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Abstract

This thesis concentrates on short-term solar Photovoltaic (PV) power output forecasting at

array and system levels. The analysis was conducted on three arrays around the world and

one system level system in California. Array level power was found to have higher power

fluctuation than system level power. Hence, the proposed array level forecasting involves a

similar day-based data-preprocessing to deal with this fluctuation. The processed array level

data was fed into a forecasting engine. A persistence model, an Auto Regressive Integrated

Moving Average (ARIMA), a Radial Basis Function Neural Network (RBFNN) and a Least

Squares Support Vector Machine (LS-SVM) model was used as a forecasting engine. This

thesis also investigates the applicability of a number of established forecasting methods for

system level solar power output forecasting. In particular, ARIMA, RBFNN and LS-SVM

are examined and simulation results are provided.

Through simulation, the best array level forecasting accuracy is achieved by a forecasting

tool which combines the proposed similar day method and persistence model. The proposed

similar day method works better than similar day methods in the literature and the best array

level forecasting tool generated a more accurate forecast compared to a autoregressive with

exogenous input (ARX) model in the literature. Due to the lower fluctuation of system level

power data, system level forecasting has a better forecasting accuracy. The best performance

is achieved through ARIMA model.
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Chapter 1

Introduction

1.1 Research Motivation

Driven by a drop in price and an increase in efficiency, photovoltaic (PV) electricity genera-

tion is growing rapidly. The average annual growth rate has been 40% over the past decade,

and this growth is expected to continue in the future [1]. According to the European Pho-

tovoltaic Industry Association [2], PV is the third most important renewable energy source

and there were 31.1 GW of newly installed PV capacity in 2012. The global annual market

is expected to reach 84 GW in 2017.

The price of PV modules has decreased consistently over the past three decades. The

price has fallen 19.3% with every doubling of installed PV capacity [3]. Although other cost

components of PV systems, such as inverters and installation, are not falling as rapidly as

the module costs, the overall cost of generating electricity from PV systems is expected to

drop. The costs are expected to be competitive with retail electricity prices by 2020 and

competitive with wholesale electricity prices by 2030 [4]. This decrease in price will encourage

more people and utilities to install PV and will contribute to further PV development.

The best cell efficiency reported is 37.70% for three-junction PV cells in a laboratory

environment [5]. Although the efficiency improvement rate of PV cells at the research state

is relatively slow, the efficiency of commercial modules is expected to improve: the efficiency

of typical commercial flat-plate modules is forecast to increase from 16% in 2010 to 40%

in 2050 [4]. The efficiency improvement of PV cells or modules will help reduce the area

required for each PV installation and consequentially cut down on the total plant costs.

The growth of PV-based electricity generation has advantages for the environment com-

pared to conventional fossil fuel-based technologies. However, the inherent variability of PV
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systems is a challenge at high solar power penetration levels. One approach to dealing with

variability is to utilize accurate PV output forecasting. Using such forecasting, off-grid PV

users can optimize the capacity of the required energy storage system [6]. Similarly, dis-

tributed grid-connected PV users can optimize their energy usage schedules and centralized

grid-connected PV plants can improve their strategy when bidding in the electricity mar-

ket by employing those forecasts. System operators can make a better arrangement of the

reserves. The output of a single PV system is more vulnerable to local weather changes.

However, the impact of local weather changes on aggregated output for the PV power of

a region will be smaller. Thus, this thesis is focused on investigating the application of

forecasting technology at array and system (aggregate) levels.

1.2 Literature Review

In this section, a review of irradiance prediction, PV power output prediction and the eco-

nomic value of forecast technology is provided.

1.2.1 Literature Review of Solar Irradiance Forecasting

Solar irradiance is the dominant variable for PV power output. Forecast irradiance can guide

PV output prediction. In the following, three types of irradiance forecasting methods are

reviewed, including, numerical weather prediction (NWP) methods, image-based methods

and statistical methods.

In [7], the forecasting accuracy of one-day-ahead global horizontal irradiance from the

European Center for Medium-Range Weather Forecasts (ECMWF) model was assessed.

ECMWF publishes the global horizontal irradiance forecast at 0:00 Coordinated Universal

Time (UTC) and 12:00 UTC and provides a forecast with a spatial resolution of 25 km and

a time step of three hours up to ten-day-ahead. The accuracy was validated by more than

200 ground measured global horizontal irradiance centres in Germany where the normal-

2



ized Root-Mean-Square Error (nRMSE) was around 40%. This model tends to over-predict

irradiance which is especially obvious for cloudy conditions at noon.

In [8], the forecasting accuracy of a Weather and Research Forecasting (WRF) model was

examined. The WRF model is derived from the Global Forecast System (GFS) model. There

are several versions of WRF models, which involve different physical parameterizations.

Validated by three ground-measuring centers in Spain, the nRMSE ranged from 29% to

37%.

In [9], the accuracy of 48-hour-ahead forecasts of global horizontal irradiance from En-

vironment Canada’s Global Environmental Multi-scale Model (GEM) was assessed. This

model runs four times a day (0:00 UTC, 6:00 UTC, 12:00 UTC and 18:00 UTC) and gener-

ates forecasts up to 48 hours in advance with a spatial resolution of 15 km and a time step

of 7.5 minutes. The forecasting result was validated through ten ground stations over North

America and the nRMSE ranged from 16.7% to 43.6%. The lowest error occur at Desert

Rock, NV where most of the days are under sunny weather; and the highest error occur at

Penn State, PA which has a complex weather distribution.

In [10], the forecasting accuracy of the US National Digital Forecast Database (NDFD)

was examined. This model converts the three or six-hour cloud index forecast to hourly

global horizontal irradiance forecasting through a local correlation function. The nRMSE

was 38% for one-day-ahead forecasting.

In [11], the forecasting accuracy of global horizontal irradiance from three NWP models,

namely, the North American Model (NAM), the GFS, and the ECMWF was evaluated for

the USA. The NAM model runs four times a day (0:00 UTC, 6:00 UTC, 12:00 UTC and

18:00 UTC) and generates up to 36-hour forecasts with a spatial resolution of 12 km and

a time step of one hour. Additionally, 84-hour-ahead forecasting is also available from the

NAM with a time step of three hours. The GFS model also runs four times a day (0:00

UTC, 6:00 UTC, 12:00 UTC and 18:00 UTC) and generates up to 180-hour forecasts with a
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spatial resolution 50 km and a time step of three hours. Through evaluation, the ECMWF

forecasting was more accurate than the GFS and the NAM. The mean bias error (MBE) is

less than 50 W/m2 under clear conditions and more than 200 W/m2 under cloudy conditions.

In [12], the forecasting accuracy of global horizontal irradiance from the NDFD , the

ECMWF and the WRF models was evaluated for the USA. Measuring the nRMSE of one-

day-ahead forecasting, the WRF ranged from 18% to 50%, the ECMWF ranged from 18%

to 40% and the NDFD ranged from 18% to 41%. Based on the results for these three sites,

the prediction error of the WRF model was higher than the others.

The NWP is the most accurate irradiance forecasting method when the horizons are

longer than five hours [13]. The nRMSE of different NWP models generally varied from 15%

to 45%, and the variation is mainly from location difference, not model difference. Because

of highly unstable cloud movement and low spatial resolution of the NWP models, locations

with a lot of cloudy weather will experience high forecasting error regardless of the type of

NWP model.

In [14], an image-based short-term irradiance forecasting was proposed. The prediction

was done via statistical analysis of images taken by satellite with 2.5 km × 2.5 km spatial

resolution and 30-minute temporal resolution. Through cloud movement analysis, cloud and

irradiance was forecast, with a nRMSE of 18% to 19%.

In [15], another satellite image based irradiance forecast was proposed. The pixel-specific

cloud motion was predicted from the analysis of two consecutive satellite images. The

accuracy was validated by seven ground stations across the USA. The Root-Mean-Square

Error (RMSE) ranged from 125 W/m2 to 188 W/m2 for day-ahead irradiance forecasting.

The mean observed irradiance for these seven sites ranged from 323 W/m2 to 498 W/m2.

In [16], irradiance nowcasting was proposed to achieve a high temporal and spatial res-

olution through the analysis of sky cover images. The sky cover images were taken by a

sky imager every 30 seconds and were used to predict cloud movement. This method can
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correctly predict 70% of cloud conditions within 2 km for the current time.

In summary, image-based irradiance forecasting is done by analyzing cloud movement

from two consecutive images. The satellite image-based methods are used within a six-

hour horizon and ground-taken image-based methods are used within one-hour horizon.

Within six hours, image-based irradiance forecasting has good accuracy. However, due to

the high cloud cover variability, extending the forecasting horizon will significantly decrease

the forecast accuracy [16].

In [17], four groups of empirical models were reviewed, including sunshine-based models,

cloud-based models, temperature-based models and other meteorological parameter-based

models. Empirical models use astronomical, geographical, geometrical, physical and mete-

orological factors available from weather stations to calculate the forecast irradiance. The

forecasting accuracy for daily global solar radiation was evaluated for Yazd, Iran, using data

from 2004 to 2008. The RMSE of the sunshine-based model was 0.5385 MJ/m2, the RMSE of

the cloud-based model was 1.152 MJ/m2, RMSE of the temperature-based model was 0.7103

MJ/m2 and the RMSE of the meteorological parameters-based model was 0.8542 MJ/m2.

In [18], different neural network-based irradiance forecasting models were reviewed for

hourly, daily and month irradiance forecasting. These models included a feed-forward neural

network, a radial basis function neural network (RBFNN), a recurrent neural network, a

neuro-fuzzy neural network, a wavelet neural network. In terms of forecasting accuracy of

monthly solar radiation, the Mean Absolute Percentage Error (MAPE) varied from 0.3% to

16.4%.

In [19], univariate and multivariate models for hourly irradiance forecasting were evalu-

ated. The RMSE forecasting error of univariate models, including ARIMA (39.44 W/m2), a

feed-forward neural network (30.14 W/m2), a neuro-fuzzy neural network (31.93 W/m2), a

recurrent neural network (32.40 W/m2), and an RBFNN (31.09 W/m2) was slightly larger

than four multivariate models, which included a feed-forward neural network (31.18 W/m2),
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a neuro-fuzzy neural network (30.97 W/m2), a recurrent neural network (33.94 W/m2), and

an RBFNN (32.61 W/m2). The largest error occurred for the univariate ARIMA model;

other types of neural network models had a similar forecasting accuracy regardless of input

variables.

In [20], a hybrid model that combines ARIMA with a feed-forward neural network is

proposed for hourly irradiance forecasting. ARIMA was used to predict irradiance in Sum-

mer and Spring and a feed-forward neural network model was used to predict irradiance in

Autumn and Winter. The forecasting result, in terms of nRMSE, ranged from 15.1% to

17.7% for this hybrid model, while, the nRMSE ranged from 15.4% to 17.7% when using

the ARIMA model alone. When using a feed-forward neural network model alone, the fore-

casting error ranged from 14.9% to 19.6%. The hybrid model had better accuracy because

ARIMA is better at predicting irradiance on sunny days and feed-forward neural network

models are better at predicting irradiance on cloudy days.

In [21], a least squares support vector machine (LS-SVM) forecasting model was used to

generate one to three hours ahead irradiance forecasts for three locations in the USA. The

one-hour-ahead forecasting Mean Absolute Error (MAE) was 34.23% for Seattle, 33.77% for

Denver and 62.86% for Miami. Thus, even using the same model, the forecasting accuracy

for different locations is significantly different.

In summary, aside from NWP and image-based methods, artificial intelligence methods,

empirical methods and time series models were also frequently used in irradiance forecasting.

These models are especially useful for locations with no irradiance measurement equipment

and limited forecast meteorological information from local meteorological centres. In general,

non-linear models are good at forecasting irradiance on cloudy days and linear models are

good at forecasting irradiance on sunny days [22], but there is no universal ”best” irradiance

forecasting model. A forecasting model should be designed to match the local weather in

order to achieve satisfactory forecasting accuracy.

6



1.2.2 Literature Review of Solar Power Forecasting

In [23], the forecasting accuracy of autoregressive and autoregressive with exogenous input

(ARX) models were examined. These two models were used to generate up to 36-hour-ahead

power output forecasts for 21 PV systems in Denmark. ARX performed better than AR and

the nRMSE of ARX was about 8% for a six-hour-ahead forecast. When the horizon is longer

than two hours, the importance of exogenous input (forecast irradiance from NWP models)

is significant.

In [24], a physical model was developed to predict daily power production for a 250 kW

PV system in China (30.1°N and 131.0°E). By modelling the solar radiation and PV cells

performance, the daily forecasting error ranged from 5.24% to 13.14%.

In [25], the forecasting accuracy of a physical model and a feed-forward neural network

model was compared for a 1 MW PV system. The physical model included a solar radiation

model and a PV cell model. The feed-forward neural network model uses temperature, cloud

cover, irradiance, and position of the sun as inputs. For a one-year period, the nRMSE was

12.45% for the physical model, and 10.5% for the feed-forward neural network model.

In [26], a particle swarm optimization algorithm was used to train a feed-forward neural

network model for PV power output forecasting. This model has two hidden layers and uses

day, time, cloud cover index, air temperature, wind speed, air humidity, UV index, precip-

itation and air pressure as inputs. The result shows that this particle swarm optimization

algorithm is better than the classical training methods for the feed-forward neural network.

In [27], a recurrent neural network using element structure was used to predict PV power

output for a 4080 W PV system in Denmark for up to 24 hours. The inputs were clear

sky irradiance and forecast weather type index for the forecast days. For a half-year testing

period, the MAPE for the recurrent neural network model was 16.47% and the MAPE for

the feed-forward neural network was 30.72%.

In [28], a similar recurrent neural network using element structure was used to predict 24-
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hour-ahead PV power output for a 1 kW system in Thanyaburi. Inputs were the calculated

clear sky irradiance and forecast weather type indices for the forecast days. Validated by

four testing days, the MAPE was 16.83%.

In [29], a neuro-fuzzy forecasting model was proposed for daily energy production pre-

diction. Input variables including day, irradiance, air temperature, wind speed, air humidity

and air pressure were preprocessed by a fuzzy filter and fed into the feed-forward neural

network model. The forecasting accuracy was evaluated by three PV plants and the average

error was around 5%.

In [30], a hybrid model which combines an RBFNN with a weather classification method

was proposed to predict day-ahead PV power output for an 18 kW system in Wuhan, China.

According to the irradiance, total cloud and low cloud cover, the dataset was classified into

three groups and used to train three sub-models, including a sun prediction model, a cloud

prediction model and a rain prediction model. Inputs for each model were the time, past

daily energy production, forecast daily irradiance, wind speed, temperature and humidity.

Each model was evaluated over four testing days. The MAPE of the sun prediction model

ranged from 8.29% to 10.8%, the MAPE of the cloud prediction model ranged from 6.36%

to 15.08% and the MAPE of the rain prediction model ranged from 24.16% to 54.44%.

In [31], another hybrid model which combines a support vector machine and a weather

classification method was proposed for a 20 kW PV station in China. The training set was

classified into four groups according to the weather type, and was used to train four sub-

SVM models. According to the weather types of the forecast day, the sub SVM model was

selected to do the prediction. Inputs were the power output and the high, low and average

forecast temperature for the forecast day. The one-day-ahead forecasting with 15-minute

intervals had an average nRMSE of 10.5%. For each sub-models, the nRMSE was 9.12% for

the cloudy model, 12.6% for the foggy model, 12.4% for the rainy model and 7.85% for the

sunny model.
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In [32], a feed-forward neural network model was used to predict power output for a 15

kW system in Ashland, Oregon. This one-day-ahead forecasting was done with 30-minute

intervals. Input variables were power and temperature. In this method, the inputs are chosen

by a similar day method and the most similar day is chosen by comparing the euclidean

distance of high, low and average temperature between the forecast day and the historical

day. If the weather type of the historical days is different from the day type of the forecast

day, these days will not be selected regardless of the euclidean distance. The forecasting

error (MAPE) was 18.89% for rainy days and 10.06% for sunny days.

In [33], a hybrid model combining a weighted support vector machine and similar day

method was used to forecast power output for a 500 kW plant at Xuzhou, China. Five days

selected through the similar day method were used to train the weighted support vector

machine model and days with similarity with the forecast day were given a higher weight.

The similarity was calculated through multiplying season similarity, weather similarity and

temperature similarity. Inputs were irradiance and temperature. For a ten day testing

period, the nRMSE for a one-hour-ahead forecast was 4.36%.

In [34], a combination of wavelet transform and an RBFNN was introduced to generate

a one-hour-ahead PV output forecast for a 15 kW PV plant in Ashland, USA. Inputs of

the network were the decomposed past PV power output, irradiance and temperature. The

MAPE varied from 4.24% to 13.81% depending on the season.

In [35], a feed-forward neural network was used to make 10-minute-ahead and 20-minute-

ahead forecasts for a 40 kW PV system in Hong Kong. This network uses solar elevation,

azimuth angle, temperature and irradiance as inputs. The forecasting accuracy is measured

through the correlation coefficient between forecast power and recorded power. This coeffi-

cient was 0.94% for 10-minute-ahead forecasting and 0.88% for 20-minute-ahead forecasting.

In [36], the accuracy of five univariate forecasting models were compared for a 1 MW

PV plant in Merced, California, including a persistence model, an ARIMA model, a k-
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nearest neighbours model, a feed-forward neural network and a feed-forward neural network

optimized by Genetic Algorithms(GA/ANN). The nRMSE of one-hour-ahead forecasting

was 19.27% for the persistence model, 18.95% for ARIMA, 20.90% for k-nearest neighbours,

15.82% for the feed-forward neural network and 13.07% for GA/ANN. Through comparison,

GA/ANN had better forecasting accuracy in this location. Moreover, when extending the

horizon from one hour to two hours, the accuracy significantly dropped and the forecasting

error of different models became similar.

In [37], two-day-ahead forecasting accuracy of a persistence model, an ARIMA model,

a k-nearest neighbours model, a feed-forward neural network, a recurrent neural network,

a time delay neural network, an adaptive neuro-fuzzy inference systems and an RBFNN

were compared for a 36 kW PV plant. Examined by 20% of the whole year data, nRMSE

was 21.18% for the persistence model, 17.36% for ARIMA, 17.07% for k-nearest neighbours,

13.89% for the feed-forward neural network, 13.79% for the recurrent neural network, 15.12%

for the RBFNN, 14.76% for the time delay neural network, and 14.09% for the adaptive

neuro-fuzzy inference systems. Overall, the feed-forward neural network performed better

than the others.

In the literature, various forecasting models have been applied to array level solar power

forecasting, but the reported accuracy varies significantly from one location to another re-

gardless of the forecasting models. This difference could be attributed to the fact that solar

power time series at array level are highly influenced by local weather phenomena. Thus, it

is necessary to investigate alternative modeling mechanisms capable of detecting historical

patterns despite the lack of continuity in the data.

In addition, current studies all focus on array level forecasting, and no study has inves-

tigated the applicability of established forecasting methods at the system level. The system

level forecasting could be useful for system operators to make a better reserves arrangement.

Moreover, with the expansion of PV systems within the electricity market, this forecast may
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help all participants to optimize their bidding strategies.

1.2.3 Literature Review for Economic Value of Forecasting

In [38], the economic value of direct normal irradiance forecasting was evaluated for a 50

MW solar thermal plant. When participating in the Spanish day-ahead market, an accurate

direct normal irradiance forecast can help to reduce the penalty when the actual production

differ from the scheduled production. In this study, the forecasting accuracy of a two-day

persistence model and a site-specific Model Output Statistics (MOS) model was evaluated.

From 2007 to 2009, the nRMSE of the persistence model ranged from 73% to 81% and

the nRMSE of the MOS model ranged from 56% to 77%. If the solar thermal power plant

schedules the output according to the persistence model, the average annual penalty would

be 460,662¤. If the scheduling is based on the MOS model, the average annual penalty

will be 241,600¤. In summary, an increase of 1% in forecasting accuracy will save 0.7% in

penalties.

In [39], the value of irradiance forecasting was evaluated for another 11 MW solar thermal

power plant in Spain. This study evaluated the revenue of operations guided by two different

forecasting models, namely, aerosol-based forecasting and ECMWF forecasting. The nRMSE

of direct horizontal irradiance forecasting is 25.1% for the aerosol-based model and 18.5% for

the ECMWF. Under three cloudy days, revenue for the aerosol-based model guided strategy

was 46,900¤ while revenue for the ECMWF guided strategy was 53,500¤ which was very

close to ideal revenue (54,500¤). In summary, improving irradiance forecasting accuracy

could help solar power plants gain more revenue and reduce penalties.

1.3 Research Objectives

The first objective of this thesis is to investigate PV power forecasting at a single array level.

Analysis of solar power data shows that solar power time series are highly non-stationary
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and continuity of production patterns are highly disturbed by local weather changes. Thus,

it is a challenge for forecasting models to identify production patterns and associate them to

input variables. In this thesis, an effort is made to design a forecasting tool which can search

historical data and identify power output patterns that could be used to improve forecasting

accuracy.

The second objective of this thesis is to investigate the applicability of established fore-

casting methods in predicting short-term variations of the aggregated output of solar systems

distributed across a system. Because of the geographical diversity of solar arrays across a

wide area, aggregated solar power output is less prone to the effects of local weather change.

In this thesis, solar power forecasts at the aggregate system level are generated and their

accuracy is compared with that of array level power forecasts.

1.4 Thesis Outline

Following is the outline for this thesis:

1. Chapter 2 provides a detailed description of sunlight, PV cells, PV system and

forecasting methods.

2. Chapter 3 describes the short-term PV power forecasting tool at array level.

3. Chapter 4 describes the short-term PV power forecasting tool at system level.

4. Chapter 5 summarizes the main contributions of this thesis, and proposes some

possible future research directions.
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Chapter 2

Background Review

2.1 Introduction

This chapter presents necessary background information. In Section 2.2, the features of

sunlight are introduced. In Section 2.3, the structure and characteristics of PV cells are

described. In Section 2.4, the structure and typical examples of different PV systems are

introduced. In Section 2.5, the forecasting models used in this thesis, including ARIMA,

LS-SVM and RBFNN, are described.

2.2 Sunlight Patterns and Clear Sky Radiation Model

Sunlight has a direct influence on the assessment and production of PV systems. Thus,

it is necessary to understand basic properties of sunlight. In the following, components of

sunlight and the pattern of sunlight changes are described. This pattern is used to build a

clear sky radiation model.

Figure 2.1: The path of solar radiation [41]
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2.2.1 Sunlight Patterns

Sunlight is emitted from the sun in all directions. When sunlight reaches the upper atmo-

sphere, its strength has decreased to 1367 W/m2 (measured as irradiance), which is defined

as solar constant [40]. When sunlight enters the atmosphere, some of it is scattered and

some is absorbed by the air molecules, dust and clouds as shown in Figure 2.1 [41]. Sunlight

that reaches the surface of PV modules without absorption and scattering is defined as di-

rect solar radiation. Sunlight reflected by the ground is defined as reflected solar radiation.

Sunlight scattered by the air molecules, dust and etc. is defined as diffuse solar radiation.

These three types of radiation make up global solar radiation which is frequently used in

solar power forecasting. The strength of global solar radiation depends on the length of

travel through the atmosphere. Obviously, longer distance will lead to weaker global solar

radiation. Since the sunlight needs to travel a longer path to the polar regions than the

tropics, polar regions will receive less solar radiation. Air mass is the term for measuring

this length. It equals 0 when radiation reaches the upper atmosphere and equals 1 when

the sun is straight overhead. Air mass equals to 1.5 is the standard condition to rate the

capacity of PV system. The maximum irradiance that could be received on the surface of

the earth can be estimated by air mass using [42]:

IMax = 1367× 0.7AM0.678

(2.1)

where, IMax is the strength of irradiance and AM is the value of air mass.

Typically, summer days have more sunlight hours than winter days during a day, and

sunlight becomes stronger during the morning and becomes weaker during the afternoon.

These patterns result from the relative position changes of the Sun and the Earth.

Seasonal sunlight changes result from the apparent yearly movement of the Sun which is

plotted in Figure 2.2. The angle between the apparent path of sun and the celestial equator

is 23.45°. Solar declination δ represents the angle between the deviation of the line linking

the centre of the Earth and the Sun with the equatorial plane. Depending on the date, solar
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Figure 2.2: Apparent yearly movement of the Sun [41]

declination (in radians) can be estimated as:

δ = π
23.45

180
sin 2π

284 +D

365
(2.2)

where, D is the day of a year. Within one day, this angle is assumed to be constant. At March

20 or 21(vernal equinox) and September 22 or 23 (autumnal equinox), this solar declination

is zero. At June 21 or 22 (summer solstice) and December 21 or 23 (winter solstice), this

solar declination is 23.45°. This differences lead to a long day length during summer and a

short day length during winter.

Daily sunlight changes result from the apparent daily movement of the Sun which is

plotted in Figure 2.3. Figure 2.3 (a) shows the daily rotation of the earth using the expression

of a rotation of the celestial sphere. θφ represents the geographical latitude of the observation

location on the Earth. ω is the hour angle that represents the instantaneous point of the

sun which can be calculated by:

ω = 15(TLC − TZ − 12) + θϕ + TE/4 (2.3)
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Figure 2.3: Apparent daily movement of the Sun [41]: (a) Apparent position between the
Sun and the Earth in the celestial sphere, (b) Day and night results from this apparent daily
movement

where, TLC is the local mean time shown on the clock, TZ represents the time zone and θϕ

refers to the longitude of the PV site. TE is the equation of time that is calculated through:

TE = 229.1831(0.000075+0.001868 cosθς−0.032077 sin θς−0.014615 cos 2θς−0.040849 sin 2θς)

(2.4)

where, θς =
360

364
(D − 1). This apparent daily movement of the Sun in the daily path will

lead the changes of day and night which is shown in Figure 2.3 (b).

2.2.2 Clear Sky Radiation Model

From the above description of sunlight, we know that global solar radiation that could reach

the inclined surface on the Earth includes direct, diffuse and reflected solar radiation. If

the installation information of a PV system is known, the global horizontal irradiance that

could reach the surface of a PV array under clear sky conditions could be calculated through

Hottel’s solar radiation model [27].

Figure 2.4 illustrates the solar angles and surface orientation angles related to the PV
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Figure 2.4: Installation angle of PV array [27]

installation. Solar zenith angle θZ is the angle measured between a point directly overhead

and the centre of the sun. The solar altitude θA equal to 90−θZ . Solar azimuth θγ measures

the direction of the sun and it increases from east to west and reaches zero at solar noon. θα

represents the surface azimuth angle and θβ represents the surface inclination angle. Solar

inclination angle θS represents the angle between the sun and the normal to the surface. This

angle will be used later for irradiance calculation. The solar zenith angle θZ , solar azimuth

angle θγ and solar inclination angle could be calculated through:

cos θZ = sin δ sin θφ + cos δ cos θφ cosω (2.5)

cos θγ =(sin θα sin θφ − sin δ)/ cos θα cos δ (2.6)

cos θS = sin δ sin θφ cos θβ − sin δ cos θφ sin θβ cos θα + cos δ cos θφ cos θβ cosω+ (2.7)

cos δ sin θφ sin θβ cos θα cosω + cos δ sin θα sinω sin θβ

The global solar radiation that hits the surface of the array can be calculated with the

following equations [43]:
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Iglobal = Idirect + Idiffused + Ireflected (2.8)

Idirect = IE · ηdirect · cos θS (2.9)

Idiffuse = IE · ηdiffuse · cos θZ · (
1 + cos θβ

2
) (2.10)

Ireflected = IE · ρ · ηreflected · cos θZ · (
1 + cos θβ

2
) (2.11)

IE = IS[1 + 0.033 cos(360D/365)] (2.12)

where, Iglobal is the global solar radiation, Idirect is the direct solar radiation, Idiffuse is the

diffuse solar radiation, Ireflected is the reflected solar radiation and IE is the extraterrestrial

solar radiation. IS is the solar constant and ρ is the average reflectance of the ground,

which is 0% for total absorption and 100% for total reflection. ηdirect, ηdiffuse, ηreflected are

respectively the atmospheric transmittance for direct, diffuse and reflected solar radiation

which could be calculated through [43]:

ηdirect = υ0 + υ1 exp(−υ2/ cos θZ) (2.13)

ηdiffuse = 0.271− 0.294ηdirect (2.14)

ηreflected = 0.271 + 0.706ηdirect (2.15)

where, υ0, υ1, υ2, is the constants that can be calculated through:

υ0 = τ0[0.4237− 0.00821(6−HA)
2] (2.16)

υ1 = τ1[0.5055− 0.00595(6.5−HA)
2] (2.17)

υ2 = τ2[0.2711− 0.01858(2.5−HA)
2] (2.18)

where, HA refers to the altitude of the location in km. τ0, τ1, τ2 are the climate factors listed

in Table 2.1 for four typical climate types.

In summary, for a given PV site for which installation information is known, the Hottel

clear sky radiation model can estimate the hourly clear sky irradiance which could hit the
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Table 2.1: Climate factors for four typical climate types

Climate Type τ0 τ1 τ2

Tropical 0.95 0.98 1.02
Mid-altitude Summer 0.97 0.99 1.02
Subarctic Summer 0.99 0.99 1.01
Mid-altitude Winter 1.03 1.01 1

surface of the PV array. This clear sky irradiance value could be used for PV resource

assessment or PV output estimation [27].

2.3 Structure and Electrical Characteristics of PV Cells

The PV cell is the basic component of a PV array which converts solar radiation to electricity.

In this section, the structure, mathematical model and features of a typical PV cell are

introduced. This introduction aims to illustrate the relationship between solar radiation and

the electricity generated by a PV array.

2.3.1 Structure of PV Cells

PV cells are wired in series to build a PV module and those PV modules are strung in

series and parallel to make a PV array. Figure 2.5 (a) is a schematic of a PV array and the

component encircled by a black rectangle is a PV cell. Due to the surface area limitation,

the power generated by a single cell is limited. For example, one 100 cm2 single crystalline

silicon solar cell can, at most, generate 1.5 W power when exposed to full sunshine [44]. The

power from one cell is thus not enough for real application. Thus, PV cells are usually wired

in series to gain a higher output voltage and are wired in parallel to gain a higher output

current. If higher power is needed, several PV models are strung together to make a PV

array.

Figure 2.5 (b) is a schematic of a typical crystalline silicon PV cell [45]. The PV cell is

composed of a front contact, an anti-reflection layer, a P-type silicon, a N-type silicon and
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Figure 2.5: (a) PV cells, PV modules and PV arrays (b) Structure of a crystalline silicon
solar cell [45]

a back contact. The front contact, which is made of a good conductor, is used to collect

electrons. The back contact is made of metal and serves as a conductor and the covers for

the back surface. The anti-reflection layer is made of a combination of glasses with different

refractive index and thickness. This layer helps the PV cells receive more sunlight and

reduce reflection. N-type silicon is a doped layer that contains one more valence electron

than normal silicon; P-type silicon is a doped layer that contains one less valence electron

than normal silicon. Only four electrons are needed to bond the silicon atoms, so N-type

silicon tends to donate valence electrons and P-type silicon tends to adopt valence electrons.

The connection of the N-type and P-type silicon forms a P-N junction which contains an

electric field and resists the movement of electrons from N-type silicon to P-type silicon. The

thick P-type silicon layer absorbs most of the sunlight and generates most of the power [46].

When sunlight with sufficient energy hits the silicon, the elections will be forced to move

from front contact to the load and return through the back contact [44].
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2.3.2 Electrical Characteristics of PV cells

The electrical characteristics of PV cells are illustrated through the equivalent circuit of PV

cells and the corresponding I-V characteristics in this section.

Figure 2.6: General circuit diagram for: (a) single diode PV cell model (b) two diodes PV
cell model

The equivalent circuit of a single diode PV cell model can be modeled with a parallel

combination of a current source and a rectifying diode as shown in Figure 2.6 (a). The I-V

characteristic of the single diode PV cell model can be expressed as:

I = IPH − I0

[

exp
qV

kBTC
− 1

]

(2.19)

where, q is an electron charge (q = 1.6 × 10−19C), kB is the Boltzmann’s constant (k =

1.38 × 10−23J/K), TC is the cell temperature and V is the terminal voltage of the cell.

I0 is the diode saturation current, and this current indicates that PV cells function as a

semiconductor current rectifier or diode when there is no sunlight hitting the cells. IPH is

the photo-current, which is related to the strength and wavelength of the light. Usually,

the applied voltage will not affect IPH , except for cells like A-Si and some other thick film

cells [47]. The I-V characteristic of this single diode PV cell model is plotted in Figure 2.7
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Figure 2.7: (a) I-V curve of a PV cell, (b) Power curve and maximum power point (MPP)

(a). The short-circuit current and open-circuit voltage can be calculated through:

ISC = IPH (2.20)

VOC =
kBTC
q

ln(1 +
IPH

I0
) (2.21)

The relationship of the short-circuit current (ISC) and open-circuit voltage (VOC) with

radiation (G) is shown in Figure 2.8 [44]. ISC is proportional to solar radiation and also

related to cell temperature. ISC increases at 0.05%/K − 0.07%/K for crystalline silicon

solar cells, and ISC increases at approximately 0.02%/K for amorphous silicon solar cells. A

lower temperature coefficient can improve the performance of a solar cell during hot weather.

VOC increases very rapidly with radiation until it reaches a saturation value. After this point,

VOC will grow very slowly and this slow growth usually cannot be observed due to internal

and external resistances.

The power generated by the two diodes PV cell model is shown in Figure 2.7 (b). Maxi-

mum power is generated at voltage Vm and current Im. The ratio between ImVm and ISCVOC

is the fill factor. Typically, crystalline silicon solar cells have a fill factor of 0.7 ∼ 0.8 and

amorphous silicon solar cells have a fill factor of 0.5 ∼ 0.7 [44].

The equivalent circuit of a two diodes PV cell model can be modelled by one current

source, rectifying diodes, a series resistor RSH and a parallel resistor RS, as shown in Figure
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Figure 2.8: Short-circuit current and open-circuit voltage relationship with solar radiation

2.6 (b). The I-V characteristic of this model can be expressed as:

I = IPH − I01

[

exp
V + IRS

kBTC
− 1

]

− I02

[

exp
V + IRS

2kBTC
− 1

]

−
V + IRS

RSH

(2.22)

where, the series resistor RSH represents the resistance of silicon wafer, contact and circuit

and parallel resistor RS represents the loss currents from the surface and the edges of a solar

cell [44]. I01 and I02 represent the current through the diodes. The effect of the second

diode, parallel resistor and series resistor are explained in Figure 2.9. Figure 2.9 (a) shows

the I-V characteristics for three different ratios of I02/I01. Figure 2.9 (b) and (c) show how

series and parallel resistors affect the I-V characteristics. Those influences are important

since they occur in the region of the MPP.

Figure 2.9: The effect of (a) two diodes, (b) series resistance and (c) parallel resistance on
the I-V characteristics of the PV cell

For a single PV array, the maximum DC output can be calculated using [48]:
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PMax = ηAλ[1− 0.005(TA + 25)] (2.23)

where, PMax is the maximum DC power output (kW ), η is the conversion efficiency of PV

cell (%), A is the area of the PV array (m2), λ is the solar radiation (kW/m2) and TA is the

ambient temperature (℃). The conversion efficiency is defined as the ratio of the maximum

power output Pm = ImVm from this cell to the solar power PS falling on it and this efficiency

is determined by the type of the PV cells. When combined with a clear sky radiation model,

the maximum PV output can be estimated for any location. However, this equation is only

suitable for a very small PV system without a shading problem and with all arrays at the

same orientation.

2.4 PV Systems

In this section, we introduce different types of PV systems, comprising groups of PV arrays.

Depending on whether a PV system is connected to the grid or not, it can be classified as

off-grid or grid-connected systems.

2.4.1 Off-grid PV Systems

Figure 2.10: Block diagram of a residential PV system [44]

Currently, there are great variations of off-grid PV systems such as solar calculators, solar

street lamps, a system that can supply power for a remote house or building and etc. [44].

Off-grid PV systems typically integrated an energy storage system to ensure power supply
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when there is no radiation (e.g. at night) or very limited radiation (e.g during cloudy or

rainy days) [49]. Off-grid PV systems can be used to supply power for a house or a building

in remote areas. There are about two thousand million people around the world who do

not have access to the power grid. Even in central Europe, there are people who do not

have access to the public grid [44]. Thus, off-grid PV systems have obvious value for them.

Figure 2.10 shows the typical structure of an off-grid residential PV system including a PV

generator, a charge controller, a battery and an inverter. The charge controller can protect

the battery against deep discharge and overcharging and can ensure the efficient operation

of the battery. The battery, together with the charger controller, is the energy storage

system, and this system is critical for a residential PV system when there is insufficient

radiation. Inverters are used to convert the DC power to AC power in order to supply the

AC applications.

Figure 2.11: Block diagram of a hybrid PV system [44]

Because of the annual fluctuation of solar radiation, an exclusively PV power supply
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system needs either a large solar generator or a large battery to maintain the power supply.

Thus, hybrid systems are usually used, which are powered by different types of generators,

such as wind and diesel generators. Figure 2.11 shows a hybrid PV system that integrates

wind and a backup generator (e.g diesel generator). Under favourable weather conditions, all

power is supplied by PV and wind generator, and the surplus power will be used to charge

the battery. Under unfavourable weather conditions or at night, the power will be supplied

by the battery or from the diesel generator directly. If the battery reaches deep discharge,

it will be charged by the diesel generator through the charge controller and rectifier.

2.4.2 Grid-connected PV Systems

Grid-connected PV systems have a permanent connection with the electricity grid through

inverters. The grid-connected PV systems can be subdivided as distributed grid-connected

PV systems and central grid-connected PV power plants.

Distributed grid-connected PV systems are usually installed on the roof of a house or

building. Figure 2.12 (a) shows the structure of a distributed grid-connected PV system.

Compared to the off-grid PV system, there is no energy storage system. When the PV power

is not enough, users can draw power from the electricity grid to supply the applications.

When there is surplus power from the PV generators, the power will be fed back to the grid.

Figure 2.12: Block diagram of grid-connected PV systems [44]: (a) Distributed grid-con-
nected PV systems, (b) Central grid-connected PV systems

Grid-connected PV plants usually have a capacity larger than 1 MW. These systems are
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usually built on unused land and connected to the middle and high voltage grid. Figure

2.12 (b) shows the structure of central grid-connected PV systems. Unlike a distributed

grid-connected system, they do not draw power from the grid. Depending on the size of

the PV system and its configuration, the inverters are different. Table 2.2 lists the power

range, availability of maximum power point tracking (MPPT) function and typical efficiency

of modular, string, multi-string and central inverters [50]. Micro-inverters are easy to install

on the back of the PV modules. However, it may be difficult to replace a faulty inverter.

Currently, the latest micro-inverters can upload solar power data through websites [51].

String inverters are used in small PV systems. Since there is only one MPPT in a string

inverter, some PV models may not work at their MPP point. Multi-string inverters apply to

larger PV systems and include multiple MPPT. Central inverters have a similar structure of

the string inverters, but they are used for PV systems that are larger than 10 kW and the

unit cost of central inverters is usually low.

Table 2.2: Inverter types and characteristics [50]

Inverter type Micro String Multi-string Central

Power Range (kW) 0.1-0.3 0.7-11 2-17 10 -300
MPPT Yes Yes Multiple Multiple

Typical Efficiency (%) 95% 93% 97% 97% 97%

Currently, the largest PV power plant in Canada is the 97 MW Sarnia PV power plant.

This plant uses 1,300,000 thin-film modules and covers 1,100 acres. The largest PV plant in

the world is the 250 MW Agua-Caliente solar project in the USA, which covers 2400 acres

and has an annual generation of 626.219 GWh. Greece plans to install a 10,000 MW Helios

PV power plant by 2020.
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2.5 Forecasting Models

There are many modeling or forecasting tools described in the literature. ARIMA is a good

representative of univariate linear models. LS-SVM is a non-linear model with a convex

optimization process. RBFNN is a non-linear model that does not lead to a convex opti-

mization, so it may be get trapped in a local optimal point. These methods have been used

and reported in the literature and have shown good performance [23,30,31]. Thus, they are

chosen as representative forecasting models. However, other models could be used for the

purpose of this thesis.

2.5.1 ARIMA Model

ARIMA was initially introduced by Box and Jenkins for time series forecasting [52]. Since

the ARIMA model has a better ability to capture diurnal cycle characteristics than similar

methods [53], this method is utilized in this study. The following is a description of the

ARIMA model. ARMA(p,q) for a stationary stochastic process zt can be written as [52]:

zt = c+

p
∑

i=1

φizt−i + ǫt +

q
∑

j=1

θjǫt−j (2.24)

where, c, φi and θj are the free parameters for this model. ǫt are independently and identically

distributed normal random variables with mean zero and variance σ2
ǫ . When introducing a

backward shift operator (Bzt = zt−1), Equation (2.24) can be expressed as [52]:

φ(B)zt = c+ θ(B)ǫt (2.25)

where, φp(B) = 1− φ1B − ... − φpB
p is the non-seasonal auto regressive operator, θq(B) =

1 − θ1B − ... − θqB
q is the non-seasonal moving average operator. The variable mean is

removed by dth order differenced process vt = (1 − B)dzt. The ARMA(p,q) model for

the difference process v is called the Auto Regressive Integrated Moving Average model

ARIMA(p,d,q) for the process zt. If a time series has seasonality, indexed by s, then a

seasonal ARIMA(p, d, q)(P,D,Q)s model can be expressed as:
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φp(B)ΦP (B
s)(1−B)d(1−Bs)Dzt = c + θq(B)ΘQ(B

s)ǫt (2.26)

where, ΦP (B
s) and ΘQ(B

s) are seasonal auto regressive and moving average operators; Bs

is the seasonal backward shift operator which is defined as Bszt = zt−s and D is the seasonal

difference order.

This seasonal ARIMA(p, d, q)(P,D,Q)s model will be utilized in this study using the

ARIMA toolbox from Matlab. The model’s building process includes three steps, namely:

model identification, model estimation and model diagnostic checking.

2.5.2 LS-SVM Model

LS-SVM was proposed by Suykens and Vandewalle as one of the supervised learning meth-

ods that can be used for regression [54]. The original SVM was proposed by Vapnik and

his colleagues as a classifier [55]. LS-SVM changes the inequality constraints into equality

constraints and defines the loss function as an experienced loss function of the training set.

Therefore, a quadratic programming problem becomes a linear programming problem.

Based on a given training set in the form of:

{(xi, yi) , i = 1, 2, · · · , N} (2.27)

where yi ∈ R is the target object, xi ∈ Rn represents the n attributes of the target and N

is the number of training samples. LS-SVM tries to use a non-linear mapping function φ(x)

to map the training set from input space to a higher feature space using Kernel function

K(x, xk) and build an optimal linear regression function in the new space. The non-linear

regression function f(x) is in the form of:

f(x) = ωTψ(x) + b (2.28)

where x ∈ Rn, y ∈ R, ω is the weight vector and b is the bias.
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The optimization problem min J(ω, b, e) can be expressed as [54]:

min J(ω, b, e) =
1

2
ωTω +

ζ

2

N
∑

k=1

e2k (2.29)

such that:

yk = ωT · ψ(xk + b+ ek) k = 1, . . . , N (2.30)

where ζ is the adjustment parameter and e2k is the quadratic loss function defined as:

e2k = (yk − f(xk))
2 k = 1, . . . , N (2.31)

The Lagrange function L for this problem is:

L = J −

N
∑

k=1

αk[ω
T · ψ(xk + b+ ek)− yk] (2.32)

where αk is the Lagrange multiplier. According to Karush-Kuhn-Kucker (KKT) condition:
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∂L

∂b
= 0 ⇒

N
∑

k=1

αk = 0

∂L

∂ek
= 0 ⇒ αk = ζ · ek

∂L

∂αk

= 0 ⇒ ωT · ψ(xk + b+ ek)− yk = 0

(2.33)

The following equation can be obtained by eliminating ω and ek:
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
(2.34)

where δ = [1, . . . , 1], I is an identity matrix, Y = [y1, . . . , yk], α = [α1, . . . , αN ], K ∈ RN×N

and Kij = ψT (xi) · ψ(xj).

Therefore, the optimum parameters α and b can be calculated through Equation (2.34)

and the predicted output y(x) can be obtained :

y(x) =
N
∑

k=1

αkK(x, xk)) + b (2.35)

where K(x, xk) = ψT (x) · ψ(xk) is the kernel function and figure 2.13 [56] is the visual

expression of Equation (2.35).

30



Figure 2.13: Structure of the LS-SVM [56]

2.5.3 RBFNN Model

RBFNN was first formulated by Broomhead and Lowe [57]. The basic form of RBFNN

mapping is:

ŷ =

M
∑

j=1

wjHj(x) + w0 (2.36)

where ŷ is the forecast value and x is the input vector with a dimension of k, M is the

number of hidden neurons, w0 is the bias term and Hj(x) is the Gaussian basis function for

hidden neuron j:

Hj(x) = exp

(

−
||x− µj||

2

2σ2
j

)

(2.37)

where, µj is the centre of the Gaussian basis function and σj is smoothness parameter of the

Gaussian basis function.

Figure 2.14 is the schematic of RBFNN structure [58], which is similar to a three layer

neural network that uses RBFs as activation functions, but it is actually a unique neural

network. Unlike a feed forward neural network, whose weights are trained by the BP method,

RBFNN is trained by two stage methods. The first stage training is done by unsupervised

training: the input dataset xn alone is used to determine the radial basis function parameters

and the first layer weights. When the first stage training is done, the weights of the first
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Figure 2.14: Structure of the RBFNN [58]

layers and parameters of the radial basis function are fixed. The second stage training is

supervised training: both input and target data are used to train the weights for the second

layers with the following minimization problem:

HTHW T = HTT (2.38)

where T is the vector of the [ti] and ti is the target value of ŷ and the minimization function

is:

min
N
∑

i=1

(ŷi − ti)
2 (2.39)

2.6 Summary

In this chapter, some background information is given for sunlight, PV cells, PV systems and

forecasting models. Through the model of sunlight and PV cells, the maximum PV output

can be estimated for a small PV system at a certain location. However, this estimation is

only feasible for a very small PV system and does not cover shading issues. In practice,
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the output forecast needs forecasting models. Three common forecasting models, ARIMA,

LS-SVM and RBFNN, were explained in detail in this chapter. Those models will be further

used in Chapters 3 and 4, and the aim of this description is to introduce modeling and the

training process.
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Chapter 3

Array Level Short-term PV Output Forecasting

3.1 Introduction

In this chapter, the proposed array level forecasting tool is introduced and developed. This

tool aims at 24-hour-ahead hourly forecasting. Three PV sites used in this study are intro-

duced in Section 3.2. An analysis of weather and day length influence on the output pattern

and intra-day power fluctuation is presented in Section 3.3. At all sites, meteorological and

other variables were measured and forecast along with PV output. The relationship be-

tween these output-related variables and PV power output is analysed in Section 3.4. The

proposed array level forecasting tool is introduced in Section 3.5. This tool includes a data-

preprocessing engine and a forecasting engine. The data-preprocessing engine is built using a

similar day method and the forecasting engine is built by three forecasting models: LS-SVM.

RBFNN and ARIMA. Comparison with a simple persistence model is also provided. The

numerical results generated by the proposed forecasting tool are presented and compared

with the literature in Section 3.6.

3.2 Site and Data Description

Data acquiring costs many effect in the early stage since this research aims to select array

level PV system that have a good quality and quantity of recorded data as well as forecast

data. Moreover, this research also aims to select sites that have different weather distribution

and different forecast data source. The datasets used in this chapter were collected from three

different PV sites and are highlighted in Figure 3.1. The first site (Site 1) is located at San

Diego, USA (32.86°N, 117.25°W), the second site (Site 2) is located at Braedstrup, Denmark
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(55.97°N, 9.61°E) and the third site (Site 3) is located at Catania, Italy (37.41°N, 15.04°E).

Sites 1 and 3 have a small latitude difference but a large longitude difference; while sites 2

and 3 have a relatively large latitude difference but a small longitude difference.

Figure 3.1: Location of three PV sites: San Diego, Braedstrup, and Catania

The geographical difference causes a difference in day length. As shown in Figure 3.2,

day length changes at Braedstrup are larger than at Catania and San Diego. The day length

at Braedstrup increases from 7 hours in January to around 18 hours in June, while the day

length in San Diego and Catania ranges from around 10 hours to around 14 hours. Recalling

the physical model in the Background Chapter, the irradiance is also stronger in June than

that in January and September.

The geographical difference also results in different local weather. Figure 3.3 shows the

historical daily weather over a one-year period. San Diego and Catania are located closer

to the equator and have no snowy days during winter. Braedstrup has more rain and fog

compared to the other two locations. Moreover, these three locations have limited sunny

weather(e.g less than 50 days). San Diego and Catania have a significant number of partly

cloudy days [59].

The recorded period, resolution and providers of the data are given in Table 3.1 ∼ 3.3.
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Figure 3.2: Day length changing over a year at San Diego, Braedstrup and Catania
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Figure 3.3: Daily weather distribution over a year for the three PV sites: San Diego, Braed-
strup, and Catania

The first site is a 49.2 kW PV system. This system has 240 Kyocera KD 205 GXLP PV

modules and was installed at a tilt of 10°and azimuth of 180°. Available data for this

site are summarized in Table 3.1. Recorded global horizontal irradiance was measured at

Hubbs Hall (300 m away from the PV site) using a LICOR Li-200SZ silicon-186 pyrometer

sampled at 1 second [60]. Other recorded data were measured at this site for the period

from July 1, 2010 to December 31, 2011, with a resolution of 15 minutes [61]. Forecast

global horizontal irradiance at one-hour intervals was provided by the National Oceanic and

Atmospheric Administrations (NOAA) using the Weather Research and Forecasting North

American Mesoscale (WRF-NAM) model [11].

The second site has 21 PV systems built as a project of Sol300 in Denmark [23]. Those

PV systems are made by BP 585 modules and BP GCI 1200 inverters. The rated power varies

36



Table 3.1: Data summary for Site 1 (San Diego)

Data Resolution Available Period Source

Recorded Power Output 15 min 01-07-2010 to 31-12-2011 Birch Aquarium
Recorded Ambient Temperature 15 min 01-07-2010 to 31-12-2011 Birch Aquarium
Recorded Cell Temperature 15 min 01-07-2010 to 31-12-2011 Birch Aquarium
Recorded Wind Speed 15 min 01-07-2010 to 31-12-2011 Birch Aquarium
Recorded Global Horizontal Irradiance 1 sec 01-01-2011 to 30-06-2011 Hubbs Hall
Forecast Global Horizontal Irradiance 60 min 01-01-2011 to 31-12-2011 NOAA

from 1020 W to 4080 W, the azimuth angle varies from 100°to 230°, and the tilt angle varies

from 15°to 45°. Available data for Site 2 are summarized in Table 3.2. Recorded power was

measured from these 21 PV systems at 15-minute intervals. Forecast data, including global

horizontal irradiance, high cloud cover, medium cloud cover, low cloud cover, total cloud

cover, fog, ambient temperature and wind speed were provided by the Danish Meteorological

Institute (DMI) [62]. The forecast global horizontal irradiance is recorded at three-hour

intervals, and other forecast data is recorded at four-hour intervals.

Table 3.2: Data summary for Site 2 (Braedstrup)

Data Resolution Data Period Source

Recorded Power Output 15 min 01-01-2006 to 31-12-2006 Braedstrup
Forecast Global Horizontal Irradiance 3 hour 01-01-2006 to 31-12-2006 DMI
Forecast Ambient Temperature 4 hour 01-01-2006 to 31-12-2006 DMI
Forecast High Cloud Cover 4 hour 01-01-2006 to 31-12-2006 DMI
Forecast Low Cloud Cover 4 hour 01-01-2006 to 31-12-2006 DMI
Forecast Medium Cloud Cover 4 hour 01-01-2006 to 31-12-2006 DMI
Forecast Total Cloud Cover 4 hour 01-01-2006 to 31-12-2006 DMI
Forecast Fog 4 hour 01-01-2006 to 31-12-2006 DMI
Forecast Wind Speed 4 hour 01-01-2006 to 31-12-2006 DMI

The third site is a 5.21 kW system, and available data for this site are summarized

in Table 3.3. Recorded data comprises solar altitude, global horizontal irradiance, direct

normal irradiance, ambient temperature, and power output. Forecast data, including solar

altitude, global horizontal irradiance, direct normal irradiance, total cloud cover and ambient

temperature were provided by the Regional Atmospheric Modeling System (RAMS). These

data were all recorded at one-hour intervals for 2010.
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Table 3.3: Data summary for Site 3 (Catania)

Data Resolution Data Period Source

Recorded Power Output 60 min 01-01-2010 to 31-12-2010 Catania
Recorded Solar Altitude 60 min 01-01-2010 to 31-12-2010 Catania
Recorded Global Horizontal Irradiance 60 min 01-01-2010 to 31-12-2010 Catania
Recorded Direct Normal Irradiance 60 min 01-01-2010 to 31-12-2010 Catania
Recorded Ambient Temperature 60 min 01-01-2010 to 31-12-2010 Catania
Forecast Global Horizontal Irradiance 60 min 01-01-2010 to 31-12-2010 NWP RAMS
Forecast Direct Normal Irradiance 60 min 01-01-2010 to 31-12-2010 NWP RAMS
Forecast Ambient Temperature 60 min 01-01-2010 to 31-12-2010 NWP RAMS
Forecast Solar Altitude 60 min 01-01-2010 to 31-12-2010 NWP RAMS
Forecast Total Cloud Cover 60 min 01-01-2010 to 31-12-2010 NWP RAMS

3.3 Analysis of PV Power Data

In this section, the influence of weather and day length on power output and intra-day power

fluctuations of PV power output data are analyzed. These characteristics are challenging for

PV forecasting and are also entry points for the proposed forecasting tool.
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Figure 3.4: Power output under different weather condition at San Diego

3.3.1 Influence of Weather and Day Length on the PV Output

PV power output fluctuates with daily weather [30,33]. Different weather will impose differ-

ent levels of influence on the output pattern. Figure 3.4 shows 6 days of PV power output at

San Diego in February. For sunny weather, the PV power output did not change significantly
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(e.g two blue lines in this figure). Under partly cloudy weather conditions, the PV power

output on February 13 and February 15 are different (e.g two red lines in this figure). On

February 15, the PV morning output was lower than the PV morning output on February

13. The two black lines represent the PV power output under rainy weather conditions.

Compared to the power output under partly cloudy weather conditions, the output was even

lower on rainy days. Since the rainfall of February 26 (34.04 mm [59]) is larger than that

on February 16 (10.92 mm [59]), PV power produced on February 26 is lower than that of

February 16. In summary, different weather affects the power at different levels. Generally,

rainy and snowy weather decrease the power output the most, followed by cloudy weather

and sunny weather [27].
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Figure 3.5: Relationship between daily PV power production and day length at (a) San
Diego; (b) Braedstrup; (c) Catania

The strength and duration of irradiance has an annual pattern which is reflected in the

corresponding PV power output [31]. Day length can reflect the changes of irradiance. High

latitude locations have larger day length changes. The daily PV power production and

corresponding day length for the three PV sites are plotted in Figure 3.5 (a) - (c). These

three figures show that the daily PV power production follows the trend of day length. For

example, the day length at Braedstrup changes more severely than the other two locations

and the corresponding daily PV power production at Braedstrup changes more as well. Thus,

the power difference is more obvious for a certain period (e.g one month) in Braedstrup even
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if all days in this period have sunny weather.

3.3.2 Characteristic of Intra-Day Power Fluctuation

The intra-day power fluctuation is mainly caused by daily weather changes. In this section,

these fluctuations are analysed for hourly power date [63]. As analysed in Section 3.3.1, PV

power is influenced by local weather, and days with different weather usually show a different

output pattern. As shown in Table 3.4, the weather is usually variable. The weather varies

significantly over a one-week period during February for all three PV sites. For example,

the weather was different each day at San Diego for February 12 to February 17. The

corresponding normalized power output (Power is normalized by maximum output) at these

three sites is plotted in Figure 3.6. Because of the unstable weather, power output at these

three sites shows a daily fluctuation, aside from February 11 to February 12 at San Diego

which were two sunny days. The other days present a different output pattern, even for days

with similar weather. Power at San Diego had less fluctuation compared to the other two

sites.

Table 3.4: One week daily weather report for San Diego, Braedstrup and Catania
Date 11-Feb 12-Feb 13-Feb 14-Feb 15-Feb 16-Feb 17-Feb

San Diego Sunny Sunny Partly Cloudy Foggy Partly Cloudy Rainy Partly Cloudy
Breadstrup Foggy Foggy Foggy Snowy Rainy Rainy Rainy
Catania Partly Cloudy Partly Cloudy Rainy Rainy Partly Cloudy Rainy Foggy

In order to quantify the overall intra-day fluctuation, a differenced power data PD
t (intra-

day fluctuation series) was generated in the form of:

PD
t = Pt+24 − Pt (3.1)

where, Pt is the original power data. PD
t represents the intra-day fluctuation for time t at

day D. Figure 3.7 shows the intra-day fluctuation from February 11 to 17 at these three

sites. For example, the first 24 hours represents the hourly power output difference between
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Figure 3.6: Power output at San Diego, Braestrup and Catania from February 11 to 17

February 12 and 11. Since the power output was very similar at San Diego during these two

days, the corresponding intra-day fluctuation series was very low, as shown in the red line

from time 1 to 24 in Figure 3.7. The power output was different at Braedstrup and Catania

during these two days, so the corresponding intra-day fluctuation was large, shown in the

blue and black lines from time 1 to 24 in Figure 3.7.
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Figure 3.7: Intra-day fluctuation series for days from February 11 to 17 at San Diego,
Braestrup and Catania

A short time window is not enough to represent the overall intra-day fluctuation level
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of different PV sites. Thus, the intra-day fluctuation series PD
t was generated for a one-

year period in Figure 3.8. The fluctuation were significant for all these three sites. The

fluctuation were sometimes up to 100%. Figure 3.8 (a) shows that the daily power difference

at San Diego was generally the same over the year, the maximum intra-day fluctuation was

82.2%, and the standard deviation of the intra-day fluctuation series was 12.4%. Figure 3.8

(b) shows that the daily power difference at Braedstrup was higher during the middle of

the year, the maximum intra-day fluctuation was 83.0%, and the standard deviation of the

intra-day fluctuation series was 14.0%; Figure 3.8 (c) shows that the daily power difference

at Catania was lower at the middle of the year, the maximum intra-day fluctuation was

90.1%, and the standard deviation of the intra-day fluctuation series was 16.2%. Compared

to the other two sites, Catania had more changes in daily power.
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Figure 3.8: Intra-day fluctuation series over a year at: (a) San Diego (b) Braedstrup (c)

Catania

3.3.3 Remarks

In summary, this section analysed the influence of weather and day length on the power

output and intra-day power fluctuation of array level PV power output. These characteristics

are challenging for array level forecasting. Weather changes are the inherent reason for the

intra-day fluctuation of solar power output. A location with a high intra-day fluctuation

will be hard to predict. As well, locations with a high latitude have larger daily irradiance
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or day length changes. Thus, when choosing the training days for a certain model, high

latitude locations should not use large training sets, as the absolute power output difference

of training days is bigger. The analysis of these characteristics also shows a direction for

building an array level forecasting tool. This tool needs to have the ability to incorporate

daily power fluctuations.

3.4 Relationship Between Output-Related Variables and PV Output

As analysed in Section 3.3.1, the weather has a significant influence on the output of PV

systems. However, daily weather is a fuzzy term, and thus, PV power output under the

same weather may have different patterns and PV power output under different weather

may show similar patterns. In the following, output-related variables that may influence the

power output are analyzed using scatter plot and correlation coefficient of determination of

the correlation coefficient of the fitting of a straight line to the data, R2 [64]. This analysis

is done for data from a one-year period, i.e., 2011 for San Diego, 2006 for Braedstrup and

2010 for Catania. The data interval used in this analysis is one hour for San Diego and

Catania. For Braedstrup, the analysis is done using three-hour-intervals for GHI and four-

hour-intervals for other variables, because hourly data was not available for this site.

3.4.0.1 Global Horizontal Irradiance

Global horizontal irradiance was frequently used in PV output forecasting (e.g., in [23,30]).

The relationship between recorded global horizontal irradiance (IR) and PV power is pre-

sented in Figure 3.9. The correlation coefficient is 0.8504 for San Diego and 0.9095 for

Catania. Although there are errors in forecasting global horizontal irradiance, the forecast

global horizontal irradiance still has a clear relationship with PV power output, as shown

in Figure 3.10, where Figure 3.10 (a) and (c) shows the relationship between forecast global

horizontal irradiance (IF ) and power for San Diego and Catania. Since the forecast irradi-

ance for Braedstrup is sampled at three-hour intervals, the power output for Braedstrup is
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Figure 3.9: Relationship between recorded global horizontal irradiance (IR) and PV power
output at (a) San Diego; (b) Catania

re-sampled to three-hour interval and their relationship is plotted in Figure 3.10 (b). Com-

pared to recorded global horizontal irradiance, the corresponding correlation coefficient of

determination between forecast global horizontal irradiance and PV power output slightly

drops from 0.8504 to 0.822 at San Diego and drops from 0.9095 to 0.843 at Catania.
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Figure 3.10: Relationship between forecast global horizontal irradiance (IF ) and PV power
output at (a) San Diego; (b) Braedstrup; (c) Catania
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Figure 3.11: Relationship between recorded ambient temperature (TR) and PV Power output
at (a) San Diego; (b) Catania

3.4.0.2 Ambient Temperature

The power output is also influenced by temperature. As described in Chapter 2, power output

drops when the temperature increases. For example, the power of the crystalline silicon solar

cell drops by approximately 0.4%/K − 0.5%/K and the power of amorphous silicon solar

cells drops by approximately 0.2%/K − 0.25%/K [44]. Cell temperature is rarely measured

and is not a meteorological variable; thus, ambient temperature is usually used. However,

higher temperature usually occur during sunny days and in summer, when the strength

of solar radiation is strong. Thus, ambient temperature should be a positive indicator of

power output. To further examine this variable, the linear relationship between PV power

output and recorded ambient temperature (TR) is plotted, as shown in Figure 3.11. The

correlation coefficient of determination is 0.5783 between recorded ambient temperature and

PV power at San Diego in Figure 3.11 (a), and the correlation coefficient of determination

is 0.2297 for Catania in Figure 3.11 (b). Figure 3.12 shows the relationship between forecast

ambient temperature (TF ) with PV power at Braedstrup at four-hour intervals and Catania

at one-hour intervals. The corresponding R2 is 0.2485 for Braedstrup and 0.2153 for Catania.

Catania is the only location with both recorded and forecast ambient temperature in this
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study. Figure 3.11 (b) and Figure 3.12 (b) show R2 drops slightly when using forecast ambient

temperature. In general, the linear relationship between PV power output and ambient

temperature is weak. However, ambient temperature was widely used in PV forecasting.

For example, it was used as model input in [26,65] and data preprocessing criteria in [32,33].
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Figure 3.12: Relationship between forecast ambient temperature (TF ) and PV power output
at (a) Braedstrup; (b) Catania

3.4.0.3 Wind Speed

Wind can reduce the temperature of the PV cells and improve the PV output; so it was chosen

for analysis. The relationship between wind speed and PV power output is very weak. Figure

3.13 (a) shows the relationship between recorded wind speed (WSR) and PV power output

at San Diego with one-hour intervals and Figure 3.13 (b) shows the relationship between

forecast wind speed (WSF ) and PV power output at Braedstrup with four-hour intervals.

Both recorded and forecast wind speed has a low correlation coefficient of determination

with PV power output. Thus, there is no linear relationship between wind speed and PV

power. However, wind speed has also been used in previous PV forecast research [30, 65].
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Figure 3.13: Relationship between wind speed and PV power output at (a) San Diego; (b)
Braedstrup

3.4.0.4 Direct Normal Irradiance

Direct normal irradiance refers to radiation received on a unit area that is normal to the

sun. This variable is only available at Catania. Figure 3.14 (a) presents the relationship

between recorded direct normal irradiance (DNIR) and PV power output. A clear linear

relationship can be observed. Figure 3.14 (b) shows the relationship between forecast direct

normal irradiation (DNIF ) and PV power output. Compared to recorded direct normal

irradiance, the correlation coefficient of determination is lower but still significant.

3.4.0.5 Solar Altitude

Solar altitude (SA) is the angular height of the sun measured from the horizon. Compared

to the above output-related variables, there is no forecasting error for solar altitude. Thus,

recorded solar altitude and forecast solar altitude have the same relationship with PV power

output, as shown in Figure 3.15. They have the same correlation coefficient of determination

which is 0.7932.
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Figure 3.14: Relationship between direct normal irradiance (DNI) and PV power output at
Catania: (a) Recorded DNI; (b) Forecast DNI

3.4.0.6 Fog

Fog refers to suspended water or small ice platelets in the air [66]. This variable ranges

from 0 to 1, and 0 refers to the fog occurrence probability as 0% and 1 refers to the fog

occurrence probability as 100%. Figure 3.16 shows there is almost no linear relationship

between forecast fog (FF ) and PV power output at Braedstrup (four-hour intervals data).

However, it can be observed that with fog, the power output is usually lower (e.g. the power

is lower than 0.5 kW when the fog is 0.4).

3.4.0.7 Cloud

The cloud cover ranges from 0 to 1 and includes low cloud cover (LCF ), medium cloud

cover (MCF ), high cloud cover (HCF ) and total cloud cover (TCF ). 0 refers to no clouds

in the sky, and 1 refers to the sky being totally covered by cloud [30]. These four types

of forecast cloud cover are all available at Braedstrup at four-hour intervals. Catania only

has total cloud cover at one-hour intervals. In Figure 3.17, the relationship between all

four types of forecast cloud cover and PV power output at Braedstrup are plotted. Similar

to the relationship between fog and PV power output, the linear relationship between all
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Figure 3.16: Relationship between forecast fog (FF ) and PV power output at Braedstrup

these four types of forecast cloud cover and PV power output is low. Through comparison

between Figure 3.17 (a) and Figure 3.17 (d), forecast total cloud cover has a higher correlation

coefficient of determination (0.0802) than forecast low cloud cover (0.0681), forecast medium

cloud cover (0.0185) and forecast high cloud cover (0.0095). Catania only has forecast total

cloud cover, and the relationship between it and PV power output is shown in Figure 3.18.
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Figure 3.17: Relationship between different type of forecast cloud cover and PV power output
at Braedstrup: (a) Forecast Low Cloud Cover (LCF ); (b) Forecast Medium Cover (MCF );
(c) Forecast High Cover (HCF ); (d) Forecast Total Cloud Cover (TCF )

3.4.0.8 Remarks

Global horizontal irradiance has the closest relationship with PV power output of all the

output-related variables, including ambient temperature, wind speed, direct normal irra-

diance, solar altitude, fog and cloud. Since the correlation coefficients of determination

between ambient temperature, direct normal irradiance and solar altitude are high, these

three variables are reasonable inputs for a forecasting model. The relationship between wind

speed, fog, cloud and PV power output were not strong. However, they have a theoretical

relationship with PV output. Besides, wind speed and cloud have been used in previous

studies. Thus, they are also selected as candidate variables for further analysis.

50



0 0.5 1
0

2

4

6

Forecast Total Cloud Cover (pu)

P
ow

er
 (

kW
)

P=−0.39 × TC
F
 + 1.1 

R2 = 0.0141

Figure 3.18: Relationship between forecast total cloud cover (TCF ) and PV power output
at Catania

3.5 Forecasting Tool for Array Level PV Output Forecasting

3.5.1 Overview of the Forecasting Tool

In this section, the framework of the proposed array level forecasting tool is introduced and

developed. Figure 3.19 shows the time line of this forecasting tool. This tool runs at 24:00

on day d−1, where day d is the forecast day. The goal is to predict the hourly power output

for day d from 1:00 to 24:00.

Figure 3.19: Time line of forecasting process

This forecasting tool includes two components: the Data-Preprocessing Engine and the

Forecasting Engine, as shown in Figure 3.20. The data-preprocessing engine is based on the
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similar day method. Through similar days searching, a group of days that have the highest

similarity with the forecast day will be selected. The historical power from the selected

similar days are fed into the Forecasting Engine to do an autoregressive forecasting. The

external inputs (e.g. irradiance), are used in the similar day process, not in the forecasting

engine. In this study, LS-SVM, RBFNN, ARIMA and a persistence model were chosen to

build the Forecasting Engine.

Figure 3.20: Framework of array level forecasting tool

3.5.2 Data-Preprocessing Engine

The Data-Preprocessing Engine is based on a similar day method which is described below.

In this engine, an euclidean distance, which is a frequently used similar day method, is utilized

to measure the similarity [32,67]. In the first stage, the euclidean distance of recorded power

output is calculated between forecast day d and previous d − 1 days. Note that the model

building stage has access to historical recorded power data. This distance represents the

actual output difference between day d and previous historical days. In the second stage,

the euclidean distance of each output-related variable was calculated between forecast day

d and previous d− 1 days. Since these output-related variables are forecast, this distance is

the forecast distance. The comparison of forecast distance and actual distance shows which

output-related variable is more suitable for building forecast distance. In the third stage,

these output-related variables are given a weight and used to build the hybrid euclidean
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distance formula for similar days selection.

3.5.2.1 Stage 1: Euclidean Distance of Recorded PV Power Output
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Figure 3.21: Days having the most similar output pattern and most dissimilar output pattern
at San Diego (Euclidean distance between January 20 and 21 is 0.07 kW and euclidean
distance between January 19 and June 2 is 16.30 kW)

The euclidean distance of recorded PV power output for the forecast day d and previous

day i is defined as:

EDPR(i, d) =

√

√

√

√

24
∑

h=1

(PRh
i − PRh

d)
2 (3.2)

where, PRh
i is the recorded power at hour h for day i, PRh

d is the recorded power at hour

h for day d and i ∈ [1, d − 1]. For example, for San Diego, January 20 and 21, 2011 have

the smallest distance and, January 19 and June 2 have the largest distance, as presented

in Figure 3.21. The power output on January 20 was very close to the power output on

January 21, whereas, the power output on January 19 was significantly different from the

power output on June 2. Table 3.5 summarizes the weather and day length for those four

days. The day length for January 20 and 21 differed by only 75 seconds but the day length

for January 19 and June 2 has approximately a four-hour difference. Additionally, January

20 and 21 both had sunny weather; January 19 and June 2 had different weather.
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Table 3.5: Weather and day length information for the most similar days and dis-similar

days

Day Index Date Weather Day Length (hh:mm:ss)

20 20-01-2011 Sunny 10:18:55

21 21-01-2011 Sunny 10:20:10

19 19-01-2011 Mostly Cloudy 10:17:42

153 02-06-2011 Sunny 14:07:57

3.5.2.2 Stage 2: Euclidean Distance of Each Candidate Output-Related Variable

The euclidean distance for a candidate output-related variable V is defined as:

EDV (i, d) =

√

√

√

√

N
∑

h=1

(V h
i − V h

d )
2 (3.3)

where, V h
i is the forecast value of output-related variable V at time h for day i, V h

d is the

forecast value of output-related variable V at time h for day d and i ∈ [1, d−1]. To quantify

the overall closeness of the euclidean distance of each output-related variable V and euclidean

distance of recorded PV power output, an evaluation index EVA is generated in the form of:

EVAV =

S
∑

d=2

d−1
∑

i=1

∣

∣EDN
V (i, d)− EDN

PR(i, d)
∣

∣

(S − 1)× S
× 100% (3.4)

where, EDN
PR is the normalized value of EDPR, ED

N
V is the normalized value of EDV , and S is

the number of testing days. EVAV measures the average daily difference between normalized

euclidean distance of recorded PV power output and normalized euclidean distance of output-

related variable V . EVAV ranges from 0% to 100%. EVAV = 0%means the forecast euclidean

distance of output-related variable V is exactly the same as the euclidean distance of recorded

PV power output. EVAV = 100% means the forecast distance is totally different from the

actual distance.

Table 3.6 lists EVAV for each location. Based on the value of EVAV , the euclidean distance of

global horizontal irradiance has the least difference with the euclidean distance of recorded
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Table 3.6: EVAV for different forecast output-related variables at three testing location: San
Diego, Catania and Braedstrup

EVAV GHI1 DNI2 DT3 WS4 TA5 SA6 LC7 MC8 HC9 TC10 Fog11

San Diego 14,26% N/A 20.41% N/A N/A N/A N/A N/A N/A N/A N/A
Catania 16.35% 17.97% 25.33% N/A 20.75% 25.93% N/A N/A N/A 27.08% N/A

Braedstrup 11.41% N/A 21.56% 23.49% 18.34% N/A 27.23% 32.44% 32.90% 25.65% 34.05%

1 Global Horizontal Irradiance 2 Direct Normal Irradiance 3 Daytime Hour 4 Wind Speed 5 Ambient

Temperature 6 Solar Altitute 7 Low Cloud Cover 8 Medium Cloud Cover 9 High Cloud Cover
10 Total Cloud Cover 11 Fog

PV power output. What’s more, based on the the value of EVAV , GHI is not greatly

superior to the other output-related variables in contrast to its superiority in the analysis

of the previous section. For example, the correlation coefficient of determination of forecast

low cloud cover (LC) is 13 times lower than that of global horizontal irradiance, but the

EVALC is only 3 times lower than the EVAGHI . Through the above analysis, the best

forecast output-related variable to build the euclidean distance between forecast day and

historical days is the global horizontal irradiance. However, Table 3.6 shows the euclidean

distance for other output-related variables is not that far away from the euclidean distance of

actual PV power output. Thus, this study tries to build the euclidean distance of days using

several different output-related variables and test this forecast euclidean distance against the

euclidean distance of days using recorded power output. Global horizontal irradiance has the

lowest EVA, hence, it was selected as the main variable. Other output-related variables can

be combined with global horizontal irradiance to determine a bivariate euclidean distance

(EDN
B (i, d)) between day d and day i in the form of:

EDN
B (i, d) = WGHI × EDN

GHI(i, d) +WV × EDN
V (i, d) (3.5)

WGHI +WV = 100% (3.6)

EVAB =

S
∑

d=2

d−1
∑

i=1

∣

∣EDN
B (i, d)− EDN

PR(i, d)
∣

∣

(S − 1)× S
× 100% (3.7)

where, WGHI is the weight for global horizontal irradiance and WV is the weight for an

output related variable. By adjusting the value of WGHI from 0% to 100%, this study

55



evaluates whether the evaluation index EVAB for this new euclidean distance has a lower

value compared to EVAGHI . This test was conducted for all available output-related variables

for the three sites.
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Figure 3.22: Influence of the weight for global horizontal irradiance on the value of EVAB

at San Diego

The only available candidate output-related variable is day length for the PV system at

San Diego. Other variables (e.g. Forecast ambient temperature) are not available. Figure

3.22 shows the trend of EVAB when adjusting the weight of GHI (WGHI). When setting

WGHI equals to 71%, EVAB drops to 12.3%. Compared to EVAGHI , EVAB is 13.40% lower

than EVAGHI . Hence, day length can reflect some similarity between days that cannot be

reflected by only global horizontal irradiance.

Candidate secondary output-related variables are ambient temperature, low cloud cover,

medium cloud cover, high cloud cover, total cloud cover, fog and wind speed at Braedstrup.

Similar to the analysis done for San Diego and Catania, the analysis process is plotted in

Figure 3.23. Figure 3.23 shows the trend of EVAB when adjusting the weight of GHI (WGHI).

For example, the green line shows that lowest EVAB value is achieved whenWGHI was 100%.

This means that EDB built by GHI and fog could not achieve a lower EVAB value. The

other lines show the trend of EVAB when the EDB is built by GHI and other candidate
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secondary output-related variables. When setting corresponding WGHI as 92%, 96%, 86%

and 97% for low cloud cover, medium cloud cover, total cloud cover and wind speed, those

variables could help GHI to gain a lower EVAB. EVAB for global horizontal irradiance and

low cloud cover is 2.02% lower than EVAGHI . EVAB for global horizontal irradiance and

medium cloud cover is 0.44% lower than EVAGHI . EVAB for global horizontal irradiance

and total cloud cover is 5.10% lower than EVAGHI . EVAB for global horizontal irradiance

and wind speed is 0.20% lower than EVAGHI .
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Figure 3.23: Influence of the weight for global horizontal irradiance on the value of EVAB

at Braedstrup

Candidate secondary variables are day length, ambient temperature, total cloud cover,

direct normal irradiance and solar altitude for Catania. Figure 3.24 shows the trend of EVAB

when adjusting WGHI value. Aside from solar altitude, other variables can help to decrease

EVAB. EVAB for global horizontal irradiance and direct normal irradiance is 7.77% lower

than EVAGHI . EVAB for global horizontal irradiance and ambient temperature is 2.81%

lower than EVAGHI . EVAB for global horizontal irradiance and total cloud cover is 9.97%

lower than EVAGHI . The corresponding WGHI is 65%, 80% and 76% for direct normal

irradiance, ambient temperature and total cloud cover.

Based on Figure 3.22, 3.23, and 3.24, useful candidate secondary output-related variables
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Figure 3.24: Influence of the weight for global horizontal irradiance on the value of EVAB

at Catania

that can help GHI to gain a lower EVAB are found. Noting, a candidate variable that have

high EVAV could also help GHI to gain a lower EVAB. Through stimulation, the weight of

each secondary variableWV (WV=1-WGHI) is found which will be used to build the euclidean

distance of combination of output-Related variables.

3.5.2.3 Stage 3: Euclidean Distance of Combinations of Output-Related Variables

For San Diego, the bivariate euclidean distance for day length and global horizontal irradiance

has a lower evaluation index. Thus, the hybrid euclidean distance for San Diego is built using

global horizontal irradiance and day length using the following algorithm:

FGHI

FDT

=
WGHI

WDT

=
WGHI

1−WGHI

=
71%

1− 71%

FGHI + FDT = 1

EDN
HD = FGHI × EDN

GHI + FDT × EDN
DT (3.8)

where, FGHI is the weight factor for GHI and FDT is the weight factor for day length that is

used to build the hybrid euclidean distance. WGHI andWDT is the weight calculated through

the above EVAB analysis for San Diego. WGHI is 71% and WDT is 29%. Noting GHI is the
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only candidate variable for San Diego, WV equals FV . The final hybrid euclidean distance

formula for San Diego is:

EDN
HD = 71%× EDN

GHI + 29%× EDN
DT (3.9)

For Braedstrup, low cloud cover and total cloud cover can help to increase the evaluation

index of the bivariate euclidean distance. Thus, the hybrid euclidean distance for Braedstrup

uses global horizontal irradiance, low cloud cover and total cloud cover using the following

algorithm:

FGHI

FLC

=
WGHI

WLC

=
WGHI

1−WGHI

=
92%

1− 92%
FGHI

FTC

=
WGHI

WTC

=
WGHI

1−WGHI

=
86%

1− 86%

FGHI + FLC + FTC = 1

EDN
HD = FGHI × EDN

GHI + FLC × EDN
LC + FTC × EDN

TC (3.10)

where, FLC is the weight factor for low cloud cover and FTC is the weight factor for total

cloud cover that is used to build the hybrid euclidean distance. WGHI , WLC and WTC

are the weights calculated through the above EVAB analysis for Braedstrup. WGHI has

two different values that relate to low cloud cover and total cloud cover. The final hybrid

euclidean distance formula for Braedstrup is:

EDN
HD = 80%× EDN

GHI + 7%× EDN
LC + 13%× EDN

TC (3.11)

For Catania, direct normal irradiance, ambient temperature and total cloud cover increase

the evaluation index of the bivariate euclidean distance. Thus, the hybrid euclidean distance

for Catania is built using global horizontal irradiance, direct normal irradiance, ambient

temperature and total cloud cover using the following algorithm:
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FGHI

FDNI

=
WGHI

WDNI

=
WGHI

1−WGHI

=
65%

1− 65%
FGHI

FTC

=
WGHI

WTC

=
WGHI

1−WGHI

=
76%

1− 76%
FGHI

FTA

=
WGHI

WTA

=
WGHI

1−WGHI

=
80%

1− 80%

FGHI + FDNI + FTC + FTA = 1

EDN
HD = FGHI × EDN

GHI + FDNI × EDN
DNI + FTC × EDN

TC + FTA × EDN
TA (3.12)

where, FDNI is the weight factor for direct normal irradiance, FTC is the weight factor for

total cloud cover, and FTA is the weight factor for ambient temperature that is used to

build the hybrid euclidean distance. WGHI , WDNI , WTC and WTA are the weight calculated

through the above EVAB analysis for Catania. WGHI has three different values that relate

to each different secondary variable. The final hybrid euclidean distance formula for Catania

is:

EDN
HD = 48%× EDN

GHI + 25%× EDN
DNI + 15%× EDN

TC + 12%× EDN
TA (3.13)

In summary, different hybrid euclidean distances are built for these three locations. Based

on the need of the following forecasting engine, days with the smallest hybrid euclidean

distance to the forecast days will be selected. Dates of those days will be fed into the

forecasting engine.

3.5.2.4 The Algorithms for the Proposed Similar Day Method

In the previous section, the proposed similar day method is built specificity for three testing

sites. In this section, the overall algorithm of the proposed method which could apply to

any location is summarized.

• Step 1: Normalize the data including recorded power output and forecast

output-related variables by their maximum values.
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• Step 2: Calculate the euclidean distance of recorded power output using Equa-

tion (3.2) and calculate the euclidean distance of recorded power output using

Equation (3.3) for day pairs within the training dataset.

• Step 3: Calculate the EVAV for each forecast output-related variable using

Equation (3.4) and sort them in order. Select the output-related variable that

has the lowest EVA value and choose it as the main variable (e.g. mostly

should be forecast GHI).

• Step 4: Calculate bivariate euclidean distance EDB of the main variable and

other output-related variables using Equation (3.5). Through adjusting the

weight of the main variable in EDB, examine which secondary variable gains a

lower EVAB value. Choose those variables that have a lower EVAB compared

to EVAGHI and record the weights WGHI and WV .

• Step 5: Use secondary output-related variables that could help the main vari-

able to gain a lower EVAB value to build a hybrid euclidean distance formula

according to the weights that are calculated in the above step.

• Step 6: Calculate the forecast euclidean distance between the forecast day

and all days in the training days using the above hybrid euclidean distance

formula.

• Step 7: Select the right number of similar days that have the lowest forecast

EDN
HD based on the need of the forecasting engine.

3.5.3 Forecasting Engine

Four forecasting models; a persistence model, an ARIMA model, an LS-SVM model and

an RBFNN model, are developed for these three sites. The ARIMA model and RBFNN
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model is developed by Matlab ARIMA and neural network toolbox [68] and LS-SVM model

is developed by LS-SVMlab v1.8 toolbox [69]. Following is the description for them.

The persistence model is a very simple and computationally effective forecasting model.

The forecasting value PF (t, d) for the forecasting day d at hour t is calculated using:

PF (t, d) =
1

j

d−1
∑

i=d−j

PR(t, i) (3.14)

where, PR(t, i) is the recorded power output at day i at hour t, t ∈ [1, 24] and j is the number

of training days in the persistence model. In this study, PMj is defined as a persistence model

using j training days.

The non-linear autoregressive RBFNN model is initially trained by selected similar days

to generate one-step-ahead forecasting. The forecast power is then used to do 24-hour-ahead

recursive forecasting. When the forecast day has passed, the model will be retrained to pre-

dict the next forecast day. The structure of the RBFNN model is P̂t = f(Pt−1, Pt−2 · · ·Pt−24).

The non-linear autoregressive LS-SVM model is modelled in P̂t = f(Pt−1, Pt−2 · · ·Pt−24)

with radial basis kernel function and a simplex parameter optimization method. The fore-

casting power is then used to do 24-hour-ahead recursive forecasting. When the forecast day

has passed, the model will be retrained to predict the next forecast day.

This model structure is achieved through trial and error and repeated The structure of the

ARIMA model is ARIMA(2, 1, 1)(1, 0, 1)24 and the ARIMA model is also trained by similar

days to generate one step ahead forecasting. Through trial and error and repeating the

model building process, an ARIMA(2, 1, 1)(1, 0, 1)24 structure is identified. The forecasting

power is then used to do recursive 24-hour-ahead forecasting. When the forecast day has

passed, the model will be retrained to predict the next forecast day.
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3.6 Results and Discussion

3.6.1 Error Measurement

Two error measurements are used in this study to measure daily forecasting accuracy: nor-

malized mean absolute error (nMAE) and normalized root-mean-square error (nRMSE).

They are defined as:

nMAE =
100

N

N
∑

i=1

∣

∣P i
f − P i

a

∣

∣

PC

(3.15)

nRMSE =

√

1

N

N
∑

i=1

(P i
f − P i

a)
2

PC

(3.16)

where, N is the day length, P i
f is the forecast power output at hour i, P i

a is the actual

power output at hour i and PC is the capacity of the PV site. For a total NT testing days,

the average forecasting error and the standard deviation of the forecasting error are both

calculated.

3.6.2 Forecasting Accuracy

Results were generated for the period from April 1 to June 30. The data-preprocessing

engine utilized the proposed hybrid similar day method and the forecasting engine utilized

four forecasting models including a persistence model, an ARIMA model, an LS-SVM model

and an RBFNN model.

The average and standard deviation of forecasting error for San Diego in terms of nMAE

and nRMSE are presented in Figure 3.25. When using the proposed data-processing engine,

the persistence model and ARIMAmodel generated a more accurate forecast result compared

to the LS-SVM model and the RBFNN Model. The average forecasting error and the

standard deviation of the forecasting error of the persistence model and ARIMA are both

lower than the LS-SVM and the RBFNN for both first order error measurement (nMAE)
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and second order error measurement (nRMSE).
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Figure 3.25: Average and standard deviation (Std) of forecasting error for San Diego in term
of nMAE and nRMSE

Figure 3.26 shows the forecasting errors for Braedstrup. Similar to San Diego, the fore-

casting error at Braedstrup and Catania shows that when combining the similar day data-

preprocessing engine, the persistence model and ARIMA model perform better than the

LS-SVM and the RBFNN model. Figure 3.27 shows the forecasting error at Catania. It also

indicates an accurate forecasting result from the persistence model and the ARIMA model.

In terms of nMAE, the average error of the ARIMA and the persistence model are both less

than 8%.

In summary, when array level forecasting uses a similar day method based data-preprocessing

engine and ARIMA or a persistence model-based forecasting engine, better accuracy is

achieved compared to RBFNN and LS-SVM.

3.6.3 Comparison with Different Similar Day Methods

In the literature, two different similar day methods were utilized [32, 33]. In the following,

this study examines the forecasting accuracy improvement gained from a Data-Preprocessing

Engine built based on these two similar day methods. The improvements are compared with
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Figure 3.26: Average and standard deviation (Std) of forecasting error for Braedstrup in
terms of nMAE and nRMSE

the one proposed in this thesis.

Similar Day Method 1 [32] searched similar days based on the euclidean distance of

temperature. The forecast ED1(i, j) is defined as:

ED1(i, j) =

[

3
∑

k=1

(

T k
i − T k

j

)2

]
1

2

(3.17)

where, day j is the forecast day and day i ∈ [1, j] are training days, T 1
i , T

2
i , T

3
i are the

forecast high, low and average ambient temperatures for day i, T 1
j , T

2
j , T

3
j is the forecast

high, low and average ambient temperature for day j. Based on the value of ED1, the day

that has the shortest euclidean distance between forecast day and historical days will be

selected.

Similar Day Method 2 [32] searched for similar days based on similarity of season, solar

radiation, maximum temperature and minimum temperature. The similarity between day i

and day j is defined as:

ED2(i, j) =

(

1−

∣

∣

∣

∣

Di −Dj

365

∣

∣

∣

∣

)

×

(

1−

∣

∣

∣

∣

1

WAi −WAj

∣

∣

∣

∣

)

×

(

1−

∣

∣

∣

∣

1

TAi
Max − TAj

Max

∣

∣

∣

∣

)

×

(

1−

∣

∣

∣

∣

1

TAi
Min − TAj

Min

∣

∣

∣

∣

)

(3.18)
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Figure 3.27: Average and standard deviation (Std) of forecasting error for Catania in term
of nMAE and nRMSE

where, day j is the forecast day and day i ∈ [1, j] is a training day, Di is the day index for

day i and Dj is the day index for day j (eg D32 is February 1. WAi is the weather index for

day i and WAj is the weather index for day j, TAi
Max is the highest temperature at day i,

TAj
Max is the highest temperature at day j, TAi

Min is the lowest temperature at day i and

TAj
Min is the lowest temperature at day j. The similarity of season was measured by day

of difference and similarity of solar radiation is measured by weather index difference. This

method will find five historical days that have the smallest ED2 between the forecast day as

the training set.

In order to examine the improvement using different similar day methods, this study

defines the average forecast error and standard deviation of forecasting error without similar

day method as ENoSD
Mean and ENoSD

Std ; the average forecast error and standard deviation of

forecasting error with similar day method as ESD
Mean and ESD

Std . The accuracy improvement

based on average forecasting error is defined as:

IMPMean =
ENoSD

Mean − ESD
Mean

ENoSD
Mean

(3.19)
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The improvement based on standard deviation of forecasting error is defined as:

IMPStd =
ENoSD

Std − ESD
Std

ENoSD
Std

(3.20)

In the following, three data-processing engines were built using these three similar day

methods, combined with four different forecasting engines. Those different forecasting tools

were built and compared with each other to examine which data-processing engine is more

effective.

The first test was conducted using a persistence model. Without data-processing, the

forecasting engine chose the PM1 model. Since Similar day method 1 chooses only one most

similar day from the training days, the forecasting engine chose the PM1 model as well. PM5

was chosen as the forecast Engine when the Data-Preprocessing Engine is built by Similar

day method 2 which selects five most similar days. Since the proposed similar day method

can choose any number of similar days, PM12 is chosen for San Diego; PM18 is chosen for

Catania and PM4 is chosen for Braedstrup.
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Figure 3.28: Forecasting accuracy improvement from three similar day methods for persis-

tence model: (a) Improvement based on IMPMean, (b) Improvement based on IMPStd

Figure 3.28 (a) and (b) shows the plot of IMPMean and IMPStd for San Diego, Catania and

Braedstrup using a persistence model method. In terms of both IMPMean and IMPStd, these
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three methods can all help to improve the forecasting accuracy for all the testing locations.

What’s more the proposed similar day method gives a higher improvement compared to

Similar Day Methods 1 and 2. For all the three testing locations, the proposed similar day

method can help to gain a higher IMPMean improvement. In terms of IMPStd, only the

improvement for Catania is slightly less than the other two locations. One reason for this is

that the proposed similar day method has a better similar day selection formula, whereby

the forecast similarity is close to actual similarity. The other reason is that the proposed

similar day method is designed to select any number of training days for different sites. But

Similar Day Method 1 is designed to select one most similar day and Similar Day Method 2

is designed to select 5 most similar days.

The second test is conducted using the ARIMA model. Since it is impossible to build

ARIMA using only one training day, method 1 is not included in this study. ARIMA trained

with 25 previous days was chosen as the benchmark model. ARIMA trained with 5 similar

days selected by similar day method 2 and ARIMA trained with 25 similar days selected by

HD SD method is used for comparison.
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Figure 3.29: Forecasting accuracy improvement from two similar day methods for ARIMA

model: (a) Improvement based on IMPMean, (b) Improvement based on IMPStd

Figure 3.29 (a) and (b) is the plot of IMPMean and IMPStd for San Diego, Catania
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and Braedstrup using the ARIMA model. Similar to the result when using the persistence

model, the proposed similar day method also can help to gain a higher improvement based on

IMPMean. For Braedstrup, the improvement reached 30%. In terms of IMPStd, improvement

at Braestrup is still significant, but IMPStd at San Diego and Catania decreases. IMPMean

for Catania is 9.94% and IMPStd is only -2.14%, the proposed similar day method is still

effective when considering these two improvements together.

The third test is conducted using LS-SVM. The benchmark LS-SVM model is trained

using 10 previous days. Again five training days were selected for Similar Day Method 2.

The proposed similar day method selected 10 similar days. For simulation for Similar Day

Method 1, the training set is 10 days without similar day method, but the input data is

chosen by Similar Day Method 1.
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Figure 3.30: Forecasting accuracy improvement from three similar day methods for LS-SVM
model: (a) Improvement based on IMPMean, (b) Improvement based on IMPStd

Figure 3.30 (a) and (b) is the plot of IMPMean and IMPStd for San Diego, Catania and

Braedstrup using the LS-SVM model. For San Diego and Braedstrup, method 3 performs

better than the other two methods, but method 3 does not work well as well at Catania.

Adding it will actually harm the forecasting accuracy.

The last test is conducted using the RBFNN model. The benchmark RBFNN model is

trained by 50 days. Five training days were selected for Similar Day Method 2. The proposed
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similar day method selects 50 similar days. For Similar Day Method 1, the training set is

50 days without similar day method, but the input data is chosen by Similar Day Method

1. Figure 3.30 (a) and (b) is the plot of IMPMean and IMPStd for San Diego, Catania and

Braedstrup using the RBFNN model. At San Diego, only the proposed similar day method

can help to gain accuracy improvement. At Braedstrup, the proposed similar day method

can help to gain substantial IMPMean improvement, but loses some IMPStd improvement.

The IMPMean from the other two methods is not significant. At Catania, no similar day

method works; adding a similar day method will decrease the forecasting accuracy.
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Figure 3.31: Forecasting accuracy improvement from three similar day methods for RBFNN
model: (a) Improvement based on IMPMean, (b) Improvement based on IMPStd

In summary, the proposed similar day method performed better than the other two

methods. With the help of the proposed similar day methods, the persistence model can

gain a very significant improvement. This is consistent with a general rule in forecasting that

model sophistication does not always mean a better result [70]. For all three testing sites,

the proposed similar day method all have a better performance than other methods when

combined with different forecasting model. In fact, all methods fail to show improvement for

Catania using the RBFNN model. The RBFNN model needs more training days than the

other models. Because of the forecasting error of output-related variables, it cannot select too

many similar days and give them a right order. In general, similar day method is especially
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useful when combined with a computational effective models which need less training set.

Moreover, accurate output-related variable forecasting is crucial for a similar day method.

For example, the EVA of GHI is 16.35% for Catania, but 11.41% for Braedstrup. Thus, the

similar day method works better at Braedstrup.

3.6.4 Comparison with ARX

From the above simulation, the best array level forecasting tool is built by the proposed sim-

ilar day method based data-preprocessing engine and a persistence model-based forecasting

engine. This subsection compares the accuracy of this forecasting tool with an Auto Regres-

sive with Exogenous Input (ARX) model [23] using the same data, i.e., Data from Site 2:

Braedstrup, and the same error measurement. The error measurement used in this compar-

ison is nRMSE which is normalized by mean peak power of the 21 PV systems over 2006

(2769 kW). The ARX model runs at 12:00 and can predict up to 36 hours, while the proposed

array level forecasting tool runs at 24:00 and predicts up to 24 hours. In the following, a six

hour period from 13:00 to 18:00 is selected as the testing period. For this period, ARX did a

six-hour-ahead forecast, while the proposed array level forecasting tool did a 18-hour-ahead

forecast. The comparisons are shown in Table 3.7. The general decrease in forecasting error

with time is due entirely to the decrease in power output as sunset is approached and is

not in itself an indication of increasing accuracy. Only comparative performance of the two

models can be assessed from this table. At 13:00 and 14:00, the ARX has better accuracy

than the proposed model, but at 15:00 to 18:00, the proposed method has better accuracy.

Overall, the average accuracy of the proposed method is 7% lower than the ARX model in

this period. Considering that the forecasting horizon (up to 18 hours) of the proposed model

is longer than the ARX model (up to six hours), the proposed forecasting tool is effective.
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Table 3.7: Forecasting error comparison between ARX and proposed forecasting model for
the same time period with different forecasting horizon

Time 13:00 14:00 15:00 16:00 17:00 18:00

Forecasting Horizon of ARX 1 h 2 h 3 h 4 h 5 h 6 h
Average Forecasting Error (nRMSE) 9.0% 9.5% 9.0% 6.75% 5.4% 4.5%

Forecasting Horizon of Proposed Model 13 h 14 h 15 h 16 h 17 h 18 h
Average Forecasting Error(nRMSE) 11.1% 10.1% 8.6% 4.6% 4.3% 2.0%

3.7 Summary

In summary, this chapter proposed an array level forecasting tool. This tool combined a data-

preprocessing engine and a forecasting engine. The foundation of the data-preprocessing

engine is a similar day method which searches similar days based on the hybrid combination

of the output-related variables. When this data-preprocessing engine was combined with four

widely used forecasting models, a simple persistence model and the ARIMA model generated

more accurate forecasts compared to the LS-SVM and the RBFNN models. Through the

analysis of the power output, this study found the proposed similar day method works better

than similar day methods in the literature and the overall forecasting tool generated a more

accurate forecast compared to the ARX model in the literature.
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Chapter 4

System Level Short-Term PV Output Forecasting

4.1 Introduction

In this chapter, the short-term forecasting tool designed for aggregated system level PV

output is introduced. This 24-hour-ahead PV output forecasting can help system operators

to maintain the reliability of the system, especially when this system involves or plans to

involve large-scale PV power into the grid. This study is conducted using the aggregate

PV power output in California, which plans to integrate a significant amount of renewable

energy into the grid. In Section 4.2, a brief introduction of solar power in California, and an

analysis of the hourly PV output is conducted. In Section 4.3, the system level forecasting

tool and four forecasting models used in this tool are described. In Section 4.4, the forecasting

results are discussed. In Section 4.5, the conclusions for this system level forecasting tool

are summarized.

4.2 Data Description and Analysis

The studied system is the California power grid. Because of the geographical diversity of

solar arrays across a wide area, the aggregated solar power output is less prone to local

weather changes. Hence, the characteristics of the system level output are expected to be

different from those of a single array level PV system.

4.2.1 Solar power in California

The California power grid covers three quarters of California and part of Nevada, and this

grid is operated by California ISO, an independent system operator in North America. One
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goal of California ISO is integrating more renewable energy into the grid. By 2010, 17% of

the load was served by renewable resources and 33% of the load is expected to be supplied

by renewable energy by 2020 [71].
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Figure 4.1: California power supply shares from various resources on July 2 [68]

The total net capacity of the California grid is 60,703 MW and 18.3% of the load is

currently supplied by renewable energy. Solar energy counts 15.6% of the total renewable

energy capacity [71]. To illustrate the daily power supply within California, the power output

distribution from various resources on July 2 (randomly selected) is analysed. Figure 4.1 (a)

shows the power supply share from various resources on July 2, 2013. Most of the power is

generated by thermal power, but the renewable power also has its significant share as shown

in the dark blue area. On July 2, the 24-hour system demand was 851,623 MWh on this

day, and 106,858 MWh, i.e., 12.55% of the load is powered by renewable power. Figure 4.1

(b) shows the share of different renewable resources within the grid on July 2. Solar power

has a clear portion in the renewable resources. The installed PV capacity has surpassed the

solar thermal by 2008 [72]. Currently, solar PV has a significantly larger portion compared

to solar thermal power. On July 2, 2013, solar PV produced 13,312 MWh and solar thermal

has a total production of 2,166 MWh. The newly added PV capacity in 2012 was over 670
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MW and California plans to install 12,000 MW capacity by 2020 [73].

In summary, PV will produce more electricity within the grid in the future and so will

impose more influence on the grid. Thus, its output characteristics need to be analyzed.

4.2.2 Analysis of Aggregated PV Power Output

The impact of PV power on the grid will increase with the development of PV capacity.

Because of the policy support and good insolation resource, solar power in California leads

the USA California in this area, having the largest number of installed rooftop PV systems

in the USA. In this section, the characteristics of aggregated PV power output are analysed.

The system level data is collected from California ISO, who publish PV power production

within the ISO grid with one-hour intervals [71]. Starting from December 1, 2012, the PV

power and thermal solar power were published separately.

4.2.2.1 Analysis of Daily Energy Production

The daily energy production feature of the system level output is analysed here. Unlike a

array level PV power system, which has constant capacity, the capacity of system level PV

power is not a constant value. Thus, the daily energy production of system level and array

level outputs may have a different feature.
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Figure 4.2: The output of a array level PV system in California (kW)

Figure 4.2 shows the daily energy production from one array level PV system in Cali-
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fornia (San Diego in Chapter 3) from July 1, 2010 to December 31, 2011. Although, there

are fluctuations among this production series, the trend of this array level daily energy pro-

duction shows a clear annual pattern. For example, on the same data over different years

(e.g July 1, 2010 and July 1, 2011), the daily production will not exceed 12 kWh due to

irradiance strength and installation capacity limitation.

Figure 4.3 shows the daily energy production from all grid-connected solar energy (Solar

PV and solar thermal) from April 20, 2010 to July 8, 2013 within California. Because of the

continuous newly added solar energy, the output is increasing, which is especially obvious for

2013, due to the fast development of solar systems. There were 438 MW new PV capacity

added in California during the first-quarter of 2013 and 409 MW new PV capacity during

the second-quarter of 2013 [74]. On April 20, 2010, the daily production was less than 200

MWh, however, it was more than 500 MWh on April 20, 2013. As stated in Section 4.2.1,

PV capacity surpassed solar thermal by 2008. Thus, although Figure 4.3 shows production

of solar energy, PV energy production is expected to dominate in the future.
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Figure 4.3: On-grid solar energy production within California (Both solar PV and solar
thermal energy) (MW)

4.2.2.2 Analysis of Daily Energy Production Period

Solar energy production period for a single site has a close relationship with the day length.

The irradiance can even be approximately calculated by the day length [17]. In the following,
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Figure 4.4: Comparison of power production duration from a PV system in San Diego and
the day length of San Diego

this relationship is examined for system level power data and is compared to array level power

data. Figure 4.4 compares the power production duration from one PV system in San Diego

and the day length of San Diego from August 1, 2010 to December 31, 2011. The array

level power production duration is correlated strongly with the day length. The difference

between production duration and day length is less than two hours. Since the production

duration is recorded as an integer, this difference is acceptable.
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Figure 4.5: Comparison of aggregated solar power production duration (Solar PV and solar
thermal) in California and the day length of San Diego

The power production period of aggregated system level solar does not have the close
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relationship with day length as the array level power output. Figure 4.5 plots the relationship

between the aggregated solar power production duration in California and the day length of

San Diego. San Diego was chosen as the representation site in California to make the day

length comparison because it is in the south of the states where the solar power is likely to

be located. Latitude and longitude effect on day length are ignored. This power production

duration has a larger fluctuation compared to the duration of an array PV system. Some

days even have 24-hour energy production. Day-to-day difference in daily production changes

are frequently over one hour. Solar thermal power is the main reason behind this significant

fluctuation. Since solar thermal plants can save the heat of solar energy and use it when

they want to produce electricity, there may be no power production for some days and may

produce power after sundown. Thus, the power production from solar thermal plants may

not follows the weather or irradiance strength. For example, the power output on December

31, 2012 and January 2, 2013 have a production period of 16 hours which is much longer

than the day length of California (10 hours for December).
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Figure 4.6: Comparison of aggregated PV power production duration and aggregated solar
thermal power production duration in California

Figure 4.6 shows the comparison of aggregated PV power production duration and ag-

gregated solar thermal power production duration from December 1, 2012 to July 8, 2013.
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Clearly, although the day length is recorded for San Diego, the aggregated PV power output

production period has a very similar trend to the day length of San Diego. In contrast, the

aggregated solar thermal power output production period has quite a large deviation from

the day length. This figure shows that the fluctuation of the overall solar power data is

mainly from the solar thermal power output. Because of the large power production period

variation of solar thermal power, it should be excluded for the analysis.

4.2.2.3 Analysis of Intra-day Fluctuation

When removing the solar thermal power from the solar data, the remaining PV power

data has less power production duration deviation. Moreover, because of the geophysical

smoothness, the output of aggregated system has less fluctuation than the individual sites

examined in the previous chapter. In the following, the intra-day fluctuation of this system

level PV output series was analysed. Similar to the analysis of the array level fluctuation,

the differenced series PD
t for the aggregated system level PV output is plotted in Figure 4.7

(a). Visually, the fluctuation is much lower than the fluctuation level of array level output,

which is plotted in Figure 4.7 (b) (Figure 4.7 (b) is the same as Figure 3.8 (a) in Chapter

3). In terms of maximum fluctuation, aggregated power is 0.4581 which is much less than an

array level system in California (0.8217). In term of the standard deviation of the intra-day

fluctuation, array level power is 0.1237 and system level power is 0.0526.

The historical power data before December 1, 2012 is the sum of solar PV and solar

thermal. This part of the data is not suitable to be used as a training set, even if the majority

is solar PV power. Figure 4.8 compares the maximum and standard deviation of intra-day

fluctuation levels for solar PV series, solar thermal series and their summation for the period

from December 1, 2012 to July 8, 2013. The solar thermal series has a significantly higher

intra-day fluctuation level than the solar PV series. Although solar PV is the major part

of the solar power, mixing solar thermal and solar PV together will increase the intra-day

fluctuation in terms of standard deviation. Thus, from the viewpoint of intra-day fluctuation,
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Figure 4.7: Hourly intra-day fluctuation series over 220 days

the training set should be the PV power data alone.
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Figure 4.8: Intra-day fluctuation of solar PV, solar thermal and total solar power

4.2.2.4 Summary

In summary, the aggregated PV output has an increasing trend and lower intra-day function

level. The increasing trend in solar production may influence the importance of historical

data that far from the forecast day. Moreover, the solar thermal and solar PV output

are published together as solar energy before September 1, 2012. Therefore, data recorded

before this date may not be suitable to be used as a training set because of the high intra-
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day fluctuation of solar thermal data. Thus, it is suitable to use PV output data alone as a

training set. In the following, the modeling process is done by only aggregated power output

from September 1, 2012 to July 8, 2013.

4.3 Forecasting Tool for System Level PV Output Forecasting

In this section, the system level forecasting tool is introduced. The proposed tool does

not have a similar day-based data-preprocessing engine, which will be a suggested future

research direction. The forecasting engine is built by four models including persistence,

RBFNN, ARIMA and LS-SVM, which are frequently used for PV output forecasting [23,30,

31]. Available training data for all models is the recorded hourly PV output from September

1, 2012 to June 17, 2013 and the testing period is from June 18, 2013 to July 8, 2013. In

the following, these four models are developed to gain their best performances.

4.3.1 ARIMA based Forecasting

The available historical PV output series data for a specific ARIMA model can be denoted

as:

Pt; t = 1, · · ·T. (4.1)

This series includes historical power data up to hour 24 of day d − 1 (day d is the forecast

day). The value of T denotes the size of the training set. For example, T = 1344 means

the past two months data. When an ARIMA model is trained by this training series, it will

generate 24 future values (T + 1, · · ·T + 24) for day d. When the forecast day has passed,

the model will be retrained to predict the next forecast day. In the following, the size of the

training set, as well as the model structure, are investigated to gain the best performance.

The initial structure of the ARIMA model is found through analyzing the Auto Corre-

lation Function (ACF) and Partial Auto Correlation Function (PACF) plot. Figure 4.9 is

the ACF and PACF plot for overall power series Pt. A clear 24-hour period of ACF plot
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Figure 4.9: ACF and PACF plot of the original aggregated system level PV power output

indicates Pt the diurnal variation. As well, the PACF plot does not decay. These two plots

indicate that Pt is non-stationary. To meet the stationary requirement of the ARIMA model,

the original power data needs differencing to remove this non-stationary. Thus, a 24 order

differencing is needed to remove the seasonality. Recalling the increasing trend of this series,

another first order differencing is needed. Figure 4.10 shows the ACF and PACF plot for

the differenced series. The auto correlation decreases sharply after one hour and partial

correlation decreases sharply after two hours. Moreover both auto correlation and partial

correlation is large and negative at 24 hours. Hence, ARIMA(1, 1, 1)(1, 0, 1)24 could be used

as the tentative model.

The initial model identified by ACF and PACF plot is the tentative model. The final

model of ARIMA must be determined by trial and errors. In practice, all the orders of

(p, d, q, P,D,Q) of the ARIMA model are smaller than 2 [75]. Among this range, these

tentative models are used to generate forecasts for the period from June 18, 2013 to July

8, 2013. In this test, the size of the training set is 2400 (100 days) for all tentative models.

Table 4.1 lists the forecasting error from different combinations. Through testing, the best

structure is ARIMA(0, 1, 1)(1, 0, 1)24, the average error is 5.42%, and the standard deviation

of the forecasting error is 3.85%.

The size of the training set also has influence on the forecasting accuracy of the ARIMA
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Figure 4.10: ACF and PACF plot of the differenced aggregated system level PV power
output

model. This analysis is conducted using the initial ARIMA model (ARIMA(1, 1, 1)(1, 0, 1)24).

Figure 4.11 (a) and (b) shows the average forecasting error and standard deviation of fore-

casting error of the ARIMA(1, 1, 1)(1, 0, 1)24 model when changing the size of the training

set from 10 days to 200 days. Both the average and standard deviation of forecasting er-

ror became stable when ARIMA is trained by more than 30 days and the best accuracy is

achieved when the size of the training set is 100 days.

Using the final configuration, the final model structure is ARIMA(0, 1, 1)(1, 0, 1)24 and the

training data is 100 previous days. To illustrate the forecasting process of the ARIMA model,

one day in the testing period (July 2) is used as an example. The ARIMA(0, 1, 1)(1, 0, 1)24

can be specified as:

(1− Φ24B
24)(1− B)(1−B24)Pt = c+ (1 + θ1 ∗B)(1 + Θ24B

24)ǫt (4.2)

Through training, the parameters in this equation are calculated and the final model for

July 2 is:

(1− 0.0560611B24)(1− B)(1−B24)Pt = 0 + (1 + 0.162325B)(1− 0.828111B24)ǫt (4.3)

Figure 4.12 is the residual ACF plots for this ARIMA model. The horizontal blue line in

this figure is the significance limits of ACFs. Clearly, there is no significant correlation for
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Table 4.1: Influence of model structure on the forecasting accuracy of ARIMA measured by
nRMSE

Structure Size Average Std Max Min

ARIMA(0, 1, 1)(1, 0, 1)24 100 5.42% 3.85% 15.56% 1.57%

ARIMA(0, 1, 2)(1, 0, 1)24 100 5.43% 3.85% 15.57% 1.60%
ARIMA(1, 1, 0)(1, 0, 1)24 100 5.43% 3.85% 15.56% 1.57%
ARIMA(1, 1, 1)(1, 0, 1)24 100 5.43% 3.84% 15.56% 1.58%
ARIMA(1, 1, 2)(1, 0, 1)24 100 5.58% 4.12% 16.58% 1.53%
ARIMA(2, 1, 0)(1, 0, 1)24 100 5.43% 3.85% 15.57% 1.60%
ARIMA(2, 1, 1)(1, 0, 1)24 100 5.55% 4.12% 16.62% 2.04%
ARIMA(2, 1, 2)(1, 0, 1)24 100 6.23% 4.90% 18.89% 1.14%
ARIMA(2, 1, 2)(1, 0, 0)24 100 6.36% 4.18% 14.97% 0.95%
ARIMA(2, 1, 2)(0, 0, 1)24 100 5.61% 4.26% 17.25% 1.55%
ARIMA(2, 1, 2)(0, 0, 0)24 100 6.23% 4.90% 18.89% 1.14%
ARIMA(1, 1, 1)(0, 0, 0)24 100 6.19% 4.88% 18.90% 1.27%

the residual series. Thus, this is a trained ARIMA model. The forecasting result from this

ARIMA model is plotted in Figure 4.13. The hourly forecast power output is very close to

the recorded power output and the nRMSE forecasting error is only 2.04%.

4.3.2 RBFNN based Forecasting

The non-linear autoregressive RBFNN model as shown in 4.14 can be expressed as P̂t =

f(Pt−1, Pt−2 · · ·Pt−Lag). To train this model, the historical PV output series data Pt needs

to be modified as a training matrix. For example, when Lag equals to 24, Pt will be modified

into the following matrix format:



















P1 P2 · · · P24

P2 P3 · · · P25

...
...

...

PT−24 PT−23 · · · PT−1



















⇒



















P25

P26

...

PT



















(4.4)

where, the left matrix is the input matrix and the right matrix is the target matrix. This

matrix indicates the structure of RBFNN is P̂t = f(Pt−1, Pt−2 · · ·Pt−24) and the numbers of

training samples are T − 25 for day d. When the RBFNN model is trained by T − Lag − 1
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Figure 4.11: Influence of the size of the training set on the forecasting accuracy of ARIMA
measured by nRMSE

training sample, RBFNN will use the past Lag data point from 24:00 of day d− 1 as input

to generate the forecast output at 1:00 of day d (P̂T ). The P̂T is then input along with

(Pt−1, Pt−2 · · ·Pt−Lag+1) into the original model to generate an additional forecast data point

ˆPT+1. This process repeats until all 24 hours (P̂T · · · ˆPT+23) have been forecasted. When the

forecast day has passed, the model will be retrained to predict the next forecast day.

The forecasting accuracy of the RBFNN model is influenced by the number of training

samples, the structure of the RBFNN model and the stopping criteria of the training process

of RBFNN. These three aspects are simulated in the following so as to contribute to the
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Figure 4.12: Residuals ACF plots for ARIMA model
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Figure 4.13: Forecasting result for July 2 using ARIMA

Figure 4.14: Black box structure of the RBFNN model

forecasting accuracy of RBFNN.

The model structure (or the number of inputs) is determined by the value of Lag. In

order to find the value of Lag that can generate the most accurate forecast, a test was

conducted with 100 training days. The stopping criteria for training is set as follows: the

maximum number of hidden layer neurons is 70 and the performance goal was set as 0.0001

(MSE). The training process stopped when it reached either of them. Table 4.2 shows the

forecasting accuracy changes with different Lag values. When Lag = 24, the forecasting

error is the lowest. The average nRMSE error is 7.42%, which is much lower than others.

Hence, P̂t = f(Pt−1, Pt−2 · · ·Pt−24) is selected as the model structure for RBFNN.

The test for the influence of the training set is conducted using P̂t = f(Pt−1, Pt−2 · · ·Pt−24)

model. The stopping criteria of the RBFNN training were the same as the above test. This

test is used to show the forecasting error changes when the training days was increased from

86



Table 4.2: Influence of model structure on the forecasting accuracy of RBFNN measured by
nRMSE

Lag Average Std Max Min

16 17.54% 17.37% 72.71% 2.47%
20 12.44% 15.54% 72.45% 1.51%
24 7.42% 3.91% 14.88% 1.54%

36 10.25% 9.21% 39.79% 1.07%

10 days to 190 days. Figure 4.15 (a) and (b) shows the forecasting accuracy changes when

adjusting the size of the training set in terms of nRMSE. The training set should be at least

30 to gain an average forecasting accuracy less than 10%. Within the range of 90 days to 110

days, the forecast error is low and stable. In this study, 100 days was chosen as the number

of training days.
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Figure 4.15: Influence of the size of the training set on the forecasting accuracy of RBFNN

measured by nRMSE

The influence of the stopping criteria for the training process was tested through trial and

errors for the testing period. In the following, different stopping criteria combinations of the

maximum number of hidden layers neurons (MN) and the performance goal was simulated

with P̂t = f(Pt−1, Pt−2 · · ·Pt−24) model and 100 training days. The training process will stop
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Table 4.3: Influence of the stopping criteria for the training process on the forecasting
accuracy of RBFNN measured by nRMSE

goal 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.001 0.001 0.001

MN 90 80 70 60 50 40 90 80 70

Average 6.82% 6.98% 6.72% 7.03% 7.78% 9.17% 7.46% 7.46% 7.46%
Std 4.41% 4.43% 4.11% 4.38% 4.69% 6.37% 4.56% 4.56% 4.56%
Max 17.50% 16.79% 17.13% 17.13% 19.96% 26.71% 17.74% 17.74% 17.74%
Min 1.54% 1.13% 1.81% 1.78% 1.92% 1.42% 2.02% 2.02% 2.02%

goal 0.001 0.001 0.001 0.01 0.01 0.01 0.01 0.01 0.01

MN 60 50 40 90 80 70 60 50 40

Average 7.46% 7.46% 7.46% 12.41% 12.41% 12.41% 12.41% 12.41% 12.41%
Std 4.56% 4.56% 4.56% 5.35% 5.35% 5.35% 5.35% 5.35% 5.35%
Max 17.74% 17.74% 17.74% 23.18% 23.18% 23.18% 23.18% 23.18% 23.18%
Min 2.02% 2.02% 2.02% 5.44% 5.44% 5.44% 5.44% 5.44% 5.44%

when either of these two criteria are reached. Figure 4.17 shows the training process for

July 2, when MN is set as 70 and goal as 0.0001. As the increase of newly added hidden

neurons in each epochs, the performance drops. The training process stoups when it reaches

the limit of maximum MN (70) first, while the performance does not reach the goal. The

simulation results are summarised in Table 4.3. The best forecasting accuracy is achieved

when setting the stopping goal as 0.0001 and MN as 70.
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Figure 4.16: Training process of the RBFNN model for July 2 prediction

Using the above configuration, RBFNN is used to predict output for July 2. Figure 4.16

shows the training process of RBFNN model for July 2 prediction. The training process
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Figure 4.17: Forecasting result for July 2 using RBFNN

stopped when it reached the limit of maximum number of hidden layer neurons. Thus,

network trained for this day has 70 hidden layer neurons. Figure 4.17 shows the forecasting

result for July 2 using RBFNN with the above configuration. The forecasting error is 12.16%

(nRMSE).

4.3.3 LS-SVM based Forecasting

The non-linear autoregressive LS-SVM model as shown in 4.18 can also be expressed as

P̂t = f(Pt−1, Pt−2 · · ·Pt−Lag). To train this model, the historical PV data Pt needs to be

modified as a training matrix and fed into the LS-SVM toolbox to generate the forecast [69].

Similar to the RBFNN model, LS-SVM will recursively generate the next day’s output.

The forecasting accuracy of the LS-SVM model is influenced by the number of train-

ing samples, the structure of the LS-SVM model and the model parameters’ optimization

method. These three aspects are simulated in the following so as to contribute to the fore-

casting accuracy of LS-SVM.

The model structure (or the number of inputs) for LS-SVM is also determined by the

value of Lag. In order to find the value of Lag that can generate the most accurate forecast,

a test was conducted with 5 training days. Radial basis function was selected as the kernel

function and the parameter of this function is optimized by simplex method. Table 4.2 shows
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Figure 4.18: Black box structure of the LS-SVM model

the forecasting accuracy changes with different Lag values. When Lag = 12, the forecasting

error is the lowest. The average nRMSE error is 5.96%. Hence, P̂t = f(Pt−1, Pt−2 · · ·Pt−12)

is selected as the model structure for LS-SVM.

Table 4.4: Influence of model structure on the forecasting accuracy of LSSVM measured by
nRMSE

Lag Average Std Max Min

12 5.96% 4.11% 16.54% 2.10%

24 6.51% 4.82% 16.42% 1.44%
36 6.23% 4.89% 18.44% 0.90%
48 5.93% 4.53% 18.81% 1.28%

The test for the influence of training set is conducted using P̂t = f(Pt−1, Pt−2 · · ·Pt−12)

model, radial basis kernel function and simplex optimization method, by changing the num-

ber of training days between 5 and 25. Figure 4.15 (a) and (b) shows the forecasting accuracy

changes in terms of nRMSE. The best forecasting accuracy is achieved by 5 training days

when considering both the average forecasting error and standard deviation of the forecasting

error. In this study, 5 training days were chosen.
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Figure 4.19: Influence of the size of the training set on the forecasting accuracy of LS-SVM

measured by nRMSE

Table 4.5: Influence of kernel function and optimization method for tuning kernel parameters
of LSSVM measured by nRMSE

Kernel Function Optimization Method of kernel parameters Average Std

RBF Simplex 5.96% 4.11%

RBF Grid search 6.05% 4.34%
Linear Simplex 14.60% 3.93%
Linear Grid search 14.61% 3.94%

Polynomial Simplex 6.80% 3.61%

The influence of kernel function and the corresponding parameters optimization method

is tested through trial and error for the testing period. One challenge of LS-SVM forecasting

is that there is no optimal method to select the kernel function and free parameters [76].

Therefore scenarios were developed to examine different combinations when using 5 days as

the training set and P̂t = f(Pt−1, Pt−2 · · ·Pt−12) as the model structure. Table 4.5 shows

radial basis function with simplex method has a better performance.

Similarly, July 2 is used to illustrate the prediction process of theLS-SVM model. Trained

by five previous days, parameter γ and σ2 of the radial basis kernel function is optimized
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as 212.025 and 9.8278. Figure 4.20 shows the function estimated by power data from June

28 to July 1 and the above kernel function. The blue dots are the power data points and

the red line is the estimated function. When using the last 12 data points as input for this

trained LS-SVM model, the result of the forecasting is plotted in Figure 4.21. The predicted

output shown by the blue line this figure is very close to the recorded power output, shown

as the red line. The forecasting error in terms of nRMSE for July 2 is 2.25%.
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Figure 4.20: LS-SVM estimation result in the training environment
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Figure 4.21: Forecasting result for July 2 using LS-SVM

4.3.4 Summary

Through the above modelling process, the final model structures were found for each of them.

The best structure of the ARIMA model is ARIMA(0, 1, 1)(1, 0, 1)24 and the optimal training
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set is 100 days. The best structure of the RBFNN model is P̂t = f(Pt−1, Pt−2 · · ·Pt−24)

which is trained by 100 days. In the training process the stopping goal is 0.0001 and the

maximum number of hidden layer neurons is 70. The best structure of the LS-SVM model

is P̂t = f(Pt−1, Pt−2 · · ·Pt−12) which is trained by 5 days. Radial basis function was selected

as the kernel function and the free parameters are optimized by the simplex method.

4.4 Results and Discussion

In this section, the forecasting accuracy of the system level forecasting tool built by the three

different models is evaluated and compared to a bench mark persistence model. Through

comparison, this study examines which model is suitable for aggregate system level forecast-

ing. In the end, the forecasting accuracy of the array level forecast tool and the system level

forecast tool is compared and analyzed.

4.4.1 Comparison of Different Models

In this section, the forecasting accuracy of the above three models are evaluated and then

compared to a benchmark persistence model. Through evaluation, this study examines which

forecast models are more suitable to build a system level forecasting tool.

For the three-weeks testing period, ARIMA, LS-SVM and RBFNN models were compared

to a persistence model. Figure 4.22 (a) shows the daily error (nRMSE) of the persistence

model and Figure 4.22 (b) shows the forecasting accuracy improvement over the persistence

model using the other three models. The improvement is based on the error difference.

For example, the persistence model’s forecasting error for June 25 was 18.89%, and the

forecasting error of ARIMA, LS-SVM and RBFNN models for June 25 is 6.10%, 6.40% and

7.95% respectively. Correspondingly, the forecast improvement over PM for ARIMA, LS-

SVM and RBFNN is 12.79% (18.89%-6.10%), 12.49% (18.89%-6.40%) and 10.94% (18.89%-

7.95%). Seen from figure 4.22 (a), persistence model can generate very accurate forecasts
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for some days (e.g June 18, June 22 and June 26). However, forecasting accuracy is not

constant and the persistence model produces very inaccurate forecasting for days like June

21 and June 25.

06/18 06/22 06/26 06/30 07/04 07/08
0

5

10

15

20

Date

F
or

ec
as

t e
rr

or
 (

%
)

(a) Forecasting error of persistence model

06/18 06/22 06/26 06/30 07/04 07/08
−15

−10

−5

0

5

10

15

Date

F
or

ec
as

t I
m

pr
ov

em
en

t 
ov

er
 p

er
si

st
en

ce
 m

od
el

 (
%

) (b) Comparison between ARIMA, RBFNN, LS−SVM and Persistence Model

 

 

ARIMA
LS−SVM
RBFNN

Figure 4.22: Comparison about ARIMA,LS-SVM and RBFNN over persistence model

Compared to the persistence model, the chosen models may not perform well for days

like July 18 and 19, when the persistence model has very good accuracy. Although the low

intra-day fluctuation level of system level data allows the persistence model to have very

good accuracy for some days, it cannot give an accurate prediction when the output for the

day before the forecast day is significantly different from the forecast day, like June 25. For

those days, the ARIMA, LS-SVM and RBFNN models have better performance. Since we do

not know the intra-day fluctuation between forecast day and the day before it in real time,

it is suitable to select models that can handle high intra-day fluctuation well, such as the
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ARIMA model. Although they have a slightly higher error for days with very low intra-day

fluctuation, they can handle forecast days that have very high intra-day fluctuation. The

RBFNN performs the worst of these models. It may produce big errors for days that RBFNN

is not trained well on, like July 2.

Figure 4.23 plots the measured power output and the predicted power output for four

testing days to show the difference in the forecasting models. Obviously, the RBFNN model

is untrained for June 21, as the predicted output is higher than 2000 MW at noon, which is

impossible. Similarly, RBFNN is not trained very well for July 2 and predicted a bad result.

For June 19 and 20, these models have a similar performance.
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Figure 4.23: Measured power and predicted power from Persistence Model, ARIMA, LS-SVM
and RBFNN

Table 4.6 shows the forecasting accuracy summary for the testing period from the above

three models. Compared to the LS-SVM and the RBFNN, ARIMA has the best forecasting

accuracy. In term of average nMAE error, ARIMA is 14.11% less than LS-SVM and 28.21%

less than RBFNN. In terms of the standard deviation of nMAE error, ARIMA is 6.16% less

than LS-SVM and 8.70% less than RBFNN. Moreover, ARIMA performs better than RBFNN

and LS-SVM using RMSE and nRMSE as well. Hence, ARIMA has better performance than

the other two models.
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Table 4.6: Forecasting accuracy of ARIMA, LS-SVM and RBFNN

ARIMA LS-SVM RBFNN

nMAE nRMSE nMAE nRMSE nMAE nRMSE

Mean 3.97% 5.21% 4.53% 5.85% 5.09% 6.61%
Std 2.76% 3.71% 2.93% 3.91% 3.00% 3.94%

In summary, when the output pattern of two consecutive days are very similar, the

persistence model usually performed better than the other three models. But when the

daily power difference is significant, ARIMA and LS-SVM usually performed better than

persistence model. The RBFNN model is vulnerable to high intra-day fluctuation, so it

produced a big errors for some days. In summary, ARIMA is the best choice for aggregated

system level power forecasting.

4.4.2 Comparison Between System Level and Array Level Forecasting

In comparison, the maximum intra-day fluctuation of system level power output is 180%

lower than that of array level power data and the standard deviation of intra-day fluctuation

of system level power output is 235% lower than that of array level power data. A lower

intra-day fluctuation level makes system level data is easer to predict.
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Figure 4.24: Forecasting accuracy comparison between system level forecasting tool and
array level forecasting tool based on average nRMSE error: (a)The array level tool is built
without data-preprocessing engine,(b) The array level tool is built with data-preprocessing
engine

To illustrate the influence of intra-day fluctuation, the forecasting accuracy of system level
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forecasting is compared with array level forecasting in Figure 4.24. Figure 4.24 (a) shows

the difference of system level forecasting error and the array level forecasting error using

four models without data-preprocessing engine. Each bar shows the array level forecasting

error over the system level forecasting error. For example, the average forecasting error for

array level forecasting tool using the persistence model without data-preprocessing engine

is 12.55%, while the average forecasting error for the system level forecasting tool using the

persistence model is 6.19%. Thus, the difference is 203%, as shown in the bar for persistence

model in Figure 4.24 (a). Without using data-preprocessing, the forecasting error difference

of the array level forecasting tool and the system level forecasting tool ranges from 173%

to 224%. This difference is similar to the intra-day fluctuation. Figure 4.24 (b) shows the

difference of system level forecasting error and array level forecasting error using four models

with the data-preprocessing engine. The difference drops to the range of 160% to 202%. On

the one hand, the data-preprocessing engine can help the forecasting engine to deal with the

fluctuation and reduce the array level forecasting error. On the other hand, the influence of

intra-day fluctuation is significant, a lower fluctuation of system level power data makes it

easer to forecast, even without the data-preprocessing engine.

4.5 Summary

In this chapter, a short-term system level forecasting tool was established. Because of the

geographical diversity of solar arrays across a wide area, it shows a different feature of a

single array level PV system. System level data has an increasing trend which is lead by

the new PV capacity. In terms of intra-day fluctuation characteristics, system level data

is 50% less than array level power output. After that, a forecasting tool was generated for

system level forecasting. Through simulation, ARIMA was found to have better forecasting

accuracy compared to LS-SVM and RBFNN. In terms of nRMSE, the average forecasting

error of ARIMA is 5.42% for a three-week testing period. The forecasting accuracy of the
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system level forecasting tool was then compared to the array level forecasting tool. Through

comparison, a lower intra-day fluctuation leads to a similar range of forecast error reduction.

In the future, through analyzing the changes of intra-day fluctuation of system level data,

the potential forecasting error of the proposed tool could be appropriately estimated.

98



Chapter 5

Conclusions

5.1 Summary and Conclusions

In this thesis, a short-term forecasting tool was proposed to predict array level and aggregated

system level PV power output. Because of the high intra-day fluctuation of array level power

output, the forecasting tool includes both a similar day based data-preprocessing engine

and a forecasting engine. The data-preprocessing engine is designed through analyzing the

relationship between the power output and output-related variables. Through analysis, a

group of forecast output-related variables is used to build the similar day selection formula

to choose the similar day training set and then fed into the forecasting engine. This tool

is tested for three locations around the world with substantially different climates. The

forecasting result shows that this new hybrid similar day-based data-preprocessing engine

is more effective than previous methods described in the literature. Moreover, the overall

forecasting accuracy of this array level forecasting tool is compared to an ARX model in

the literature. For the location of Breadstrup in Denmark, better forecasting accuracy is

achieved through the proposed tool.

The intra-day fluctuation of aggregated system level data is relatively lower and the

forecasting tool includes only the forecasting engine. Candidate models for this forecasting

engine included the persistence model, ARIMA, LS-SVM and RBFNN. The persistence

model is used to generate benchmark results. The ARIMA, LS-SVM and RBFNN models

are simulated to find the optimal structure, training set size and training process. Through

result comparison, the ARIMA model has the best forecasting accuracy compared to the

other four models.
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5.2 Contributions

The focus of this study is short-term PV power forecasting. The contributions of array level

forecasting in Chapter 3 are:

• A hybrid similar day method is proposed to build the data-processing engine.

The similar day selection algorithm is proposed from the available output-

related variables. Compared to the similar day methods in the literature, the

proposed similar day method improves forecasting accuracy.

• The overall accuracy of the array level forecasting tool is better than an ARX

model in the literature.

Following is the summary of the contributions of aggregated system level forecasting in

Chapter 4:

• Currently, most of the research concentrates on array level forecasting. This

system forecasting tool is proposed to fill the gap for the system level PV

output field.

• The intra-day fluctuation level of system level data is analyzed. Compared to

an array level PV system, the fluctuation is 50% lower. Thus, the forecasting

accuracy of system level data has a better accuracy.

• Through the forecasting results comparison between array level and system

level forecasting, this study finds the persistence model does not work very

well for aggregated power output forecasting. This computationally effective

model works for array level forecasting because of the assistance of a data

pre-processing engine.
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5.3 Directions for Future Work

Based on the above research works, further research work may look at the following subjects:

1. Investigate the application of a multivariate forecasting engine in array level

forecasting. Forecast output-related variables will be allocated to the data-

preprocessing engine and the forecasting engine, so as to test whether better

forecasting accuracy can be achieved.

2. Currently, the aggregated system level forecasting only has the forecasting

engine. The data pre-processing engine functions well in the array level fore-

casting tool. In the future, the regional weather of California as well as the

general distribution of PV sites within this grid should be investigated to build

a system level similar day-based data pre-processing engine.
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