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Abstract 

Microelectromechanical Systems (MEMS) are devices manufactured using existing integrated cir-

cuit (IC) technologies. By using IC based technologies, designers can create micron scale me-

chanical devices with new capabilities as well extending the utility of integrated circuits by aflow-

ing integration of sensors, electronics and actuators on the same die. MEMS technology is now 

established in some industries, especially the automotive industry where pressure sensors and ac-

celerometers have been used for more than a decade. Recently, there has been a surge of interest 

in biomedical applications of MEMS, also known as Bio-MEMS. 

In this work, a MEMS-based precise mass sensor for biomedical applications is proposed. 

The mass sensor, with proper surface treatment, can be used to detect the presence of bioparticles 

of interest such as bacteria or viruses. The sensor is based on a micron scale cantilever beam 

operating in a dynamic mode. The natural frequency of the cantilever depends on its mass and 

therefore when the beam is loaded, the frequency shift can be used to determine how much mass 

sX'as added. Electrostatic actuation is used to oscillate the cantilever to ensure that the displacement 

of the beam is above the thermal noise floor. 

Extensive modeling and simulation of the damping phenomenon, electrostatic actuation, modal 

analysis and reduced order modeling..are performed. It is shown that the second mode of vibration 

is better in terms of reduced damping and sensitivity to precise location of the mass on the beam. 

Finite element simulations for the different domains carried out using ANSYS and extracted re-

duced order model code in VHDL-AMS was generated. Parameters froth the VHDL-AMS code 
S 

were used in a system simulator Simulink to demonstrate the advantage of using feedback to con-

trol damping. 
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Chapter 1 

Introduction 

Recently, there has been a growing interest in the implementation of integrated sampling, analysis, 

and detection of biological particles, also known as Lab-on..a-chip. The idea is to integrate and 

automate all or most of the tasks conventionally performed by different people and equipment 

in a biological laboratory. This integration will have a significant impact on the productivity of 

biomedical practitioners by reducing the time required to process samples [4]. On top of integration 

and automation, miniaturization using batch fabrication techniques will also reduce the cost of 

devices allowing disposable devices to be more practical [4] [5]. 

Figure 1.1 shows a general overview of a Lab-on-a-chip [4] which generally consists of dif-

ferent ports for insertion of samples, buffers, and reagents [6] [7]. The first port is for sample 

injection. After mixing the sample with the required buffers and reagents, the result is collected in 

the sample channel where there is a relatively large chamber. Several sensing or diagnostic tests 

can be performed in this chamber depending on the sample. Once sensing is done, the sample can 

be separated using a separation buffer for further processing. Even though Figure 1.1 illustrates 

the mixing and separation done chemically (by using buffers), these tasks can also be performed 

by other means such as microfluidic or electrostatic based. 

Much research is going on in different aspects of separation and sensing. Electrokinetics tech-

niques, whereby alternating electric fields are used to manipulate biological particles, are well 

established in terms of separation because different biological particles have different electric field 

responses [8]. Sensing techniques can be implemented in a variety of domains including chemical, 

optical, electrical, biological, and mechanical [9]. For detection, optical and electrical probing 

can be used to identify a bioparticle of interest which has a unique optical or electrical response, 
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1 Sample Dilution 3 Chemical 
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Figure 1.1: A general overview of a Lab-on-a-chip device. 

respectively. Alternatively, by combining chemical selectivity and mechanical characteristics of 

structures, very sensitive detection methods can be implemented. An area of sensor design with 

a lot of potential is the microelectromec hail ical systems (MEMS) area and, more recently, nano-

electromechanical systems (NEMS) [10]. The following section gives an overview of the MEMS 

field and also describes the more specific area of biomedical MEMS, more commonly known as 

Bio-MEMS. 

1.1 MEMS and Blo-MEMS 

Originally, the term MEMS represented systems which integrate mechanical and electrical com-

ponents at the micron scale. However, more recently, all micron scale systems that are not purely 

electrical are called MEMS. Many physical domains have been explored, including fluidic, ther-

mal, optical, and magnetic. Even though microsystems may be a more appropriate term, MEMS 

has stuck in the academic as well as industrial literature, especially in North America. 

MEMS are made by using modified integrated circuit (IC) manufacturing techniques. These 

techniques allow for large economies of scale for volume manufacturing - a phenomenon which 

has led to the proliferation of microelectronics. Another advantage of using IC-based fabrication 

techniques is the ability to integrate the non-electrical portions of the system to the electronics re-
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quired for signal processing. Being able to create miniature transducers with electronics integrated 

on the same chip allows for a much more dynamic range in our measurement abilities. The smaller 

sensors are able to detect much smaller signals, while the integrated electronics reduce the stray 

noise usually associated with long interconnects. 

There are two main ways of manufacturing MEMS, even though the differences are becoming 

blurry because of advances in the fabrication techniques. The first method is known as bulk micro-

machining [11]. In bulk micromachining, the process starts with a Silicon wafer and the structures 

are made by etching into the wafer. This process has the advantage of being able to create relatively 

large structures, which are sometimes needed to overcome thermal noise. However, the designer is 

limited in the shape of the structures that can be made. The alternative technique is known as sur-

face micromachining [12]. In this method, the substrate is used only as a platform and thin films of 

other materials are deposited on top of it. The thickness of the film is limited; hence, the structures 

that can be made are smaller than those made using bulk micromachining. On the positive side, 

this technique is easier to integrate with IC fabrication. 

MEMS is well established in some industries especially in the automotive industry with prod-

ucts like pressure sensors used in car tires and accelerometers used for airbag deployment. More 

lately, research in Bio-MEMS has gained a lot of attention. A variety of micron scale devices for in 

vitro and in vivo applications have been developed [13]. The majority of these applications are sen-

sors with some actuators used for blood sampling, drug delivery, and micro surgery. Bio-MEMS 

brings out unique challenges especially in packaging and operation of dynamic sensors because 

the environments are usually fluidic in nature. This environment requires novel materials to be 

used to increase the sensors' reliability and also novel system level techniques to ensure the oper-

ation of dynamic sensors does not suffer because of the environment. To allow for proper system 

level design, modeling techniques are required to provide the link between the purely mechanical 

devices and the rest of the system. MEMS modeling techniques is an intensive research area, and 

the following section provides a brief overview of the modeling techniques and the challenges that 
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come with them. 

1.2 MEMS Modelling and Simulation 

As mentioned previously, MEMS manufacturing techniques have been advancing rapidly. With 

this advance, there have been new devices, applications, and markets. However, the MEMS design 

tools have not been able to advance at the same pace because of the complexity in modelling 

MEMS devices [11, [14]. Since by definition MEMS devices involve more than one physical 

domain, it is very complex to develop accurate mathematical models that can be easily used by a 

system level designer. To demonstrate the importance of system level models, consider Figure 1.2 

which shows a die of a microfabricated silicon accelerometer [1]. The device designers created 

mask layouts that were then passed on to process engineers who converted the mask designs into a 

fabricated mechanical structure. 

Figure 1.2: SEM image of a Silicon accelerometer Ill. 



No 
Mechanical domain 

5 

The stand-alone mechanical structure as shown is not very useful because conditioning and 

signal processing circuits are required to properly extract the acceleration signal and to control the 

mechanical structure using feedback techniques. To design the overall system properly, a system 

designer needs a model that accurately represents the device that can be inserted into a system level 

simulator and connected to other system elements as shown in Figure 1.3. 

Electrical domain 

Drive and 
Feedback 
Control 
Circuit 

1/k 

Figure 1.3: system level model of the accelerometer on the right hand side connected to feedback 
and amplification electronics [1]. 

To get a better perspective on the modeling aspect of MEMS, it is useful to compare it to the hi-

erarchical IC design. For IC design, different practitioners view the system at different abstraction 

levels. For example, a digital systems designer deals with pre-built libraries of digital components 

such as adders and multipliers. A digital circuit designer builds the adders and multipliers using 

lower level digital circuits like gates and flip-flops. An analog circuit designer is needed to work 

at the transistor level to design the gates; finally a solid state physicist works at the device level 

designing and optimizing transistors. At the bottom of this hierarchy, a process engineer is re-

quired to design the fabrication process and do mask design. The biggest factor in the proliferation 

of microelectronics is the development of modeling tools so that the designers at the system level 

(digital system designer in this case) do not have to worry about the lower level functioning of the 
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system components. With MEMS, significant efforts have been devoted to mimic this hierarchical 

design structure, but the existing tools have a long way to go. 

Figure 1.4 shows the equivalent hierarchy for MEMS design [1]. At the process level, the 

process engineer uses technology specific simulators (TCAD) to design and optimize the process 

flow. The process information is then used to generate three-dimensional models of the structures 

to be built. These 3-D models are inserted into 3-D simulators which generally solve partial differ-

ential equations (PDE) governing the physical phenomena of interest. Different techniques exist 

to use the output of the 3-D simulators to generate macro-models or reduced order models (ROM). 

Ideally, ROMs are accurate representations of the 3-D models but with very few degrees of free-

dom. The use of ROMs enables complex simulations to be performed without the need for huge 

computational resources that a fully fledged 3-D simulation will require. Finally, ROMs can be 

inserted into system level simulators for complete system design and optimization. For maximum 

productivity, these different levels have to be used by different engineers with easy interfacing be-

tween them. Most MEMS designers today have to move up and down the hierarchy and concern 

themselves with different aspects of the system, components, device, and process issues. This 

makes the design process very costly as each new MEMS design has to start from scratch. 

System-Level: 
Lumped Networks 

ODE's 
Device Level--
Energy-Based 
Macro-Models 

Physical Level: 
3-D Simulation 

PDE's 

Process Level: 
TCAD 

Figure 1.4: Modelling abstraction levels for different MEMS practitioners. 
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This research focuses on extracting RUMs from a 3-D model representing multiple physical 

domains. The designed structure is a dynamic cantilever beam for precise mass measurement of 

micro-scale to nano-scale objects. Electrostatic actuation is used to drive the cantilever, which 

is immersed in a viscous fluid. The modeling requires coupling of electrostatic and structural 

domains for the actuation, and structural and fluidic domains for the viscous damping of the can-

tilever beam. The extracted ROMs are compared to first-order analytical approximations, which 

are described in Chapter 2. Then, the RUMs are used in a system level simulator to design an en-

hanced sensor with increased mass measurement sensitivity. The following section gives a detailed 

overview of the mass measurement device. 

1.3 Mass Measurement by Resonating Structures 

Resonant cantilever beam structures are one of the simplest structures that can be fabricated with 

Microelectromechanical Systems (MEMS) or Nanoelectromechanical Systems (NEMS) technol-

ogy, and they have been used for different sensing applications [15] [10]. The dynamic cantilever 

parameters (frequency or amplitude) can be modulated by a signal of interest. The sensitivity of 

these sensors depends on the size of the cantilever beam and the resolution of the parameter being 

measured (for example, the resolution of frequency change discrimination for frequency modu-

lated sensors as shown in Figure 1.5). Precise mass measurement has been studied using resonant 

MEMS cantilever beams, but the resolution drops dramatically once the beams are in viscous flu-

idic environments [16] [17]. Viscosity has a big impact on the quality (Q) factor of the resonating 

cantilever beam. The smaller the Q factor, the broader the frequency response as shown in Figure 

1.6. It is apparent that this reduction in Q factor results in lower frequency shift discrimination. 

Hence, this mass measurement method has been demonstrated successfully only in air or vacuums 

[18] [19]. 



0 so silo U ng Conlie ye, Beam 

8 

5sec,lo Bsopa,I,cles AI,,(I 
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Figure 1.5: When mass of a vibrating cantilever beam changes, the resonant frequency shifts by 

f. By measuring this frequency shift, the mass of the bioparticles on the beam can be determined. 

High Q Factor 

Low Q Factor 

Frequency 

Figure 1.6: Decrease in the quality factor due to viscous damping produces a broader frequency 

response. The minimum value of Af that can be detected is significantly reduced. 



9 

A method to control the Q factor using feedback was suggested a few years back [20], and it 

has been successfully used in atomic force microscope (AFM) cantilevers to increase their scan-

ning speed in fluidic media [21] [22], because a higher Q implies a higher amount of energy is 

concentrated at the frequency of interest which implies slower scanning. It has also been used as 

a sensitive viscosity sensor [23] because Q and viscosity are related. The purpose of this thesis is 

to model a Q control method for precise mass measurement in fluidic environment. Q control will 

allow the detection of bioparticles to be performed in the native fluidic environment rather than in 

artificial environments like air or vacuum. With the problem of frequency shift resolution mini-

mized, the sensitivity of the measurement method depends only on the size of the cantilever beam. 

With current cutting edge fabrication technologies (such as electron beam lithography), beams 

small enough to detect single biomolecules in their native fluidic environment can be fabricated 

[24]. 

1.4 Thesis Outline 

Chapter 2 gives an analytical background on the different governing physical principles. The first 

section describes the vibrations of a cantilever beam. The governing PDE for the cantilever vibra-

tion is derived. Once the PDE is obtained, a technique for discretizing the PDE, known as normal 

coordinate transformation, is then described. This method is, helpful in understanding the ROM 

extraction technique to be described later. A useful relationship for approximating the resonant 

frequency of a cantilever beam is then derived using energy methods. The following section dis-

cusses electrostatic actuation using the parallel plate capacitance. The relationships obtained give 

insights into the behavior of the structure, especially the pull-in phenomenon. Damping is a key 

parameter for this work and hence different reasons as to why damping arises are explored. Some 

analytical models for viscous damping are also described. The final section of Chapter 2 details a 

technique to reduce viscous damping using the velocity feedback technique. 
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Chapter 3 gives a detailed description of a popular numerical method known as the finite el-

ement method (FEM). This background is a prerequisite for intelligent use of FEM packages. A 

commercial FEM package, ANSYS, is used for this research because of its flexibility and support 

for multi-domain simulations. A brief overview of the ANSYS package is provided. The rest of 

the chapter gives a comprehensive account of the numerical simulations performed for the vibrat-

ing cantilever beam in a viscous environment and a comparison of the results with the analytical 

relationships provided in Chapter 2. 

Chapter 4 discusses system level modeling and simulation of the cantilever sensor. The ROM 

technique mentioned previously is explained in detail. Then, the element in ANSYS that supports 

ROM extraction is described. This element allows for VHDL-AMS code export, which can be used 

in system level simulators. The ROM element is used within ANSYS to perform damped harmonic 

analysis. The results are compared to a full FEM simulation and are found to be very close despite 

the fact that the FEM simulation takes much longer to complete. The lumped parameters from the 

VHDL-AMS code were then used in a Simulink simulator to design a feedback control to reduce 

damping. The last section of chapter 4 discusses the importance of experimental verification and 

different measurement techniques for dynamic MEMS. 

'The final chapter concludes the thesis and provides some guidelines for potential future work. 



Chapter 2 

Analytical Background 

This chapter provides the analytical framework for the modeling of the cantilever beam sensor. 

Most of the physical phenomena are governed by partial differential equations (PDE) and their 

associated boundary and initial conditions. Even though, for most cases, the PDEs have no closed 

form solutions, it is useful to understand their derivation and approximate analytical solutions 

as these provide insight on the phenomena. For more accurate results, numerical methods are 

required, as discussed in Chapter 3. 

2.1 Cantilever Beam Vibration 

This section first derives the governing PDE for cantilever vibrations. Once the PDE is obtained, a 

discretization technique using nqrmal coordinate transformations is described. Finally, an approx-

imation technique to determine the cantilever resonant frequency is developed. 

2.1.1 Governing Partial Differential Equation 

To formulate the continuum equation of motion for a cantilever beam, consider a uniform beam, 

shown in Figure 2.1 [25]. The beam has length L, width w, thickness T, mass m and flexural 

stiffness 'yl where 'y is the Young's modulus and I is the moment of inertia. The general force p is 

applied and acts in the z direction, perpendicular to the axial axis of the beam. The derived equation 

is the same for different end-support boundary conditions. The cantilever beam is a special case 

with one end free and the other fixed. 

The governing equation of motion of the beam can be derived by considering the equilibrium 

of forces and moments acting on a differential segment of the beam dx shown in Figure 2.1 and 

11 
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P 

1111111 1 
 dx 

Figure 2.1: Uniform beam subjected to dynamic loading per unit length p. 

magnified in Figure 2.2. Summing all the forces acting vertically as shown in Figure 2.2, we have 

V+pdx— — fdx=O (2.1) 
' a ,i 

where V represents the internal shear force of the beam section and fi is the transverse force per 

unit length. 

V 

r 
\ 

M 

f 

4  

P 

dx 

V+dV 

M+dM 

Iz 

x 

Figure 2.2: Forces and moments acting on a differential element dx. 

But the inertial force is a product of the differential mass and the local acceleration 

fdx = mdx 6t 2 

Substituting Equation 2.2 into Equation 2.1 and simplifying, we obtain 

(2.2) 
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a  a2z 
(2.3) 

The moment equilibrium relationship is obtained by summing the moments about the elastic 

axis at the right edge giving 

This equation simplifies to 

M+Vdx— =0 
aX I 

am 

ax 

(2.4) 

(2.5) 

Note that the inertial forces do not contribute to the case of moment equilibrium. Differentiat-

ing Equation 2.5 with respect to x and substituting into Equation 2.3, we obtain 

52M a2z 
-- +m =p (2.6) 

For small angles of beam deflection, the moment is related to the second derivative of z (cur-

vature) as [26J 

(2.7) 

Substituting Equation 2.7 into 2.6, we obtain a fourth order partial differential equation (PDE) 

in z governing the motion of a uniform beam 

a2 / a2 092Z'-i) + m = (2.8) 

Equation 2.8 does not take into account the mechanisms which absorb energy from the structure 

during its dynamic response. The main mechanism of interest to this work is viscous damping, 

which to the first order is proportional to the velocity of the beam. If we represent the viscous 

force by fD given by 
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fD=c Oz 
ä 

(2.9) 

where the proportionality constant c is known as the damping factor, then we can rewrite Equation 

2.3 with this extra force term 

Incorporating the damping term into the governing equation, we have 

02 ( 02z'\ 02z 5z 

-j 'Yf — ) + m + cTt  = p 

(2.10) 

(2.11) 

Equation 2.11 cannot be easily analyzed in its continuous form. A discretization method which 

expresses the equation in different modes allows a more insightful analysis. This method will be 

described next. 

2.1.2 Discretization Using Normal Coordinate Transformation 

To be able to express the governing PDE into a discrete form, we need to introduce the concept 

of a normal coordinate transformation. The continuous displacement z in Equation 2.11 can be 

expressed as a sum of different modes where each mode z is given by 

Z. = (2.12) 

where I is the n" mode shape function and Y, is the n1h modal amplitude. The mode shape 

functions are basis functions and serve the same purpose as the trigonometric functions in a Fourier 

series expansion with similar advantages - that is, they are orthogonal functions and also they 

describe the displacements efficiently so that only a few terms are required to provide a good 

approximation [25]. The total displacement z is obtained by summing up the modal components 
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nYn 
n=1 

(2.13) 

In this equation, it can be seen that the shape function serves to transform from the dis-

crete coordinates Y,- to the continuous coordinates z. This is usually called normal-coordinate 

transformation [25]. 

Now, applying the transformation to the PDE of Equation 2.11, we obtain 

00  d 2 I d2 1 00 CO 

[I-_-j Y(t) + m(I)(x)(t) + c(I)(x)(t) = p(x, t) (2.14) 
i=1 

where the dot notation for the Y variable indicates a differentiation with respect to time. Multiply-

ing by and integrating with respect to x over the length £ of the beam, we get 

00 L. d2 r d2D1 00 Yi (t) I -- 'I--- x2 dX2 jdx+E (t)fL m(x)dx 
i=1 

00 £ £ 

+ t) fo c(x)dx = fo (I?1p(x,t)dx (2.15) 

Two orthogonality conditions related to mass and stiffness properties can be used to simplify 

this equation [25]. The orthogonality conditions are for two mode shape functions m and 

where the frequencies of the two modes are different. The mass related orthogonality condition is 

/ mdx = 0 
Jo 

and the stiffness related orthogonality condition is 

(2.16) 

£  
L d2 r d21' mj d2] dx = 0 (2.17) 

Note that these conditions imply that for the two integrals in Equations 2.16 and 2.17, the only 

non-zero value occurs when the frequencies of the two mode shape functions are the same, i.e. 

when "m = . For viscous damping, c is proportional to the mass of the beam and we can write 
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c=a0m (2.18) 

and hence the mass orthogonality condition of Equation 2.16 applies. Applying the orthogonality 

conditions to Equation 2.15, the summations vanishes except when the mode shape functions have 

the same frequencies to obtain 

fo 
L ffo) 

L 

Y(t) m(I)(x)dx + Y(t)ao  mI)(x)dx 

L L  + Y(t) d2 I d2n1 dx = f (x)p(x,t)dx (2.19) 
fa (x) — L'i 

It can be shown that [25] 

L& IyI.!!] dx = wfm(x)dx (2.20) 

where Wn is the natural frequency of the mode shape n. Therefore, Equation 2.19 can be written as 

fo 
L 

(t)Jm(x)dx + 3(t)ao m(x)dx 
0  

fo L+ Y(t)w m(x)dx = fo (x)p(x,t)dx (2.21) 

The generalized mass, which is mass given in the generalized discrete coordinate system, is 

defined as 

Mn =JL O  m (x)dx (2.22) ) 

Substituting Equation 2.22 into Equation 2.21, we get 

+ ?(t)aoM + Y(t)wM = .P(t) (2.23) 

where 
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L 

P(t) =  (x)p(x,t)dx (2.24) 

is the load applied for mode n. Substituting back Equation 2.18 into Equation 2.23 and using the 

notation C for the damping coefficient related to mode n, we have 

(t) Mn + + Y(t)wM = P(t) (2.25) 

And finally introducing the modal stiffness Kn as 

Kn = wM 

we have the equation in a standard second order system as 

(2.26) 

+ + Y(t)K = P(t) (2.27) 

This equation is a discrete representation of Equation 2.11 with infinite number of modes. For 

the purpose of this work, we are interested in the first few modes. Equation 2.27 will be dealt with 

further when discussing the ROM technique in Chapter 4. However, for each mode, we have an 

equation of the form 

m+c.+kz=F (2.28) 

where m, c and k are the effective mass, effective damping, and effective stiffness for that particular 

mode, respectively, and F is the force applied. It is very important to understand the characteristics 

of this equation to get insights on the workings of the mass sensor. The following section provides 

the solution to this equation and points out the important characteristics of its system response. 

2.1.3 Single Degree of Freedom Equation 

Equation 2.28 describes the vibration of the cantilever and the first step in solving the equation is 

to find the solution of the homogeneous equation, whereby the external force is zero. This gives 
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the natural response of the system. With no external force we have 

m+c+kz=0 (2.29) 

The solution of Equation 2.29 has the form 

z(t) = Ce8t (2.30) 

where C is a constant. Substituting back into Equation 2.29 leads to 

(ms2 + cs + k)G6t = 0 (2.31) 

If we introduce the resonant (sometimes referred to as natural) frequency w0 as 

we have 

Ic 

M 

s2+ — S +(A) = 0 

Equation 2.33 is a quadratic equation in the complex variable s and its solution is 

S = — c ± •( C )2 —,j2 
2m 2m 

(2.32) 

(2.33) 

(2.34) 

This expression represents three different types of motion depending on whether the value 

under the square root (the radical) is negative, zero, or positive. When the radical is zero, this is 

known as critical damping and the damping coefficient c for this particular case is given by 

c = 2mw0 (2.35) 

In physical terms, c is the minimum damping coefficient where oscillations will not occur. 

Hence, for the purpose of this work, the critical damping case and the overdamped case (when 
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the radical is greater than c) are irrelevant. We are only interested in cases where vibrations will 

occur. This type of motion is called an underdamped response. To evaluate the underdamped 

natural response of the system, it is convenient to introduce the damping ratio as the ratio of the 

damping coefficient to c 

Then, we can write Equation 2.34 as 

= 2mw0 

= wo ± /(w) - 

Introducing damped vibration frequency Wd as 

we have 

(2.36) 

(2.37) 

Wd = w0\/1 - (2.38) 

S = —W0 ± jWd (2.39) 

where j = \/T. Substituting Equation 2.39 to Equation 2.30, we get the displacement response 

of the form 

This can be written as 

Z(t) = + C2e3dt) (2.40) 

Z(t) = e_0t(A sin (Wdt) + B cos (Wdt)) (2.41) 

Applying initial conditions and solving for the coefficients A and B, we have 

Z(t) = Cot ((0) + z(0)w0 sin (wdt) + z(0) COS (wdt)) (242) 
wd 
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Equation 2.42 can be written as 

Z(t) = cos (Wdt - 0) (2.43) 

where 

Z0 
- 0)+z(0)wo 2+(0)2 (2.44) 

Wd ) 
and 

0 = arctan  (2.45) 
wdz(0) 

Figure 2.3 shows a typical underdamped response. One method of estimating the value of C is 

by looking at the successive peak as shown with amplitudes z and z2 in Figure 2.3. The ratio of 

two successive peaks at z and z 1 is given by 

Zn ( w0 
- = exp 2ir— 
Zn+1 \ Wd) 

For low values of damping, i.e. w0 wd, can then be approximated as 

,._ Zn - Z,4 

2irz. 

(2.46) 

(2.47) 

Response to Harmonic Loading 

Of more relevance to this work, is the response of the cantilever beam to a harmonic loading. The 

unloaded solution obtained previously is the homogeneous part and, for the complete solution, we 

have to find the particular solution. When a harmonic external load is applied, Equation 2.28 can 

be written as 

m.+c.+kz=F0 sin wt (2.48) 
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Figure 2.3: A typical underdamped response. 

Dividing through by m and applying Equations 2.36 and 2.32, we can write 

2 F0 
. + 2w0. + w0z = - sin wt 

M 
(2.49) 

The complementary solution of this equation is the free vibration response given by Equation 

2.41. Because of harmonic loading, the particular solution z(t) has the form 

z(t) = G3 sin (wt) + G4 cos (wt) (2.50) 

Note that we need both the cosine and sine terms because, in general, the response of a damped 

system is not in phase with the applied force. Substituting Equation 2.50 into Equation 2.49, we 

can evaluate the value of the coefficients G3 and C4 as 

and 

F0 1—fl2 

- k (1—fl2)2 +(2fl2)2 

F0  —26G4=)3 k(1—fl2)2+(2fl2)2 

(2.51) 

(2.52) 
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where fi = w/w0 is the ratio of the applied load frequency to the natural vibration frequency. 

Hence, combining the complementary and the particular solutions, we obtain the general solution 

Z(t) = e_0t(A sin (wdt) + B cos (Wdt)) 

F0 
+ k (1 - p2)2 + (2/32)2 [(1 - ) 2) sin (wt) - 2fi cos (wt)] (2.53) 

The first term represents the transient response to the applied force. Because we are more 

interested in the steady state response, this term can be ignored. The second term is the steady 

state response and it is out of phase with the applied loading, but the two terms have the same 

frequency. The steady state term can be written as 

z(t) = z0 sin (wt - 0) (2.54) 

where 

and 

F0 
Z' = -i;- 

1  

(1—p2)2+(2e,82)2 

0 = arctan 1_2 

(2.55) 

(2.56) 

An important parameter for studying resonant response to be discussed later is the ratio of 

the resultant amplitude at a certain frequency to the static displacement known as the dynamic 

magnification factor D given by 

zo 

F0/k 

1 

(1 - 02)2 + (2fl2)2 (2.57) 

A plot of D as a function of frequency represents the frequency response of the displacement. 

The plot of D as a function of normalized frequency is shown in Figure 2.4 for different values of 

damping ratio . The quality factor 9 which was described in Chapter 1 is related to as 
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Equation 2.58 implies that the higher the Q, the lower the damping ratio . As can be seen in 

Figure 2.4, a higher Q implies a narrower response similar to what was described in Chapter 1, 

Figure 1.3. In Figure 2.4, note that the peak steady-state response occurs when fi = 1 (i.e. when 

W = w0). This phenomenon is known as resonance. At this frequency, the magnification factor D 

is given by 

D 1 = 1 (2.59) 

However, for a general damped system, P = 1 is not the peak response. When Equation 2.57 

is differentiated with respect to ,8 and equated to zero, the peak D is found to depend on damping 

as 

Dmax = 2W1 - 
1 

(2.60) 

For small values of , it can be assumed that D 1 Dmax, but in cases of viscous fluids, this 

approximation is not accurate. 

From the preceding discussions, it can be seen that the resonant frequency of the cantilever 

beam has a significant influence on its dynamic characteristics. An approximate method for quick 

determination of w0 as a function of geometry and material properties will be useful without resort-

ing to numerical solutions. One of the most popular methods based on the principle of conservation 

of energy is Rayleigh's method [25], which will be discussed next. 

2.1.4 Resonant Frequency Approximation - Rayleigh's Method 

Rayleigh's method uses the fact that for an undamped system, the energy of the system has to be 

conserved; hence, the maximum potential energy must equal the maximum kinetic energy of the 
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Figure 2.4: Variation of D with normalized frequency for different values of damping ratio. 

system at resonance. For an oscillating cantilever, the potential energy is given by [25] 

where z0 is the maximum beam displacement, and the kinetic energy is given by 

K.E = 33 7n wz 
140 2 

(2.61) 

(2.62) 

Equating the two energies, we get the resonant frequency as a function of geometry and material 

properties 

wo = 3.57 

But the stiffness k of the cantilever is given by [26] 

Therefore, the resonant frequency can be written as 

(2.63) 

(2.64) 
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W01 = 
k 

0.236m 
(2.65) 

with the 1 in the subscript emphasizing the fundamental (first) mode. By using the eigenmode ex-

pansion, which finds approximate effective spring constants for the different vibration modes [27], 

the resonant frequencies of the higher modes can be expressed as multiples of this fundamental 

mode. The second mode is given as [27] 

W02 = 6.267w01 (2.66) 

where w01 is the fundamental resonant frequency. Rayleigh's method always overestimates the 

value of the resonant frequency because it depends on the selection of shape functions used to 

derive the kinetic and potential energy expressions. Any shape function that is different from the 

exact one will stiffen the system thus increasing the resonant frequency. However, it is an excellent 

method for first-order approximations. In the next chapter, the results obtained from finite element 

simulations will be compared to the Rayleigh approximation. 

2.1.5 Resonant Frequency Shift for Mass Measurement 

As seen in Equation 2.65, the resonant frequency is inversely proportional to the mass of the beam. 

If an extra mass is added on the beam, the resonant frequency changes as 

= 4/  (2.67) 
0 0.236m+m1 

where ml is the loaded mass and the star notation indicates the loaded resonant frequency. 

Rearranging Equations 2.65 and 2.67, we get 

1 0.236m 
2 wo' 

and 

(2.68) 
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- 0.236m+inj 

w *201 k 
(2.69) 

respectively. Rearranging and substituting frequency w = 2irf, we get the added mass mj as 

k (1 1'\ 
mj = - (2.70) 

By using similar arguments and Equation 2.66, for the second mode, the change in mass is 

given by 

6.2672k (1 1 
mt= 42 f*2 f2 

Hence, by measuring the shift in frequency, we can determine the value of the mass added on 

the beam. In Chapter 3, it will be shown that the second mode is less dependent on the positioning 

of the mass on the cantilever beam and it may yield better measurement results. 

2.2 Electrostatic Actuation 

(2.71) 

Electrostatic actuation is the most common method used in MEMS devices because of its excellent 

scaling properties and ease of integration with CMOS electronics. The cantilever beam suspended 

on top of a polysilicon ground plane can be modelled as a parallel plate capacitor as shown in 

Figure 2.5, ignoring fringing effects since the area of the dimensions of the capacitor are much 

bigger than the gap between the beam and the ground plane [26]. 

For voltage-controlled actuation, the basic parameter is the charge generated by a voltage 

source as shown in Figure 2.6. If one plate is moveable and one is fixed, as we have for the 

case of the cantilever beam, then there are two ways to change the energy. The first one is by 

changing the charge on the plates, which is accomplished by changing the voltage between the 

plates. The second way is achieved mechanically by changing the gap between the plates. 
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Figure 2.5: A conducting cantilever beam suspended on top of the ground plane is electrically 
equivalent to a capacitor C. 
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Figure 2.6: Electrostatic force Fe is from the opposite charges +q and —q built on the plates by the 
voltage source V. 

Quantitatively, the change in energy dW can be expressed as 

dW(q, g) = Vdq + Fdg (2.72) 

where q is the charge on each surface (beam and ground plane), and g is the gap between the 

beam and the ground plane. To obtain the force as a function of the voltage, we need to introduce 

an abstract term of co-energy W* defined as [26] 

W*(V,g) = qV - W(q,g) (2.73) 

where W(q, g) is the energy expressed in Equation 2.72. Differentially, this becomes 
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dW*(V, g) = (qdV + Vdq) - dW(q, g) (2.74) 

Substituting Equation 2.72 into Equation 2.74, we have 

dW* (V, g) = qdV - Fedg (2.75) 

From this expression, we obtain the equations for q and Fe as a function of co-energy 

and 

aW*(v, g) 
q— -  9V 

g=constant 

F - t9W*(V, g) 

a9 V=constant 

(2.76) 

(2.77) 

For a fixed gap capacitor (no mechanical energy variation), while the voltage is varied, the 

co-energy is given by the integral 

W*(V,g)= V qdV = fo V f 
f  9 

where A is the area of the plates. Integrating, we get the expression for co-energy W 

(2.78) 

AV2  
W (V, g) = (2.79) 

2g 

Applying the differential expression of Equation 2.77, we get the expression for the electrosta-

tic force Fe 

AV2 
Fe 2g2 (2.80) 

Now, if the gap is changing so that the original gap is given by go and the displacement of the 

moving plate is given by z, then we have 
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9 = go - z 

and the electrostatic force can be written as a function of the displacement z 

(2.81) 

AV2 
Fe =  (2.82) 

2(go - 

Note that now the voltage determines the force, which increases z and feeding back to increase 

the force. This positive feedback results in instability that causes a phenomenon called "pull-in" 

where the moving plate snaps into the fixed plate. The following section derives the expression 

for the gap distance where this phenomenon occurs. Of more relevance to this work is pull-in at 

resonance, which has a different stability criterion from the static pull-in [28]. 

2.2.1 Pull-In Phenomena 

To explore the stability of the equilibrium of the plate motion, consider the forces acting on the 

moving plate. The electrostatic force .F,. is pulling the plate down while the elastic force is opposing 

the motion. The elastic force is given by the standard Hooke's law 

F=kz=k(go—g) (2.83) 

Consequently, the total force acting on the moving plate is 

FT=k(go—g) AV22g2 (2.84) 

The equilibrium condition is FT = 0. To see the effect of small perturbation of the gap 8g on 

the force FT, we can write [26] 

WIT = 
OFT 

09 
89 

V 

(2.85) 
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If SFT is positive for positive ög, then that value of g is an unstable equilibrium point because 

a small increase in g creates a force that tends to increase it further (positive feedback). Hence, for 

stable equilibrium, we need a value of g that will give a negative 6FT. Evaluating 8FT, we have 

SFT= (Av2 k) 

For stable equilibrium, this expression has to be negative, giving 

AV2 
k> 

g3 

At pull-in, the following equations have to be satisfied 

and 

AV 
-  
- :ip3 In 

FT=0 

(2.86) 

(2.87) 

(2.88) 

(2.89) 

where the subscript pi indicates value at pull-in. Equating Equations 2.84 and 2.88, we obtain 

AV2 AV2 Pt  vi 

2g  (go —g j) g;j 

Solving for gpj, we obtain the point where pull-in occurs 

2 
gpi = go 

(2.90) 

(2.91) 

This means that for static stability, the plate can move only one third of the gap. Conversely, 

at resonance, it can be shown that the plate can move up to 0.56 times the gap without having 

stability problems [28]. The derivation for resonant pull-in is much more involved, and the reader 

is referred to Seeger et. al. [28]. This extra gap allows more room for actuation especially for 

small-gap electrostatic actuators like those implemented in the standard MUMPs process. 
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2.3 Damping 

For conventional macro scale dynamic systems, the damping effects caused by the surrounding 

fluid can in general be ignored as they are not very significant. This is because fluid damping (also 

called viscous damping since it is caused by the viscosity of the fluid) is related to the surface area 

of the moving parts. The surface-to-volume ratio of macro scale systems is very small and thus 

the damping effects are insignificant. For MEMS, however, the surface-to-volume ratio is much 

larger and damping effects have a significant effect on their dynamics. Therefore, understanding 

the sources of damping and being able to quantify their effects is very crucial for proper dynamic 

MEMS design [29]. 

Damping is essentially an energy loss mechanism and it has a variety of sources. The damping 

can be classified as structural damping, caused by internal friction within the structures, contact 

damping which usually occurs at the points of contact between different structures and fluidic or 

viscous damping mentioned above because of the external media. Of the three sources, fluidic 

damping is very dominant and the only time when the other sources have to be considered is when 

the device is operated in vacuum, where there is negligible fluid damping. Accordingly, for the 

purpose of this research, all other sources are ignored and only fluid damping is considered. 

When it comes to fluid damping, there are two main regimes to be considered depending on 

the gap g between the oscillating structure and a wall (usually the substrate or ground electrode) as 

shown in Figure 2.7. 

When g is large, the fluid flows freely up and down tracking the beam. This regime is known 

as drag because the dissipation comes from the fluid applying drag force to the moving structure. 

However, when g is small, the fluid will be squeezed between the oscillating beam and the fixed 

wall. This phenomenon is called squeeze film damping, and it is very common for electrostatically 

actuated MEMS devices because the gaps are usually made small to maximize the electrostatic 
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Figure 2.7: A column of fluid between two plates. 

force. To obtain accurate behavior of fluid damping, the PDE governing fluid dynamics has to be 

solved. This PDE, known as the Navier-Stokes equation [26], is very complicated and numerical 

solutions are required to solve it. Chapter 4 will briefly touch up on the equation in the context of 

a numerical solution. Since we are interested in electrostatically actuated cantilever beam, the gap 

between the beam and the substrate is very small (on the order of few microns). Hence, drag force 

is not of interest and we will focus on the squeeze film phenomenon. The following subsections 

introduces approximate models for the squeeze film damping which will form the basis for the 

numerical solution in Chapter 4. 

2.3.1 Squeeze Film Damping 

Since it is very difficult to solve the Naver-Stokes equation, an approximation based on assump-

tions valid for most MEMS devices is usually used to calculate the squeeze film damping. Consid-

ering the Navier-Stokes equation with the following assumptions [26] 

• The gap g0 is much smaller than the lateral dimensions of the beam. This is usually the case, 

since the gap is made very small for electrostatic actuation to maximize the electrostatic 

force for a given voltage. 
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• The fluid viscous effects are much larger relative to the fluid inertial effects (quantitatively, 

this implies that the Reynold's number Re << 1). 

• The system is isothermal. That is, any heat generated by dissipative effects is quickly ab-

sorbed by the walls. This is a good assumption due to the large surface to volume ratio of 

the MEMS devices. 

we can obtain a simplified PDE known as the Reynold's equation. Reynold's PDE relates the 

pressure gradients to the fluid velocity and is given as 

& (pZap) + 3 (p2!ap) - -Dx 6 Dx ay 6 Dy dt 

where p is the density of the fluid and 6 is the viscosity of the fluid. The numerical solution 

of this equation can be obtained in ANSYS by using the FLUID 136 element. However, to gain 

some insights on the squeeze film damping as it relates to the geometry and material properties of 

the structure, we can simplify Reynold's equation by assuming that g is uniform in both x and y 

directions, we obtain: 

(2.92) 

(2.93) 
0x2 dy g at 

To obtain the squeeze film damping force for beam, consider the rectangular plate shown in 

Figure 2.8. If the beam is much longer compared to its width, the problem can be considered to be 

one-dimensional (pressure is only varying in the x direction). 

32PD2P 125 d9 +  

Figure 2.8: Top view of a chain of plates representing a cantilever beam. 
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Reynold's equation can then be written as [29] 

d2P128dg 294 
dx2 g3dt (. ) 

Integrating this equation twice and applying the boundary conditions, we obtain the pressure 

as a function of x 

P(x)=- 65 
(w2 x2) dgdt 

(2.95) 

The negative sign indicates that the pressure is positive when the fluid film is squeezed (i.e. 

dg/dt < 0). The damping force on the plate is obtained by integrating the pressure over the area 

of the plate 

W/2 F3f = f—w/2 P(x)Ldx = -- go (2.96) 

Comparing this result with the second order dynamic equation described earlier, the coefficient 

of the velocity is the damping coefficient; therefore, we have 

6w31 
C8f =   

g 
(2.97) 

Substituting the value of damping ratio given by Equation 2.36, we have damping as a function 

of radial frequency w as 

= Csf —  Sw2  
2pwt1w — 2ptwg 

where n is the nth vibration mode. The quality factor is then obtained as 

ptgw 
Qsfn = Sw2 

(2.98) 

(2.99) 

The values obtained here will be compared to the numerical results obtained from ANSYS in 

Chapter 3. The following subsection describes the effect of damping on measurement sensitivity. 
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2.3.2 Damping effect on measurement sensitivity 

Chapter 1 showed qualitatively how a decrease in Q factor decreases measurement sensitivity for 

frequency modulation sensors. Now this issue will be discussed in a quantitative manner. To obtain 

an expression for the minimum change in mass OMmin that can be measured by the frequency 

modulation technique, a second order system approximation is used. A simple estimate of the 

change in mass required to shift the resonant frequency by its halfwidth i.e. W, -* (w0 + Ow,) 

is obtained by multiplying the change in resonant frequency by the inverse of what is called the 

frequency responsivity to added mass R [30] given by 

Therefore we have th6 minimum change in mass as 

But 

Hence 

OMmin t9w0 = (!-)am 1Ow0 

2m w0 m 
- 

w0 2Q Q 

(2.100) 

(2.101) 

(2.102) 

(2.103) 

Therefore, it can be seen that the minimum detectable mass increases as the original mass of 

the beam decreases (smaller structures have more sensitivity) and the quality factor Q increases. 

2.3.3 Practical Damping Factor Measurement 

Section 2.1.3 discussed one method of determining 6 given by Equation 2.47. However, in practical 

situations, it is very difficult to obtain the time domain transient characteristics that will allow us 
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to measure the different peak values. This section explores two methods based on the frequency 

response of the cantilever beam displacement. 

Resonant Amplification Method 

The first frequency based method is based on the observation of steady state harmonic response 

behavior [25]. If harmonic forces with different frequencies are applied to the beam, we can obtain 

a frequency response plot as shown in Figure 2.9. From Equations 2.60 and 2.38 and noting that 

Dma -max/-static, we have 

1 -static W0 1 Zstatjc 

2 Zmax Wd 2 7max 
(2.104) 

with the last approximation applying for low damping coefficients. Note that this method relies 

on being able to obtain static displacement Zstatjc which may not be possible in some cases. 
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Figure 2.9: Frequency response curve obtained by sweeping the input force at different frequen-
cies. 
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Half Power Bandwidth Method 

Note that from Equation 2.55, the shape of the frequency response amplitude depends on the 

damping factor 6. Therefore, by using the frequency response parameters, we can determine . 

One of the most common parameters used is the half power bandwidth, defined as the amplitude 

where the power is half of the maximum power. This is related to Zstajjc and Equation 2.55 as 

1 
(1 _/32)2+ (26,62)2 

Squaring both sides and solving for j32, we get 

,82 = 1 

Neglecting the e2 term under the square root, we obtain the ,8 values of 

and 

/31 1— 6 -  61 

/32 i + e - e2 

Combining these two expressions, we obtain as a function of the two /3 values 

(2.105) 

(2.106) 

(2.107) 

(2.108) 

(2.109) 

This technique is illustrated graphically in Figure 2.9. Practically, both methods described in 

this section should be performed independently and the results compared to verify the accuracy of 
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2.4 Quality Factor Control 

2.4.1 Q-Control Basics 

As described in the previous section, each vibration mode of a cantilever beam can be modelled as 

a harmonic oscillator represented by Equation 2.28. If the beam is driven by a force F1 given by 

F1 = Foe" (2.110) 

and the motion of the cantilever is a sinusoid lagging behind the driving force by an angle 

z = (2.111) 

then, if we have a positive feedback loop, that detects z, apply gain C and phase shift of ir/2 to 

the signal and adds the resulting force 172 to the original driving force, then we can write Equation 

2.28 as 

m + c + kz = F1 + F2 = Rod'+ G lr &/2z 

But from Equation 2.111, we have the velocity of the cantilever as 

= jwAe(_) = wAej(wt/2) 

with the second equality because 

j =  jir/2 

(2.112) 

(2.113) 

(2.114) 

From Equation 2.113, we have the velocity of the cantilever related to its displacement as 

= weu1n/2z 

Substituting Equation 2.115 into Equation 2.112, we get 

(2.115) 
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Rearranging, we obtain 

• . •. 
mz + cz +kz=FOCJW + G z — 

W 
(2.116) 

m +c*+kz = Foejwt (2.117) 

where c is the effective damping factor given by 

(2.118) 

From Equation 2.118, it can be seen that the effective damping factor can be controlled by 

modifying the value of the feedback gain C. Figure 2.10 shows a block diagram for the setup 

required to achieve Q control. 

Displacement 
Sensor Signal 

Amplifier Phase Shifter 

Cantilever * 

Signal Generator 

Figure 2.10: Setup used for Q control implementation expressed by Equation 2.112. 



Chapter 3 

Finite Element Modeling 

This chapter describes a numerical method for solving PDEs known as the finite element method 

(FbM) and the commercial package used ANSYS. FEM is a vast field with varying backgrounds 

and it is changing rapidly with advances in computing and solution techniques. The background. 

provided here is only so that the user of commercial FEM packages can use them intelligently and 

it is not supposed to be a comprehensive description. For further information the interested reader 

is referred to references [31), [32], [33]. For ANSYS specific techniques, a good starting point is 

[34]. 

First, an introductory overview of the FEM technique is provided. Then, the commercial FEM 

package ANSYS and its capabilities is described. Finally, the simulations performed in ANSYS 

for electrostatic actuation, cantilever vibration frequency, mass placement dependence on vibration 

modes and viscous damping are discussed. The FEM results are also compared to the analytical 

relationship described in the previous chapter for verification. 

3.1 The Finite Element Method (FEM) 

As discussed in the previous chapter, most physical phenomena are governed by partial differential 

equations. Generally, these equations with their corresponding boundary/initial conditions are very 

complex and can not be solved to yield closed formed analytical solution. Approximation methods 

based on subdividing (discretizing) the system into smaller and easier to solve components are 

usually employed. These methods, collectively known as numerical methods, come in a variety of 

flavors and their applicability depends on the nature of the problem to be discretized. Some of the 

more common numerical techniques for solving PDEs include finite difference method (FDM), 

finite element method (FEM) and boundary element method (BEM) [35]. FEM was originally 

40 
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applied to structural analysis [32] [31] [34], but due to its general applicability, it has evolved and 

currently it is used in many different domains including fluid mechanics, electromagnetism and 

heat transfer. 

The first and most crucial step in any numerical method is the discretization procedure, where a 

continuous body or field is divided into multiple smaller but easier to solve elements. This concept 

is illustrated in Figure 3.1. The elements are made up of nodes and different elements have different 

number of nodes. Usually, the elements with more number of nodes are more accurate even though 

they are more computationally expensive to solve [31]. This discretization procedure is known as 

meshing and proper meshing is a very important prerequisite for a good finite element simulation. 

Node 
Finite Element 

Figure 3.1: A plane structure of arbitrary shape shown on the left is discretized into simple finite 
elements shown on the right. 

Once the system is discretized, boundary and initial conditions are applied and then the system 

can be solved. Several procedure exist on how to solve for the unknown parameters. There are 

three main types of solution methods known as the direct method, the variational method and the 

weighted residual method. 

3.1.1 Direct Method 

The direct method is the most intuitive of the three methods but it is limited to very simple problems 

where the form of the solution can be assumed. In structural problems, the assumed form is a 
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system of equations representing Hooke's law 

[K]{q} = {F} (3.1) 

where [K] is the stiffness matrix, {q} is the nodal displacement vector which is the unknown and 

{F} is the vector of applied nodal forces. Once the problem is setup in the matrix form, the 

unknown can be solved using standard matrix inversion techniques. In other domains, equivalent 

expressions can be obtained, for example in an electrical network, we have Ohm's law in matrix 

form 

[R]{i} = {v} 1 (3.2) 

where [R] is the impedance matrix, {i} is the nodal current vector (total current flowing into or out 

of the nodes) which is the unknown and {v} is the vector of applied nodal potential differences. 

Even though the direct method is simpler to understand and implement, it is not flexible in terms 

of the problems it can be applied to and hence it is not used in commercial FEM software. 

Variational and weighted residual methods are more general and they are based on approximat-

ing the exact solution with an approximate solution which is a linear combination of specific trial 

functions, typically polynomials [35]. If 9 is the variable of interest, then it can be approximated 

as y, which is a linear combination of trial functions y 

N 

Y =  'T Cim 
i=1 

(3.3) 

The trial functions have to be selected such that they are independent of each other and the task 

that remains is to solve for the coefficients Ci such that y is a good approximation to the solution 

of the PDE. The variational and the weighted residual methods are used for this purpose. 
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3.1.2 The Variational Method 

This method is based on a branch of mathematics known as variational calculus [35] whose object 

is to minimize a special type of function known as a functional, which is a function of a function. 

The simplest problem of the calculus of variations is minimization of the integral 

F[7(x)] = I G(x, V, p')dx (3.4) 

where F is the functional, x is the independent variable and p is thç unknown. To minimize this 

functional, the condition that must be satisfied is what is known as the Euler equation 

9G d('0G 35 
5y dx ôy' - 

To solve an FEM problem using the minimization approach, we need to find a functional F 

that yields the differential equation when it is minimized. In practice, this occurs in problems 

expressed in the form of energy and energy minimization yields the solution. Once the functional 

form is found, the approximate solution of Equation 3.3 is substituted into the functional and the 

functional is minimized to solve for the coefficients C. 

3.1.3 The Weighted Residual Method 

The .weighted residual method is a member of a family of methods generally known as residual 

methods, in which the approximate form of the solution y is assumed and the residual R is defined 

by substituting the approximate solution into the exact differential equation [35]. The approximate 

solution is chosen in a similar manner as for the variational method, but the coefficients C are 

chosen so as to minimize R. There are two different methods used to minimize R: collocation 

method and the Galerkin method. 

The Collocation Method 

For the collocation method, once the trial functions are determined and expressed as Equation 3.3, 

the approximate solution y is substituted into the original differential equation. R is determined as 
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the error in the differential equation and it is a function of the coefficients C. When R is equated 

to zero, the corresponding Cs are the one which minimizes the residual (error). 

The Galerkin Method 

For the Galerkin method, instead of minimizing the residual directly, the residual is weighted by 

multiplying by some weighting functions W, integrating the weighted residuals over the range of 

interest, and setting the integrals to zero to give equations for the evaluation of coefficients C. This 

method is found to give exceptionally good results in practice and it is used in most commercial 

packages [35]. 

To sum up, there are a variety of ways of solving an FbM problem, but in most practical cases, 

either the Galerkin weighted residual method or the variational method is used depending on the 

nature of the problem. In some domains, especially in solid mechanics, the problems are usually 

set up using energy principles and it is natural to use a variational approach to solve them. On the 

other hand, most problems in heat transfer, fluid mechanics and electromagnetism, the governing 

PDEs are known and in this case, it is more convenient to use the Galerkin weighted residual 

approach. Figure 3.2 tabulates the different techniques with their advantages and disadvantages. 

Finite Element Method Advantages Disadvantages 

Direct Method o 

o 

Intuitive and easy to 
understand. 
Very easy to implement 
on the computer. 

o Only applicable to very 
trivial problem since it 
becomes very 
cumbersome for complex 
problems. 

Variational Method o Based on energy 
minimization 
formulation resulting in 
tremendous flexibility. 

o Difficult to program. 

Weighted Residual Method o Based on energy 
minimization 
formulation resulting in 
tremendous flexibility. 

o Difficult to program. 

Figure 3.2: A summary of different FEM techniques with their advantages and disadvantages. 
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3.2 The ANSYS FEM Software 

ANSYS is a comprehensive FbM package originally released in 1971 [34]. Currently, the latest 

ANSYS release is 8.1 which comes with different modules including structural, thermal, fluidic, 

electromagnetic and acoustic. ANSYS also allows what is known as Multiphysics simulations 

where the different domains are coupled. This is very important for MEMS transducers design 

since by definition, for a transducer, more than one energy domain is involved and they are usually 

coupled. 

A typical REM analysis in ANSYS involves three main steps - preprocessing, solution and 

postprocessing. In the preprocessing step, known as the PREP7 processor in ANSYS, the user 

defines the model, material properties, elements to be used and performs the meshing. If modeling 

in ANSYS is cumbersome, the solid models can be designed in other design software and imported 

into ANSYS in a standard IGES format. The user has to be careful with meshing the imported 

models since sometimes the models may need slight modifications before they can be properly 

meshed. 

Once the preprocessing phase is done, ANSYS enters into the solution phase. In this phase, the 

user specifies what kind of analysis should be done. The most common types of analyses are static, 

harmonic, modal and transient. Then, the user specifies boundary conditions. These are necessary 

to avoid indeterminate problems (where there are more unknowns than the number of equations). 

ANSYS then solves for the unknowns in the PDEs or the energy formulation. 

The final phase is the postprocessing phase. Postprocessing allows the user to display the 

results in a user-friendly manner and also calculate other parameters of interest based on the basic 

unknowns solved by ANSYS. Two postprocessors are available in ANSYS. The first one, known as 

the POST1 is used to plot and analyze time-independent parameters. POST26, is the time-history 

postprocessor and is used for transient analyses where the variation of parameters with time is 
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important. 

3.3 Electrostatic Actuation 

The beam displacement due to the electrostatic force was obtained by performing a coupled domain 

electrostatic-structural simulation. When performing coupled domain simulation, it is important 

to make sure that the elements between the different regions are compatible with each other. In 

the case of three dimensional electrostatic-structural coupling, SOLID45 element in the structural 

domain and SOLID 123 element in the electrical domain are compatible. The meshing strategy 

used in all the ANSYS simulations was to start with a very coarse simulation just to make sure 

that the results roughly make sense. Then, the mesh density was doubled until the results were not 

changing up to 3 decimal places. This is a good strategy to determine the appropriate mesh density 

for a given problem 1311. Figure 3.3 shows the mesh for the two domains. The top volume is the 

SOLID45 brick mesh while the bottom volume is the SOLID 123 tetrahedral mesh representing the 

gap between the cantilever beam and the substrate. 

AN 

Cantilever Beam (Structural Domain) 

.. 

1 
Gap (Electrostatic Domain) 

Cntl Ter El cSrttic *CEU,C Ion 

Figure 3.3: SOLID45 brick elements represent the structural domain while SOLID 123 tetrahedral 
element represent the electrostatic domain. 
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To verify the applicability of Equation 2.80 for different values of the voltage, a parametric 

analysis was done with varying voltage from 1OY to bOY. The boundary conditions for the elec-

trostatic domain were applied with OV at the bottom boundary and the sweeping voltage at the top 

boundary. Morphing option was enabled to allow for the fact that as the structure deforms, the 

gap region also changes. The morphing option allows for mesh deformation. Figure 3.4 shows the 

beam deformation for the case when 100V was applied on the cantilever beam. The displacement 

at the tip of the beam is 0.314 pm. Figure 3.5 shows the comparison between the ANSYS coupled 

simulation and the electrostatic force approximation obtained by Equation 2.80. The analytical ap-

proximation value for beam displacement was obtained by taking the value of force from Equation 

2.80 and applying Hooke's law as 

F=kx (3.6) 

where k is the stiffness of the beam and x is the beam displacement. It is easy to see that this 

approximation overestimates the displacement since in reality the electrostatic force is distributed 

throughout the beam but for this calculation, we are assuming that the total force is concentrated 

at the end of the beam. This explains the approximate results being larger than the ANSYS results 

even though they have similar trends. Figure 3.6 is a plot of the beam displacement as a function 

of the square of the applied voltage. As expected, the curves follow a linear characteristic. 
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PLOT NO. 1 
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- .069828 

— -.034914 

Cantilever Electrostatic Actuation 

Figure 3.4: Beam deformation when IOOV is applied to the cantilever beam with respect to the 

ground plane. 
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Figure 3.5: The comparison between the analytical and FEM results for the beam displacement as 

a function of the voltage. 
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Figure 3.6: The comparison between the analytical and FEM results for the beam displacement as 
a function of the square of the applied voltage. The curves shows a linear relationship as expected. 

3.4 Cantilever Vibration Frequency 

ANSYS supports different kinds of structural dynamic analysis including static, modal, harmonic 

and transient analysis. The modal analysis is used to calculate the mode shapes of vibration. 

These modes are similar to the mode shape functions described in the previous chapter. Once 

the mode shapes are determined, harmonic analysis is then used to find the resonant frequencies 

associated with the different modes. An excellent description of how the modal and harmonic 

analysis are related can be found in [2]. Figure 3.7 illustrates this relationship for a tuning fork. 

It can be seen that the harmonic response tells us about the amplitude of a given point on the 

structure as a function of frequency while modal response provide information about the amplitude 

of different points (spatial distribution) of the structure at the same frequency. Hence, to get a 

complete dynamic response of the structure, both analysis have to be performed. 
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Figure IT The relationship between the modal response and the harmonic response for a tuning 
fork. Adapted from [2]. 

The ANSYS elements used for modal analysis were the 3-D structural elements. Two elements 

with differing accuracy were used. SOLID45 is an 8-node 3-D element (x, y and z degrees of 

freedom) and SOLLD9S is a 20-node 3-D element. For each beam, the simulation was initially 

performed using a coarse mesh. The number of elements was then doubled until there was no 

significant difference (within one percent) between the two trials as mentioned previously. The 

cantilever beam was modeled as shown in Figure 3.8 and the meshed model with applied boundary 

conditions is shown in Figure 3.9. 

The modal analysis was performed for the first two modes of the cantilever beam with the aim 

of comparing the measurement sensitivities between the two modes. The two mode shape obtained 

from ANSYS are shown in Figures 3.10 and 3.11 respectively. 
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AN 
VOL ES 

TYPE NLW4 

Figure 3.8: A cantilever beam modelled in ANSYS. 

Figure 3.9: A cantilever beam meshed using SOLID95 elements. The nodes on the left hand side 
were fixed and a distributed pressure was applied on the top surface of the beam to represent the 

distributed electrostatic force. 
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Figure 3.10: The first mode of vibration. 

Figure 3.11: The second mode of vibration. 
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Thickness (nm) Analytical f0 (KHz) ANSYS f0 (KHz) 
20 1116.065 1115.1 
30 1674.097 1669 
40 2232.13 2223.8 

Table 3.1: The resonant frequency variation with the thickness of the beam. The width was fixed 
at 1.5gm and the length was fixed at 5m 

To account for fabrication tolerances, the width, thickness and length of the beam were varied 

around the nominal dimensions to study the effect of these variations on the resonant frequency. 

The mask fabrication tolerance was taken to be 0.25gm which is close to what most modern MEMS 

fabrication facilities can guarantee and the thickness accuracy was taken to l0nm. The results were 

then compared to the analytical approximations obtained by Rayleigh's method in the previous 

chapter. The results are summarized in Tables 3.1, 3.2 and 3.3. Table 3.1 shows the resonant 

frequency of the beam as a function of varying thickness and Tables 3.2 and 3.3 shows the resonant 

frequency as a function of varying length and width respectively. Similar analysis was performed 

for the second mode with similar results, but for brevity, only the first mode is tabulated. 

From the results it can be seen that Rayleigh's approximation is a good resonant frequency 

approximation and can be used as a design equation at least to the first order approximation. The 

tables also gives some perspective on the effect of fabrication tolerances on the resonance fre-

quency. For example, it is very difficult to control the deposition or etching of a material in the 

nanometer scale, but for the dimensions of the beams dealt in MEMS design, a variation in deposi-

tion (thickness of the beam) of I 0nm will cause a very significant change in the resonant frequency 

of the beam. Hence precise profflometry of the structure is very important to determine the exact 

dimensions. 

Once static and modal analysis are completed, harmonic analysis can be performed. Figure 

3.12 shows the harmonic response of the beam at two different beam locations. The free end of the 

beam has the highest amplitude for the first mode while at the center of the beam, the two modes 

have similar amplitudes. 



54 

Length (pm) Analytical f0 (KHz) ANSYS f0 (KHz) 
4.75 1855.173 1850 
5 1674.097 1669 

5.25 1518.720 1512.9 

Table 3.2: The resonant frequency variation with the length of the beam. The width was fixed at 
1.5/am and the thickness was fixed at 30nm 

Width (pm) Analytical f0 (Hz) ANSYS f0 (Hz) 
1.25 1674.097 1666.7 
1.5 1674.097 1669 
1.75 1674.071 1670.4 

Table 3.3: The resonant frequency variation with the width of the beam. The length was fixed at 
5m and the thickness was fixed at 30nm 

3.4.1 Resonant Frequency Shift Due to Mass Change 

To determine the change in resonant frequency of the beam as a function of the added mass, a small 

object representing the mass of a typical bioparticle was added at the end of the beam as shown in 

Figure 3.13. An add operation was used in ANSYS which ensures that the object is attached to the 

beam. This operation merges the different volumes into a single volume. Note that if the cantilever 

and the loaded mass are not added, then ANSYS solves for the modal deformation of the two 

bodies independently of each other giving erroneous results. The change in mass for both modes 

was found to be very close to the analytical expressions given in Chapter 2 as shown in Figures 

3.14 and 3.15 for the first and the second mode respectively. Note that the analytical approximation 

results in higher resonant frequencies as expected due to overestimation of the stiffness of the beam. 



55 

Figure 3.12: Harmonic analysis performed in ANSYS at two different points on the beam. 

ELEMENTS 
AN 

Added Mass 

Figure 3.13: The cantilever beam with a mass loaded at the free end. The beam used had the 

dimensions of L = Aim, T = 1tm and w = 2pm. 
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Figure 3.14: Comparison between the ANSYS simulation for the effect of mass loading on the first 
mode resonant frequency and the analytical expression given by Equation 2.65 from Chapter 2 
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Figure 3.15: Comparison between the ANSYS simulation for the effect of mass loading on the sec-
ond mode resonant frequency and the analytical expression given by Equation 2.66 from Chapter 
2. 
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When the cantilever is used as a bioparticle detector, it is impractical to assume that the particle 

will be at the end of the beam since in reality, the particle may randomly fall anywhere on the 

surface of the beam. Therefore, it is important to minimize the measurement sensitivity to the 

particle placement on the beam. The next section looks at the effect of this positioning and it is 

shown that the second mode is less sensitive and hence provides an opportunity for more accurate 

measurement compared to the first mode. 

3.5 Mass Placement Dependence on the Vibration Modes 

It was mentioned before that the second mode has an advantage over the first mode in terms of 

the measurement sensitivity to the mass placement location on the beam. This can be shown 

analytically using the stiffness and mass matrices calculated by the finite element method [36]. 

Note that by moving the mass around on the surface of the beam, the dynamic parameter that we 

are changing is the stiffness matrix. Ignoring damping, a dynamic system can be represented in 

matrix form as [36] 

—w [lvi] [I] + [K] [1] = 0 (3.7) 

where w0 is the resonant frequency, [M] is the mass matrix, [K] is the stiffness matrix and [1] is 

the mode shape. To see the effect of movihg the mass around, we perturb the matrix [K] by a small 

value AK and see the effect this has on the resonance frequency. Perturbing [K] will also change 

the mode shape '1 and we have 

—(we + w0)2[M]([] + L[]) + ([K] + L[K])([] + L[]) = 0 (3.8) 

Multiplying throughout by the mode shape transpose []T and solving for the frequency change 

Iw0, we get 
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1 (—w[M] + [K])L['k] + [tk]TL.[K][ck'  
Lw0 = +0(2) (3.9) 

2 

where 0(2) are the second and higher order terms. Ignoring the higher order terms and dividing 

throughout by w0, we get 

Lw - 1 (—w[M] + [K])z[':I)] + ['ik]Tz[K][I)] 

- 2 WO 

Since the stiffness and mass matrices are symmetric, the following relationship holds [36] 

[['I]T(—w[M] + [K])]T = (—w[M] + [K])[1] = 0 

Therefore, the resonance frequency shift expression simplifies to 

AWO - 1  [(I)]'z[K][CI)]  

wo - 2w[]T[M][] 

(3.10) 

(3.11) 

(3.12) 

From Equation 3.12, it can be seen that the change in resonance frequency due to perturbation 

in the stiffness matrix is inversely proportional to the square of the resonance frequency. Since 

the resonance frequency for the second mode is about 6 times the resonance frequency for the first 

mode, the second mode is roughly 36 times less sensitive to mass placement as compared to the 

first mode. 

3.6 Viscous Damping 

To characterize viscous damping in ANSYS, the fluid dynamics module was used to model the 

fluid surrounding the cantilever beam. ANSYS fluid dynamics module solves the incompressible 

Navier-Stokes equations which can be written in vector form as [3] 

au-
P_ + it 0 7it = SV2ll—Vp+f 
at 

V.11=0 

Momentum Balance (3.13) 

Mass Balance (3.14) 
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where 6 is the fluid velocity vector, p is the fluid density, 8 is the fluid viscosity, p is the fluid 

pressure and f is the source term. 

3.6.1 Arbitrary Lagrangian Eulerian (ALE) Formulation 

Numerical algorithms for continuum mechanics usually make use of two classical description of 

motion [3]. These are the Lagrangian description where the observer can be thought of as being 

inside the moving body and the Eulerian description where we have an external observer observing 

the motion. In terms of the mesh description of a moving or deforming body, the Lagrangian mesh 

can deform (the mesh follows the moving body) while the Eulerian mesh is fixed (the mesh solves 

for whatever passes through it). Figures 3.16 and 3.17 illustrates a one-dimensional example of the 

Lagrangian and Eulerian descriptions of motion respectively [3]. 

Material point 

0 Node 

Lagranglan description 

Particle motion 

Mesh motion 

Figure 3.16: One dimensional illustration of the Lagrangian description of motion. The mesh 
moves with the body [3]. 

Both methods have their advantages and disadvantages. However, in fluid mechanics, the 

method of choice is Eulerian description since it can handle large distortion in the continuum 

with relative ease. Since the mesh is fixed for the Eulerian description, moving boundaries can 

not be handled with the standard fluid mechanics algorithms. A new technique called Arbitrary 
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Material point 

0 Node 

Eulerian description 

Particle motion 

Mesh motion 

Figure 3.17: One dimensional illustration of the Eulerian description of motion. The mesh is 
stationary relative to the body [3]. 

Lagrangian Eulerian (ALE) combines the two descriptions of motions allowing the ease of use of 

the Eulerian description as well as accommodating moving boundaries. Moving boundaries are 

essential for studying fluid-structural interaction since the fluid boundary can be dynamic and the 

effects of the boundary motion can be studied. ANSYS supports the ALE formulation and it will 

be used to study the effect of fluid on the oscillating cantilever beam. For further details of the 

ALE technique, the reader is referred to Donea et. al. [3]. 

3.6.2 Damping Coefficient Extraction 

To extract the damping coefficient using a finite element method, first it is beneficial to understand 

the basic technique applicable to rigid bodies. For rigid bodies, all nodes of the structure move 

together and hence the formulation only needs to take into account the movement of the nodes 

with respect to time. As the each node is always at the same place relative to other nodes, there 

is no need for spatial description of the nodal motion. A three dimensional fluid volume can be 

simulated using FLUID 142 element with the ALE option turned on. FLUID 142 is a 3-dimensional 

fluidic element that supports the ALE formulation and therefore it can be used for solving fluid-

solid interaction problems. One of the fluid boundaries is fixed and the other one is oscillated at 

the resonant frequency of the beam. To obtain the damping coefficient, consider Figure 3.18. If 

the oscillating beam is moving in a sinusoidal fashion expressed as 
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z=z0 Cos wt (3.15) 

then the velocity and the acceleration are given as 

and 

respectively. 

= —z0w sin wt 

= —z0w2 cos wt 

Oscillating Cantilever Beam 

Fluid Force 

Stationary Electrode 

Figure 3.18: An oscillating beam experiencing fluid force from the surrounding fluid. 

(3.16) 

(3.17) 

Since the motion of the beam is sinusoidal, the fluid force will also have a sinusoidal form [37] 

and can be written as 

F0 cos (wt + ) (3.18) 

where çü is the phase difference between the motion of the beam and the fluid response. Expanding 

the cosine relationship, we have 



62 

Ff1d = F0 cos wt cos ço - F0 sin wt sin çü (3.19) 

If the driving electrostatic force is denoted as Fdrjvjng, then the force balance equation is 

M + Ff1d = Fdriving 

Substituting Equation 3.19 into Equation 3.20, we get 

M. + F0 Cos wtCos - F0 sin wtsin = Fdrjvjng 

(3.20) 

(3.21) 

From Equations 3.15 and 3.16, we can express the sinusoid functions in terms of the displace-

ment and velocity as 

and 

Cos Wt = z- 
zo 

z 
sin wt = --

zow 

(3.22) 

(3.23) 

Substituting these values into Equation 3.21, we obtain the equation of motion in a standard 

form 

M2+ (Fo sin •o + (F0 cos z = FdTiViflY (3.24) 
\WZ0 J \ Z0 J 

Hence the damping factor, which is the velocity coefficient, can be obtained by finding the 

phase difference W. ço can be determined by plotting the displacement of the beam and the fluidic 

response on the same graph. Note that the stiffness of the beam is also affected by damping due to 

the displacement coefficient given by 

F. cos 

zo 
(3.25) 
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This effect is frequency independent and it will add directly to the original structural stiffness. 

Figure 3.19 shows the plot of a typical beam displacement and the fluid pressure as a function 

of time for the first mode. The plot can be used to extract the value of the phase difference W. This 

value is then substituted in Equation 3.24 to solve for the damping coefficient. 

0.02 
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- Beam Motion 
- Fluid Pressure 

0 5 10 15 20 25 30 35 

(Ut 

Figure 3.19: Plot of the beam displacement and the fluid pressure used to determine the phase 
difference W. 

However, for an elastic structure like the cantilever beam, the relative position of a given node 

relative to other nodes changes as the body deforms. Therefore, the formulation of the problem 

has to include the temporal as well as spatial information about the node. Inclusion of the spatial 

information is very complicated and there is no general way of doing it [38]. One way of doing it is 

to use mode shapes as described in Chapter 2, which is only applicable to linearized equations. For 

a linearized Reynold's equation governing squeeze film damping, a modal projection technique 

(where the fluidic forces are expressed in modal coordinates) has been implemented in ANSYS 

version 8.1 as FLUID136. The problem is defined by creating a structure using 3-D solid elements 
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(for example, S0L1D45) and attaching a corresponding FLUID 136 element on each solid element 

such that the nodes at the boundary coincide. This is shown in Figure 3.20. 

NODES 

Damping Ratio Rottact inn t o,iCmnt1ivr ?.am 

Figure 3.20: FLUID 136 nodes on top of SOLID45 nodes. The nodes have to coincide at the 

boundary. 

ANSYS first solves for the mode shapes of interest. This is exactly the same as the modal 

analysis described previously. Once the mode shapes are known, they are then used to excite the 

squeeze film model (FLUID 136 elements) in the whole frequency range specified to determine the 

frequency response [38]. Figures 3.21 and 3.22 shows the modal excitement for modes I and 2 

respectively. 

The pressure values are then calculated for each mode. Once the pressures for each FLUID 136 

element are known, they are integrated to compute the force vector for each frequency. The scalar 
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DISPLACEMENT 

STEP-1 

Damping Ratio Extraction for n Cantiiovrr Boom 

Figure 3.21: The FLUID136 element excited using the first mode shape. 

•DISPLACEMENT 

ETEP.1 

Damping Ratio Extraction for a Cantilever Beam 

Figure 3.22: The FLUID136 element excited using the second mode shape. 
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products of all force vectors are then computed - the scalar products represents the modal forces 

and they state how much of the pressure distribution acts on each mode. The pressure can be used 

to determine two matrices; the modal damping coefficient matrix Cij and the modal squeeze stiff-

ness matrix Kip The subscript i represents the deflection mode (source mode) while subscript j 

represents the mode experiencing the pressure (target mode). The diagonal terms of the matrices 

represent the coefficients for each mode while the off-diagonal terms represent the cross-talk be-

tween modes [39]. The damping ratio j for mode i can be obtained from the matrix coefficient Cii 

as 

= Cii (3.26) 
2wm 

where wi is the resonant frequency of mode i and mi is the modal mass. 

This analysis was performed for the cantilever beam with the same dimensions as in previous 

discussions and the results were compared to the approximation based on the simplified Reynold's 

Equation from Chapter 2. A variation of several parameters was performed and the comparison 

between the two results plotted. Figure 3.23 shows the damping ratio as a function of resonant 

frequency of the beam for the first mode. It can be seen that the higher the resonant frequency, 

the smaller the damping factor as predicted by the simplified Reynold's equation. The resonant 

frequency of the beam was varied by changing the thickness of the beam. This has no effect on the 

squeezed film since the surface of the beam interacting with the fluid remains the same. 

However, if we change the width of the beam, we expect the damping to vary accordingly since 

now the beam area squeezing the film is changing. Figure 3.24 shows the same plot for a beam that 

is 5 times as wide compared to the results plotted in Figure 3.23. It can be seen that the trends are 

similar for both analytical and ANSYS results. However, the values of damping ratio are an order 

of magnitude higher. This increase in damping is expected since a wider beam has more surface 

interacting with the fluid leading to more energy dissipation. 
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Figure 3.23: The damping ratio as calculated by an analytical approximation based on simplified 
Reynold's equation compared to the value calculated by ANSYS. The horizontal axis represents 
the cantilever resonance frequency. The beam simulated has the width of 2jtm, length of 40/um 
and thickness of 1gm. 

Figure 3.25 shows the variation of thedamping with the gap. Again, as expected, the larger the 

gap the smaller the damping. Figure 3.26 shows the comparison for the second mode of vibration. 

It can be seen that the simplified Reynold's equation provides a good first-order approximation for 

damping even for higher modes of vibration. Note that for all the simulations the ANSYS results 

are smaller than the values predicted by Reynold's equation. This can be explained by referring to 

Figure 3.27. Reynold's equations assumes rigid body motion for the cantilever beam as shown on 

the right of the figure while in reality the cantilever deforms into the different mode shapes. The 

figure shows the deformation for the first mode. It is apparent that for a rigid body approximation, 

damping is overestimated since more beam area squeezes the fluid film than what actually happens. 

Similar arguments apply to higher modes of vibration. 
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Figure 3.24: Comparison between the analytical and ANSYS results for the damping ratio for a 
beam that is lOjim wide with other dimensions as the beam in Figure 3.23. 
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Figure 3.25: Comparison between the analytical and ANSYS results for the damping ratio for a 
beam as a function of the gap. 
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Figure 3.26: Comparison between the analytical and ANSYS results for the damping ratio for a 
beam for the second mode. The dimensions used are the same as those for Figure 3.23, 

I 
The beam displaces as a 

rigid body 

 II 

Figure 3.27: The analytical Reynold's equation assumes rigid body deformation as shown on the 
right. The actual displacement is as shown on the right for the first mode covering less area between 
the moving surface and the fluid. Hence, the actual damping is less than the one predicted by the 
analytical 1.eynold's equation. 

As mentioned before, the fluid forces can behave as a damping or stiffness effect depending 

on the frequency of vibration of the cantilever beam. At low frequencies, the fluid can track the 

beam by going back and forth as the beam oscillates, hence the force is proportional to the beam 

velocity acting as a damper. However, at higher frequencies, the fluid can not move with the beam 
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and it acts as a spring increasing the effective stiffness of the beam. It is important to determine 

these effects accurately so that they can be included in the design process. ANSYS can be used to 

calculate these values as shown in Figure 3.28. The cantilever beam resonant frequency is shown 

on the figure and at that frequency the damping is still dominant and the fluid stiffness adds an 

extra 5% to the structural stiffness. 
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Figure 3.28: The damping ratio plotted with stiffness ratio as a function of frequency. The stiffness 
ratio describes how much the fluidic stiffness contributes to the overall structural stiffness. In this 
case, at resonance we have a ratio of roughly 0.05 which means the fluidic stiffness adds an extra 
5% to the structural stiffness. 

It is also interesting to look at how this phenomenon depends on the viscosity of the fluid. The 

value of viscosity used to obtain results in Figure 3.28 was the typical value of air viscosity at 

room temperature which is 1.85 x 10 5Kg/m. s. To study how viscosity affects the damping and 

fluid stiffness characteristics, another simulation was performed with ten times as much viscosity. 
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The comparison is shown in Figure 3.29. The original results (same as Figure 3.28) are shown 

with the triangular points. Two observations can be made concerning the high viscosity results. 

First, even though the trends of the damping and fluid stiffness are similar to the lower viscosity 

results, the crossover from dominant damping to dominant fluid stiffness occurs at a much lower 

frequency. Intuitively, this can be explained by the fact that the more viscous the fluid, the harder 

it is for it to follow the oscillating cantilever beam and the cut-off frequency where it turns into an 

effective spring is lower than for a less viscous fluid. The second observation is that when viscosity 

is higher, both damping and fluid stiffness are higher creating more energy dissipation in the whole 

frequency range of operation. 
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Figure 3.29: The effect of fluid viscosity on the damping ratio and fluid stiffness as a function of 
frequency. 

In the next chapter, techniques for extracting parameters to allow for system level simulations 
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will be discussed. The damping values obtained in this section will be directly used in the system 

level models. 



Chapter 4 

System Level Modeling 

This chapter describes the highest level of abstraction in the modeling hierarchy described in Chap-

ter 1. A technique called reduced order modeling (ROM), where infinite degrees of freedom are 

reduced to a few dominant degrees of freedom is introduced. ANSYS supports the ROM for 

electrostatic-structural transducers and the specific element for this task is described. The element 

generates the ROM which can be used within ANSYS for very simple system level modeling or 

exported in a VHDL-AMS language which allows the ROM to be used in more sophisticated ex-

ternal system simulators. Simulation results for damped harmonic response were performed within 

ANSYS and these are compared with full FEM results. A short introduction to the VHDL-AMS 

is then given. The VHDL-AMS code generated by ANSYS is subsequently analyzed. Due to time 

constraints, the VHDL-AMS code was not used, but some of the lumped parameters were utilized 

in a Simulink simulator to design a Q-controller based on a velocity feedback technique. 

4.1 Reduced Order Modeling (ROM) 

Transducers, by definition, involve multiple energy domains. As described in the previous chap-

ters, the cantilever sensor involves kinetic energy, elastic deformation, electrostatic energy and 

fluidic interactions. It is very useful to capture the complex multi-physics domains in relatively 

compact dynamic models [40, 4 1 ] for two main reasons. By having accurate compact models, the 

dynamic simulations can be performed much more rapidly compared to the finite element simu-

lations. Secondly, and more importantly, the captured models can be connected to other system 

components allowing a system level simulation and performance evaluation. This is paramount for 

MEMS since the mechanical structures are usually connected to electronics. These captured mod-

els are usually called reduced order models (ROM) because of the relatively few dynamic degrees 
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of freedom, very similar to the description in Chapter 2. 

The requirements for the ROM are [40]: 

• Analytical rather than numerical. 

• Correct dependence on the device dimensions and material properties. 

• Correct energy behavior - conserving or dissipating. 

• Acceptable quantitative agreement with full FEM simulations and experimental results. 

The process of obtaining the ROMs is usually a full run of 1-JM to solve for the particular 

modes of interest. Once the relevant modes are known, the input/output relationship of the trans-

ducer can then be expressed using SPICE models or VHDL-AMS language. SPICE models can be 

used in circuit simulators, while VHDL-AMS models allow for system level simulation. Specific 

ROM capabilities of the ANSYS software will be described next. 

4.2 ROM in ANSYS 

ANSYS 8.1 provides an interface for exporting the coupled electrostatic/structural interaction so-

lution to a VHDL-AMS model through the element R0M144. The element is described and some 

theoretical background on the generation of the element data is provided. 

4.2.1 The R0M144 Element 

ROM 144 can be used to represent either a 2-D or a 3-D reduced order model of a coupled electrostatic-

structural system [42]. The element has nine modal degrees of freedom and five voltage degrees 

of freedom. A typical sequence for generating the ROM is shown in Figure 4.1. The first step 

is to create the FEM model as described in the previous chapter. Since R0M144 couples two 

domains (electrostatic and structural), the meshing, material properties and boundary conditions 

have to take this into account. Once the FEM model is ready, the so-called "generation" pass is 
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performed to solve the 1-1M model and generate the ROM 144 element. This element can either be 

used within ANSYS with other ROM elements or it can be exported into a VHDL-AMS code. In 

this work, harmonic analysis is performed within ANSYS and the results are compared with a full 

finite element solution. 

FEM Model Creation 
and Preparation 

'Ir 

Generation Pass 

Assembled R0M144 
Element 

Internal ANSYS Use 

Generate VHDL-AMS 
Code 

Used in External 
System Simulator 

Figure 4.1: The ROM 144 generation process. 

Reduced order modeling of coupled domains is based on the principle of normal coordinate 

transformation as described in Chapter 2 [42]. The deformation state u of the structure is expressed 

as a sum of weighted mode shapes 

u(x,y,t) = ueq(x,y) + 
m 

i=1 

q(t)(x,y) (4.1) 

where qj is the modal amplitude of mode i as a function of time, (] is the mode shape, Ueq is the 

equilibrium deformation and m the number of modes of interest. By substituting Equation 4.1 

into the second order system, we obtain m equations that describe the structural domain in modal 

coordinate as [42] 
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ÔWSENE 
=L..' (4.2) aqi 

where mi is the modal mass, 6i is the modal damping factor, wi is the angular frequency, WSENE 

is the strain energy and E F is the total external force applied. Note that the partial derivative is 

the derivative of energy per displacement and therefore it has the unit of force consistent with the 

rest of the parameters. For linear structural systems, the derivative can be simplified to the stiffness 

constant multiplied by displacement, but in general, the strain energy depends on the generalized 

coordinates qj. When coupled with electrostatic system, the electrostatic force in the modal domain 

is given by [42] 

15CZi(v - V)2 

aqi where Cjj is the capacitance between conductors i and j and V is the potential at a given 

conductor. 

4.2.2 Damped Harmonic Response 

(4.3) 

By now, it is apparent that the damped harmonic response is a very important characteristic of the 

resonant mass sensors. The responses were simulated using a fully blown FEM (nodal) solution 

as well as using the ROM element extracted through the R0M144 element. Figure 4.2 shows the 

response obtained from FEM solution while Figure 4.3 shows the ROM response. 

For both responses, the amplitude is of the point at the free end of the beam. It can be seen 

that the two responses are very similar despite the fact the FEM solution took about 4 hours to 

run while the ROM solution took less than a minute. This illustrates one of the advantages of the 

ROM technique which is an accurate but also very compact representation of the dynamics of the 
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Figure 4.2: The damped harmonic response using full FbM harmonic analysis. 

transducer. The other advantage is the ability to integrate the RUM with other components in a 

system level simulator. This is achieved through a description language VHDL-AMS which will 

be discussed next. 

4.3 The VHDL Language 

VHDL stands for VHSIC Hardware Description Language, where VHSIC is an abbreviation for 

Very High Speed Integrated Circuit. It was developed in the eighties by a collaborative effort 

between the United States Department of Defense and the IEEE. The purpose of the language was 

to enable standardized simulation and synthesis of digital systems with many features including 

Support for hierarchical designs. 

• Each design element has a well defined interface (for interconnection) and a precise behav-

ioral specification (for simulation). 



78 

FOST2G 

AMPLITUDE 

(010'*-a) 

2.5 

2.25 

1.75 

VALU 1.25 

.75 

.21 J 
1600 3200 4000 6400 8000 

000 2400 4000 5600 7200 

FREQ 

AN. 

Figure 4.3: The damped harmonic response using the ROM. The ROM was used within the AN-
SYS environment. 

• Allows concurrent simulation. 

• Hardware can be synthesized directly from algorithms. 

Typical structure of VHDL code is shown in Figure 4.4. There are two main sections. The 

entity section defines how the device described by the VHDL code interfaces with external para-

meters. When the code is used in system level simulation, the user of the device does not need to 

know its internal workings, but rather just understand the interface definitions. The second portion 

of the code, known as the architecture, is what defines the behavior of the device. 

VHDL has grown dramatically. Now there is a standard implemented in many commercial 

tools, enabling digital designers to develop complicated systems more rapidly and reliably rela-

tive to what was achievable with schematics-based development tools of the earlier era. Recently, 
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entity sensor is 
description of sensor interface 

end entity sensor 

architecture ideal of sensor is 
begin 

sensor behavior:process is 
begin 
description of sensor behavior 
end process sensor—behavior 

end architecture ideal 

Figure 4.4: General outline of VHDL code. 

an extension to VHDL known as VHDL-AMS (for Analog and Mixed Signals) has been devel-

oped. This extension adds the ability to simulate analog and mixed (analog/digital) signals as well 

as variables from other domains (including mechanical, fluidic and thermal). Commercial tools 

supporting VHDL-AMS have started appearing even though they are not very well established. 

Since VHDL-AMS supports multiple domains, it is ideal for MEMS (and transducers in general) 

modelling and simulation. The following subsection describes the VHDL-AMS code generated by 

ANSYS. 

4.3.1 VHDL-AMS Code 

From a MEMS designer's point of view, the most important addition to the VHDL language is the 

ability to simulate variables in domains other than electrical. An IEEE standard has been proposed 

for VHDL-AMS and it includes the variables from different physical domains. In terms of other 

language constructs, VHDL-AMS is similar to most programming languages, in that it includes 

the ability to create loops, case statements, if-else statements and creation of functions. For further 

details, the reader is referred to [43]. 

Once the R0M144 generation pass is performed, ANSYS exports four VHDL files. The main 

file is called transducer.vhdl. This file contains the entity and behavior definition of the device. 

It also has the function spoly_caic which calculates the polynomial representations of the device 

based on the extracted capacitance and strain energy. The file beginning with cal2_ams contains 
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the extracted capacitance information while the file beginning with s_ams contains the strain energy 

information. The fourth file is called initial.vhdl which contains the initial values of the variable 

used in the main file. The complete generated code is attached in Appendix A. 

4.4 System Level Simulation of a Q-Controlled Sensor 

Due to time constraints and the unavailability of a fully featured VHDL-AMS simulator in the 

BRAG laboratory at the time being, the VHDL-AMS code generated by ANSYS was not used to 

perform system level simulation of the Q-controlled sensor. Instead, a lumped parameter second 

order system was used. This system is less accurate than the VHDL-AMS code with the main 

difference being the use of strain energy function in the VHDL-AMS code and a lumped constant 

stiffness in the second order approximation. However, as explained previously, this approximation 

is accurate for small displacement of the cantilever beam. The lumped system parameters were 

all obtained from finite element simulations with ANSYS. Effective mass and effective stiffness 

for each mode can be obtained in ANSYS by using the ROM technique. The effective modal 

damping used was the one obtained in Chapter 3. The system was implemented in Simulink 

dynamic simulator from Mathworks. Figure 4.5 shows the second order system implementation as 

given by Equation 2.28. The system is driven by a harmonic signal to study its response. 
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Figure 4.5: The second order system representing the cantilever beam dynamics. 
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The same system can also be represented using a transfer function in the s-domain. Since the 

transfer function is in s-domain, it represents the magnitude as well as the phase response of the 

system. The magnitude response is the same as the harmonic response we saw earlier and the 

phase response gives us information about how much the system shifts the phase of a sinusoid at 

a particular frequency. The block labelled "Transfer Fcn" in Figure 4.6 represents the cantilever 

beam system. The output of the system which is the displacement of the beam, is phase shifted 

and amplified as described in Chapter 2, section 4 in order to modify the damping coefficient. The 

effective ODE for the system is now given as 

+ I Ic - z G\. + k—z = F z - - I - 

\m mw) m m 
(4.4) 

where m, c and k are the effective modal mass, damping and stiffness respectively, extracted 

from ANSYS. The amplified and shifted displacement is then added to the driving oscillator. Note 

from Equation 4.4 that the higher the frequency, the higher the gain that is required to subtract from 

the inherent damping. In practice, this may cause problems since the gain also amplifies noise and 

therefore there is a threshold gain where any additional increase will not be beneficial. Figure 4.7 

compares the frequency responses for the uncontrolled and the feedback-controlled systems. It 

can be seen that there is significant improvement in the quality factor. Simulink was used to show 

the effect of feedback on damping factor. The gain used for this particular system simulation was 

approximately 1.3. This demonstrates that the feedback technique can have significant impact on 

the damping by using modest gain values. Since the velocity feedback directly affect the damping 

factor, its effects can also be seen by directly modifying the transfer function and plotting the 

analytical expression rather than numerically solving for the ODE by using Simulink. The plots 

using analytical transfer functions are shown in Figure 4.8. 



82 

Phase Shifter 

Scopel 

Sine Wave 

Gain 

K4 

Divide 

x4 

Derivative 

du/dt 4  

Resonant Frequency 

C. 

 00. 
s2+1O8388s+2.937e1 

Transfer Fcn 

Scope 

Figure 4.6: Feedback control used to reduce damping. 

The following section will discuss a chip consisting of array of cantilever beams fabricated 

using the MUMPs process. 

4.5 MUMPs-Based Chip 

An array of cantilever beams with varying lengths was fabricated using a standard surface micro-

machining process known as the Multi User MEMS Processes (MUMPs). The purpose of the array 

was to study the electrostatic actuation mechanisms and the dynamics of the cantilevers. Figure 

4.9 shows an SEM image of the cantilever array and Figure 4.10 shows a closer side view of one of 

the beams. The gap between the beams and the substrate is 2 ,am. Several vibration measurement 

techniques were explored to characterize the cantilevers and the following section discusses them 

with the challenges encountered. 
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Figure 4.7: Comparison between the uncontrolled and feedback controlled frequency responses. 

4.6 Measurement Techniques 

This section describes the measurement techniques explored during the course of this research. 

Static measurements performed by an optical profilometer are first described and then details of 

different vibration measurement techniques are provided. 

4.6.1 Static Measurements 

Static deflection measurements are important to characterize the effect of electrostatic force on 

the cantilever beam displacement. These measurement also allows the extraction of the cantilever 

beam effective spring constant. The measurements were performed using a Zygo optical pro-

filometer. The main advantage of an optical profilometer for suspended structures is that since it is 

non-contact, it does not affect the measurements. Potential difference was applied to the cantilever 

with respect to the substrate and the profilometer image captured for each voltage. The voltage was 

increased until pull-in occurred. Figure 4.11 shows the cantilever when no voltage was applied and 

Figure 4.12 shows a shattered cantilever when 40 volts were applied. The voltage was increased 
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Figure 4.8: Comparison between the uncontrolled and feedback controlled frequency responses 

using analytical expression of the modified transfer function. 
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Figure 4.9: An SEM image of an array of cantilever beams fabricated in MUMPs process. 

in 2.5V increments, therefore pull-in occurred between 37.5V and 40V. Figure 4.13 shows a com-

parison between measured results and ANSYS simulation of the beam displacement as a function 

of voltage. The results are very similar and the difference is probably due to a bump introduced in 

the cantilevers because of a design error as shown on Figure 4.14. The bump decreases the beam 

stiffness resulting in more displacement than predicted by ANSYS. 
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Figure 4. 10: An SEM imege of side view of one of the cantilever beams. 

4.6.2 Vibration Measurements 

Models are of limited value unless they are experimentally verified. The reduced order modeling 

technique based on modal decomposition is a relatively new technique and its applications are 

limited to a few research groups making it even more important to verify the simulation results. 

For dynamic MEMS, accurate measurements are usually challenging to perform, and sophisticated 

measurement techniques are required. This section discusses different measurement techniques 

that were explored with their advantages and disadvantages. 

Capacitive Sensing 

Capacitive displacement sensing is the most commonly used technique in MEMS, since it works 

very well for Silicon and the associated electronics. There are variety of ways to measure displace-

ment by measuring capacitance change, but the one relevant for this work is that of a parallel plate 

configuration. As described previously and illustrated in Figure 2.5, the cantilever beam and the 

ground plane are equivalent to a capacitor which depends on the gap. By measuring the change 
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Figure 4.11: A profilometer image of the cantilever beam with no voltage applied. 

in capacitance, we can determine by how much the gap has changed. Figure 4.15 shows a capac-

itance divider configuration where C(z) represents the varying capacitor as the cantilever beam is 

oscillating and Cr6f is a fixed reference capacitor. The parasitic capacitance which is out of the 

designer's control C, is shown with a dashed connection. 

The impedances of the two capacitors are given as 

and 

1 
Z(z) = jwC(z) 

Zref = jWCref 

(4.5) 

(4.6) 

By impedance division, the output voltage V0 assuming ideal unity gain buffer, is given by 

1 I 

Zref 1 1 jwCrejv0=[ 11Zref+ Z(z)j [jwCj Th jwC(z) 
(4.7) 
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Figure 4.12: A profiloineter image of the shattered cantilever beam. The pull-ill voltage was found 

to be around 42V. 

Note that we have assumed the parasitic capacitance is negligible. The two capacitances can 

be expressed as a function of the nominal gap go and displacement z as 

and 

C(z)=  cA 
go + z 

Crei = cA 
90 

Substituting these two values into Equation 4.7 and rearranging, we get 

(4.8) 

(4.9) 

V.  - 2go + z - 2 (1 + z/2g0) 
This expression is non-linear, but when the displacement z is small compared to the nominal 

gap go. it can be linearized to obtain 

v Vill [' go 

z1 

-] (4.11) 

From this equation, the only unknown is the displacement z, which can be determined by 

measuring V. Recently, advances in integrated circuit design have enabled extremely sensitive 
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Figure 4.13: Comparison between measured and ANSYS results for electrostatic actuation. 

measurements of up to 10 x 10'8F in capacitance and displacement of up to 10 x 10'5m [44]. 

The crucial factor is to ensure that the parasitic capacitance as shown in Figure 4.15, is much less 

than the measured capacitance, which can only be achieved when the MEMS and the integrated 

circuit components are manufactured on the same die. If we include C,, Equation 4.7 becomes 

r I 

v0 f  1 I  wCref 1— jWCp VZref + Z(z)] Vjfl  + 1  _L.L jWC gj jwC(z)jwC,  

If C is very large compared to C(z), we have 

(4.12) 

= Vi.11+C 1 /C(Z)l (4.13) 

and the output signal does not vary much when C(z) varies because it is dominated by Cp. 

For the designed cantilever beams, the largest beam has a nominal capacitance of 5 x 10-14 while 

the external probes have parasitic capacitance in the range of pico Farads. Hence it is extremely 

difficult to have accurate measurements with this kind of detection technique unless the sensing 

electronics are integrated on the same die to minimize the parasitic capacitance. For integrated 
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Figure 4.14: A bump close to the fixed end of the beam results in a lower stiffness. 

0(z) Unity Gain Buffer 
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Figure 4.15: A capacitor divider for displacement measurement. 

CMOS on the chip, several established capacitance measurement techniques can be used, including 

chopper stabilized amplifier and correlated double sampling techniques [26] 

Atomic Force Microscopy 

An atomic force microscope (AFM) is a mechanically based imaging instrument with nanometer 

resolution. It was invented in 1986 by Binnig and coworkers at the IBM Research Laboratory [451. 

The original design consisted of a very compliant cantilever beam with an extremely sharp tip, 

which has a radius in the order of tens of nanometers. When the tip is brought to close proximity 

with a surface, the interatomic forces can be measured by determining how much the cantilever 
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deflects. The deflection was measured by measuring the tunneling current flowing between the 

surface and a conducting tip. 

Over the last fifteen years, vast improvements have been achieved based on this original design. 

The newer designs utilize optical detection methods for displacement measurement and different 

modes of operation are available [46]. The most common mode currently in use is the "tapping" 

mode whereby the cantilever is oscillated on top of the surface. A change in the oscillation ampli-

tude corresponds to a change in the sample profile. This intermittent contact minimizes the contact 

between the tip and the surface reducing the chance of the surface being damaged and at the same 

time allowing accurate profiling of soft samples such as biological ones. This mode has also been 

successfully implemented in fluidic environments enabling the study of biological samples in their 

native environments. 

Referring to Figure 4.16, the AFM cantilever is controlled by a piezoelectric actuator. The 

actuator allows motion in x, y and z directions. A computer controlled scanner (not shown in the 

figure), scans the AFM cantilever on the x-y plane over the whole surface of interest. A laser 

is focused onto the tip of the AFM cantilever and the reflected light is picked up by a position 

sensitive photo detector. This signal is processed by the computer and using feedback, the distance 

between the AFM tip and the sample is kept constant over the whole scan. The feedback error 

signal corresponds to the sample profile. 

The experiment as shown in Figure 4.16 was performed using the Bioscope AFM from Dig-

ital Instruments with Nanoscope III controller. The sensor cantilever was driven electrostatically 

which isolates it from the piezoelectric drive of the AFM cantilever. The AFM tip was brought to 

about lOOnm from the vibrating cantilever and the motion of the AFM cantilever recorded. Fig-

ure 4.17 shows the recorded signals for two values of electrostatic actuation voltage. The signals 

were detected only when the frequency of the actuation voltage matches the resonant frequency 

of the AFM cantilever (272KHz in this case). This indicates very strong coupling between the 
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Figure 4.16: The AFM tip track the motion of the sensor cantilever with the displacement detected 

by a position sensitive photodetector. 

two vibrating structures and suggests that it is not possible to measure the motion of the sensor 

cantilever without affecting it. From the figure, when IV is applied, the motion is sinusoidal, but 

at 3V, the signal is clipped at the bottom. This is probably occurring because the AFM tip is hitting 

the cantilever and the feedback bandwidth does not allow for fast enough response. 

From the measurements performed using the AFM, it was concluded that this is not an appro-

priate method to characterize a vibrating structure for two main reasons: 

. The AFM feedback loop bandwidth is too small to accommodate dynamic measurements at 

typical frequencies. 

• The AFM measurement technique is inherently intrusive in a sense that contact, no matter 

how brief, is made with the dynamic sample and therefore affecting the measurements that 

we are trying to perform. 
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Figure 4.17: Measured results using the Nanoscope III AFM. No output was observed at any 
frequency other than the resonant frequency of the AFM cantilever indicating strong coupling 
between the vibrations. The larger amplitude is clipped at the bottom because the AFM cantilever 
hits on the sensor cantilever. 

Optical interferometry, which will be discusses next, is a non-intrusive technique and hence it 

has a potential to provide more accurate measurements. 

Optical Interferometry 

The final method for vibration measurement to be discussed in this work is the optical interfer-

ometry method. This method is based on analyzing constructive and destructive interference of 

light waves [47]. Figure 4.18 shows a schematic setup of the system. Light from a He-Ne laser 

source is split 50/50 into a reference beam and an object beam. The object beam is focused into a 

cantilever beam free end and the reflected light recombines with the reference beam. As the can-

tilever beam vibrates, the optical path travelled by the object beam will change, hence modifying 

the interference pattern at the photo-transistor. 

The electric field strength Er of the reference beam is given by 
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Er = &wlt (4.14) 

where w1 is the laser frequency. Since the cantilever beam is not a perfect reflector, only a 

portion of the light will be reflected. Letting the percentage of the reflected light be R, we can 

write the electric field of the objective beam E0 as 

B0 = (4.15) 

where '0 is the phase difference between the two beams. The square root is due to the fact that 

light intensity is proportional to the electric field squared. Therefore, the total electric field at the 

photo-transistor is 

This can be expressed as 

Et = e3o)tt + (4.16) 

+ (4.17) 

Since w1 is much higher than the bandwidth of the photo-transistor, the term outside the bracket 

is time averaged and the intensity at the photo-transistor which is proportional to square of the 

electric field is 

This simplifies to 

IOC IEtI2 = E('0) * Et(—'0) (4.18) 

Icxz(1+R)+2V'  cos '0 (4.19) 

where'0 is the phase difference between the two interfering beams. If the cantilever has moved 

by displacement Az, then'0 is given by 
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2w 2Az = 2ictz (4.20) 

where ic is the optical propagation constant. As the light interferes, it forms fringes with max-

ima at the locations where there is constructive interferences, this occurs when 

Lz=*n (4.21) 

where n is an integer. Therefore, by counting the number of fringes, the value of displacement 

Az can be determined. This technique is limited by the wavelength of light used. Most laser 

sources are based on red light with wavelength of 633mm. Displacement below this value can not 

be detected since at least one fringe is needed to determine Az. More sophisticated instruments 

complement this technique with mixing of optical signals and phase measurements to overcome 

its weaknesses. One example of an instrument using the mixing (heterodyne) techniques is the 

Polytec vibrometer with has displacement resolution in the order of picometers. 
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Figure 4.18: Schematic of the interferometer setup to measure vibrations of the MEMS cantilever 

beam. 



Chapter 5 

Conclusions 

Bio-MEMS has many potential applications, one of them being precise mass measurement for 

bioparticle detection. Cantilever beams are the simplest structures that can be made using MEMS 

technology and their frequency shift can be used to accurately measure mass. Even though most 

dynamic devices operate in their fundamental mode, it was shown that the second mode is better 

in terms of less damping and also less sensitivity to the bioparticle location on the beam. 

The key reason behind the proliferation of microelectronics is the mixture of accurate and easy 

to use models that can be placed in a system simulator, shielding the system designer from the 

lower level details. Equivalent models in MEMS are still in their infancy, but once established, they 

may allow similar widespread use of MEMS sensors and actuators. The reduced order modeling 

technique is one of the methods with a lot of potential that can be used to represent the dynamics 

of a transducer in an accurate and compact form. 

5.1 Summary of Accomplishments 

In this project, design and simulation of a MEMS-based cantilever beam acting as a precise mass 

sensor in viscous environments were performed. The ROM technique was used to express com-

plex dynamics in a compact form which could be used in system level simulators for performance 

evaluation as well as designing electronic interfaces to the sensor. The advantages of the ROM 

technique were also apparent in terms of the speed of execution. By using modal projection tech-

nique, damping was calculated for the first two modes of vibration and it was found that the second 

mode of vibration is less affected by damping. Electrostatic actuation was proposed for driving the 

cantilever to overcome the thermal noise and coupled domain electrostatic-structural simulation 

were performed to calculate the displacement of the beam as a function of the voltage applied. The 
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second mode was also shown to be less sensitive to the position of the mass load on the beam. Since 

the second mode is at a much higher frequency relative to the fundamental mode, the bandwidth 

of the sensor is also increased. 

5.2 Suggestions for Future Work 

Many challenges still remain in the design of the precise mass sensor in viscous environments. 

The first possible future task is to use the VHDL-AMS code generated by ANSYS in an electronic 

design environment to create a seamless integration between the transducer and the interface elec-

tronics. The code is undocumented and therefore it will take significant effort to make it work 

properly. 

More important is the experimental verification of the models. Sophisticated MEMS charac-

terization equipment with very high resolution, high measurement bandwidth and th6 ability to 

perform measurements in fluidic environments is required. Several measurement techniques were 

explored but they were found to be not suitable for the dynamic characterization of an oscillat-

ing beam in viscous environments. Possible techniques include vibrometry, integrated capacitive 

sensing electronics and integrated optics. 
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Appendix A 

VHDL-AMS Code Generated by ANSYS 

This appendix lists the VHDL-AMS code generated by ANSYS representing the electrostatically 
actuated cantilever beam. There are four files, 3 of them containing the initialization parameter, 
capacitance parameters and strain energy parameters. The fourth file file is the main transducer 

definition. 

A.1 Initialization File 

This files defines the package initial which has the constants generated from ANSYS. The variables 

starting with mm are effective masses for the different modes and the variables starting with dm are 
the modal damping ratios. The damping ratios are given as 0, but they can be changed accordingly. 

package initial is 

constant mm_l:real:= 0.22350623l994E-13; 
constant dm_1:real:= 0.00000000000 
constant mm_2:real:= 0.221476537857E-13; 

constant dm_2:real: 0.00000000000 
constant fil_l:rea].:= 0.331182713795 

constant fil_2:rea1:= -0.698913064938 
constant fi2_l:real:= 0.978390742038 

constant fi2_2:real:= 0.977156105566 

constant ell_l:real: -0.351025926171 
constant ell_2:real:= 0.192926857049 
constant e12_1:real:= 1.53901077348 
constant e12_2:real:= -0.838181253949 

end; 

A.2 Capacitance Paramaters 

The following file contains the parameters for the capacitance calculations. The parameters will 
be passed to the main function in the transducer code to generate a polynomial representing the 
capacitance between the cantilever and the ground plane. 

package ca12_dat_240 is 

constant cal2_type240: integer: =1; 

constant cal2_inve240 : integer: =2; 

signal cal2_0rd240:real_vector(l to 3) :=( 2.0 , 4.0 , 0.0 ) 

signal ca12_fak240:realvector(l to 4) :=( 0.292660389278 , 11.5720695585, 

0.00000000000 , 3101.15257762 ); 
constant ca12_anz240: integer:= 15; 

signal cal2_data240:real_vector(l to 15) 
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0.793074465996 

0.291438412204 

-0.106893353359 

-0.363298544361E-02, 

-0.730365025174E-02, 

0.765849609438E-02, 

0.797197622947E-03, 

0.500364610441E-03, 

-0.233653987055E-02, 

0.365380095146E-03, 

0.330246939768E-02, 

-0.498895029478E-02, 

-0.188236050626E-03, 

-0.928998245944E-03, 

0.114901269064E-02 

end; 

A.3 Strain Energy Parameters 

The following file contains the parameters for the strain energy calculations. The parameters will 
be passed to the main function in the transducer code to generate a polynomial representing the 
strain energy of the deforming cantilevers for the modes of interest. 

package s_ciat_240 is 

constant s_type240 : integer:=1; 

constant s_inve2 40: integer: =1; 

signal s_ord240:real_vector(1 to 3) :=( 2.0 , 4.0 , 0.0 

signal s_fak240:real_vector(l to 4):=( 0.292660389278 , 11.5720695585, 

0.00000000000 , 3.97244642900 ); 

constant s_anz240:integer: 15; 

signal s_data240:real_vector(l to 15): = 

0.926530816054E-02, 

0. 706073266755E-15, 

0.964655595697 

0.335781004503E-16, 

0.762751070613E-03, 

0.916177302498E-16, 

0.241748221265E-01, 

-0.677353741929E-14, 

0.331926091259E-03, 

-0.199854003675E-16, 

0.148182161168E-04, 

-0 .134151750876E-15, 

0.570298802584E-06, 

0.609244341666E-14, 

0.524680812046E-07 

end; 
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A.4 Transducer 

The following is the main transducer entity declaration. The transducer has 8 terminals, 6 of them 
translational and 2 electrical. The terminals starting with st ruc represents the modal displace-
ment and the terminals starting with master represents the nodal displacement (of the master 
nodes of choice). The bulk of the code is the function spoly_caic which generates the capacitance 
and strain energy polynomials using the arguments from the capacitance and strain energy pack-
ages listed above. Once the strain energy and capacitance polynomials are established, the code 
solves for the terminal related quantities using the ordinary differential equations representing the 
system dynamics. 

library IEEE; 

use work. s_dat_240 . all; 

use work. ca12_dat_240 . all; 

use work.initiai.ail; 

use ieee.electrical_systems.all; 

use ieee .rnechanical_systems . all; 

entity transducer is 

generic (delay:time; el_loadi, el_10ad2 :real); 

port (terminal struci, struc2:translationai; 

terminal lagrangel, ].agrange2 :translational; 

terminal masterl,master2 :translational; 

terminal elecl,e1ec2:electrical); 

end; 

architecture behav of transducer is 

type ret_type is array(l to 4) of real; 

quantity qi across fml through strucl; 

quantity q2 across fm2 through struc2; 

quantity p1 across ri through lagrangel; 

quantity p2 across r2 through lagrange2; 

quantity Ui across fl through masteri; 

quantity u2 across f2 through master2; 

quantity vi across ii through eleci; 

quantity v2 across 12 through e1ec2; 

function spoly_calc(qx, qy, qz in reai:=O.O; s_.type,s_inve integer :0; 

s_ord, s_f ak, s_data:real_vector) return ret_type is 

constant Sx:integer:=integer(s_ord(i))+i; 

constant Sy:integer:=integer(s_ord(2))+i; 

constant Sz:integer:=integer(s_ord(3))+i; 

variable fwx:reai_vector(l to Sx) :=(others=>0.0); 

variable fwy:real_vector(l to Sy) :=(others=>O.0); 

variable fwz:real_vector(l to 1) :=(others=>0.0); 

variable dfwx:real_vector(l to Sx) :=(others=>O.0); 

variable dfwy:real_vector(l to Sy) :=(others=>0.0); 

variable dfwz:reai_vector(l to 1) :=(others=>O.0); 

variable res_val:ret_type:=(others=>O.0); 

variable fwv, dfwvx, dfwvy, dfwvz, fak2 : real :=0 .0; 

variable Px_s,Py_s,Px,Py,Lx,Ly,Lz,ii:integer:=0; 
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begin 

Lx:integer(sord(l)); 

Ly:=integer(s_ord(2)); 

Lz:=integer(s_ord(3)); 

for i in 1 to Lx+1 loop 

fwx(i) :=qx**(i-l)*s_fak(1)**(i-1); 

if i=2 then 

dfwx(i) :s_fak(1)**(i-l); 

end if; 

if i>2 then 

dfwx(i) :=real(i-1)*qx**(i-2)*s_fak(l)**(i-1); 

end if; 

end loop; 

for i in 1 to Ly+l loop 

fwy(i) :=gy**(i-l)*s_fak(2)**(i-l); 

if i2 then 

dfwy(i) :=s_fak(2)**(i-1); 

end if; 

if i>2 then 

dfwy(i) :real(i-i) *qy** (i-2)*sjak(2) ** (i-l); 

end if; 

end loop; 

for i in 1 to Lz+1 loop 

fwz(i) :qz**(i-1)*s_fak(3)**(i-1); 

if i=2 then 

dfwz(i) :s_fak(3)**(i-1); 

end if; 

if i>2 then 

dfwz(i) :=real(i-l)*qz**(i-2)*s_fak(3)**(i-1); 

end if; 

end loop; 

if s_type=1 then 

ii:1; 

for zi in 0 to Lz loop 

for yi in 0 to Ly loop 

for xi in 0 to Lx loop 

fwv:fwv+s_data(ii) *fwx(xi+1) *fwy (yi+l) *fwz (zi+1); 

dfwvx:dfwvx+s_data(ii) *dfwx(xi+l) *fwy(yi+1) *fwz (zi+1); 

dfwvy:dfwvy+s_data(ii)*fwx(xi+1)*dfwy(yi+l)*fwz(zi+l); 

dfwvz:=dfwvz+s_data(ii)*fwx(xi+l)*fwy(yi+1)*dfwz(zi+l); 

ii:ii+1; 

end loop; 

end loop; 

end loop; 

end if; 

if s_type=2 then 

ii: 

Px_s:=integer(s_ord(l)); 

Py_s:=integer(s_ord(2)); 

for zi in 0 to Lz loop 

Px:Px_s-zi; 

Py:Py_s; 

for yi in 0 to Py loop 

for xi in 0 to Px loop 

fwv:=fwv+s_data(ii) *fwx(xi+l) *fwy(yi+l)*fwz(zi+1); 

dfwvx:=dfwvx+s_data(ii)*dfwx(xi+1)*fwy(yi+l)*fwz(zi+l); 

dfwvy:=dfwvy+s_data(ii) *fwx(xi+l) *dfwy (yi+l) *fwz (zi+l); 

dfwvz : =dfwvz+s_data (ii) *fwx (xil) *fwy (yi+l) *dfwz (zi+l); 
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ii:=ii+1; 

end loop; 

Px:Px-l; 

end loop; 

Py:=Py-l; 

end loop; 

end if; 

if s_type=3 then 

ii:=l; 

for yi in 0 to Ly loop 

for xi in 0 to Lx loop 

fwv:=fwv+s_data(ii) *fwx(xi+l) *fwy(yi+l); 

dfwvx:=dfwvx+s_data(ii)*dfwx(xi+l)*fwy(yi+l); 

dfwvy:=dfwvy-I-s_data(ii) *fwx(xi+l) *dfwy(yi+l); 

dfwvz :=dfwvz+0 .0; 

ii:ii+l; 

end loop; 

end loop; 

for zi in 1 to Lz loop 

for xi in 0 to Lx loop 

fwv:=fwv+s_data(ii) *fwx(xi+l) *fwz (zi+l); 

dfwvx:=dfwvx+s_data(ii) *dfwx(xi+l) *fwz (zi+l); 

dfwvy : dfwvy+0 .0; 

dfwvz:=dfwvz+s_data(ii)*fwx(xi+l)*dfwz(zi+l); 

ii:ii+l; 

end loop; 

end loop; 

for zi in 1 to Lz loop 

for yi in 1 to Ly loop 
fwv:=fwv+s_data(ii)*fwy(yi+l)*fwz(zi+l); 

dfwvx : =dfwvx+0 .0; 

dfwvy:=dfwvys_data(ii) *dfwy(yi+l) *fwz (zi+l); 

dfwvz:=dfwvz+s_data(ii) *fwy(yi+l) *dfwz(zi+l); 

ii:ii+l; 

end loop; 

end loop; 

end if; 

if s_type=4 then 

ii:=l; 

Px:=integer(s_ord(l)); 

Py:=integer(s_ord(2)); 

for yi in 0 to Py loop 

for xi in 0 to Px loop 

fwv:=fwv+sdata(ii) *fwx(xi+l) *fwy(yi+l); 

dfwvx:=dfwvx+s_data (ii) *dfwx(xi+l) *fwy(yi+l); 

dfwvy:=dfwvy+s_data(ii)*fwx(xi+l)*dfwy(yi+l) 

dfwvz:dfwvz+0.0; 

ii:ii+l; 

end loop; 

Px:Px-l; 

end loop; 

Px:=integer(s_ord(l)); 

for zi in 1 to Lz loop 

for xi in 0 to Px-1 loop 

fwv:fwv+s_data(ii) *fwx(xi+l) *fwz (zi+l); 

dfwvx:=dfwvx+s_data(ii)*dfwx(xi+l)*fwz(zi+l); 

dfwvy: =dfwvy+0 .0; 

dfwvz:=dfwvz+s_data(ii)*fwx(xi+l)*dfwz(zi+l); 
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ii:=ii+l; 

end loop; 

Px:Px-l; 

end loop; 

for zi in 1 to Lz-1 loop 

for yi in 1 to Py-1 loop 
fwv:=fwv+s_data(ii)*fwy(yi+l)*fwz(zi+l); 

dfwvx =dfwvx+0 .0; 

dfwvy:=dfwvy+s_data(ii) *dfwy (yi+l) *fwz (zi+l); 

dfwvz:=dfwvz+s_data(ii)*fwy(yi+l)*dfwz(zi+l); 

ii:=ii+l; 

end loop; 

Py:Py-l; 

end loop; 

end if; 

if s_inve=l then 

fwv:fwv*s_fak(4); 

dfwvx:dfwvx*s_fak(4); 

dfwvy:dfwvy*s_fak(4); 

dfwvz =dfwvz*s_fak (4); 

else 

fak2:l.0/s_fak(4); 

dfwvx:-dfwvx/ (fwv**2); 

dfwvy:-dfwvy/ (fwv**2); 

dfwvz:-dfwvz/ (fwv**2); 

fwv:=l.0/fwv; 

fwv:fwv*fak2; 

dfwvx: =dfwvx*fak2; 

dfwvy : =dfwvy*fak2; 

dfwvz : =dfwvz*fak2; 

end if; 

res_val:=(fwv, dfwvx, dfwvy, dfwvz); 

return res_val; 

end spoly_calc; 

signal sene_240 ret_type; 

signal cal2_240 ret_type; 

begin 

p1: process 

begin 

sene_240<= spoly_calc(ql,q2,0.9,s_type240,s_inve240, 

s_0rd240, s_fak240, s_data240); 

ca12_240<= spoly_calc(ql,q2,0.0,ca12_type240,ca12_inve240, 

ca12_ord240, ca12_fak240, ca12_data240); 

wait for delay; 

end process; 

break on sene_240(2),sene_240(3),sene_240(4),ca12_240(2),ca12_240(3), 

ca12_240 (4) 

fml==mm_l*ql'dot'dot + dm_l*ql'dot +sene_240(2) -ca12_240(2)* 

(vl-v2)**2/2.0 +fil_l*pl+fi2_l*p2 -ell_l*el_loadl -e12_l*el_10ad2; 

fm2==mm_2*q2'dot'dot + dm_2*q2'dot +sene_240(3) -ca12_240(3)* 
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(vl-v2) **2/2 .0 +fil_2*pl+fi2_2*p2 -ell_2*el_loadl -e12_2*el_load2; 

rl==fil_1*ql+fil_2*q2-ul; 

r2==fi2_1 *ql+fi2_2*q2-u2; 

fl==-pl; 

f2=-p2; 
il==+( (vl-v2) * (cal2_240 (2) *ql'dót+cal2_240 (3) *q2'dot) 

(vi' dot-v2' dot) *ca12_240 (1)); 

i2-( (vi-v2) * (ca12_240 (2) *qi' dot+ca12_240 (3) *q2' dot)+ 

(vi' dot-v2' dot) *ca12_240 (1) ) 

end; 


