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Abstract 

Association rule mining has recently been applied to improve the oil recovery of CHOPS 

by discovering the association rules between reservoir properties and oil production from 

CHOPS well data. However, it leaves reservoir engineers with big challenging tasks to 

find interesting rules, understand the rules by the distribution patterns of relevant wells 

and make subsequent predictions by the application areas of the rules.  

In this thesis, three kinds of rule filters are developed to find out the interesting 

rules. Moreover, point-based and surface-based geovisualization methods are proposed to 

display the distribution patterns of relevant wells, build and represent potentially 

applicable areas for the rules on the map. A system prototype, containing association rule 

mining with filters, geovisualization functions, is developed. A case study has been 

carried out on a real CHOPS well dataset in western Alberta, Canada. The findings in the 

case study illustrate the feasibility of the proposed methods. 
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Chapter One: Introduction 

1.1 Background 

Cold Heavy Oil Production with Sand (CHOPS) is an oil extraction process for 

producing heavy crude oil. CHOPS technology has been widely used in heavy oil 

production in the Western Canadian Sedimentary Basin, since the mid-1990s (Sawatzky 

et al., 2002). Crude oil is produced along with oil sand, water, and gas. One of the biggest 

challenges for reservoir engineers is to understand the factors impacting oil recovery for 

CHOPS.  

Data mining refers to a knowledge discovery process by which interesting, 

implicit and unknown patterns could be found in large databases (Frawley et al., 1992). It 

also integrates statistics and database systems, machine learning and artificial intelligence 

(Chakrabarti et al., 2006). With large amount of collected oil and gas data in petroleum 

industry, data mining has enormous potentials in explaining the complex underground 

geological and reservoir conditions affecting oil production.  

Association rule mining (ARM) is one of the most popular data mining methods 

and it was first proposed for mining causal structures, patterns, or correlations from 

transaction data or other data repositories (Agrawal et al., 1993). Recently, it has been 

successfully utilized in reservoir analysis and modeling. Aulia et al. (2010) used 

association rule mining to increase oil recovery, by discovering the association rules 

between field parameters (e.g., bottom hole pressure, surface rate at each injection well) 

and oil recovery from data of general oil wells. Because the oil recovery of CHOPS wells 
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is mainly influenced by reservoir properties, Cai et. al. (2014) applied association rule 

mining on historical CHOPS well data to improve the oil recovery of CHOPS. CHOPS 

well data generally includes well locations and other non-spatial attributes, such as 

reservoir property parameters and production performance parameters. By applying 

association rule mining algorithms such as Apriori (Agrawal and Srikant, 1994) on 

CHOPS well data, the quantitative relationships between reservoir properties influencing 

oil recovery and oil production performance could be discovered (Cai et al., 2014). 

1.2 Problem Statement 

Although association rule mining is a promising approach for understanding and 

improving oil recovery of CHOPS, some unsolved problems cause that association rule 

mining has not gotten a wide use. 

1.2.1 The Problem of Discovering Interesting Rules in CHOPS Well Data 

Mining association rules in the data of CHOPS wells inevitably results in a very large 

number of association rules. Users are always interested in a subset of interesting 

association rules containing specific items and/or matching some wells. Traditionally, 

item constraints that are some expressions stating some conditions on the items of output 

association rules were used a post processing step of mining algorithms to generate 

interesting association rules with specific items. For example, boolean expressions 

(Ramakrishnan et al., 1997) were applied to control the absence or presence of some 

items of output association rules. But classic item constraints were developed for the 

problem of discovering interesting association rules in transaction data; thus, they did not 

take the geospatial constraints of spatial objects related to association rules into account. 
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Whether an association rule in CHOPS well data is interesting, is not only influenced by 

support and confidence value of the rule, but also determined by other important factors.  

As for the CHOPS data, the interesting rules must be the ones that are able to 

represent the influence of reservoir properties on the oil production performance since the 

main objective of association rule mining in CHOPS well data is to discover the 

relationships between reservoir properties and oil production. In other words, it indicates 

that the reservoir property indicators must be the antecedent of an interesting association 

rule, while the oil production performance indicators must be the consequence. On top of 

it, whether an association rule is interesting depends on the information or location of 

relevant wells. For example, after users obtain the rules between reservoir properties and 

oil production, they may only want a subset of the rules, which match the wells with 

certain unique well identifiers or match a group of nearby wells within a specific 

geospatial area. Thus, the problem of extracting interesting rules needs to be solved 

according to the characteristics of CHOPS well data. 

1.2.2 Visualization of Interesting Rules Regarding Wells 

After interesting rules are discovered from CHOPS well data, the locations of the wells 

that match the rules need to be visualized in an intuitive way. Compared with the 

customer objects in transaction data, the well objects in CHOPS well data have geospatial 

attributes, e.g., longitude and latitude. It causes that the valuable information of the 

interesting rules in CHOPS well data do not only include the patterns between the non-

spatial attributes of wells, i.e., the relationships between reservoir properties and oil 

production, but also contain the spatial distribution patterns of matching wells hidden 

behind the rules. Visualization is a possible solution and has a long history of making 



 

 

4 

large data and hidden patterns within the data accessible. Several visualization methods 

were proposed for association rules, such as scatter plots, graphs plots and parallel 

coordinate plots (Buono and Costabile, 2005; Ertek and Demiriz, 2006; Hahsler and 

Chelluboina, 2011; Klemettinen et al., 1994; Rainsford and Roddick, 2000; Unwin et al., 

2001; Yang, 2003), to make the association rules accessible and hidden patterns within 

large number of the rules be identified. However, the existing visualization methods for 

association rules are limited on representing the geospatial attributes of the rules in 

CHOPS well data. The methods are designed for association rules discovered in 

transaction data or other non-spatial data; thus, they inevitably focus on the visualization 

of the rule content characteristics instead of the spatial distribution of data objects related 

to the rules. 

1.2.3 Visualization of Interesting Rules Regarding Application Areas 

In addition to relating well locations with interesting association rules, building and 

visualization of possible application areas for the interesting rules are also worthy of 

research.  Application areas of an association rule refer to continuous surfaces where the 

association rule may happen or be applied. In practice, the application areas are very 

valuable for reservoir engineers to make decisions or predictions based on the pattern 

included by the rule. The locations of CHOPS wells are generally an irregular array of 

discrete geospatial points. It is impossible to directly construct continuous areas by 

CHOPS well data for each attribute appearing in an association rule. We need to firstly 

investigate proper data spatialization techniques that can fill in data between oil wells for 

attributes appearing in the rule. Secondly, on the basis of the built layers containing 

continuous surfaces of the attributes, proper visualization schemes need to be designed in 
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order to finally generate application areas for the whole rule in the form of prediction 

maps. 

1.2.4 GIS Prototype for CHOPS Well Data  

With the growing volume of oil and gas data that have been collected, increasingly 

petroleum companies as well as oil and gas data companies have implemented 

geographic information systems (GIS) to visualize, analyze and study the large amount of 

oil and gas data. Combined with association rule mining and visualization of found rules 

a GIS prototype will make the big oil and gas data managed more efficiently. However, 

there is no existing GIS prototype integrating mining and visualization of association 

rules and special for CHOPS well data. It is necessary to develop a system prototype that 

can efficiently manage collected CHOPS well data, extract and visualize the interesting 

association rules from the data. 

1.3 Research Objectives 

The overall objective of the research is to promote the application of association rule 

mining on CHOPS well data by proposing new methods for extracting interesting 

association rules and new visualization methods for the interesting rules on the basis of 

previously related research. Specifically, the problems stated in Section 1.2 lead to the 

following research objectives: 

1. Propose association rule filters to facilitate the discovery of interesting rules 

from the large sets of generated rules in CHOPS well data; 
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2. Propose a new visualization method to display the distribution patterns of oil 

wells relevant to the extracted interesting rules; 

3. Propose a new visualization method to build and represent application areas for 

the extracted interesting rules; 

4. Develop a system prototype integrating management, association rule mining 

and visualization on CHOPS well data. 

1.4 Research Contribution 

The main contributions of the thesis can be summarized as follows. 

1. This thesis introduces three new association rule filters that help reservoir 

engineers discover interesting rules efficiently. The antecedent-consequence filter 

produces the interesting rules with some specific antecedents and consequences. As 

options, the well identifier filter further finds out the interesting rules by information of 

wells such as the unique well identifiers and the well location filter directly extracts the 

interesting rules on the map;  

2. A visualization method for association rules in CHOPS well data, point-based 

geovisualization, is proposed for linking interesting association rules with wells. The 

method uses different symbols to highlight the locations of the wells whose records in the 

database satisfy some interesting rule at various extents. Reservoir engineers can better 

understand the rules that they are interested in and find possible distribution patterns of 

the wells by the visualized well locations on the map; 
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3. Another novel visualization method, surface-based geovisualization, builds and 

represents the areas on the map for an interesting rule where the rule may be applicable. 

The method is based on spatial interpolation and it can be used on the premises that 

spatial dependence basically exists in all attributes appearing in an association rule. The 

surface-based geovisualization can assist reservoir engineers in making decisions or 

predictions based on the patterns included by the discovered interesting rules; 

4. A system prototype, named CHOPSData-GeoViz, is developed for association 

rule mining and visualization of found rules in CHOPS well data. The system prototype 

integrates association rule mining with proposed new filters, point-based and surface-

based visualization; 

5. A case study was conducted on a real CHOPS well dataset from the 

Lloydminster heavy oil block in Alberta, Canada. The case study validates the feasibility 

of the proposed association rule filters and visualization methods for association rules in 

CHOPS well data, as well as the usefulness of the built system prototype. 

1.5 Thesis Outline 

Chapter Two gives a literature review of association rule mining, existing visualization 

techniques for association rules, as well as geovisualization techniques. Chapter Three 

introduces the detailed methodology of the proposed novel rule filters and visualization 

methods, and the system prototype for association rule mining and visualization of found 

rules in CHOPS well data. In Chapter Four, a case study was conducted on a real CHOPS 

well dataset from the Lloydminster heavy oil block in Alberta, Canada. Chapter Five 

draws conclusions and states future work of the thesis. 
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Chapter Two: Related Work 

This chapter presents the literature study in the following areas. First, association rule 

mining and related research are reviewed. Second, previous works on visualization 

methods for association rules are presented. Third, a review of geovisualization is given. 

2.1 Association Rule Mining 

Association rule mining is one of the popular and well-developed data mining techniques 

for discovering correlations among variables in large datasets. It is introduced in this 

thesis to analyze the relationships between reservoir properties and oil production 

performance from real historical CHOPS well data.   

2.1.1 Overview 

Association rule mining (ARM) was first introduced by Agrawal and Srikant to facilitate 

in analyzing transactional databases and derive association rules (Han and Kamber, 2006; 

Wu X., 2007). A typical example comes from the market basket analysis. Association 

rule mining analyzes customer consumption behaviors and habits by finding associations 

between different items that customers purchase. For example, if the customer buys bread, 

how likely does the customer buy milk meanwhile? Such information can be helpful in 

improving sale assignments such as shelf space placement. Association rule mining has 

been applied to many domains including marketing (Sohn and Kim, 2008; Jiao and 

Zhang, 2005), bioinformatics (Creighton and Hanash, 2003) and reservoir analysis (Aulia 

et al., 2010). With the definition of the association rule in Agrawal et al. (1993), let D be 
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the set of all items, and X and Y be two subsets of D such that ,X Y D . An association 

rule with respect to X and Y can be in the following form of: 

(or IF { } THEN { }),  such that , ,   =  and ,  X Y X Y X Y D X Y X Y     (2.1) 

where X is called the antecedent and Y is called the consequence. The two concepts are 

important in defining the interestingness (interest degree) of an association rule (Han J. 

and Kamber M. 2006), support and confidence. The support of rule X Y  is defined to 

be the percentage of transaction records including X Y  to the total number of 

transaction records in a database.  

 support ( ) ( )X Y P X Y   (2.2) 

The confidence of rule X Y  is the percentage of transactions containing X and 

Y to the number of transaction records only containing X.  

 
( )

confidence ( ) ( | )
( )

P X Y
X Y P Y X

P X
    (2.3) 

Association rules satisfied with the support and confidence threshold values are 

recognized to be strong. One of main objectives of association rule mining is the 

generalization of all interesting rules satisfying both minimum support and confidence 

thresholds from some transaction database. 

The general process of ARM can be divided into two steps. Frequent itemsets 

satisfying the minsup threshold are firstly found. Then all the interesting rules are 

generated from the frequent itemsets. Detailed process will be introduced in the section 

2.1.2. 
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2.1.2 Mining Association Rules with Item Constraints 

The problem of discovering association rules has received considerable research attention 

and several constraints for mining association rules have been developed using the 

Apriori algorithm as the basis.  

Apriori is a classic association rule mining algorithm which was proposed by 

Agrawal and Srikant (1994) for mining frequent itemsets and associations for a 

transactional dataset. Apriori is a seminal algorithm, using a level-wise search 

mechanism to find all the frequent itemsets. The algorithm starts by identifying the 

frequent 1-itemset through scanning the whole dataset and computing the support of each 

item. Then, the frequent 1-itemsets are used to find the frequent 2-itemsets and the 

frequent 2-itemsets are used to find frequent 3-itemsets. The whole process goes on until 

frequent itemsets cannot be found any more. The search for the itemsets of any frequent 

level needs to do a full scan in the dataset. The Apriori property is introduced for 

reducing the searching space and improving the searching efficiency of the level-wise 

frequent itemset. The Apriori property refers to “all nonempty subsets of a frequent 

itemset must also be frequent” (Agrawal and Srikant, 1994). The basis is the observation 

that a super itemset of a non-frequent itemset is still non-frequent. For instance, assuming 

itemset X is not frequent, sup(X) < minsup. If item Y is added to itemset X, then the 

obtaining itemset, X Y , cannot occur more frequently than the itemset X; thus, X Y  

is not frequent, either. On the basis of the Apriori property, the Apriori algorithm is 

summarized as follows. Let k-itemset denote an itemset including k items and Fk and Ck 

denote the collections of frequent k-itemsets and candidate k-itemsets, respectively. The 

Apriori algorithm firstly scans the dataset, computes the presence time of each item and 
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determines 1-frequent itemsets, denoted by F1. The subsequent scans include two 

procedures. In the first procedure, Fk found in the k-th scan are used to create the Ck+1. 

Ck+1 is a superset of Fk and all the subsets are considered as frequent. In the second step, 

the Apriori algorithm scans the dataset again to compute the support of each candidate in 

Ck+1; and, the ones with support of less than the minimum support threshold are removed. 

This process ends when Fk is empty. After all frequent itemsets are found, all nonempty 

subsets of every frequent itemset, h, will be enumerated to generate interesting rules. For 

each subset of h, r = subset(h), a rule is generated with the form of r=>h-r, if its 

confidence is larger than the minimum confidence threshold (Han and Kamber, 2006).  

Applying association rule mining algorithms such as the Apriori on transaction 

data often results in a very large number of association rules. In practice, users are often 

only interested in a subset of association rules and they may only need the rules that 

contain specific items.  

As a solution, many researchers proposed and applied item constraints as a “post-

processing” step of the mining algorithms. For example, Ramakrishnan et al. (1997) 

solved the problem in the presence of constraints that were boolean expressions, allowing 

users to specify the subset of rules that they were interested in. The boolean expressions 

were used to control the presence or absence of some items. Such constraints could be 

used in the process of finding frequent itemsets or generating candidates. For example, if 

the boolean expression constraints were applied when finding frequent itemsets, only the 

frequent itemsets that satisfied the boolean expression were found, instead of all the 

potentially frequent itemsets. Item constraints in the form of expressions were most 

popular ways to efficiently extract a subset of rules from large amounts of generated rules.  
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But the item constraints were developed for the problem of discovering 

interesting association rules in transaction data; thus, they did not take the geospatial 

constraints of spatial objects related to association rules into account. Thus, the common 

item constraints are not suitable for the stated problems of discovering interesting rules in 

CHOPS well data. The goal of association rule mining in CHOPS well data is to find 

relationships between reservoir properties and oil production. We should further limit that 

reservoir properties can only be in the antecedents and oil production can only be in the 

consequences of generated rules. In other words, antecedent and consequence constraints 

should be considered in the constraints. Moreover, the objects in CHOPS well data are 

the wells owning geospatial attributes and other information. The common constraints 

will fall short on discovering interesting rules that matching the wells located in a specific 

area or having special properties. The information and location of spatial objects related 

to association rules should also be included into the constraints for association rule 

mining in CHOPS well data.  

2.2 Visualization of Association Rules 

After interesting rules are extracted, the distribution patterns of oil wells and application 

areas of the interesting rules need to be represented to reservoir engineers in a proper 

way. As a possible solution, data visualization and it refers to a set of techniques applied 

to encode and represent the data in the form of visual elements (e.g., points, lines, icons 

or bars) in plots, and its main goal is to represent the data information clearly and 

intuitively to users (Friedman, 2008). We can often visualization techniques to discover 

the hidden patterns within the raw data. Recently, several visualization techniques for 
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association rule mining in transaction data have been recently proposed to help users 

analyze the association rules. In this section, we briefly introduce several representative 

visualization methods for association rules including scatter, parallel coordinate and 

graph plots and then analyze their limitations on the stated problems.  

2.2.1 Traditional Visualization Methods for Association Rules  

Scatter plots visualize association rules as scatter points on two-dimensional or higher 

coordinate systems. They are intuitive visualizations of association rules. For example, in 

a two-key plot, the coordinate axes x and y represent the support and confidence values of 

the rules, and the color of the scatter points represents another attributes of the rules 

(Unwin et al., 2001). Figure 2-1 shows an example of visualization of 5668 rules. It uses 

two interesting measures, support and confidence on the x-axe and y-axe. Additionally, a 

third measure lift is used as the color (gray level) of the points. A color key from 0 to 20 

is provided to the right side of the plot chart. From the figure we can see that scatter plots 

like two-key work well for very large sets of association rules.  

 

Figure 2-1 An example of rule visualization by a scatter plot (Hahsler and 

Chelluboina, 2011) 
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In a parallel coordinate plot, association rules are represented as polygonal lines 

on a coordinate system with shared x and y axes (Yang, 2003). The antecedent and 

consequence items of the rules are used for one coordinate axis, and the other axis is used 

to represent the corresponding positions of antecedent and consequence items in the 

rules. Unlike scatter plots, parallel coordinate plots more emphasize the visualization of 

structure characteristics of antecedent and consequence items within the rules. Through 

this method, the item composition of the rules and common patterns of the structure 

characteristics can be observable. Figure 2-2 shows a parallel coordinates plot for 10 

rules.  

 

Figure 2-2 An example of rule visualization by a parallel coordinate plot (Hahsler 

and Chelluboina, 2011) 

Graph plots represent association rules as figures with vertices and edges 

(Klemettinen et al., 1994; Rainsford and Roddick, 2000; Buono and Costabile, 2005; 

Ertek and Demiriz, 2006). The vertices are used for the antecedent and consequence 

items of the rules. The relationship of the items of one association rule is shown by the 
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connected edges of the items. Figure 2-3 shows a graph plot for an association rule IF 

{soda, popcorn} THEN {salty snack}. Graph plots can clearly show the internal relation 

of the antecedent and consequence items within the rules. 

 

Figure 2-3 An example of rule visualization by a graph plot (Hahsler and 

Chelluboina, 2011) 

2.2.2 Limitations of Traditional Methods in CHOPS Well Data 

The goals of the classical visualization methods for association rules are the discovery of 

the interesting rules in transaction data as well as the patterns that cannot be directly 

identified from the interesting rules, such as distributions of measurements (scatter plots), 

sequences of items (parallel coordinate plots), and relationships between items (graph 

plots). The classical visualization methods were proposed for the association rules in 

transaction data and they did not consider the spatial attributes of the objects relevant to 

the association rules. In CHOPS well data, well objects have geospatial locations. For the 

interesting rules in CHOPS well data, their valuable information or patterns are hidden 

distribution patterns of the wells matching the rules and the application areas where the 

rules may happen. If the hidden knowledge are represented in a proper way, it will be 

very helpful for the reservoir engineers to make predictions based on the patterns 

included by the rules. Traditional visualization methods for association rules are 

undoubtedly suitable for the interesting association rules in CHOPS well data. To 
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overcome challenges, geovisualization that is special for geospatial data analysis and its 

application will be reviewed in the next section. 

2.3 Geovisualization and Applications 

On the basis of scientific visualization, Geovisualization (Geographic Visualization) 

integrates GIS, cartography to explore geographic data and communicate geographic 

information in support of geospatial analysis (MacEachren and Kraak, 1997). 

Geovisualization mainly helps identify, compare, and interpret features within geographic 

data (MacEachren et al. 1999).  

By Geovisualization, the geographic data can be displayed by a map interface or 

high dimensional coordinate, and unexpected geospatial trends and patterns hidden 

behind the data can be discovered. Geovisualization has recently become widely 

employed in many scientific disciplines. Recently, geovisualization is combined with 

symbology and spatialization techniques to mapping and predicting potential patterns 

within geospatial data. Most representatives of them are the geovisualziation methods 

proposed by Aoidh et al. (2013) and Gienko and Terry (2012). 

Aoidh et al. (2013) proposed a geovisualization method where symbology was 

explored for communicating the landscape genetics data in an intuitive way. Landscape 

genetics, considering genetic population structure represented by spatially referenced 

parameters in ambient landscape were proved to be important for wildlife management. 

However, there is no effective visualization method to communicate the usable 

information within the landscape genetics data with stakeholders in a suitable format. 

Aoidh et al. (2013) in response proposed a geovisualization method to help stakeholders 
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without any GIS or genetic expertise learn about landscape genetics and managing the 

wildlife. To display the landscape genetic information and represent the spatial 

distribution behind the landscape genetics data, they explored appropriate symbology 

such as the symbols with different colors and sizes to show categories and amount of 

sampling data, through an accessible user friendly interface, as shown in Figure 2-4. 

 

Figure 2-4 A geovisualization tool interface showing the sampling locations and 

quantities collected for genetic analysis (Aoidh et al., 2013). 

Moreover, Gienko and Terry (2012) introduced a geovisualization method for 

representing and predicting cyclone behaviors, where several spatial interpolation 

techniques were successfully combined with geovisualization for identification and 

analysis of cyclone behavior features. They illustrated and discussed the value of 

geovisualization combined with spatialization techniques when it was used to make 
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analysis of spatial structures and characteristics of tropical cyclones behaviours in the 

South Pacific Ocean. Figure 2-5 illustrates a spatialization plot of cyclone duration using 

the inverse distance weighted spatial interpolation. The discovery of certain patterns and 

dependencies in cyclone behaviour were found by the proposed geovisualization method 

which helped to prepare further strategy in advanced data analysis using data mining 

methods. Most importantly, the research illustrated and provided preliminary exploration 

of spatial interpolation techniques that may be of enormous value for the geovisualization 

of geospatial data. 

 

Figure 2-5 Geovisualization of tropical cyclone duration based on inverse distance 

weighted interpolation (Gienko and Terry, 2012). 

Although the above geovisualization methods cannot be utilized to represent the 

distribution patterns of relevant wells and application areas of the association rules, they 

can be used as the basic ideas of geovisualization of the rules in CHOPS well data. The 

well locations can be highlighted with the different symbols on the map depending on 

their relationship with association rules in CHOPS well data. The application areas of 

association rules can start by applying spatial interpolation and generating the continuous 

surfaces from the attribute data of discretely sample wells on the map.   
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Chapter Three: Mining and Geovisualization of Association Rules in CHOPS Well 

Data 

This chapter starts by introducing association rule mining in CHOPS Well Data, 

including data transformation and three association rule filters for extracting interesting 

rules for association rule mining in CHOPS well data. Next, two geovisualization 

methods are proposed to visualize the selected interesting rules on the map. Finally, a 

system prototype, named CHOPSData-GeoViz, is implemented for mining, filtering and 

visualizing association rules in CHOPS well data. 

3.1 Data Transformation for Association Rule Mining  

In the CHOPS well dataset, each record contains reservoir properties and oil production 

performance of each well. Moreover, the location of each well is denoted in longitude 

and latitude coordinates. In advance of association rule mining, the essential 

preprocessing work is the transformation of the values of the studied reservoir property 

and oil production performance parameters into a set of sub-ranges through the use of 

discretization schemes. Common algorithms of association rule mining, such as Apriori 

(Agrawal and Srikant, 1994), handle data better with discretized attributes for two 

reasons. Association rule mining emphasizes discovering unknown and useful patterns 

instead of over accurate or even trivial patterns (Marco and Valentina, 2004). Also, the 

reduction of detail in the source data can make the mining process more efficient and 

found patterns more accessible (Cai et al., 2014). Therefore, the continuous values of the 

reservoir property and oil production performance parameters in the source CHOPS well 

data need to be discretized before association rule mining. For example, a numeric value 
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(73.2) of the reservoir property attribute, cumulative pore volume, can be transformed 

into discretized value “1”, which represented a range of values from 59.2 to 94.4. Then 

the association rule mining algorithm such as Apriori can be applied to the preprocessed 

data. A more detailed discussion about data preprocessing work for association rule 

mining in CHOPS well data is provided in Cai et al (2014). 

3.2 Mining Interesting Association Rules with Filters 

Association rule mining on CHOPS data usually generates many association rules. 

However, not every association rule is interesting. Users have to look though every 

generated rule to select the ones that they are interested in. Item constraints in the form of 

expressions are the most popular ways to efficiently extract a subset of rules from large 

amounts of generated rules. As previously discussed in the Chapter Two, the common 

item constraints are not suitable for discovering interesting rules in CHOPS well data. On 

the basis of item constraints, the following three filters are introduced to specially 

facilitate mining interesting rules in CHOPS well data. 

3.2.1 Antecedent-Consequence Filter 

As previously mentioned, an interesting association rule in CHOPS well data should 

represent the influence of the reservoir property on oil production. Therefore, the 

antecedent-consequence filter is developed. It is applied during the process of association 

rule mining in the CHOPS well data. Specifically, after all the frequent itemsets that 

satisfy the minimum support threshold are found, only the association rules whose 

antecedent items are reservoir property parameters and consequence items are oil 

production performance parameters will be generated, rather than generating all the 
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possible association rules. An example of the association rules is IF {cumulative pore 

volume = 168.8 ~ 291.2} THEN {effective yield = 808.2 m3 ~ 1452.9 m3}, i.e., if the 

reservoir property’s cumulative pore volume is between 168.8 and 291.2, then the 

effective yield is in the range of 808.2 m3 and 1452.9 m3. This type of rules is of interest 

to reservoir engineers who want to find the relationship between reservoir properties and 

oil production. 

3.2.2 Well Identifier Filter 

In addition to specific antecedents and consequences, whether an association rule is 

interesting also relates to the wells that the rule matches. The well identifier filter is 

developed and is applied after the process of association rule mining in the CHOPS well 

data. On top of the antecedent-consequence filter, the well identifier filter can be used to 

find interesting rules by well identifiers from the ones whose antecedent items are 

reservoir properties and consequence items are oil production performance parameters.  

3.2.3 Well location Filter 

Different from the objects in traditional transaction data, CHOPS wells have locations.  

As mentioned in the problem statement, whether an association rule is interesting also 

depends on the locations of the wells that the rule matches. Reservoir engineers might 

want to further search some of the association rules between reservoir properties and oil 

production, based on the well locations. Well location filter is developed based on this 

requirement. It provides the function for finding interesting rules by interactively 

selecting one or multiple wells in an area on the map.  
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In summary, the entire process of association rule mining with filters on CHOPS 

Well Data includes the following steps, as shown in Figure 3-1. First, the source CHOPS 

well data are discretized and then the Apriori algorithm is applied to the processed 

CHOPS data to find all the frequent itemsets in the processed data. Next, the association 

rules whose antecedents are reservoir property parameters and consequences are oil 

production parameters are generated, by applying the antecedent-consequence filter on 

the found frequent itemsets. As an option, users can continue to apply well identifier filter 

or location filter to search for the interesting rules by well information or locations. 

Finally, all interesting rules are outputted by the requirements of users. 

3.3 Geovisualization of Interesting Association Rules 

To achieve the objectives of visualization the visualization of the association rules in 

CHOPS well data, two novel geovisualization methods, point-based and surface-based 

geovisualization are proposed and introduced in this section. Point-based geovisualization 

conceptualizes an association rule with regards to well locations, and surface-based 

geovisualization builds the applicable areas for an association rule based on spatial 

interpolation techniques and then effectively represents the areas on the map. 

3.3.1 Point-based Geovisualization Method 

Point-based geovisualization uses different symbols to show the locations (points) of 

wells, depending on their relationship with association rules in CHOPS well data. The 

geospatial distribution of the wells associated with one association rule was visualized on 

the map with the following steps.  
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Figure 3-1 The flow chart of association rule mining process in CHOPS well data 
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First, all CHOPS oil wells were categorized into three groups according to the 

extent of satisfaction of the rule: the wells with the same ranges of reservoir properties 

and production performances described in the rule (i.e., satisfied both antecedents and 

consequences of the rule); the wells with the same range of reservoir properties described 

in the rule, but a different range of production performance (i.e., satisfied the antecedents 

but not the consequences of the rule); and, the wells with different reservoir properties 

and production performances than described in the rule (i.e., neither satisfied the rule). 

After categorization, the well locations of the three different groups were represented on 

the map using different symbols.  

Compared to traditional visualization methods for association rules, point-based 

visualization emphases connecting the discovered rules with the well locations. Users 

(i.e., reservoir engineers) can easily identify the wells satisfying the rule and can 

reversely find rules associated with the well. Moreover, this categorization scheme can 

reflect the two traditional interestingness measurements (support and confidence) on the 

map. For the association rules in CHOPS well data, the support is the percentage of the 

wells in the whole dataset satisfy this rule while the confidence is the percentage of the 

wells among all wells that satisfy the reservoir property conditions in the antecedent. 

Therefore, the comparison and analysis of the geospatial distributions of the three groups 

of categorized wells on the map can help users in learning about the support and 

confidence of each discovered rule. Specifically, by comparing the wells that satisfy the 

association rule and those that do not satisfy the association rule, support of the rule can 

be understood and the wells that support the rule can be located on the map. Similarly, 

the confidence of the rule and the locations of the wells giving the confidence of the rule 



 

 

25 

can be identified by comparing the wells that satisfy the rule and those that only satisfy 

the antecedents and not the consequences of the rule. 

3.3.2 Surface-based Geovisualization Method 

Surface-based geovisualization extends the conceptualization of the rule from discrete 

points to continuous surfaces, with the aim of generating and representing areas where 

the rule may be applicable.  

As shown in Figure 3-2, surface-based geovisualization of an association rule 

mainly includes the following steps. First, the spatial dependence of all the attributes 

appearing in the antecedents and consequences of the rule are examined. If the spatial 

dependence does not exist in the attributes, the surface-based geovisualization method is 

not applicable for the rule. Otherwise, continuous surfaces of the attributes are generated 

by applying a deterministic or stochastic spatial interpolation method on the well data. 

Next, the corresponding application areas of antecedents and consequences of the rule are 

extracted from the continuous surfaces and indicated by different colors. Finally, a 

prediction map of the rule is obtained by overlaying the application areas of the 

antecedents and consequences of the rule. 

The existence of spatial dependence in the attributes in the studied area is the 

precondition for the use of spatial interpolation. The spatial dependence of each 

antecedent or consequence attribute of the association rule should be examined before 

using spatial interpolation. The spatial dependence of attributes can be checked by semi-

variogram clouds. If spatial dependence of a reservoir property attribute exists in the 
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studied reservoir area, the semi-variance decreases with increasing spatial distance in the 

semi-variogram cloud of the attribute.  

Figure 3-3 shows a semi-variogram cloud of the cumulative pore volume attribute 

in an area. Since the semi-variance increases as the spatial distance increases in the cloud, 

the semi-variogram cloud suggests that spatial dependence appears in the cumulative 

pore volume to some degree. Pairs of sample wells that are closer in distance have more 

similar values for the cumulative pore volume than well pairs that are farther apart.  

Note that directional influences also need to be considered when generating semi-

variogram clouds. The spatial dependence of an attribute can be stronger in specific 

directions. The directional influences may come from geological structures or a variety of 

other more complex processes. The directional influence of spatial dependence needs to 

be incorporated into the spatial dependence validation of each antecedent or consequence 

attribute of the association rule. 

If spatial dependence of the antecedent and consequence attributes of the rule 

exists in the studied area, deterministic or stochastic interpolation methods are used to 

generate continuous surfaces for the attributes.  

Under the assumption that the estimated value of an interpolation point should be 

influenced more by nearby control points than distant control points, spatial interpolation 

can fill in data between sample points. Spatial interpolation methods can be categorized 

into stochastic and deterministic methods.  
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Figure 3-2 The flow chart of surface-based geovisualization 

A stochastic interpolation method provides assessment of prediction errors by 

estimated variances in the form of prediction standard errors with interpolated values. 

Kriging interpolation is one of most common spatial stochastic interpolation methods. 

Not only it can interpolate the value of a certain attribute for an unknown (interpolation) 
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point with the known attribute values of its neighbor points, but it can also offer 

prediction errors with estimated values to assess the quality of the interpolation. In 

Kriging, the spatial variation of an attribute to be interpolated may be composed of a 

spatially correlated component and a drift component. The former represents the variation 

of the localized variable and the latter represents a trend and random error.  

 

Figure 3-3 Semi-variogram clouds of the cumulative pore volume in an area 

A deterministic interpolation method does not involve probability theory, thereby 

offering no assessment of errors with predicted values. Spline interpolation estimates 

values on the basis of a mathematical function where overall surface curvature was 

minimized, ending up with a smoother statistical surface. The surface passes exactly by 

the control points. In Inverse Distance Weighted (IDW) interpolation, a weight is 

assigned to each neighborhood point within a predefined radius for an interpolation point. 

The weight decreases as the distance from the interpolation point to its neighborhood 

points increases. The estimated value of the interpolation point is the weighted average of 
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its neighborhood points. Trend surface interpolation estimates the unknown values of 

interpolation points with a polynomial equation. The order of the polynomial equation 

can be adjusted according to the complexity of the specific situation.  

CHOPS wells are represented as the point features discretely distributed on the 

map. Spatial interpolation then fills in the missing data between the wells based on the 

attribute values of the wells, i.e., the value of the attribute at a location with no recorded 

data can be estimated using the corresponding known value of the attribute of nearby 

sample CHOPS wells.  

In terms of the format of the geospatial data, the spatial interpolation generates a 

raster layer with estimates made for all cells for each antecedent or consequence attribute 

of an association rule from a vector layer containing oil wells, where the value of each 

attribute is known. After this step, each attribute appearing in the association rule to be 

visualized will have an interpolated continuous surface. 

The applicable areas of the antecedents and consequences of the rule are then 

extracted and rendered from the surface of each attribute. For instance, the applicable 

areas of an antecedent of an association rule (e.g., cumulative pore volume = 59.2% ~ 

94.4%) can be gained by extracting the cells whose interpolated values belong to the 

range from 59.2% to 94.4% from the interpolated continuous surfaces of the cumulative 

pore volume. 

Finally, a prediction map of the applicable areas of the rule is obtained by 

overlaying all interpolated continuous surfaces of the attributes appearing in the rule. 
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3.4 CHOPSData-GeoViz System Prototype 

To efficiently manage, mine and visualize association rules in CHOPS well data, a 

system prototype, called CHOPSData-GeoViz, was developed. In the following, the 

architecture of CHOPSData-GeoViz prototype and different components in the 

architecture are introduced. 

3.4.1 CHOPSData-GeoViz Prototype Architecture 

CHOPSData-GeoViz prototype includes four main components (Figure 3-4): a well 

database, association rule mining function, geovisualization function, and graphical user 

interface (GUI). The GUI, association rule mining, filtering, geovisualization were 

developed using C# programming language with integration of the ESRI ArcObjects API. 

The CHOPSData-GeoViz prototype also supports diverse data formats (*.mxd map file, 

*.lyr layer file, *.shp shape file, *.mdb geodatabase file) and displays them on the map. 

The following section describes the main components of the prototype in detail. 

 

Figure 3-4 Architecture of the CHOPSData-GeoViz prototype 
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Well Database: The well database in the CHOPSData-GeoViz prototype was 

implemented with Microsoft SQL Server 2005 and the ArcObject’s GeoDatabase 

Library. The well database contains both the spatial and non-spatial data. The spatial data 

include the well locations (i.e., longitude and latitude) and spatial objects representing 

wells (i.e., points). The non-spatial data include the unique well identifier (UWI), 

reservoir properties and oil production data. The UWI is unique to each well and is used 

as the primary key in the database. The non-spatial data are connected with the spatial 

data using the primary key of UWI.  

Association Rule Mining Function: The association rule mining function 

includes the association rule mining and filtering sub-functions. The continuous values of 

the reservoir property and oil production performance parameters in the source CHOPS 

well data are firstly discretized before association rule mining by data transformation 

function. The data transformation function transforms the data format from numerical to 

nominal. The current version of CHOPSData-GeoViz prototype implements the Apriori 

algorithm. A group of attributes from selected wells can be assigned to the Apriori 

analysis. After transforming the data, Apriori analyzes and presents the discovered 

association rules among the attributes. The association rule filtering function in the 

prototype also includes three filters introduced in the previous sections: the antecedent-

consequence filter, well identifier filter and well location filter.  

Geovisualization Function: The interesting rules can be visualized on the map 

by the geovisualization function. The geovisualization function include point- and 

surface-based sub-functions. In point-based sub-function, for each selected interesting 

association rule IF {X} THEN {Y}, the system queries the database to find the wells 
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whose records satisfy both the antecedent X and the consequence Y, and the wells whose 

records satisfy only the antecedent X. Then the system highlights the wells on the map. 

The application areas of each interesting rule are generated by the surface-based 

visualization function. All of these functions are implemented by calling APIs from ESRI 

ArcObjects.  

Graphical User Interface (GUI): Figure 3-5 shows the main GUI of 

CHOPSData-GeoViz system prototype. The main interface consists of map display area, 

table of layer content, eagle eye window, menu and tool bar. The map display area in the 

middle of the interface shows the visualization of interesting rules with the designated 

map scale and coordinates. The layer table on the right of the interface shows the map 

layers. The eagle eye window shows a global view of the current map. The top of the 

interface contains the menu and tool bar where association rule mining and 

geovisualization functions can be accessed.  

Through the main interface, the user can execute the association rule mining and 

geovisualization by clicking the Association Rule Mining and Geovisualization Function 

button on the tool bar. Figure 3-6 shows the user interface of the association rule mining 

and geovisualization. From top to bottom, there are the Menu Bar, Data & Result Viewer, 

Association Rule Mining, Rule Filters, and Message Box. Geovisualization function 

including point- and surface-based methods can be launched under the Menu Bar. In the 

filters, users can screen out interesting rules from all of the resulting association rules 

generated and listed in the Data & Result Viewer, by setting or selecting the antecedents 

and the consequences, unique well identifiers, and well locations. Next, users can select 

point- or surface-based methods under Geovisualization and then click each individual 
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interesting rule in the Data & Result Viewer to obtain the geovisualization results on the 

map in the main interface in Figure 3-5. 

 

Figure 3-5 The main GUI of the CHOPSData-GeoViz prototype 

 

Figure 3-6 The GUI of the association rule mining and geovisualization functions 
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3.5 Summary 

In this Chapter, several rule filters are firstly introduced to help reservoir engineers 

effectively discover interesting rules from association rules generated in the CHOPS well 

data. By the rule filters, the interesting rules representing the influence of the reservoir 

properties on production and matching some specific wells will be extracted. On top of 

rule filters, two geovisualization methods – point-based and surface-based – are proposed 

for the interesting rules. The point-based geovisualization method links association rules 

with well locations. The method uses different symbols to show the well locations that 

satisfy the rules. Reservoir engineers can understand and study rules that they are 

interested in from the map. The surface-based geovisualization method generates the 

areas where an interesting association rule may be applicable based on spatial 

interpolation. The applicable areas on the map generated by surface-based 

geovisualization can assist reservoir engineers in making predictions based on the 

patterns represented by the relevant rules. Finally, a system prototype called 

CHOPSData-GeoViz is developed and its architecture and user interfaces of 

CHOPSData-GeoViz prototype are introduced in the chapter. The system prototype 

integrates association rule mining, filtering and visualization to efficiently mine and 

visualize association rules in CHOPS well data.  
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Chapter Four: A Case Study 

In this chapter, a case study was carried out on real CHOPS well data for the 

Lloydminster heavy oil block in Alberta, Canada. 

4.1 Data Collection and Description 

The Lloydminster heavy oil block is a large reservoir zone located in the central eastern 

part of the province of Alberta in Canada. In the block, more than 3000 wells have been 

drilled. One hundred and eighteen CHOPS wells were selected from the block based on 

the following selection criteria: (1) drilling date between 1992 and 2005; (2) vertical 

well; and, (3) one perforation formation. The distribution of the studied 118 CHOPS 

wells of the area is shown in Figure 4-1.  

 

Figure 4-1 Geospatial distribution of the studied 118 wells in Alberta, Canada 
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The source data of the studied CHOPS wells in the case study were collected and 

transformed from the Canadian Geo-service company Divestco Inc. Each well record in 

the data contained reservoir property and oil production performance parameters of the 

well, and each well had its geospatial location in longitude and latitude coordinates. 

Table 4-1 shows the some sample records of well locations. Table 4-2 shows some 

sample reservoir property and production records from the source dataset.  

Table 4-1 Sample records of well locations in source dataset 

UWI Latitude Longitude UTM-x UTM-y 

00011404808W40 53.13296 111.0551 496316.3317 5887063.037 

00012705103W40 53.42623 110.3526 543015.0584 5919881.409 

00012805202W40 53.51453 110.2314 550963.1614 5929785.506 

00020305203W40 53.45412 110.3575 542665.2424 5922981.317 

00021604901W40 53.22049 110.0867 560980.9436 5897187.764 

00021605103W40 53.39740 110.3839 540966.8985 5916655.758 

The reservoir property parameters used for association rule mining were basic 

petro-physical parameters of a reservoir that can be used to identify to describe the 

characteristics of a reservoir: cumulative porosity, cumulative pore volume, cumulative 

shale content, cumulative oil saturation, cumulative fluid mobility factor, and effective 

thickness.  
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The porosity influences the amount of trapped fluids and the rate at which the 

fluids flow during main production. A reservoir with higher porosity has more pore space 

to hold more fluid. The pore volume represents the portion of the pore volume of the 

main contributor and plays a major role in production performance. The shale content 

(volume of shale) is an indicator of reservoir quality. A lower shale content usually 

indicates a better caliber of reservoir. 

The oil saturation and effective thickness are also important parameters that 

contribute directly to reservoir reserves. In permeable formations, mud filtrate invades 

the formation and forms a zone during well drilling, which results in changes of 

resistivity along the horizontal zone. The fluid mobility factor is a parameter that denotes 

the variation of the resistivity. The cumulative porosity, cumulative pore volume, 

cumulative shale content, cumulative oil saturation, and fluid mobility factor can be 

calculated from the basic petro-physical parameters of samples in the net pay. Pay is a 

reservoir or portion of a reservoir that includes economically producible hydrocarbons, 

and the smaller portions of the gross pay that meet local criteria for pay are considered to 

be the net pay (Cai et al., 2014). 

Oil production is generally described by cumulative production and daily 

production. Due to different lengths in production performance, daily oil production data 

were used in this study. However, the daily production varied over time, increasing once 

production started, reaching and stabilizing at the peak production rate, and then 

declining to uneconomic levels.  
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To analyze the main features of production performance, a polynomial fitting 

curve of the daily production data that denoted production performance of the well was 

created. Three production parameters were used to characterize the fitting curve: peak 

value, effective life cycle and effective yield (Cai et al., 2014). As shown in Figure 4-2, 

the peak value is the highest value point of the curve. The effective life cycle is the time 

of the production fitting curve above a certain threshold, usually determined by a 

combination of factors including technical, political and economic factors. The effective 

yield is the cumulative production in the whole effective life cycle. In this paper, these 

three parameters are used to describe production performance for a well. The depth of 

pay zone was between 400 m and 700 m, and 4.5m3/d was used as the production rate 

threshold value. 

 

Figure 4-2 Three parameters used to characterize oil production performance of 

CHOPS wells 
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4.2 Data Transformation 

The essential preprocessing work before association rule mining is the transformation of 

the values of reservoir property and oil production performance parameters into a set of 

sub-ranges through discretization schemes. The reduction of detail in data results can 

make the mining process more efficient and the patterns more accessible.  

The values of the three yield performance parameters were clustered into four 

categories with the k-means algorithm. The clustering results are listed in Table 4-3. A 

one-dimensional self-organizing map was used to discretize the values of six other 

reservoir property parameters into four categories, as shown in Table 4-4. We use the 

self-organizing map and k-means techniques because they keep the distribution of the 

attributes and found rules can be more intuitive (Marco and Valentina, 2004). Therefore, 

in this case study, the self-organizing map was used to discretize the selected variables of 

each reservoir properties; and, the k-means technique was utilized for clustering the 

production data so that the clustered results could be explained easily by the cluster 

centroids. The k-means method is mainly influenced to the value of k. So it must be fixed 

in addition of the computation. For the self-organizing map, only the maximum number 

of desired intervals must be confirmed (Marco and Valentina, 2004).  

4.3 Association Rule Mining and Interesting Rule Filtering 

After data transformation, the association rule mining algorithm Apriori was applied on 

the data. This procedure resulted in rules that had support and confidence values greater 

than the specified thresholds. In this case study, the minimum support and confidence 
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values were set at 2% and 30%, respectively. The preprocessed data generated 3812 

association rules. Table 4-5 listed some of the discovered association rules. Reservoir 

engineers may not be interested in every association rule because it is more interesting for 

them to understand how reservoir properties influence the oil production. For example, 

the first rule in the table IF { Effective yield = 1 (0m3 ~ 104.3m3) } THEN { Effective 

thickness = 1 (0.4m ~ 3.5m) } meant that if the effective yield was between 0m3 ~ 

104.3m3 , then the effective thickness would be 0.4m ~ 3.5m. However, usually the oil 

production performance is caused by different factors.  Effective thickness is one of the 

reservoir properties, which is from the well log analysis. So, the rule did not represent the 

influence of reservoir properties on oil production and thus should be removed.  

Table 4-3 Discretization results of the oil production performance parameters 

Cluster 

No. 

Cluster centroids of k-means clustering 
No.  of 

wells 

Discretized 

value Effective yield Peak value 
Effective life 

cycle 

Cluster 1 0m3 ~ 104.3m3 
0.8m3/d ~ 

6.7m3/d 
0day ~ 8days 28 1 

Cluster 2 
104.3m3 ~ 

467.3m3 

6.7m3/d ~ 

8.2m3/d 

8days ~ 

25days 
30 2 

Cluster 3 
467.3m3 ~ 

808.2m3 

8.2m3/d ~ 

14.2m3/d 

25days ~ 

50days 
40 3 

Cluster 4 
808.2m3 ~ 

1452.9m3 

14.2m3/d ~ 

37.8m3/d 

50days ~ 

144days 
20 4 
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Table 4-4 Discretization results of the reservoir property parameters 

Cumulative porosity Cumulative pore volume 

Range Discretized value Range Discretized value 

1.1% ~ 10.8% 1 11.9 ~ 57.5 1 

10.9% ~ 17.4% 2 59.2 ~ 94.4 2 

17.5% ~ 25.2% 3 95.9 ~ 154.3 3 

25.3% ~ 38.5% 4 168.8 ~ 291.2 4 

Cumulative fluid mobility factor Cumulative oil saturation 

Range Discretized value Range Discretized value 

7.5 ~ 61.4 1 2.8% ~ 20.6% 1 

63.7 ~ 92.5 2 21.3% ~ 33.1% 2 

96.4 ~ 128.6 3 33.9% ~ 49.5% 3 

132.3 ~ 187.0 4 55.0% ~ 85.6% 4 

Cumulative shale content Effective thickness 

Range Discretized value Range Discretized value 

0.5% ~ 1.9% 1 0.4m ~ 3.5m 1 

1.9% ~ 2.9% 2 3.6m ~ 5.2m 2 

3.0% ~ 4.1% 3 5.3m ~ 7.1m 3 

4.2% ~ 6.2% 4 7.8m ~ 11.0m 4 

The next task for reservoir engineers is to find out the possibly interesting rules 

satisfying certain antecedent and consequence conditions from the original 3812 

association rules. As mentioned in the problem statement section, one of the objectives of 
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applying association rule mining is to discover the relationship between reservoir 

properties and production. So the interesting rules must at least represent the influence of 

the former on the latter.  For example, the second association rule in Table 4-5 is 

interesting and valuable; because it shows the relationship between reservoir properties 

and oil production, that is, if cumulative pore volume is between 11.9 and 57.5 then the 

effective yield would be 0m3~104.3m3. This kind of interesting rules with specific 

antecedents and consequences was screened out by the antecedent-consequence filter. 

For another example, we supposed a reservoir engineer who wants to study the 

influence of the reservoir property parameter, cumulative pore volume, on the oil 

production parameter, effective yield. By respectively setting cumulative pore volume 

and effective yield as the antecedent and consequence, the antecedent-consequence filter 

finds the interesting rules. Some of them were sorted and listed in Table 4-6. The rules 

reflect the quantitative relationship of cumulative pore volume and effective yield. The 

effective yield increases as the as the cumulative pore volume grows. The antecedent-

consequence filter undoubtedly effectively assisted in filtering out the interesting rules 

between reservoir properties and oil production and discovering quantitative relationship 

between the two and some hidden trends would be possibly discovered with domain 

knowledge from the interesting rule selected by the antecedent-consequence filter. 
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Table 4-5 Some discovered association rules 

No. Antecedent (IF) Consequence (THEN) Support Confidence 

1 
Effective yield = 1 

(0m3~104.3m3) 

Effective thickness = 1 (0.4m 

~ 3.5m) 

11% 

(13/118) 

83% 

(13/15) 

2 
Cumulative pore volume 

= 1 (11.9~57.5) 

Effective yield = 1 

(0m3~104.3m3) 

11% 

(13/118) 

83% 

(13/15) 

3 
Effective yield = 3 

(467.3m3 ~ 808.2m3) 

Effective thickness = 3 (0.4m 

~ 3.5m) 

11% 

(13/118) 

39% 

(13/33) 

4 
Cumulative oil saturation 

= 2 (21.3% ~ 33.1%) 

Effective yield = 1 

(0m3~104.3m3) 

15% 

(18/118) 

37% 

(18/49) 

5 
Cumulative pore volume 

= 1 (11.9~57.5) 

Effective yield = 1 

(0m3~104.3m3) 

11% 

(13/118) 

83% 

(13/15) 

6 
Effective yield = 4 

(808.2m3 ~ 1452.9m3) 

Cumulative mobility factor = 

4 (132.3 ~ 187.0) 

10% 

(12/118) 

34% 

(12/35) 

7 
Cumulative pore volume 

= 4 (168.8~291.2) 

Effective yield = 4 

(808.2m3~1452.9m3) 

6% 

(7/118) 

58% 

(7/12) 

8 
Cumulative shale content 

= 1 (0.5% ~ 1.9%) 

Effective yield = 

1(0m3~104.3m3) 

9% 

(11/118) 

26% 

(9/35) 

9 
Cumulative pore volume 

= 2 (59.2~94.4) 

Effective yield = 2 

(104.3m3~467.3m3) 

10% 

(12/118) 

64% 

(12/19) 

10 

Cumulative porosity = 3 

(17.5% ~ 25.2%) and  

Cumulative oil saturation 

= 3 (33.9% ~ 49.5%) 

Effective yield = 3 (467.3m3 ~ 

808.2m3) 

11% 

(13/118) 

38% 

(13/34) 
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Table 4-6 Some interesting rules related to cumulative pore volume and effective 

yield 

No. Antecedent (IF) Consequence (THEN) Support Confidence 

 1 
Cumulative pore volume = 1 

(11.9~57.5) 

Effective yield = 1 

(0m3~104.3m3)        

11% 

(13/118) 

83% 

(13/15) 

 2 
Cumulative pore volume = 2 

(59.2~94.4) 

Effective yield = 2 

(104.3m3~467.3m3) 

10% 

(12/118) 

64% 

(12/19) 

 3 
Cumulative pore volume = 3 

(95.9~154.3) 

Effective yield = 3 

(467.3m3~808.2m3) 

9% 

(10/118) 

82% 

(10/12) 

 4 
Cumulative pore volume = 4 

(168.8~291.2) 

Effective yield = 4 

(808.2m3~1452.9m3) 

6% 

(7/118) 

58% 

(7/12) 

On top of the antecedent-consequence filter, the well identifier filter further 

screened out the association rules by the identifiers of wells from the rules representing 

between reservoir properties and oil production. For example, with a well identifier 

(UWI) “100023604806W400”, the well identifier filter discovered the association rule IF 

{ cumulative pore volume = 4 (168.8 ~ 291.2) } THEN { effective yield = 4 (808.2m3 ~ 

1452.9m3) } from the rules representing the quantitative relationship of cumulative pore 

volume and effective yield such as the ones in Table 4-6. The records of the well in the 

database satisfied the rule. Combined with point-based geovisualization, the filter could 

help users find other rules that they were interested in. For instance, users could use the 

point-based geovisualization function on this rule to see where the other wells whose 

records in the database also satisfied this rule located and what the identifiers of the wells 
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were. Then the identifiers of the wells could be used iteratively as the inputs of the well 

identifier filter and resulted in more interesting rules.  

In addition to well identifier filter, the interesting rules could be extracted by 

selecting wells on the map with the well location filter. Suppose a reservoir engineer was 

interested in the association rules matching the wells located in the area shown in Figure 

4-3. There were 19 wells in the selected area. The well location filter found out two 

interesting rules (listed in Table 4-7) from the rules representing the quantitative 

relationship of cumulative pore volume and effective yield. The first rule IF {cumulative 

pore volume = 2 (59.2~94.4) } THEN { effective yield = 2 (104.3m3 ~ 467.3m3) } 

matched the wells, 100012805202W400 and 102082805202W400, in the selected area. 

The other rule IF { cumulative pore volume = 3 (95.9~154.3) } THEN { effective yield = 

3 (467.3m3 ~ 808.2m3) } whereas matched the wells, 102022205202W400 and 

102152805202W400 in the selected area. By the antecedent-consequence filter, the well 

location filter helped discover two association rules from the association rules listed in 

Table 4-7 representing the relationship between cumulative pore volume and effective 

yield discovered. On the other hand, the identifiers of the four wells discovered by the 

well location filter could also be iteratively reused as the inputs of the well identifier filter 

to find other interesting rules. The user could also further run point-based 

geovisualization on the rules discovered by the well identifier filter, to obtain the 

locations and identifiers of the other wells that also satisfied the rules. Applying the well 

identifier filter on identifiers of the wells would result in other possible interesting rules. 
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Figure 4-3 An area selected for running well location filter 

Table 4-7 Some interesting association rules discovered by the specific well locations 

UWIs 
Association rules 

Antecedent (IF) Consequence (THEN) 

100012805202W400 

102082805202W400 

Cumulative pore volume = 2 

(59.2~94.4) 

Effective yield = 2  

(104.3m3~467.3m3) 

102022205202W400 

102152805202W400 

Cumulative pore volume = 3 

(95.9~154.3) 

Effective yield = 3  

(467.3m3~808.2m3) 
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4.4 Geovisualization Results of Some Association Rules   

In this section, some interesting association rules discovered were visualized on the map 

by the proposed point- and surface-based geovisualization methods.  

4.4.1 Point-based Geovisualization Results and Interpretations 

Through an accessible map, the point-based geovisualization method for interesting 

association rules offers effective communication on the rules and the spatial distribution 

of the wells. For example, by association rule filters, reservoir engineers discovered the 

interesting association rule in Table 4-6: 

IF {cumulative pore volume = 168.8 ~ 291.2} THEN {effective yield = 808.2 m3 ~ 

1452.9 m3}. 

This association rule represented the relationship between the cumulative pore 

volume and the effective yield and indicated that high cumulative pore volume might 

cause high effective yield. Point-based geovisualization represented the relationship in 

terms of the wells, by demonstrating the association rule that suggested the relationship 

on the map with the locations of the wells.  

Firstly, the selected 118 CHOPS wells were classified into three classes based on 

the extent of satisfaction with the association rule: wells that had cumulative pore 

volumes and effective yields that satisfied the rule (totally satisfying the rule); wells that 

had cumulative pore volumes that satisfied the rule but had effective yields that did not 

satisfy the rule (partially satisfying the rule); and, wells that had cumulative pore volumes 

and effective yields that did not satisfy the rule (not satisfying the rule).  
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The corresponding visualization result in Figure 4-4 of the above association rule 

(i.e., the rule in Table 4-6) can be interpreted as follows. The locations of the three well 

classes were highlighted on the map using circle symbols with different colors: red, 

yellow and green respectively represented totally satisfying, partially satisfying and not 

satisfying the rule classifications. 

The point-based visualization result of the rule in Figure 4-4 shows that there 

were seven wells that totally satisfy the association rule, i.e., the cumulative pore volume 

values of the wells were in the range of 169.8 to 291.2 and the effective yield values of 

the wells fell into the range of 808.2 m3 to 1452.9 m3. Also, the wells were mainly 

distributed in the central east of the studied reservoir area (as shown in Figure 4-4 (a)). 

The point-based geovisualization bridged the association rule and the geospatial 

distribution patterns of the wells satisfying the rule. Note that the seven wells satisfying 

the rule were located close together (Figure 4-4 (a)). Reservoir engineers may further 

discover some other interesting rules satisfying the seven wells or nearby wells by 

inputting the identifiers of the wells into well identifier filter. It may also lead to further 

study of the reason for the geospatial distribution patterns of wells satisfying the rule.  
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Figure 4-4 Visualization of rule IF {cumulative pore volume = 168.8 ~ 291.2} THEN 

{effective yield = 808.2 m3 ~ 1452.9 m3} generated by point-based geovisualization 

4.4.2 Surface-based Geovisualization Results and Interpretations 

The potential areas where an interesting association rule may happen are very valuable 

for making predictions based on the patterns within the rule. Surface-based 

geovisualization can be used to predict and visualize the applicable areas for association 

rules discovered from the CHOPS well data.  

The following rule is used as an example to illustrate the process of the surface-

based geovisualization: 

IF {cumulative porosity = 25.3% ~ 38.5%} THEN {effective yield = 808.2 m3 ~ 1452.9 

m3}. 
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4.4.2.1 Spatial Dependence Analysis for Source CHOPS Data 

The first step of the surface-based geovisualization requires that the spatial dependence of 

cumulative porosity and effective yield in the rule be examined. Figure 4-5 shows the 

semi-variogram clouds of these two attributes in the CHOPS well data used by the case 

study. The semi-variogram clouds were generated in the directions of 37.62o and 91.25o, 

where spatial dependence of the attributes was the strongest.  

The semi-variogram clouds suggested that spatial dependence existed in the 

cumulative porosity and effective yield attributes of the 118 sample CHOPS wells, since 

the semi-variance increased as the distance increased, i.e., closer well pairs had more 

similar values for the cumulative porosity and effective yield than well pairs that were 

farther apart. 
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(a) 

 

(b) 

Figure 4-5 Semi-variogram clouds of (a) cumulative porosity and (b) effective yield 

of the CHOPS data 
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4.4.2.2 Surface-based Geovisualization based on Deterministic Spatial Interpolation 

Since the spatial dependence of the cumulative porosity and effective yield attributes held 

for the area of 118 CHOPS wells, deterministic spatial interpolation methods were used 

to build continuous applicable areas for association rules.  

The values of the cumulative porosity for the whole study area can be estimated 

using the corresponding known attribute values at nearby CHOPS wells by interpolation. 

Figure 4-6 (a) shows the gradient map of the cumulative porosity generated by applying 

the Spline interpolation on the source CHOPS well data. The applicable areas of the 

antecedent of the rule, i.e., cumulative porosity = 25.3% ~ 38.5%, were extracted from 

the gradient map according to the corresponding discretization results in Table 4-4 and 

indicated using the green color as shown in Figure 4-6  (b). Similarly, the gradient map of 

the effective yield and the applicable areas of the consequence of the rule, i.e., effective 

yield = 808.2 m3 ~ 1452.9 m3, were extracted and indicated by the red color, as shown in 

Figure 4-6 (c) and Figure 4-6 (d).  

Finally, the prediction map of the rule can be obtained by overlaying the 

applicable areas of cumulative porosity = 25.3% ~ 38.5% and effective yield = 808.2 m3 

~ 1452.9m3, as shown in Figure 4-6 (e). The predicted areas where the rule may be 

applied or occur are located in the central northeast of the studied reservoir area within 

the black barrier denoted by oblique lines.  
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(a) Gradient map of cumulative porosity with Spline interpolation 

 

(b) Prediction map of cumulative porosity from 25.3% ~ 38.5% 
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(c) Gradient map of effective yield with Spline interpolation 

 

(d) Prediction map of effective yield from 808.2 m3 ~ 1452.9 m3 
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(e) Final prediction map of the rule 

Figure 4-6 Surface-based geovisualization based on Spline interpolation of IF 

{cumulative porosity = 25.3% ~ 38.5%} THEN {effective yield = 808.2 m3 ~ 1452.9 

m3}. 

Figures 4-7 and Figures 4-8 show the process of surface-based geovisualization of 

the same rule IF {cumulative porosity = 25.3% ~ 38.5%} THEN {effective yield = 808.2 

m3 ~ 1452.9 m3}, based on two other deterministic spatial interpolation methods – 

Inverse Distance Weighting (IDW) and Trend methods. 
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(a) Gradient map of cumulative porosity with IDW interpolation 

 

(b) Prediction map of cumulative porosity from 25.3% ~ 38.5% 
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(c) Gradient map of effective yield with IDW interpolation 

 

(d) Prediction map of effective yield from 808.2 m3 ~ 1452.9 m3 
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(e) Final prediction map of the rule 

Figure 4-7 Surface-based geovisualization based on IDW interpolation of IF 

{cumulative porosity = 25.3% ~ 38.5%} THEN {effective yield = 808.2 m3 ~ 1452.9 

m3}. 
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(a) Gradient map of cumulative porosity with Trend interpolation 

 

(b) Prediction map of cumulative porosity from 25.3% ~ 38.5% 
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(c) Gradient map of effective yield with Trend interpolation 

 

(d) Prediction map of effective yield from 808.2 m3 ~ 1452.9 m3 
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(e) Final prediction map of the rule 

Figure 4-8 Surface-based geovisualization based on Trend interpolation of IF 

{cumulative porosity = 25.3% ~ 38.5%} THEN {effective yield = 808.2 m3 ~ 1452.9 

m3}. 

All the maps clearly displayed the locations of the continuous applicable areas of 

the association rule. However, a comparison of the prediction maps generated by the 

three different deterministic spatial interpolation methods shown in Figures 4-6(e), Figure 

4-7(e) and Figure 4-8(e) indicated that the three techniques built different applicable 

areas for the rule based on the CHOPS well data. Therefore, the quality of deterministic 

spatial interpolation results in the prediction maps was assessed in a follow-up validation 

procedure. In the procedure, the estimated attribute values were compared with the 
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residual attribute values of sampling CHOPS wells to validate the precision of 

interpolation.  

Cross-validation is one of most common validation approaches. During the cross-

validation for the interpolation results of an attribute in the CHOPS well data, one of the 

118 sample wells was left out each time. An estimated value of the attribute for this well 

was derived using the values of the same attribute of all the other sample wells. This 

procedure was repeated until a value was estimated for all of the original sample wells.  

Table 4-8 lists the interpolation qualities of the three used methods. According to 

the CHOPS well data in the case study, the cumulative porosity ranged from 1.1% to 

35.0%; and, the effective yield ranged from 0 m3 to 1452.9 m3. IDW provided the most 

accurate interpolation of the two attributes based on the validation method. As shown in 

Table 4-8, the root mean squared error (RMSE) values of the two attributes using the 

IDW method were the lowest, i.e., 4.8% and 325.4 m3, respectively. Please note that, in 

the Trend method, the estimated value of a location directly decided by the values of its 

neighbor control points was fixed and exact.  

Cross-validation could only assess the overall the interpolation quality for the 

whole studied area. Thus, if the locations to be estimated were in data-poor areas (e.g., 

the central part between 110o40'W and 110o30'W of the studied areas in Figure 5), the 

accuracy of their estimated values was difficult to determine with the cross-validation 

results.  

One feasible option is the use of stochastic interpolation methods, in which all the 

interpolated values can be evaluated by the errors with estimated values. The quality of 
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the interpolated points, especially the ones in data-poor areas, can be assessed by the 

evaluation methods provided by stochastic interpolation methods. 

Table 4-8 Cross-validation of the deterministic interpolation results 

                       Items 

Interpolation          

Cumulative porosity (1.1%~35.0%) Effective yield (0m3~1452.9m3) 

Estimated value range  RMSE Estimated value range RMSE 

Spline 5.9%~39.6% 6.9% 2.0m3~1459.6m3 520.4m3 

IDW 6.8%~32.3% 4.8% 7.2m3~969.1m3 325.4m3 

Trend 4.5%~40.9% 11.6% 5.6m3~1390.5m3 406.3m3 

4.4.2.3 Surface-based Geovisualization based on Stochastic Spatial Interpolation 

The same example was used to illustrate the process of surface-based geovisualization 

based on a stochastic spatial interpolation method, i.e., Kriging interpolation. The process 

of generating continuous applicable areas for the rule by stochastic spatial interpolation is 

similar to that using deterministic interpolation.  

The gradient maps of the cumulative porosity and effective yield attributes were 

first generated by the Kriging method, as the spatial dependence of the two attributes was 

found to hold for the studied area in Section 4.4.2.1. The values of the attributes for the 

whole study area were also estimated with interpolation using the corresponding known 

attribute values at nearby CHOPS wells.  

The applicable areas with cumulative porosity between 25.3% and 38.5% and 

effective yield between 808.2 m3 and 1452.9 m3 were extracted from the gradient 

cumulative porosity and effective yield maps and indicated using green and red colors. 

Through the overlaying of the applicable areas of the two attributes, the final prediction 
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map of the association rule, i.e., IF {cumulative porosity = 25.3% ~ 38.5%} THEN 

{effective yield = 808.2 m3 ~ 1452.9 m3}, was obtained, as shown in Figure 4-9. 

 

Figure 4-9 Prediction map generated by surface-based geovisualization based on 

Kriging interpolation 

Geovisualization results based on stochastic spatial interpolation can be assessed 

using errors of the estimated values. The Kriging method provides evaluation methods 

for the estimated values in the form of prediction standard errors. Figure 4-10 shows the 

prediction error maps for the interpolation results of the cumulative porosity and effective 

yield attributes. Unlike cross-validation with deterministic spatial interpolation, the 

prediction error maps from stochastic spatial interpolation can be utilized to evaluate the 

reliability of the interpolation (or geovisualization) results of the attributes at any 
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location. For example, the regions with the deepest blue color in Figure 4-10(a) represent 

the areas where the highest prediction error range of the cumulative porosity (5.87 ~ 

7.52) occurred. It is also easy to observe that the locations were mainly in the central 

areas of the map, due to deficiency of the sample data.  

Furthermore, when the two prediction error maps in Figure 4-10 were combined 

with the prediction map of the association rule in Figure 4-9, it could be determined that 

the predicted applicable areas of the association rule (central east part of the studied area) 

were relatively reliable, since the two error prediction maps together suggested that 

prediction errors of the cumulative porosity and effective yield attributes were both 

relatively low in the predicted applicable areas. Such exploratory information from 

surface-based geovisualization can guide reservoir engineers or other users in making 

predictions. 
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(a) 

 
(b) 

Figure 4-10 Prediction error maps of (a) the antecedent item of the rule (cumulative 

porosity) and (b) the consequence item of the rule (effective yield) 
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4.5 Summary 

This chapter presented a case study conducted on a real CHOPS well dataset for the 

Lloydminster heavy oil block in Alberta, Canada. It starts by selecting CHOPS wells 

from the Lloydminster heavy oil block in Alberta and collecting the data of the wells 

from Divestco. Then in Section 4.2 the values of the reservoir property and oil production 

performance parameters in the collected source data were discretized to make the process 

of association rule mining efficient and association rules more accessible. In Section 4.3, 

by antecedent, consequence and wells conditions, the proposed association rule filters 

successfully helped in discovering interesting rules from a large number of rules after 

association rule mining. 

In Section 4.4, the proposed point- and surface-based geovisualization methods 

used on the association rules were described. To illustrate the process of the 

geovisualization methods, some interesting rules discovered by the rule filters in Section 

4.3 were selected as examples. The preliminary findings are very encouraging and show 

the feasibility of the visualization methods. The visualization of an interesting rule by the 

point-based geovisualization method shows that the method can effectively allow the 

interesting rule to be connected with the wells on the map and hidden distribution 

patterns of the wells related to the rule to be identified. In addition, surface-based 

geovisualization was carried out on another interesting rule respectively based on 

deterministic and stochastic spatial interpolation. All the visualizations (in form of 

prediction maps) of the association rule clearly displayed the locations of the continuous 

applicable areas of the rule. The prediction maps generated by the three different 
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deterministic spatial interpolation methods were compared and analyzed. The quality of 

deterministic spatial interpolation results in the prediction maps was assessed in a 

validation procedure. However, the accuracy of their estimated values was difficult to 

determine in data poor area. Surface-based geovisualization method by stochastic 

interpolation solved this problem by providing errors of the estimated values. Prediction 

error maps assessed the quality of the interpolated points (wells), especially the ones in 

data-poor areas. 
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Chapter Five: Conclusions and Future Work 

This chapter draws conclusions from this thesis and provides suggestions for future work.  

5.1 Conclusions 

The thesis mainly investigates association rule mining with filters and visualizing 

interesting rules in CHOPS well data. 

 Through the discovery of association rules between reservoir properties and oil 

production performance from CHOPS well data over the years, association rule mining is 

an effective approach to understand and enhance oil recovery. However, mining 

association rules in CHOPS well data always generates a large number of found rules so 

that reservoir engineers have to go through all the rules and manually discover the rules 

that they are interested in. As a solution, three association rule filters are proposed 

according to the characteristics of interesting rules in CHOPS well data.  

The association rules between reservoir properties and oil production are of 

interest to reservoir engineers who wish to study how reservoir properties contribute the 

oil recovery of CHOPS wells. The antecedent-consequence filter screens out this type of 

interesting rules by limiting the antecedent as reservoir property parameters and the 

consequence as oil production parameters before the association rules are generated from 

frequent itemsets. It improves the traditional item constraints in the form of regular 

expressions by further limiting the internal structure (antecedent and consequence) of 

generated association rules. 
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Another factor determining the interestingness of association rules in CHOPS 

well data is the wells related to the rules. In practice, reservoir engineers may only want a 

subset of the association rules between reservoir properties and oil production, which 

match some wells. Therefore, on top of the antecedent-consequence filter, we provide 

well identifier filter and well location filter for specially extracting association rules by 

oil wells. After the association rules between reservoir properties and oil production are 

discovered, as optional filters, the well identifier filter facilitates the search of the rules by 

well identifiers; whereas the well location filter outputs the rules by interactively 

selecting oil wells in the map interface. Compared with the traditional regular expression 

constraints, the well identifier and well location filter take spatial objects into account and 

extract interesting rules by restricting external spatial objects (oil wells) relevant to 

association rules.  

Visualization can make interesting association rules more accessible and allow 

hidden knowledge behind the rules to be identified. In spite of the enormous advances 

that have been made in visualizing the patterns included by association rules over recent 

years, a neglected aspect so far is the spatial objects such as oil wells related to the rules.  

In response, this thesis proposes two geovisualization methods, point- and 

surface-based geovisualization, which aim to bridge the gap between the interesting rules 

and wells and to predict the applicable areas for the rules. The association rules mined in 

CHOPS well data are different with the rule in transaction data, because their valuable 

information is not only reflected by the included patterns, but also hidden behind the 

locations of the wells related to them. The point-based geovisualization method helps 

identify the geospatial distribution patterns of the wells associated with association rules 
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by using different symbols to show the locations of wells depending on their relationship 

with association rules in CHOPS well data.  

Combined with spatial interpolation, the surface-based geovisualization constructs 

and visualizes the application areas for association rules. The spatial interpolation is only 

meaningful when it comes to the data with spatial dependence. Thus the premise of 

surface-based geovisualization is that spatial dependence exists in the attributes appearing 

in the target association rule. The thesis illustrates and provides preliminary exploration 

of deterministic or stochastic spatial interpolation methods that may be of enormous 

value for predicting and visualizing the application areas of association rule items. A 

prediction map of interesting rule obtained by overlaying the built application areas 

allows the uncovering of certain application areas and helps reservoir engineers outline 

further strategy in advanced data analysis. 

The proposed methods were implemented in the form of a system prototype 

named CHOPSData-GeoViz to efficiently mine and visualize association rules in CHOPS 

well data. Using an available dataset in western Alberta, Canada, a case study was carried 

out and the first results have been very encouraging. The outputted association rules in 

CHOPS well data could be effectively customized according to the requirements of users. 

The hidden distribution patterns of wells and application areas related to the interesting 

rules were visualized on the map and they were identified clearly and easily without GIS 

or other expertise.  

5.2 Future Work 

Several extensions to this thesis are suggested and listed as follows.  
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1. The data will be extended to larger datasets with more reservoir properties, such 

as pressure and fluid property, and operational records, such as oil sand production 

records; 

2. The proposed point- and surface-based geovisualization methods will be further 

improved. For point-based geovisualization, more appropriate and sophisticated 

symbology will be explored for representing the geospatial distribution of the wells 

related to the association rules. In surface-based geovisualization, the influences of 

spatial direction and distance on the process of spatial dependence examination of 

larger oil datasets will be studied. Also, the proposed point- and surface-based 

geovisualization methods can currently only be applied to a single rule; therefore, the 

methods will be extended to multiple rules; 

3. The graphical user interface of the system prototype, CHOPSData-GeoViz, will 

be improved by using more user-friendly visualization options such as the point- and 

surface-based geovisualization functions for multiple rules. Also, the CHOPSData-

GeoViz system of web version will be developed using ArcGIS API for JavaScript 

and ArcGIS Server 10.0.  

http://dict.youdao.com/w/influence/
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