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Abstract 

Given the complexity of VLSI design, a need is created for automated 

tools that are as competent as human designers at their tasks. Routing, 

one of these automated tasks, does not yet perform as well as the human 

designer. Given the inherent complexity of the routing problem a 

heuristic approach to routing using many and varied constraints is merited. 

In this thesis, current heuristics for routing switchboxes and channels are 

investigated to find what heuristics are used on each type of problem, and 

where they may be improved. Based on the heuristics used to route 

switchboxes, new heuristics are presented that better estimate the tracks 

available for routing a net, resolve net conflicts based on this estimate, and 

allow nets to overlap at the corners of routes to enhance the router's set of 

heuristics in an effort to achieve 100 per cent routing completion. An 

explanation is given as to how these heuristics can also be used to route 

channels. The heuristics are implemented as an expert system using the 

Automated Reasoning Tool expert system shell. Several difficult 

switchbox routing problems are solved using the heuristics and produce 

comparable results to those of current approaches. New heuristics can be 

added to the modular and flexible expert system to upgrade the router to 

work within and by the constraints posed by the VLSI design specifications 

and design environment. 
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CHAPTER 1 

Introduction 

The advent of the integrated circuit industry in the late 1960's 

revolutionized the number and types of tasks that could be performed by a 

computer. It also created a new branch of software development in the 

area of computer-aided design (CAD) for performing tasks involved in 

chip design. In the past, designers were able to lay out SSI (Small Scale 

Integrated) and MSI (Medium Scale Integrated) circuits quickly and 

efficiently, because the 'designs required the layout of small numbers of 

components that could be managed and designed by hand. Matters are 

somewhat more complex with LSI (Large Scale Integrated) circuits, but 

still manageable. Technological improvements have now allowed 

designers to build smaller, faster, and subsequently more complex circuits 

on a single chip. Chip designers now place upwards of 10,000 to 100,000 

transistors together to create a VLSI (very large scale integrated) chip. 

These designs require the use of CAD tools to develop the entire chip 

from its initial top level functional specification down to the layout of the 

components on the chip. 

1.1. VLSI Routing 

In the VLSI design process, a variety of tasks are performed that lay 

out cell component specifi'cations, check for design rule violations, place 

cells 'in fixed positions on the design following the topology of the 

interconnections that have to be made between cells and the physical 

geometiy of the chip. The concentration of this thesis is on routing, a task 

performed late in the VLSI design process. Given a chip definition and a 

placement of cells (the functional blocks) on the chip, the routing problem 

1 



2 

is to optimally route within the physical constraints of the chip 100 per 

cent of all connections such that no two distinct connections intersect so as 

to become equipotential. The chip boundaries and cell placement, which 

includes input/output pads, determine where and how much routing area is 

available. Other physical constraints include the positions of terminals on 

each cell's boundaries that in turn will connect to terminals on the 

boundaries of other cells. Each terminal has a fixed location on the chip 

and is assigned a net name for interconnection. A net consists of a set of 

terminals which are to be connected -- to share the same signal and thus be 

equipotential. A path through the available routing areas on the chip is 

established for each net and is laid down as wires on the chip according to 

design rule specifications of the technology used. Two layers are 

commonly used for routing; nets may cross over one another if they are 

routed in different layers. Vias (contact cuts) are used to change layers. 

If different nets should cross each other's paths on the same layer, they 

will share the same signal, and thus become equipotential. 

Once defined, routing looks to be a simple geometrical problem, in 

practice, it is a labour intensive task. VLSI designs on the order of 10,000 

nets may take a designer three to four months to route by hand. In some 

instances, 50 per cent of the design time [Souk81] and 80 per cent of the 

chip area may be taken up by routing [Mead80] [Sche86J. Automating 

routing is attractive because of the speed up in design time; automated 

routers can route hundreds of nets in a few minutes as opposed to a few 

months by hand. But automated systems have had difficulty obtaining the 

same quality of routing that designers have which is usually measured by 

how compact the routing solution is. It is well known that results obtained 

by automatic routers are not as compact as those obtained by human 

designers especially on custom chips which have a more irregular and 
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denser layout than chips designed using other methodologies [Aven83]. A 

task to which so much design time and area is devoted deserves to be 

performed properly. The next section discusses why routing is a difficult 

and time consuming task and why heuristic algorithms can be used solve 

it. 

1.2. The Difficulty of the Routing Problem 

No definition of 'optimal' routing really exists. For some extremely 

difficult routing problems, 100% interconnection of all nets cannot be 

guaranteed (see Section 2.5; Switchbox Routing). Most designers classify 

good routing as those solutions which minimize area, while trying to 

complete all connections. Solutions which keep the chip area minimized 

can keep the chip yield high. However, because wires are the objects that 

are actually routed and not 'area', the routing problem must be translated 

from minimizing chip area -- a two dimensional minimization -- to that of 

minimizing wire length, minimizing the number of vias, or some other one 

dimensional phenomena that routers deal with. Indeed, two early routers 

minimized wire length in an attempt to achieve good routing [Lee61] 

[High69], but because the constraint of wire length disregards many other 

constraints that affect the area of routing -- such as the density of 

interconnect, an important factor which directly affects the attainment of 

100% routing completion -- incompleted solutions or solutions whose 

quality was unacceptable were obtained. 

From a different perspective, the routing problem thought of as a 

'random problem' according to Abu-Mostafa's definition [Abu87]. A 

random problem lacks sufficient structure in its definition that an 

algorithm cannot be stated for it in mathematical terms. Instead, large 

amounts of detailed information of the possible cases of the problem must 

be kept for comparison to later versions of the problem. He cites as an 
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example of a random problem, the problem of recognizing patterns in a 

natural environment. The pattern he selected to recognize was a tree. 

Considering all the possible cases of trees, their branches, leaves, and 

other properties, there is sufficient randomness in the problem of tree 

recognition that a simple algorithm cannot possibly recognize all trees. 

Because the algorithm is general, it recognizes at best a small subset of 

trees and most likely include tree-like objects which are in fact not trees. 

The routing problem is the same in this respect and is random because its 

definition cannot exactly specify the optimal routing solution for all 

possible routing problems. At best it can use simple algorithms to come 

close to the optimal. Abu-Mostafa's solution to his problem was to 

memorize all possible combinations of trees and then match the object to a 

tree in memory, an impossible feat to perform since the number of 

combinations is possibly limitless. 

The routing problem is also classified as belonging to the NP (Non-

deterministic Polynomial) class of problems [Aho74] [Szym85] if a 

definition of optimal exists, no algorithm can be specified that will 

optimally solve this class of problem in polynomial time [Baas78].' To 

generate all possible solutions and search sequentially through them to find 

the optimal one would take exponential time. One alternative to this 

procedure is to expand the original problem into a search tree with 

branches leading to many partial solutions and then pick the best local path 

to continue with. However, it is a characteristic of NP problems, that 

following one branch of a search tree to a partial solution in no way gives 

information on how much better or worse another path of the tree is 

unless a significant number of paths (nearly all) are expanded [Mead8O]. 

'Algorithms with an exponential bound have time complexities of the order X', 
where n is the nuiber of inputs to the problem. Algorithms with a polynomial bound 
are of the order N—. X in both cases can represent the number of times all n inputs are 
considered by the algorithm or the number of variables by which each of n is evaluated. 
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The most common method of solving NP problems is to develop heuristic 

algorithms which embody 'rules of thumb'. Using information about the 

current problem state, the appropriate heuristic is applied to change the 

current problem state to a new state, leading the partial solution on the 

path towards a 'good' final routing solution. An optimal solution cannot 

be guaranteed using heuristics, but theoretically, close to optimal can be 

[Baas78]. 

To sum up both theories, an optimal solution to the routing problem 

can only be obtained by gathering a significant amount of information for 

comparison, whether it be patterns in memory or an exponential number 

of generated solutions. An alternative way to proceed is to develop 

heuristic algorithms to solve the routing problem. 

1.3. A Heuristic Algorithm for Routing 

The purpose of a heuristic routing algorithm is to define how to solve 

the routing problem accurately using heuristics. To do this the algorithm 

must defiiie a model of constraints that represents the state of the problem 

and define a set of heuristics that will find a solution that is close to the 

optimal in all cases where that solution exists. Given this task, the 

algorithm can only fail in two instances. It can fail if the model does not 

represent the problem correctly or if the heuristics do not route correctly 

with respect to the routing definition. 

If the routing definition is referred to strictly as a set of physical 

constraints which the algorithm must meet, then it can be said that the 

model will only fail, to represent the routing problem correctly if it either 

ignores necessary physical constraints or imposes unnecessary ones with 

respect to the routing definition. For example, a model which ignores the 

boundaries of the routing area would allow routes to wander outside the 
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boundary of the channel which violates the routing definition. In the same 

manner, imposing the use of the two-direction-two-layer wiring model is 

an unnecessary physical constraint. The routing definition states that nets 

cannot intersect such that they becomes equipotential. Nets have to be 

routed on different layers when they cross, but they do not have to be 

routed on different layers in different directions. This restriction is used, 

of course, because it simplifies the routing problem; the routing method 

no longer requires a set of heuristics to make decisions on which layer a 

net will be routed. However, it can prevent the router from finding a 

good solution. 

Heuristics can also be viewed as trying to meet the physical 

constraints of the routing definition, specifically the constraints of laying 

down routes that are in a 'close to optimal' configuration. Thus similar to 

modeling the routing problem, heuristics can also ignore necessary 

physical constraints. For example, an algorithm minimizing wire length 

routes well in situations where there are no net crossovers in the solution. 

When crossovers exist, one routed net can block another net from 

completion. In this situation, nets which pass through the densest areas of 

the routing region are given priority over others, because it ensures that 

they will not be blocked later. From a more perverse perspective, 

heuristics can also be thought of as imposing unnecessary physical 

restrictions on routing solutions. By their own definition heuristics are 

local optimizations and do not usually find the absolute optimal solution to 

the routing problem. Indeed they may by chance restrict a solution from 

being the optimal merely by their method of solving the problem. They 

impose unnecessary restrictions which can be overcome by using more 

heuristics, albeit with their own restrictions. The increasing number of 

heuristics become less and less restrictive, less simplistic in their 
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representation of the routing problem. Their combined complex definition 

of an algorithm is more capable of solving the complexities inherent in the 

routing problem than any single simplistic restrictive heuristic. Thus 

adding a heuristic not only adds new criteria for accurately defining a 

routing solution but also removes a previous restriction that was present 

without its use. 

It is not the purpose of a routing algorithm to find the exact definition 

of the algorithm. Problems with a certain amount of randomness, which 

can be said to be true of the routing problem, require a full exposition of 

all possible problems and their solutions to be accurate with respect to the 

definition, an impossible task which can only be approximated by a 

handful of heuristics and is better estimated by many increasingly accurate 

heuristics. The fact that an exact definition has not been ascertained as yet 

should also emphasize that all but one routing algorithm falls short of the 

definition and can be improved. This is true for all current routing 

approaches. In fact, current heuristic algorithms for routing are forced to 

create generalized heuristics to take care of cases where no detailed 

heuristics are present to route them. Thus current approaches should be 

evaluated to find out what heuristics they use to define good routing, 

where they impose unnecessary restrictions on the solutions to the 

problem, and what additional criteria are required to improve the quality 

of. routing. 

This idea can explain why humans may do well at solving routing 

problems. When confronted with the routing problem, the designer can 

analyze the many physical features present, capitalize on her own 

experience of what should be routed first and last, and route whole or 

partial nets in any direction and layer she desires using rules of thumb she 

has learned over the years. It is no coincidence that the more experience a 
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designer, has, the better she is at producing a good routing solution. 

Experience may mean that she has acquired (1), the knowledge of what 

heuristics lead to good routing and (2), the knowledge of when to apply 

the heuristics to solve the problem in the best way. 

1.4. An Expert System for Routing in VLSI 

The main work of this thesis encompasses the idea of enhancing 

current 'approaches to routing by adding more heuristics. Specifically, 

switchbox and channel routers are examined for limits in their approach to 

the routing problem. The switchbox and channel problems are forms of 

the general routing problem which define routing regions to be 

rectangular. Among the heuristics used to route switchboxes a 

shortcoming is found in the estimation of what areas of the switchbox are 

available to nets. This shortcoming jeopardizes the ability of the router to 

complete 100 per cent of the connections. New heuristics are developed 

that enhance the current base of switchbox routing heuristics by making a 

better estimate of the areas that are available for nets to complete their 

routes. 

The secondary work of this thesis involves establishing a set of 

heuristics that may jointly route the switchbox and channel routing 

problems. Currently different routing heuristics are used to route each 

type of problem, because they differ in their models. Channels allow 

terminals to be defined on two opposite sides of the rectangular routing 

region whereas switchboxes can have terminals on all 4 sides. Despite 

their differences, which are elaborated on in chapter 2, the channel model 

could be defined as a subset of the switchbox and as such should be able to 

be routed by the same set of heuristics. This possibility is investigated. 
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The final work of this thesis involves the implementation of these new 

heuristics in an expert system for routing. Expert systems are a natural 

way for implementing a heuristic algorithm as they autonomously apply 

heuristics based on the current state of the problem, as opposed to a 

conventional program which applies heuristics in coded sequence. As 

well, expert systems offer a modular and flexible way to develop and fine 

tune large numbers of heuristics for a difficult problem such as routing. 

The implementation of the new heuristics using this medium and the 

expert system shell's performance as a system for developing software is 

examined in this thesis. [Keef86] describes an earlier exploration of this 

idea. 

1.5. Thesis Outline 

Chapter 2 of this thesis explores current routing methods. It analyzes 

the algorithms with respect to the general heuristics used to route them. 

The similarities and differences between the heuristics used to route 

channels and switchboxes, and the differences between methods for 

resolving conflicts between nets in the switchbox routing problem are 

investigated. Chapter 3 presents new heuristics which enhance current 

switchbox heuristics for net expansion, and can also be used to route 

channels. Chapter 4 discusses the implementation of the B & D router, an 

expert system for routing in VLSI that encompasses the heuristics 

discussed in chapters 3. It discusses the overall architecture of the B & D 

router and the data structures used to represent the routing problem state. 

Chapter 5 gives an example of B & D's routing capability and compares 

the B & D router's switchbox routing results to other systems' results. 

Chapter 6 concludes the thesis and describes the future direction of work 

regarding routing and expert systems. 



CHAPTER 2 

Previous Routing Approaches 

Previous routing approaches are discussed with the intent of discovering 

what heuristics and methods have been used to solve them. The models 

used to represent the general routing problem are presented and the 

influence from the design environment is discussed. Area routers, channel 

routers, and switchbox routers, the heuristics and the methods used by 

each type of router are included in the presentation of previous routing 

methods. Chapter 2 concludes with a discussion of the three problems 

facing switchbox routing and the general routing problem. 

21. Models of the Routing Problem 

A wiring model decides in what directions and layers wires can route. 

In general, wiring models assume that only two layers are available. 

Different geometries are available in which to route wires; euclidean, 

where straight wires travel in any direction, rectilinear or manhattan, 

where wires travel horizontally or vertically, and boston, where wires can 

also travel at a 45 degree angle from the vertical and horizontal directions. 

Most routing algorithms use the two-layer-two-direction wiring model 

which uses rectilinear geometry and allow one layer to route horizontally 

and the second layer to route vertically. A contact cut (via) is used to 

change layers and hence directions. 

In addition to the two-layer-two-direction wiring model, automatic 

routers can use the grid approach to routing. A grid is a lattice of 

equidistant horizontal and vertical lines mapped onto the routing region. 

A grid point is formed at the intersection of two perpendicular lines. All 

terminals on the boundary of the routing region and contact cuts must be 

10 
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located on grid points and all wires must be routed on grid segments. 

Grid lines are usually assumed to be separated by the minimum distance 

required between a contact cut and the routing layer in each direction to 

avoid design rule violations. Routers that do not use a grid allow 

terminals to locate anywhere along the boundary of the routing region and 

their wires to route according to design rule specifications. 

2.2. The Design Environment 

When an automatic router is developed for a CAD system, it takes 

account of how the design methodology affects the general routing model 

of the routing problem. The design methodology determines the floorplan 

of the chip, the location and size of the routing areas, and the layers that 

are available for routing. Three design methodologies, standard cell (or 

polycell), gate array, and structured design (or hierarchical design), are 

discussed below. 

A standard-cell floorplan typically has rows of cells interwoven with 

rows of interconnect space (see Figure 2.la) [Aven83]. Cells are designed 

to abut horizontally by being the same height, but they may differ in 

width. Vertical routing space at the ends of the rows and special route-

through cells [Breu83] give routes access to adjacent interconnect rows. 

The amount of space allotted for interconnection can be altered by the 

designer. The fabrication process determines the number of layers 

available for routing, which is typically two. 

Gate array design methodology is more restrictive than standard cell 

design because the layout has been pre-masked. The highly regular, 

structured, and well-spaced component layout in gate array semi-custom 

design gives the automatic routers an advantage over those that have to 

route the tightly packed and irregular layout of full custom designs 
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Figure 2.1 The Floorplans of Three Design Methodologies 

[Aven83]. However, gate array routers find it harder to achieve 100% 

routing completion [Jenn84J, because (1), the routing areas are set in size 
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and cannot be expanded if the router requires more space and (2), if all 

routings are not completed, a designer must weave the leftover routes by 

hand, which is a difficult and sometimes impossible task owing to the 

scarcity of available routing space after the automatic router has run. 

The most flexible design methodology of the three is structured 

design [Mead8O] and is used to developed full-custom designs. An 

example floorplan is shown in Figure 2.lc. The position and size of the 

routing areas are usually set after the cells have been placed on the chip, 

but this is variable if the routing areas have to be increased from the 

demands of the router. The choice of layers is decided by the fabrication 

process. Cells are usually designed to encompass most of the local 

functional logic they require, so there is less interconnect between cells 

and thethfore less routing space required. Automatic routing on full-

custom design does not achieve as tightly packed results as hand-packed 

routing, because the routing layout is highly irregular. 

Another difficulty that full custom designs have is matching up a non 

grid-based cell design to a grid-based router. Two possible solutions have 

been proposed by Ousterhout [0ust84]. The first uses a sidewalk 

boundary around the cells and routes connections within the boundary to 

the master grid connections (see Figure 2.2a). The second uses a flexible 

grid approach (see Figure 2.2b), where small areas in the channel use 

different grid lengths and compose to form the larder, non-uniform grid. 

In general, automatic routing methods are developed to solve the 

general routing problem, but once they are to be applied to a CAD design 

environment, they are specialized to deal with the restrictions which the 

design methodology, chip layout, and fabrication process give them. 

The following sections discuss the current methods that solve the 

routing problem. These methods solve the general routing problem, and 
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are not specifically directed for use by any design methodology. The 

discussion emphasizes the heuristics that each router uses to define good 

routing, the specific improvements each router has made over its 

predecessors, and the shortcomings each router has. 

2.3. Early Routing Approaches 

The first routing approaches are called area routers. They route one 

net at a time across the entire chip area. Their main objective is to find 

paths for nets around the cell and other obstacles in the chip area. Two 

well-known area routers are the wave propagation and line propagation 

routing algorithms. 

Wave propagation, a derivation of Dijkstra's shortest path algorithm 

[Aho74] [Lee6l], is also known as the Lee-Moore algorithm, the maze 

runner, and the path finding algorithm [Aker72] lRubi74I. The method 

gets its name from the wave that propagates from one terminal of a net 

across a grid of positions to find the other terminal. Each successive 

iteration of the wave is labeled with a numeral. When the other terminal 
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is found, a path is established by following the numbers in reverse order 

to the source terminal. An example propagation is shown below; X is the 

source of the wave and Y is the target. The steps of the wave are shown 

in numerals. 

The wave propagation method always finds a path for a net if one 

exists, which is one of the reasons why wave propagation is used in many 

CAD systems today, even though it was developed almost thirty years 

ago. However, wave propagation has a high computational cost because 

its search area grows exponentially at each iteration. The search area can 

be reduced by restricting the wave's movement towards the terminals only, 

or by having waves propagate from all terminals simultaneously. A 

hardware solution proposed by [Hong83] dedicates processing elements 

for each source node so that wave propagation is done in parallel for all 

nets. For serial computation, however, the expansion cost is the main 

liniitiation of the wave propagation method. 

Line propagation improves on wave propagation by limiting the 

amount of search made for a possible route for a net [High69]. The 

method is also known as the Hightower algorithm, the Aim algorithm, and 

the direct routing method [Souk81]. Each terminal of a net propagates 

7 6 5 6 7 8 9 10 
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5 4 3 8 9 

4 3 2 34"5 6 7 8 9 10 

3 2 1 2 3 4 5 6 7 8 9 10 

2 1 X 1 2 3 4 5 6 7 8 9 10 

3 2 1 2 3 4 5 6 7 8 9 10 

Figure 2.3 Wave Propagation from X to Y 
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two perpendicular lines that must intersect to establish a completed path. 

If a line encounters an obstacle, an escape point is formed. A route is 

established to the escape point and new lines expand from that point. In 

the example below, escape points of lines a, b, c, and d are formed as the 

algorithm proceeds to connect X and Y (see figure 2.4). 

The computational cost of the line propagation method is lower than 

that of the wave propagation method, because less positions are being 

searched; however, solutions are not always found. For example, in 

Figure 2.5 line b propagates into a box to find a connection to point Y 

without success and no track is available for a line to propagate back out 

of the box. This method shows little intelligence for choosing escape 

routes and is worse for complicated mazes where many obstacles exist. 

The area routers discussed above are adequate for small routing 

problems, but as the density of the routing increases, the heuristic of 

minimum net length fails to route to 100 per cent completion. Entire nets 

are routed one at a time, and it is a characteristic of this heuristic that nets 

which are routed earlier may block later nets. Soukup [Souk81]) solves 

this problem by uising flexible routed nets. If a routed net blocks a net 

from routing later on, the first route can be removed in favour of the 

second. Once the second net is routed, the first net can proceed to find an 

alternate route using the wave propagation technique. But minimum net 

length or the order in which nets are routed cannot decide when one net 

should have preference over another. 

2.4. Channel Routing 

Areas routers have two drawbacks that disallow their use for solving 

routing problems that contain on the order of 10,000 nets. The size of the 

problem prevents a large percentage of routes from being completed 
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Figure 2.5 Line Propagation Dead End 

because they are routed a net at a time and minimizes net length only. 

And as the density of the interconnect increases, so does the percentage of 

nets left unrouted. But because the routing problem is NP complete, each 
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additional constraint beyond that for minimizing net length pushes the 

time complexity closer to its exponential time bound [Souk79]. 

An alternative to routing the entire chip area at once is to divide the 

area into channels, establish general paths for nets through the channels 

(global routing)', establish the boundary constraints between adjacent 

channels (net ordering), and perform detailed routing on the channels 

independently of one another using a specialized router called a channel 

router. 

-Formally defined, a channel is a rectangle of routing space that has 

fixed terminals on two opposing boundaries only. Horizontal channels 

have terminals on the top and bottom sides; vertical channels have them on 

the left and right sides. Channels can be defined to be L, T, and X-shaped 

[Pint81], but this is rarely done. Channels have no obstacles save pre-

routed nets, wlich are nets that have been routed manually. 

To spare the reader undue confusion in explaining the subsequent 

terminology regarding horizontal and vertical channels, the term 'channel' 

will refer to a horizontal channel and the discussion of channels will refer 

to horizontal channels. 

A column is a vertical line that spans the height of a channel. A 

column is defined for each terminal or grid point on the upper and lower 

sides of the channel. Tracks are a horizontal lines which span the length 

of the channel, but are added to the solution as they are required by the 

channel router. The columns and tracks are mapped onto a grid upon 

which nets are routed. Typically, the two-direction-two-layer wiring 

model is used along with the grid approach. Nets route one vertical 

'Global routers are not discussed in this thesis, because they do not perform detailed 
routing; they assign nets to channels based on the area available for routing throughout 
the wole chip. The generally accepted procedure is based on the wave propagation 
algorithm and can be found in Souk79]. 
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segment at each terminal position and one horizontal segment to connect 

the vertical segments providing that vertical and horizontal constraints 

between all nets are obeyed. 

A horizontal constraint exists between two nets if one net starts its 

horizontal segment before the other has finished. If they are routed on 

the same track, they will overlap. In Figure 2.6a, net 2 has a horizontal 

constraint with net 1 and net 3. 

A vertical constraint exists between two nets if both have terminals 

located on the same column. Vertical constraints are captured in graphs 

where nodes represent nets. Further, arcs and the position of nodes 

relative to one another represent the 'above' or 'below' relation. The 

vertical constraint graph for Figure 2.6a is shown in Figure 2.6b, and 

shows that net 3 is constrained to route its horizontal segment above net 

2's, otherwise they will overlap and become equipotential (see Figure 

213  
I 1 1 

1 

a) Horizontal 
Constraints 

3 

b) Vertical Constraint c) Vertical Constraint 
Graph Violation Causes 

Overlap 

An explanation may be required at this point as to what the information in this figure and the figures that 
follow represents. A bullet (shaded circle) represents a contact cut. A line represents a segment of a routed 
net and Is bounded by a terminal and a bullet, or two bullets. Dotted and solid lines represent the two 
different layers used in routing. Any other significant points in the figures will be presented where 
appropriate. 

Figure 2.6 Problem with Horizontal and Vertical Constraints 
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2.6c). 

Because the number of tracks a channel requires is established during 

routing, an estimate can be made from calculating the channel's density. 

Channel density is defined to be the maximum of all column densities in a 

given channel. A column's density is equal to the number of nets that 

cross it. For example, the channel density in Figure 2.7a is two. 

However, it takes five tracks to route the example, indicating that channel 

density does not always give a correct estimate. A better estimate in this 

case is given by the number of linked nodes in the vertical constraint 

graph which is five (see Figure 2.7b). 

Similar to the constraint of net length in area routing, channel density, 

vertical and horizontal constraints, and the number of tracks are the 

constraints by which the horizontal net segments are routed. The terminal 

pins decide where the vertical segments will go automatically. These 

constraints and others that are used for channel routing are discussed in 

the following sections. 

2345 
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Figure 2.7 Column Density Example 
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River routing [Mead80] [Pint81], the simplest of all channel routing 

methods, routes in one layer only, thus nets cannot cross each other. 

Channel density calculates the theoretical minimum channel width required 

to adequately route the problem [Ullm84J. Because of its simplicity, river 

routing has been shown to be optimally solvable in polynomial time 

[Leis81]. However, it cannot be used to route the general two-layer 

channel routing problem. 

The wave propagation and line propagation can be used for the two-

layer channel routing problem. But again they fail to route 100 per cent of 

all connections because they route a net at a time and disregard all other 

constraints. 

Channel density is the main optimizing constraint in track filling (or 

left-edge) algorithms for channel routing [Pers78] [Yosh82]. The method 

proceeds from the bottom-left of the channel across a track filling it with 

as many horizontal segments of nets as possible while obeying the 

horizontal constraints of the nets thereby minimizing channel density. 

However, the method does not follow vertical constraints and therefore 

some solutions may contain overlaps (see Figure 2.8). 

The constrained left-edge algorithm [Mukh86] obeys horizontal and 

vertical constraints and minimizes channel density by executing a modified 

track filling procedure. Nets which are upper leaves in a vertical 

constraint graph route on the top track of a channel; nets which are lower 

leaves route on the bottom track. The algorithm proceeds left to right 

filling the tracks according to horizontal constraints. Once the nets are 

routed, their nodes are deleted from the vertical constraint graph and the 

next two tracks are filled. This algorithm does not create solutions with 

overlaps; however, nets are selected on a first come first serve basis based 

on their location along the channel boundary, which does not guarantee 
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that solutions minimize channel density. 
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The least-cost path algorithm [Mukh86] recognizes the relationship 

between channel density, vertical horizontal constraint graphs, and net 

merging by filling tracks with nets that are the most 'density reducing'. If 

a combination of nets merged on one track covers all columns that have 

maximum channel density, then that combination is defined as density 

reducing. The algorithm proceeds to build two graphs, one of the upper 

leaf nodes in the vertical constraint graph, the other of the lower leaves. 

An arc is established between two nodes in the graph if the two nets can 

be merged onto the same track. Each are is assigned a cost equal to the 

number of columns left uncovered between the two nets that have 

maximum channel density. The algorithm guarantees that the least cost 

path through each graph will be found if a path exists. The nets in the 

selected path from the upper graph are routed on the upper track of the 

channel. The same is done for the lower graph. Upon the next iteration, 

two new graphs are built for the leftover nets and the resulting least cost 

paths are routed. The one restriction to using this algorithm is that the 

vertical constraint graph must be acyclic. 

A cyclic constraint exists between two nets if both enter and exit the 

channel at the same columns, but at each time on opposite sides of the 

channel. Problems with a cyclic constraint cannot be solved if nets are 

allowed to route using only one horizontal segment (see Figure 2.lOa). 

Deutsch's dog-leg router breaks the cycle by allowing nets to route on 

more than one horizontal segment [Deut76]. A 'dog-leg' is an extra 

vertical segment placed in a route to give it a knee-bend. An example 

solution to the cyclic constraint problem using a dog-leg is shown Figure 

2.lOb. Dog-legs ensure that a cyclic constraint can be routed if the extra 

vertical columns are available, but require extra contact cuts and thus 

increase the capacitance and the area of the channel. To limit the number 
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Figure 2. 10 Circuit with a Cyclic Constraint 

of dog-legs a route can have, Deutsch suggests that dog-legs be introduced 

at a column where a terminal already exists for the net; however, this 

restriction cannot be followed between two terminal nets. 

The cyclic constraint can also be solved by relaxing the two-layer-

two-direction wiring model, as shown in Figure 2.l0c; however, parallel 

overlap is introduced as well which can increase capacitance between the 

wires in question. Interdigitation [Jenn84], which permits one terminal 

entry per column, removes cyclic constraints altogether; however, this 

restriction puts valuable routing area to waste (see Figure 2.lod). All 

three techniques have increased the channel routing area and capacitance 
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both of which are necessary to solve the cyclic constraint. 

A method called the column sweep approach departs from the track 

filling method and routes all tracks at oncecolumn by column. [Rive81] 

[Rive82]. The method, also referred to as the greedy algorithm, forces 

nets to take the closest track to their next exit point when they enter the 

channel. An example run of a column sweeep is shown below in Figure 

2.11. Because the channel is swept from left to right, the algorithm cannot 

determine if a net routed early on will block a net routed later, a similar 

problem that line and wave propagation algorithms encounter. 

The topological approach to routing differs from the other channel 

routers discussed above because its one heuristic minimizes vias [Mare84]. 

The nets are topologically arranged on two planar graphs, each graph 

representing a different routing layer. A via in a net represents a change 

of layer and therefore a change in graphs. The object is to embed a net 

one at a time into the graphs using the minimum number of vias necessary 

to keep each graph planar. Geometric parameters such as channel size and 
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.capacitance are not considered with the result that some topologically 

sound solutions cannot be physically realized. 

In summary, channels are routing areas containing no obstacles whose 

height can be expanded during routing if necessary. Different heuristics 

and techniques are available to find good channel routing solutions. In 

general, channel routers can use vertical and horizontal constraints, net 

merging, channel density, and the number of vias to obtain solutions. 

Good results have been achieved by the least cost path router, which uses 

three of these heuristics to determine the maximum density reducing 

routes provided the problem has no cyclic constraint. The solutions to the 

cyclic constraint either relax the constraint of the two-direction-two-layer 

wiring model, allow the nets to route using more than one horizontal 

segment, or restrict columns to having only one terminal assignment. 

Each technique entails a necessary increase in the area or capcitance in the 

routing solution because of the extra vias or parallel routing that is 

introduced. 

2.5. Swltchbox Routing 

A difficult routing problem which has been tackled only recently by 

automated routing methods is the switchbox routing problem. The 

switchbox model is similar to the channel except that terminals can be 

located on all four sides of the switchbox. Their definition provides 

greater flexibility than that of the channel [Jenn84], because other routing 

region shapes, such as L, T, and X-shapes can be defined using 

switchboxes. This problem frequently appears in VLSI design where 

either the floorplan of the chip or the design procedure sets both the 

height and width of the routing regions and fixes the locations of the 

terminals on the switchbox. The restrictions make switchboxes more 

difficult to route than channels and makes many channel routers incapable 
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of routing the switchbox problem. First, 100 per cent cannot be 

guaranteed because the switchbox area cannot be expanded during routing 

[Souk81]. Thus, track filling channel routers cannot be used to route 

switchboxes, because they require that tracks can be added while routing is 

being performed. This problem can be circumvented if the design 

procedure allows cells to be re-placed after routing to provide more 

routing space if it is required. Second, the locations of fixed terminals on 

the four sides of the switchbox constrain where vertical and horizontal 

segments can route (see Figure 2.12). Track filling routers assume that 

the horizontal segment of a route can be placed on any track, piovided 

that vertical and horizontal constraints are followed. Thus switchbox 

routers cannot follow the same procedure as channel routers. 
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Figure 2.12 Terminal Constraint on a Switchbox Problem 
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The loop area routing scheme [Mukh86] routes an expanding model 

of the switchbox problem, proceeding from the centre of a routing channel 

towards the boundaries adding tracks and columns as they are required. 

Figure 2.13 depicts the solution to an example problem. This method does 

not use the common two-direction-two-layer routing model and routes by 

selecting the shortest nets to route near the centre of the routing region. 

This scheme cannot route more than one assignment per track and because 

it adds an equal number of tracks and columns as it proceeds, it produces 

square results regardless of the true dimehsions of the routing area. 

Another model that differs from the switchbox model is the three-

sided channel [Souk8fl. A three-sided channel has fixed terminals on 

three sides of the channel and floating terminals on the fourth side. 
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Figure 2.13 Loop Area Routing Scheme Example 
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Three-sided channel routing methods route from the fixed terminal side 

towards the floating terminal side. Nets entering the channel on the third 

side automatically get the track that their terminal is on. Exiting nets are 

assigned a fixed position once routing has finished and are passed as 

constraints to the adjacent channel. Thus three-sided routing is not a truly 

independent routing model, since the terminal assignments are passed 

from channel to channel and terminal assignments may affect adjacent 

channels adversely. 

The hierarchical pattern router developed by Burstein Burs83L is 

capable of routing the switchbox model. The method subdivides a larger 

switchbox problem into a 2 X N grid model. The problem is then further 

subdivided into simple 2 X 2 routing problems to which simple patterns 

can be matched (see figure 2.14a). These patterns are individually applied 

to advancing steps of the solution towards the final goal of solving the 2 X 

N problem. The steps of an example problem are shown in Figure 2.14b. 

The router can almost complete a difficult switchbox problem known as 

Burstein's Difficult Switchbox Problem (see Figure 2.15). Although net 

24 is unrouted, the routers partial success gives it high marks for its 

switchbox routing capability.2 This method routes entire nets one at a time 

and this has previously been shown to hinder 100% routing completion. 

The router uses no other heuristics other than these specific patterns from 

which to choose routes. 

The column sweep channel approach can also be used to route 

switchbox problems, because the number of columns and tracks is known 

beforehand [Hama84] The router sweeps across the switchbox in the same 

20rigina11y perceived as unsolvable, the extreme difficulty of Burstein's Difficult 
Switchbox thwarted many attempts at finding a solution until an automatic router 
produced one. The success of Burstein's pattern router has also been refuted by Deas 
[Deas86] as it orders the nets to be selected before starting the routing process to ensure 
the routability of a switchbox. 
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Figure 2.15 Burstein's Solution to his Difficult Switchbox Problem 

manner as a three-sided channel router, except that the fourth side has 

fixed terminals and therefore, the router constrains the exiting routes to 

the tracks that they require. It is also one of the first methods to allow 

pre-routed nets. The 'greedy' switchbox router as it is called has also been 

benchmarked against Burstein's Difficult Switchbox Problem (Figure 

2.16); however, this method suffers from the same drawbacks as the 

channel routing version does. It gives priority to nets on the basis of their 

location on the boundary of the switchbox. Nets routed earlier can block 

later nets which is shown by the fact that net 2 is pre-routed in Figure 

2.16. 

Marek-Sadowska's switchbox router is a heuristic algorithm that 

routes the most constrained nets in the switchbox in an effort to complete 

100 per cent of all routes. The expansion of nets from the terminals is 

classified as either convergent, semi-convergent, or divergent (see Figure 
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2.17). Convergent nets have expansions that intersect either straight on or 

perpendicularly. Semi-convergent expansions travel in opposite directions, 

but do not intersect. Divergent expansions travel in the same direction 

and also do not intersect. She classifies nets as conflicting nets if their 

expansions overlap. For example, in Figure 2.17c net 5 conflicts with net 

6. Her heuristics route nets based on these classifications. 

Nets without conflict are routed first, and among these non-conflict 

nets convergent nets are the highest priority because the location of the 

routes are more constrained than the semi-convergent and divergent nets. 

Straight convergent routes are constrained to take a track by the presence 

of two terminals at either end of that track. Perpendicular and convergent 

routes are constrained to take a vertical and horizontal track by the 

presence of a terminal at the end of each track. In contrast, semi-
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Figure 2.17 Marek-Sadowska's Net Classifications 

convergent and divergent nets are similar to a channel route's horizontal 

segment; both have one segment that is not constrained by the presence of 

any terminal at either end of the segment, therefore it has a greater choice 

as to where to route. 
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Once a net is routed, or partially routed, Marek-Sadowska classifies 

the endpoints of routed expansions with respect to status in completing its 

route. A hanging terminal or pin is the endpoint of a semi-convergent or 

divergent route and can expand in the current direction away from the 

routed endpoint. A corner pin is the endpoint of a perpendicular and 

convergent route (a corner) and can expand both horizontally and 

vertically away from the endpoint. 

After a net is routed, constraint propagation is performed. Each 

hanging pin is checked to see if it is blocked by a routed net. A hanging 

pin is blocked if it intersects perpendicularly with a routed net (see net 2 in 

Figure 2.18) or the tracks on either side of the hanging pin have been 

routed (see see net 9 in Figure 2.18). In both cases, the hanging pin is 

propagated to an available track where it can complete its route. 

Nets with conflicts are routed after the non-conflict routes are 

completed. Using the same priorities, convergent routes are routed first, 

and semi-convergent are routed second again owing to their greater 

flexibility in the choice of routes. Divergent nets are routed last, although 
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Figure 2.18 Constraint Propagation 
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their net length increases the farther they expand away from the border of 

the switchbox. Once one conflict net is routed, the other hanging pins are 

propagated to available tracks. For example, in Figure 2.19 net 1 is routed 

arbitrarily before net 2. The left terminal of net 2 moves around net 1 by 

turning down on an available track and its lower terminal will turn left on 

an available track. 

Her heuristics do decide how to resolve conflicts between nets of 

different classifications, but they decide arbitrarily between routes of the 

same type, for instance between two straight connections. Her heuristics 

have also been benchmarked against Burstein's Difficult Problem (Figure 

2.20). 

Joobbani's WEAVER routes switchboxes using heuristics similar to 

Marek-Sadowska's for constraint propagation (pattern routing) and for 

routing non-conflict convergent routes (corner filling). However, it uses 

heuristics borrowed from channel routing to to resolve conflicts between 

nets. 

2 

2 

a) Overlap 
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2 

b) Overlap Resolved 

Figure 2.19 Expansion Direction Changed by Constraint Propagation 
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Joobbani's procedure first generates a Steiner tree as an estimate of 

the net length and the path that a net may take through the switchbox. In 

Figure 2.21, a minimal rectilinear spanning tree and a minimal rectilinear 

Steiner tree have been generated for the same set of points. A minimum 

spanning tree is generated by iteratively connecting a point to the growing 

tree if the link required to connect the point to the tree is the link of 

minimum length at that iteration. Steiner trees [Hana66] are different 

from minimum spanning trees by the presence, of extra points called 

Steiner points that further decrease the length of wire used to interconnect 

the terminals of a net (see Figure 2.21). 

The estimate of net length is improved by applying vertical and 

horizontal constraints to the nets, minimizing channel density, and 

maximizing net merging. Similar to Eustace's least cost path algorithm, 
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a) Rectilinear Spanning Tree. b) Minimal Rectilinear Steiner Tree 
(Multiple Trunks) 

Figure 2.21 Minimum Rectilinear Spanning and Steiner Trees 

leaf nodes in the vertical constraint graph are selected to route on an upper 

track in the switchbox. Next, the nets chosen are merged in different 

combinations following horiztonal constraints. The congestion heuristics 

select the nets that travel through the most congested part of the 

switchbox. The same is done for the lower leaves in the vertical constraint 

graph. Once a net is fully interconnected, heuristics remove any 

unecessary vias in the route. Heuristics that find equivalent minimal 

rectilinear Steiner trees are applied to nets whose proposed paths now 

- overlap' the routed nets. A set of control heuristics govern the sequence in 

which the Steiner tree, congestion, via, merging, and vertical and 

horizontal constraint heuristics are applied to a routing problem. The 

WEAVER can route both channels and switchboxes. 

The WEAVER has been tested against Burstein's Difficult Switchbox 

Routing Problem (see Figure 2.22) and other channel routing problems to 

show its expertise at routing. The system is able to route channels better 

than the theoretical minimum, because wires are permitted to overlap on 

corners and in parallel (see Figure 2.23) which is a radical departure from 

the two-layer-two-direction wiring model. The WEAVER is implemented 

as an expert system and uses an unprecedented number of heuristics, over 
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700, most of which have been taken from human routing experts, to solve 

the routing problem. 

To sum up, switchboxes are similar to channels in that they both 

contain no obstacles in their interior and they use the grid approach and 

two-layer-two-direction wiring model; however, they differ from channels 

in their definition and the methods used to solving them. Terminals can 

be placed on all four sides of the switchbox, which restricts the routing 

region from being expanded during routing. The loop area routing 

scheme expands the routing region, but without regard to its actual 

physical dimensions. Two switchbox routers route net by net (pattern 

routing) and column by column (column sweep approach). The two most 

successful switchbox routers, Marek-Sadowska's and Joobbani's, route 

from the boundaries inwards interconnecting the most constrained nets 
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Figure 2.23 Corner and Parallel Overlap 

first which is in keeping with the goal of attaining 100 per cent routing 

completion. The most constrained nets in both system are corner and 

straight routes and nets that are blocked by other nets and are to be 

propagated to an available track. Each method proceeds differently to 

route nets which conflict with other nets. Marek-Sadowska orders the 

conflict .routes based on the same classifications that were established for 

non-conflict routes. On the other hand, Joobbani uses heuristics common 

to channel routers to interconnect conflict routes. Although both routers 

use different techniques, they both expand nets to find out where 

proposed routes lay with respect to one another, and both alter the 

proposed paths once they overlap with routed nets. Joobbani's system 

gets closer to achieving 100 per cent routing completion by allowing nets 

to overlap in parallel and on corners. Marek-Sadowska's algorithm relies 

heavily on constraint propagation to achieve this. 
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2.6. Other Routing Techniques 

The routers discussed above are heuristic algorithms. They apply a 

heuristic to a partial routing solution when the conditions of the heuristic 

match those present in the problem state and advance the solution one step 

further towards completion. Alternative routing techniques have been 

developed to expose more than one possible routing solution and evaluate 

the quality of the solutions, and choose the one having the best quality. 

Two of these techniques discussed below are the branch and bound 

technique and simulated annealing. 

The branch and bound routing technique [Kern73] keeps track of 

different partial routing solutions as each proceed towards a different final 

solution. A bound is established as to the number of iterations that the 

search can perform, and when the bound is reached, the quality of each 

partial routing solution is evaluted. The partial solution with the highest 

quality is assumed to be the best path, and the search for the final solution 

continues from that path onwards. The other partial solutions are 

discarded. A bound of infinity .leads to a total search; a bound of 0 leads 

to a depth first search--taking the first partial solution that comes along. 

Trial and error establishes what bound is required to obtain a good 

solution. 

Another routing technique uses simulated annealing [Vecc83] [Kirk83] 

[Sech85], which is a randomized heuristic algorithm. 3 A randomly 

generated final solution to a routing problem is permuted into new 

variations that are compared in their quality to the previous one. A 

temperature parameter provides an upper bound to the increase in cost 

3Simulated annealing is based on a technique used in physics and chemistry to 
restore crystal structure in semi-conductor materials and produce stable chemical 
compounds. The material is heated to extreme temperatures forcing molecules into rapid 
random motion. The compound is then cooled slowly allowing molecules to settle in 
regular patterns that are highly stable. 
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that a new solution can have over the previous one. If the cost of the new 

solution is lower, it is always taken. However, if it is higher, its change in 

cost is compared against a randomly generated value. If it is lower than 

this value, the new solution is accepted. The random variable controls the 

amount of hill climbing moves (moves which are greater in cost) that are 

introduced to system. When the temperature is high, almost all hill 

climbing moves are accepted; as the temperature is lowered, less and less 

are. Theoretically, if the temperature decreases at a satisfactorily slow 

rate at the start, enough permutations of the solutions are generated to 

guarantee that an optimal solution is found. Trial and error is used to 

establish what that rate is. 

Heuristic algorithms have several advantages over the other two 

search strategies discussed above. First, a heuristic algorithm does not 

require extra memory and state saving techniques for operation as does 

the branch and bound technique. Because NP complete problems such as 

routing must explore a large area of the problem space before they know 

if one path is better than another [Gare79] [Baas78], the amount of 

resources required would be extensive. Second, heuristic algorithms can 

use a multitude of heuristics to choose how to proceed from one partial 

routing solution to the next. In contrast, simulated annealing uses one 

randomized heuristic. Many permutations of final solutions have to be 

generated before the technique converges on a good solution, a process 

which can take up to several hours for a fairly difficult routing problem. 

It would seem that because heuristic algorithms do not probe a large 

portion of the search space, they are more in danger of pruning a path 

containing a good solution than the other two methods. However, the use 

of specialized heuristics protect a partial solution from being lead to a 

dead end for most routing problems. 
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2.7. Discussion of Current Routing Methods 

Among the routers presented in chapter 2, the discussion of current 

routing methods focuses on switchbox routers. Most of the issues 

concerning channel routing have been investigated and there are highly 

competent routers available to solve the channel routing problem. 

Switchbox routers are not as well-researched as channel routers and there 

is a great need in CAD systems for good switchbox routers. The 

discussion of switchbox routers concentrates on Marek-Sadowska's and 

Joobbani's systems, because they achieved the best results on the difficult 

switchbox routing problem. Three general problems are mentioned. 

First, from the discussion of Marek-Sadowska's switchbox router, it 

was noted that her router arbitrarily chooses to route conflict nets based 

on their classifications. Convergent nets are routed first, then semi-

divergent nets, then divergent nets. Although classifications do signify 

how constrained each class of nets is to take a route, they give no 

indication of how nets are able to expand in all directions. This is shown 

in the inability of her heuristics to discover if one net can move around 

another when they conflict with each other. In Figure 2.24a, the net 

expansion for a switchbox problem has been performed. The leftmost 

terminal of net 1 does not route on a corner with the upper terminal, 

because of the conflict with net 2; however, it extends across in a corner 

route with the right most terminal of net 1, because neither of those 

endpoints conflict head on with other nets. The result of that choice is 

shown in Figure 2.24b; net 2 remains incomplete and neither of its 

terminals can expand towards an available track. The basic problem is 

that Marek-Sadowska's heuristics expand terminals and perform constraint 

propagation in one direction for each net. An expansion is only made in 

line with the direction of the routed segment for each net. Constraint 
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Figure 2.24 Overlap Dilemma 

propagation only checks the available tracks in front of the net as well. 

Semi-convergent routes and divergent routes must turn their routes at 

some point to connect with the rest of the net; but performing net 

expansion and constraint propagation in one direction does not provide 

information on how well the nets can route in the opposite direction when 

the time comes. This thesis proposes a new set of heuristics that expands 

terminals and performs constraint propagation in two directions rather 

than one and decides which nets may route based on how the expansions 

conflict with other nets. 

Second, between the two systems, no general heuristics are provided 

to lay down routes other than by using the two-direction-two-layer wiring 

model which has been shown to hamper switchbox routers in obtaining 

100 per cent completion. Joobbani provided a partial solution by using 

heuristics to minimize vias after nets were routed and allowing parallel 

overlaps between nets if it is necessary to complete a solution. However, 

no general group of heuristics have been provided to establish when and if 

parallel overlap should be used on a routing problem. This thesis builds 

upon the heuristics proposed above by suggesting general heuristics that 
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can be used when the expansion heuristics fail to find routes for nets using 

the two-direction-two-layer wiring model. 

Finally, the successful automated routers, particularly the switchbox 

routers use many and varied constraints and apply them as heuristics to the 

routing problem. However, there is still no cohesion between the 

heuristics that are used to route channels and those used to route 

switchboxes. Joobbani's router solves both routing problems, but uses 

different heuristics for each. Within the switchbox routing problem, 

Joobbani uses one set of heuristics, constraint propagation and corner 

filling, to route non-conflict nets and uses another set derived from 

channel routing techniques to route conflicting nets. In contrast, Marek-

Sadowska uses the same net classifications and priorities to route nets with 

or without conflicts. Although Marek-Sadowka's router does not route 

channels, there is evidence to suggest that her heuristics may be able to. 

Her heuristics are as capable as Joobbani's at routing conflicting nets and 

Joobbani's conflict heuristics were based on channel routing heuristics. It 

is proposed in this thesis that the net classifications and heuristics created by 

Marek-Sadowska and the other proposed heuristics can be used to route both 

the channel and switchbox routing problems, thereby uniting both models 

through using this general routing method to solve them. 

Chapter 3 discusses these three points in detail and presents the 

method and the heuristics that are used to solve them. 



CHAPTER 3 

New Heuristics for VLSI Routing 

This chapter concentrates on the new heuristics that have been 

developed as a solution to the problems outlined at the end of chapter 2. 

Section 3.1 discusses the background work that led to the development of 

the new heuristics. In section 3.2, the new heuristics that define available 

tracks, select nets to be routed, and propagate constraints are outlined. 

Section 3.3 details the heuristics that route corner overlaps in cases where 

nets cannot be completely interconnected using the above heuristics. The 

final section explains how these heuristics can be used to solve the channel 

routing problem. 

3.1. Background Work 

The heuristics that are described in the following sections are based 

on MarekSadowska's methods for solving the switchbox routing problem. 

This section explains how this decision came about. 

It has been mentioned previously that a switchbox router's main goal 

is to route all nets to 100 per cent completion. Because Joobbani's system 

achieved this goal in nearly all his examples, his general channel routing 

heuristics were used as a base on which to develop heuristics to solve the 

problem outlined in Figure 2.24. The main thrust of the work was to 

develop heuristics that ensured that those routes which passed through the 

most heavily congested switchbox areas were given the highest priority to 

route [Keef86]. Heavily congested areas were defined to be where the 

areas of maximum horizontal and vertical density overlapped and the nets 

that passed through the area were routed first. The nets outside of the area 
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were ignored to the detriment of finishing their own routes. Heuristics 

were added to include their expansions in the routing of the congested 

area, and it became evident that -this method was performing the same 

techniques as Marek-Sadowska's heuristics for switchbox routing, but in a 

convoluted way. Corner filling was performed automatically, as in most 

switchbox problems the corners are the most congested areas. The key to 

solving the switchbox problem lay in recognizing when nets were allowed 

to expand to proposed routes and noting how and where conflicts 

occurred. Once nets were selected to route, it was also important that 

blocked nets propagate to the routing space still available and new 

expansions made. This procedure had already been established by 

Marek- Sadowska. 

The tactic was changed to use Marek-Sadowska's switchbox heuristics 

as the base on which to expand and find heuristics that could solve the 

problem in Figure 2.24 using the same approach of net expansion, conflict 

resolution, and constraint propagation. Particular attention was paid to the 

way her heuristics chose nets to route based on the shape of their paths of 

expansion. From here, it was hypothesized that not enough information 

was being gathered from the problem state by allowing nets to expand in 

only one direction (except for corner routes) and by checking blocked 

routes ahead of the one path. New heuristics were created to allow nets to 

expand in two directions towards their destinations and to check for 

blocked paths in both directions. Heuristics were also created to solve a 

situation when a net could not expand in both its desired directions. These 

heuristics are presented in the following sections. 

3.2. New Heuristics for Routing Switchboxes 

The heuristics outlined are based on definitions created by Marek-

Sadowska for net conflicts, terminal types, net expansions, and constraint 
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propagation. Each is discussed with respect to how they have been 

changed to support the new method for routing switchboxes. 

The first change affects the creation of hanging pins for conflicting 

nets. Previously, Marek-Sadowska allowed perpendicular routes to 

interconnect if they did not have a conflict with other nets. The new 

definition requires that only perpendicular routes which intersect with the 

closest terminal to their location can route if they have no conflicts. 

Closest is defined to be either the least distance between the x coordinates 

of two terminals expanding in a horizontal direction or the least distance 

between the y coordinates of two terminals expanding in the vertical 

direction. This changes how net 1 is routed in Figure 2.24. The upper 

terminal of net 1 and its leftmost terminal form a perpendicular route, but 

the upper terminal of net 1 has a conflict with net 2 and cannot be 

connected. In Marek-Sadowska's version, the leftmost terminal would 

continue on to connect to the far right terminal because both their paths 

intersect and neither has a conflict. By the new definitions, the left most 

terminal would not be allowed to continue on past its closest terminal (the 

upper terminal) although it has no conflict. The result of this definition, is 

that net 1 will not automatically take a horizontal track that net 2 may 

require, a need that was established by its conflict with the upper terminal 

of net 1. It follows from this new definition that nets perpendicular to a 

net with a conflict must also be considered to have a conflict, since the 

routing of one net helps establish the routing for the other. The definition 

for hanging terminals has been widened to include those nets which have a 

conflict as defined above. This is in keeping with Marek-Sadowska's 

general definition of hanging terminals, which defined hanging pins to be 

the endpoints of nets with conflicts. Usually these are the semi-convergent 

and divergent routes, and nets with head-on conflicts, but now nets whose 
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expansions are perpendicular to a conflict are included. 

The definition of net expansions was also altered to define which 

directions and to which terminals hanging pins were now allowed to 

expand. For nets with two terminals, each terminal was allowed to expand 

horizontally and vertically towards each other. For multi-terminal nets, 

each terminal at the ends of the switchbox expanded towards its closest 

neighboring terminal in either direction, and each' terminal in the centre 

expanded towards the closest terminals on either side of its position. 

Allowing a terminal to expand towards its closest neighbors only gives a 

good estimate of the minimum net length required to interconnect the 

terminals in a similar fashion to the way minimum spanning trees are 

created to interconnect terminals. 

The definitions governing net expansions were also changed to reflect 

how close the expansion from a hanging pin could get to its target by 

discovering which tracks were available in between. An available track for 

the expansion of a route is defined as a track that is perpendicular to the 

expansion and does not have a routed segment intersecting the expansion 

or routed segments on that track extending in either direction away from 

the expansion. Using the downward expansion of net 4 in Figure 3.1 as an 

example, three tracks are shown as being available to net 4. The first 

three tracks are not available because of the presence of routed segments 

that are perpendicular to it. The next two tracks are available -and are 

labeled A and B. The sixth track is not, because net 4 must turn right at 

some point to connect to its other terminal and there is a routed segment 

proceeding to the right away from it. The next track, labeled C, is 

available. 

In any expansion, there can be more than one available track that a 

terminal can expand towards. An additional constraint in the definition 
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pushes a hanging pin's expansion on to the farthest track available. An 

example route is shown for net 1 in Figure 3.2 in which it takes the first 

available track at each expansion (Figure 3.2a) and takes the last available 

track (Figure 3.2b). Choosing the first available track creates a staircase 

route and is undesirable because corners in a route produce high electric 

fields. At 1 micron technology, an effect called metal migration is 

produced due to the small cross sectional area of the route and may 

compromise the route's integrity. To circumvent this 'greedy' approach to 

selecting tracks, the farthest track available is selected. This ensures that 

the expansion extends as far as possible in the direction of its destination 

knowing that closer alternatives may be available if needed. 
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Figure 3.2 Choosing the First Versus the Last Available Track 

Similar to the way constraint propagation is performed by Marek-

Sadowska, nets which cannot find an available track in one direction are 

propagated to an available track in the other direction. With the new net 

expansion definitions, nets are now automatically checked to see if they 

can expand in both of their proposed directions. 

The following heuristics resolve net conflicts based on what net 

expansions are produced for all hanging pins. Following Marek-

Sadowska's definitions closely, a conflict is defined to be a connection (or 

route) that intersects with another in parallel. This includes overlaps with 

the endpoints of routes. With one exception, routes that intersect and are 

perpendicular to each other are not conflicts. If an expansion, expansion 

'a', intersects with another expansion, expansion 'b', such that they are 

perpendicular to each other and the end point of path 'a' intersects with 

expansion 'b', then the 'a' is said to have a conflict with 'b' (see Figure 

3.3). Because expansion 'a' finishes with its path on 'b', 'a' may at some 
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Figure 3.3 Example of Net Conflict 

future time want to route along the track that expansion 'b' is on 

presently. The conflict between the two expansions means that, for 'a' at 

least, this track may not be available. 

Once the conflicts have been identified, there remains the arduous 

task of deciding which expansions should route and which should not. 

Three main heuristics based on Marek-Sadowska's net classifications and 

heuristics for net selection are outlined below. These heuristics are 

presented in the order of priority that they are applied to solve the routing 

problem. 

(1) If two hanging terminals are connected straight through and have no 

other straight through expansions overlapping with them in a parallel 

direction, the connection is routed. All other types of routes that may 

overlap with the net are removed (see net 1 and 2 in Figure 3.4). 

(2) If a hanging terminal has two expansions and one has a conflict, but 

the other does not, then the non-conflicting expansion is routed (see 

upper terminal of net 3 in Figure 3.4a). The other expansion is 

removed. 

(3) If a hanging pin has two expansions neither with a conflict, the one 

which expands in the same direction as its routed segment is chosen. 

(see the lower terminal of net 3). The other expansion is removed 

from consideration for future routing. 
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Figure 3.4 Net Conflict Resolution Examples 

Each time an expansion is routed and other overlapping routes are 

removed, constraint propagation is performed. All routes that may now 

overlap with the newly routed segment will be propagated in the same 

direction as the constraint propagation dictates. Once all terminals have 

been propagated to their new locations, each terminal expands again. 

Conflicts between routes are investigated, and again the three heuristics 

above are used to decide who wins and who loses a conflict. 

The procedure outlined above constitutes one cycle in the routing 

process. This cycle of expansion, conflict detection, route selection, route 

deletion, and constraint propagation fits comfortably in the cycle used to 

route non-conflicting nets (net expansion, route selection, constraint 

propagation). Using this cycle to demonstrate how the above example 

would be routed, net 2 and 1 would be routed by the first heuristic and the 

horizontal expansion from the upper terminal of net 3 would be removed 

from consideration. Instantly, net 3's upper terminal would be propagated 

down past net 1, because its horizontal route is now blocked by net 2. Net 

3 then expands horizontally to connect with the other expansion of net 3. 

Because both terminals of net 3 now have two expansions without conflicts 
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(from other nets), one of their expansions is chosen to route. In this case, 

the upper terminal of net 3 routes vertically in line with its routed segment 

and its horizontal expansion is removed. Now the lower terminal of net 3 

connects with a straight connection vertically to the other hanging pin and 

its net is routed. 

The heuristics are also demonstrated to show how they would solve 

the problem in Figure 2.24. Figure 3.5 shows the expansion of the four 

nets horizontally and vertically after each has been routed one unit into the 

switchbox. 

Both terminals of net 2 have been propagated one unit farther because 

of the constraint created by the presence of net 1's and net 3's hanging 

pins. In keeping with the net expansion heuristics, the left most terminal 

of net 1 has expanded in three directions towards its other two terminals. 

Using the three net selection heuristics established above, the upper corner 

route of net 1 can be routed because it has no overlaps with other routes. 

When the other two perpendicular expansions are removed from 

consideration, net 2 can route its upper left corner. Once it has removed 

its other expansions from consideration, net 3 can take the second lowest 

3 4 

Lx4 + J 
4 -I 

234 1 

Figure 3.5 Net Conflict Resolution Using New Heuristics 
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track which makes net 4 free to take the lowest track, once net 1 expands 

upwards into the switchbox. Figure 3.6 shows the solution generated by 

the heuritics. Because the lower terminal of net 1 has moved up to the 

same height as its left most terminal, the upper terminal may now expand 

down and right to meet it. 

A curious problem with these heuristics is that they can create hanging 

routes as is done in this solution. Net 1 has expanded down in a futile 

attempt to meet up with the lower terminal of net 1, which shows that even 

these heuristics are too short sighted to see where every expansion can 

lead. 

3.3. Corner Overlap 

The heuristics outlined above' may be used to establish paths of 

expansion for routes, but they do not handle the case where routes cannot 

expand in their desired directions. This situation occurs when the two 

choices of a route's expansion are met head on by connections that are 

already routed on those tracks. For 100 per cent routing completion to be 

achieved, the new route will have to overlap one of the old routes. 

Heuristics to route corner overlaps have been developed to facilitate this. 

.1 

1 

Figure 3.6 Final Solution 
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However, heuristics for parallel overlap are not developed in this thesis. 

Parallel overlap is usually avoided in rbuting because of the increased 

capacitance created between parallel wires. 

When a hanging terminal cannot expand in either direction, it seeks to 

overlap with the corner of one of the routed connections. Figure 3.7a 

depicts a situation where net 1 cannot expand in either direction towards 

the other terminal. Figure 3.7b shows that net 1 can establish a corner 

route with net 2; however, routing on net 3 creates a parallel overlap. 

Because parallel overlap is undesirable, it would be necessary for net 1 to 

expand down, away from the conflict and attempt to find an escape route 

to an available track where it can complete its route. 

The switchbox model for this problem uses the two-direction-two-

layer wiring by default. When corner routes are introduced into the 

problem, the default layers from the two routes establishing the corner 

route are switched at the corner of their routes. If one of these routes 
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Figure 3.7 Conflict Resulting in a Corner Overlap 
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should intersect with another route, 'a', then route 'a' would switch layers. 

If in turn route 'a' intersected with another route 'b', route 'b' would then 

switch layers. This process has been christened 'corner overlap fanout', 

because the change in layers originates at the corner overlap and fans out 

across all affected routes. 

The heuristics which create the fanout work as follows. First, the via 

is removed at the corner where both nets overlap and both nets are given a 

directive to fanout in one direction to create or remove the necessary vias 

so that the two-layer-two-direction model is once again restored. Figure 

3.8a shows a situation where net 6 must place a corner route over net 5. 

Both nets will remove the vias at their corners and create an overlap 

fanout going in the same direction as net 6 took approaching the corner. 

Net 5 will fanout going bottom-up, and net 6, following the expansion 

path of its corner will fanout to the right (see Figure 3.8b). 

Figure 3.9a depicts what would happen should net 6 and net 5 encounter 

other intersecting routes. Fanout for net 5 and 6 will halt when it finds 
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Figure 3.8 Simple Corner Overlap Example 
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the first free track on which it can place a via. In the mean time, every 

route that net 5 and 6 intersect with before that point will fanout as well. 

Arrows on the diagram indicate this action. Fanout arrows that meet each 

other going in opposite direction cancel their actions out. If net 5 and 6 

should find that their routes bend on the available track, the via is 

removed from the corner and fanout is stopped. Figure 3.9c shows the 

final solution to the example. Vias are represented by bullets. The area 

that has been affected turns into an inversion of the layers originally 

assigned to each direction, but it is interesting to note that two-layer-two-

direction wiring model is still intact. 

3.4. Heuristics for Channel Routing 

The heuristics discussed in the previous section deal exclusively with 

the switchbox routing problem, but this section discusses how the 

heuristics of terminal expansion, track availability, constraint propagation, 

and net conflict resolution can be used for the channel routing problem. 

Although this thesis has stated that current channel routers use different 

heuristics than for routing switchboxes, the similarity between both 

problems suggests that it may be possible to solve them both with the 

same heuristics. This section discusses that possibilility in detail. 

Although track availability and net conflict resolution have never been 

made an issue in channel routing problems, channel routing has used the 

four heuristics of net length, vertical and horizontal constraints, 

congestion, and merging to resolve conflicts between nets that could not be 

routed on the same track. The use of the Marek-Sadowska's heuristics 

along with the new heuristics may be useful for the channel routing 

problem as well. Consider the channel routing problem in Figure 3.10. 

Corner filling heuristics used in the switchbox routing problem are useless 

because there are no side terminals; however, the heuristics that perform 
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Figure 3.9 Complicated Corner Overlap Fanout Example 

net expansion and constraint propagation are. Constraint propagation 

forces all terminals to route into the channel by one unit. This procedure 

is also executed for semi-convergent and divergent nets in switchbox 

routing. Nets are expanded, available tracks are selected, and net conflicts 

are resolved the same as is done in switchbox routing. Three example 

channel routing problems are routed in Figure 3.10 to show how these 
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heuristics can solve this problem. 

The first example is a five net channel routing problem with no 

overlap and therefore no cyclic constraint. Each terminals expansion is 

shown in Figure 3.lOa and the vertical constraint graph in Figure 3.lOb. In 

Figure 3.lOa, the upper terminals of nets 1, 2, and 3 have propagated 

down so that each of them can expand to the right. An 'x' marks where 

each net cannot find an available track to the right. The opposite 

propagation has been performed for the lower terminals of nets 3, 4, and 

5. Once the propagation is complete, each net expands horizontally and 

vertically towards the other terminal in its net. The conflict resolution 

heuristics in this case let the vertical expansion for the furthest left 

terminal of net 1 route and let the furthest right terminal of net 5 route, 

because neither has any overlaps. The horizontal segments extending 

from the lower terminal of net 1 and the upper terminal of net 5 are also 

routed after their vertical segments are routed, because they become 

straight connecting routes between two hanging terminals. Straight routes 

are rout&d if nets having other than straight routes overlap with them. 

Once those nets have been routed, nets 2 and 4 propagate to the state 

shown in Figure 3.lOb. Using the same track expansion techniques and 

conflict resolution heuristics, the problem will have the final solution 

shown in Figure 3. lOc. 

The second example shows a more complicated channel routing 

problem with a cyclic constraint. The terminal expansion and vertical 

constraint problem are shown in Figure 3.11. All routes remain blocked in 

this example, because the conflict resolution heuristics cannot •route 

overlapping nets. A heuristic must choose a net from those which overlap 

on a similar endpoint with another net. In this case net 1 and 3 overlap on 

a common endpoint at column two. This indicates that only one track is 
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Figure 3.10 Channel Routing Problem with no Cyclic Constraint 
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Figure 3.11 Channel Routing Problem with Cyclic Constraint 

available between the two nets and the fact that they meet at this track 

twice (above and below) indicates that there is a cyclic constraint in the 

problem. Net 1 was chosen in this example arbitrarily. The next step in 

the solution after net 1 is routed is shown in Figure 3.11b. Nets 2 and 3 

have propagated to new positions. With a broken cyclic constraint, both 

nets can be routed easily by the heuristics. It is important to note that 

picking either of nets 1 or 3 would have resulted in a simplified problem. 

Picking net 2 would not, because the conflict between net 1 and 3 would 

still persist. 

The final example is a generalization of the first and shows what 

heuristics should be added to help route divergent nets in channel routing 

problems. Figure 3.12a depicts a problem with no cyclic constraint as is 

evident from its vertical constraint graph. 

All nets are propagated past their constraints and expanded towards 

their other terminals. In the case of divergent nets (1,2,3,4,8,10) they 

only need to expand to their other hanging terminal to create a straight 

through route. However, because net 2 overlaps with net 3's expansion 

and net 1 overlaps with net 4's, their other paths of expansion should be 

checked to see if they can propagate in line with their routed segments 
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Figure 3.12 Channel Routing Problem Requiring Net Merging 

should it be required. Those nets which cannot propagate route straight 

across. If both can expand, one net is chosen to route arbitrarily. Once 

their expansions have been made, nets are selected for routing. Net 10 

and net 8 route with no difficulty. Between the other divergent nets with 
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overlaps an arbitrary choice is made to route nets 4 and 2, thus forcing 

nets 3 and 1 to propagate to the next available tracks which force nets 5, 6, 

and 7 to also propagate to available tracks. Once net 4 is routed, the left 

upper corner of net 9 can route as well as its upper right corner (see 

Figure 3.12b). 

In this figure, nets 1, 3, and 5 will route straight through. Net 6 will 

route the lower left corner expansions due to its conflict with net 7. Once 

this has been done, net 7 is left with two routing choices each. Following 

the heuristic established for this situation, net 7 follows its already 

established routing direction to the problem state shown in Figure 3.12c. 

Net 7 can now connect straight through to complete the solution. 

From the examination of these examples, it is suggested that Marek-

Sadowsa's definitions and the new heuristics created for routing 

switchboxes can be applied to the channel routing problem. 

3.5. Summary 

Chapter 3 presented new heuristics for routing switchboxes that 

allowed nets to expand vertically and horizontally and perform constraint 

propagation iii those directions to better establish what tracks are available 

for routing and to select a net to route based on how its expansion 

interferes with other nets. Heuristics were also discussed that would allow 

a net to overlap the corner of another routed net if it was unable to expand 

towards its destination. No heuristics were investigated or presented in 

this thesis to perform parallel overlap or create escape routes for nets 

where corner overlap cannot be performed; however, the inclusion of such 

heuristics in a router would be useful. Finally, the heuristics for 

switchbox routing were examined to see how they could be used to route 

the channel routing problem. Chapter 4 discusses the implementation of 
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the heuristics for net expansion, constraint propagation, and net selection 

as an expert system for routing VLSI designs. Only the heuristics used to 

route switchboxes are not implemented, because it was felt that the success 

of the corner overlap and channel routing heuristics depended on the 

success of the new heuristics for track expansion and net selection. If 

these heuristics were verified to be able to solve the switchbox routing 

problem, then it was a trivial problem to include the other heuristics and 

expand the capability of the implementation to solve the general routing 

problem. 



CHAPTER 4 

The B & D Router: An Expert System for Routing VLSI Designs 

Chapter 3 described new heuristics that are able to route switchboxes 

and channels by using better methods of estimated the availability of 

tracks and routing nets based on this estimation. Chapter 4 describes the 

implementation of these heuristics in an expert system for routing called 

the B & D router. It discusses the implementation issues present in 

creating an expert system to implement these heuristics, describes the 

general architecture and control of the B & D system, and details the basic 

data structures that are used to model the switchbox routing problem. 

4.1. The Use of Expert Systems for Routing 

Expert systems offer an suitable environment in which to implement a 

heuristic algorithm for good routing once the heuristics have become 

manifest: An expert system facilitates the modular creation of heuristics, 

because of its unique architecture and operation described briefly below. 

And expert system is composed of three distinct parts: a working memory, 

a knowledge base, and an inference engine. The working memory is 

where the problem stated is held. It contains the data structures that will 

represent the current problem and eventually the final solution to the 

problem. The knowledge base houses the heuristics. A heuristic is 

structured similar to an if-then statement; it is a rule containing a set of 

conditionals in its left hand side and actions in its right hand side. The 

conditionals are compared against the elements in working memory; if a 

match occurs, then the actions are carried out altering working memory by 

deleting, adding, or modifying the elements creating a new problem state. 

The inference engine is responsible for repeating a cycle of recognition 
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(matching conditionals to patterns in memory) and execution (performing 

the actions of rule). One cycle constitutes the firing of one rule. The 

system will halt when no match occurs between the conditionals of any 

rule and the elements in working memory or when a halt instruction is 

executed as the action of a rule. If more than one rule is able to fire for a 

given state of the working memory, the rule matching against the most 

specific and recent data in working memory is given precedence. This 

superficial discussion of a forward chaining expert system [Haye83] 

provides enough information to enable an explanation to be given as to 

why it is an appropriate medium for building a good heuristic router. 

An expert system allows heuristics in the form of rules to be added 

independently from the control of the system. This feature gives expert 

systems two advantages over a conventional procedural program 

implementation. The first advantage is that its structure creates a highly 

modular and flexible system for developing heuristics. This advantage is 

given high marks by Steinberg [Stei84] for use in the development of 

knowledge-based VLSI CAD systems. In contrast, a conventional 

program has its if-then statements married to the control of the program 

and therefore heuristics cannot be developed independently from the rest 

of the program. The second advantage is the operation of the expert 

system's cycle of recognition/action which ensures that among the many 

heuristics present in the knowledge-base, only those that are applicable are 

used. In a conventional implementation, conditionals are executed as they 

are encountered in the code and this may or may not be when they are the 

most useful. These two advantages also fulfill the two requirements that. 

an automatic router achieve the expertise on the same level as a designer. 

Namely, that the system be able to work with many and varied heuristics 

and that it have the mechanism to decide which heuristic to use and when 
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it was most applicable. 

Thus the operation and structure of an expert system is capable of 

supporting the development of a good automated heuristic router. 

However, an expert system does have a disadvantage: slow execution 

speed. As the size of the knowledge base grows, so does the search 

through all heuristics to find those that can be applied to the current 

problem state, which has been noted as. the limiting factor of expert 

systems [Part86]. To aid the search, the conditionals of the heuristics are 

stored as a tree of propositions against with the facts in working memory 

are matched. Although incremental development of heuristics improves 

the solutions generated from an expert system, the size of the tree will 

soon meet an upper bound in the number of heuristics it can sustain, 

because the technology of the system is inherently non-adaptive and 

largely inflexible, i.e. it cannot learn. 

Despite this limitation, many expert systems exist which have been 

successful at accomplishing their tasks, whether it be analyzing protein 

crystallography (DENDRAL) [Benn82: 106-110], solving mathematical 

problems (MACSYMA) [Benn82:143-149], diagnosing infectious blood 

diseases (MYCIN) [Benn82:184-192], or designing floorplans for the 

layout of computer component (Ri) [McDe81]. To emphasize the success 

of expert systems further, Ri was developed as an expert system only 

after several unsuccessful attempts to develop it using conventional 

programming techniques. Thus theoretically and practically, an expert 

system implementation of a routing heuristic algorithm appears to be a 

good choice. 

Suitable expert system shells are available that offer the development 

support required to produce a routing heuristic algorithm quickly and 

easily. Several expert system shells were investigated on their program 
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development support, tracing and debugging facilities, and the syntax of 

the programming language: ART, Inference Corporation's Automatic 

Reasoning Tool [ART86], OPS4 [Forg79], OPS5 {Forg81], YAPS 

[Alle83], and Prolog [Cloc81] [Brat86]. With regards to availability and 

cost, OPS4, OPS5, and YAPS are available for use by educational 

institutions. On the other hand, ART is only available commercially and 

its cost may be prohibitive for use by some organizations. However, ART 

was chosen over the other systems, because of its superior design 

environment and software development features. ART's lisp-like syntax is 

easier to read and understand than OPS5's and OPS4's syntax. ART also 

allows the data structures to be built in hierarchical fashion using a frame 

representation similar to that used by frame-based object' oriented 

languages [Fike85]. It allows the user to define classifications of objects 

and properties that can be inherited by objects in the same class. This 

feature is valuable for expert systems that need to define vast numbers of 

elements that are similar in structure, but differ in name or in the contents 

of their properties. The user can define his own relationships between 

objects and can define his own functions for the action part of a rule, 

neither of which can be done in OPS4 or OPS5. Special macro expansions 

available in ART enable the user to write rules using case and for 

statements which are split into separate rules when the system is compiled 

to run. This valuable feature speeds up the rule-writing time and helps 

give structure to large and complex rules. ART is the only system in this 

list that has this feature. Although ART cannot support arbitrarily nested 

data structures as OPS4 and YAPS can, pattern matching does not have to 

be done on the structure of the data, just on the data itself. Its tracing 

capabilities are far superior to the other products, especially those offered 

by Prolog which is better suited to building backward-chaining expert 

systems. For these reasons, ART was chosen as the expert system shell for 
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implementing the B & D Router. 

4.2. The Architecture of the B & D Router 

The architecture of the B & D router is based on the WEAVER's 

expert system architecture, which has a blackboard architecture, a system 

of experts that work on the blackboard sharing information and ideas for 

which net expansions (candidate nets) should be routed and a control 

expert that governs the sequence of experts that get access to the 

blackboard. 

Similar to the WEAVER, B & D uses a blackboard architecture but 

differs from the WEAVER in its construction. WEAVER has three 

partitions of the blackboard whereas B & D has only one, the problem 

state partition which represents the status of the switchbox with its 

candidate and final routes. The second partition of the WEAVER is a 

scratch-pad partition where information such as vertical and horizontal 

constraints are kept. The third partition is the area where candidate nets 

are selected to route by the control expert. In the B & D system, 

candidate net expansions and other pertinent information is stored in the 

problem state representation. 

B & 0 does not have multiple experts working on the routing 

problem with one expert deciding control amongst them as it is done in the 

WEAVER. The set of rules or heuristics work together autonomously 

and are applied only when the situation warrants it. It was felt that this 

was in keeping with the true application of heuristics in a heuristic 

algorithm. If one rule requires priority over another, its salience is set 

higher and in the event that two rules are activated simultaneously, the 

higher priority rule is fired. If rules of equal priority fire simultaneously, 

the expert system shell automatically activates the rule matching on the 
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most recent data. 

The next section discusses the basic data structures which are used to 

represent the switchbox problem state in the B & D router. 

4.3. B & D Problem Representation 

The B & D router keeps its basic data structures similar close those of 

the WEAVER's. Any differences that have evolved are due to the 

incorporation of Marek-Sadowska's definitions and heuristics into the B & 

D and from the removal of some WEAVER constructs that are not useful 

to the B & D approach to switchbox routing. 

Two input structures that are accepted by B & D are the channel (see 

Figure 4.1) and the pin (see Figure 4.2). The channel is represented by 

the four coordinates of minimum and maximum x and y coordinates which 

establish rectilinear channel boundaries. 

Similar to WEAVER in the way it created the horizontal and vertical 

routing wires at each column and row, B & D has relations defining 

column and row numbers (see Figure 4.2) are created for each routing 

position available in the channel between the minimum and maximum x 

and y values. The columns and rows are positioned one unit apart in 

accordance with the grid approach to routing. 

The second data structure accepted as input into B & D is the pin 

structure. B & D defines several categories of pins as indicated by the 

(defschema channel 
(min-x) 
(min-y) 
(max-x) 
(max-y)) 

Figure 4.1 Channel Schema Definitions 
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(defrelation column-number 
(instance-of relation)) 

(defrelation row-number 
(instance-of relation)) 

Figure 4.2 Row and Column Relations 

'kinds' relation in the example definition below in Figure 4.3. 

The inheritance facility of ART is implemented by using 'kinds'. It 

instructs the system that if any structure is built of this kind, it is to also 

contain the default slots of its super structure. In the above example, pin-

1, a hanging pin, inherits all the default slots of the master type 'pin'. All 

pins that are input to B & D are defined as terminal pins. Their x and y 

coordinates are on the switchbox's 'boundaries. Hanging pins and corner 

pins are defined to be at the end of straight and corner expansions as per 

Marek-Sadowska's definitions. A routed pin is created when all 

connections emanating from a pin have been routed. Terminal pins can be 

routed pins, but corner and hanging pins cannot because they are used as 

points of expansion and routed pins are not. Terminals are kept as 

markers to aid in determining to which net classification an expansion 

route belongs. For example, a two terminal net with linear boundary 

coordinates indicates that the net is divergent. The pin-in-net slot is a 

relation slot which creates a link between the pin and the net in which it 

(defschema pin 
(pin-in-net) 
(pin-x) 
(pin-y) 
(kinds terminal-pin 

hanging-pin 
corner-pin 
routed-pin)) 

(defschema pin- 1 
(instance-of hanging-pin)) 
automatically added to pin-1: 

(instance-of pin) 
(pin-x) (pin-in-net) 

(pin-y) 

Figure 4.3 Pin Schema Definitions 
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belongs. For the net definition in Figure 4.4, the opposite relationship is 

establish by using the '-has-' construct. 

A connection is defined as the construct that joins two pins in a 

straight line segment (see Figure 4.5). Two classifications are created to 

discern candidate expansions from their routed counterparts, and the third 

classification defines the connections that make up the boundary of the 

channel. Rather than describing connections as being 'convergent', 'semi-

convergent', and 'divergent', connections are classified by pin types and 

the way they they intersect. For example, the connections from two pins 

are considered to be a corner route if the two connections are 

perpendicular to each other and they meet on a common point of the type 

'corner pin'. Hanging pins are the endpoints of routed connections that 

have no other routed connections emanating from them. A special 

'cannot-expand' slot is defined to handle the cases where a corner pin or 

hanging pin cannot expand in a certain direction. 

The representation of routed segments by the connection construct 

overcomes a problem that Joobbani faced in his implementation. He kept 

track of the wires available for routing by using two data structures that 

(defschema net 
(net-has-pin) 
(net-is-routed no)) 

Figure 4.4 Net Schema Definition 

(defschema connection 
(connection-has-pin) 
(connection-has-pin) 
(kinds candidate-connection 

routed-connection 
channel-connection)) 

Figure 4.5 Connection Schema Definition 
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represent the horizontal and vertical wires which extend the entire length 

and width of the switchbox. Two sets of the structures are created, one 

for each routing layer. As parts of a wire are routed for one layer, the 

parts are removed from consideration by 'deleting the length of wire 

unavailable for routing in the same layer. He cites that it would be 

advantageous to represent each individual segment of the switchbox grid 

as separate routing wires, but the size of some routing problems and the 

number of data structures required makes it infeasible to do this properly. 

B & D's representation does not keep track of available routing area; 

instead it keeps track of wires as they became routed, i.e. as they change 

status from candidate-connection to routed-connection. Before channel 

routing begins all tracks and columns are available, because no routed 

connections exist. Pre-routed nets can also be included in the system by 

manually asserting their path as segments of routed connections. 

There are no higher level structures built on top of the basic 

structures just outlined. For example, corner routes, are recognized by 

comparing two connections to see if they meet in a corner. No special 

structure is asserted to state the existence of such a corner route. In an 

expert system the extra matching required to recognizes graphical 

information such as this can be great. But the state of a routing problem 

changes rapidly as each partial net is routed and many candidate 

connections are asserted and deleted before they are finally routed. The 

extra time required to maintain the higher level structures would make it a 

burden rather than an aid to keep track of them. 

4.4. The B & D Program 

The B & D program comprises all the heuristics discussed in chapter 3 

and are outlined below in Table 4.1. As well it includes heuristics to 
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initialize the channel, create columns and rows, and define input pin 

locations. 

Approximately 3900 lines of ART Code were developed to create 

these rules Figure 4.6 shows a sample ART rule to perform constraint 

Written Compiled 

Define Channels, Nets, and Pins 3 6 

Create Columns and Rows 3 6 

Generate Corner Segments 4 72 

Identify Overlap Between 
Corner Segments 1 26 

Route Semi-Convergent and 
Divergent Nets (1 unit) 1 13 

Propagate Constraints 
Straight Forward 1 50 

Propagate Constraints 
Around Corners 2 8 

Expand / Can't Expand 
Hanging Pins 4 92 

Route Non-Overlapping / 
Straight Connections 1 14 

Route One of Two Choices 1 9 

Delete Overlaps 1 4 

Delete Hanging / Routed Pins 
On Parallel Segments 3 9 

Corner Pins to Hanging Pins 2 15 

Corner Pins to Routed Pins 1 1 

Miscellaneous 3 3 

TOTAL 31 370 

Table 4.1 Summary of the Rules Written for B & D 
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propagation where a hanging pin intersects a routed segment. Compared 

the size of the WEAVER in the number of rules, the B & D router is 

small. WEAVER has over 700 rules as opposed to 31 in B & D. 

However, ART's program development features allow a rule to be created 

with far less code than one for OPS5, which was Joobbani's choice of 

implementation language. When ART compiles the rules, they expand 

into the actual number used by the expert system. The number of 

compiled rules in B & D is shown above. Thus one ART rule is 

equivalent to several written in OPSS. However, size is not a true 

estimate of quality; the output is and this is discussed in chapter 5. 

4.5. Disadvantage of Expert Systems 

Chapter 1 described at length that an expert system is a good 

implementation medium for representing and solving difficult problems; 

however, programming an expert system can difficult. 

An expert system's main disadvantage is its inability to do anything 

procedurally in a straight-forward manner. For example, if a program is 

used to add the numbers from one to ten (see Figure4.7), a simple for 

loop with an increasing sum will suffice. However, this is more 

complicated in an expert system. First the sum must be placed in working 

memory as a fact. The rule to add it must pattern match on the sum, 

check if it is less than or equal to 10, and then a), delete the old sum from 

working memory b), execute a routine to add sum to itself-plus 1 and c), 

place the new sum in working memory again. The structure of an expert 

system obscures the procedural flavour of some code. Most expert system 

applications however, and this is true for B & D, are not designed to do 

procedural work. They were designed to implement heuristic algorithms, 

most of which involve symbol manipulation and pattern matching, not 
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;;;DEFRULE CP-TO-GET-A-TRACK 

;;;This rule extends hanging pins beyond an already routed track 

(defrule cp-to-get-track 
(declare (salience ? *defaultsaljence*)) 

;;;Match on a hanging pin 

(schema ?hanging-pin 
(instance-of Fanging-pin) 
(pin-in-connection ?connection) 
(pin-in-net ?net) 
(pin-x ?pin-x) 
(pin-y ?pin-y)) 

;;;Make sure it is a hanging pin i.e. no other connections extend from 
;;;it except the one above 

(not (exists (pin-in-connection ?hanging-pin ?connection))) 

;;;Match on information of the hanging pin's connection 

(schema ?connection 
(instance-of routed-connection) 
(connection-has-pin ?other-pin &? hanging-pin)) 

;;;If the hanging pins only connection is vertical, find another connection 
;;;that crosses its endpoint horizontally 

(split ((connection-dir ?connection vert) 
(schema ?other-connection 

(instance-of routed-connection) 
(connection-dir horiz) 
(connection-has-pin ?pin-1) 
(connection-has-pin ?pin-2 &?pin-1)) 

;;;For this other connection to cross on the hanging pin's endpoint 
;;;check the other connection's pin-x values to make sure they surround 
;;;the endpoint and overlap with it on its pin-y value 

(schema ?pin-1 
(pin-in-net ?net) 
(pin-x ?pin-xl &:(?pin-xl < ?pin-x)) 
(pin->' ?pin-y)) 

(schema ?pin-2 
(pin-x ?pin-x2 &:(?pin-x2 >= ?pin-x) 

&:(?pin-x2 > ?pin-xl)) 
(pin-y ?pin-y)) 

Continued on the next page... 

Figure 4.6 Example ART Rule 
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;;;Finally, if the hanging connection's other pin is higher than the 
;;;hanging pin, then decrease the hanging pin's pin-y value so that 
;;;in effect the hanging pin is extending downwards 

(split ((pin-y ?other-pin ?higher-y 
&:(?higher-y > ?pin-y)) 

=> 
(modify (pin-y ?hanging-pin =(- ?pin-y 1)))) 

;;;Otherwise, if the other pin is lower, increase the hanging pin's pin-y 
;;;value to that its hanging connection will extend upwards 

((pin-y ?other-pin ?lower-y 
&:(?lower-y < ?pin-y)) 

=> 
(modify (pin-y ?hanging-pin =(+ ?pin-y 1))))) 

;;;SECOND HALF OF FIRST SPLIT 
;;;The second half does the same as the first, except now the hanging 
;;;connection is a horizontal connection, and another routed connection 
;;;may overlap it in the.vertical direction 

((connection-dir ?connection horiz) 
(schema ?other-connection 

(instance-of routed-connection) 
(connection-dir horiz) 
(connection-has-pin ?pin-l) 
(connection-has-pin ?pin-2 &-? pin-1)) 

(schema ?pin-1 
(pin-in-net ?net) 
(pin-y ?pin-yl &:(?pin-yi <= ?pin-y)) 
(pin-x ?pin-x)) 

(schema ?pin-2 
(pin-y ?pin-y2 &:(?pin-y2 >= ?pin-y) 

&:(?pin-y2> ?pin-yl)) 
(pin-x ?pin-x)) 

(split ((pin-x ?other-pin ?higher-x 
&:(?higher-x> ?pin-x)) 

=> 
(modify (pin-x ?hanging-pin =(- ?pin-x 1)))) 
((pin-x ?other-pin ?lower-x 

&:(?lower-x < ?pin-x)) 
=> 
(modify (pin-x ?hanging-pin =(+ ?pin-x 1)))))) 

) 

;;;END OF DEFRULE CF-TO-GET-A-TRACK 

Figure 4.6 Continued 
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mt sum; 
sum = 0 

for i = 1 to 10 do 

sum = sum + i 

(defrelation (sum (?sum)) 
(deffact (sum Q)) 

(defrule rule-i 
?x <-(sum ?sum-num 

&:(?sum-num <= 10)) 
=> 
(retract ?x) 
(assert (sum (+ ?sum-num 1))) 

Procedural Code ART rule 

Figure 4.7 Procedural Versus ART Code 

procedural calculations. 

One other disadvantage which is a direct result of the modularity and 

flexibility of expert systems is the ease to which ad hoc heuristics can be 

added to the system. As the system grows, the addition of these ' 'many and 

varied heuristics makes it more difficult to track what the system is doing 

and why. Therefore, it is important to know where newly created 

heuristics fit into the design and operation of the system before they are 

added, because it is difficult to find out what will happen after the fact. 

4.6. Summary 

Chapter 4 discussed the general architecture of the B & D routing 

expert system, its data structures, and a synopsis of the rules included in 

the system to perform the heuristics described in chapter 3. Chapter 5 

presents the experimental results of the implementation on several 

switchbox and channel routing problems and compares the results to those 

of other routing algorithms. 



CHAPTER 5 

Experiments with the B & D Router 

This chapter summarizes the experiments done with the B & D router. 

The first section shows the input and output configuration used in each of 

the experiments conducted on B & D. The second section steps through 

an example problem and describes the heuristics used to route each step of 

the example. The third section lists the examples and the results obtained 

by B & D and compares these with the WEAVER's, Marek-Sadowska's, 

and other system's results on Burstein's Difficult Switchbox Problem. The 

final section discusses how well B & D does overall as a router and where 

improvements can be made. 

5.1. Input and Output 

The input and output configuration of the B & D program is modeled 

after the form used in Joobbani's WEAVER. A simple fact list of channel 

and terminal specifications suffices for input; a partial fact list for the 

switchbox problem in Figure 5.3 is shown in Figure 5.1. The channel's 

minimum and maximum x and y coordinates are all that are necessary to 

define it. A terminal's location requires its name x and y coordinates, the 

net it belongs to, the layer on which it is to be routed, and the side of the 

channel it is located on. 

The output format was designed to be similar to Joobbani's and is 

represented by facts in the working memory of the exert system. A 

partial list of B & D output facts for net 5 in Figure 5.3 is shown below in 

Figure 5.2. A new name for a connection pin is created by merging its net 

name along with the new x and y coordinates of the pin. Connection 
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(channel-input ?min-x ?min-y ?max-x ?max-y) 
(pin-input ?pin-name ?net-name ?pin-x ?pin-y ?channel-side) 

a) Input Facts Form 

(channel-input 0 0 13 8) 

(pin-input pin-1 net-2 10 down) 
(pin-input pin-2 net-3 2 0 down) 
(pin-input pin-3 net-5 3 0 down) 
(pin-input pin-13 net-9 13 1 right) 
(pin-input pin-18 net-6 0 1 left) 
(pin-input pin-19 net-5 0 2 left) 
(pin-input pin-22 net-i 2 8 up) 

b) Partial Facts List for Problem in Figure 5.3. 

Figure 5.1 B & D Input Example 

(schema net-5-3-2-pin-2-conn 
(instance-of routed-connection) 
(connection-has-pin pin-2) 
(connection-has-pin net- 5-3-2) 
(connection-dir vert)) 

(schema net-5-3-2 
(instance-of routed-pin) 
(pin-in-net net-5) 
(pin-x 3) 
(pin-y 2) 
(pin-In-connection net- 5-3-2-pin-2-conn) 
(pin-in-connection net-5-3-2-pin- 19-conn) 
(pin-in-connection net-5-3-2-net-5-5- 3-conn) 
(pin-in-connection net-5-3-2-net-5-3-5-conn)) 

Figure 5.2 B & D Example Output 

names are established by concatenating the names of the two pins together 

and appending 'conn'. Although this output is cryptic, it does serve the 

basic purpose of showing where nets route. Building a more spectacular 

interface was not worthwhile for a prototype system. However, for the 

remainder of this chapter all output has been displayed graphically to 
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support the reader in his endeavours to understand this material. The use 

of arrows, lines, and bullets is the same as it was used in Figure 3.6. 

5.2. An Example Run with B & D 

Figure 5.3 displays an example switchbox problem, which has been 

solved by the B & D router. It is the aim of this section to show how the 

heuristics are applied step by step to solve the example. Figure 5.3 shows 

the example problem after corner routes have been generated for the 

problem. A second heuristic has routed all semi-convergent and divergent 

routes into the channel by one unit. Two conflicts arise between net 8 and 

net 9, and between net 2 and net 6. Because nets 2 and 8 have been 

routed up to the point of conflict, the upper terminals of nets 9 and 6 will 

be reclassified as hanging terminals and their routes pushed back. Figure 

5.4 shows the resolution of the conflicts in Figure 5.3. 

The first non-conflicting corner routes are now routed in Figure 5.4 

and now expand to meet other terminal extensions as nets 1, 3, 5, 7, and 9 
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Figure 5.3 First Step of an Example Switchbox Routing Problem 
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Figure 5.4 Step Two 

demonstrate. All hanging terminals have been routed to at least as far as 

the first unit within the switchbox boundary; they will not expand further 

until all corner routes and their extensions have been completed. 

In Figure 5.5, all corners and corner extensions that have no conflicts 

have been routed. However, constraint propagation has • taken effect 

forcing the lower terminals of nets 2 and 8 up to an available track. Now 

that all corners have been routed, hanging terminals can expand using the 

track availability heuristics. This includes the divergent nets 2, 4, and 8, 

and the semi-convergent nets 9 and 6. 

As is explained in chapter 3, a net's terminals are expanded towards 

each other by finding the furthest track available before it meets the routes 

of other terminals. To graphically depict that a hanging terminal cannot 

expand in a certain direction, an 'X' will be placed next to the terminal in 

that direction. Candidate routes are prohibited from expanding back 

across routed connections to ensure that routes will expand from hanging 



83 

I 145167 491010  
' I 

I - -+io 

4  -1-1 

3+4 T5 
L1  X   

6-----1 5 15 16 

- -4-------x4 
+ 

8 H9 1 
Figure 5.5 Step Three 

pins only, not from the middle of routed segments. Figure 5.5 shows the 

expansions made from all hanging terminals. 

Corner routes are considered hanging terminals if they are not as yet 

connected to the other terminals. This presents a problem if there is more 

than one corner from which an extension can be made. In B & D, a 

corner is disallowed from expanding in a direction to connect to another 

terminal if another corner expansion already spans the same area. Net 9 

in this example demonstrates this phenomenon. There are two corners 

from which an expansion could be made towards the upper terminal. 

Since both span the same area of the switchbox, only one is finally 

considered as a candidate route. No heuristics are used to decide which 

corner should be allowed to expand; the choice is made arbitrarily. 

Figure 5.6 shows the result of applying the net conflict resolution 

heuristics to the expansions made in Figure 5.5. Because the upper 

terminal of net 6 could not expand in the one direction and its other 
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expansion has a conflict, it has propagated downwards. The same has 

happened to both terminals of net 2. The lower terminal on net 6 cannot 

expand in one direction, but its other expansion has no conflict so it is able 

to route it to completion. The same is true for net 9. All other 

expansions with no overlap are also completed. This includes the 

expansions connecting nets 4, 5, 8, and the expansion from the lower 

terminal of net 9. 

By Figure 5.6, all nets have now been routed except for net 9, which 

has an easy solution, and nets 2 and 6 which have a difficult.solution. Net 

9 has a straight through expansion with no overlap which can route. Net 6 

becomes constrained to propagate past nets 2 and 7 and becomes 

interconnected. Net 2 whose two terminals have only one non-overlapping 

expansion each can also route. Net 6, on the other hand, cannot expand in 

either direction. Its only choice is to overlap on the corner of an already 

routed net. Its choices out of this predicament are to overlap on either net 

145 167 491010  

•'1 I - i - + 10 

•1. + 4  -I-i 

 ft 4 T5 
t 11  x 17 

-- + 

8 It9 
Figure 5.6 Step Four 
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2 or net 7; net 7 is chosen arbitrarily. 

This example ran on a Symbolics Lisp Machine in 1408.15 seconds 

and executed 1835 rules at an average firing time of 1.30 rules per second. 

More examples were run on B & D and the results obtained are discussed 

in the next section although not in as great detail as for this example. 

5.3. B & D Against Other Switchbox Routers 

In this section, B & D's output is compared with the output of other 

switchbox routers on some difficult problems to demonstrate the 

worthiness of the track availability, net-conflict resolution, and corner 

overlap fanout heuristic at obtaining good routing solutions. Two 

relatively easy and three difficult examples are compared. The switchbox 

solutions for each problem will be shown for each system and a table of 

statistics follows each example problem. The statistics that were taken 

compare the systems on their quality of the solutions they generated and 

quality is measured by the amount of wire used to route the problem and 

the number of vias required to change layers. These are superficial 

measurements of quality and in no way describe the difficulty of the 

problem being routed. After these results, B & D are compared against. 

the WEAVER in execution speed and the number of rules fired. Again, 

this is a superficial comparison, but does give an idea of where each expert 

system stands in its ability to solve the difficult switchbox routing 

problem. 

.5.3.1. A Simple Switchbox 

Figure 5.7a below shows the WEAVER's solution to the first example 

problem. B & D's solution is shown in Figure 5.8b. The statistics for 

example 5.7 are encapsulated in Table 5.1 below. Although B & D 

obtained a different layout than did WEAVER, the wire lengths are the 
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Figure 5.7 Solutions to a Simple Switchbox Problem 

Simple Switchbox Statistics 

System Wire Length No. of Vias 

WEAVER 60 4 
B & D 60 11 

1-6 

Table 5. 1 Statistics for the Simple Switchbox in Figure 5.7 

same. B & D's major drawback is in the number of vias that were 

required to route the solution, because it uses the standard two-direction-

two-layer wiring model. The WEAVER, on the other hand, has 

specialized heuristics that minimize vias in routes after a net is 

interconnected with impressive results. However, it should be noted that 

WEAVER allowed net 4 to overlap net 6, which is not necessary to 

complete a solution. 
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5.3.2. A Second Simple Switchbox 

Figure 5.8a below shows the WEAVER's solution to a second 

switchbox problem that can .be solved with no difficulty. B & D's solution 

is shown in Figure 5.8b. The statistics for example 5.8 are given in Table 

5.2. Here B & D again compares well against WEAVER in the wire 
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b) WEAVER's Solution 

Figure 5.8 Solutions to a Second Simple Switchbox Problem 
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Second Simple Switchbox Statistics 

System Wire Length No. of Vias 

WEAVER, 94 9 
B&D 94 11 

Table 5.2 Statistics for the Second Simple Switchbox 

length and layout although it requires two more vias to route the solution. 

5.3.3. Burstein's Difficult Problem 

The third comparison is between B & D's and other systems' solutions 

to Burstein's Difficult Switchbox Routing Problem. While the other 

examples were given to show how B & D compared with the WEAVER in 

problems that are easily solved by automated routers, Burstein's Difficult 

Switchbox Routing Problem was selected because it is a good test of an 

automated router's ability to solve the switchbox routing problem. Five 

other systems besides B & 0 have attempted the solution and some have 

succeeded. Burstein's solution was printed in Figure 2.15, Hamachi's 

(MAGIC) in Figure 2.16, Marek-Sadowska's in Figure 2.20, and 

Joobbani's (WEAVER) solution in Figure 2.22. Luk's answer to the 

switchbox routing problem was included by Joobbani in his thesis, because 

its solution was comparable to Joobbani's and is re-printed here in Figure 

5.9. 

Luk's router is an implementation of the greedy switchbox router similar 

to Hamachi's. B & D's results are shown in Figure 5. 10. 

The table of statistics for these five solutions is shown in Table 5.3. It is 

mentioned again at this point that Hamachi's column sweep router and 
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Figure 5.10 B & D's Solution to Burstein's Problem 

Burstein's Swithbox Statistics 

System Wire Length No. of Vias 

WEAVER 531 41 
MAGIC 564 67 
Burstein's 486 51 
Marek-Sadowska's 559 58 
Luk's 577 58 
B & D 536 53 

Table 5.3 Statistics for Burstein's Difficult Switchbox 

Burstein's pattern router were unable to complete the entire problem. 

Luk's version of the difficult problem added an extra row to its definition, 

possibly to aid the switchbox router in completing its solution. From these 

results it can be said that B & D is a good router for performing switchbox 
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routing and its results in wire length and number of vias is comparable to 

WEAVER's, the system which has obtained the best results to date of 

other switchbox routers. 

5.4. B & D's Comparison Against the WEAVER 

The last section in this chapter analyzes the performance of B & D 

with the WEAVER. This comparison is made to show how well B & D 

did as an expert system against another. The WEAVER is well known in 

the switchbox routing field as a ground-breaking and competent system, 

which has solved many routing problems better than other systems have in 

the past. B & D was compared against the WEAVER in the quality of its 

solutions, in this section it is compared against the WEAVER in execution 

speed and the number of rule firings. The five example runs were used as 

the basis of comparisons. The results of the statistics are given below in 

Table 5.4. From the comparison, it is fairly obvious that the WEAVER 

runs much faster than B & D in all three cases and uses less rules to find 

solutions. There are several reasons why this is. First, Joobbani 

Execution Statistics 

Example 

Figure 5.7 

Figure 5.8 

Figure 5.9/10 

System 

WEAVER 
B & D 
WEAVER 
B & D 
WEAVER 
B & D 

Running Rules Ave. Rule 
Time Fired Firings 
(sec.) (per sec.) 

73 368 
254 995 
151 628 
383 464 
1508 3624 

36580 4896 

5.00 
3.91 
4.16 
1.21 
2.43 
0.13 

Table 5.4 Execution Statistics of B & D and the WEAVER 
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optimized the WEAVER's code to run faster; no optimization was 

performed on B & D. Second, it is possible that the premises of the 

WEAVER's rules are much shorter, for example having an average of 5 

conditionals, than those of B & D's which average 20. Third, it may be 

that OPSS is a faster expert system shell than ART; the average rule 

firings per second indicate this. ART is an expert system that provides the 

user with an excellent software development package and tracing facilities, 

but its high overhead slows its execution speed. Its performance seriously 

degrades as the difficulty of the routing problems become more difficult, 

which is only to be expected because the amount of information being 

asserted and deleted from working memory is larger for the more difficult 

and larger routing problems. Thus B & D can be made to run faster by 

decreasing the number of conditions in the premises of its rules, by 

optimizing how the rules are written, by re-implementing the rules on a 

faster expert system shell which has a low overhead. 

5.5. Summary 

In chapter 5, B & 0 was run on four example switchbox problems. 

The first showed how the heuristics in B & D were applied to route the 

problem. The second and third examples were selected to obtain results of 

the B & D router against Joobbani's WEAVER. Burstein's Difficult 

Switchbox Routing Problem was selected as the fourth example to 

demonstrate how well B & D could do at routing this problem. From the 

experimental results using B & 0, its heuristics for routing switchboxes 

are comparable to other systems performing the same tasks. Its expert 

system implementation is slower than the WEAVER at obtaining 

solutions, but this can be improved by using the techniques described 

above. Chapter 6 concludes thesis and makes suggestions for future work 

based on the results obtained by B & D. 



CHAPTER 6 

Conclusions and Future Work 

Routing is an important and time consuming task in VLSI design for 

which automated routers try to attain the same quality as human experts. 

Due to its inherent difficulty, heuristic algorithms are used to solve the 

routing problem. Various models of the routing problem use different 

heuristics to find good solutions owing to difference in the physical 

constraints placed in the models. Current channel routing approaches take 

advantage of their ability to expand in height and use vertical and 

horizontal constraints, net length, channel density, and net merging as 

constraints. Switchboxes, which cannot change insize, are routed by net 

expansion, constraint propagation, and corner filling heuristics. Within 

switchbox routing, different heuristics are used to resolve conflicts 

between nets. General channel routing methods and heuristics from 

switchbox routing to perform net expansion and constraint propagation are 

used to resolve conflicts and help achieve a 100 per cent completion rate 

for all routing problems. By the inspection of the current routing 

approaches, it was discovered that the net expansion and conflict 

resolution heuristics used for switchbox routing were too limited in certain 

cases to achieve 100 per cent routing completion and needed to be 

enhanced. Secondly, although the channel routing model is similar to the 

switchbox model and two different sets of heuristics have been able to 

route the switchbox routing problem, no one set of constraints currently 

exists that can route both switchbox and channel routing problems. 

To accomplish the first directive and the second directive new 

heuristics were presented that enhanced Marek-Sadowska's current 
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constraint propagation and net conflict resolution heuristics. They allowed 

nets to expand in two directions instead of one, and selected routes based 

on what tracks were available for each net. As well, corner overlap 

heuristics were presented that covered the case where nets could not 

expand in either direction. These switchbox heuristics were discussed as 

to how they could be applied to the channel routing problem. The 

heuristics were implemented as an expert system in the B & D router. 

They were teSted against two simple switchbox routing problems and 

Burstein's Difficult Switchbox Routing Problems and achieved results 

comparable to the results of current switchbox routing approaches. 

6.1. Conclusions 

The heuristics developed as an enhancement to Marek-Sadowska's 

constraint propagation, net expansion, conflict resolution heuristics obtain 

good switchbox routing solutions. By including the heuristics that perform 

corner overlap, the router will be able to complete routes that otherwise 

would not be finished using the two-direction-two-layer wiring model. To 

perform channel routing, heuristics to choose between nets which overlap 

on a single endpoint and choose between overlapping divergent nets would 

have to be added. As was discussed in chapter 3, the first heuristic can be 

used to break the cyclic constraint present in a channel routing problem. 

The expert system is a good medium for building a prototype system 

to solve the difficult routing problem because of the ease with which 

heuristics can be added to its flexible and modular system. However, 

speed prohibits its use on large problems, problems involving on the order 

of 10,000 nets. Solutions to this problem are to optimize the current rules 

so that they execute faster, recode the rules to work on a faster expert 

system shell, recode the system using a procedural language, or create an 

ASIC (Application Specific Integrated Chip) or VLSI chip whose 
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architecture has been developed to specifically run expert system code 

thereby gaining a great advantage in speed along with the good heuristics 

for solving the routing problem. 

The system as it stands can route the standard model of the routing 

problem using the grid approach and the two-direction-two-layer routing 

model. This restricts it from use in full custom or gate array VLSI design. 

However, the system can be upgraded to work in a full custom 

environment by modifying heuristics to allow wires to route according to 

design rules instead of at a unit distance. Wire definitions can also be 

altered to define wires of different widths; presently wires have no 

dimension in width. The system can also be modified to work in a gate 

array design environment by defining the presence of pre-masked routing 

layers and their location in the system. Heuristics can be added route the 

second layer knowing the location of the first. Thus it is not difficult to 

modify the router so that it can route within and by the constraints of a 

specific VLSI design environment. 

6.2. Future Work 

Additional work needs to be done in developing heuristics that find 

escape routes for nets away from conflicts if corner overlap or parallel 

overlap is the only alternative. These heuristics could be based on line 

propagation heuristics for finding escape routes for nets when they are 

confronted by an obstacle. The solution could also entail expanding the 

constraint propagation heuristics, to allow terminals to propagate to an 

available track (if required) in any direction regardless if it is moving 

towards or away from its destination. 

- Because the heuristics in the B & D router can route- channels, as well 

as switchboxes, the heuristics may be of use for routing three-sided 
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channels. Three-sided channels, as they are defined in chapter 2, are less 

constrained than switchboxes, because of the presence of floating 

terminals on one side of the channel. Some VLSI design systems define 

routing areas using this model. The net expansion and constraint 

heuristics could be used to route the expansions for the fixed terminals 

away from their three boundaries towards the fourth boundary containing 

the floating terminals. The positions of the floating terminals would be 

established by noting what tracks were available for the net expansions as 

they proceeded across the channel. 

Another interesting area for future research is in the incorporation of 

some of the routing heuristics in with placement routines to help these 

routing better judge where to place cells based on the estimate. of routing 

space required for its interconnection Currently,, channel density is the 

measurement used to gauge how much area is required is not always 

accurate. Although, not all heuristics could be incorporated in the 

placement routines, a subset of them may provide a more accurate guide 

than is presently available. 

The final area of future work deals with the implementation of the 

switchbox routing heuristics in a backwards chaining expert system or in a 

logic programming language such as PROLOG. Using the heuristics as 

definitions by which to attain good switchbox routing solutions, the 

backward chaining system is the more natural form of implementation for 

this kind of problem. These systems are better able to match on higher 

level structures and break it into its lower level components. This ability 

would be useful for defining the higher level structures in routing such as 

corner routes which currently are not structured in the forward chaining 

system and must be recognized by the arrangement of individual 

components. 
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6.3. Concluding Remarks 

An expert system router for solving the general routing problem has 

been presented in this thesis. Building upon switchbox routing heuristics 

to perform net expansion and constraint propagation, new heuristics have 

been developed to allow nets to expand in two directions and resolve 

conflicts based on how able a net is to expand to its available track in 

either direction. Although the constraints do not ensure 100% completion, 

they do emphasize the importance of it in switchbox routing problems by 

ensuring that nets which are the most constrained in their choice of 

available tracks get priority in selecting their routes. 
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