also be studied in parameter space. As we shall see in
the sequel. the bifurcations of the Froude pendulum under our consideration
oceur in the space of paramerters. Indeed. these effects in the parameter space

are reflected in the phase space of the system. as well.

3.5 Averaging

Averaging is an extremely powerful technique in asymptotic analyvsis [36. 30].
The starting point is a perturbed nonlinear system. If the system involves pe-
riodic functions. a corresponding averaged equation can be generated wherein
the functions are integrated over the period.

The important result is that approximate solutions (often to any degree
of accuracy) for the original equation may be written down by solving the
simpler. averaged equation. Thus. averaging, in general, may be viewed
as a technique of generating approximate solutions of perturbed nonlinear
svstems by solving the corresponding averaged equation, which, hopefully,

admits simpler solutions.
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Once again. to make the ideas more precise, let us consider the following

system:
T=c¢f(t.x) + € g(t.z,€); z(to) = To

where ¢ is a perturbation parameter. If the function f is T-periodic in t. the

averaged equation corresponding to the above equation can be written as

§=¢ef’(y); y(to) = o

T
where )= = [ fit. ) dt

With respect to the above equations. the averaging theorem [36] states
that. to anv desired degree of approximation. the solutions of the original
equation and the averaged version stay close enough to each other.

What makes this approach really powerful is the existence of theorems
that guarantee a close correspondence between the original equation and the
averaged version. Thus, properties like existence and stability of attractors,
and bifurcations carry over to the averaged equation and vice versa. This
makes it possible to deduce a great deal of information about the original
system from the study of the averaged equation.

This technique is exceptionally useful in tackling nonlinear problems in

engineering, since the averaged equation often admits simpler solutions. In
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chapter 3, we approach the Froude pendulum using this method.



Chapter 4

The Froude Pendulum

4.1 Introduction

The Froude pendulum is a classical mechanical system that exhibits friction-
induced. self-excited oscillations [28, 8, 29. 5. 26]. Apart from being unique
in its own right in the class of interesting nonlinear systems. it has served as
a paradigm for the treatment of friction-induced nonlinear motion. Despite
the fact that this svstem has been known to be important for a considerably
long time [28. 38], a survey of the literature confirms the existence of many
open questions with respect to this system.

Self-excited oscillations have received considerable attention in the re-

45
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search on nonlinear svstems. the most important example being the Van der
Pol oscillator. The dvnamics of these systems being self generated, they are
of great interest.

On the other hand. friction continues to be a grey area in the entire land-
scape of dvnamics. The classical approach is to model friction by Coulomb’s
law. Fr = uFv. where. the frictional force Fr equals the normal reaction Fy
multiplied by the coefficient of friction u. The inadequacy of this ideal rela-
tionship as a satisfactory model both from the theoretical and applied points
of view has been long recognized. for instance. in [32]. It is also observed
that a broad class of engineering systems admit nonlinear frictional effects.

Nonlinear friction is the central theme in the discussion of the Froude
pendulum and thus. along with the self-excited nature of the oscillations. the
pendulum becomes an important object of study.

In the sequel. following standard analysis. the equations of the Froude
pendulum are set up and then cast in a form that facilitates the bifurcation
analysis that we intend to carry out via the averaging technique developed

by Sanders and Cushman in the context of the Josephson equation [35].
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4.2 The Froude Pendulum

A schematic diagram of the Froude pendulum is shown in Fig (4.1). The shaft
of the pendulum is connected to an engine which rotates freely in the bearing
pivot at a constant angular velocity Q. The pendulum is fixed to the bearing
pivot which swings on the rotating shaft. There arises friction in the contact
surfaces between the shaft and the bearing pivot. It is standard procedure to
treat frictional forces as functions of the slipping velocity (28, 26. 12. 18. 16].
If the angular displacement from the vertical by ¢. the frictional torque of
the Froude pendulum is assumed to have a relation to the slipping angular
velocity o and is expressed as a function M(Q — ¢) [28. 8, 26]. Thus the

equation of motion can be written as
16+ co+mglsine = M(Q - 6) (4.1)

where m is the combined mass of the pendulum and the pivot, I, the total
moment of inertia of all rotating components of the pendulum, g, the ac-
celeration due to gravity, c the coefficient of damping, [, the distance from
the axis of rotation to the centre of gravity of the pendulum. Expanding
M(Q — ¢) as a power series about a given Q (chosen as a point of inflection

of M(Q) implyving M"(Q2) = 0) and considering only the first four terms of
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Figure 4.1: The Froude pendulum - the rotating shaft is connected to an

engine
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the resulting series. we obtain the standard equation {28, §]:
16 + c6 + mglsin = M(Q) = M'(Q)é — %M"’(Q)é“ (4.2)
Rearranging this equation. we get.
Io+(c+ A'(Q)o+ é.\[”'(Q)&‘ + mglsino = M(Q) (4.3)
Dividing both sides by /. and introducing constants. we obtain
0 +ao+bo®+hsino =c (4.4)

where ¢ = ‘———"‘;'m’. b= —“'S;m. h= ﬂfi and c = ——-““Im.
Thus. (4.4) represents the unforced Froude pendulum. This is. obviously. a

highlv nonlinear equation with contributions from the cubic damping term

and the sin o term.

4.3 Analysis of The Froude Pendulum

As was observed before, the analysis of (4.4), in the literature is incomplete.
One encounters treatments with the approximation sin ¢ =~ ¢, which reduces
the system to a simple harmonic oscillator with a cubic damping term. Such
a linearization (as has been emphasized before), is justified in certain cases,

but, more often than not, obscures the essential features of the system. Even
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more disturbing is the fact that replacing sin ¢ with ¢ leads to a completely
different equation. a different system.

These considerations converge to the conclusion that. to the extent pos-
sible. (4.4} should be treated in its full generality. with sino and the cubic
damping term receiving the attention they rightly deserve.

That such an approach. leading to meaningful results is possible, is the
highlight of the present effort. The technique that we adapt here is the one
adopted by Sanders and Cushman in the case of the Josephson equation.

The Josephson junction is described by the equation [33]

30+ (1+vcosd)d+sing =a (4.3)

where a. J. v are constants.
The central idea is the following. The above equation can be treated as a
perturbation of the following system known as the mathematical pendulum

41. 35 given by the equation,

¢+sing=0 (4.6)

The mathematical pendulum is a well known Hamiltonian system and

treating the Josephson equation as a perturbation of this system, averaging
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may be carried out over the level sets of the hamiltonian. Using this method.
the bifurcations and the phase portrait of the Josephson equation can be
studied. as shown in the work of Sanders and Cushman [35].

Consider the equation of the Froude pendulum (4.4). Rearranging terms.

we get
o+hsing+ad+bd®=c
If we scale the above equation by setting h = 1. we get
o+sino+ao+bo’ =c (4.7)

this implies

o +sing=-aop-bod +c (4.8)

Comparison with (4.6) shows that the difference between the two equations
is in the extra damping terms and the constant term.

Thus. the critical observation here is that if we treat a and b to be small.
the Froude pendulum can be treated as a perturbation of the mathematical
pendulum. Taking this approach, we are able to study the bifurcations, limit
cycles and the entire phase portrait of the Froude pendulum. The details are

worked out in the following chapter.
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4.4 Conclusion

The Froude pendulum is an example of friction-induced, self-excited, non-
linear oscillations. This svstem has not been analyvzed exhaustively. From
the form of the equations. it is observed that this system can be treated as
a perturbation of the mathematical pendulum. One such system that has
been studied from this angle is the Josephson equation [33]. It turns out
to be possible to apply the same techniques to the Froude pendulum. This
leads to a bifurcation analysis. a classification of limit cyvcles and interesting

phenomena in the phase space. This is carried out in the next chapter.



Chapter 5

Bifurcations and Limit Cycles

in The Froude Pendulum

5.1 Introduction

This chapter forms the core of the thesis. Here. we apply the averaging
technique mentioned in [35], the method of Sanders and Cushman to the
Froude pendulum. In [35], this technique is applied to the Josephson equation
and the crucial observation here is that both the Josephson equation and the
Froude pendulum can be treated as different perturbations of the well known

Hamiltonian system viz. the mathematical pendulum. The latter system is
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the starting point of the discussion in [33]. and we apply the same method
to the Froude pendulum. This leads to a bifurcation analysis via the Ricatti
equations and as a consequence. significant comments can be made on the
limit cvcles in the system.

As we have observed earlier. a knowledge of the limit cycles and their
classification is extremely useful in the analysis of nonlinear svstems and the
case of the Froude pendulum is no exception. A highlight of this approach,
as we shall see in the sequel is that no attempt is made to linearize the
svstem. The nonlinearities presented by sin o and the cubic damping term

in the equations are genuine and we treat them as such.

5.2 The Froude Pendulum - A perturbation

of the mathematical pendulum

Let us recall the Froude pendulum given by the equation [4.4]:

d+ad+bd®+hsing=c

’ "
where g = M@ = ML) p - mal apd ¢ = MR
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There are four parameters a. b. h, c associated with the system. For the
bifurcation analysis that follows, we consider the two parameters a and c.
Thus. we need to scale the above equation such that we are left with these
two parameters. Setting mgl = I and M"()) = 6/. we get the following

equation.

o+a0+ ¢ +sinp=c (5.1)

It is noted here that this choice is motivated by the need to carry out
bifurcation analysis with respect to the parameters a and c.

Before proceeding further. we remark that the analysis that follows is not
restricted to the set of parameters that we have chosen. Our choice is guided
bv the fact that a is a coefficient of the leading damping term and ¢ can be
viewed as a constant value of the forcing function. It is possible to carry out
the same bifurcation analysis for a different set of parameters.

The analysis carried out here closely follows [35].

Transforming to the first order system which we shall call X, .

xa.c:é':y (a)

§ = —sing +efc — (ay + 3°)] (b) (5.2)
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where ¢ is a perturbation parameter.
Holding € fixed. X, . is a two parameter family of vector fields on the cylinder
TS which we shall study by the averaging method.

If we set ¢ = 0 in (3.2). we see that it gives us the following svstem

o= y (a)

y= -—sino (&) (5.3)

This svstem of equations represents the mathematical pendulum and hence
the statement that the Froude pendulum can be treated as a perturbation of

the mathematical pendulum is validated.

5.3 The Averaged Equation

We now derive the averaged equation. As stated before, when ¢ = 0. the
unperturbed system is the Hamiltonian vector field Xy describing the math-

ematical pendulum where the Hamiltonian function is
y?
H(¢.y) = —cos¢ (5.4)
Instead of variables (¢,y) we use (@, h), where h is defined as

2
h= T~ cos ¢ (5.5)
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Averaging, as we have seen in an earlier chapter, can be broadly called as
a method of constructing periodic solutions of perturbed equations from the
known solutions of the unperturbed problem. In this case, as we shall see,
this procedure reduces to the integration of the perturbed part of the equa-
tion over level sets of the unperturbed system. That this process reveals an
enormous amount of information about the perturbed system is the central

theme of the story.

Differentiating (5.5) with respect to ¢ and using (5.2), we get

dh _

— = ay o
2% yw+sm¢

4 .
= y %5 +sing

y[-sing +e[c— (ay +3°)]; +sing

€ fc = (ay +3%)] (5.6)
But
h= "23 —cos¢

=>y*= 2(h+cosg)

y= :i:\/ 2(h + cos ¢) (5.7)

Before we take the next step of averaging, we need to comment on the



CHAPTER 5. BIFURCATIONS AND LIMIT CYCLES IN THE
FROUDE PENDULUM ' 58

' 4
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¢

Figure 5.1: The Phase Space of the Mathematical Pendulum

phase space of the mathematical pendulum.

We note that in Fig. (5.1) the phase space is actually a cylinder with
the points (£, 0) identified. This diagram is a planar representation of the
surface of this cylinder.There exist three distinct families of closed cycles I’

on the cylinder:

1. %, when —1 < h < 1. The level set (which is a periodic solution of X,

except when h = 1) is smooth, connected, compact and contractable
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to a point.

2. Ty*, when h > land y > 0. T',* is the component of the level set given

by the graph of the function /2(h + cos@). Tx* is not contractable

to a point and it winds around the cylinder.

3. Ty~, when h > 1 and y < 0. Here the equation to the curve is y =

—v/2(h + cos ¢).

Averaging (3.6) over a compact, connected component ', of the level set

leads to the averaged equation

%:e[c/ndqb—a/rhydczﬂ-/rhy’dqbl (5.8)

Non degenerate zeroes of the right hand side of (5.8) correspond to limit

cycles of X, .. Define the path integrals involved in the problem as

A=, dé (5.9)
Bh)= [, ydé (5.10)
Clh)= [, vdé (5.11)

From here on, when required, we use superscripts 0 and + on A, B and

C to denote the I'; family being used. For a fixed value of the parameter c,
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those values of ¢ which give rise to zeroes of the averaged equation in (35.8)

are exactly the values of the function

(k) = ¢ - €(h) (512
where
€ =% (5.13)

Setting the right hand side of (5.8) equal to zero gives, using (5.11)

w| D

c.—l—aB-—C=0=>aB=c.—l—C'=>a-—-c%— (3.14)
since A. B and C are functions of k. it follows that n(h) is as defined in

(5.12).

5.4 The Picard-Fuchs and Riccatti Equations

The next step in studving the averaged equation is to find the Picard-Fuchs

equations satisfied by the functions A. B and C and then to analyze the

solutions of the resulting ‘Riccatti’ equations. As we shall see in the sequel,

the bifurcation picture emerges as a result of solving the 'Riccatti’ equations.
From (5.11), C(k) = [, y*d¢. Hence

dC

d—h = fr,, 3y’;‘-,’fd¢
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3 fr, yly)do

= 3 frh yd(D

= 3B(h) (5.13)

Here. we have used the result y% = 1, which is obtained by differentiating
(5.3) with respect to h. Also we have used (5.11) in obtaining (5.13).
From (5.10). B = f, ydo. Hence

dB _ [ ds

il ;i-f—zdé (5.16)

Differentiating both sides of (3.3) with respect to A

dy _
Yo = 1
dy 1 .=
E = 5 (a.ll)
Using (3.17) in (3.16), we get
dB 1
== /r o (5.18)
Again. from (5.11).
c = Je (@*)do = [, (") y do

= Jr,2(h+cosd)ydp (from (5.5)) (a)
= 2h fr, ydo + 2 [, ycos ¢dé (6)

= 2hB + 2 [, ycos¢de (o) (5.19)
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From [35. (3.9).p.502]. integrating by parts.
/ycosé do = -/d—ysind) do
do

Differentiating {3.3) with respect to ¢ on both sides. (keeping in mind that
h is treated as a separate variable), we get

dy _ singo
do y

Using this result.

/ycoso do=—/%sin¢ d¢=/8i7;2¢dé

Again. from (3.3).

v ?
info=1-(Z -h
sin” @ (2

Thus.

(2
/gcosodqp—/yl:l (2 h)] do
Hence. we get
, 1 1 4 h?
= - hy - — .
-/;_hycosodtb /I’,.[y 4(y)-i- y yldé (5.20)

Substituting into (5.19), we get

2
c=2mB+2 [ [i ) +hy - %j do (5.21)
1.3
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Hence. using (5.11) and (3.18). we get

dB C dB

Y= = 2 5 99
C =2hB + 2dh 5 + 2hB - 2(h )dh (5.22)

Thus.
2(1 - (h’l))% +4hB - -C' 0 (5.23)

Or.
dB 3

- ) — = = -.2.
(1- (h® ))dh +2hB 4C‘ 0 (3.24)

From (5.15). & = 3B.
Using (5.16) and (5.24). the Picard-Fuchs equations for the system can be
written as

—2h B

B
C 3(1 - A?) c

NS

o

Having obtained the Picard-Fuchs system of equations, the next step is to
derive the Ricatti equations for £(h) and n(h). We have defined §(h) = F

and n(h) = cd — £(h). Hence, using (5.13), (5.16) and (5.24),

de(h) _ BiE-ce2
T —E
= 3B - Sp4 (using (5.13) and (5.16))

3~ L&(h) [hm 3C — 2kB] (from (5.24))

= 3 AmBE3(R) — 20E(R)]  (using (5.13))
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Thus.
(1- R ) =3(1-h% - *E (h) + 2h&(R) (5.26)
This is the Ricatti equation satisfied by £(h). Since n(h) = ¢4 — £(h),

dn  d A d§

E_CE—B—— E}—l (0.21)
Consider
d A _B% -A% _
HE- B (5.28)
From (53.9). A = Jr, do, and hence
‘;;Z —0 (5.29)
Using (3.29) in (5.28)
d A
TE " “Ba ()
- -444 ®
= -Le+ni[2RiC-2hB] (o) (5.30)

from (5.24) and (5.27).

Using (5.13) in the above expression, we get

d A
5 = o+ ) ER) — 24 (5:31)
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Using (5.31) in (3.27). we get

(k) == (36 — 28] ~ b [~2€7 + 206 + 301 — ) (5.32)

= (1- hz)% = -382 - 3en+ 2h (n+ &) + 362 - 2hE - 3(1 — h?)(5.33)
This gives

(1-h9)g% =—§§n+2hn—3(1—h2) (5.34)

This is the Ricatti equation satisfied by n(h).

We now comment on the relationship between £°(h) and n°(h). Here the
superscripts indicate that these functions are considered over I'?, as defined
in section [5.3]. We recall. n(h) = ¢§ - £(h). For T%h), A = [r, do =0,

since the cvcle is contractable to a point. Hence
7(h) = —€°(h) (5.35)

Before we proceed to integrate the Ricatti equations for £(h) and n(h) nu-
merically. we need the initial conditions for both. Deriving these shall be
our next task. We use a simple argument for the following derivation. From

(5.26).

h=1=>  -3(€?+26=0 (a)

= (1) =4 &(-1)=0 (b (5.36)
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Since (/) = ¢4 — &(h). where 4 = [, do and B = [, y do, and since ¢

varies between —a and «.

_effdo -
1) = Tt - €) (537)

Here.

Cydo= [T_\/2(1 +coso) dé. (setting h=11in (5.7)) (a)
J2V2(2cos £7)do (d)

= 2 [7_cos $do = 8 (c) (5.38)

Using (5.38) and (5.36(b)) in (5.37) we get

e
4

(5.39)

| 0o

n(l) =

5.5 Plot of £°(h)

Given the initial condition £€°(—1) = 0, we solve numerically, the differential
equation for £(h) (3.26). The numerical integration was carried out using the
software package Mathematica ©. As can be seen from the plot. (1) = %,
which is exacfly the calculated value. We observe that in this range [—1,1)

for h, £(h) has a unique maximum given by £°,,,. = 2.668.
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x1 (h)

0.9%8 0.985 0.99 0.995

Figure 5.2: The Plot of §(h) vs h

5.6 The Bifurcation Diagram

The next step is the crucial one in this analysis, one that results in the
important bifurcation diagram that we seek. In this, we plot the bifurcation
curve (Fig. 35.3) between the two parameters a and c, of the system. The
starting point is (5.39), n(1) = %¢ —%. This gives us an initial condition 7(1),
for every value of ¢. Using this, the differential equation for n(h) (5.34) is
solved numerically. The heavily mathematical arguments in [35] give that the
bifurcations occur at fy,z(h) = a. Using this result, we pick the maximum

value of (k) from the numerical solution and plot it against c. This gives the
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1

0.5

22,666

Figure 5.3: The Bifurcation Diagram
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bifurcation diagram. As can be seen from the phase portraits, for different
regions of parameter values in the bifurcation diagram, we observe different
behaviour in the phase space. Using the results £°(1) = 2.666 and &2,, =
2.668 from (Fig. 3.2). and from (3.33). we expect significant changes at
a = =2.666 and a = —2.668. Hence these points are also important in
the bifurcation diagram. This is established by the rigorous arguments in
:33,. The numerical work associated with this section was carried out using

Mathematica ©.

5.7 Stability Of The Equilibrium Points

The critical points of the vector field (5.2) are given by sin¢ = ecand y = 0.

Linearization of (5.2) about the equilibrium points gives the Jacobian matrix

0 1

(a)
—coso —ea | ~
0 1 )

= (5)
+vV1—¢€c2 —ea )
0 1)

~ (c) (5.40)

(1 + 36 —ea )



CHAPTER 5. BIFURCATIONS AND LIMIT CYCLES IN THE
FROUDE PENDULUM 70

Eigenvalues can be calculated from the characteristic equation of (3.40)

M4ead—-(1+ %ezcz)(:tl) =0 (a)

—ea £ \/e2a? + 4n(1 + 3€3c?) _
A = 3 . wheren==x1 (b) (5.41)

For given values of a and c this gives the stability type of the critical point.

5.8 The Phase Portrait and Limit Cycles from

the Bifurcation Diagram

Before we discuss the details of the phase portrait, we note that the compu-
tational work in this section was carried out using the DE Tools subpackage
of the software Maple ©. This facilitates the plotting of the phase portrait
for different parameter values.

We shall examine the phase portrait in some regions of the bifurcation
diagram. There exist difficulties in this exercise for two reasons. In a numeri-
cal plot of the equations, we need an estimate of the perturbation parameter
¢ which is unobtainable from averaging theory. The averaging arguments
all hold good for ‘sufficiently’ small epsilon and it is not straightforward to

obtain a range of numerical values for this € and this creates difficulties in
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the computational part of the analysis. Nonetheless, we do plot the phase
portrait for an arbitrarily chosen small value of the perturbation parameter
and still are able to see the existence of limit cycles.

As we shall discuss in the next chapter. this knowledge of the existence
of limit cvcles is quite important from the point of view of further work. It is
well known that a non autonomous nonlinear system is extremely hard to deal
with and in this context. if one were to study the Froude pendulum driven
by a forcing function. the existence of limit cyvcles and their behaviour with
respect to the unforced problem becomes important. Here. due to significant
computational difficulties. we treat this exercise just as an indicator of the
different tvpes of svstem behaviour. These difficulties are compounded by
the complex behaviour of nonlinear systems. The initial conditions. step
size in the numerical integration, time period for which the solutions are
traced. and the inherent capability of the software package are the other
major constraints in this context. However, the regions we examine are quite
rich in structure and the numerical results that we get do possess a high
degree of clarity.

The important features that we see from the phase portraits drawn on

the basis of the bifurcation diagram are the following. First of all, we see
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the presence of limit cycles. Interestingly, we see the existence of limit cycles
under large perturbations as well. Averaging is essentially an approximation
method and hence, the fundamental averaging theorems guarantee results
only under small perturbations. But in this case, we see that the limit cycles
survive under large perturbations. At once, we should add that in nonlinear
systems limit cycles can make sudden appearances and disappearances due
to different reasons and hence, we need to be cautious in drawing conclusions.
Yet, the presence of limit cycles is always valuable information.

A closed trajectory joining the saddle points in the phase portrait is called
a double saddle connection. If the connection exists in the upper (lower) half
of the phase plane alone, it is known as an upper (lower) saddle connection.
We see the appearance of saddle connections of all three types.

The last figure in the series (Fig. 5.21), suggesting a chaotic attractor
for the Froude pendulum under the action of a forcing function needs special
mention. Here the pendulum is driven by a forcing amplitude F = 0.4 and
a forcing frequency w = 2. Chaotic behaviour in the Froude pendulum has
been observed in recent times [9] and the winding of the limit cycle around
the annular region suggests chaotic behaviour. This can be expected since

the time dependent forcing function adds another dimension to the phase
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space and the presence of invariant tori is possible.

Concluding the chapter, it is noted that the nonlinear averaging technique
as used by Cushman and Sanders {33] was applied successfully to the Froude
pendulum. The bifurcation diagram for ‘a’ vs ‘¢’ and the phase portrait have
been obtained. the phase portraits have been plotted using (5.2). Parameter
values for a and ¢ have been taken based on the regions in the bifurcation
diagram (Fig. 5.3). The actual values of a and c, the regions to which they
correspond and values of the perturbation parameter ¢ are detailed in the

phase portrait.
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Chapter 6

Melnikov Analysis

6.1 Introduction

Despite the extensive investigations of the phenomenon of chaos in recent
times. there still exist very few analytic criteria capable of predicting chaos
in a nonlinear svstem. From the point of view of engineering. the power
to predict is extremely important. Tvpically. engineering systems involve
various parameters that naturally enter the governing differential equations.
For example, as we have seen before, in the case of an oscillatory mechanical
system, the parameters would be mass, coefficients of stiffness and damping,

the amplitude and the frequency of the forcing function. In this case, if the

92
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svstem is chaotic in certain regimes, it would indeed be quite desirable to
obtain a criterion which predicts the onset of chaotic behaviour for certain
ranges of values of the system parameters.

One technique that turns out to be extremely useful in this context is the
Melnikov method [27]. It is applicable to behaviour in the neighbourhood
of hyvperbolic critical points alone and the reason for this becomes apparent
once we are acquainted with the theory behind this technique. That this
analyvtical method is applicable to a broad class of systems is indicative of
its utility.

We shall begin by examining the behaviour of separatrices about hyper-
bolic eritical points under a perturbation and proceed to describe the theorv
behind the Melnikov approach. Here we closely follow the treatment in [22]
and refer to the same for more details. After deriving the criterion for the
onset of chaos. we shall apply the analysis to the svstem of our prime concern.

the Froude pendulum.

!I
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6.2 Perturbed Hamiltonian Systems
Consider a Hamiltonian system given by
H = Hy+eH,, (6.1)

perturbed under an area preserving mapping.

It is interesting to examine the consequences of the perturbation given
by (6.1). Let the unperturbed system corresponding to (6.1) have the phase
space structure of an elliptical critical point flanked by two hyperbolic critical
points (Fig. 6.1). The standard example of such a system is the harmonic
oscillator.

A comparison of (Fig. 6.1) with (Fig. 6.2) leads to the conclusion that
under the perturbation. the stable and unstable manifolds (H* and H~) of
the two critical points are not likely to join together smoothly. This is the
central point of the discussion.

At each of the hyperbolic critical points. four curves join. corresponding
to the two incoming trajectories of the stable manifold A~ and the two
outgoing trajectories of the unstable manifold H~. A point r is said to lie
on H* if the repeated transformation T™ z brings z to the critical point as n

tends to infinity. Similarly, the point lies on H~ if the inverse transformation
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brings r to the singular point as n tends to infinity. The period being infinite
on the separatrix, the movement of r towards the critical point becomes
increasingly slow as the saddle point is approached.

We again observe that under the perturbation. the H~ curve leaving
one critical point generically intersects the H™ curve arriving at the neigh-
bouring critical point. This intersection is called a homoclinic point, as it
connects outgoing and incoming trajectories of the topologically same hy-
perbolic point. The presence of a single intersection implies the presence of
infinitely many more all of which are homoclinic points. The existence of
these homoclinic points leads to what is known as a homoclinic tangle.

Let us examine this phenomenon a bit more closely with reference to
(Fig. 6.2). The first intersection occurs at X, the second at X', the third
at X" and so on. The distance between successive points decreases as one
moves closer to the critical point. Successive points are a result of an area
preserving mapping T™. As a consequence. the fluctuation of the trajectory
gets increasingly wild as it gets closer to the critical point. This creates the

homoclinic tangle, leading to chaotic behaviour.
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6.3 The Melnikov Integral

In this section. we derive the Melnikov integral which provides the criterion
for the transversal intersection of the stable and unstable manifolds which
leads to the formation of the homoclinic tangle and signals the onset of chaos.
The Melnikov integral measures the distance between the stable and unstable
manifolds under the perturbation (Fig. 6.4). The idea is the following: if this
distance "d" changes from positive to negative. or vice versa. then in between.
at some point. "d’ is 0. That is. the stable and unstable manifolds intersect
creating the homoclinic tangle.

The discussion in this section closely follows the treatment in [22].

For a simple illustration of the theory we consider a two dimensional au-
tonomous system that has a single hyperbolic critical point and is perturbed
by a periodic function of time. Thus this is a time dependent perturbation of
a Hamiltonian svstem. However it is to be noted that the argument carries

over to higher dimensions. Let the two dimensional system be denoted by

x = f(x) + ef1(x, t) (6.2)

where x = (z1,z2) and f; is periodic in t with period T. The unperturbed
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3 (c) 3(d)

Figure 6.3: Homoclinic Tangle and the Melnikov Distance

svstem is taken to be integrable and is assumed to possess a hyperbolic fixed
point Xy and an integrable separatrix orbit xq(t) such that lim,_,. Xo = Xo.

The svstem is illustrated in Fig. (6.3(a)). The stable and unstable orbits
r*(t) and r*(t) are labelled and smoothly joined to each other. There is, in
general. an elliptic fixed point within the separatrix orbit.

To find the condition for intersection, we calculate, using perturbation
theory, the distance D from the unstable to the stable orbit at time t;. For
D < 0 for all £y, we have Fig. (6.3(b)). For D > 0 we have Fig. (6.3(c)) and

if D changes sign for some tg, we have the chaotic motion of Fig. (6.3(d)).
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Figure 6.4: The Melnikov Distance - The dashed curve represents the unper-

turbed separatrix

To calculate D. we need the stable and unstable orbits z* and z* to first

order in e. Writing
x**(t.to) = Xo(t — to) + € %, **(t. to) (6.3)

where ¢, is an arbitrary initial time and inserting (6.3) into (6.2), we obtain

to first order

d
'c'l?xf'" = M(zo) X, + € fi (%0 (t —t0). 1) (6.4)

where

faszor  for; To2
M(xo) =

feizor  fo2; To2

is the Jacobian matrix of f evaluated at xo(t — t;) and where the second

subscripts denote the components of fo and xo. Also, fo1;Zo1 = g:‘%‘f and so
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on. We must solve (6.4) for x5 for t > ¢, and for x* for t < tg. with the
condition that
X5t = <} = x%(t » —x) = X. where X, is the perturbed position of

the hyperbolic fixed point. The two solutions differ by

d(f.fo) = Xs(f.to) - Xu(t.tg) = x;’(t.to) - xl"(t. to) (65)

The Melnikov distance D(t.¢g) is defined as

D(t.ty) = N.d (6.6)

which is the projection of d along a normal N to the unperturbed orbit xq

at t (Fig. 6.4). From (6.2) (with ¢ =0), a normal to xo(t — tp) is

- fo2(z0)
N(t, to) = (6.7)

for(zo)
Introducing the wedge operator

X AV =y, — Iy and substituting (6.7) into (6.6). we can write

D(t,ty) = fo Ad (6.8)

To find an expression for D, we use (6.5) to write

D=D'-D* (6.9)



CHAPTER 6. MELNIROV ANALYSIS 101

with

D("'u}(t, to) =fg A xl{""’ (6.10)

Taking the time derivative of (6.10)
D¥ = foax)® +fg AXy® = M(xq) %o A X1® + fo A Ly (6.11)
Using xo = f; and also (6.4) in (6.11)
D* = M(xq).fo Ax1® + fo AM(Xo) x1° + fo A fy (6.12)
The first two terms in (6.12) combine to give
Ds = TrM(xo)fo Axy° +fo A fi (6.13)

where TrM is the trace of the Jacobian matrix of fy. since D* follows the
stable orbit, we must integrate (6.13) from t to oc. Rather than treat this
general case. we focus on an unperturbed Hamiltonian system. for which

TrM = 0 on the separatrix. Integrating (6.13) then yields
(e <]
D*(2c,tg) — D*(to, t0) = / fonfy dt
to
But

D*(co,t) = fo(xo(00 —to)) AXs® = 0
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because fo(Xg) = 0. Thus

Ds(fo. to) = - >~ fo A fl dt (6.14)

to
Proceeding similarly to calculate D*. we obtain D* = TrM(zo)D* +fo A £y
since D* follows the unstable orbit, we integrate from —oc to ty to obtain.

for an unperturbed hamiltonian system,
to
D"(to. to) = / fo A fdt (6.15)
-x
Using (6.14) and (6.15) in (6.9), we obtain finally
to <3
D(to,to) = —'/ fo A f1dt (6.16)
-oC

If D changes sign at some ¢, the case in Fig. (6.3(d)) occurs and chaotic

motion is present near the separatrix.

6.4 Melnikov Analysis of the Froude Pendu-

lum
Consider the forced Froude pendulum given by the following equation

é + ag + b® + hsing = Q(Q) + Feos(wt) (6.17)
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Transforming to a first order system

$ =y
y = —hsine — ay - by® + Q(Q) + Feoswt (6.18)
The unperturbed system is
o=y
y= =—hsine

For © = 0. =% and y = 0. the right hand side of the unperturbed sys-
tem vanishes and hence the critical points are given by (0.0).(+7,0). The

hamiltonian for the unperturbed system is given by

2

H= % ~ heoso + h (6.19)

From (6.19),

Substituting (6.20) into (6.19), we get

y?
T hcosgp + h = 2h (a)
2

= -y2—= h cos¢ +h =h(1+cose) (b)

= h(2 cos*$) (c)

>y = +2vhcos (d) (6.21)
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Again (0.0) is a fixed point. Hence

H(0.0)=0 (6.22)
Substituting (6.22) into (6.19),
L _hcoso+h= 0

y= +\/2h(coso — 1)
o= +\/2h(cos¢ — 1)dé = =+./2h(cos¢d — 1)dt

This can be integrated to give
@ = 2arcsin(tanh(Vh)t) (6.23)

y = ¢ =2Vhsech Vh t (6.24)

Referring back to (6.2), the equations can be written in explicit form as

¢ far fn
- te (6.25)

v fo2 Sz

From (6.18), for the Froude pendulum, these equations can be written as

¢ y 0
+e (6.26)
v —hsin¢ —ay — by® + Q(Q) + F(coswt)
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Comparison of (6.23) and (6.26) gives

fo = Yy (a)
fu= 0 (b)

foo= —hsino (c)

fia=—ay—by* +Q(Q) + Feoswt  (d)

From the definition of the wedge product.

fonfy = forfi2 = foof1

= ylay - by + Q(Q) + Fcoswt

From (6.16) and (6.28), the Melnikov integral can then be written as

D=- /_ * [—ay? — by* + yQ() + yF cos(w)t] dt

Novw. from (6.24)

y=2vh sech(Vh) t

(6.27)

(6.28)

(6.29)

Substituting the above equation into (6.29) and denoting the four integrals

on the right hand side of (6.29) by D,, D;, D; and Dy, one obtains

D,= [ 4ah sech®VF t dt

-0

(6.30)
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This can be evaluated as
D = 8ah (6.31)
Dy= [ 16 bh? sech*Vh t dt (6.32)
Dy= Q) [=_.2Vh sechvh t dt (6.33)
Dy = - J%= 2Vh sechvh t Fcoswtdt (6.34)
where
D= Y D (6.35)
These can be evaluated as
D, = 8ah
D, = 2pp?
Dy= -Q(Q)4VhE
D, = -2nFsech (6.36)
Finally. we obtain
D =8ah+ ?bh" - 2n[VRQ(Q) + Fsech (6.37)

We know that a, b and A do not change sign. Hence D changes sign

depending on Q(Q), F and w. Thus, from (6.37) a combination of the pa-
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rameter values Q(Q). F, w which changes the sign of D leads to homoclinic

chaos in the Froude pendulum.

6.5 Illustration of the Melnikov Analysis

Based on the analysis above, we examine the phase portrait for values of
the parameters which indicate chaotic behaviour. In all the figures. we trace

the evolution of two solutions with initial conditions ¢(0) = 3,y(0) = 4 and

1. Variation of forcing amplitude. F. other parameters fixed.
Consider a = 1. b = 0.075. Q(Q) = 0.0001. A = 1. w = 2. For these
values, from (6.37), the value of F' at which the Melnikov distance D
changes sign is F = 2.16088. Below we plot the t, ¢(t) diagram and the
oft}). y(t) diagram (the phase space) for F = 1.5 and F = 2.5 . That
is. for one value below and the other above the critical value. As we

can clearly see, for F = 2.5, there are indications of chaotic behaviour.

(a) Non Chaotic Case (Figures 6.5, 6.6)

(b) Indication of Chaotic Behaviour (Figures 6.7, 6.8)
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2. Variation of damping coefficient, a. other parameters fixed
Consider F = 0.5, b = 0.073, Q(Q) = 0.0001, h = 1, w = 2. For these
values. from (6.37). the value of a at which the Melnikov distance D
changes sign is. @ = 0.2545868. Below we plot the t. o(t) diagram and
o(t}). y(t) diagram (the phase space) for a = 0.1 and a = 0.5. That is.
for one value below and the oth~r above the critical value. As we can

clearly see. for « = u.l. there are indications of chaotic behaviour.

(a) Non Chaotic Case (Figures 6.9, 6.10)

(b) Indication of Chaotic Behaviour (Figures 6.11. 6.12)

In conclusion. we note that the following diagrams are only indicative
of chaotic behaviour. based on the Melnikov analysis. Further numerical
investigations have to be carried out to obtain a more detailed understanding

of chaos in the Froude pendulum.
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Figure 6.5: Displacement-time diagram. No Chaosfora =1, 6 =0.075, @ =

0.0001, h =1, w= 2, F =1.5. Initial conditions for two solutions ¢(0) = 3

and ¢(0) = 3.2
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Figure 6.7: Displacement-time diagram. Indications of Chaos fora=1, b=
0.075, Q@ = 0.0001, h = 1, w = 2, F = 25 Initial conditions for two

solutions ¢(0) = 3 and ¢(0) = 3.2
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Figure 6.8: Phase Space. Indications of Chaos fora =1, b = 0.075, Q =

0.0001, h = 1, w = 2, F = 2.5 Initial conditions for two solutions ¢(0) =

n?

3andp(0) = 3.2
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0.075, @ = 0.0001, h = 1, w = 2, a = 0.5 Initial conditions for two so-
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0.5, b = 0.075, Q = 0.0001, h = 1, w = £, a = 0.1 Initial conditions

for two solutions ¢(0) = 3 and ¢(0) = 3.2
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0.0001. h =1, w= 2, a = 0.1 Initial conditions for two solutions ¢(0) = 3

and ¢(0) = 3.2



Chapter 7

Conclusions and Further Work

The averaging method applied to the autonomous Froude pendulum and the
Melnikov analvsis applied to the non-autonomous case of the same system
have vielded useful and interesting results. In this chapter. we draw conclu-

sions from these results and suggest directions for further work.

7.1 Conclusions

1. With respect to the analysis and design of nonlinear engineering sys-
tems, the work presented in this thesis confirms that the neglect of
nonlinear terms, unless justified completely in the context, can lead
to highly erroneous conclusions. For instance, had one treated the
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Froude pendulum as a perturbation of the simple harmonic oscillator,
i.e. ¥ + z = 0, the analysis would have been much simpler, but the

essential features would have been completely missed.

2. The Froude pendulum. being a classical example of friction induced
nonlinear oscillations. the present work highlights the richness of struc-
ture and phenomena inherent in this class of systems. Also, we have
shown that a considerable amount of precise analysis is possible in en-
gineering svstems which exhibit nonlinear frictional effects. The focus
on the two parameters 'a’ and 'c’ in the present work is by no means
unique and one could carry our similar analyses in the case of different

sets of parameters.

3. An important observation in this thesis is the presence of limit cycles in
the Froude pendulum and the bifurcation phenomena associated with
the two parameters. Limit cycles, as we have seen before, are of vital

importance in nonlinear analysis.

4. In this thesis, we have analyzed a system with a nonlinear damping
term. This facilitates the analysis of other engineering systems with

nonlinear damping factors.
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5. From the point of view of chaos, the present work confirms, by the
technique of Melnikov analysis and computational verification, that
the Froude pendulum exhibits chaotic behaviour. Thus, we confirm

that vet another important engineering system demonstrates chaos.

6. The analysis of most oscillatory systems involves the small angle ap-
proximation, i.e., sin(¢) = ¢. Since we do not make any such approx-
imation, the technique used in this thesis applies to large oscillations.
The present work also shows that the averaging method can be applied
to a wide class of nonlinear systems that can be treated as pertur-

bations of the mathematical pendulum. These are highlights of the

present work.

7. From the analytical point of view, the present work is an example
of nonlinear averaging. The neglect of nonlinearities has also serious
consequences from the mathematical point of view since it leads to a
completely different set of mathematical results. Seen from the per-
spective of perturbation techniques, the work in this thesis reminds us
that we are not constrained to treat all nonlinear oscillators as per-

turbations of the simple harmonic oscillator. In other words, effective
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analysis is possible even as we retain the nonlinear terms and consider

large oscillations and nonlinear damping.

8. Finally, we need to look at the conclusions that could be drawn from
the numerical perspective. While the importance of numerical tools
in nonlinear analysis is too well known to warrant further mention,
the present work highlights the advantage of having analytical results
before the system is approached from the computational perspective.
For instance, it was the analysis that pointed to the different regions
in phase space, where interesting phenomena were observed. In the
case of the Melnikov analysis, the analytical results gave an indication
of parameter values where chaotic behaviour could be found. But we
must note that the present work would not have been complete without

computational tools

7.2 Further Work

The present work suggests various directions for further research.

1. The direct extension of the present work will be a similar analysis of

the forced Froude pendulum. Non-autonomous nonlinear systems are
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notorious for serious difficulties and the Froude pendulum cannot be
expected to be an exception. Yet, the bifurcation diagram, the limit
cycles and the different phase portraits provide valuable information

for further work in the non-autonomous case.

2. The bifurcations with respect to sets of parameters other than the one
considered in this thesis can be carried out, within the framework that
we have used. The behaviour of the system under a scaling different

from the one used in this thesis should also be interesting.

3. The cubic nonlinearity in the damping term is a consequence of ex-
panding the ’friction function’, F(M — w) as a Taylor series. The
present technique can be applied in the case of any general function

representing friction.

4. Under a broader scope, the averaging technique used in this thesis can
be applied to various nonlinear systems similar to the Froude pendu-
lum, which so far have been treated under the small angle approxima-

tion.

5. The Melnikov analysis may be applied to other important engineering

systems to obtain analytical criteria for the onset of chaos.
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6. Experimental work needs to be carried out on the Froude pendulum to
obtain a relation between the frictional torque acting on the system and
relative angular velocity. M (€ — 8) and to verifv the results obtained

in this thesis.

These vbservations conclude the chapter and the thesis.
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