
THE UNIVERSITY OF CALGARY

An Expert System for Routing VLSI Designs

by

Mary Margaret Keefe

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTEROF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

JUNE, 1987

© Mary Margaret Keefe, 1987.

Permission has, been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a êt accordée
a la Bibliothque nationale
du Canada de microfilmer
cette thse et de pr&ter ou
de vendre des exemplaires du
film.

L'auteur (titulaire du droit
d'auteur) se reserve les
autres droits de publication;
ni la thse ni de longs
extraits de celle-ci ne
doivent être imprimes ou
autrement reproduits sans son
autorisation ecrite.

ISBN 0-315-38012-8

The University Of Calgary

Faculty Of Graduate Studies

The undersigned certify that they have read, and recommend to the

Faculty of Graduate Studies for acceptance, a thesis entitled, "An Expert

System for Routing VLSI Designs " submitted by Mary Keefe in partial

fulfillment of the requirements for the degree of Master of Science.

S u je i visor,
Dr. John Kendall
Department of Computer Science

Dr. Graham Birtwistle
Department of Computer Science

Dr. J n as ett
De,.rtrncnt of Electrical Engineering

June 22, 1987

Abstract

Given the complexity of VLSI design, a need is created for automated

tools that are as competent as human designers at their tasks. Routing,

one of these automated tasks, does not yet perform as well as the human

designer. Given the inherent complexity of the routing problem a

heuristic approach to routing using many and varied constraints is merited.

In this thesis, current heuristics for routing switchboxes and channels are

investigated to find what heuristics are used on each type of problem, and

where they may be improved. Based on the heuristics used to route

switchboxes, new heuristics are presented that better estimate the tracks

available for routing a net, resolve net conflicts based on this estimate, and

allow nets to overlap at the corners of routes to enhance the router's set of

heuristics in an effort to achieve 100 per cent routing completion. An

explanation is given as to how these heuristics can also be used to route

channels. The heuristics are implemented as an expert system using the

Automated Reasoning Tool expert system shell. Several difficult

switchbox routing problems are solved using the heuristics and produce

comparable results to those of current approaches. New heuristics can be

added to the modular and flexible expert system to upgrade the router to

work within and by the constraints posed by the VLSI design specifications

and design environment.

Acknowledgements

Whom should I thank? There are so many! I would like to thank my

supervisor, John Kendall, for giving me the freedom to pursue my own

endeavours on this thesis. I would like to thank Brian Schack for his help

in formatting the figures of this document and for his patience in allowing

me to bounce ideas off of him. I would also like to thank my family,

friends, and peers for their support, reassurance, and advice, most of

which I did not heed. And finally, I thank my mother and father for their

emotional support that helped me to push on to the end.

- iv -

Table of Contents

Abstract iii

Acknowledgements iv

Table of Contents v

List of Figures viii

List of Tables xi

Chapter 1 Introduction 1

1.1 VLSI Routing 1

1.2 The Difficulty of the Routing Problem 3

1.3 A Heuristic Algorithm for Routing 5

1.4 An Expert System for Routing in VLSI 8

1.5 Thesis Outline 9

Chapter 2 Previous Routing Approaches 10

2.1 Models of the Routing Problem 10

2.2 The Design Environment 11

2.3 Early Routing Approaches 14

2.4 Channel Routing 16

2.5 Switchbox Routing 26

-v -

2.6 Other Routing Techniques 40

2.7 Discussion of Current Routing Methods 42

Chapter 3 New Heuristics for VLSI Routing 45

3.1 Background Work 45

3.2 New.Heuristics for Routing Switchboxes 46

3.3 Corner Overlap 54

3.4 Heuristis for Channel Routing 57

3.5 Summary 63

Chapter 4 The B & D Router: An Expert System for Routing

VLSI Designs 65

4.1The Use of Expert System s for Routing 65

4.2 The Architecture of the B & D Router 69

4.3 B & D Problem Representation 70

4.4 The B & D Program 73

4.5 Disadvantage of Expert Systems 75

4.6 Summary 78

Chapter 5 Experiments with the B & D Router 79

- vi -

5.1 Input and Output 79

5.2 An Example Run with B & D 81

5.3 B & D Against Other Switchbox Routers 85

5.3.1 A Simple Switchbox 85

5.3.2 A Second Simple Switchbox 87

5.3.3 Burstein's Difficult Problem 88

5.4 B& D's Comparison Against the WEAVER 91

5.5 Summary 92

Chapter 6 Conclusions and Future Work 93

6.1 Conclusions 94

6.2 Future Work 95

6.3 Concluding Remarks, 97

References 98

List of Figures

Figure 2.1 The Floorplans of Three Design Methodologies 12

Figure 2.2 Solutions to Grid Alignment Problem 14

Figure 2.3 Wave Propagation from X to Y 15

Figure 2.4 Line Propagation using Xand Y 17

Figure 2.5 Line Propagation Dead End 17

Figure 2.6 Problem with Horizontal and Vertical Constraints 19

Figure 2.7 Column Density Example 20

Figure 2.8 Track Filling Example with Overlap 22

Figure 2.9 Constrained Left-Edge Solution 22

Figure 2.10 Circuit with a Cyclic Constraint 24

Figure 2.11 'Column Sweep Route of Three .Nets 25

Figure 2.12 Terminal Constraint on a Switchbox Problem 27

Figure 2.13 Loop Area Routing Scheme xample 28

Figure 2.14 Pattern Routing Example 30

Figure 2.15 Burstein's Solution to his Difficult Switchbox Problem

31

Figure 2.16 Hamachi's Solution to Burstein's Problem 32

Figure 2.17 Marek-Sadowska's Net Classifications 33

Figure 2.18 Constraint Propagation 34

Figure 2.19 Expansion Direction Changed by Constraint Propagation

35

Figure 2.20 Marek-Sadowska's Solution to Burstein's Problem 36

Figure 2.21 Minimum Rectilinear Spanning and Steiner Trees 37

Figure 2.22 Joobbani's Solution to Burstein's Problem 38

Figure 2.23 Corner and Parallel Overlap 39

Figure 2.24 Overlap Dilemma 43

Figure 3.1 Available Tracks 49

Figure 3.2 Choosing the First Versus the Last Available Track 50

Figure 3.3 Example of Net Conflict 51

Figure 3.4 Net Conflict Resolution Examples 52

Figure 3.5 Net Conflict Resolution Using New Heuristics 53

Figure 3.6 Final Solution 54

Figure 3.7 Conflict Resulting in a Corner Overlap 55

Figure 3.8 Simple Corner Overlap Example, 56

Figure 3.9 Complicated Corner Overlap Fanout Example 58

Figure 3.10 Channel Routing Problem with no Cyclic Constraint

60

Figure 3.11 Channel Routing Problem with Cyclic Constraint 61

Figure 3.12 Channel Routing Problem Requiring Net Merging 62

Figure 4.1 Channel Schema Definitions 70

Figure 4.2 Row and Column Relations 71

Figure 4.3 Pin Schema Definitions 71

Figure 4.4 Net Schema Definition 72

Figure 4.5 Connection Schema Definition 72

Figure 4.6 Example ART Rule 76

Figure 4..7 Procedural Versus ART Code 78

Figure 5.1 B & D Input Example 80

Figure 5.2 B & D Example Output 80

Figure 5.3 First Step of an Example Switchbox Routing Problem

81

Figure 5.4 Step Two 82

Figure 5.5 Step Three 83

Figure 5.6 Step Four 84

Figure 5.7 Solutions to a Simple Switchbox Problem 86

Figure 5.8 Solutions to a Second Simple Switchbox Problem 87

Figure 5.9 Luk's Solution to Burstein's Problem 89

Figure 5. 10 B & D's Solution to Burstein's Problem 90

List of Tables

Table 4.1 Summary of the Rules Written for B & D 74

Table 5. 1 Statistics for the Simple Switchbox in Figure 5.7 86

Table 5.2 Statistics for the Second Simple Switchbox 88

Table 5.3 Statistics for Burstein's Difficult Switchbox 90

Table 5.4 Execution Statistics of B & D and the WEAVER 91

CHAPTER 1

Introduction

The advent of the integrated circuit industry in the late 1960's

revolutionized the number and types of tasks that could be performed by a

computer. It also created a new branch of software development in the

area of computer-aided design (CAD) for performing tasks involved in

chip design. In the past, designers were able to lay out SSI (Small Scale

Integrated) and MSI (Medium Scale Integrated) circuits quickly and

efficiently, because the 'designs required the layout of small numbers of

components that could be managed and designed by hand. Matters are

somewhat more complex with LSI (Large Scale Integrated) circuits, but

still manageable. Technological improvements have now allowed

designers to build smaller, faster, and subsequently more complex circuits

on a single chip. Chip designers now place upwards of 10,000 to 100,000

transistors together to create a VLSI (very large scale integrated) chip.

These designs require the use of CAD tools to develop the entire chip

from its initial top level functional specification down to the layout of the

components on the chip.

1.1. VLSI Routing

In the VLSI design process, a variety of tasks are performed that lay

out cell component specifi'cations, check for design rule violations, place

cells 'in fixed positions on the design following the topology of the

interconnections that have to be made between cells and the physical

geometiy of the chip. The concentration of this thesis is on routing, a task

performed late in the VLSI design process. Given a chip definition and a

placement of cells (the functional blocks) on the chip, the routing problem

1

2

is to optimally route within the physical constraints of the chip 100 per

cent of all connections such that no two distinct connections intersect so as

to become equipotential. The chip boundaries and cell placement, which

includes input/output pads, determine where and how much routing area is

available. Other physical constraints include the positions of terminals on

each cell's boundaries that in turn will connect to terminals on the

boundaries of other cells. Each terminal has a fixed location on the chip

and is assigned a net name for interconnection. A net consists of a set of

terminals which are to be connected -- to share the same signal and thus be

equipotential. A path through the available routing areas on the chip is

established for each net and is laid down as wires on the chip according to

design rule specifications of the technology used. Two layers are

commonly used for routing; nets may cross over one another if they are

routed in different layers. Vias (contact cuts) are used to change layers.

If different nets should cross each other's paths on the same layer, they

will share the same signal, and thus become equipotential.

Once defined, routing looks to be a simple geometrical problem, in

practice, it is a labour intensive task. VLSI designs on the order of 10,000

nets may take a designer three to four months to route by hand. In some

instances, 50 per cent of the design time [Souk81] and 80 per cent of the

chip area may be taken up by routing [Mead80] [Sche86J. Automating

routing is attractive because of the speed up in design time; automated

routers can route hundreds of nets in a few minutes as opposed to a few

months by hand. But automated systems have had difficulty obtaining the

same quality of routing that designers have which is usually measured by

how compact the routing solution is. It is well known that results obtained

by automatic routers are not as compact as those obtained by human

designers especially on custom chips which have a more irregular and

3

denser layout than chips designed using other methodologies [Aven83]. A

task to which so much design time and area is devoted deserves to be

performed properly. The next section discusses why routing is a difficult

and time consuming task and why heuristic algorithms can be used solve

it.

1.2. The Difficulty of the Routing Problem

No definition of 'optimal' routing really exists. For some extremely

difficult routing problems, 100% interconnection of all nets cannot be

guaranteed (see Section 2.5; Switchbox Routing). Most designers classify

good routing as those solutions which minimize area, while trying to

complete all connections. Solutions which keep the chip area minimized

can keep the chip yield high. However, because wires are the objects that

are actually routed and not 'area', the routing problem must be translated

from minimizing chip area -- a two dimensional minimization -- to that of

minimizing wire length, minimizing the number of vias, or some other one

dimensional phenomena that routers deal with. Indeed, two early routers

minimized wire length in an attempt to achieve good routing [Lee61]

[High69], but because the constraint of wire length disregards many other

constraints that affect the area of routing -- such as the density of

interconnect, an important factor which directly affects the attainment of

100% routing completion -- incompleted solutions or solutions whose

quality was unacceptable were obtained.

From a different perspective, the routing problem thought of as a

'random problem' according to Abu-Mostafa's definition [Abu87]. A

random problem lacks sufficient structure in its definition that an

algorithm cannot be stated for it in mathematical terms. Instead, large

amounts of detailed information of the possible cases of the problem must

be kept for comparison to later versions of the problem. He cites as an

4

example of a random problem, the problem of recognizing patterns in a

natural environment. The pattern he selected to recognize was a tree.

Considering all the possible cases of trees, their branches, leaves, and

other properties, there is sufficient randomness in the problem of tree

recognition that a simple algorithm cannot possibly recognize all trees.

Because the algorithm is general, it recognizes at best a small subset of

trees and most likely include tree-like objects which are in fact not trees.

The routing problem is the same in this respect and is random because its

definition cannot exactly specify the optimal routing solution for all

possible routing problems. At best it can use simple algorithms to come

close to the optimal. Abu-Mostafa's solution to his problem was to

memorize all possible combinations of trees and then match the object to a

tree in memory, an impossible feat to perform since the number of

combinations is possibly limitless.

The routing problem is also classified as belonging to the NP (Non-

deterministic Polynomial) class of problems [Aho74] [Szym85] if a

definition of optimal exists, no algorithm can be specified that will

optimally solve this class of problem in polynomial time [Baas78].' To

generate all possible solutions and search sequentially through them to find

the optimal one would take exponential time. One alternative to this

procedure is to expand the original problem into a search tree with

branches leading to many partial solutions and then pick the best local path

to continue with. However, it is a characteristic of NP problems, that

following one branch of a search tree to a partial solution in no way gives

information on how much better or worse another path of the tree is

unless a significant number of paths (nearly all) are expanded [Mead8O].

'Algorithms with an exponential bound have time complexities of the order X',
where n is the nuiber of inputs to the problem. Algorithms with a polynomial bound
are of the order N—. X in both cases can represent the number of times all n inputs are
considered by the algorithm or the number of variables by which each of n is evaluated.

5

The most common method of solving NP problems is to develop heuristic

algorithms which embody 'rules of thumb'. Using information about the

current problem state, the appropriate heuristic is applied to change the

current problem state to a new state, leading the partial solution on the

path towards a 'good' final routing solution. An optimal solution cannot

be guaranteed using heuristics, but theoretically, close to optimal can be

[Baas78].

To sum up both theories, an optimal solution to the routing problem

can only be obtained by gathering a significant amount of information for

comparison, whether it be patterns in memory or an exponential number

of generated solutions. An alternative way to proceed is to develop

heuristic algorithms to solve the routing problem.

1.3. A Heuristic Algorithm for Routing

The purpose of a heuristic routing algorithm is to define how to solve

the routing problem accurately using heuristics. To do this the algorithm

must defiiie a model of constraints that represents the state of the problem

and define a set of heuristics that will find a solution that is close to the

optimal in all cases where that solution exists. Given this task, the

algorithm can only fail in two instances. It can fail if the model does not

represent the problem correctly or if the heuristics do not route correctly

with respect to the routing definition.

If the routing definition is referred to strictly as a set of physical

constraints which the algorithm must meet, then it can be said that the

model will only fail, to represent the routing problem correctly if it either

ignores necessary physical constraints or imposes unnecessary ones with

respect to the routing definition. For example, a model which ignores the

boundaries of the routing area would allow routes to wander outside the

6

boundary of the channel which violates the routing definition. In the same

manner, imposing the use of the two-direction-two-layer wiring model is

an unnecessary physical constraint. The routing definition states that nets

cannot intersect such that they becomes equipotential. Nets have to be

routed on different layers when they cross, but they do not have to be

routed on different layers in different directions. This restriction is used,

of course, because it simplifies the routing problem; the routing method

no longer requires a set of heuristics to make decisions on which layer a

net will be routed. However, it can prevent the router from finding a

good solution.

Heuristics can also be viewed as trying to meet the physical

constraints of the routing definition, specifically the constraints of laying

down routes that are in a 'close to optimal' configuration. Thus similar to

modeling the routing problem, heuristics can also ignore necessary

physical constraints. For example, an algorithm minimizing wire length

routes well in situations where there are no net crossovers in the solution.

When crossovers exist, one routed net can block another net from

completion. In this situation, nets which pass through the densest areas of

the routing region are given priority over others, because it ensures that

they will not be blocked later. From a more perverse perspective,

heuristics can also be thought of as imposing unnecessary physical

restrictions on routing solutions. By their own definition heuristics are

local optimizations and do not usually find the absolute optimal solution to

the routing problem. Indeed they may by chance restrict a solution from

being the optimal merely by their method of solving the problem. They

impose unnecessary restrictions which can be overcome by using more

heuristics, albeit with their own restrictions. The increasing number of

heuristics become less and less restrictive, less simplistic in their

7

representation of the routing problem. Their combined complex definition

of an algorithm is more capable of solving the complexities inherent in the

routing problem than any single simplistic restrictive heuristic. Thus

adding a heuristic not only adds new criteria for accurately defining a

routing solution but also removes a previous restriction that was present

without its use.

It is not the purpose of a routing algorithm to find the exact definition

of the algorithm. Problems with a certain amount of randomness, which

can be said to be true of the routing problem, require a full exposition of

all possible problems and their solutions to be accurate with respect to the

definition, an impossible task which can only be approximated by a

handful of heuristics and is better estimated by many increasingly accurate

heuristics. The fact that an exact definition has not been ascertained as yet

should also emphasize that all but one routing algorithm falls short of the

definition and can be improved. This is true for all current routing

approaches. In fact, current heuristic algorithms for routing are forced to

create generalized heuristics to take care of cases where no detailed

heuristics are present to route them. Thus current approaches should be

evaluated to find out what heuristics they use to define good routing,

where they impose unnecessary restrictions on the solutions to the

problem, and what additional criteria are required to improve the quality

of. routing.

This idea can explain why humans may do well at solving routing

problems. When confronted with the routing problem, the designer can

analyze the many physical features present, capitalize on her own

experience of what should be routed first and last, and route whole or

partial nets in any direction and layer she desires using rules of thumb she

has learned over the years. It is no coincidence that the more experience a

8

designer, has, the better she is at producing a good routing solution.

Experience may mean that she has acquired (1), the knowledge of what

heuristics lead to good routing and (2), the knowledge of when to apply

the heuristics to solve the problem in the best way.

1.4. An Expert System for Routing in VLSI

The main work of this thesis encompasses the idea of enhancing

current 'approaches to routing by adding more heuristics. Specifically,

switchbox and channel routers are examined for limits in their approach to

the routing problem. The switchbox and channel problems are forms of

the general routing problem which define routing regions to be

rectangular. Among the heuristics used to route switchboxes a

shortcoming is found in the estimation of what areas of the switchbox are

available to nets. This shortcoming jeopardizes the ability of the router to

complete 100 per cent of the connections. New heuristics are developed

that enhance the current base of switchbox routing heuristics by making a

better estimate of the areas that are available for nets to complete their

routes.

The secondary work of this thesis involves establishing a set of

heuristics that may jointly route the switchbox and channel routing

problems. Currently different routing heuristics are used to route each

type of problem, because they differ in their models. Channels allow

terminals to be defined on two opposite sides of the rectangular routing

region whereas switchboxes can have terminals on all 4 sides. Despite

their differences, which are elaborated on in chapter 2, the channel model

could be defined as a subset of the switchbox and as such should be able to

be routed by the same set of heuristics. This possibility is investigated.

9

The final work of this thesis involves the implementation of these new

heuristics in an expert system for routing. Expert systems are a natural

way for implementing a heuristic algorithm as they autonomously apply

heuristics based on the current state of the problem, as opposed to a

conventional program which applies heuristics in coded sequence. As

well, expert systems offer a modular and flexible way to develop and fine

tune large numbers of heuristics for a difficult problem such as routing.

The implementation of the new heuristics using this medium and the

expert system shell's performance as a system for developing software is

examined in this thesis. [Keef86] describes an earlier exploration of this

idea.

1.5. Thesis Outline

Chapter 2 of this thesis explores current routing methods. It analyzes

the algorithms with respect to the general heuristics used to route them.

The similarities and differences between the heuristics used to route

channels and switchboxes, and the differences between methods for

resolving conflicts between nets in the switchbox routing problem are

investigated. Chapter 3 presents new heuristics which enhance current

switchbox heuristics for net expansion, and can also be used to route

channels. Chapter 4 discusses the implementation of the B & D router, an

expert system for routing in VLSI that encompasses the heuristics

discussed in chapters 3. It discusses the overall architecture of the B & D

router and the data structures used to represent the routing problem state.

Chapter 5 gives an example of B & D's routing capability and compares

the B & D router's switchbox routing results to other systems' results.

Chapter 6 concludes the thesis and describes the future direction of work

regarding routing and expert systems.

CHAPTER 2

Previous Routing Approaches

Previous routing approaches are discussed with the intent of discovering

what heuristics and methods have been used to solve them. The models

used to represent the general routing problem are presented and the

influence from the design environment is discussed. Area routers, channel

routers, and switchbox routers, the heuristics and the methods used by

each type of router are included in the presentation of previous routing

methods. Chapter 2 concludes with a discussion of the three problems

facing switchbox routing and the general routing problem.

21. Models of the Routing Problem

A wiring model decides in what directions and layers wires can route.

In general, wiring models assume that only two layers are available.

Different geometries are available in which to route wires; euclidean,

where straight wires travel in any direction, rectilinear or manhattan,

where wires travel horizontally or vertically, and boston, where wires can

also travel at a 45 degree angle from the vertical and horizontal directions.

Most routing algorithms use the two-layer-two-direction wiring model

which uses rectilinear geometry and allow one layer to route horizontally

and the second layer to route vertically. A contact cut (via) is used to

change layers and hence directions.

In addition to the two-layer-two-direction wiring model, automatic

routers can use the grid approach to routing. A grid is a lattice of

equidistant horizontal and vertical lines mapped onto the routing region.

A grid point is formed at the intersection of two perpendicular lines. All

terminals on the boundary of the routing region and contact cuts must be

10

11

located on grid points and all wires must be routed on grid segments.

Grid lines are usually assumed to be separated by the minimum distance

required between a contact cut and the routing layer in each direction to

avoid design rule violations. Routers that do not use a grid allow

terminals to locate anywhere along the boundary of the routing region and

their wires to route according to design rule specifications.

2.2. The Design Environment

When an automatic router is developed for a CAD system, it takes

account of how the design methodology affects the general routing model

of the routing problem. The design methodology determines the floorplan

of the chip, the location and size of the routing areas, and the layers that

are available for routing. Three design methodologies, standard cell (or

polycell), gate array, and structured design (or hierarchical design), are

discussed below.

A standard-cell floorplan typically has rows of cells interwoven with

rows of interconnect space (see Figure 2.la) [Aven83]. Cells are designed

to abut horizontally by being the same height, but they may differ in

width. Vertical routing space at the ends of the rows and special route-

through cells [Breu83] give routes access to adjacent interconnect rows.

The amount of space allotted for interconnection can be altered by the

designer. The fabrication process determines the number of layers

available for routing, which is typically two.

Gate array design methodology is more restrictive than standard cell

design because the layout has been pre-masked. The highly regular,

structured, and well-spaced component layout in gate array semi-custom

design gives the automatic routers an advantage over those that have to

route the tightly packed and irregular layout of full custom designs

12

1)0 Buffer Area Border

— 1— I

I North End-Channel I

a
W '
e 11 12 13 In

S Interrow
t t
C21 C22 C23 2n

Interrow
S

I3i 32 C311

C
h h
a • a

nl In
e
1CC

e
1 C •.. C

M l m2 m3 mn

South End-Channel

a) Standard Cell Floorplan

110
Buffer

1/0
Buffer

Tr
I

I LLJ_L
C11

End
Channel

Cl,2

I I I I êI
I I I

- - - - I I I I

Interrow

Side
<

- - Layer 1 = Layer 2

b) Partial Gate-array Floorplan Showing
Routing Layout

cell

cell C

cell B

c) Sample Structured Design Floorplan

Figure 2.1 The Floorplans of Three Design Methodologies

[Aven83]. However, gate array routers find it harder to achieve 100%

routing completion [Jenn84J, because (1), the routing areas are set in size

13

and cannot be expanded if the router requires more space and (2), if all

routings are not completed, a designer must weave the leftover routes by

hand, which is a difficult and sometimes impossible task owing to the

scarcity of available routing space after the automatic router has run.

The most flexible design methodology of the three is structured

design [Mead8O] and is used to developed full-custom designs. An

example floorplan is shown in Figure 2.lc. The position and size of the

routing areas are usually set after the cells have been placed on the chip,

but this is variable if the routing areas have to be increased from the

demands of the router. The choice of layers is decided by the fabrication

process. Cells are usually designed to encompass most of the local

functional logic they require, so there is less interconnect between cells

and thethfore less routing space required. Automatic routing on full-

custom design does not achieve as tightly packed results as hand-packed

routing, because the routing layout is highly irregular.

Another difficulty that full custom designs have is matching up a non

grid-based cell design to a grid-based router. Two possible solutions have

been proposed by Ousterhout [0ust84]. The first uses a sidewalk

boundary around the cells and routes connections within the boundary to

the master grid connections (see Figure 2.2a). The second uses a flexible

grid approach (see Figure 2.2b), where small areas in the channel use

different grid lengths and compose to form the larder, non-uniform grid.

In general, automatic routing methods are developed to solve the

general routing problem, but once they are to be applied to a CAD design

environment, they are specialized to deal with the restrictions which the

design methodology, chip layout, and fabrication process give them.

The following sections discuss the current methods that solve the

routing problem. These methods solve the general routing problem, and

14

I I H • • I
135 441 T

2

II I

6

Cell

4

13 53

11 1

54

3

2

a) Grid Matchup Using a b) Channel Using Flexible Grid
Sidewalk Boundary Approach

Figure 2.2 Solutions to Grid Alignment Problem

are not specifically directed for use by any design methodology. The

discussion emphasizes the heuristics that each router uses to define good

routing, the specific improvements each router has made over its

predecessors, and the shortcomings each router has.

2.3. Early Routing Approaches

The first routing approaches are called area routers. They route one

net at a time across the entire chip area. Their main objective is to find

paths for nets around the cell and other obstacles in the chip area. Two

well-known area routers are the wave propagation and line propagation

routing algorithms.

Wave propagation, a derivation of Dijkstra's shortest path algorithm

[Aho74] [Lee6l], is also known as the Lee-Moore algorithm, the maze

runner, and the path finding algorithm [Aker72] lRubi74I. The method

gets its name from the wave that propagates from one terminal of a net

across a grid of positions to find the other terminal. Each successive

iteration of the wave is labeled with a numeral. When the other terminal

15

is found, a path is established by following the numbers in reverse order

to the source terminal. An example propagation is shown below; X is the

source of the wave and Y is the target. The steps of the wave are shown

in numerals.

The wave propagation method always finds a path for a net if one

exists, which is one of the reasons why wave propagation is used in many

CAD systems today, even though it was developed almost thirty years

ago. However, wave propagation has a high computational cost because

its search area grows exponentially at each iteration. The search area can

be reduced by restricting the wave's movement towards the terminals only,

or by having waves propagate from all terminals simultaneously. A

hardware solution proposed by [Hong83] dedicates processing elements

for each source node so that wave propagation is done in parallel for all

nets. For serial computation, however, the expansion cost is the main

liniitiation of the wave propagation method.

Line propagation improves on wave propagation by limiting the

amount of search made for a possible route for a net [High69]. The

method is also known as the Hightower algorithm, the Aim algorithm, and

the direct routing method [Souk81]. Each terminal of a net propagates

7 6 5 6 7 8 9 10

6 5 41 (8 9 10

5 4 3 8 9

4 3 2 34"5 6 7 8 9 10

3 2 1 2 3 4 5 6 7 8 9 10

2 1 X 1 2 3 4 5 6 7 8 9 10

3 2 1 2 3 4 5 6 7 8 9 10

Figure 2.3 Wave Propagation from X to Y

16

two perpendicular lines that must intersect to establish a completed path.

If a line encounters an obstacle, an escape point is formed. A route is

established to the escape point and new lines expand from that point. In

the example below, escape points of lines a, b, c, and d are formed as the

algorithm proceeds to connect X and Y (see figure 2.4).

The computational cost of the line propagation method is lower than

that of the wave propagation method, because less positions are being

searched; however, solutions are not always found. For example, in

Figure 2.5 line b propagates into a box to find a connection to point Y

without success and no track is available for a line to propagate back out

of the box. This method shows little intelligence for choosing escape

routes and is worse for complicated mazes where many obstacles exist.

The area routers discussed above are adequate for small routing

problems, but as the density of the routing increases, the heuristic of

minimum net length fails to route to 100 per cent completion. Entire nets

are routed one at a time, and it is a characteristic of this heuristic that nets

which are routed earlier may block later nets. Soukup [Souk81]) solves

this problem by uising flexible routed nets. If a routed net blocks a net

from routing later on, the first route can be removed in favour of the

second. Once the second net is routed, the first net can proceed to find an

alternate route using the wave propagation technique. But minimum net

length or the order in which nets are routed cannot decide when one net

should have preference over another.

2.4. Channel Routing

Areas routers have two drawbacks that disallow their use for solving

routing problems that contain on the order of 10,000 nets. The size of the

problem prevents a large percentage of routes from being completed

17

L d J

a

x

I' b
ry

-1

Figure 2.4 Line Propagation using X and Y

x

t bI

Y

Figure 2.5 Line Propagation Dead End

because they are routed a net at a time and minimizes net length only.

And as the density of the interconnect increases, so does the percentage of

nets left unrouted. But because the routing problem is NP complete, each

18

additional constraint beyond that for minimizing net length pushes the

time complexity closer to its exponential time bound [Souk79].

An alternative to routing the entire chip area at once is to divide the

area into channels, establish general paths for nets through the channels

(global routing)', establish the boundary constraints between adjacent

channels (net ordering), and perform detailed routing on the channels

independently of one another using a specialized router called a channel

router.

-Formally defined, a channel is a rectangle of routing space that has

fixed terminals on two opposing boundaries only. Horizontal channels

have terminals on the top and bottom sides; vertical channels have them on

the left and right sides. Channels can be defined to be L, T, and X-shaped

[Pint81], but this is rarely done. Channels have no obstacles save pre-

routed nets, wlich are nets that have been routed manually.

To spare the reader undue confusion in explaining the subsequent

terminology regarding horizontal and vertical channels, the term 'channel'

will refer to a horizontal channel and the discussion of channels will refer

to horizontal channels.

A column is a vertical line that spans the height of a channel. A

column is defined for each terminal or grid point on the upper and lower

sides of the channel. Tracks are a horizontal lines which span the length

of the channel, but are added to the solution as they are required by the

channel router. The columns and tracks are mapped onto a grid upon

which nets are routed. Typically, the two-direction-two-layer wiring

model is used along with the grid approach. Nets route one vertical

'Global routers are not discussed in this thesis, because they do not perform detailed
routing; they assign nets to channels based on the area available for routing throughout
the wole chip. The generally accepted procedure is based on the wave propagation
algorithm and can be found in Souk79].

19

segment at each terminal position and one horizontal segment to connect

the vertical segments providing that vertical and horizontal constraints

between all nets are obeyed.

A horizontal constraint exists between two nets if one net starts its

horizontal segment before the other has finished. If they are routed on

the same track, they will overlap. In Figure 2.6a, net 2 has a horizontal

constraint with net 1 and net 3.

A vertical constraint exists between two nets if both have terminals

located on the same column. Vertical constraints are captured in graphs

where nodes represent nets. Further, arcs and the position of nodes

relative to one another represent the 'above' or 'below' relation. The

vertical constraint graph for Figure 2.6a is shown in Figure 2.6b, and

shows that net 3 is constrained to route its horizontal segment above net

2's, otherwise they will overlap and become equipotential (see Figure

213
I 1 1

1

a) Horizontal
Constraints

3

b) Vertical Constraint c) Vertical Constraint
Graph Violation Causes

Overlap

An explanation may be required at this point as to what the information in this figure and the figures that
follow represents. A bullet (shaded circle) represents a contact cut. A line represents a segment of a routed
net and Is bounded by a terminal and a bullet, or two bullets. Dotted and solid lines represent the two
different layers used in routing. Any other significant points in the figures will be presented where
appropriate.

Figure 2.6 Problem with Horizontal and Vertical Constraints

20

2.6c).

Because the number of tracks a channel requires is established during

routing, an estimate can be made from calculating the channel's density.

Channel density is defined to be the maximum of all column densities in a

given channel. A column's density is equal to the number of nets that

cross it. For example, the channel density in Figure 2.7a is two.

However, it takes five tracks to route the example, indicating that channel

density does not always give a correct estimate. A better estimate in this

case is given by the number of linked nodes in the vertical constraint

graph which is five (see Figure 2.7b).

Similar to the constraint of net length in area routing, channel density,

vertical and horizontal constraints, and the number of tracks are the

constraints by which the horizontal net segments are routed. The terminal

pins decide where the vertical segments will go automatically. These

constraints and others that are used for channel routing are discussed in

the following sections.

2345

£1 11

34

a) Routed Example

5

b) Vertical Constraint Graph

Figure 2.7 Column Density Example

21

River routing [Mead80] [Pint81], the simplest of all channel routing

methods, routes in one layer only, thus nets cannot cross each other.

Channel density calculates the theoretical minimum channel width required

to adequately route the problem [Ullm84J. Because of its simplicity, river

routing has been shown to be optimally solvable in polynomial time

[Leis81]. However, it cannot be used to route the general two-layer

channel routing problem.

The wave propagation and line propagation can be used for the two-

layer channel routing problem. But again they fail to route 100 per cent of

all connections because they route a net at a time and disregard all other

constraints.

Channel density is the main optimizing constraint in track filling (or

left-edge) algorithms for channel routing [Pers78] [Yosh82]. The method

proceeds from the bottom-left of the channel across a track filling it with

as many horizontal segments of nets as possible while obeying the

horizontal constraints of the nets thereby minimizing channel density.

However, the method does not follow vertical constraints and therefore

some solutions may contain overlaps (see Figure 2.8).

The constrained left-edge algorithm [Mukh86] obeys horizontal and

vertical constraints and minimizes channel density by executing a modified

track filling procedure. Nets which are upper leaves in a vertical

constraint graph route on the top track of a channel; nets which are lower

leaves route on the bottom track. The algorithm proceeds left to right

filling the tracks according to horizontal constraints. Once the nets are

routed, their nodes are deleted from the vertical constraint graph and the

next two tracks are filled. This algorithm does not create solutions with

overlaps; however, nets are selected on a first come first serve basis based

on their location along the channel boundary, which does not guarantee

22

3 56 3
I I I I

1 2424 1 57 76

a) Left-edge Algorithm Causes Overlaps

3 56 3

I.

- -

1 2 4 2 4 1 5 7 7 T --- 7 T--I -7,

b) Constrained Left-edge Solution With No Overlaps

Figure 2.8 Track Filling Example with Overlap

0 1 4 5 1 6 7 0 4 9 10 10
14 U

T_•_
235352689879

Figure 2.9 Constrained Left-Edge Solution

that solutions minimize channel density.

23

The least-cost path algorithm [Mukh86] recognizes the relationship

between channel density, vertical horizontal constraint graphs, and net

merging by filling tracks with nets that are the most 'density reducing'. If

a combination of nets merged on one track covers all columns that have

maximum channel density, then that combination is defined as density

reducing. The algorithm proceeds to build two graphs, one of the upper

leaf nodes in the vertical constraint graph, the other of the lower leaves.

An arc is established between two nodes in the graph if the two nets can

be merged onto the same track. Each are is assigned a cost equal to the

number of columns left uncovered between the two nets that have

maximum channel density. The algorithm guarantees that the least cost

path through each graph will be found if a path exists. The nets in the

selected path from the upper graph are routed on the upper track of the

channel. The same is done for the lower graph. Upon the next iteration,

two new graphs are built for the leftover nets and the resulting least cost

paths are routed. The one restriction to using this algorithm is that the

vertical constraint graph must be acyclic.

A cyclic constraint exists between two nets if both enter and exit the

channel at the same columns, but at each time on opposite sides of the

channel. Problems with a cyclic constraint cannot be solved if nets are

allowed to route using only one horizontal segment (see Figure 2.lOa).

Deutsch's dog-leg router breaks the cycle by allowing nets to route on

more than one horizontal segment [Deut76]. A 'dog-leg' is an extra

vertical segment placed in a route to give it a knee-bend. An example

solution to the cyclic constraint problem using a dog-leg is shown Figure

2.lOb. Dog-legs ensure that a cyclic constraint can be routed if the extra

vertical columns are available, but require extra contact cuts and thus

increase the capacitance and the area of the channel. To limit the number

24

1 2

2

1 1 2

1 2

a) Circuit with Cyclic b) Circuit Solved using
Constraint Dog-leg

A

1 2

I I I

c) Circuit Solved by Relaxing d) Circuit Solved using
2-direction-2-layer Interdigitation
Wiring Model

Figure 2. 10 Circuit with a Cyclic Constraint

of dog-legs a route can have, Deutsch suggests that dog-legs be introduced

at a column where a terminal already exists for the net; however, this

restriction cannot be followed between two terminal nets.

The cyclic constraint can also be solved by relaxing the two-layer-

two-direction wiring model, as shown in Figure 2.l0c; however, parallel

overlap is introduced as well which can increase capacitance between the

wires in question. Interdigitation [Jenn84], which permits one terminal

entry per column, removes cyclic constraints altogether; however, this

restriction puts valuable routing area to waste (see Figure 2.lod). All

three techniques have increased the channel routing area and capacitance

25

both of which are necessary to solve the cyclic constraint.

A method called the column sweep approach departs from the track

filling method and routes all tracks at oncecolumn by column. [Rive81]

[Rive82]. The method, also referred to as the greedy algorithm, forces

nets to take the closest track to their next exit point when they enter the

channel. An example run of a column sweeep is shown below in Figure

2.11. Because the channel is swept from left to right, the algorithm cannot

determine if a net routed early on will block a net routed later, a similar

problem that line and wave propagation algorithms encounter.

The topological approach to routing differs from the other channel

routers discussed above because its one heuristic minimizes vias [Mare84].

The nets are topologically arranged on two planar graphs, each graph

representing a different routing layer. A via in a net represents a change

of layer and therefore a change in graphs. The object is to embed a net

one at a time into the graphs using the minimum number of vias necessary

to keep each graph planar. Geometric parameters such as channel size and

0145617

1-4

-- I

L .i.
 -I--

__t__ --

2 5 5261

0 4 9 10 10

I I
! 1 a. --

79

Figure 2.11 Column Sweep Route of Three Nets

26

.capacitance are not considered with the result that some topologically

sound solutions cannot be physically realized.

In summary, channels are routing areas containing no obstacles whose

height can be expanded during routing if necessary. Different heuristics

and techniques are available to find good channel routing solutions. In

general, channel routers can use vertical and horizontal constraints, net

merging, channel density, and the number of vias to obtain solutions.

Good results have been achieved by the least cost path router, which uses

three of these heuristics to determine the maximum density reducing

routes provided the problem has no cyclic constraint. The solutions to the

cyclic constraint either relax the constraint of the two-direction-two-layer

wiring model, allow the nets to route using more than one horizontal

segment, or restrict columns to having only one terminal assignment.

Each technique entails a necessary increase in the area or capcitance in the

routing solution because of the extra vias or parallel routing that is

introduced.

2.5. Swltchbox Routing

A difficult routing problem which has been tackled only recently by

automated routing methods is the switchbox routing problem. The

switchbox model is similar to the channel except that terminals can be

located on all four sides of the switchbox. Their definition provides

greater flexibility than that of the channel [Jenn84], because other routing

region shapes, such as L, T, and X-shapes can be defined using

switchboxes. This problem frequently appears in VLSI design where

either the floorplan of the chip or the design procedure sets both the

height and width of the routing regions and fixes the locations of the

terminals on the switchbox. The restrictions make switchboxes more

difficult to route than channels and makes many channel routers incapable

27

of routing the switchbox problem. First, 100 per cent cannot be

guaranteed because the switchbox area cannot be expanded during routing

[Souk81]. Thus, track filling channel routers cannot be used to route

switchboxes, because they require that tracks can be added while routing is

being performed. This problem can be circumvented if the design

procedure allows cells to be re-placed after routing to provide more

routing space if it is required. Second, the locations of fixed terminals on

the four sides of the switchbox constrain where vertical and horizontal

segments can route (see Figure 2.12). Track filling routers assume that

the horizontal segment of a route can be placed on any track, piovided

that vertical and horizontal constraints are followed. Thus switchbox

routers cannot follow the same procedure as channel routers.

2

3

1 3 5

T'

. T5

1 3 5

24

3T

¶

I I I I I
1 2 1 2

a) Horizontal Tracks Required by
Terminal Definition, with an
Overlap

5

T

T5

T2

b) Vertical Columns Required by
Terminal Definition

Figure 2.12 Terminal Constraint on a Switchbox Problem

28

The loop area routing scheme [Mukh86] routes an expanding model

of the switchbox problem, proceeding from the centre of a routing channel

towards the boundaries adding tracks and columns as they are required.

Figure 2.13 depicts the solution to an example problem. This method does

not use the common two-direction-two-layer routing model and routes by

selecting the shortest nets to route near the centre of the routing region.

This scheme cannot route more than one assignment per track and because

it adds an equal number of tracks and columns as it proceeds, it produces

square results regardless of the true dimehsions of the routing area.

Another model that differs from the switchbox model is the three-

sided channel [Souk8fl. A three-sided channel has fixed terminals on

three sides of the channel and floating terminals on the fourth side.

5 1 2

1'

I I I I I
43 21 4

0

13

Figure 2.13 Loop Area Routing Scheme Example

29

Three-sided channel routing methods route from the fixed terminal side

towards the floating terminal side. Nets entering the channel on the third

side automatically get the track that their terminal is on. Exiting nets are

assigned a fixed position once routing has finished and are passed as

constraints to the adjacent channel. Thus three-sided routing is not a truly

independent routing model, since the terminal assignments are passed

from channel to channel and terminal assignments may affect adjacent

channels adversely.

The hierarchical pattern router developed by Burstein Burs83L is

capable of routing the switchbox model. The method subdivides a larger

switchbox problem into a 2 X N grid model. The problem is then further

subdivided into simple 2 X 2 routing problems to which simple patterns

can be matched (see figure 2.14a). These patterns are individually applied

to advancing steps of the solution towards the final goal of solving the 2 X

N problem. The steps of an example problem are shown in Figure 2.14b.

The router can almost complete a difficult switchbox problem known as

Burstein's Difficult Switchbox Problem (see Figure 2.15). Although net

24 is unrouted, the routers partial success gives it high marks for its

switchbox routing capability.2 This method routes entire nets one at a time

and this has previously been shown to hinder 100% routing completion.

The router uses no other heuristics other than these specific patterns from

which to choose routes.

The column sweep channel approach can also be used to route

switchbox problems, because the number of columns and tracks is known

beforehand [Hama84] The router sweeps across the switchbox in the same

20rigina11y perceived as unsolvable, the extreme difficulty of Burstein's Difficult
Switchbox thwarted many attempts at finding a solution until an automatic router
produced one. The success of Burstein's pattern router has also been refuted by Deas
[Deas86] as it orders the nets to be selected before starting the routing process to ensure
the routability of a switchbox.

30

.

H1 NWI I•I I I I

S

S

.1

S I

a) Basic Patterns for 2x2 Grid Routing

H
• II I• •

I • I 1h I

NI H I H II
I I Otto IOtte II I I

 iii I '•l
I I. I•f1•I I I

I I t 1--t .1 1 1 1

b) Solution to a 2xN Wiring Problem

Figure 2.14 Pattern Routing Example

31

150 2 4 127 6 9 5 8 13 15 14 1.5 02120 1 2 19 1 18 0

0
0
14
13
11
24
1
9
2
17
12
16
4
10
3

t
f

'I I I
4
I

I III

I F 1 1

t J J 4

s I i I

I

I

J

I -

 -f

r,
2417164 7 6 5 8 0 12152'4151023 1 6 62218

15

3
19
24

0
20
18
20
11
21
18
23

2
22
18

Figure 2.15 Burstein's Solution to his Difficult Switchbox Problem

manner as a three-sided channel router, except that the fourth side has

fixed terminals and therefore, the router constrains the exiting routes to

the tracks that they require. It is also one of the first methods to allow

pre-routed nets. The 'greedy' switchbox router as it is called has also been

benchmarked against Burstein's Difficult Switchbox Problem (Figure

2.16); however, this method suffers from the same drawbacks as the

channel routing version does. It gives priority to nets on the basis of their

location on the boundary of the switchbox. Nets routed earlier can block

later nets which is shown by the fact that net 2 is pre-routed in Figure

2.16.

Marek-Sadowska's switchbox router is a heuristic algorithm that

routes the most constrained nets in the switchbox in an effort to complete

100 per cent of all routes. The expansion of nets from the terminals is

classified as either convergent, semi-convergent, or divergent (see Figure

32

0
0
14
13
11
24
1
9
2
17
12
16
4
10
3

150 24127695 8 1.3 15 14 15 2120 1 2 19 118

 b b r I

I I 'I III

- - -•

--- •-T-4
L1 1 4
----. • 4 1 .-- i

I 4 £-1-f- +1?-1
k--t ---

-.
-1
-L.
--- iH ---

I
b-• -+-

L L11-4---
I •

--

I L L I Li £Li - I LJ r
t-t--- -• I

• -t---.,
------- 1 I i -

T

t t
I
?---i

-I

i Lr LLI I IJJ 4
I II I I I I

24 17 16 4 7 6 5 0 8 0 9 12 15 24 15 1023 1 0 0 22 18

Figure 2.16 Hamachi's Solution to Burstein's Problem

15
3
19
24
0
20
18
20
11
21
18
23
2
22
18

2.17). Convergent nets have expansions that intersect either straight on or

perpendicularly. Semi-convergent expansions travel in opposite directions,

but do not intersect. Divergent expansions travel in the same direction

and also do not intersect. She classifies nets as conflicting nets if their

expansions overlap. For example, in Figure 2.17c net 5 conflicts with net

6. Her heuristics route nets based on these classifications.

Nets without conflict are routed first, and among these non-conflict

nets convergent nets are the highest priority because the location of the

routes are more constrained than the semi-convergent and divergent nets.

Straight convergent routes are constrained to take a track by the presence

of two terminals at either end of that track. Perpendicular and convergent

routes are constrained to take a vertical and horizontal track by the

presence of a terminal at the end of each track. In contrast, semi-

33

1

1 2

a) Convergent Nets

c) Divergent Net

It

6

4

4 4

b) Semi-convergent Net

5

Yt

3

5

6

d) Convergent Net with Conflict

An arrow In this figure as In the figures that follow represent proposed paths for the route of a net. The
representations of routed nets, contact cuts, and routes In different layers stilt stand as defined in Figure 2.6.

Figure 2.17 Marek-Sadowska's Net Classifications

convergent and divergent nets are similar to a channel route's horizontal

segment; both have one segment that is not constrained by the presence of

any terminal at either end of the segment, therefore it has a greater choice

as to where to route.

34

Once a net is routed, or partially routed, Marek-Sadowska classifies

the endpoints of routed expansions with respect to status in completing its

route. A hanging terminal or pin is the endpoint of a semi-convergent or

divergent route and can expand in the current direction away from the

routed endpoint. A corner pin is the endpoint of a perpendicular and

convergent route (a corner) and can expand both horizontally and

vertically away from the endpoint.

After a net is routed, constraint propagation is performed. Each

hanging pin is checked to see if it is blocked by a routed net. A hanging

pin is blocked if it intersects perpendicularly with a routed net (see net 2 in

Figure 2.18) or the tracks on either side of the hanging pin have been

routed (see see net 9 in Figure 2.18). In both cases, the hanging pin is

propagated to an available track where it can complete its route.

Nets with conflicts are routed after the non-conflict routes are

completed. Using the same priorities, convergent routes are routed first,

and semi-convergent are routed second again owing to their greater

flexibility in the choice of routes. Divergent nets are routed last, although

2 9

4
6-h I

34

T

5 6

4

9
7

Figure 2.18 Constraint Propagation

#8

35

their net length increases the farther they expand away from the border of

the switchbox. Once one conflict net is routed, the other hanging pins are

propagated to available tracks. For example, in Figure 2.19 net 1 is routed

arbitrarily before net 2. The left terminal of net 2 moves around net 1 by

turning down on an available track and its lower terminal will turn left on

an available track.

Her heuristics do decide how to resolve conflicts between nets of

different classifications, but they decide arbitrarily between routes of the

same type, for instance between two straight connections. Her heuristics

have also been benchmarked against Burstein's Difficult Problem (Figure

2.20).

Joobbani's WEAVER routes switchboxes using heuristics similar to

Marek-Sadowska's for constraint propagation (pattern routing) and for

routing non-conflict convergent routes (corner filling). However, it uses

heuristics borrowed from channel routing to to resolve conflicts between

nets.

2

2

a) Overlap

+1

2

b) Overlap Resolved

Figure 2.19 Expansion Direction Changed by Constraint Propagation

36

150 2 4 127 6 9 5 8 1315141502120 1 2 19 118

0
0
14
13
11
24
1
9
2
17
12
16
4
10
3

I

--

I

II

i

I

Lf 1 1 1 U

•

±t Lt4LL:1

T 4 4 JJJJ
24 17 16 4 7 6 5 9 8 0 9 12 15 24 15 10 23 1 0 0 22 18

Figure 2.20 Marek-Sadowska's Solution to Burstein's Problem

15
3

19
24

0
20
18
20
11
21
18
23
2
22
18

Joobbani's procedure first generates a Steiner tree as an estimate of

the net length and the path that a net may take through the switchbox. In

Figure 2.21, a minimal rectilinear spanning tree and a minimal rectilinear

Steiner tree have been generated for the same set of points. A minimum

spanning tree is generated by iteratively connecting a point to the growing

tree if the link required to connect the point to the tree is the link of

minimum length at that iteration. Steiner trees [Hana66] are different

from minimum spanning trees by the presence, of extra points called

Steiner points that further decrease the length of wire used to interconnect

the terminals of a net (see Figure 2.21).

The estimate of net length is improved by applying vertical and

horizontal constraints to the nets, minimizing channel density, and

maximizing net merging. Similar to Eustace's least cost path algorithm,

37

. T

a) Rectilinear Spanning Tree. b) Minimal Rectilinear Steiner Tree
(Multiple Trunks)

Figure 2.21 Minimum Rectilinear Spanning and Steiner Trees

leaf nodes in the vertical constraint graph are selected to route on an upper

track in the switchbox. Next, the nets chosen are merged in different

combinations following horiztonal constraints. The congestion heuristics

select the nets that travel through the most congested part of the

switchbox. The same is done for the lower leaves in the vertical constraint

graph. Once a net is fully interconnected, heuristics remove any

unecessary vias in the route. Heuristics that find equivalent minimal

rectilinear Steiner trees are applied to nets whose proposed paths now

- overlap' the routed nets. A set of control heuristics govern the sequence in

which the Steiner tree, congestion, via, merging, and vertical and

horizontal constraint heuristics are applied to a routing problem. The

WEAVER can route both channels and switchboxes.

The WEAVER has been tested against Burstein's Difficult Switchbox

Routing Problem (see Figure 2.22) and other channel routing problems to

show its expertise at routing. The system is able to route channels better

than the theoretical minimum, because wires are permitted to overlap on

corners and in parallel (see Figure 2.23) which is a radical departure from

the two-layer-two-direction wiring model. The WEAVER is implemented

as an expert system and uses an unprecedented number of heuristics, over

38

15 9 2 4 12 7 6 9 5 8 1.3 1.5 14 1.5 0 2.1 2.0 1 2 19 1 18 0

0
0
14
13
11
24
1
9
2
17
12
16
4
10
3

III

--F

I I lilt'

4-4-4-4
r4J4

ill

-1-h *- -- -4-f4 1 I t 1 I 4 1 4

I I 1

-4-1-4-4

tt1lilJJ4
I ---4- --4 I

rJ
4

24 17 16 4 7 6 5 12 15 24 15 10 23 1 6 O 2218

Figure 2.22 Joobbani's Solution to Burstein's Problem

15
3
19
24
0
20
18
20
11
21
18
23
2
22
18

700, most of which have been taken from human routing experts, to solve

the routing problem.

To sum up, switchboxes are similar to channels in that they both

contain no obstacles in their interior and they use the grid approach and

two-layer-two-direction wiring model; however, they differ from channels

in their definition and the methods used to solving them. Terminals can

be placed on all four sides of the switchbox, which restricts the routing

region from being expanded during routing. The loop area routing

scheme expands the routing region, but without regard to its actual

physical dimensions. Two switchbox routers route net by net (pattern

routing) and column by column (column sweep approach). The two most

successful switchbox routers, Marek-Sadowska's and Joobbani's, route

from the boundaries inwards interconnecting the most constrained nets

39

1.2

2 1

12

a) Corner Overlap b) Parallel Overlap

Figure 2.23 Corner and Parallel Overlap

first which is in keeping with the goal of attaining 100 per cent routing

completion. The most constrained nets in both system are corner and

straight routes and nets that are blocked by other nets and are to be

propagated to an available track. Each method proceeds differently to

route nets which conflict with other nets. Marek-Sadowska orders the

conflict .routes based on the same classifications that were established for

non-conflict routes. On the other hand, Joobbani uses heuristics common

to channel routers to interconnect conflict routes. Although both routers

use different techniques, they both expand nets to find out where

proposed routes lay with respect to one another, and both alter the

proposed paths once they overlap with routed nets. Joobbani's system

gets closer to achieving 100 per cent routing completion by allowing nets

to overlap in parallel and on corners. Marek-Sadowska's algorithm relies

heavily on constraint propagation to achieve this.

40

2.6. Other Routing Techniques

The routers discussed above are heuristic algorithms. They apply a

heuristic to a partial routing solution when the conditions of the heuristic

match those present in the problem state and advance the solution one step

further towards completion. Alternative routing techniques have been

developed to expose more than one possible routing solution and evaluate

the quality of the solutions, and choose the one having the best quality.

Two of these techniques discussed below are the branch and bound

technique and simulated annealing.

The branch and bound routing technique [Kern73] keeps track of

different partial routing solutions as each proceed towards a different final

solution. A bound is established as to the number of iterations that the

search can perform, and when the bound is reached, the quality of each

partial routing solution is evaluted. The partial solution with the highest

quality is assumed to be the best path, and the search for the final solution

continues from that path onwards. The other partial solutions are

discarded. A bound of infinity .leads to a total search; a bound of 0 leads

to a depth first search--taking the first partial solution that comes along.

Trial and error establishes what bound is required to obtain a good

solution.

Another routing technique uses simulated annealing [Vecc83] [Kirk83]

[Sech85], which is a randomized heuristic algorithm. 3 A randomly

generated final solution to a routing problem is permuted into new

variations that are compared in their quality to the previous one. A

temperature parameter provides an upper bound to the increase in cost

3Simulated annealing is based on a technique used in physics and chemistry to
restore crystal structure in semi-conductor materials and produce stable chemical
compounds. The material is heated to extreme temperatures forcing molecules into rapid
random motion. The compound is then cooled slowly allowing molecules to settle in
regular patterns that are highly stable.

41

that a new solution can have over the previous one. If the cost of the new

solution is lower, it is always taken. However, if it is higher, its change in

cost is compared against a randomly generated value. If it is lower than

this value, the new solution is accepted. The random variable controls the

amount of hill climbing moves (moves which are greater in cost) that are

introduced to system. When the temperature is high, almost all hill

climbing moves are accepted; as the temperature is lowered, less and less

are. Theoretically, if the temperature decreases at a satisfactorily slow

rate at the start, enough permutations of the solutions are generated to

guarantee that an optimal solution is found. Trial and error is used to

establish what that rate is.

Heuristic algorithms have several advantages over the other two

search strategies discussed above. First, a heuristic algorithm does not

require extra memory and state saving techniques for operation as does

the branch and bound technique. Because NP complete problems such as

routing must explore a large area of the problem space before they know

if one path is better than another [Gare79] [Baas78], the amount of

resources required would be extensive. Second, heuristic algorithms can

use a multitude of heuristics to choose how to proceed from one partial

routing solution to the next. In contrast, simulated annealing uses one

randomized heuristic. Many permutations of final solutions have to be

generated before the technique converges on a good solution, a process

which can take up to several hours for a fairly difficult routing problem.

It would seem that because heuristic algorithms do not probe a large

portion of the search space, they are more in danger of pruning a path

containing a good solution than the other two methods. However, the use

of specialized heuristics protect a partial solution from being lead to a

dead end for most routing problems.

42

2.7. Discussion of Current Routing Methods

Among the routers presented in chapter 2, the discussion of current

routing methods focuses on switchbox routers. Most of the issues

concerning channel routing have been investigated and there are highly

competent routers available to solve the channel routing problem.

Switchbox routers are not as well-researched as channel routers and there

is a great need in CAD systems for good switchbox routers. The

discussion of switchbox routers concentrates on Marek-Sadowska's and

Joobbani's systems, because they achieved the best results on the difficult

switchbox routing problem. Three general problems are mentioned.

First, from the discussion of Marek-Sadowska's switchbox router, it

was noted that her router arbitrarily chooses to route conflict nets based

on their classifications. Convergent nets are routed first, then semi-

divergent nets, then divergent nets. Although classifications do signify

how constrained each class of nets is to take a route, they give no

indication of how nets are able to expand in all directions. This is shown

in the inability of her heuristics to discover if one net can move around

another when they conflict with each other. In Figure 2.24a, the net

expansion for a switchbox problem has been performed. The leftmost

terminal of net 1 does not route on a corner with the upper terminal,

because of the conflict with net 2; however, it extends across in a corner

route with the right most terminal of net 1, because neither of those

endpoints conflict head on with other nets. The result of that choice is

shown in Figure 2.24b; net 2 remains incomplete and neither of its

terminals can expand towards an available track. The basic problem is

that Marek-Sadowska's heuristics expand terminals and perform constraint

propagation in one direction for each net. An expansion is only made in

line with the direction of the routed segment for each net. Constraint

43

12 3 4 12 3 4

I 1J
4

4
1

a) Net Expansions b) Incomplete Final Solution

Figure 2.24 Overlap Dilemma

propagation only checks the available tracks in front of the net as well.

Semi-convergent routes and divergent routes must turn their routes at

some point to connect with the rest of the net; but performing net

expansion and constraint propagation in one direction does not provide

information on how well the nets can route in the opposite direction when

the time comes. This thesis proposes a new set of heuristics that expands

terminals and performs constraint propagation in two directions rather

than one and decides which nets may route based on how the expansions

conflict with other nets.

Second, between the two systems, no general heuristics are provided

to lay down routes other than by using the two-direction-two-layer wiring

model which has been shown to hamper switchbox routers in obtaining

100 per cent completion. Joobbani provided a partial solution by using

heuristics to minimize vias after nets were routed and allowing parallel

overlaps between nets if it is necessary to complete a solution. However,

no general group of heuristics have been provided to establish when and if

parallel overlap should be used on a routing problem. This thesis builds

upon the heuristics proposed above by suggesting general heuristics that

44

can be used when the expansion heuristics fail to find routes for nets using

the two-direction-two-layer wiring model.

Finally, the successful automated routers, particularly the switchbox

routers use many and varied constraints and apply them as heuristics to the

routing problem. However, there is still no cohesion between the

heuristics that are used to route channels and those used to route

switchboxes. Joobbani's router solves both routing problems, but uses

different heuristics for each. Within the switchbox routing problem,

Joobbani uses one set of heuristics, constraint propagation and corner

filling, to route non-conflict nets and uses another set derived from

channel routing techniques to route conflicting nets. In contrast, Marek-

Sadowska uses the same net classifications and priorities to route nets with

or without conflicts. Although Marek-Sadowka's router does not route

channels, there is evidence to suggest that her heuristics may be able to.

Her heuristics are as capable as Joobbani's at routing conflicting nets and

Joobbani's conflict heuristics were based on channel routing heuristics. It

is proposed in this thesis that the net classifications and heuristics created by

Marek-Sadowska and the other proposed heuristics can be used to route both

the channel and switchbox routing problems, thereby uniting both models

through using this general routing method to solve them.

Chapter 3 discusses these three points in detail and presents the

method and the heuristics that are used to solve them.

CHAPTER 3

New Heuristics for VLSI Routing

This chapter concentrates on the new heuristics that have been

developed as a solution to the problems outlined at the end of chapter 2.

Section 3.1 discusses the background work that led to the development of

the new heuristics. In section 3.2, the new heuristics that define available

tracks, select nets to be routed, and propagate constraints are outlined.

Section 3.3 details the heuristics that route corner overlaps in cases where

nets cannot be completely interconnected using the above heuristics. The

final section explains how these heuristics can be used to solve the channel

routing problem.

3.1. Background Work

The heuristics that are described in the following sections are based

on MarekSadowska's methods for solving the switchbox routing problem.

This section explains how this decision came about.

It has been mentioned previously that a switchbox router's main goal

is to route all nets to 100 per cent completion. Because Joobbani's system

achieved this goal in nearly all his examples, his general channel routing

heuristics were used as a base on which to develop heuristics to solve the

problem outlined in Figure 2.24. The main thrust of the work was to

develop heuristics that ensured that those routes which passed through the

most heavily congested switchbox areas were given the highest priority to

route [Keef86]. Heavily congested areas were defined to be where the

areas of maximum horizontal and vertical density overlapped and the nets

that passed through the area were routed first. The nets outside of the area

45

46

were ignored to the detriment of finishing their own routes. Heuristics

were added to include their expansions in the routing of the congested

area, and it became evident that -this method was performing the same

techniques as Marek-Sadowska's heuristics for switchbox routing, but in a

convoluted way. Corner filling was performed automatically, as in most

switchbox problems the corners are the most congested areas. The key to

solving the switchbox problem lay in recognizing when nets were allowed

to expand to proposed routes and noting how and where conflicts

occurred. Once nets were selected to route, it was also important that

blocked nets propagate to the routing space still available and new

expansions made. This procedure had already been established by

Marek- Sadowska.

The tactic was changed to use Marek-Sadowska's switchbox heuristics

as the base on which to expand and find heuristics that could solve the

problem in Figure 2.24 using the same approach of net expansion, conflict

resolution, and constraint propagation. Particular attention was paid to the

way her heuristics chose nets to route based on the shape of their paths of

expansion. From here, it was hypothesized that not enough information

was being gathered from the problem state by allowing nets to expand in

only one direction (except for corner routes) and by checking blocked

routes ahead of the one path. New heuristics were created to allow nets to

expand in two directions towards their destinations and to check for

blocked paths in both directions. Heuristics were also created to solve a

situation when a net could not expand in both its desired directions. These

heuristics are presented in the following sections.

3.2. New Heuristics for Routing Switchboxes

The heuristics outlined are based on definitions created by Marek-

Sadowska for net conflicts, terminal types, net expansions, and constraint

47

propagation. Each is discussed with respect to how they have been

changed to support the new method for routing switchboxes.

The first change affects the creation of hanging pins for conflicting

nets. Previously, Marek-Sadowska allowed perpendicular routes to

interconnect if they did not have a conflict with other nets. The new

definition requires that only perpendicular routes which intersect with the

closest terminal to their location can route if they have no conflicts.

Closest is defined to be either the least distance between the x coordinates

of two terminals expanding in a horizontal direction or the least distance

between the y coordinates of two terminals expanding in the vertical

direction. This changes how net 1 is routed in Figure 2.24. The upper

terminal of net 1 and its leftmost terminal form a perpendicular route, but

the upper terminal of net 1 has a conflict with net 2 and cannot be

connected. In Marek-Sadowska's version, the leftmost terminal would

continue on to connect to the far right terminal because both their paths

intersect and neither has a conflict. By the new definitions, the left most

terminal would not be allowed to continue on past its closest terminal (the

upper terminal) although it has no conflict. The result of this definition, is

that net 1 will not automatically take a horizontal track that net 2 may

require, a need that was established by its conflict with the upper terminal

of net 1. It follows from this new definition that nets perpendicular to a

net with a conflict must also be considered to have a conflict, since the

routing of one net helps establish the routing for the other. The definition

for hanging terminals has been widened to include those nets which have a

conflict as defined above. This is in keeping with Marek-Sadowska's

general definition of hanging terminals, which defined hanging pins to be

the endpoints of nets with conflicts. Usually these are the semi-convergent

and divergent routes, and nets with head-on conflicts, but now nets whose

48

expansions are perpendicular to a conflict are included.

The definition of net expansions was also altered to define which

directions and to which terminals hanging pins were now allowed to

expand. For nets with two terminals, each terminal was allowed to expand

horizontally and vertically towards each other. For multi-terminal nets,

each terminal at the ends of the switchbox expanded towards its closest

neighboring terminal in either direction, and each' terminal in the centre

expanded towards the closest terminals on either side of its position.

Allowing a terminal to expand towards its closest neighbors only gives a

good estimate of the minimum net length required to interconnect the

terminals in a similar fashion to the way minimum spanning trees are

created to interconnect terminals.

The definitions governing net expansions were also changed to reflect

how close the expansion from a hanging pin could get to its target by

discovering which tracks were available in between. An available track for

the expansion of a route is defined as a track that is perpendicular to the

expansion and does not have a routed segment intersecting the expansion

or routed segments on that track extending in either direction away from

the expansion. Using the downward expansion of net 4 in Figure 3.1 as an

example, three tracks are shown as being available to net 4. The first

three tracks are not available because of the presence of routed segments

that are perpendicular to it. The next two tracks are available -and are

labeled A and B. The sixth track is not, because net 4 must turn right at

some point to connect to its other terminal and there is a routed segment

proceeding to the right away from it. The next track, labeled C, is

available.

In any expansion, there can be more than one available track that a

terminal can expand towards. An additional constraint in the definition

49

4

3T

T

T

T
C

T

T

T

T
5

T
5 1 2

Figure 3.1 Available Tracks

pushes a hanging pin's expansion on to the farthest track available. An

example route is shown for net 1 in Figure 3.2 in which it takes the first

available track at each expansion (Figure 3.2a) and takes the last available

track (Figure 3.2b). Choosing the first available track creates a staircase

route and is undesirable because corners in a route produce high electric

fields. At 1 micron technology, an effect called metal migration is

produced due to the small cross sectional area of the route and may

compromise the route's integrity. To circumvent this 'greedy' approach to

selecting tracks, the farthest track available is selected. This ensures that

the expansion extends as far as possible in the direction of its destination

knowing that closer alternatives may be available if needed.

50

±L11J 1L1LJj

T T
- I +--f--4-- I

T + T +
11 1- i-I-

I I I I I I I I I I I

a) When First Available Track is b) When Last Available Track is
Used Used

Figure 3.2 Choosing the First Versus the Last Available Track

Similar to the way constraint propagation is performed by Marek-

Sadowska, nets which cannot find an available track in one direction are

propagated to an available track in the other direction. With the new net

expansion definitions, nets are now automatically checked to see if they

can expand in both of their proposed directions.

The following heuristics resolve net conflicts based on what net

expansions are produced for all hanging pins. Following Marek-

Sadowska's definitions closely, a conflict is defined to be a connection (or

route) that intersects with another in parallel. This includes overlaps with

the endpoints of routes. With one exception, routes that intersect and are

perpendicular to each other are not conflicts. If an expansion, expansion

'a', intersects with another expansion, expansion 'b', such that they are

perpendicular to each other and the end point of path 'a' intersects with

expansion 'b', then the 'a' is said to have a conflict with 'b' (see Figure

3.3). Because expansion 'a' finishes with its path on 'b', 'a' may at some

51

 S

a

Figure 3.3 Example of Net Conflict

future time want to route along the track that expansion 'b' is on

presently. The conflict between the two expansions means that, for 'a' at

least, this track may not be available.

Once the conflicts have been identified, there remains the arduous

task of deciding which expansions should route and which should not.

Three main heuristics based on Marek-Sadowska's net classifications and

heuristics for net selection are outlined below. These heuristics are

presented in the order of priority that they are applied to solve the routing

problem.

(1) If two hanging terminals are connected straight through and have no

other straight through expansions overlapping with them in a parallel

direction, the connection is routed. All other types of routes that may

overlap with the net are removed (see net 1 and 2 in Figure 3.4).

(2) If a hanging terminal has two expansions and one has a conflict, but

the other does not, then the non-conflicting expansion is routed (see

upper terminal of net 3 in Figure 3.4a). The other expansion is

removed.

(3) If a hanging pin has two expansions neither with a conflict, the one

which expands in the same direction as its routed segment is chosen.

(see the lower terminal of net 3). The other expansion is removed

from consideration for future routing.

52

2 23 2 23
II I III

I I

i-

+

3

a) Expansions of All Nets b) After Nets 1 and 2 are Routed

Figure 3.4 Net Conflict Resolution Examples

Each time an expansion is routed and other overlapping routes are

removed, constraint propagation is performed. All routes that may now

overlap with the newly routed segment will be propagated in the same

direction as the constraint propagation dictates. Once all terminals have

been propagated to their new locations, each terminal expands again.

Conflicts between routes are investigated, and again the three heuristics

above are used to decide who wins and who loses a conflict.

The procedure outlined above constitutes one cycle in the routing

process. This cycle of expansion, conflict detection, route selection, route

deletion, and constraint propagation fits comfortably in the cycle used to

route non-conflicting nets (net expansion, route selection, constraint

propagation). Using this cycle to demonstrate how the above example

would be routed, net 2 and 1 would be routed by the first heuristic and the

horizontal expansion from the upper terminal of net 3 would be removed

from consideration. Instantly, net 3's upper terminal would be propagated

down past net 1, because its horizontal route is now blocked by net 2. Net

3 then expands horizontally to connect with the other expansion of net 3.

Because both terminals of net 3 now have two expansions without conflicts

53

(from other nets), one of their expansions is chosen to route. In this case,

the upper terminal of net 3 routes vertically in line with its routed segment

and its horizontal expansion is removed. Now the lower terminal of net 3

connects with a straight connection vertically to the other hanging pin and

its net is routed.

The heuristics are also demonstrated to show how they would solve

the problem in Figure 2.24. Figure 3.5 shows the expansion of the four

nets horizontally and vertically after each has been routed one unit into the

switchbox.

Both terminals of net 2 have been propagated one unit farther because

of the constraint created by the presence of net 1's and net 3's hanging

pins. In keeping with the net expansion heuristics, the left most terminal

of net 1 has expanded in three directions towards its other two terminals.

Using the three net selection heuristics established above, the upper corner

route of net 1 can be routed because it has no overlaps with other routes.

When the other two perpendicular expansions are removed from

consideration, net 2 can route its upper left corner. Once it has removed

its other expansions from consideration, net 3 can take the second lowest

3 4

Lx4 + J
4 -I

234 1

Figure 3.5 Net Conflict Resolution Using New Heuristics

54

track which makes net 4 free to take the lowest track, once net 1 expands

upwards into the switchbox. Figure 3.6 shows the solution generated by

the heuritics. Because the lower terminal of net 1 has moved up to the

same height as its left most terminal, the upper terminal may now expand

down and right to meet it.

A curious problem with these heuristics is that they can create hanging

routes as is done in this solution. Net 1 has expanded down in a futile

attempt to meet up with the lower terminal of net 1, which shows that even

these heuristics are too short sighted to see where every expansion can

lead.

3.3. Corner Overlap

The heuristics outlined above' may be used to establish paths of

expansion for routes, but they do not handle the case where routes cannot

expand in their desired directions. This situation occurs when the two

choices of a route's expansion are met head on by connections that are

already routed on those tracks. For 100 per cent routing completion to be

achieved, the new route will have to overlap one of the old routes.

Heuristics to route corner overlaps have been developed to facilitate this.

.1

1

Figure 3.6 Final Solution

55

However, heuristics for parallel overlap are not developed in this thesis.

Parallel overlap is usually avoided in rbuting because of the increased

capacitance created between parallel wires.

When a hanging terminal cannot expand in either direction, it seeks to

overlap with the corner of one of the routed connections. Figure 3.7a

depicts a situation where net 1 cannot expand in either direction towards

the other terminal. Figure 3.7b shows that net 1 can establish a corner

route with net 2; however, routing on net 3 creates a parallel overlap.

Because parallel overlap is undesirable, it would be necessary for net 1 to

expand down, away from the conflict and attempt to find an escape route

to an available track where it can complete its route.

The switchbox model for this problem uses the two-direction-two-

layer wiring by default. When corner routes are introduced into the

problem, the default layers from the two routes establishing the corner

route are switched at the corner of their routes. If one of these routes

3 2

21

X
 Ix

I I I I

t 3

t

2

-I-

I I I I

I

-1-

a) No Straight Expansion Possible b) Corner Overlap Possible in
One Direction

Figure 3.7 Conflict Resulting in a Corner Overlap

56

should intersect with another route, 'a', then route 'a' would switch layers.

If in turn route 'a' intersected with another route 'b', route 'b' would then

switch layers. This process has been christened 'corner overlap fanout',

because the change in layers originates at the corner overlap and fans out

across all affected routes.

The heuristics which create the fanout work as follows. First, the via

is removed at the corner where both nets overlap and both nets are given a

directive to fanout in one direction to create or remove the necessary vias

so that the two-layer-two-direction model is once again restored. Figure

3.8a shows a situation where net 6 must place a corner route over net 5.

Both nets will remove the vias at their corners and create an overlap

fanout going in the same direction as net 6 took approaching the corner.

Net 5 will fanout going bottom-up, and net 6, following the expansion

path of its corner will fanout to the right (see Figure 3.8b).

Figure 3.9a depicts what would happen should net 6 and net 5 encounter

other intersecting routes. Fanout for net 5 and 6 will halt when it finds

5

5

6

 6 5

a) Before b) After

5

i.

6

Figure 3.8 Simple Corner Overlap Example

—6

57

the first free track on which it can place a via. In the mean time, every

route that net 5 and 6 intersect with before that point will fanout as well.

Arrows on the diagram indicate this action. Fanout arrows that meet each

other going in opposite direction cancel their actions out. If net 5 and 6

should find that their routes bend on the available track, the via is

removed from the corner and fanout is stopped. Figure 3.9c shows the

final solution to the example. Vias are represented by bullets. The area

that has been affected turns into an inversion of the layers originally

assigned to each direction, but it is interesting to note that two-layer-two-

direction wiring model is still intact.

3.4. Heuristics for Channel Routing

The heuristics discussed in the previous section deal exclusively with

the switchbox routing problem, but this section discusses how the

heuristics of terminal expansion, track availability, constraint propagation,

and net conflict resolution can be used for the channel routing problem.

Although this thesis has stated that current channel routers use different

heuristics than for routing switchboxes, the similarity between both

problems suggests that it may be possible to solve them both with the

same heuristics. This section discusses that possibilility in detail.

Although track availability and net conflict resolution have never been

made an issue in channel routing problems, channel routing has used the

four heuristics of net length, vertical and horizontal constraints,

congestion, and merging to resolve conflicts between nets that could not be

routed on the same track. The use of the Marek-Sadowska's heuristics

along with the new heuristics may be useful for the channel routing

problem as well. Consider the channel routing problem in Figure 3.10.

Corner filling heuristics used in the switchbox routing problem are useless

because there are no side terminals; however, the heuristics that perform

58

8

7

6

5

5 2 3 4

I----!- --I----]

LLL

1

a) Before

4

8

7

6

8

7

6

2 3 4

L4JJ

- 1t1 i

8

7

6

1 5-1- : : >11

1 2 3 4

b) During Fanout

5 2 3 4

8

7

6

5

I I
I I I
I I I

c) After

2 3
0
4

8

7

6

1

Figure 3.9 Complicated Corner Overlap Fanout Example

net expansion and constraint propagation are. Constraint propagation

forces all terminals to route into the channel by one unit. This procedure

is also executed for semi-convergent and divergent nets in switchbox

routing. Nets are expanded, available tracks are selected, and net conflicts

are resolved the same as is done in switchbox routing. Three example

channel routing problems are routed in Figure 3.10 to show how these

59

heuristics can solve this problem.

The first example is a five net channel routing problem with no

overlap and therefore no cyclic constraint. Each terminals expansion is

shown in Figure 3.lOa and the vertical constraint graph in Figure 3.lOb. In

Figure 3.lOa, the upper terminals of nets 1, 2, and 3 have propagated

down so that each of them can expand to the right. An 'x' marks where

each net cannot find an available track to the right. The opposite

propagation has been performed for the lower terminals of nets 3, 4, and

5. Once the propagation is complete, each net expands horizontally and

vertically towards the other terminal in its net. The conflict resolution

heuristics in this case let the vertical expansion for the furthest left

terminal of net 1 route and let the furthest right terminal of net 5 route,

because neither has any overlaps. The horizontal segments extending

from the lower terminal of net 1 and the upper terminal of net 5 are also

routed after their vertical segments are routed, because they become

straight connecting routes between two hanging terminals. Straight routes

are rout&d if nets having other than straight routes overlap with them.

Once those nets have been routed, nets 2 and 4 propagate to the state

shown in Figure 3.lOb. Using the same track expansion techniques and

conflict resolution heuristics, the problem will have the final solution

shown in Figure 3. lOc.

The second example shows a more complicated channel routing

problem with a cyclic constraint. The terminal expansion and vertical

constraint problem are shown in Figure 3.11. All routes remain blocked in

this example, because the conflict resolution heuristics cannot •route

overlapping nets. A heuristic must choose a net from those which overlap

on a similar endpoint with another net. In this case net 1 and 3 overlap on

a common endpoint at column two. This indicates that only one track is

60

12345

xxx
X ->

-

•- -4
- xi X1
1 2345

a) First Expansion

1

X

xl

b) Second Iteration

12345

Ix---

£
£ ---

12345

c) Final Solution

Figure 3.10 Channel Routing Problem with no Cyclic Constraint

61

1 32

3

1 32

a) First Expansion b) Final Solution

Figure 3.11 Channel Routing Problem with Cyclic Constraint

available between the two nets and the fact that they meet at this track

twice (above and below) indicates that there is a cyclic constraint in the

problem. Net 1 was chosen in this example arbitrarily. The next step in

the solution after net 1 is routed is shown in Figure 3.11b. Nets 2 and 3

have propagated to new positions. With a broken cyclic constraint, both

nets can be routed easily by the heuristics. It is important to note that

picking either of nets 1 or 3 would have resulted in a simplified problem.

Picking net 2 would not, because the conflict between net 1 and 3 would

still persist.

The final example is a generalization of the first and shows what

heuristics should be added to help route divergent nets in channel routing

problems. Figure 3.12a depicts a problem with no cyclic constraint as is

evident from its vertical constraint graph.

All nets are propagated past their constraints and expanded towards

their other terminals. In the case of divergent nets (1,2,3,4,8,10) they

only need to expand to their other hanging terminal to create a straight

through route. However, because net 2 overlaps with net 3's expansion

and net 1 overlaps with net 4's, their other paths of expansion should be

checked to see if they can propagate in line with their routed segments

62

145167 491010

h
44

23 35268987

a) First Expansion

b) After One Iteration

145167 4

iL.

-1-1-1
2 5 6

c) Final Solution

Figure 3.12 Channel Routing Problem Requiring Net Merging

should it be required. Those nets which cannot propagate route straight

across. If both can expand, one net is chosen to route arbitrarily. Once

their expansions have been made, nets are selected for routing. Net 10

and net 8 route with no difficulty. Between the other divergent nets with

63

overlaps an arbitrary choice is made to route nets 4 and 2, thus forcing

nets 3 and 1 to propagate to the next available tracks which force nets 5, 6,

and 7 to also propagate to available tracks. Once net 4 is routed, the left

upper corner of net 9 can route as well as its upper right corner (see

Figure 3.12b).

In this figure, nets 1, 3, and 5 will route straight through. Net 6 will

route the lower left corner expansions due to its conflict with net 7. Once

this has been done, net 7 is left with two routing choices each. Following

the heuristic established for this situation, net 7 follows its already

established routing direction to the problem state shown in Figure 3.12c.

Net 7 can now connect straight through to complete the solution.

From the examination of these examples, it is suggested that Marek-

Sadowsa's definitions and the new heuristics created for routing

switchboxes can be applied to the channel routing problem.

3.5. Summary

Chapter 3 presented new heuristics for routing switchboxes that

allowed nets to expand vertically and horizontally and perform constraint

propagation iii those directions to better establish what tracks are available

for routing and to select a net to route based on how its expansion

interferes with other nets. Heuristics were also discussed that would allow

a net to overlap the corner of another routed net if it was unable to expand

towards its destination. No heuristics were investigated or presented in

this thesis to perform parallel overlap or create escape routes for nets

where corner overlap cannot be performed; however, the inclusion of such

heuristics in a router would be useful. Finally, the heuristics for

switchbox routing were examined to see how they could be used to route

the channel routing problem. Chapter 4 discusses the implementation of

64

the heuristics for net expansion, constraint propagation, and net selection

as an expert system for routing VLSI designs. Only the heuristics used to

route switchboxes are not implemented, because it was felt that the success

of the corner overlap and channel routing heuristics depended on the

success of the new heuristics for track expansion and net selection. If

these heuristics were verified to be able to solve the switchbox routing

problem, then it was a trivial problem to include the other heuristics and

expand the capability of the implementation to solve the general routing

problem.

CHAPTER 4

The B & D Router: An Expert System for Routing VLSI Designs

Chapter 3 described new heuristics that are able to route switchboxes

and channels by using better methods of estimated the availability of

tracks and routing nets based on this estimation. Chapter 4 describes the

implementation of these heuristics in an expert system for routing called

the B & D router. It discusses the implementation issues present in

creating an expert system to implement these heuristics, describes the

general architecture and control of the B & D system, and details the basic

data structures that are used to model the switchbox routing problem.

4.1. The Use of Expert Systems for Routing

Expert systems offer an suitable environment in which to implement a

heuristic algorithm for good routing once the heuristics have become

manifest: An expert system facilitates the modular creation of heuristics,

because of its unique architecture and operation described briefly below.

And expert system is composed of three distinct parts: a working memory,

a knowledge base, and an inference engine. The working memory is

where the problem stated is held. It contains the data structures that will

represent the current problem and eventually the final solution to the

problem. The knowledge base houses the heuristics. A heuristic is

structured similar to an if-then statement; it is a rule containing a set of

conditionals in its left hand side and actions in its right hand side. The

conditionals are compared against the elements in working memory; if a

match occurs, then the actions are carried out altering working memory by

deleting, adding, or modifying the elements creating a new problem state.

The inference engine is responsible for repeating a cycle of recognition

65

66

(matching conditionals to patterns in memory) and execution (performing

the actions of rule). One cycle constitutes the firing of one rule. The

system will halt when no match occurs between the conditionals of any

rule and the elements in working memory or when a halt instruction is

executed as the action of a rule. If more than one rule is able to fire for a

given state of the working memory, the rule matching against the most

specific and recent data in working memory is given precedence. This

superficial discussion of a forward chaining expert system [Haye83]

provides enough information to enable an explanation to be given as to

why it is an appropriate medium for building a good heuristic router.

An expert system allows heuristics in the form of rules to be added

independently from the control of the system. This feature gives expert

systems two advantages over a conventional procedural program

implementation. The first advantage is that its structure creates a highly

modular and flexible system for developing heuristics. This advantage is

given high marks by Steinberg [Stei84] for use in the development of

knowledge-based VLSI CAD systems. In contrast, a conventional

program has its if-then statements married to the control of the program

and therefore heuristics cannot be developed independently from the rest

of the program. The second advantage is the operation of the expert

system's cycle of recognition/action which ensures that among the many

heuristics present in the knowledge-base, only those that are applicable are

used. In a conventional implementation, conditionals are executed as they

are encountered in the code and this may or may not be when they are the

most useful. These two advantages also fulfill the two requirements that.

an automatic router achieve the expertise on the same level as a designer.

Namely, that the system be able to work with many and varied heuristics

and that it have the mechanism to decide which heuristic to use and when

67

it was most applicable.

Thus the operation and structure of an expert system is capable of

supporting the development of a good automated heuristic router.

However, an expert system does have a disadvantage: slow execution

speed. As the size of the knowledge base grows, so does the search

through all heuristics to find those that can be applied to the current

problem state, which has been noted as. the limiting factor of expert

systems [Part86]. To aid the search, the conditionals of the heuristics are

stored as a tree of propositions against with the facts in working memory

are matched. Although incremental development of heuristics improves

the solutions generated from an expert system, the size of the tree will

soon meet an upper bound in the number of heuristics it can sustain,

because the technology of the system is inherently non-adaptive and

largely inflexible, i.e. it cannot learn.

Despite this limitation, many expert systems exist which have been

successful at accomplishing their tasks, whether it be analyzing protein

crystallography (DENDRAL) [Benn82: 106-110], solving mathematical

problems (MACSYMA) [Benn82:143-149], diagnosing infectious blood

diseases (MYCIN) [Benn82:184-192], or designing floorplans for the

layout of computer component (Ri) [McDe81]. To emphasize the success

of expert systems further, Ri was developed as an expert system only

after several unsuccessful attempts to develop it using conventional

programming techniques. Thus theoretically and practically, an expert

system implementation of a routing heuristic algorithm appears to be a

good choice.

Suitable expert system shells are available that offer the development

support required to produce a routing heuristic algorithm quickly and

easily. Several expert system shells were investigated on their program

68

development support, tracing and debugging facilities, and the syntax of

the programming language: ART, Inference Corporation's Automatic

Reasoning Tool [ART86], OPS4 [Forg79], OPS5 {Forg81], YAPS

[Alle83], and Prolog [Cloc81] [Brat86]. With regards to availability and

cost, OPS4, OPS5, and YAPS are available for use by educational

institutions. On the other hand, ART is only available commercially and

its cost may be prohibitive for use by some organizations. However, ART

was chosen over the other systems, because of its superior design

environment and software development features. ART's lisp-like syntax is

easier to read and understand than OPS5's and OPS4's syntax. ART also

allows the data structures to be built in hierarchical fashion using a frame

representation similar to that used by frame-based object' oriented

languages [Fike85]. It allows the user to define classifications of objects

and properties that can be inherited by objects in the same class. This

feature is valuable for expert systems that need to define vast numbers of

elements that are similar in structure, but differ in name or in the contents

of their properties. The user can define his own relationships between

objects and can define his own functions for the action part of a rule,

neither of which can be done in OPS4 or OPS5. Special macro expansions

available in ART enable the user to write rules using case and for

statements which are split into separate rules when the system is compiled

to run. This valuable feature speeds up the rule-writing time and helps

give structure to large and complex rules. ART is the only system in this

list that has this feature. Although ART cannot support arbitrarily nested

data structures as OPS4 and YAPS can, pattern matching does not have to

be done on the structure of the data, just on the data itself. Its tracing

capabilities are far superior to the other products, especially those offered

by Prolog which is better suited to building backward-chaining expert

systems. For these reasons, ART was chosen as the expert system shell for

69

implementing the B & D Router.

4.2. The Architecture of the B & D Router

The architecture of the B & D router is based on the WEAVER's

expert system architecture, which has a blackboard architecture, a system

of experts that work on the blackboard sharing information and ideas for

which net expansions (candidate nets) should be routed and a control

expert that governs the sequence of experts that get access to the

blackboard.

Similar to the WEAVER, B & D uses a blackboard architecture but

differs from the WEAVER in its construction. WEAVER has three

partitions of the blackboard whereas B & D has only one, the problem

state partition which represents the status of the switchbox with its

candidate and final routes. The second partition of the WEAVER is a

scratch-pad partition where information such as vertical and horizontal

constraints are kept. The third partition is the area where candidate nets

are selected to route by the control expert. In the B & D system,

candidate net expansions and other pertinent information is stored in the

problem state representation.

B & 0 does not have multiple experts working on the routing

problem with one expert deciding control amongst them as it is done in the

WEAVER. The set of rules or heuristics work together autonomously

and are applied only when the situation warrants it. It was felt that this

was in keeping with the true application of heuristics in a heuristic

algorithm. If one rule requires priority over another, its salience is set

higher and in the event that two rules are activated simultaneously, the

higher priority rule is fired. If rules of equal priority fire simultaneously,

the expert system shell automatically activates the rule matching on the

70

most recent data.

The next section discusses the basic data structures which are used to

represent the switchbox problem state in the B & D router.

4.3. B & D Problem Representation

The B & D router keeps its basic data structures similar close those of

the WEAVER's. Any differences that have evolved are due to the

incorporation of Marek-Sadowska's definitions and heuristics into the B &

D and from the removal of some WEAVER constructs that are not useful

to the B & D approach to switchbox routing.

Two input structures that are accepted by B & D are the channel (see

Figure 4.1) and the pin (see Figure 4.2). The channel is represented by

the four coordinates of minimum and maximum x and y coordinates which

establish rectilinear channel boundaries.

Similar to WEAVER in the way it created the horizontal and vertical

routing wires at each column and row, B & D has relations defining

column and row numbers (see Figure 4.2) are created for each routing

position available in the channel between the minimum and maximum x

and y values. The columns and rows are positioned one unit apart in

accordance with the grid approach to routing.

The second data structure accepted as input into B & D is the pin

structure. B & D defines several categories of pins as indicated by the

(defschema channel
(min-x)
(min-y)
(max-x)
(max-y))

Figure 4.1 Channel Schema Definitions

71

(defrelation column-number
(instance-of relation))

(defrelation row-number
(instance-of relation))

Figure 4.2 Row and Column Relations

'kinds' relation in the example definition below in Figure 4.3.

The inheritance facility of ART is implemented by using 'kinds'. It

instructs the system that if any structure is built of this kind, it is to also

contain the default slots of its super structure. In the above example, pin-

1, a hanging pin, inherits all the default slots of the master type 'pin'. All

pins that are input to B & D are defined as terminal pins. Their x and y

coordinates are on the switchbox's 'boundaries. Hanging pins and corner

pins are defined to be at the end of straight and corner expansions as per

Marek-Sadowska's definitions. A routed pin is created when all

connections emanating from a pin have been routed. Terminal pins can be

routed pins, but corner and hanging pins cannot because they are used as

points of expansion and routed pins are not. Terminals are kept as

markers to aid in determining to which net classification an expansion

route belongs. For example, a two terminal net with linear boundary

coordinates indicates that the net is divergent. The pin-in-net slot is a

relation slot which creates a link between the pin and the net in which it

(defschema pin
(pin-in-net)
(pin-x)
(pin-y)
(kinds terminal-pin

hanging-pin
corner-pin
routed-pin))

(defschema pin- 1
(instance-of hanging-pin))
automatically added to pin-1:

(instance-of pin)
(pin-x) (pin-in-net)

(pin-y)

Figure 4.3 Pin Schema Definitions

72

belongs. For the net definition in Figure 4.4, the opposite relationship is

establish by using the '-has-' construct.

A connection is defined as the construct that joins two pins in a

straight line segment (see Figure 4.5). Two classifications are created to

discern candidate expansions from their routed counterparts, and the third

classification defines the connections that make up the boundary of the

channel. Rather than describing connections as being 'convergent', 'semi-

convergent', and 'divergent', connections are classified by pin types and

the way they they intersect. For example, the connections from two pins

are considered to be a corner route if the two connections are

perpendicular to each other and they meet on a common point of the type

'corner pin'. Hanging pins are the endpoints of routed connections that

have no other routed connections emanating from them. A special

'cannot-expand' slot is defined to handle the cases where a corner pin or

hanging pin cannot expand in a certain direction.

The representation of routed segments by the connection construct

overcomes a problem that Joobbani faced in his implementation. He kept

track of the wires available for routing by using two data structures that

(defschema net
(net-has-pin)
(net-is-routed no))

Figure 4.4 Net Schema Definition

(defschema connection
(connection-has-pin)
(connection-has-pin)
(kinds candidate-connection

routed-connection
channel-connection))

Figure 4.5 Connection Schema Definition

73

represent the horizontal and vertical wires which extend the entire length

and width of the switchbox. Two sets of the structures are created, one

for each routing layer. As parts of a wire are routed for one layer, the

parts are removed from consideration by 'deleting the length of wire

unavailable for routing in the same layer. He cites that it would be

advantageous to represent each individual segment of the switchbox grid

as separate routing wires, but the size of some routing problems and the

number of data structures required makes it infeasible to do this properly.

B & D's representation does not keep track of available routing area;

instead it keeps track of wires as they became routed, i.e. as they change

status from candidate-connection to routed-connection. Before channel

routing begins all tracks and columns are available, because no routed

connections exist. Pre-routed nets can also be included in the system by

manually asserting their path as segments of routed connections.

There are no higher level structures built on top of the basic

structures just outlined. For example, corner routes, are recognized by

comparing two connections to see if they meet in a corner. No special

structure is asserted to state the existence of such a corner route. In an

expert system the extra matching required to recognizes graphical

information such as this can be great. But the state of a routing problem

changes rapidly as each partial net is routed and many candidate

connections are asserted and deleted before they are finally routed. The

extra time required to maintain the higher level structures would make it a

burden rather than an aid to keep track of them.

4.4. The B & D Program

The B & D program comprises all the heuristics discussed in chapter 3

and are outlined below in Table 4.1. As well it includes heuristics to

74

initialize the channel, create columns and rows, and define input pin

locations.

Approximately 3900 lines of ART Code were developed to create

these rules Figure 4.6 shows a sample ART rule to perform constraint

Written Compiled

Define Channels, Nets, and Pins 3 6

Create Columns and Rows 3 6

Generate Corner Segments 4 72

Identify Overlap Between
Corner Segments 1 26

Route Semi-Convergent and
Divergent Nets (1 unit) 1 13

Propagate Constraints
Straight Forward 1 50

Propagate Constraints
Around Corners 2 8

Expand / Can't Expand
Hanging Pins 4 92

Route Non-Overlapping /
Straight Connections 1 14

Route One of Two Choices 1 9

Delete Overlaps 1 4

Delete Hanging / Routed Pins
On Parallel Segments 3 9

Corner Pins to Hanging Pins 2 15

Corner Pins to Routed Pins 1 1

Miscellaneous 3 3

TOTAL 31 370

Table 4.1 Summary of the Rules Written for B & D

75

propagation where a hanging pin intersects a routed segment. Compared

the size of the WEAVER in the number of rules, the B & D router is

small. WEAVER has over 700 rules as opposed to 31 in B & D.

However, ART's program development features allow a rule to be created

with far less code than one for OPS5, which was Joobbani's choice of

implementation language. When ART compiles the rules, they expand

into the actual number used by the expert system. The number of

compiled rules in B & D is shown above. Thus one ART rule is

equivalent to several written in OPSS. However, size is not a true

estimate of quality; the output is and this is discussed in chapter 5.

4.5. Disadvantage of Expert Systems

Chapter 1 described at length that an expert system is a good

implementation medium for representing and solving difficult problems;

however, programming an expert system can difficult.

An expert system's main disadvantage is its inability to do anything

procedurally in a straight-forward manner. For example, if a program is

used to add the numbers from one to ten (see Figure4.7), a simple for

loop with an increasing sum will suffice. However, this is more

complicated in an expert system. First the sum must be placed in working

memory as a fact. The rule to add it must pattern match on the sum,

check if it is less than or equal to 10, and then a), delete the old sum from

working memory b), execute a routine to add sum to itself-plus 1 and c),

place the new sum in working memory again. The structure of an expert

system obscures the procedural flavour of some code. Most expert system

applications however, and this is true for B & D, are not designed to do

procedural work. They were designed to implement heuristic algorithms,

most of which involve symbol manipulation and pattern matching, not

76

;;;DEFRULE CP-TO-GET-A-TRACK

;;;This rule extends hanging pins beyond an already routed track

(defrule cp-to-get-track
(declare (salience ? *defaultsaljence*))

;;;Match on a hanging pin

(schema ?hanging-pin
(instance-of Fanging-pin)
(pin-in-connection ?connection)
(pin-in-net ?net)
(pin-x ?pin-x)
(pin-y ?pin-y))

;;;Make sure it is a hanging pin i.e. no other connections extend from
;;;it except the one above

(not (exists (pin-in-connection ?hanging-pin ?connection)))

;;;Match on information of the hanging pin's connection

(schema ?connection
(instance-of routed-connection)
(connection-has-pin ?other-pin &? hanging-pin))

;;;If the hanging pins only connection is vertical, find another connection
;;;that crosses its endpoint horizontally

(split ((connection-dir ?connection vert)
(schema ?other-connection

(instance-of routed-connection)
(connection-dir horiz)
(connection-has-pin ?pin-1)
(connection-has-pin ?pin-2 &?pin-1))

;;;For this other connection to cross on the hanging pin's endpoint
;;;check the other connection's pin-x values to make sure they surround
;;;the endpoint and overlap with it on its pin-y value

(schema ?pin-1
(pin-in-net ?net)
(pin-x ?pin-xl &:(?pin-xl < ?pin-x))
(pin->' ?pin-y))

(schema ?pin-2
(pin-x ?pin-x2 &:(?pin-x2 >= ?pin-x)

&:(?pin-x2 > ?pin-xl))
(pin-y ?pin-y))

Continued on the next page...

Figure 4.6 Example ART Rule

77

;;;Finally, if the hanging connection's other pin is higher than the
;;;hanging pin, then decrease the hanging pin's pin-y value so that
;;;in effect the hanging pin is extending downwards

(split ((pin-y ?other-pin ?higher-y
&:(?higher-y > ?pin-y))

=>
(modify (pin-y ?hanging-pin =(- ?pin-y 1))))

;;;Otherwise, if the other pin is lower, increase the hanging pin's pin-y
;;;value to that its hanging connection will extend upwards

((pin-y ?other-pin ?lower-y
&:(?lower-y < ?pin-y))

=>
(modify (pin-y ?hanging-pin =(+ ?pin-y 1)))))

;;;SECOND HALF OF FIRST SPLIT
;;;The second half does the same as the first, except now the hanging
;;;connection is a horizontal connection, and another routed connection
;;;may overlap it in the.vertical direction

((connection-dir ?connection horiz)
(schema ?other-connection

(instance-of routed-connection)
(connection-dir horiz)
(connection-has-pin ?pin-l)
(connection-has-pin ?pin-2 &-? pin-1))

(schema ?pin-1
(pin-in-net ?net)
(pin-y ?pin-yl &:(?pin-yi <= ?pin-y))
(pin-x ?pin-x))

(schema ?pin-2
(pin-y ?pin-y2 &:(?pin-y2 >= ?pin-y)

&:(?pin-y2> ?pin-yl))
(pin-x ?pin-x))

(split ((pin-x ?other-pin ?higher-x
&:(?higher-x> ?pin-x))

=>
(modify (pin-x ?hanging-pin =(- ?pin-x 1))))
((pin-x ?other-pin ?lower-x

&:(?lower-x < ?pin-x))
=>
(modify (pin-x ?hanging-pin =(+ ?pin-x 1))))))

)

;;;END OF DEFRULE CF-TO-GET-A-TRACK

Figure 4.6 Continued

78

mt sum;
sum = 0

for i = 1 to 10 do

sum = sum + i

(defrelation (sum (?sum))
(deffact (sum Q))

(defrule rule-i
?x <-(sum ?sum-num

&:(?sum-num <= 10))
=>
(retract ?x)
(assert (sum (+ ?sum-num 1)))

Procedural Code ART rule

Figure 4.7 Procedural Versus ART Code

procedural calculations.

One other disadvantage which is a direct result of the modularity and

flexibility of expert systems is the ease to which ad hoc heuristics can be

added to the system. As the system grows, the addition of these ' 'many and

varied heuristics makes it more difficult to track what the system is doing

and why. Therefore, it is important to know where newly created

heuristics fit into the design and operation of the system before they are

added, because it is difficult to find out what will happen after the fact.

4.6. Summary

Chapter 4 discussed the general architecture of the B & D routing

expert system, its data structures, and a synopsis of the rules included in

the system to perform the heuristics described in chapter 3. Chapter 5

presents the experimental results of the implementation on several

switchbox and channel routing problems and compares the results to those

of other routing algorithms.

CHAPTER 5

Experiments with the B & D Router

This chapter summarizes the experiments done with the B & D router.

The first section shows the input and output configuration used in each of

the experiments conducted on B & D. The second section steps through

an example problem and describes the heuristics used to route each step of

the example. The third section lists the examples and the results obtained

by B & D and compares these with the WEAVER's, Marek-Sadowska's,

and other system's results on Burstein's Difficult Switchbox Problem. The

final section discusses how well B & D does overall as a router and where

improvements can be made.

5.1. Input and Output

The input and output configuration of the B & D program is modeled

after the form used in Joobbani's WEAVER. A simple fact list of channel

and terminal specifications suffices for input; a partial fact list for the

switchbox problem in Figure 5.3 is shown in Figure 5.1. The channel's

minimum and maximum x and y coordinates are all that are necessary to

define it. A terminal's location requires its name x and y coordinates, the

net it belongs to, the layer on which it is to be routed, and the side of the

channel it is located on.

The output format was designed to be similar to Joobbani's and is

represented by facts in the working memory of the exert system. A

partial list of B & D output facts for net 5 in Figure 5.3 is shown below in

Figure 5.2. A new name for a connection pin is created by merging its net

name along with the new x and y coordinates of the pin. Connection

79

80

(channel-input ?min-x ?min-y ?max-x ?max-y)
(pin-input ?pin-name ?net-name ?pin-x ?pin-y ?channel-side)

a) Input Facts Form

(channel-input 0 0 13 8)

(pin-input pin-1 net-2 10 down)
(pin-input pin-2 net-3 2 0 down)
(pin-input pin-3 net-5 3 0 down)
(pin-input pin-13 net-9 13 1 right)
(pin-input pin-18 net-6 0 1 left)
(pin-input pin-19 net-5 0 2 left)
(pin-input pin-22 net-i 2 8 up)

b) Partial Facts List for Problem in Figure 5.3.

Figure 5.1 B & D Input Example

(schema net-5-3-2-pin-2-conn
(instance-of routed-connection)
(connection-has-pin pin-2)
(connection-has-pin net- 5-3-2)
(connection-dir vert))

(schema net-5-3-2
(instance-of routed-pin)
(pin-in-net net-5)
(pin-x 3)
(pin-y 2)
(pin-In-connection net- 5-3-2-pin-2-conn)
(pin-in-connection net-5-3-2-pin- 19-conn)
(pin-in-connection net-5-3-2-net-5-5- 3-conn)
(pin-in-connection net-5-3-2-net-5-3-5-conn))

Figure 5.2 B & D Example Output

names are established by concatenating the names of the two pins together

and appending 'conn'. Although this output is cryptic, it does serve the

basic purpose of showing where nets route. Building a more spectacular

interface was not worthwhile for a prototype system. However, for the

remainder of this chapter all output has been displayed graphically to

81

support the reader in his endeavours to understand this material. The use

of arrows, lines, and bullets is the same as it was used in Figure 3.6.

5.2. An Example Run with B & D

Figure 5.3 displays an example switchbox problem, which has been

solved by the B & D router. It is the aim of this section to show how the

heuristics are applied step by step to solve the example. Figure 5.3 shows

the example problem after corner routes have been generated for the

problem. A second heuristic has routed all semi-convergent and divergent

routes into the channel by one unit. Two conflicts arise between net 8 and

net 9, and between net 2 and net 6. Because nets 2 and 8 have been

routed up to the point of conflict, the upper terminals of nets 9 and 6 will

be reclassified as hanging terminals and their routes pushed back. Figure

5.4 shows the resolution of the conflicts in Figure 5.3.

The first non-conflicting corner routes are now routed in Figure 5.4

and now expand to meet other terminal extensions as nets 1, 3, 5, 7, and 9

14

.1
-4-

3t

4 4
51

6I ,tf 4

2353

167

L1J
10 10

L+10
 ti

5 2

T5

Figure 5.3 First Step of an Example Switchbox Routing Problem

82

145167 491010

1. Li,o
-I- t 1-1
3+ I- 5

I 17
3T

1 41 >'I • I +

t f?i19
987

51

Figure 5.4 Step Two

demonstrate. All hanging terminals have been routed to at least as far as

the first unit within the switchbox boundary; they will not expand further

until all corner routes and their extensions have been completed.

In Figure 5.5, all corners and corner extensions that have no conflicts

have been routed. However, constraint propagation has • taken effect

forcing the lower terminals of nets 2 and 8 up to an available track. Now

that all corners have been routed, hanging terminals can expand using the

track availability heuristics. This includes the divergent nets 2, 4, and 8,

and the semi-convergent nets 9 and 6.

As is explained in chapter 3, a net's terminals are expanded towards

each other by finding the furthest track available before it meets the routes

of other terminals. To graphically depict that a hanging terminal cannot

expand in a certain direction, an 'X' will be placed next to the terminal in

that direction. Candidate routes are prohibited from expanding back

across routed connections to ensure that routes will expand from hanging

83

I 145167 491010
' I

I - -+io

4 -1-1

3+4 T5
L1 X

6-----1 5 15 16

- -4-------x4
+

8 H9 1
Figure 5.5 Step Three

pins only, not from the middle of routed segments. Figure 5.5 shows the

expansions made from all hanging terminals.

Corner routes are considered hanging terminals if they are not as yet

connected to the other terminals. This presents a problem if there is more

than one corner from which an extension can be made. In B & D, a

corner is disallowed from expanding in a direction to connect to another

terminal if another corner expansion already spans the same area. Net 9

in this example demonstrates this phenomenon. There are two corners

from which an expansion could be made towards the upper terminal.

Since both span the same area of the switchbox, only one is finally

considered as a candidate route. No heuristics are used to decide which

corner should be allowed to expand; the choice is made arbitrarily.

Figure 5.6 shows the result of applying the net conflict resolution

heuristics to the expansions made in Figure 5.5. Because the upper

terminal of net 6 could not expand in the one direction and its other

84

expansion has a conflict, it has propagated downwards. The same has

happened to both terminals of net 2. The lower terminal on net 6 cannot

expand in one direction, but its other expansion has no conflict so it is able

to route it to completion. The same is true for net 9. All other

expansions with no overlap are also completed. This includes the

expansions connecting nets 4, 5, 8, and the expansion from the lower

terminal of net 9.

By Figure 5.6, all nets have now been routed except for net 9, which

has an easy solution, and nets 2 and 6 which have a difficult.solution. Net

9 has a straight through expansion with no overlap which can route. Net 6

becomes constrained to propagate past nets 2 and 7 and becomes

interconnected. Net 2 whose two terminals have only one non-overlapping

expansion each can also route. Net 6, on the other hand, cannot expand in

either direction. Its only choice is to overlap on the corner of an already

routed net. Its choices out of this predicament are to overlap on either net

145 167 491010

•'1 I - i - + 10

•1. + 4 -I-i

 ft 4 T5
t 11 x 17

-- +

8 It9
Figure 5.6 Step Four

85

2 or net 7; net 7 is chosen arbitrarily.

This example ran on a Symbolics Lisp Machine in 1408.15 seconds

and executed 1835 rules at an average firing time of 1.30 rules per second.

More examples were run on B & D and the results obtained are discussed

in the next section although not in as great detail as for this example.

5.3. B & D Against Other Switchbox Routers

In this section, B & D's output is compared with the output of other

switchbox routers on some difficult problems to demonstrate the

worthiness of the track availability, net-conflict resolution, and corner

overlap fanout heuristic at obtaining good routing solutions. Two

relatively easy and three difficult examples are compared. The switchbox

solutions for each problem will be shown for each system and a table of

statistics follows each example problem. The statistics that were taken

compare the systems on their quality of the solutions they generated and

quality is measured by the amount of wire used to route the problem and

the number of vias required to change layers. These are superficial

measurements of quality and in no way describe the difficulty of the

problem being routed. After these results, B & D are compared against.

the WEAVER in execution speed and the number of rules fired. Again,

this is a superficial comparison, but does give an idea of where each expert

system stands in its ability to solve the difficult switchbox routing

problem.

.5.3.1. A Simple Switchbox

Figure 5.7a below shows the WEAVER's solution to the first example

problem. B & D's solution is shown in Figure 5.8b. The statistics for

example 5.7 are encapsulated in Table 5.1 below. Although B & D

obtained a different layout than did WEAVER, the wire lengths are the

86

254? 2542

61 61

3t__l l f 1 -1 T3
L I I I 3t

T-J-4 4-----+l

1 15 4

Li

1 25
7

a) B&D's Solution b) WEAVER's Solution

Figure 5.7 Solutions to a Simple Switchbox Problem

Simple Switchbox Statistics

System Wire Length No. of Vias

WEAVER 60 4
B & D 60 11

1-6

Table 5. 1 Statistics for the Simple Switchbox in Figure 5.7

same. B & D's major drawback is in the number of vias that were

required to route the solution, because it uses the standard two-direction-

two-layer wiring model. The WEAVER, on the other hand, has

specialized heuristics that minimize vias in routes after a net is

interconnected with impressive results. However, it should be noted that

WEAVER allowed net 4 to overlap net 6, which is not necessary to

complete a solution.

87

5.3.2. A Second Simple Switchbox

Figure 5.8a below shows the WEAVER's solution to a second

switchbox problem that can .be solved with no difficulty. B & D's solution

is shown in Figure 5.8b. The statistics for example 5.8 are given in Table

5.2. Here B & D again compares well against WEAVER in the wire

63 582

5

I
4 •1.

•1'

ti

a) B&D's Solution

5-I-

8T
4J___.

1

63 5 8

-I

4.

1-

I

I

74

2

t

3

7

Ii

-t -1-3
 4

I

1 74 I

b) WEAVER's Solution

Figure 5.8 Solutions to a Second Simple Switchbox Problem

88

Second Simple Switchbox Statistics

System Wire Length No. of Vias

WEAVER, 94 9
B&D 94 11

Table 5.2 Statistics for the Second Simple Switchbox

length and layout although it requires two more vias to route the solution.

5.3.3. Burstein's Difficult Problem

The third comparison is between B & D's and other systems' solutions

to Burstein's Difficult Switchbox Routing Problem. While the other

examples were given to show how B & D compared with the WEAVER in

problems that are easily solved by automated routers, Burstein's Difficult

Switchbox Routing Problem was selected because it is a good test of an

automated router's ability to solve the switchbox routing problem. Five

other systems besides B & 0 have attempted the solution and some have

succeeded. Burstein's solution was printed in Figure 2.15, Hamachi's

(MAGIC) in Figure 2.16, Marek-Sadowska's in Figure 2.20, and

Joobbani's (WEAVER) solution in Figure 2.22. Luk's answer to the

switchbox routing problem was included by Joobbani in his thesis, because

its solution was comparable to Joobbani's and is re-printed here in Figure

5.9.

Luk's router is an implementation of the greedy switchbox router similar

to Hamachi's. B & D's results are shown in Figure 5. 10.

The table of statistics for these five solutions is shown in Table 5.3. It is

mentioned again at this point that Hamachi's column sweep router and

89

1,5 9 2 4 1,2 7 6 9 5 8 13 15 14 1.5 0 2.120 1 2 19 1 18 0

0
0
14
13
11
24
1
9
2
17
12
16
4
10
3

--

 .- .-

+4-+-

-t-i--i--- i' --------1-

-t-- 1

k--- 4-1-+-

I

--.-
-

-

I---

-

 4 4
:i t1JJ'j 4i t1JJ'j 4i t Li
- • I -t--• I - t•

r r r f-- •.f 1
-...-. -1 1-

1
24 17 16 4 7 6 5 9 8 0 9 12 1524 15 1023 1 O O 2218

Figure 5.9 Luk's Solution to Burstein's Problem

15
3
19
24
0
20
18
20
11
21
18
23
2
22
18

90

1,5 Q 2 4 127 6 9 5 8 13151415 02120 1 2 19 118
III IIlII' I III

' II II

0 15

0 + hFFb I I I I
14 19

131---f--- -i-'-- - i- - ---4-- 1- 24

11T
24 20 I

1+--r---t-f-f-t t T 1-i-i--1---1-' ---t18
9 20
214 11

17T-I- I I 21
12 18 t---- I [-T
16+ ---4-. I !-f- f j-23

I I I
--i-- -22

3+ r L L J I -18

24 17 16, 4 7 6 5 9 8 0 0 12 1524 15 1023 1 O O 22 18

Figure 5.10 B & D's Solution to Burstein's Problem

Burstein's Swithbox Statistics

System Wire Length No. of Vias

WEAVER 531 41
MAGIC 564 67
Burstein's 486 51
Marek-Sadowska's 559 58
Luk's 577 58
B & D 536 53

Table 5.3 Statistics for Burstein's Difficult Switchbox

Burstein's pattern router were unable to complete the entire problem.

Luk's version of the difficult problem added an extra row to its definition,

possibly to aid the switchbox router in completing its solution. From these

results it can be said that B & D is a good router for performing switchbox

91

routing and its results in wire length and number of vias is comparable to

WEAVER's, the system which has obtained the best results to date of

other switchbox routers.

5.4. B & D's Comparison Against the WEAVER

The last section in this chapter analyzes the performance of B & D

with the WEAVER. This comparison is made to show how well B & D

did as an expert system against another. The WEAVER is well known in

the switchbox routing field as a ground-breaking and competent system,

which has solved many routing problems better than other systems have in

the past. B & D was compared against the WEAVER in the quality of its

solutions, in this section it is compared against the WEAVER in execution

speed and the number of rule firings. The five example runs were used as

the basis of comparisons. The results of the statistics are given below in

Table 5.4. From the comparison, it is fairly obvious that the WEAVER

runs much faster than B & D in all three cases and uses less rules to find

solutions. There are several reasons why this is. First, Joobbani

Execution Statistics

Example

Figure 5.7

Figure 5.8

Figure 5.9/10

System

WEAVER
B & D
WEAVER
B & D
WEAVER
B & D

Running Rules Ave. Rule
Time Fired Firings
(sec.) (per sec.)

73 368
254 995
151 628
383 464
1508 3624

36580 4896

5.00
3.91
4.16
1.21
2.43
0.13

Table 5.4 Execution Statistics of B & D and the WEAVER

92

optimized the WEAVER's code to run faster; no optimization was

performed on B & D. Second, it is possible that the premises of the

WEAVER's rules are much shorter, for example having an average of 5

conditionals, than those of B & D's which average 20. Third, it may be

that OPSS is a faster expert system shell than ART; the average rule

firings per second indicate this. ART is an expert system that provides the

user with an excellent software development package and tracing facilities,

but its high overhead slows its execution speed. Its performance seriously

degrades as the difficulty of the routing problems become more difficult,

which is only to be expected because the amount of information being

asserted and deleted from working memory is larger for the more difficult

and larger routing problems. Thus B & D can be made to run faster by

decreasing the number of conditions in the premises of its rules, by

optimizing how the rules are written, by re-implementing the rules on a

faster expert system shell which has a low overhead.

5.5. Summary

In chapter 5, B & 0 was run on four example switchbox problems.

The first showed how the heuristics in B & D were applied to route the

problem. The second and third examples were selected to obtain results of

the B & D router against Joobbani's WEAVER. Burstein's Difficult

Switchbox Routing Problem was selected as the fourth example to

demonstrate how well B & D could do at routing this problem. From the

experimental results using B & 0, its heuristics for routing switchboxes

are comparable to other systems performing the same tasks. Its expert

system implementation is slower than the WEAVER at obtaining

solutions, but this can be improved by using the techniques described

above. Chapter 6 concludes thesis and makes suggestions for future work

based on the results obtained by B & D.

CHAPTER 6

Conclusions and Future Work

Routing is an important and time consuming task in VLSI design for

which automated routers try to attain the same quality as human experts.

Due to its inherent difficulty, heuristic algorithms are used to solve the

routing problem. Various models of the routing problem use different

heuristics to find good solutions owing to difference in the physical

constraints placed in the models. Current channel routing approaches take

advantage of their ability to expand in height and use vertical and

horizontal constraints, net length, channel density, and net merging as

constraints. Switchboxes, which cannot change insize, are routed by net

expansion, constraint propagation, and corner filling heuristics. Within

switchbox routing, different heuristics are used to resolve conflicts

between nets. General channel routing methods and heuristics from

switchbox routing to perform net expansion and constraint propagation are

used to resolve conflicts and help achieve a 100 per cent completion rate

for all routing problems. By the inspection of the current routing

approaches, it was discovered that the net expansion and conflict

resolution heuristics used for switchbox routing were too limited in certain

cases to achieve 100 per cent routing completion and needed to be

enhanced. Secondly, although the channel routing model is similar to the

switchbox model and two different sets of heuristics have been able to

route the switchbox routing problem, no one set of constraints currently

exists that can route both switchbox and channel routing problems.

To accomplish the first directive and the second directive new

heuristics were presented that enhanced Marek-Sadowska's current

93

94

constraint propagation and net conflict resolution heuristics. They allowed

nets to expand in two directions instead of one, and selected routes based

on what tracks were available for each net. As well, corner overlap

heuristics were presented that covered the case where nets could not

expand in either direction. These switchbox heuristics were discussed as

to how they could be applied to the channel routing problem. The

heuristics were implemented as an expert system in the B & D router.

They were teSted against two simple switchbox routing problems and

Burstein's Difficult Switchbox Routing Problems and achieved results

comparable to the results of current switchbox routing approaches.

6.1. Conclusions

The heuristics developed as an enhancement to Marek-Sadowska's

constraint propagation, net expansion, conflict resolution heuristics obtain

good switchbox routing solutions. By including the heuristics that perform

corner overlap, the router will be able to complete routes that otherwise

would not be finished using the two-direction-two-layer wiring model. To

perform channel routing, heuristics to choose between nets which overlap

on a single endpoint and choose between overlapping divergent nets would

have to be added. As was discussed in chapter 3, the first heuristic can be

used to break the cyclic constraint present in a channel routing problem.

The expert system is a good medium for building a prototype system

to solve the difficult routing problem because of the ease with which

heuristics can be added to its flexible and modular system. However,

speed prohibits its use on large problems, problems involving on the order

of 10,000 nets. Solutions to this problem are to optimize the current rules

so that they execute faster, recode the rules to work on a faster expert

system shell, recode the system using a procedural language, or create an

ASIC (Application Specific Integrated Chip) or VLSI chip whose

95

architecture has been developed to specifically run expert system code

thereby gaining a great advantage in speed along with the good heuristics

for solving the routing problem.

The system as it stands can route the standard model of the routing

problem using the grid approach and the two-direction-two-layer routing

model. This restricts it from use in full custom or gate array VLSI design.

However, the system can be upgraded to work in a full custom

environment by modifying heuristics to allow wires to route according to

design rules instead of at a unit distance. Wire definitions can also be

altered to define wires of different widths; presently wires have no

dimension in width. The system can also be modified to work in a gate

array design environment by defining the presence of pre-masked routing

layers and their location in the system. Heuristics can be added route the

second layer knowing the location of the first. Thus it is not difficult to

modify the router so that it can route within and by the constraints of a

specific VLSI design environment.

6.2. Future Work

Additional work needs to be done in developing heuristics that find

escape routes for nets away from conflicts if corner overlap or parallel

overlap is the only alternative. These heuristics could be based on line

propagation heuristics for finding escape routes for nets when they are

confronted by an obstacle. The solution could also entail expanding the

constraint propagation heuristics, to allow terminals to propagate to an

available track (if required) in any direction regardless if it is moving

towards or away from its destination.

- Because the heuristics in the B & D router can route- channels, as well

as switchboxes, the heuristics may be of use for routing three-sided

96

channels. Three-sided channels, as they are defined in chapter 2, are less

constrained than switchboxes, because of the presence of floating

terminals on one side of the channel. Some VLSI design systems define

routing areas using this model. The net expansion and constraint

heuristics could be used to route the expansions for the fixed terminals

away from their three boundaries towards the fourth boundary containing

the floating terminals. The positions of the floating terminals would be

established by noting what tracks were available for the net expansions as

they proceeded across the channel.

Another interesting area for future research is in the incorporation of

some of the routing heuristics in with placement routines to help these

routing better judge where to place cells based on the estimate. of routing

space required for its interconnection Currently,, channel density is the

measurement used to gauge how much area is required is not always

accurate. Although, not all heuristics could be incorporated in the

placement routines, a subset of them may provide a more accurate guide

than is presently available.

The final area of future work deals with the implementation of the

switchbox routing heuristics in a backwards chaining expert system or in a

logic programming language such as PROLOG. Using the heuristics as

definitions by which to attain good switchbox routing solutions, the

backward chaining system is the more natural form of implementation for

this kind of problem. These systems are better able to match on higher

level structures and break it into its lower level components. This ability

would be useful for defining the higher level structures in routing such as

corner routes which currently are not structured in the forward chaining

system and must be recognized by the arrangement of individual

components.

97

6.3. Concluding Remarks

An expert system router for solving the general routing problem has

been presented in this thesis. Building upon switchbox routing heuristics

to perform net expansion and constraint propagation, new heuristics have

been developed to allow nets to expand in two directions and resolve

conflicts based on how able a net is to expand to its available track in

either direction. Although the constraints do not ensure 100% completion,

they do emphasize the importance of it in switchbox routing problems by

ensuring that nets which are the most constrained in their choice of

available tracks get priority in selecting their routes.

References

[Abu87] Abu-Mostafa, Y.S., Psaltis, D., "Optical Neural Computers",

Scientific American, Vol.256(3), March 1987, pp. 88-95.

[Aho74] Aho, A.V., Hoperoft, J.E., Ullman, J.D., "Chapter 10: NP-

Complete Problems", The Design and Analysis of Computer

Algorithms, Addison-Wesley Publishing Company, Don Mills

Ontario, 1974.

[Aho77] Aho, A.V., Garey, M. R., Hwang, F. K. ,"Rectilinear Steiner

Trees: Efficient Special-Case Algorithms", Networks, Vol.7,

1977, pp. 37-58.

[Aker72] Akers, S., "Chapter 6: Routing", Design Automation of

Digital Systems: Theory and Techniques, Vol.-1, ed. Breuer,

M.A., Prentice Hall,Englewood Cliffs Nev Jersey, 1972.

[Al1e83] Allen, E.M., "YAPS: Yet Another Production System",

University of Maryland CS TR-1146, College Park Maryland,

December 1983.

[ART86] Automated Reasoning Tool Reference Manual, Inference

Corporation, Los Angeles California, 1986.

[Aven83] Avenier, J.P., "Digitizing, Layout, Rule Checking--The

Everyday Tasks of Chip Designer", Proceedings of the IEEE,

Vol.71(1), January 1983, pp. 49-56.

[Baas78] Baase, S., "Chapter 7: "Hard" (NP-Complete) Problems and

Approximation Algorithms", Computer Algorithms:

98

99

Introduction to Design and Analysis, Addison-Wesley

Publishing Company, Don Mills Ontario, 1978.

[Benn82] Bennett, 3., Buchannan, B., Cohen, P., Fisher, F., "Chapter

7: Applications-Oriented Al Research: Science", eds. Barr,

A., Feigenbaum, E.A., The Hand bood of Artificial

Intelligence, Vol.2, William Kaufman, Inc., Los Altos

California, 1982.

[Br at86] Bratko, I. ,Prolog Programming for Artificial Intelligence,

International Computer Science Series, Addison-Wesley

Publishing Company, Don Mills Ontario, 1986.

[Breu83] Breuer, M.A., Carter, H.W., "Chapter 15: VLSI Routing",

ed. Rabbat, G., Hardware and Software Concepts in VLSI,

Von Nostrand Reinhold Company, Inc., New York New

York, 1983.

[Burs83]. Burstein, M., Pelavin, R., "Hierarchical Wire Routing",

IEEE Transactions on Computer-Aided Design, Vol. CAD-2(4),

October 1983, pp. 223-234.

[Cloc8l] Clocksin, W.F., Mellish, C.S., Programming in Prolog,

Springer-Verlag, New York New York, 1981.

[Deas86] Deas, R.D., An Idiomatic Framework for the Automated

Synthesis of Topographical Information From Behavioural

Specifications, University of Edinburgh Ph.D. Thesis,

October 1986.

[Deut76] Deutsch, D.N., "A 'Dogleg' Channel Router", ACM IEEE

13th Design Automation Conference, 1976, pp. 425-433.

100

[Fike85] Fikes, R., Kehler, T., "The Role of Frame-Based

Representation in Reasoning", Communications of the ACM,

Vol.28(9), September 1985.

[Forg79] Porgy, C.L., OPS4 User's Manual, Carnegie Mellon

Univeristy CMU-CS-79- 132, Pittsburg Pennsylvania, July

1979.

[Forg81] Forgy, C.L., OPSS User's Manual, Carnegie Mellon

Univeristy CM U-CS-79- 135, Pittsburg Pennsylvania, July

1981.

[Gare79] Garey, M.R., Johnson, D.S., Computers and Intractability: A

Guide to the Theory of NP-Completeness, W.H. Freeman, San

Francisco California, 1979.

[Hama84] Hamachi, G.T., Ousterhout, J.K., "A Switchbox Router with

Obstacle Avoidance", ACM IEEE 21st Design Automation

Conference, 1984, pp. 173-179.

[Hana66] Hanan, M., "On Steiner's Problem with Rectilinear

Distance", J. SIAM Applied Mathematics, Vol.14(2), March

1966, pp. 255-265.

[Haye83] Hayes-Roth, F., Waterman, D., Lenat, D., Building Expert

Systems, Addison-Wesley Publishing Company, Don Mills

Ontario, 1983.

[High69] Hightower, D.W., " Solution to the Line Routing Problems

in the Continuous Plane", ACM IEEE 6th Design Automation

Workshop, 1969, pp. 1-24.

[High8O] Hightower, D.W., Boyd, R., R.L., "A Generalized Channel

101

Router", ACM IEEE 17th Design Autoñiation Conference,

1980, pp. 12-21.

[Hong83] Hong, S.J., Nair, R., "Wire-Routing Machines--New Tools

for VLSI Physical Design", Proceedings of the IEEE,

Vol.71(1), January 1983, pp. 57-65.

[Jenn84] Jennings, P.1., Hurst, S-.L., McDonald, A., "Highly Routable

ULM Gate Array and Its Automated Customization", IEEE

Transactions on Computer-Aided Design, Vo1.CAD-3(1),

January 1984, pp. 27-39.

[Joob8SJ Joobbani, R., Siewiorek, D.P., "WEAVER: A Knowledge-

Based Routing Expert", ACM IEEE 22nd Design Automation

Conference, 1985, pp. 266-272.

[J0ob86] Joobbani, R., An Artificial Intelligence Approach to VLSI

Routing, Kluwer Academic Publishers, Hingham

Massachusetts, 1986.

[Keef86] Keefe, M.M., Kendall, J., "An Expert System for Routing in

VLSI", Canadian Conference on Very Large Scale Integration,

October 1986, pp. 337-342.

[Kern73] Kernighan, B.W., Schweikert, D.G., Persky, G., "An

Optimum Channel Routing Algorithm for Polycell Layouts

of Integrated Circuits", ACM IEEE 10th Design Automation

Workshop, 1973, pp. 50-59.

[Kirk83} Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., "Optimization

.by Simulated Annealing", Science, Vol.220(4), May 1983,

pp. 671-679.

102

[Lee6l] Lee, C.Y., An Algorithm for Path Connection and its

Applications, IRE Transactions on Electronic Computers,

Vol.EC-1O, 1961, pp. 346-365.

[Leis8l] Leiserson, C.E., Pinter, R.Y., "Optimal Placement for River

Routing", VLSI Systems and Computations, eds. Kung, H.T.,

Sproull, B., Steel, G., 1981, pp. 127-151.

[Mare84] Marek-Sadowska, M., "An Unconstrained Topological Via

Minimization Problem for Two-Layer Routing", IEEE

Transactions on Computer-Aided Design, Vol.CAD-3(3), July

1984, pp. 184-190.

[Mare85] Marek-Sadowska, M., "Two-Dimensional Router for Double

Layer Layout", ACM IEEE 22nd Design Automation

Conference, 1985, pp. 117-123.

[McDe81] McDermott, J., "Ri: The Formative Years", Al Magazine,

Vol.2(2), 1981, pp. 21-29.

[Mead8O] Mead, C., Conway, L., Introduction to VLSI Systems,

Addison-Wesley Publishing Company, Inc., Don Mills

Ontario, 1980.

[Mukh86] Mukherjee, A., "Chapter 9: VLSI Design Tools",

Introduction to NMOS and CMOS VLSI Systems Design,

Prentice Hall Inc., Toronto Ontario, 1986.

[0ust84] Ousterhout, J.K., Hamachi, G.T., Mayo, R.N., Scott, W.S.,

Taylor, G.S., "Magic: A VLSI Layout System", ACM IEEE

21st Design Automation Conference, 1984, pp. 152-159.

[Part86] Partridge, D., "The Scope and Limitations of Expert Systems

103

Technology",

6th International Workshop on Expert Systems and

Applications, Agence de 1'Information, Paris France, 1986,

pp. 1543-1553.

[Pers78] Persky, G., Deustch, D.N., Schweikert, D.G., "LTX- A

Minicomputer-Based System for Automatic LSI Layout",

Journal of Design Automation and Fault-Tolerant Computing,

May 1978; pp. 217-255.

[Pint81] Pinter, R.Y., "Optimal Routing in Rectilinear Channels",

VLSI Systems and Computations, eds. Kung, H.T., Sproull,

B., Steel, G., 1981, pp. 160-177.

[Rive8l] Rivest, R.L., Baratz, A., Miller, G., "Provably Good

Channel Routing Algorithms", VLSI Systems and

Computations, eds. Kung, H.T. 1 Sproull, B., Steel, G., 1981,

pp. 160-177.

[Rive82] Rivest, R.L., Fiduccia, C.M., "A 'Greedy' Channel Router",

ACM IEEE 19th Design Automation Workshop, 1982, pp. 418-

424.

[Rubi74} Rubin, F., "The Lee Connection Algorithm", IEEE

Transactions on Computers, Vol.C-23, 1974, pp. 907-914.

[Sche86] Schediwy,R.R., A CMOS Cell Architecture and Library,

University of Calgary Computer Science MSc. Thesis,

December 1986.

[Sech85] Sechen, C., Sangiiovanni-Vincentelli, A., "The TimberWoif

Placement and Routing Package", IEEE Journal of Solid-State

104

Circuits, Vol.S-20(2), April 1985, pp. 510-522.

[Smit84] Smith, D.C., Noto, R., Borgini,F., Sharma, S.S., Werbickas,

J.C., "The Variable Geometry Automated Universal Array

Layout System (VGAUA)", IEEE Transactions on Computer-

Aided Design, Vol.CAD-3(1), January 1984, pp. 20-26.

[Souk79] Soukup, J., "Global Router", ACM IEEE 16th Design

Automation Conference, 1979, pp. 481-484.

[Souk8l] Soukup, J., "Circuit Layout", Proceedings of the IEEE,

Vol.69(4), October 1981, pp. 1281-1303.

[Souk86] Soukup, J., Private Discussion, 1986.

[Stei84] Steinberg, L.I., Mitchell, T.M., "Knowledge Based Approach

to VLSI CAD: The Redesign System", ACM IEEE 21st

Design Automation Conference, 1984, pp. 412-418.

[Szym85] Szymanski, T.G., "Dog Leg Channel Routing is NP-

Complete", IEEE Transactions on Computer-Aided Design,

Vol.CAD-4(1), January 1985, pp. 31-40.

[Ting83] Ting, B.S., Tien, B.N., "Routing Techniques for Gate

Array", IEEE Transactions on Computer-Aided Design,

Vol.CAD-2(4), 1983, pp. 301-312.

[U11m84] Ullman, S.D., "Computational Aspects of VLSI", Computer

Science Press, Rockville Maryland, 1984.

[VanC76] Van Cleemput, W.M., "On the Topological Aspects of the

Circuit Layout Problem",ACM IEEE 13th Design Automation

Conference, 1976, pp. 441-450.

105

• [Vecc83] Vecchi, M.P., Kirkpatrick, S., "Global Wiring by Simulated

Annealing", IEEE Transactions on Computer-Aided Design,

VoI.CAD-2(4), October 1983, pp. 215-222.

[Yosh82] Yoshimura, T., Kuh, E.S., "Efficient Algorithms for

Channel Routing", IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Vol.CAD-1(1),

January 1982, pp. 25-35.

