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Abstract

This thesis examines the computational complexity of the problem of finding
the characters of finite groups and some associated problems. The central
focus is how the complexity changes according to how the group is specified.
We examine two extremes. Considering computations from Cayley tables,
when the input size is quadratic in the order of the input group, we observe
that we can efficiently invert Burnside’s character table algorithm to find class
matrices.

We also consider computations involving the symmetric group with inputs of
size polylogarithmic in the order of the input group. We show completeness
and hardness results for computations of individual characters of the symmet-
ric group. Examining the problem of decomposition of outer products of char-
acters of the symmetric group, we show that a generalization of the problem
is computationally hard. We show that lattice partitions can be enumerated

efficiently.
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Chapter 1

Introduction

This thesis examines the computational complexity of the problem of finding
the characters of finite groups and some associated problems. The main theme
is an examination of how the complexity of a problem changes according to
how the group is specified.

In all cases, we will be concerned with exact computations using “symbol-
ic” representations of the input, the output, and quantities computed along
the way. Computing with symbolic representations has an advantage over
fixed precision numerical computations in that, with a bit of care, we can be
guaranteed to be able to determine the signs of small numbers and perform
equality tests with complete reliability. Further, symbolic representations can
be converted to fixed precision numbers with any desired degree of precision.

This approach has three principal disadvantages. The first is that we re-
quire symbolic representations of our input and this is unrealistic for some ap-
plications. The second is that numerical approximation algorithms may have
a lower complexity than exact algorithms. For those problems where the evi-

dence suggests that there are no efficient (polynomial time) exact algorithms,




we must resort to some kind of approximation algorithm. Even for problems
with polynomial time algorithms, numerical approximation algorithms may
still be sufficiently more efficient to be worthwhile. For more information on
approximation algorithms in this area see [BF91]. The third disadvantage is
that the manipulation of symbolic representations of numbers is not always
straightforward. This is discussed in detail in [Loo83)].

Numerical approximation algorithms are beyond the scope of this thesis.
The choice to examine symbolic computations can be justified by the fact that
some kind of analysis of the exact solution to a problem must be done before

one can analyze an approximate solution.

1.1 General Relevance of the Problems

It is difficult to say exactly when group theory first came into being. Certainly
some of the ideas associated with group theory, such as the investigation of
symmetry, date back before recorded history. We will be mostly concerned
with only one small part of the theory of groups, namely, character theory.
The two most important fields contributing to the development of the theory
of group characters are number theory and physics.

Regarding applications in number theory, we can, not unreasonably, say
that group theory started with Evariste Galois around 1830. Certain myths
surround his life. Chapter 6 of [Rot89] debunks these myths and clearly demon-
strates the presence of subtleties in historical investigations. In light of this,
we gloss over the rest of the history of the theory of groups. Among oth-
ers, Niels Henrik Abel, Augustin-Louis Cauchy, Sir Arthur Cayley, Camille
Jordan, Joseph-Louis Lagrange, Marius Sophus Lie, and Ludwig Sylow began

an investigation of Galois’ groups, finding new and exciting structures alon
g groups, g g g




the way. Ferdinand Georg Frobenius, William Burnside, and Issai Schur are
perhaps the most important names associated with the development of the
representation theory of finite groups. Our work is directly dependent on the
work of these three men and on the work of Alfred Young.

The theory of group characters is used to examine the structure of finite
fields by considering the group constructed from a field by omitting the additive
identity and considering only multiplication in the field. In particular, by
evaluating the characters of such a multiplicative group, one can find the
number of solutions to a wide range of equations over the field. For more
information see [IR90] or [Edw77].

Character theory has important applications in (at least) two areas of
physics, namely, crystallography and quantum mechanics. The power and
value of character theory is demonstrated by the duplication of effort across
physics and pure mathematics. It was not uncommon for a physicist to work
out the structure of some group only to find that a mathematician had al-
ready done so. In [Edd56], Sir Arthur Stanley Eddington describes how this
happened to him.

Both [McW63] and [Hoc66] discuss crystallographic applications. In quan-
tum mechanics, n—fold degeneracies in the eigenvalues of the wave equation are
directly related to the characters of n-dimensional representations of a group.
Since the eigenvalues are directly related to observable quantities, determin-
ing group characters is very important. The symmetric group is especially
important. The solutions to the wave equation for an n-particle spin system
can be classified in terms of their symmetries with respect to interchanges
of particles. Here, individual character values, decompositions of inner prod-
ucts of characters, and decompositions of outer products of characters are

extremely useful. For a detailed discussion, see [Wey50]. A modern treatment




is contained in [DK85]. [Cot63] and [Ham89] are excellent introductions to
group theory. They provide physical intuitions for the interpretation of group

theoretical statements and contain a wealth of applications.

1.2 Summary and Readers’ Guide

Chapter 2 discusses background information. We give some combinatorial
definitions. Then, we give definitions and notation for the relevant aspects
of algebra. We provide a brief overview of complexity theory. We review a
hardness proof for a known hard problem and give definitions and citations
for others. Finally, we discuss the complexity of various useful computations
on groups. The reader may freely skip this chapter, returning to it only upon
encountering an unfamiliar term.

Chapter 3 examines the complexity of finding complete character tables of
finite groups from Cayley tables. We describe Burnside’s algorithm for finding
character tables from multiplication tables and note that it can be done in
polynomial time. For more complete information on this topic, see [Ebe89].
We observe that all but the first step of Burnside’s algorithm can be inverted
efficiently. This result is not especially surprising but it is of some significance
given the recent work done on computing characters from a partial tabulation
of the “class matrices”.

Chapter 4 looks at computing individual characters of the symmetric group.
This problem has very succinct inputs and integer outputs. We examine sev-
eral versions of this problem and show completeness and hardness results (de-
pending on the formulation of the problem). These are the most significant
new results in the thesis. As far as we are aware, they are the first complete-

ness results in this area. The proof is especially satisfying since it uses only




elementary techniques.

We then turn our attention to decomposing outer products of characters.
We had less success with this problem. We invent a generalization of the
problem and demonstrate that it is computationally hard. Also, we show
that an interesting subproblem has a polynomial time solution by framing a
beautiful little theorem of Kreweras in computational terms.

Chapter 5 contains a final summary of the results and a discussion of some
related problems, including computations of character tables of arbitrary finite

groups from representations that are more succinct than Cayley tables.










write a single cycle (a;, 7(a;), 7%(a;), . .., 7*(a;)) where 7*1(a;) = a; and there
is no j < k such that 77(a;) = a;. Cycles can be written starting at any point
in the cycle. We will enclose cycles with parenthesis: ‘(’ and ).

It is possible to represent any permutation as a list of disjoint cycles. We
call this representation the cycle form of a permutation. The representation
of a permutation as a list of disjoint cycles is unique up to the order in which
the cycles are written and the starting points of the cycles. For the sake of
brevity and clarity, we will usually omit cycles of length one.

The cycle structure of a permutation is a list of the lengths of the disjoint
cycles needed to express the permutation. (The lengths of cycles of length
one are always included in this list). The cycle structure for a permutation is
unique up to the order in which the lengths are written.

As a conceptual simplification, we use the term multiplication of permuta-
tions to denote functional composition of permutations. Bearing this in mind,
we read products of permutations from right to left rather than left to right.
Since we will not be concerned with the nature of the symbols that are being

rearranged, we can save ourselves some writing by always working with the

symbols {1,2,...,n}.

Example 2.1.1: Multiplication of Permutations in Cycle Form

Consider the set of points = {1,2,3}. Multiplying the per-
mutation « = (1,3,2) acting on by the permutation v = (2,3)
gives yoa =(1,2). B

Any permutation can be written as a product of (not necessarily disjoint)
cycles of length two (called two-cycles). This representation is not unique.

However, for any particular permutation, the ways of writing that permutation




as a product of two—cycles have the same parity. That is, if a permutation
can be written as a product of an even number of two—cycles, then every
way that that permutation can be written as a product of two-cycles uses an
even number of two-cycles. We call such a permutation even. Similarly, odd
permutations are those permutations that can be written as a product of an
odd number of two—cycles. For example, a cycle of length k is even if and only

if £ is odd since

(01, T2y ,Uk) = (01, 02)(02,03)(03,04) cee (Uk—270k—1)(0k—17Uk)~

It is convenient to use a function to capture the above fact. We define the

function:

an(n) 1 if 7 is even
sign(m) =
—1 otherwise (7 is odd).

2.1.2 Partitions
A partition of a positive integer n is a sequence A of positive integers
A= (A, Ay M)

such that A; > XAiyy) for 1 <7 < k — 1 and such that Zi-;l A =n. If for
1<y <k A#0and A\j;q =0, or if j = k and A\x # 0, then j is the length
of A. We use the notation A - n to say that A is a partition of n. We will
use partitions of n to specify the cycle structures of permutations acting on n

points.

2.1.3 Lattice Partitions

A lattice partition A corresponding to a partition

A=A dm) F 1
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is a string A = a,. .., a, of length n of m symbols 7y, 0,..., 0, such that:
1. For 1 <@ < m, the string A has exactly A; occurrences of the symbol o;.

2. For each prefix string AY™ = oy,...,0;, (1 < i < n), for each j and k,

(1 <j <k < m), there are at least as many occurrences of o; as of oy.

That is, letting #(oy, X) denote the number of occurrences of o; in a string X,
#(0j, A7) 2 #(on, AT) (2.1)

forall 1 <i<nand 1 <j<k<m,and #(0,,A) = \.
For clarity and to save writing, we will write o; as just 7. With this notation,
we see that ‘1123212’ is a lattice partition of A = (3,3,1) but ‘1132212’ is not

since the prefix string ‘113’ contains one 3 but zero 2’s.

2.2 Background in Algebra

This section contains a review of definitions and cites a few useful theorems. It
is not intended as an introduction to the subject. The reader not familiar with
the definitions below should consult a textbook on modern algebra. [Bur55]
is a good, though old, introduction to the subject. A more computationally
oriented and modern introduction can be found in [Mig91]. Both [But91] and

[Wieb4] are good references for permutation groups.

2.2.1 Groups

The fundamental mathematical structure that we will consider is the group.
We provide a definition for the sake of completeness and to familiarize the

reader with our notation.
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Definition 1 A group G is a set of objects for which an associative binary
operation x is defined. The set must be closed with respect to the operation. The
set must contain an identity element and each element must have an inverse.

A group is a finite group when the set of objects is finite. A finite group is
said to have order n when the set of objects has size n.

In general, we will use G to stand for an arbitrary finite group and I
to stand for the identity element in that group. Occasionally when we are
considering several groups at the same time, we will write I to indicate the
identity element in G. Frequently, we will drop the * sign and refer to the
group operation as multiplication. Also, we will use the symbol G to refer to
the set and let the operation be understood. We use the exponential notation
¢"* to indicate a product of k copies of g.

A finite group may be entirely specified by its multiplication table, with
rows and columns indexed by group elements (a and b respectively) and with
products (a * b) as table entries. The multiplication table for a group is often

called its Cayley table.

Example 2.2.2: A Small Group

The set E = {I,e,,7,6,(} together with the operation given
by the Cayley table shown in figure 2.1 is a finite group. Later,
it will be convenient to have such a table at hand. Again, for
convenience later on, a table of the inverses of each element is
given in Figure 2.2.

The second table shows that each element has an inverse. It is

an easy matter to verify that the set £ together with the operation
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Figure 2.1: The Cayley Table for E.

Figure 2.2: Inverses in E.

* satisfies the other properties. W

In the above example, it is not true that & % g = g * h, for each ¢,h € E.
In particular, a* v = 6 # ( = v * a. If we do have this additional property,
called commutativity, then we say that the group is Abelian.

The direct sum G = Gy § Gy of two groups Gy and G, is the group of
ordered pairs in G x Gy with the group operation defined componentwise.
That is, if g1, k1 € G1 and g2, hy € Gy, then g = (g1,92) and h = (hy, hs) are
elements of G and their product is defined to be g* h = (g1 * k1, g2 * h2). It is
a straightforward exercise to verify that Gy @ G; is a group whenever (7; and

(7, are groups.
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A homomorphism from a group G to another group G, is a function
¢ : Gy — G, that preserves group multiplication. That is, in order for ¢
to be called a homomorphism, for all ¢,,9, € G, it must be the case that
#(g1)#(g2) = #(g192). 1t follows that if ¢ : G; — G is a homomorphism then
¢(lg,) = Ig, and ¢(g7') = ¢(g)~" for all ¢ € G;. If, in addition, ¢ is one to
one and onto, then ¢ is called an isomorphism and the groups GGy and G are
said to be isomorphic.

A subgroup H of a group G is a nonempty subset of G which is still a
group under the binary operation * of G restricted to members of H. We
write H < G (or G > H). In case H is strictly smaller than G, we say that
H is a proper subgroup of G and write i < G (or G > H). In contrast to the
case with rings, H < G implies that I € H and is the identity element in
H. Further, if h € H then the inverse of h in G, h™!, is also in H and is the
inverse of h in H as well.

The trivial subgroup of G is the set consisting only of the identity element
in G.
Example 2.2.3: Subgroups of £

Our group F has four nontrivial proper subgroups. They are:
Eo ={l,a,8}, E, = {l,7}, Es = {I,8}, and Ec ={I,¢}. The

group properties are easily verified. W
The left coset of a subgroup H of GG determined by g € G is:
gH ={gh:he H}. (2.2)

The element gzg~!, where g,z € G, is a conjugate of the element z in G.

We say that gzg~' is the conjugate of x with respect to g.
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g: (| I|ea|B|7]|d|C
gagl |a|a|a|B|B |8

-1

gBe | B|B|B|lajala

Figure 2.3: « and § are conjugates in F.

Definition 2 The conjugacy class C%(z) of x € G is the set of all conjugates
of z in G:
C%z)={gzg' g€ G}. M

Example 2.2.4: Conjugacy Classes in E

E has three conjugacy classes:
{I} is a conjugacy class since glg™! = I for all g € E.
{a, 8} is a conjugacy class. The conjugates for « and j
with respect to each element of F are shown in
figure 2.3.

{~,6,(} is easily seen to be a conjugacy class as well. W

The set of all elements in G that commute with a particular element z € G
is called the centralizer of  in G, is written Cg(z), and is a subgroup of G.
The set of all elements in G that commute with every element of G is called
the center of G and is an Abelian subgroup of G.

A set S C G is said to generate a finite group G if every element of G
can be expressed as a product of elements of S. The set S is then called a

generating set for G and we write G = (S5).
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Element I la| By 6 ¢

Expression | o’ | a | o | v | ay | o®y

Figure 2.4: E is generated by {a,~}.

Example 2.2.5: A Generating Set for F

The set S = {«, v} generates E, since each element of £ can be
written in terms of elements of the set, as is shown in Figure 2.4.

These expressions are not unique. W

2.2.2 Permutation Groups

A set of permutations acting on a set Q of size n generates a group where the
group multiplication operation is defined to be permutation multiplication.
Such a group is called a permutation group and is said to be of degree n. Every
finite group is isomorphic to a permutation group. Proof of this statement

may be found in any standard text (for example, see [Bur55]).

Example 2.2.6: A Permutation Group

Let the permutations « and 7 act on the set @ = {1,2,3}. The
permutations: a = (1,3,2) and v = (2,3) generate the permuta-
tion group {lg,(1,2,3),(1,3,2),(1,2),(1,3),(2,3)}. We have seen
that yo v = (1,2). Also, yoaoa =(1,3), aoa =(1,2,3), and

vo~v = Ig, so all of the listed permutations can be generated from
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Element of £ | Permutation

I (1HER)3)

(1,3,2)
(1,2,3)
(2,3)
(1,2)
(1,3)

Yl on [R [ T® R

Figure 2.5: An Isomorphism Between F and 53

« and 4. Since there are no other permutations on 2, this is the

group generated by « and 7, as claimed. W

Definition 3 The symmetric group S, is the permutation group containing

all permutations of n objects. M

Example 2.2.7: The Symmetric Group 53

The example group £ is isomorphic to S3. An isomorphism is
shown in figure 2.5. Recalling that products of permutations are
read from right to left, it is an easy matter to verify that the group

operation is preserved. W

The symmetric group S, has a very simple generating set. Let S, act
on & = {1,2,...,n}. The set {(1,2),(1,2,...,n)} (written in cycle form)
generates S,.

The definitions given in the previous section can be carried over to permu-

tation groups.
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The definition of direct sum can be conveniently reformulated for permu-
tation groups as follows. The direct sum G of two permutation groups G
acting on {1y and G acting on ), where ; and ), are disjoint, can be found
by constructing all permutations 7 acting on €4 U €, such that 7(Q;) = @,
7(Q2) = Qy and such that the restriction of 7 to Q; or Q) is a member of G4
or (5, respectively.

Next, consider the conjugacy classes of S5 and observe the relationship

between conjugacy classes and cycle structures.

Example 2.2.8: The Conjugacy Classes of S;

From example 2.2.1, we have that the conjugacy classes in
the group E are: {e}, {a, 3}, and {v,6,(}. Using the isomor-
phism shown in figure 2.5, we see that these translate into the sets
(DB {(1,2,3),(1,3,2)) and {(1(23),(1,3)2), (1,2E)},
having elements whose cycle structures are (1,1,1), (3), and (2,1)

respectively. W

This is not a coincidence. In fact, the conjugacy classes of the symmetric
group are characterized by their cycle structures. Any two elements of the
symmetric group with the same cycle structure are conjugate and any two
conjugates have the same cycle structure (see, for example, [CR62]). Thus,
we can specify a conjugacy class in the symmetric group by giving a partition
which specifies a cycle structure. In general, all elements of a single conjugacy
class in a permutation group have the same cycle structures although two
elements of a permutation group may have the same cycle structure without
being conjugate. For example, in the group G = ((1,2),(3,4)) acting on
0N = {1,2,3,4}, the elements (1,2) and (3,4) have the same cycle structure,
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A =(2,1,1), but are not conjugate.

2.2.3 Representations and Characters

There is much that can be said about representations of groups. We merely
touch on a few of the theorems that are most useful to us. There are many
texts on the subject and a large proportion of the introductory group theory
texts contain several chapters on representation theory. The reader is referred
to [Keo75], [FH62], and [Ser77] for general treatments of the theory of matrix
representations. For the representation theory of the symmetric group, see

[JK81] and [dBR61]. [Led87] is a good introduction to character theory.

Definition 4 A representation T' of a group G is a homomorphism T : G —

H. Since T is a homomorphism, there must be a binary operation defined on

H such that

forallz,ycG. 1

Representations are most useful when they are homomorphisms from an
abstract group to a less abstract structure. This allows one to investigate an
abstract group by examining a more easily understandable structure. In addi-
tion, using such concrete representations, one can specify a group considerably
more succinctly than would otherwise be possible.

The isomorphism between our example group F and the symmetric group
S3 is a representation. The group F is abstract. The group S3 is a set of
relatively less abstract objects, namely permutations. This type of represen-
tation gave us a straightforward characterization of the conjugacy classes of

the symmetric group. Whenever the codomain of a representation is a set of
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permutations, we call the representation a permutation representation. Also,
whenever a representation is injective, we say that the representation is faith-
ful.

Let K be a field. Let GL(n, K) be the group of invertible n x n matrices

over K.

Definition 5 A matrix representation of dimension (or degree) n over K is

a representation T : G — GL(n,K) of G. W

Example 2.2.9: Matrix Representations of 53

We give three representations over C of S3. The first repre-
sentation is the trivial representation. All of the elements of S5
are taken to the 1 by 1 identity matrix. For technical reasons
(see [dBR61]), we call this representation A(3) and define it as fol-
lows: A (7) wf 1].

The second representation that we will consider is called the
alternating representation. The elements of the group are taken
either to the 1 by 1 identity matrix or to the matrix [—1] depend-
ing on whether the permutations are even or odd. We call this
representation A 1,1y and define it as follows:
des | [1] if 7 is even

A(l,l,l)(ﬂ') =
[—1] otherwise.

The third representation is more interesting. We call it Az

and define it with the table shown in figure 2.6. W




T € 53 A(zyl)(ﬂ‘)
10
(M(2)3) (0 1)
_1 3
(1,2,3) é 21
_1 _V3
(1,3,2) s
_1 V3
mes) | | 2
_1 _V3
SRR N
1 0
(1,2)3) (0 _1)

Figure 2.6: A Matrix Representation of S3

20
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The tensor product C = A @ B of two square matrices A and B, with
dimensions m and n respectively, is obtained by replacing each entry in A

with the product of that entry and the matrix B to get the mn x mn matrix

C = AQB
anB  apB - @B
_ anB  apB - ayB
amlB am2B e ammB

where A has (z,7)™ entry a;; for 1 <4,5 < m.

The tensor product of two matrix representations A; of degree m and Aj of
degree n of a group G is the matrix representation of degree mn of GG in which
each element & € G is represented by the tensor product A;(z)® Ay(z). Since
for m x m matrices A and C and n x n matrices B and D, (A® B)(C® D) =
(AC)® (BD), A= A; ® A, is a indeed matrix representation.

A representation T of a subgroup H < G induces a representation ' T G
of G. Since we do not make explicit use of the construction, it is not included
here. For more information on induced representations see [Ser77] or [FH62].

Suppose A(z) is a representatipn of G over K and 7' is a nonsingular matrix
(of the same degree) with coefficlents in K. Then B(z) = T-'A(z)T is also
a representation of G. We say that A and B are equivalent over K and write
A~ B.

A matrix representation A(z) is reducible over K if there exists a non-

singular matrix 1" over K such that

B(z) = TA(2)T " = Cel 0 ) alzea
E(z) D(z)

In the above, C(z) and D(z) are both matrix representations of (¢ over K.







23

partitions of n and the absolutely irreducible representations of S, which is
part of the “special” representation theory of the symmetric group. The reader
is referred to [dBR61] for more information.

The representations given for S in the example above are absolutely ir-
reducible representations. The names we gave the representations reflect the
natural correspondence between absolutely irreducible representations of S,

and partitions.

Definition 6 The character of a group G with respect to a representation A

of dimension n is the function

o(z) = Trace(A(z)) = zn:ai,i(a:). [ |
i=1
The character has two important properties:
1 Equivalent representations have the same character.
2 If g and h are conjugates in G then ¢(g) = ¢(h) for any character ¢.

Thus, it makes sense to write characters both as functions of the elements of
a group and as functions of the conjugacy classes of a group.

We say that a character is (absolutely) irreducible if it is the character of an
(absolutely) irreducible representation. When a character is not irreducible,
we say that it is a compound character. Compound characters can be expressed
as linear combinations of irreducible characters. The values of the absolutely
irreducible characters for a group with m conjugacy classes can be tabulated in
an m x m table. Unless otherwise'specified, when we talk about the characters

of a group, we mean the absolutely irreducible characters.
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Conjugacy Class (1,1,1) | (2,1) | (3)
Character in A, 1 1 1
Character in A ) 2 0 | -1
Character in Ag 1,1 1 -1 |1

Figure 2.7: The Character Table for S5

Example 2.2.10: The Character Table for 53

We can read the charadters directly from the absolutely irre-
ducible representations of [S3 given in the example above. The

results are shown in the figure 2.7. B

2.2.4 Character Relations

A more detailed examination of group characters yields some elegant relations
among the characters of any group. Aside from being pretty, they can be used
to generate the character tables of some very small groups. For example, they
are used to compute the character tables of the groups S3, A4, and Sy (the
symmetric group on three points; and the alternating and symmetric groups
on four points) in [CR62]. We will have to use some additional facts in order
to compute character tables for larger groups but these relations will be of use
nonetheless.

Let G be a finite group with nielements and k conjugacy classes Cy, Co, .. .,
Ck. Let h; be the number of elements of the conjugacy class C; and let
xM, ..., x*) be the distinct absolutely irreducible characters of G. We de-

note the dimension of an absolutely irreducible matrix representation of G
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with character x() by 2. Finally, we use the symbol * on subscripts to refer to
the conjugacy class containing the inverses of a given conjugacy class. That
is, Ci» = {g™" : g € C;}. We may now write down the orthogonality relations

for group characters

. ) O(h) .
i - X n
> xD(hg)xW(g™) = —(L - bij (2.3)
9€EG &2
> XU (g™) = n- 6 (2.4)
gEG
k ( .
S i@ =n -8 (2.5)
=1
: (U] n
2oXXG = i (2.6)
=1 z

for h € G,1 <1,5 <k and for §;; the Kronecker delta.
For proofs of these relations see [CR62] or [Led87].

2.3 Background in Complexity Theory

We quickly and informally describe some aspects of abstract complexity theory
and then present a few known hard problems. Those not already confident
with this material are encouraged to consult [GJ79] and [HU79]. Further
information is contained in the first three of the chapters in the [vL.90], namely
[vEB90], [Joh90], and [Sei90]. These articles are extremely useful, in part,
because of their extensive bibliographies.

We show that Garey and Johnson’s proof of the N P-hardness of the de-
cision problem 4-PARTITION can be adapted to prove # P-hardness for
the corresponding enumeration problem. While this is neither surprising nor

difficult, we are unaware of the result appearing elsewhere.
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For the most part, we follow the notation of [HUT79]. Deviations from this

notation are noted.

2.3.1 Complexity Classes, Hardness, and Completeness

Informally, the complexity class P is the set of all decision problems with de-
terministic polynomial time solutions. The set P has been defined to formally
capture the notion of the set of tractable problems. The class NP is the set
of all decision problems whose positive instances can be verified in polynomial
time and clearly contains P. It is unknown whether the classes P and NP are
equal but it is widely conjectured that they are not.

The class PP is also important. It may be roughly defined as the set of
all decision problems with probabilistic polynomial time solutions. The only
bound on the probability of error is that it must be strictly less than 5. NP
is contained in PP and it is widely conjectured that the containment is strict.

In summary, we have

PCNPCPP

Clearly, P # PP is a weaker assumption than P # NP.

Definitions of P, NP, and PP can be found in [Joh90] and [HU79]. For
more detailed information on the relationships between P, NP, and PP,
see [Joh90].

We say that a decision problem A is many-one reducible to another decision
problem B if there exists a function M which maps instances of A to instances
of B such that, for ¢ an instance of A, M(a) is a positive instance of B if
and only if a is a positive instance of A. Other kinds of reducibilities, such as
oracle reducibility, appear in the literature. We will be concerned only with

many-one reducibility and thus will omit the modifier ‘many-one’ in further
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discussions. If the function M can be implemented in polynomial time, we say
that M is a polynomial time reduction from A to B so that A is polynomial
time reducible to B. The classes P, NP, and PP have the important property
that they are closed with respect to polynomial time reducibility.

Nondeterministic and probabilistic machines can be thought of as having
a computation tree rather than a computation path. That is, at any given
stage in a computation, nondeterminism arises when there are more than one
possible next steps. Thus, rather than proceeding through a series of machine
configurations, making a single path, a nondeterministic computation by a
given machine on a given input is described by a set of computation paths.
Since these paths all start out the same, it is more compact and more illumi-
nating to consider this set as a tree. By allowing the machines to consider the
best of these paths or all of the paths at once, we (likely) add power to the
machine.

The term hard is applied to a problem, a complexity class, and a type of
reducibility when it has been shown that all problems in the complexity class
can be reduced to the problem using the specified type of reducibility. Together
with the fact that P is closed with respect to polynomial time reducibility, this
implies that if a problem known to be hard for NP or for PP is in P, then
P = NP or P = PP respectively,

We say that a problem is NP-hard when it is hard for NP with respect
to polynomial time reducibility. Similarly, we say that a problem is PP-
hard when it is hard for PP with respect to polynomial time reducibility. If,
in addition to being hard for a ¢omplexity class, a problem is a member of
that class, we say that it is complete for that class. For NP and PP, this is
abbreviated to N P—complete and PP-complete respectively.

Since we do not believe that P = NP, classifying a problem as N P-hard
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or N P-complete is highly indicative that the problem is intractable. Since
PP contains NP, showing PP-hardness or PP-completeness for a problem
1s even stronger evidence for the intractability of a problem.

We have used polynomial-time many—one reductions to define NP and
PP-hardness. Some sources define N P-hardness with respect to a stricter
form of reducibility, “log-space reducibility”. This distinction is not important
for our results.

The class #P is the set of all enumeration problems that can be solved
in polynomial time by a counting Turing machine. A counting Turing ma-
chine is conceptually very similar to a probabilistic Turing machine or a non-
deterministic Turing machine. The significant difference is that rather than
returning a ‘yes’ or a ‘no’ based on the existence of an accepting computa-
tion (as for a nondeterministic Turing machine) or a ‘yes’ or a ‘no’ based on
the ratio of accepting computations to all computations (as for a probabilistic
Turing machine), a counting Turing machine returns the number of accepting
computations. Since # P containg enumeration problems rather than decision
problems, it includes the class F'P of all enumeration problems that are com-
putable by a deterministic Turing machine in polynomial time. It is widely
believed, but unproved, that F'P is a proper subset of #P — and it has been
shown that F'P = #P would imply P = NP.

Since many-one reductions apply to decision problems, we need another
kind of reduction in order to prove results about enumeration problems. We
say that a function M from instances of an enumeration problem A to instances
of an enumeration problem B is a polynomial time parsimonious reduction from
A to B if M is computable in deterministic polynomial time and there is a
function f : N — Nthat is computable by a deterministic Turing machine using

time polynomial in the length of its input and in the length of the instance
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a of A such that, for any instance a of A, if b = M(a) is the corresponding
instance of B and m is the output of B on instance b, then f(m) is the output
of A on instance a.

An enumeration problem A is hard for #P, or “##P-hard”, if there is a
polynomial time parsimonious reduction from every enumeration problem in
#P to A, and A is #P-complete if A is #P-hard and belongs to #P.

Our definition of parsimonious polynomial time reduction is weaker (that
is, less restrictive) than that found in the literature which requires that the
output for the original instance a of A and for the derived instance b of B be
identical. The reduction we call a “polynomial time parsimonious reduction”
is frequently called a “polynomial time weakly parsimonious reduction.” Since
the relation “polynomial time weakly parsimonious reducibility” is a transi-
tive relation on enumeration problems and since F'P is closed with respect to
weakly parsimonious reductions, membership of a #P-hard or # P-complete
problem in /'P implies that F'P = #P. Thus, #P-hardness or completeness
is still very good evidence for the intractability of a problem even with the
weaker notion of reduction. Since we only use weakly parsimonious reduc-
tions, we omit the modifier “weakly” in all that follows.

Some problems involve numerical inputs. Normally, we assume that inputs
are encoded efficiently. That is, numbers are represented using a place value
system. When the structure of a problem is such that the problem remains
complete or hard even when the numbers are represented in a tally system, we
say those problems are strongly complete or hard. This is conventionally said
of NP hard problems. We will also use this terminology for PP and # P hard

problems.
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2.3.2 Computing with Algebraic Numbers

We will be concerned with computations involving the complex numbers. Since
most complex numbers do not have finite representations, some comment is
required.

Whenever we are attempting to compute a value in C, we will always be
concerned with problems with both finite specifications and unique solutions.
Thus, the numbers are finitely represented by the specification of the problem.
However, such a representation is of no use to us. It would be highly desirable
it we could efficiently perform operations such as multiplication, addition, and
zero testing on the representations of the numbers.

In the cases that we are concerned with, this can be done by working with
finite algebraic extensions of the rationals. First, we observe that such fields
are subfields of the complex numbers. Furthermore, each can be obtained by
adjoining a single algebraic number (say, @) to Q. The generator « can be rep-
resented by its minimal polynomial over @ and by numerical approximation
(to distinguish it from the other roots of this polynomial). This information
identifies the field Q[a]. Second, any element 3 of a field Q] can be rep-
resented by a polynomial f € Q[z] with rational coefficients — namely, the
polynomial f (with degree less than that of the minimal polynomial of a) such
that 8 = f(«). Arithmetic operations over the field can be implemented in
terms of operations on the polynomials used to represent elements of the field.

For a detailed discussion see [Loo83].

2.3.3 Problems

The problems described below are used to prove hardness or efficiency results

later in the thesis.




31

2.3.3.1 4-PARTITION

Garey and Johnson [GJ79] show that the problem 4-PARTITION is strongly
N P-complete. Their transformation is parsimonious and so we immediately
have # P-completeness for the corresponding enumeration problem and PP-
completeness for the threshold problem. We follow their notation for 4-
PARTITION, use their transformation, and extend their proof of correctness
to show that the transformation is parsimonious.

The N P-completeness proof in Gary and Johnson proceeds by reduc-
ing 3-Dimensional Matching to 4-PARTITION. We give a definition of 3-

Dimensional Matching below:

Decision Problem 1: 3DM
3-Dimensional Matching

Input:
An integer ¢ represented in unary and

aset M CW x X XY, where W, X and Y are disjoint sets,
each with ¢ elements.
Question:
Does M contain a matching, that is, a subset M’ C M such

that |M'| = q and no two elements of M’ agree in any

coordinate? M

The problem 3DM is shown to be NP-complete in Gary and Johnson.
Also, it is shown that the corresponding enumeration problem #3DM and
the corresponding threshold problem T-3DM are #P and PP-complete in
[Sim77] and [Gal74]. Although not included in the literature’s definition of

the problem, our inclusion of ¢ represented in unary does not affect the cited




32

results. In order for there to be a matching, M must contain at least ¢ elements
and thus, inclusion of ¢ represented in unary does not cause a significant
increase of the size of the input for the hard instances of the problem. We
include ¢ in the input to simplify statements made later.

We give a definition of 4-PARTITION below:

Decision Problem 2: 4-PARTITION
Strongly NP-complete problem
Input:
m: an integer represented in unary,
A: afinite set with 4m elements,
B: a positive integer bound represented in unary,
s: a function from A to the positive integers such that if
a € A then B/5 < s(a) < B/3 and such that
Yacas(a) =mB.
Question:
Is there a valid /—partition of A7 That is, can A be
partitioned into m disjoint sets S1,.5%,...,5,

such that for 1 <2 <m: ¥ e, 5(a)=B?7 W

Again, including m represented in unary in the input does not change the
complexity of the problem since A has more than m elements. The fact that
B can be represented in unary without affecting the N P-completeness of the
problem is shown in [GJ79]. The demonstration of this fact is a significant
portion of the proof that 4-PARTITION is strongly N P-complete.

In order to prove that 4—PARTITION is strongly N P-complete, Gary
and Johnson give a transformation from 3DM to 4-PARTITION (see pages 97

to 99 of [GJ79]). They prove that the transformation can be done in polyno-
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mial time and that it yields an instance of 4—PARTITION which has element
sizes that are bounded by a polynomial in the size of the original instance of
3DM. We describe the relevant aspects of their proof in order to show that
their transformation is parsimonious, and provide a simple example.

The transformation takes an instance W = {wi,ws,...,w,}, X = {ay,
T2, 20}, Y ={y1,y2,.. .,y and M CW x X xY of 3DM to an instance
(A, B,s) of 4-PARTITION with 4|M| elements. The set A contains one
member for each element of each of the triples in M. These are indexed by
their membership in W, X, or Y and by their position within whichever set
they belong to. Thus, the elements of the set A are denoted w;[l], z;[l], and
yk|l] where 7, j, and k range from 1 to ¢ and for each particular ¢, 7, or k, the
variable [ ranges from 1 to the number N(z) of times that the element z of W,
X, or Y is contained in a triple in M. Thus, by construction, there are exactly
|M| elements of A with the form w;[l] (with 1 <7 < gand 1 <1< N(w;)),
M| with the form z;[l] (with 1 < j < gand 1 <! < N(z;)), and |M| with
the form yi[l] (with 1 <k <gand 1 <1< N(yx)). Finally, the set A includes
another |M| elements — denoted uy, ug, ..., ujp.

The elements w;[1], z;[1], and yx[1] are called actual elements where 1, j,
and k have the same ranges as before. All of the other elements of A except
U1, Uz, .. ., upy| are called dummy elements.

Gary and Johnson’s construction includes formulas (on page 97) defining
the sizes for the elements of A. The sizes of the elements depend on (and
are computable deterministically in polynomial time from) the indices of the
corresponding elements in the set W, X, or Y and on which set they belong to.
The actual elements all have different sizes. Each of the dummy elements for
a particular element of W, X, or Y has the same size, and the size is different

for each different element of W, X, or Y. Furthermore, none of the sizes of the
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actual elements is the same as any of the sizes of any of the dummy elements.

Gary and Johnson give the following construction of a 4-partition from
a matching. Suppose that M’ C M is a matching. The corresponding 4-
partition is made up of |M| 4-sets, each containing a w;, a w;[-], an z;[], and
a yx[-], where (w;,z;,yx) =my € M. If 1 <1< g and my € M’, we group u
with the actual elements w;[1], z;[1], and yx[l]. If m; € M — M’, we group
u; with dummy elements corresponding to w;, z;, and y;. Gary and Johnson
show that for every matching M’ C M, the above construction gives a valid
4-partition of A. They also give a construction for a matching M’ C M from
a valid 4-partition of A, establishing that 4-partitions corresponding to the
same matching M’ C M can only differ by having dummy elements for the
same element of W U X UY exchanged.

We illustrate the transformation below.

Example 2.3.11: Transforming an instance of 3DM to an instance of

4-PARTITION

Let ¢ = 2, W = {wy, w2}, X = {z1,22}, Y = {y1,v2}, and
M = {(w1,z1,y1), (w1, 21,Y2), (W2, T2, y1)} be an instance of SDM.
We construct an instance (m, A, B, s) of 4~-PARTITION as
follows. First, we count the number of occurrences of the elements

of W, X, and Y in the ordered triples of M, summarized below:

Now, letting r = 32¢g = 64 and m = 12, we define the size function

s (and at the same time actual and dummy elements of the set A)
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for each of the elements of W U X UY as follows:
s(wi[l]) =107 + 1r + 1 = 167772225
s(wa[l]) = 10 + 2 + 1 = 167772289
s(wi[2]) = 1171 + 1r + 1 = 184549441

(

(

(
s(zq[1]) = 10r* + 1r% + 2 = 167776258
s(@9[1]) = 10r* 4 2r? 4+ 2 = 167780354
s(z1[2]) = 117" + 1r? 4+ 2 = 184553474
s(ya[1]) = 10r* + 1r® 4 4 = 168034308
s(y2[1]) = 10r* + 2r® 4+ 4 = 168296452
s(y1[2]) = 8r* + 173 + 4 = 134479876

For each of the triples of M, we define the size function (and the
rest of the elements of A) as follows:

s(ur) = 10r* — 173 — 172 — 1r! 4+ 8 = 167505864

s(ug) = 10r* — 2r% — 192 — 10! 4+ 8 = 167243720

s(ug) = 10r* — 1r® — 2r2 — 2r! 4 8 = 167501704
Finally, we set B = 40r* + 15 = 671088655 and the transformation
is complete.

We observe that the only matching in M is M’ = {(w1, z1,y2),

(wq, 2, y1)} and the only valid 4-partition of (m, A, B, s) is:

St = {ur, wi[2], z1[2], y1[2]}
Sy = {ug, wy[1], z4[1], yo[1]}
S3 = {u3,w2[1],$2[1],y1[1]}

up to interchange of the indices of the sets S;. W

We call two valid 4-partitions of A equivalent if one can be obtained from
the other by interchange of elements with the same size. This defines an

equivalence relation on the 4-partitions of A.
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Recall that, by the definition of s, two elements of A have the same size
if and only if they are both dummy elements for the same element in W U
X UY. Thus, Gary and Johnson’s construction specifies a bijection between
the equivalence classes of valid 4-partitions of A and the matchings for the
instance of 3DM.

We now show that these equivalence classes of 4-partitions all have the
same size and that this size is easy to compute. Consider the 4-partitions in
the equivalence class corresponding to some matching M’ C M. The number
of ways that the N(z) — 1 dummy elements corresponding to a member z in
WUXUY can be arranged in 4-sets corresponding to elements of M\ M’ with
z as an entry is (N(z) — 1)!. The dummy elements corresponding to different
elements of WU X UY can be placed independently. Thus the number of ways
that we can place all of the dummy elements is exactly

II II I ((W(wi) = DUN(z;) = DUN(ye) = 1. (2.7)
1<i<q 1<5<q 1<k<g
Since the sizes of the actual elements are all distinct, this is the size of the
equivalence class of 4-partitions of A corresponding to a matching M’. This
size does not depend on the matching that is chosen so the total number of
4-—partitions in the constructed instance is
K- IT I IT ((W(w) = DMWNV(;) = DIN () = 1)) (2.8)
1<i<q 1<5<g 1<k<g
where K is the number of 3—dimensional matchings M.

The values N(z) can be determined in polynomial time from the description
of M. Furthermore, this description has length at least linear in }°7_, (N (w;) +
N(z;) + N(y:)), so the values (N(z) — 1)! can be computed efficiently as well.
We can find the product given in equation (2.7) in polynomial time and then,

in time polynomial in the size of M, find K using the product just computed,
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Output:
The number of valid 4-partitions of A. W

Note that the values of the function s can be represented in unary with no
significant increase in the input size since m and B are both represented in

unary.

Theorem 2 The decision problem T—4—PARTITION is PP-complete. The
enumeration problem #4—-PARTITION is #P-complete. R

Proof: It is easy to adapt Gary and Johnson’s proof of membership of 4—
PARTITION in NP in order to show that T-4-PARTITION belongs to
PP and #4-PARTITION belongs to #P. We have demonstrated that Gary
and Johnson’s transformation (establishing NV P-hardness of 4~-PARTITION)
is parsimonious; this implies PP-hardness of T-4-PARTITION and #P-
hardness of #4-PARTITION. ®

2.3.3.2 Boolean Permanent

The problem BOOLEAN PERMANENT is shown to be # P-complete in
[Val79]. We formally define the problem below.

Number Problem 5: BOOLEAN PERMANENT
# P-complete problem

Input:
An n x n matrix M of 0’s and 1’s.

Output:

The value of the permanent of M, given by:
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Perm(M) = ﬁ M; o)

oc€ESp 1=1

where, as shown, the sum runs over all n! permutations o of the n

integers {1,2,...,n}. N
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Chapter 3

Characters of Finite Groups

There are several sensible ways that a finite group may be specified. The least
succinct is to give the complete multiplication table, or Cayley table, for the
group. In this chapter, we consider the computational complexity of finding
the absolutely irreducible character table for a finite group that is represented
by a Cayley table.

Burnside’s algorithm is one known method (of several) for computation
of a character table from a Cayley table. It is efficient — see [Ebe89] for an
analysis. We summarize the algorithm and its analysis. Then, we show that
a significant part of Burnside’s algorithm can be inverted efficiently using a
well known theorem — see [CR81]. In particular, we show that the structure
constants used by the algorithm can be found efficiently from an absolutely
irreducible character table. This is motivated by some work by Schneider (see
for example [Sch90]) on finding characters from incomplete sets of structure

constants.
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3.1 Computing Characters from Cayley Ta-
bles

The problem of finding the character table of a finite group given its Cayley
table has a long history and has been the subject of extensive work. For
numerous examples, see the surveys [Fel78] and [Neu83].

There has been considerable recent interest in Dixon’s modification to
Burnside’s algorithm ([Dix67]). In particular, Schneider ([Sch90]) has explored
the removal of wasted computation in Dixon’s algorithm caused by redundan-
cies in the structure constants. In the next section, we demonstrate that the
structure constants are entirely recoverable from the character table. Although
this is only a minor extension of the work of Burnside, Dixon, and Schneider,
it is important in that it shows that the k* structure constants contain exactly
the same amount of information as the k£ x k absolutely irreducible charac-
ter table. Further, it shows that these pieces of information are equivalent in
terms of polynomial time computations.

In order to prove the result in the next section, we now describe Burnside’s
algorithm. The algorithm is derived in, among other places, [CR62]. Although
the details of the correctness proof are interesting, they are rather long and
widely available. Thus, a proof is not included here. The algorithm (and two
modifications) are analyzed in [Ebe89].

To begin with, let us formally define the problem under consideration.

Problem 6: y from x
Computation of Character Table from Cayley Table
Input:
A multiplication table for a finite group G = {g1,92,---,9n}-
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Output:
The character table for G over C. W

Intuitively, Burnside’s algorithm works as follows. First, we compute a set
of values expressing connections between conjugacy classes — the class matri-
ces of the group. It can be shown using the character orthogonality relations
given in section 2.2.4 that the components of the common eigenvectors of the
class matrices are directly related to the characters. After computing these
common eigenvectors, only a minor amount of rearranging and arithmetic re-
mains in order to obtain the characters.

It is worth noting that Burnside’s algorithm and Dixon’s modification can
be used to compute character tables over some fields other than the com-
plex numbers. In order to simplify matters, we will only be concerned with
characters over C.

We now review our notation and state the algorithm formally. Let G be
a finite group with order n. As in section 2.2.4, we denote the k conjugacy
classes of G by C4,...Cy, with a convention that C; = {Iz}. Aside from
this convention, ordering of the conjugacy classes is arbitrary. We use the
superscript * on the indices of the conjugacy classes to refer to the conjugacy
class containing the inverses of a given conjugacy class. That is, Cix = {g :
g € Ci}.

Let h; be the number of elements of the conjugacy class C; and let x(, .. .,
x¥) be the distinct absolutely irreducible characters of G. We use subscripts to
denote the value of the character for members of a particular conjugacy class.
That is, Xg-i) is the value of the i" irreducible character at an element of the
conjugacy class C;. In a fashion similar to our notation for conjugacy classes,

we adopt the convention that x(!) be the character of the trivial representation
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(so xgl) = 1for 1 < j < k) and that the order of the other representations
is arbitrary. We denote the dimension of an absolutely irreducible matrix
representation of G with character Y by z;. Note that z; = Xﬁ” since I € C.
For 1 < r ,s,t < k, the structure constant ¢, is the number of solutions
(z,y) to the equation zy = z with z € C,,y € C,, for some fixed z € C,.
The number of solutions is easily shown to be independent of the particular
z € Cy that is picked. Define V; to be the matrix whose (r, )" entry is c,s.
The matrices V;, V;, ...V} are called the class matrices.
It can be shown, using the character orthogonality relations (given in sec-
tion 2.2.4), that if
hin('j)

W =20 for 1 <4<k
Zj

then the wl-(j Vs are both eigenvalues and components of the eigenvectors of the

class matrices. In particular,

o) w!?
(7) ()
w . W
V. 2 ___wZ(J)_ 2 for 1 <4,5 <k.
| | LW |

It can be shown using linear independence of the characters (1), y®, ... y(*)

that these relations uniquely determine the values wy). The character values

(#) ()

X; can then be recovered from wji using the orthogonality relations and the

fact that X(I) =1for 1 < ¢ < k. This method for computing character tables

i

is stated in more detail below.
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Algorithm 1: Burnside’s Character Algorithm
Input:
A multiplication table for a finite group G = {g1,92,.-.,9x}
Output:
The character table for G over C.
Step 1:

Identify a representative z of each conjugacy class C; in G and find
the size of the conjugacy class containing that element. Call the
sizes of the k conjugacy classes hy,...hg. The order is
not important other than that Cy = {1}.

Step 2:

For each triple (r,s,t) where 1 < r,s,t <k, count the number ¢,
of solutions of zy = z such that z € C,, y € C; for any
fixed z € C;.

Step 3:

For each ¢ where 1 < ¢ <k, find the index ¢* of the conjugacy

class C;« containing the inverses of the elements of the class Cj.
Step 4:

For each s where 1 < s <k, let V; € My, (C) be the class
matrix given by (Vs)re = ¢p5t for 1 <7t < k.

Find the eigenvalues and bases for the eigenspaces of each of

the matrices V;. Find bases

I wil) 1 w{Z) w{k)

Wy wgz) Wy
(1) (2) (%)

Wy, Wy, Wy,
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for the intersections of the eigenspaces, such that these are
common eigenvectors of Vi, ..., V4, span Myy1(C), and
each has first component 1.

Step 5:

For 1 <7 <k, compute the integer

n
4= S 0.0
zf:l hllwl( )wl(*)

For each pair (r, s) such that 1 <r s <k, the (r,s)"™ entry

Step 6:

in the character table of G is given by:

o el

Xs = h,

where w{") is the r* component of the vector w,.
Step T:

Output the values x{) for 1 <r,s<k. W

S

Since G is finite, the elements of its character table are algebraic numbers
in Q[n] where 7 is a k'™ primitive root of unity and k divides the order of G.
See section 2.3.2 for a discussion of the representation of these numbers.

The fact that this algorithm can be implemented in polynomial time was

used in [Ebe89] to prove the following theorem.

Theorem 3 y from x € FP. 1
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3.2 Inverting Part of Burnside’s Algorithm

In this section, we observe that most of Burnside’s algorithm (described in
section 3.1) is invertible. More specifically, the “structure constants” found in
step 2 of Burnside’s algorithm can be found efficiently from a character table.

As before, we restrict ourselves to talking about the character table of a
finite group G over C. We carry over the notation of the last section. That
is, we write G for a finite group of order n. The k conjugacy classes in G
are written C;, where ¢ ranges from 1 to k, and their sizes are written h;.
Once again, Cy = {lg}. By ¢* we mean the index of the class C;« containing
the inverses of the elements of the class C;. The value z; is the dimension

) is value of the character of

of the 7*! irreducible representation. Finally, Xg-i
the representation class 7 at the conjugacy class Cj. Columns in character
tables correspond to conjugacy classes in the group and rows correspond to

the equivalence classes of absolutely irreducible representations.

We now define a new problem.

Problem 7: ¢,;; from y
Structure Constants from Character Table
Input:
An absolutely irreducible character table y(*) of a finite group G.
Output:
A “table” of structure constants ¢, for the group G' where
Crst 18 the number of solutions to xy = z for any fixed z
in the conjugacy class with index ¢ (denoted C}) and z and

y are in C, and C; respectively. W

This problem can be solved in polynomial time by using a few identities to

find the size n of the group, the sizes h; of the conjugacy classes, the values
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¢* of the indexes of the conjugacy classes C;« containing the inverses of the
members of the class C;, and the values z; of the dimensions of the absolutely

irreducible representations of G, and then using the formula

hohs Z’“: xfmxg
n

m=1

(3.1)

Crst =
Zm

proved on page 216 of [CR81] to invert the last stages of Burnside’s algorithm.

We begin by observing that we can locate the column in y corresponding to
the class consisting of only the identity element, since it will be the only column
with only positive integers as entries: this column must have positive integer
entries since any matrix representation with dimension z; must represent the
identity element of G by the z; X z; identity matrix. Consider the fourth
orthogonality relation (equation (2.6))

k

0,0 _ "
DXi X = b
=1 ! hi

If there is a second column with index j* in the character table whose entries
are all positive then the value of the left hand side of the orthogonality relation
is positive when ¢ and j* are the indexes of these columns. Since C; is the
conjugacy class containing the identity element, ¢* = i. So, if 7 and j* are
distinct then ¢ and j are distinct. Thus, the right hand side of the relation
is zero when ¢ # j. This is a contradiction, so there are no other columns
whose entries are all positive. Therefore, since the “identity” column is easily
locatable, we can assume without loss of generality that it is the first column
X1 in the character table.

Since degree z; of the ith irreducible character equals Xﬁ"), for 1 <1 <k,
we can now directly read these degrees from the character table.

We can now use the identity n = ¥F_, 22 to find n. (The identity is simply
equation (2.6) with ¢ = 7 = 1.)
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We use the fourth orthogonality relation (equation (2.6), again), to find
)

the values j* by computing the sum Y, XEI X;lﬁ) for pairs of rows ¢ and j* and
observing that j = ¢ if and only if the sum is non-zero. At the same time, we
can find the values of the A;’s using n and the non-zero sums above.

We now have all of the values on the right hand side of equation (3.1) and

thus can use it to evaluate the structure constants ¢, ;.

The above is summarized in the algorithm below.

Algorithm 2: Inversion of Burnside’s Character Algorithm
Input:

A character table Xg-i) (1 <4,5 < k) for a finite group G.
Output:

The structure constants ¢, (1 <7, s,t < k) for G.
Step 1:

Identify the column in the character table corresponding to the
conjugacy class containing the identity element in the group
by finding a column with only positive integer entries. Call
this column x;.

Step 2:
Read the dimensions of the irreducible representation classes z;
from the column located in step 1: z; = X&” for1 <¢<k.
Step 3:
Compute the size of the group, n = Y5, 2%
Step 4:

For each 1 < <k, find the values :* and h; by computing sums

k
Xii =3 XY for 1< <k

=1
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and setting ¢* = j and h; = n/X;; for the unique index j
such that the sum is nonzero.
Step 5:

Output the values ¢, found using equation (3.1):

(m)
tll

hohy E y(m)y(m)
Crst = Z Xr Xs X
n m=1

Zm

forl1<rs,t<k. R
Theorem 4 ¢, from y € FP. B

Proof: Each of the steps of the above algorithm can be accomplished in
polynomial time. Steps 1 and 2 involve simply searching the input and copying
part of it. Step 3 is a sum over k values and step 4 involves at most O(k?)
sums over k values. Step 5 involves k® summations, each of which can be done
with & — 1 additions, 2(k — 1) multiplications, and k — 1 divisions. Thus, we
need no more than O(k*) field operations for the entire algorithm. W

The inversion process cannot proceed any further. There are finite groups
which are non-isomorphic and have the same character table. For example,
the fourth dihedral group D, and the quaternion group @ of order eight are
non-isomorphic and have the same character table.

It is interesting to consider the inversion problem for special classes of
groups. There are no known examples of non-isomorphic simple non-abelian
groups with the same character table (see [CR81]). It seems possible that
Cayley tables could be found from character tables of these groups or some
large subclass of these groups. This takes us well beyond the scope of this

thesis. We end the discussion on this topic by noting that since the size of




50

the multiplication table can be superpolynomial in the size of the character
table, the standard definitions of efficiency are not directly applicable to the
complete inversion problem.

Some comments on the analysis remain. We have counted arithmetic op-
erations rather than Boolean operations. Since our inputs are algebraic num-
bers, it is not immediately clear that only a polynomial number of Boolean
operations are needed. This subject is beyond the scope of this thesis. For
now, it will suffice to say that the proof that Burnside’s algorithm could be
implemented in polynomial time explicitly counted the number of Boolean op-
erations required (see [Ebe89]). Since we are dealing with the same algebraic
numbers, our proof carries over. For more information on the complexity of
arithmetic for algebraic numbers see [Loo83].

The application of the theorem to Schneider’s strategy for computing char-
acters from an incomplete set of structure constants [Sch90] allows the deriva-
tion of a lower bound on the number of structure constants that must be used.
That is, since the entire set of structure constants can be recovered from the
character table, one can only find the character table if one has enough infor-
mation to construct all of the structure constants. However, it is still not clear
how exactly the structure constants depend on one another.

As well, the inversion algorithms provides an efficient reduction from the
problem “given a specification of a finite group G (in some form), find the
structure constants for G” to the problem “given (the same) specification of
(, find the absolutely irreducible character table of G”. That is, finding all of
the structure constants of a group does not require substantially more resources

than finding the group’s character table.
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Chapter 4

Characters of the Symmetric

Group

In this chapter, we examine two problems in the character theory of the sym-
metric group. The hardness and completeness results (for computing individ-
ual characters of the symmetric group and for a generalization of computing
coefficients in the decomposition of the outer product of characters of the
symmetric group) in this chapter are new. The character and decomposi-
tion algorithms are standard parts of the literature but the analysis is new.
The algorithm for counting lattice partitions is a straightforward application
of Kreweras’ Theorem. We are unaware of any previous publication of this
algorithm but it seems likely that the algorithm has been known for some
time.

For general groups, there is no known way to sensibly and succinctly specify
a particular class of absolutely irreducible representations and thus we cannot
formulate a good version of the problem of computing individual entries in the

character table of a general group. However, for the symmetric groups, we can
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sensibly and succinctly specify both conjugacy classes and classes of absolutely
irreducible representations. Thus, we can formulate computational problems
about individual entries in the character table of the symmetric group.

These problems are quite old. Frobenius gave a formula for the characters
and subsequent researchers have used the formula and related results to pro-
duce correct algorithms for the problem. Littlewood and Richardson gave a
rule for finding the coefficients in the decomposition of the outer product of
characters of symmetric groups.

We formulate two numerical versions of the character problem. The first is
simply the problem of finding the character of a representation at a conjugacy
class. For technical reasons connected with giving a good classification of the
complexity of the problem, we need to be able to work with positive numbers.
Thus, we define a second version of this problem where we find the sum of
the character and a sufficiently large number. We define a decision problem
by adding a threshold value to the above and asking if the character is larger
than the threshold.

We use a known algorithm to show that the second version of the numerical
problem is in #P and that the decision problem is in PP. We then show that
the counting problems are hard for #P and the decision problem is hard for
PP.

We have less success with the outer product problem. Again, we show
membership in #P and PP for number and decision versions of the prob-
lem. We were unable to show hardness results for the problem. We do show
that a generalization of computing outer products is hard and we identify an

interesting class of easy instances of the problem.
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4.1 Characters of the Symmetric Group

A variant of the Murnaghan-Nakayama rule for computing characters (follow-
ing [Keo75]) is presented. There is a strong connection between the Frobe-
nius formula (see, for example, [Ham89]) and the Murnaghan-Nakayama rule.
When the algorithm is recursive, it is called the Murnaghan—Nakayama rule.
Otherwise, it is an application of the Frobenius formula.

Correctness proofs of various formulations of the algorithm are contained
in [Ham89], [dBR61], [Ker91], [JK81], and [Sagdl]. Using the correctness of
this algorithm, we establish reductions from appropriate formulations of the
hard problem 4-PARTITION (see section 2.3.3) to the problem of finding
individual entries in the character table of the symmetric group. Finally, we
use the algorithm to show that the character problems can be solved within
certain resource constraints. These resource bounds, together with the hard-
ness results, imply completeness results.

The reader may recall (from Definition 3) that the symmetric group S,
is the group of all permutations of n objects and has size n!. The conjugacy
classes of S, are directly identifiable with the partitions of n (partitions are
described in section 2.2.2). The classes of irreducible representations of S,
(described in section 2.2.3) have a natural one-to-one correspondence with
the partitions of n. This is a consequence of the special representation theory
of the symmetric group. The description of the correspondence can be found
in [Ker91], [JK81], and [Sag91].

We will write A = [Aq, A, ..., Ax] for a partition of n specifying a class of
irreducible representations of S, and p = [p1, 2, ..., ] for a partition of n
specifying a conjugacy class in S,. Further, we adopt as a convention that the

entries in the partitions are given in non-increasing order and only positive
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entries are included in the specification of a partition.

We now have the capability to ask: ‘for the symmetric group S,, what
is the value of the character of an irreducible representation given by A at a
conjugacy class p?” Throughout this chapter, we will denote this value by
Xw).

We formally define several problems related to the above question. The
first problem is a restatement of the question above. The inputs for each of

these problems are essentially the same.

Number Problem 8: #CSG

Individual Character of the Symmetric Group
Input:

n: expressed in unary,

A: a partition of n specifying a class of equivalent irreducible

representations of Sy,

p: a partition of n specifying a conjugacy class in S,.
Output:

The value of the character of an irreducible representation

in A at the conjugacy class pu: x*(u). W

Since the value y*() can be negative and we will be concerned with compu-
tations on a counting Turing machine, we give a definition of the same problem
offset so that all values are positive and thus not trivially uncomputable in this

model.










57

erasing the boxes from the row. The advantage of this is that we can see what
operation we are performing on a single diagram.
Thus, the extended diagram for [3,2, 1, 1] with a 2-cycle removed from the

second row 1s:

[]

(4.1)

Further cycles can be removed from that row by colouring the appropriate
number of the rightmost uncoloured boxes. Whenever we remove a cycle from
an extended diagram, all of the boxes that we colour for that cycle must be
removed from only one row.

The second operation is row transposition. This can be done to extended
diagrams that have had cycles removed. Transposing rows i; and 7, can be
thought of as a simple exercise with scissors. Simply cut both rows from the
diagram and replace the rows in the diagram in opposite order. In terms of the
formal definition, this means replacing all occurrences of 7; with 7, and i, with
i1 in the first (row) position of the elements of the extended diagram. Thus,
transposing the second and third rows of the diagram shown in 4.1 results in:

1]

XIX]

(4.2)

A sequence of transpositions can be viewed as a permutation of the rows of a
diagram. This allows us to talk about the sign of a sequence of transpositions.

Bearing in mind that colouring boxes is shorthand for erasing boxes, we
say that two extended diagrams are equivalent if their uncoloured boxes are
in the same positions. From this point of view, the diagrams shown in 4.1

and 4.2 are equivalent.
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There is one special diagram that we need. The k-staircase is the diagram
consisting of the points (z,7) € Z? such that 1 <7< kand 1 <j <k—3. The

5-staircase looks like this.

The bottom row of the staircase is empty. That is, the widths of the rows are
(4,3,2,1,0).

Now that we have established the notation, we proceed with the algorithm.

Algorithm 3: The Graphical Murnaghan-Nakayama Rule
Input:
n: expressed in unary,
A: a partition of n specifying a class of equivalent irreducible
representations of S,,,
p: a partition of n specifying a conjugacy class in S,,.
Output:
The value of the character of an irreducible representation
in A at the conjugacy class p:
Xw)-
Step 1:
counter « 0
for i — 1 to m do
2z 1
endfor

Je=m
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Step 2:
while (j # 0) do
continue «+ True
h — extended diagram(\)
11
while ((continue) and (i < m)) do
remove p; from row z; of the extended diagram h
(to get a new h)
if ((row ¢ of h is negative) or
(h has two equal rows) then
continue «— False
71
endif
increment ¢
endwhile
if (continue) then
if (h is an even row permutation of the k-staircase) then
increment counter
else
decrement counter
endif
j—m
endif

increment z;
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while ((z; > k) and (5 > 1)) do
decrement j

endwhile

increment z;

for: —j7+1tomdo
z; — 1

endfor

endwhile
Step 3:

Output counter R

Note that we can rearrange the initial order of the y;’s without affecting
correctness although this can affect the efficiency of the algorithm.
We now present an example of using the graphical Murnaghan-Nakayama

rule.

Example 4.1.12: Graphical Evaluation of x®>11([2,2,2,1])

e let A = [3,2,1,1] and p = [2,2,2,1]. We have already
determined A from A to be the diagram

We start with 2y = 1, 29 = 1, 23 = 1, and 24 = 1. Thus, we

remove the first cycle of p from the first row of A to get

X[Xx]




Since the first and second rows in the diagram are now the same
size, we continue with z; = 2, 2, = 1, z3 = 1, and 24 = 1. Removing

the first cycle of p from the second row of h gives

[]

This time, the second and third rows in the diagram are the same

size. We continue with z; = 3, 2o = 1, 23 = 1, and z4 = 1.

Removing the first cycle of 4 from the third row of & gives

X[x]

This diagram does not violate the constraints given in step 2 of the
algorithm, so, since z; = 1, we remove the second cycle of y from

the first row of the diagram to get

X[X]

IX[X

Again the first and second rows are the same. This leads to consid-
ering z; = 3, 2, = 2, z3 = 1, and z4 = 1. Removing the constituents

of p from h according to these z’s gives the diagram

X[XIX]

XX

The permutation taking the diagram to a staircase is odd so we

decrement the counter to —1.

61
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Having seen the details of each step, we proceed through the
rest of the execution of the algorithm more quickly.

Continuing with 21 = 3, z; = 2, 23 = 1, and 24, = 2 gives
a diagram in which the second and fourth rows have the same
length. Thus, without changing the counter, we continue with
z1 =3, 29 =2, z3 =1, and z4 = 3. The third row in the diagram
for this case has a negative width so we continue with z; = 3,
29 =2, z3 =1, and z4 = 4. In this case, the third and fourth rows
are the same so we jump to 2y = 3, 25 = 2, 23 = 2, and 2z, = 1.
After removing the third cycle of y from h, we see that the second
and third rows have the same size. Thus, we continue with z; = 3,
29 = 2, 23 =3, and 24 = 1. Removing the third cycle of x from the
third row yields a row with negative size and so we continue with
21 =3, 22 =2, z3 =4, and z4, = 1. Again we get a negative row
upon removing the third cycle so we set z; = 3, 2, = 3, 23 = 1,
and z; = 1. This yields a negative row upon removing the second
cycle, as does zy = 3, 2z, =4, z3 =1, and z4 = 1. This takes us to
z1 =4, 29 =1, 23 =1, and z4 = 1 which gives a negative fourth
row on removing the first cycle of p. At this point, the algorithm
terminates, returning a value of —1 since we have not incremented

the counter and we have decremented it only once. W

4.1.2 A Concise Version of the Murnaghan-Nakayama
Rule

We translate the graphical algorithm into a form more amenable to symbolic

manipulation.
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We use the following notation. The extended diagram for A is denoted by

h = [h1,hy, ..., hi] where the components h;, called the principal hooks, are
given by:

hi=Xi+k—i (1<i<k) (4.3)

This is equivalent to the definition of extended diagram earlier but is more suc-
cinct. The extended diagram h completely determines the class of irreducible
representations A and each can easily be found from the other in deterministic
polynomial time. A hook structure is an extended diagram that may have had
cycles removed from it.

We use |3 to denote multiset union (adding multiplicities). We use angle
brackets () to denote multisets. We define the action of a cycle y; on a hook

structure h = [hy, ha, ... hx] to be the multiset

kol

Mi([hlvhz-,"'vhk}) = <[h17h27"'7h’m _ﬂi7"'>hk]>

1

m

1l

and the action of a cycle on a multiset of hook structures to be the multiset

union of the action of the cycle on each of the members of the multiset.
:ui<haa R hb> = :ui<ha> W ﬂi(hb>

Note that we are using superscripts to differentiate between hook structures,
and not to indicate exponentiation.

The value of a hook structure h = [hy, ks, ..., hg] is defined to be

0 if 37 such that h; <0

| 0 ifJe¢,7 (¢ # ) such that h; = h;

1 if an even permutation sorts hy, ha, ..., hy into descending order

—1 if an odd permutaion sorts hy, ha, ..., h; into descending order
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The value of a multiset of hook structures is the sum of the values of the

individual hook structures in the multiset.

i
[ STTES I
=1

With this notation in place, we can see that the value of the character
x (1) given by the graphical algorithm is the value of the multiset formed by
allowing each of the cycles of i to act on the extended diagram A formed from

Y
The algorithm is stated below.

Algorithm 4: The Concise Murnaghan-Nakayama Rule
Input:
n: expressed in unary,
A: a partition of n specifying a class of equivalent irreducible
representations of .S,
p: a partition of n specifying a conjugacy class in 5,.
Output:
The value of the character of an irreducible representation
in X at the conjugacy class u: x*(1).
Step 1:
Determine the extended diagram h for A
Step 2:
Evaluate x*(1) = ||pa(p2 - - (pmh) .. )]

and return the value. W

Equivalent versions of the above algorithm are shown to be correct in
[Ham89], [dBR61], [Ker91], [JK81], and [Sag9l]. The notation and exact

formulation of the algorithm is different in each of the sources. With the
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appropriate translation and possibly some rearrangement of the order of the

steps, each of them yields the following theorem.

Theorem 5 The Concise Murnaghan—Nakayama Rule on input n, A, and u
returns the value of the character of an absolutely irreducible representation

of Sn, in X at p. That is, the Concise Murnaghan-Nakayama Rule correctly

finds x*(p). W

4.1.3 A Polynomial Time Transformation

Consider an instance (A, B,s) of 4-PARTITION (see Section 2.3.3) where
A = {ay,az,...a4n}, s : A = Z, and B € Z is polynomially bounded in

m = |A|. Without loss of generality, suppose
s(ay) > s(az) > ... > s(asm).

We construct an instance (n, A, p) of #CSG from (A, B, s). Let

n=m?. B,
A =[(m- BY"), (1.4
and g = [m-s(ar),...,m- s(asm)].

This transformation can be done in polynomial time whenever B is bounded
by a specific polynomial p(m).

Intuitively, we use the rows of the extended diagram for A to hold 4-sets
and the partition g to encode the sizes in the 4-PARTITION instance. The
sizes are scaled up so that any valid 4-set S} (with Yeeqr s(a) = B) will fit
into a row. Furthermore, with the row ¢ filled by a valid 4-set, there will be
m — 1 boxes left unfilled in that row. Thus, if all rows are filled with valid

4-sets, then we are left with a staircase which is counted as one. Any other
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way to fill the diagram with the cycles of p will result in at least one row
taking elements (in the instance of 4-PARTITION) whose sizes sum to more
than B and thus, whose sizes (in the instance of #CSG) sum to more than
m - (B +1). Since none of the rows in the diagram for A are that big, the
resulting hook structure has a negative component. Thus, the resulting hook

structure cannot be a permuted staircase and so it is not counted.

Lemma 1 If there are N valid 4-partitions of (A, B, s) then the value of the

character x (i) of S, at X and p given by equation (4.4) is N -m! B
Proof: The extended diagram h resulting from X is given below.
h=[mB+m—-1mB+m-2,... mB|
That is, the components k; of h are given by
hi=mB4+m—1 (1<i<m).

For any subset S C A let D(S) be defined by
D(S)=B-Y s(a)
a€s

If we remove only the cycles p; such that a; € S C A from the i row of

h we get a resulting extended diagram where the value of the 7*" component,

which we denote by H(S, ), is

H(S,%) =hi— Y csms(a)
=mB+m—i+m(B—Y,cs5(a) — B)

mB +m — i+ mD(S) — mB

=m —1+mD(S).




67

If D(S) =0, then H(S,i) =m —i. If D(S) < 0, then

H(S,1) =m—14+mD(S)

<m-1—m<0.

Thus, if S, Ss, ..., Sm is a valid 4-partition of A then D(S;) =0for1 <i<m
and so we can remove the y;’s corresponding to the S;’s from %, by removing y;
from h; whenever u; € Sj, to get [H(S,1),...,H(S,m)] = [m—-1,m-2,...,0],
which contributes one to the value of the character.

Now, from an expression Sy, S, ..., Sy, for a valid 4—partition, any permu-
tation ™ of m objects applied to the subscript in the expression gives another
expression Sr(1), Sr(2) - - - » On(m) for the same 4-partition. Since there are m!
such expressions for each such 4-partition and each of these expressions con-
tributes one to the value of the character, if there are N valid 4-partitions of
A, we get a contribution of NV - m! to the character.

We now prove that there are no further contributions to the character.
Given any sequence z = (z1,...2;) € {1,2,...m}*, we can reverse the process
described above by putting a; into S,, to get a partition Sy, Ss, ..., S,, of A. If
the resulting partition is a valid partition then we have a contribution of one
as described above. Now, consider the case where the resulting partition is
not a valid partition of A. In such a partition, there must be an S; such that
the sum of the sizes of the elements is greater than B. If not, the partition
would be valid. Let S; be such a set and consider what happens to the i*" row
when we remove the y4;’s from h following 2. Since

> s(a)> B
a€S;
we have D(S;) < 0. This, in turn, implies that H(S,7) < 0 and so the

contribution to the value of the character is zero. W
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4.1.4 A Probabilistic Polynomial Time Version of the

Murnaghan—Nakayama Rule

Recall that a probabilistic Turing machine is a non—deterministic Turing ma-
chine that accepts a string if strictly more than half of the possible compu-
tation paths on that string are accepting computations. For a more detailed
description see [Joh90].

Informally, we use the phrase ‘generate n accepting computations’ to indi-
cate a process where we allow the computation tree to branch [log,n] times
by writing [log, n] 0’s or 1’s to the tape. For all of the sequences of 0’s and 1’s
that correspond to a number less than n, the machine jumps immediately to
an accepting state. For those greater than or equal to n, the machine writes
another 0 or 1 and rejects if it wrote a 0 and accepts if it wrote a 1. Af-
ter this process, there will be n more accepting computations than rejecting
computations and, since the balance of the number of accepting computations
versus the number of rejecting computations is all that matters for overall
acceptance in this model of computation, we can ignore the matching accep-
tances and rejections produced for numbers greater than or equal to n. We use
the phrase ‘generate n accepting computations and continue’ to indicate that
the process should be prefaced by a single branching of the computation tree
where one branch generates n accepting computations and the other continues.
Similar definitions apply to generating rejections. ‘Nondeterministically gen-
erate’ means produce a branch in the computation tree for each of the things
specified.

We describe a probabilistic polynomial time version of the Murnaghan-
Nakayama rule.

Let & = [hy,...,hk] be an extended diagram. Let p = [uy,..., ] be a
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partition (specifying a conjugacy class) and let z € {1,2,..., k}. We define the
symbol (h— ). as the value of the extended diagram resulting from removing

p from h according to z. That is, let
KO = h =[hy,... k),

and
4O = 7, B — )

“J

The value of (h — p), is the value of the resulting extended diagram A).

Algorithm 5: PP Algorithm for TCSG
Input:
n: expressed in unary,
At a partition of n specifying a class of equivalent irreducible
representations of S,
p: a partition of n specifying a conjugacy class in S,,.
z: an integer threshold value expressed in binary.
Question:
Is the value of the character of an irreducible representation

in A at the conjugacy class p greater than or equal to z?

That is, is x*(u) >z ?
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Step 1:
if (z > 0) then
generate 2z — 1 rejecting computations and continue
else
generate 2|z| 4 1 accepting computations and continue
endif
Step 2:
Non-deterministically generate a z € {1,2,...,k}!
(ie. for each z do):
Step 2.1:
if (h — p), = 0 then
generate an accepting computation
and a rejecting computation
else if ((h — p), = 1) then

generate two accepting computations

else

{(h—p).=-1}

generate two rejecting computations
endif W

We show below that correctness of this algorithm is implied by that of the
Concise Murnaghan-Nakayama rule.

Let PM#(y) be the number of ways that u can be removed from the principle
hook structure h for representation class A so that the resulting hook structure
B evaluates to y. That is, PM(y) = |{z: (h — p), = y}|.

Now from the Concise Murnaghan-Nakayama rule, we see that

X() = PM#(1) = PM(=1). (1.5)
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So x*(u) > z if and only if
PY(1) — PMH(—1) >

that is,
PM(1) — PM(=1) —z > 0.

We now examine the possible outputs from the algorithm in two cases.

Case 1: If ¢ > 0, the algorithm gives:
From step 1: 2z — 1 rejections and
From step 2:

P*#(0) acceptances,
PA#(0) rejections,
2P%#(1) acceptances, and

2PM#(—1) rejections

so the total number of accepting computations is P*#(0) 4+ 2P*#(1) and the
total number of rejecting computations is 2z — 1 + PY#(0) 4+ 2P #(=1).
The algorithm accepts the input if and only if the number of acceptances

is larger than the number of rejections. If z > 0, this is true if and only if
PMH(0) 4+ 2PM(1) > 22 — 1 + PM(0) + 2PN (=1)
Consolidating terms involving PM* yields
2PM4(1) — 2P (1) > 22 — 1
and from equation (4.5), we have

2N (p) > 2z — 1.
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Since y*() and z are integers, this is equivalent to the condition
2" (1) 2 22

or
Xp) > .

Similarly, the algorithm rejects the input if and only if the number of rejections

is at least as big as the number of acceptances. Again, when z > 0 we get
PM(0) 4+ 2PM(1) < 2z — 1 4 PM#(0) 4+ 2PM(-1)
and again consolidating terms and applying equation (4.5) gives

X ) < e

Thus, when z > 0 the algorithm accepts if y*(1) > = and it rejects otherwise.
Case 2: If £ < 0, then by a similar calculation to the above, the number of

accepting computation paths is
2z| + 14 PM(0) + 2PM(1)
and the number of rejecting computation paths is
PM(0) 4 2PM#(~1).

Now if x*(¢) > z, then
2N p) > 2z = —2z|.

Applying equation (4.5) and subtracting 1 from the right hand side to get an

inequality, we have

2PMH(1) — 2P (—1) > —2|z| — 1.
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Adding P*#(0) to both sides and rearranging terms gives
2PM(1) + PMH(0) + 2]z| + 1 > 2PM#(=1) + PM#(0)

which implies that the number of accepting computation paths is larger than

the number of rejecting computation paths. Similarly, if x*(u) < z, then
2 (1) < 22— 1.
Again adding P**(0) to both sides and rearranging terms gives
2PM(1) + PM(0) + 2|z| + 1 < 2PM#(—1) + PM#(0)

which implies the number of accepting computation paths is smaller than the

number of rejection computation paths.
Lemma 2 TCSG e PP. 1

Proof: As we have just seen, the algorithm is correct. Furthermore, each
branch of the algorithm is of polynomial length. The paths terminating in
step 1 are of length O(log(z)) which is clearly bounded by a polynomial in the
input size. The paths terminating in step 2 are of length 0(log(n) - k - ) which

is polynomial in the input size even when the input is not written in unary. M

4.1.5 The Murnaghan-Nakayama Rule on a Counting
Turing Machine

Recall that a counting Turing machine (CTM) is structurally the same as a
probabilistic machine except that the value returned by a CTM is the num-
ber of accepting computations, rather than just a ‘yes’ or ‘no’ depending on

whether there are more accepting computations than rejecting computations.
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The class #P is the set of all problems solvable by a CTM in polynomial time.
Since we do not care at all about the number of rejecting computations, when
we say ‘generate n accepting computations’ we mean generate exactly n ac-
cepting computations. This is easily done by nondeterministically generating
[logon] 0’s and 1’s and accepting only if the resulting number (in binary)
is less than n. For a more detailed discussion of counting Turing machines
see [Joh90].

Since a CTM cannot return a negative number, instead of directly evalu-
ating the character, we consider the problem of evaluation of the sum of the
value of a character and an easily computable large positive number. This al-
lows us to give an exact classification of the problem. From this, we can easily
compute the desired character value and thus we have a good classification of
computing the character as well. We choose the large number to be n" since it
is both easily computable and is always at least as large as the absolute value
of the character of §,,.

We now present a CTM version of the Murnaghan-Nakayama Rule.

Algorithm 6: CTM Version of the Murnaghan-Nakayama Rule
Input:
n: expressed in unary,
A: a partition of n specifying a class of equivalent irreducible
representations of S,,,

p: a partition of n specifying a conjugacy class in S,.
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Output:
The value of the character of an irreducible representation
in A at the conjugacy class p, plus n™
XMu) + 0.
Step 1:
Step 1.1:
Find &' and n".
Step 1.2:
Generate n" — k' accepting computations and continue.
Step 2:
for each z € {1,...,k} do
if (h — p), =1 then
generate two accepting computations
else if ((h — )., = —1) then
reject
else
{(h—n). =0}
accept
endif

endfor W

The number of accepting computations is

2PM(1) + PM0) +n™ + k' = PM(1) + PM(0) + PM*(-1)
+ PM(1) = PM(=1) 4+ n" - K

and, since

PM4(1) 4+ PM#(0) + PM#(—1) = ¥
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and

X = PMH(1) = P(=1),
the number of accepting computations is
B4 x M) 4+ 0™ = k=M (w) + "

We observe that, since k,! < n, we have that n™ > k. Thus step 1 above

can always be done since the value n™ — k' is always non-negative.
Lemma 3 #CSG+ € #P. 1

Proof: Counting operations on hook structures as unit cost, each branch of
the algorithm takes O(n - k - [) time and the n™ branches can be generated in
O(nlog(n)) time. Thus the total running time is O(nlog(n) + nki). W

4.1.6 Completeness Theorems

We are now in a position to prove the main theorems of this section.
Theorem 6 TCSG is PP-complete. W

Proof: We recall from section 2.3.3 that the problem T—4-PARTITION is
PP-complete. The transformation given in section 4.1.3 was shown to be par-
simonious so TCSG is PP-hard. Combining this with lemma 2 immediately
implies the result. W

Theorem 7 #CSG is #P-hard. &

Proof: We recall for section 2.3.3 that the problem #-4-PARTITION is
#P-complete. The transformation given in section 4.1.3 was shown to be

parsimonious so #CSG is #P-hard. W
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Theorem 8 #CSG+ is #P-complete. R

Proof: Theorem 7 and the fact that n” is easily computable (in binary from
unary input n) implies #P-hardness. Lemma 3 shows membership in #P.
Combining these implies the result. MW

Theorem 8 shows that #CSG fails to be #P-complete only by virtue of

having some negative answers.

4.2 Outer Products, Schur Functions, and The
Littlewood—Richardson Rule

In this section, we describe problem of decomposition of outer products of
characters of the symmetric group. There is a well known connection between
this problem and computing coefficients of Schur polynomials. Namely, both
are solved by the Littlewood-Richardson rule. We analyze the Littlewood-
Richardson rule as it stands and use it to define several related problems to get
a better picture of the complexity of the above problems. Schur polynomials
and outer products of characters are discussed at length in [Mac79], [Sag91],
[JK81] and [Ker91].

Other work has been done in this problem. The Littlewood—Richardson
rule is modified to produce another combinatorial algorithm in [RW84]. [Ege82]
documents an implementation of the Littlewood—Richardson rule with prun-
ing. [ER85] contains a table of Littlewood-Richardson coefficients for two

special cases up to n = 30.
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4.2.1 Outer Products of Characters of the Symmetric
Group

Given two matrix representations over the same field, T} of S, and T4 of S,
of dimensions 7 and 1 respectively, we can construct the tensor product of
these representations Ty ® T3 of S, @ Sy, for any ¢; € S, and any g, € S,,.
The dimension of this representation is n x .

Recalling the definition of the direct sum of groups, we see that S, @ S,
is a subgroup of S,1,. The matrix representation Ty ® Ty of S, @ Sy, can be
extended to the whole of S,1,, — in particular, to the induced representation
(defined, for example in [Ser77] and [FH62] and mentioned in Section 2.2.3).
The resulting matrix representation 7" = (T} @ T3) T Sn4m is called the outer
product of Ty and Ty. We shorten the notation to T’ = T} ¢ T so that we can
more easily generalize the above notation to characters.

This gives us a well defined operation on the characters of the symmetric
groups since if T and Ty’ are similar representations and T; and T3’ are similar
representations then Ty ¢ T3 and Ty’ o Ty are similar. Using n and m and the
superscripts (1) and (2) rather than subscripts, we write x(!) o x( for the
character of the (reducible) representation 7/ = Ty 0 T of S, 4. Since T' may
be reducible, we can decompose T’ into its irreducible constituents. Thus we
write Y o y(?) = oA (n4m) exx” where the cy’s are to be determined.

We now have the notation necessary to define the problem of computing

the coefficients of the irreducible constituents in the outer product.

Number Problem 11: DecOutSym
Decomposition of Outer Products of the Symmetric Group
Input:

Integers n,m > 0 (expressed in unary).
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Partitions p,7, and A of n,m and n + m respectively,
specifying absolutely irreducible characters of S,,, S,
and S, 4, respectively.

Output:
The coeflicient ¢y in the decomposition

X(u) o X(’Y) = E¢)—n+m C¢X(¢) u

4.2.2 The Littlewood—Richardson Rule
The standard diagram for a partition
A= (A, Aaye ey )

is the set of points

{(1'73/) 1<z < )\y}

The standard diagram for (6,4,2,1) is shown below.

(4.6)

For visually obvious reasons, we will often call the points boxes.
Given two partitions A F n +m and v - m, we make the diagram A\y by
erasing the standard diagram for v from the upper left corner of the standard

diagram for A. Thus, to make (6,4,2,1)\(2,2) we remove the diagram for
(2,2) EB

from the diagram for (6, 4,2, 1) shown in (4.6) above to get the diagram shown
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below.

i

This operation is only well defined, if for all applicable 7, \; > ~;.

The Littlewood-Richardson rule can now be stated. Given three partitions
AFn+m, pFnand v+ m, we make a diagram of A\y and count the ways
that we can fill the boxes with symbols directly identified with positive integers

according to the following rules.
1. One and only one integer is written in each box.
2. If = (pa,..., px), then exactly p; boxes contain i.

3. The symbols are entered into the boxes in numerical order. That is, we
start by adding 1’s and continues such that all symbols ¢ are entered

before we add any of symbol ¢ + 1.
4. No symbol is added directly to the right of an empty box.
5. No symbol is added directly below an empty box.

6. No symbol is added to a row that is above a row already containing that

symbol.
7. No two boxes in the same column contain the same integer.

8. The sequence of integers obtained by reading each row from right to
left and reading the rows from top to bottom is a lattice partition (see

section 2.1.3).
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If it is impossible to make the diagram A\y then there are no ways to fill the

diagram.

Example 4.2.13: Using the Littlewood-Richardson Rule

Let us consider the partitions A = (6,4,2,1) and v = (2,2) as
above, and let p = (5,3,1). We must fill the diagram A\7y with
five 1’s, three 2’s and one 3. We observe that the first row of A\y
must be filled entirely with 1’s, otherwise we would violate either
condition 4 or condition 8. The remaining 1 cannot be placed in
the second row lest we violate condition 7. It can be placed in the
first box of the third row, but not in the second box of the third
row by condition 4, and not in the fourth row by condition 5.

The second row must be completely filled with 2’s for the same
reasons that forced us to fill the first row with 1’s. At this point,

we have the diagram:

11111
2

DN

o

and we have one 2 and one 3 left to place.
The remaining 2 can be placed in either of the remaining open
boxes. The 3 must be placed in the other box. Both alternatives

are shown below.

111]

111111 1
2 2

2
£

Thus, there are two ways that the diagram A\~ can be filled in

N —

accordance with y. H
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Since we have not been able to determine the complexity of the the prob-
lems solved by the Littlewood-Richardson rule, we do not present a more
formal version of the rule.

The fact that the Littlewood-Richardson Rule solves DecOutSym is proved,

among other places, in [Sag91].

4.2.3 Analysis of the Littlewood—Richardson Rule

There are a number of pruning techniques which allow one to avoid filling the
boxes in all possible ways and then checking conditions 1 through 8. However,
since the result of the algorithm can be superpolynomial in the input size (see
section 4.2.5) and since the algorithm generates every valid placement of inte-
gers in A\7, so that its running time is at least linear in the value it returns
as output, even with perfect pruning, the algorithm still has superpolynomial
time complexity. Still, the above algorithm does allow us to observe the fol-

lowing.
Theorem 9 DecOutSym € #P. 1

Proof: Each of conditions 1 through 8 above can easily be checked by a
Turing machine in polynomial time. Thus, a counting Turing machine, which
generates all functions from the set of allowable symbols to the set of boxes
in the standard diagram and then accepts only if the placement of symbols
satisfies the conditions, solves DecOutSym. Further, each branch takes only

polynomial time. W
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4.2.4 The Complexity of Associated Problems

The description of the Littlewood-Richardson Rule is only dependent on A
and 7 being partitions for determining the diagram A\~y. The conditions given
above can be used on a diagram even if it is not obtainable as a difference of

standard diagrams. We define a problem based on the above.

Number Problem 12: L-R/GenDiag
Littlewood-Richardson Problem on Generalized Diagrams
Input:
Two vectors: X,,, Y,,, € N™ with components
x;,y; such that z; < y; for 1 <7 < m.
These specify the left and right boundaries of the diagram.
One vector: Z, € (zZ*)" with components z; such
that z; > z;41 for 1 <j < n —1 and such that
Yy —m) = i 7
This specifies the number of each symbol used to fill the diagram.
Output:
The number of ways that the diagram specified by X,, and Y;,
can be filled with symbols from Z satisfying conditions 1
through 8 in the Littlewood-Richardson Rule. W

If the components of X, and Y;,, when listed by their order in the vectors,
are in descending order, then the diagram is a difference of standard diagrams.
In this case, X, and Y,, correspond to 4 and A (respectively) in the definition
of DecSymOut. Z corresponds to p.
Unfortunately, this new problem is an extreme generalization of the Littlewood—

Richardson problem so we are unable to draw any strong conclusions about the
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Littlewood-Richardson problem from an analysis of the new problem. How-
ever, we are able to give a precise classification of its complexity. The result
indicates that if there is a polynomial time algorithm solving the Littlewood-
Richardson problem, then the algorithm must make use of the fact that the
input diagram is a difference of standard diagrams (unless FP = #P).

The following lemma follows immediately from Theorem 9 since there is

no mention of the dropped input requirements in the proof.
Lemma 4 L-R/GenDiag € #P. R

Now, we give a transformation from Boolean Permanent (see section 2.3.3.2)
to L-R/GenDiag.

Given an instance of Boolean Permanent B = [b;], an n X n boolean
matrix, we construct an instance (X,Y, Z) of L-R/GenDiag by defining a
set of components and then saying how these components are to be combined
to produce an instance of L-R/GenDiag.

We construct an initialization component using the first n + 1 rows of the
diagram. For 0 < j < n, we denote the left and right boundaries of row j by

init

:cijnit and y;™" respectively. The values are as follows.

o (et 1)
yinit o (n4+1)2 42
M~ (n+1)’+1 (1<j5<n)

y;-nit4—(n+1)2-|-3 (1S]§n)
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This gives the following shape.

g

(1]

We construct components for each row of the matrix in three parts. We
call the parts the upper triangular control component, the selection component,
and the lower triangular control component. The two triangular components
are each made using n + 1 rows in the diagram. For now, we will denote
the left and right boundaries of the j*" row of the component for the :** row
of B with superscript Vi (for the “upper triangular component”) or A: (for
the “lower triangular component”) and subscript j. The selection component
for each row of the matrix takes only one row in the diagram. The left and
right boundaries for the selection component for the i*® row of the matrix are
sel

and y;

1

sel
1

denoted by z , respectively.

For 1 <1< nand 0 < j <n, the values of xj-Vi,y]Vi and xin are assigned

as follows.
2yt —i(n+1)
y e i+ )(n+1)-1- Z]:b,-k
and -
o eyt

Forl<i<mand 0<j<n-—1,
yin«—(i—l—l)(n—l—l)

and for 1 < <n,

ynAi<—(i+1)(n+l)—l
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For1 <7< n,

5 — (n+ 1)

and
gt e (n+ 1)+ 1

For each row of the matrix, we place the upper triangular component above
the selection component and the selection component above the lower trian-

gular component. This gives a shape of:

We now explicitly construct the vectors X = (z1,...Zp244n41) and Y =
(Y1, - - - Y2n244n41) from the components made so far. Both X and Y are con-
structed in the same manner. The initialization component comprises the first

part of the vector:

xihxi-rfifor(lgign-l-l)
yi — y for (1 <1< n+1).

Then, we add the upper triangular component, the selection component, and

the lower triangular component for each row ¢, consecutively:
Ti(2n43)+j—n—1 — a:jw for (1 <i<nand0<j<n),

Yizn43)+i—n-1 — ¥, for (1 <i<nand 0<j < n),

Ti(2n43) 25 for (1 < i < n),
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Yienta) — yi° for (1 <i < n),
and
Ti(an+3)+i+1 :vjm for (1<i<mnand0<j<n),
Yianta)4ir < ;- for (1 <i<nand 0<j<n).
Finally, we make the vector Z. Z is of dimension n + 1 and each component

isn(n+1)+2.

For example, the transformation can be applied to the boolean matrix

1 01
B=1010
111

to get the diagram shown in figure 4.1.

We now describe how to fill figure 4.1 following the Littlewood-Richardson
rule (see section 4.2.2).

Following condition 3, we begin by inserting 1’s into the boxes. There are
boxes in fifteen columns (columns 4 through 18). By condition 7, each of the
fourteen 1’s must be placed in a different column. We cannot place a 1 in
column 18 because condition 5 forbids placing it to the right of an empty box.
Therefore, one 1 must be placed in each of columns 4-17. By condition 8, a
1 must be placed in column 17 of the top row; by conditions 3 and 4, this
must occur after a 1 has been placed in column 16 of this row. Now, the
remaining twelve 1’s must be placed in columns 4-15 — and, therefore, in
rows 5-31. Again, by conditions 4, 5, and 8, all three boxes in row 5 (columns
5-T) must be filled with 1’s. Remaining 1’s must be placed in columns 8-15
and, therefore, rows 10-31. Continuing to use conditions 4, 5, and 8 in this
manner, one can argue that there is only one valid placement of the fifteen 1’s

in this diagram.
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We can proceed more quickly if we place symbols in any convenient order
and verify that we could have followed the order constraints to obtain the same
placements when we are done.

Rows 1-4 include eight boxes, exactly two of which contain 1’s. Condition 8
can be used to conclude that the remaining six boxes must be filled by exactly
two 2’s, two 3’s, and two 4’s. Similarly, the sixteen boxes in rows 5-13 must
be filled by exactly four 1’s, four 2’s, four 3’s, and four 4’s. The sixteen boxes
in rows 14-22 and the sixteen boxes in rows 23-31, must then each be filled
by exactly four 1’s, four 2’s, four 3’s, and four 4’s as well.

Condition 8 now forces two 2’s, 3’s, and 4’s to be placed into rows 24 in
the positions shown in the diagram. We also have no choice (by condition 5) in
the placement of entries in the remaining three boxes in column 4. Condition 8
(and, at the end, condition 7) can then be used to determine the placement of
the remaining entries in column 3.

Only three entries — in row 9 and column 16, row 11 and column 7, and
row 12 and column 17, remain to be filled. As in the diagram, let a denote
the number assigned to row 9 and column 16. Since there is already a 1 in
column 16, a # 1. As well, a # 3, since this would violate condition 8 - so
a € {2,4}. Denote the entries in column 17 and rows 11 and 12 by ¢ and d
respectively. Since rows 5-13 must include exactly four 1’s, 2’s, 3’s, and 4’s,
{a,c,d} = {2,3,4}. If a = 2 then, by conditions 3 and 5, ¢ = 3 and d = 4;
otherwise @ = 4 and, by the same conditions, ¢ = 2 and d = 3.

Now consider rows 14-22. Again, condition 5 determines the place of en-
tries in column 8; conditions 7 and 8 then determine the placement of entries
in rows 14, 15, 16, and 17. The remaining entries (in rows 21 and 22) of col-
umn 10 are then fixed by conditions 5 and 7. Once again, since all 1’s have

already been placed, the entry in row 18 and column 16 must either be 2, 3,
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or 4. However, (since the entries in rows 1-17 are now fixed) condition 8 is
violated if this entry is either 2 or 4 - so there is a 3 in this position. Now,
only a 2 and a 4 remain to fill the remaining boxes in column 7; condition 5
forces us to fill the boxes as shown in the diagram.

Now, only rows 23-31 remain. Conditions 4, 5, and 8 force the placement
of entries in the upper triangular component in rows 23-25. Conditions 5 and 7
then fix the entries for the remaining boxes in columns 12-14. The entry b in
row 26 and column 16 must be whichever of {2,4} is not equal to the entry
a above it in the same column, in order to satisfy condition 7. Now, only
entries e and [ in rows 28 and 29 and column 15 must be determined. Since
{bye, f} ={2,3,4} and the integer e must be less than the integer f, ¢ and f
are determined by the choice of a (since b is).

Thus, there are two ways that we can fill the diagram. All of the boxes
that are filled with numbers are forced by the conditions. Those with letters
can be filled either witha =2, ¢c=3,d=4,b=4,¢ =2, and f = 3 or with
a=4,¢=2,d=3,b=2,e=3, and f = 4. This is to be expected since the
permanent of B is two.

We will now show that the transformation works. That is, the result of
applying the Littlewood-Richardson rule to the instance of L-R/GenDiag
given by the transformation acting on a Boolean matrix B is the permanent
of the matrix B.

We can think of the permanent of a Boolean matrix as the number of paths
through the matrix, starting on the top row and proceeding row by row to the
bottom row, such that we use exactly one element from each row and exactly
one element from each column, under the constraint that we use only elements

whose value is 1.
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6 11 16
1 1
212
3|3
414
_ 111 [4
6 2 |2
3|3
- ]
. 1
11 21c
3 |d
4 |4
1 [1[1
_ 2o ]2
16 e
414 n
1|
| 2
21 34
4]
111]1]
2|2
— [ 3
26
b ]
1
21le
_ 3|3li
31 lalals

Figure 4.1: The diagram for B.
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For each such path through the Boolean matrix B, there is one way that
we can fill the diagram (X,Y’) with symbols given by Z according to the
Littlewood-Richardson rule. Further, there are no other ways that we can fill
the diagram according to the Littlewood-Richardson rule.

Specifically, suppose that B = (b1iys---,bny,) is a path through B con-
tributing to the permanent of B. That is, all b;;, = 1 and for each j # k,
i; # ty. Then we can fill the diagram (X,Y) as follows: for 1 <i < n +1,
row : of the initialization component is filled with symbol ¢ + 1 (see rows 1-4
in Figure 4.1). Each row ¢ of each of the upper triangular components is filled
with symbol ¢ (as is the case for the components in rows 5-8, 14-17, and 23-25
in the example). The ;' selection component is filled with symbol i;+1 (spec-
ified in the definition of B above). Note the entries in column 16 in Figure 4.1.
All but the rightmost column of the lower triangular components are filled in
same way that the upper triangular components are filled. That is, the :** row
of each component is filled with the symbol ¢ + 1 except possibly for the box
in the rightmost column. The rightmost column of each lower j*' triangular
component is filled, in numerical order from top to bottom, with symbols 1
through n + 1 leaving out symbol ¢; + 1. Thus, Figure 4.1 corresponds to the
“path” by, baa, bsz through the matrix B if ¢ = 2, and corresponds to the
“path” by3, baz, b3y when a = 4.

For the sake of comprehensibility of the description, the above does not
make explicit use of the order constraints (conditions 3, 4, 5, and 6 in sec-
tion 4.2.2). By examining the results of the above description, we can see that

it satisfies all of the constraints. We give demonstrations below.

1. This condition is trivially satisfied.
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. Two copies of each symbol are used by the initialization component.
Each group of upper triangular, lower triangular, and selection compo-
nents contains n+1 copies of each symbol. Summing, we get n(n+1)+2

copies of each symbol, which is what is required by Z.
. This condition can be trivially satisfied.

. This condition is satisfied in the initialization component, the upper
triangular components, and the selection components since the rows in
these components are each filled with one symbol. Now consider a single
row in a lower triangular component. Each box except for the one in
the last column is filled with the same symbol. The symbol in the last
column is either the same or larger than the one in the rest of the row.
Since the above is true for each row in each lower triangular component
and values in boxes increase as one moves down a column within any
of these components, condition 4 can be satisfied in conjunction with

condition 3.

. This is clearly satisfied for the selection components since there are no
boxes directly above any of them. Each column in other components is
filled from top to bottom with symbols in increasing order and thus this

condition can be satisfied in conjunction with condition 3.
. This condition can be trivially satisfied.

. Examining each column and referring to the construction and to the
proof for condition 5, we see that the only place where this could be
violated is in the selection components, which are all contained in a
single column. By the construction from the path B, it immediately

follows that the constraint is satisfied there as well.
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8. This is clearly satisfied by the placement of values in the initialization
component. Also, the prefix string associated with the initialization com-
ponent contains an equal number of each of the symbols, so the entire
string will be a lattice partition if and only if removing the prefix string
leaves us with a lattice partition. Each group of contiguous upper trian-
gular component, selection component, and lower triangular component
has the same property, so we need only show that the inverse row word

for each one of the groups is a lattice partition.

Consider the i*" such group. Clearly, the prefix string corresponding to
the upper triangular component causes no trouble. The symbol in the
selection component can follow this prefix string since if there is a 1 in
the boolean matrix in the (z,7)'" position then there is one more box in
the j** row of the upper triangular component than in the (5 + 1) row

Similarly, there can be no problems with the lower triangular component.

Only a few additional comments need be made to show that there are
no other ways to fill the diagram in accordance with the rules (given in sec-
tion 4.2.2). Since there can be no duplicates in any column (condition 7), the
initialization component must be filled as described above or the correspond-
ing inverse row word would not be a lattice partition (condition 8). Because
of the insertion order constraints (conditions 3, 4, 5, and 6), the first upper
triangular component must be filled as given above or we would violate either
the column constraint (condition 7) or the lattice partition constraint (con-
dition 8). The selection component for the first row must be given a symbol
corresponding to a 1 in the first row of B or we violate the lattice partition
constraint (condition 8), because of the construction of the upper triangular

component. For the same reasons guiding the filling of the upper triangular
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component, the lower triangular component must be filled as described.

Again, since we are forced to fill each group of upper triangular, selection
and lower triangular components with the same number of copies of each
symbol, the same reasoning can be applied to the each of the components
in turn. Finally, all of the selection components are in the same column so
they must contain different symbols. They are not vertically adjacent to one
another, so the symbols do not need to be in numerical order.

Thus, the result of applying the modified Littlewood-Richardson rule to
the constructed instance of L-R/GenDiag is the same as evaluating the
permanent of the original matrix. Since the transformation can easily be

accomplished in polynomial time, we have demonstrated the following lemma.
Lemma 5 L-R/GenD:iag is #P-hard. &
By combining lemmas 4 and 5, we have the following result.

Theorem 10 L-R/GenD:iag is #P-complete. B

4.2.5 Counting Lattice Partitions

An important nontrivial restriction of the Littlewood-Richardson problem can
be solved in polynomial time. We restrict the input so that the difference of
diagrams has at most one box per row and at most one box per column. In
this case, the only constraints that have any effect are conditions 1, 2, and 8.
Thus, the problem reduces to counting the lattice partitions corresponding to
the partition p in the input of DecSymOut.

We do not use the full power of Theorem 11 (Kreweras’ theorem, which
follows) in dealing with this case. The theorem gives a formula for counting

lattice paths with any start point and any end point. The lattice paths that
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lower indexed coordinates taking priority in measuring height), then the s’
describe a lattice partition. The diagonal hyperplanes that we consider are
diagonal on only two coordinates. That is, the (z,7)!" diagonal hyperplane is
completely specified by z; = z;.

More formally, let @ = (a4,...,a,,) and b = (0,...,0) as above, let n =
S ia;, and let S = (s, ... s(). For 1 <i < m let ¢; denote the ¢** unit

vector, whose ! component is &;;, for 1 < j <m. If for each ¢, 0 <7 < n,
s =50 4 fG 4+ 1)

where f is a function from the first n positive integers to the set of unit vectors
in Z™
f{l...n} = {er,e2,€3,...,en}

and if
s > sgjl) (0 <4’ <3) (4.7)
for 1 <7 <nand 1 <j<k<m,then we say that the sequence S is a valid
lattice path.

Since a; > a4y for 1 < ¢ < m—1, we can think of a as a partition. We now
construct a one-to-one mapping between the valid lattice paths from (0,...,0)
to a = (ay,...,a) and the lattice partitions of a. Let A = (A, Ay, ..., A,) €

{1,2,3,...m}" be a lattice partition of a. Now, let
s() = ZeAJ (1<i<n).
=1

For 1 <4 < n, let f(i) = ea;. In this light, equation 2.1 and equation 4.7
express the same condition using different notation. Thus, for any a € Z™ we
have a bijective mapping between lattice paths and lattice partitions and so
we know that the number of valid lattice paths from the origin to a is equal

to the number of lattice partitions of a.
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Kreweras’ theorem gives an expression for counting lattice paths allowing
duplicate points and jumps in the path. We give the theorem without proof

below. Among other places, the theorem is proved in [Nar79].

INA

Theorem 11 (Kreweras 1965) Let 0 < a; < ... an, and 0 < b <

.. < b, be two sets of integers satisfying b; < a; (1 < i < n). Let sU)

(sgj), csW), 5 =1,2,...,r, be a set of vectors satisfying the inequalities
0<s¥ <. <V 1<j<n) (4.8)
and
b; < sgj) < s,(-jH) <a; (1<jyj<r1<i<n). (4.9)

Let |(b, a; )| denote the number of n x r matrices [s\)] satisfying equations 4.8
and 4.9. Forr >1

(b, a37)| = detl)
where

a;—bj+r
¢ = ’ (1<ij<n)
r4+g—1

and, as usual, ify < z or z < 0 then

=0.1

z

By applying the law of inclusion-exclusion, we obtain the following algo-

rithm for CLP.

Algorithm 7: Count Lattice Partitions
Input:
Abn

n: given in unary.
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Output:
The number of lattice partitions corresponding to A.
Step 1:
Let ! be the length of A.
fors—1ton+1do
Let C) be the I x [ matrix

whose (7, 7)" entry is

Ai+s
s+ —1
D) det(C™)
endfor
Step 2:
Let L(1) = DO,
for s —2ton+1do
Evaluate
()= 09 -3 1. [ *7}
t=1 s—1

Step 3:
Output L(n+1) &

We observe that the algorithm is correct. Let L(s) denote the number of
paths of length s from the origin to A where there are no duplicate points.
Since D) includes duplicate points, in order to find D) in terms of L, we
count the shorter paths and then account for duplicate points. Suppose there
are L(t) distinct paths to A of length ¢ < s. For each of these paths, we can
construct some number ()(s,t) of paths of length s by duplicating points in
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the path. Now, s —¢ points must be added to the path and they can be added

to t locations thus, so we have

t+s—1t—1 s—1
Q(S7t): =

s—1 s—1

Then L(1) = [(0,A;1)] = D and for s > 1

D =(0,);8)| = L(s) + f L(t) -

s—1t
Solving this for L(n + 1) gives the algorithm.

Since the arguments for the binomial coefficients involve values given in
unary and determinants can be evaluated in polynomial time (see [AVAUT4]),
the entire algorithm runs in polynomial time. Thus, we have the following

theorem.
Theorem 12 Count Lattice Partitions € FP. W

The number of lattice partitions can be superpolynomial in the input.
Consider the number of lattice partitions that can be made corresponding to

the partition A = (2m,m) F 3m. Clearly, this is at least

2m

m
since if we put the first m copies of the first symbol at the beginning of the
string, we are free to arrange the remaining m symbols any way we like. This
number is superpolynomial in m and thus superpolynomial in 3m.

Now, let A = (3m,3m —1,...,1), let ¢ = (2m,m), and let v = (3m —
1,3m — 2,...,1); then the coefficient ¢, of () in the decomposition

W ox® = T e
otnt+m
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is the number of lattice partitions corresponding to (2m,m) + 3m. Thus,
DecSymOut has instances with solutions that are superpolynomial in the
input size.

This means that a counting algorithm (which computes a value by incre-
menting a counter and thus requires time at least linear in the value it returns)
cannot solve DecSymOut in polynomial time. If a polynomial time algorithm
exists, it must do more than just count. Thus, at the very least, major mod-
ifications to the Littlewood—Richardson rule will be required in order to find

an efficient algorithm for DecSymOut.
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Chapter 5

Conclusions and Additional

Problems

5.1 Summary of Results

We have examined the computational complexity of finding the characters of
finite groups. It was known that the problem can be solved efficiently by
Burnside’s algorithm when the group is given by its complete multiplication
table. The first step of Burnside’s algorithm is the computation of “structure
constants”. Recent work to improve the algorithm has involved reduction
of the number of these constants that are computed. We have shown how
to efficiently compute a complete set of these “structure constants” from a
character table.

Considering the other end of the spectrum of representation sizes, we have
shown that finding individual entries in the character table of the symmetric
group is computationally hard (under standard complexity theoretic assump-

tions).
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We had limited success in classifying the problem of decomposing outer
products of characters of the symmetric group. We defined a generalization
of this problem and showed that it was computationally hard (under stan-
dard complexity theoretic assumptions). We gave an efficient solution to an

important subproblem, namely counting lattice partitions.

5.2 Related Problems

5.2.1 Succinct Specifications of Groups

Giving the multiplication table for a group is not a space efficient method for
specifying a group. In particular, a Cayley table requires size quadratic in the
order of the group. There are methods for specifying groups where, for many
groups, the space required is polylogarithmic in the order of the group. The
character table may have size superpolynomial in the input size if a concise
specification of the input group is given. In general, there is no natural way to
‘index’ into the character table as we do with the symmetric group. Thus, the
complexity theoretic question becomes, can one compute the character table of
a group in time polynomial in the maximum of the input size and the output
size?

The problem of finding character tables from such succinct specifications of
groups is presently unclassified with regards to its computational complexity.
Considerable work has been done on computations with permutation groups
(see [But91] for a good introduction). However, even the apparently very spe-
cial case of finding characters for p-groups has not been analyzed (see [Con90a]
and [Sla86]). The state of affairs is similar for matrix groups and finitely pre-

sented groups. Groups specified by permutations can be efficiently converted
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to finitely presented groups or to matrix groups. Thus, finding the character
tables of matrix groups or of finitely presented groups is at least as (compu-

tationally) hard as the corresponding problem for permutation groups.

5.2.2 Characters Over Other Fields

We have only considered finding character tables over C. All of the problems
asking for complete character tables can be generalized so that a specification
for a field K is included in the input and then the question becomes ‘what is
the character table over K for the group?’ There has been extensive work on

algorithms in this area. For example, see [Con90b].

5.2.3 Decomposition of Inner Products of Characters of

the Symmetric Group

Let T} and T3 be absolutely irreducible matrix representations of S,,. Consider
the tensor product T' = T1 ® T (see section 2.2.3). T is also a representation of
Sy, but it is not generally irreducible. Like all representations of finite groups
over fields of characteristic zero, it is similar to a direct sum of irreducible
representations.

Define the inner product of the characters x! and x? of the representations
Ty and T, to be the character of the representation T' = T} ® T,. We denote
this character by ¢ = y! x x%. The characters of tensor products of similar
representations are the same. That is,if 17 ~ T"y and Ty ~ T then Ty @ T4 ~
T',®T’y. So, the characters of 71 ® Ty and T",®1"; are the same.

Since ¢ = x! x x* is a well defined character of S,, it is expressible as a
linear combination of the irreducible characters of S,,. We recall that for the

symmetric group, we can succinctly specify irreducible representation classes
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using partitions. Thus, we may ask, ‘given partitions A;, Ao, p F n, what is
the coeflicient ¢, of x* in the decomposition

A A
XXX =Y T
otn

It is known (see [Ebe89]) that the coefficients ¢, can be found from such
inputs using polynomial space. At present, nothing more is known about the
complexity of this problem. It seems quite plausible given the hardness of

computing individual characters that this problem is hard as well.
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