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Abstract 

Global Navigation Satellite Systems (GNSS) are widely used for most navigation applications. 

However, GNSS quality and availability suffer greatly in certain environments, such as urban 

canyons, or indoors due to signal blockage. This thesis investigates estimation algorithms to 

integrate data from multiple MEMS sensors in a low-cost personal navigation system to bridge 

those signal gaps. 

MEMS-based accelerometer, gyroscope, magnetometer, and barometer sensor technologies are 

surveyed in depth. The main MEMS sensor design parameters and their connection to navigation 

performance are presented. Major error sources from the mechanical Brownian motion of the 

MEMS mass and electronics noise in the readout circuitry are analyzed.  Furthermore, this thesis 

presents a way of decomposing the sensor error terms then applying proper stochastic and 

deterministic error models. Subsequently, navigation estimation states and online calibration 

methods are elaborated accordingly. 

Several key sensors-based positioning algorithms are explored in this thesis.  First, a nine-axis 

fusion engine of accelerometers, gyroscopes, and magnetometers is formulated into an attitude 

Kalman filter for orientation determination. Then a Pedestrian Dead Reckoning (PDR) algorithm 

is developed based on the accelerometer’s step detection and stride length estimation with the 

heading determined from the attitude fusion filter. In addition, Wi-Fi positioning is investigated 

for indoor environments based on received signal strengths. Finally altitude integration of the 

barometer and GPS height measurements is introduced to improve vertical position accuracy.  

The complete navigation system is constructed using an Extended Kalman Filter (EKF) to 

perform the data fusion from multiple positioning above.  This thesis introduced the 

observability analysis for quantitative analysis about the degree of observability of each 
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estimated state; hence more insights of navigation solutions using different sensors 

configurations can be obtained.  

Field tests are presented to verify the system and developed algorithms using three different 

portable navigation prototypes. The first prototype explores optimal integration of the PDR and 

GPS for a continuous positioning solution. The second prototype is focused on Wi-Fi assistance 

when GPS is not available in deep indoor environments. The third prototype is a more compact 

form factor design that mimics the smartphone experience in real-life applications. The test 

trajectories include various outdoor and indoor pedestrian navigation scenarios. The results show 

that the prototype systems can effectively deal with short GPS signal outages and correctly 

estimate navigation states online using EKF. Thus this thesis shows a cost effective design for a 

mobile, reliable and accurate system that enables continuous navigation anywhere. 
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Chapter One: INTRODUCTION  

While vehicle navigation is a well-established service, Personal Navigation Systems (PNS) have 

just started to gain momentum fuelled by the proliferation of mobile applications, hardware 

evolution, and consumer adoption.  Positioning systems and Location-Based Services (LBS) 

based on Global Navigation Satellite Systems (GNSS) are now commonly available. These 

systems provide absolute positions by using signals from satellites. However, navigation in 

GNSS-impeded environments, such as indoor areas and urban canyons, still remains a very 

challenging task.  As such, this dissertation investigates hybrid-positioning methods using low-

cost Micro-Electro-Mechanical System (MEMS) sensors and Wi-Fi positioning integrated with 

GNSS. By exploring the nature of these complimentary systems and combining their location 

data with fusion algorithms, positioning systems can provide a cost-efficient solution that 

enables seamless and accurate positioning everywhere. 

1.1 Background 

LBS have become more pervasive with emerging applications focused on navigation, social 

networking, asset tracking, and people positioning functions.  On the other hand, today’s mobile 

devices, such as smartphones and smart wearable devices, are equipped with more powerful 

processors, better connectivity, GNSS chipsets, and various MEMS sensors.  Therefore, a new 

era of hybrid data fusion is coming for a ubiquitous, accurate, and reliable positioning solution. 

GNSS based devices are still the dominant solution for these navigation applications. However, 

GNSS signal reception requires direct line of sight to the satellites in the sky, which are not 

always available and this poses a great deal of challenge for the weak-signal environments such 
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as dense urban canyons, under tree canopies, and indoors. To overcome this obstacle, multiple 

complementary navigation technologies are integrated together for a seamless navigation. 

Propelled by the rapid development of low-cost MEMS technology, MEMS sensors have greatly 

penetrated many devices ranging from popular handsets, such as smartphones and tablets, to 

gaming consoles, remote controllers, cameras, and wearable devices, to name a few. This thesis 

aims to utilize the state-of-the-art and low-cost MEMS sensors including three-axis 

accelerometers, gyroscopes, magnetometers, and barometer to explore their potentials for 

positioning.  Such configuration, sometimes called 10-DOF (Degrees-Of-Freedom) sensor 

combination, provides more accurate measurements of linear and angular motion in three-

dimensional space.  

To get better indoor location information, some major players in the industry use wireless 

infrastructure systems based on RF fingerprinting, Assisted-GPS/Advanced Forward Link 

Trilateration (A-GPS/AFLT), and beacon technologies. In this thesis, Wi-Fi positioning is 

selected as an absolute positioning update when GNSS signals are blocked. For one reason, Wi-

Fi embedded devices are very popular in many mobile devices; moreover, Wi-Fi hotspots have 

already covered many densely populated urban and suburban areas such as airports, schools, and 

shopping malls, so the operation cost is less than other technologies. 

Embedded mobile systems always have some constraints in practical development. For example, 

low-cost parts selection, dimension and weight limitations, and power consumption constraints. 

All these factors impose challenges on positioning performance. In addition, gathering and 

processing location data in real-time for navigation purposes imposes some limitations that are 

not often considered in scenarios where post-processing is an option [Petovello 2003]. 

Computation overhead, memory space, and processing latency are all important factors to 
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consider. This thesis takes all these limitations into account and investigates the appropriate 

algorithms for multiple sensor fusion under varying circumstances.  

The FCC indentifies indoor location positioning as a critical safety concern for E911 emergency 

responses. In 2014, the FCC proposed these positioning accuracy requirements [FCC 2014]: 

 50 meters horizontally (x,y-axis), with a reliability threshold of 67 percent. 

 3 meters vertically (z-axis), with a reliability threshold of 67 percent.  

The reliability threshold of 67% above means that location results fall within the acceptable 

accuracy range 67% of the time.  This thesis targets the exploration of a cost-effective solution to 

meet this target.  In other applications and services (transportation, tourism, game etc.), the 

positioning accuracy requirement for PNS vary from with sub-meter to tens of meters. 

 

1.2 Literature Review on PNS Solutions 

Over the last decade, there has been a growing interest in personal navigation systems, driven by 

market demand and electronics technology development. Table 1-1 presents reviews from the 

literature that can be representative to show the state-of-the-art research in this field. Of 

particular interest, the table summarizes the sensors configuration selected in the systems, 

highlights the uniqueness of the navigation algorithms, shows the achieved testing performances, 

and comments on some of the main characteristics.  
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Table 1-1 Literature review on PNS 

Sensors 

Configuration 

Algorithm Highlights Accuracy Comments Reference 

Triaxial 

gyro+accel+mag 

(InertiaCube3) 

GPS (LassenSQ) 

- 15-state EKF mechanization 

- ZUPT for each stride as 

measurement 

- Magnetometer heading as 

measurement 

Position 

error  ~1% 

distance 

traveled 

- Shoe mounted 

- Calibration 

- Navigation dual 

modes 

-Intersense Inc. 

[Foxlin 2005] 

 

Triaxial 

gyro+accel +mag + 

baro +GPS 

(Nastorm) 

- Human motion algorithms 

using vertical accel (walk 

forward /backward/running/stop) 

- Terrain correlation algorithm 

Position 

error ~1%  

distance 

traveled 

-Mounts on wearer's 

belt 

-Step time interval 

to determine motion 

mode 

-Honeywell Inc. 

[Soehren et al. 

2008] 

 

Triaxial mag 

(HMR3000) 

baro (PTB220) 

IMU (HG1700) 

OEM4 GPS 

- Three operation modes 

(calibration/DR/Hybrid 

navigation) 

- Knowledge-based system for 

parameterization (ANN and 

fuzzy logic for stride length; 

EKF for gyro/mag stride 

direction integration) 

CEP 3-5m 

for indoor 

- Backpack 

configuration 

- Human locomotion 

pattern recognition 

- 2-D algorithm 

-Ohio State 

University(OSU) 

[Moafipoor 

et al. 2008] 

 

Triaxial 

gyro+accel+mag 

(Xsens) 

GPS (ublox) 

- 3D quaternion-based 

orientation mechanization 

-Uses gravity and magnetic field 

vectors as measurement in static 

mode 

-Adaptive EKF 

Position 

error  <5% 

distance 

traveled 

-Trunk mounted 

- 80% improvement 

with verification test 

- École 

polytechnique 

fédérale de 

Lausanne (EPFL) 

[Tome & Yalak 

2008] 

Wi-Fi+ triaxial 

gyro+accel+mag 

 

-2D strapdown navigation 

mechanization with ZUPT 

-Cascaded EKF heading/position 

integration 

-Wi-Fi fingerprinting (5 meter 

database) 

Wi-Fi only: 

3.2m std. 

Hybrid 

solution: 

1.6m 

-Shoe mounted 

- No GPS used 

-German 

Aerospace Center 

(DLR) 

[Frank et al.2009] 
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Sensors 

Configuration 

Algorithm Highlights Accuracy Comments Reference 

Wi-Fi+ triaxial 

gyro+accel+mag+ 

GPS/Glonass 

 

- PDR algorithm using MEMS 

sensors 

- Crowd-sourced learning of  

Wi-Fi APs 

- Star-V high sensitivity GNSS 

- Star-Fusion Kalman filter 

accuracy 

exceeds 10m 

50% (CEP). 

-Good solution for 

smartphones 

- Cambridge 

Silicon Radio 

(CSR) 

[Bullock  2012] 

Wi-Fi+ triaxial 

gyro+accel+mag+ 

GPS on commercial 

smart phones and 

tablets 

- Detect mode of transit (e.g. 

walk, vehicle, static, elevator) 

- Identify the device orientation 

changes 

< 17 m error 

for 5 mins of 

indoor 

navigation 

- Good solution with 

different mode 

usage 

- Smartphone form 

factor 

- Trusted 

Positioning 

Inc.(TPI) 

[Syed 2013] 

 

To sum up, there are a few inspirations from the PNS literature studied in this thesis. First of all, 

most systems in the references listed above adapt GPS and MEMS Inertial Navigation System 

(INS); additionally, some emerging sensor technologies such as magnetometers and barometer 

are included in the hardware configuration.  Secondly, a few earlier systems [Foxlin 2005, Frank 

et al. 2009] use foot-mounted placement to implement Zero velocity UpdaTes (ZUPT) in their 

navigation algorithms. It is an effective method to control the system position drift during GPS 

signal outages. Other user modes are being considered in more practical applications, such as 

backpack placement [Moafipoor et al. 2008], trunk mounting [Tome & Yalak 2008] and with 

mode transit between vehicle and pedestrian [Syed 2013]. Thirdly, Wi-Fi positioning is an 

effective alternative positioning method for GNSS denied area. Wi-Fi access point database is 

built either for fingerprinting method [Frank et al. 2009] or based on received signal strength 

method [Bullock  2012, Syed 2013]. Overall, as seen From Table 1-1, solutions from TPI and 

CSR showed the best robustness for a mass consumer product.  
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This thesis aims to address some gaps in the literature. First, unlike some legacy navigation 

systems using high-end MEMS sensors, this thesis focuses on inexpensive MEMS sensors for 

practical product development in the mass market. Therefore, analysis on low-cost sensors’ error 

sources, modeling and efficient compensation methods and hybrid positioning algorithms for 

personal navigation are of interest. Secondly, the reference papers didn’t provide implementation 

details on the sensors fusion algorithms of accelerometers, gyroscopes and magnetometers for 

three-dimensional attitude fusion.  Thus this thesis will discuss in depth how the attitude fusion is 

derived; in addition, a framework of 3/6/9-axis attitude fusion is presented to flexible 

deployment of different motion sensors.  Thirdly, to the best of the author’s knowledge, 

observability analysis of the hybrid positioning system addressing pedestrian dynamics has not 

been well studied in the literature before. So this thesis will present method for quantitative 

observability analysis under a hybrid positioning Kalman filter integration.  

In terms of achievable accuracy with GPS outage, all the results in the Table1-1 showed 

excellent accuracy for personal navigation. However, for practical deployment in mass 

production, there is still a lack of a standard universal benchmark for equivalent comparison 

since the results from field tests exhibit stochastic characteristics and are affected by hardware 

noise and many other environmental factors.  In this thesis, several prototypes using selected 

algorithms will be verified under different sensors configurations to examine the robustness of 

the processing.  The goal is to meet the FCC’s E911 positioning accuracy specification (<50m 

horizontal error; <3m vertical error) in most GNSS challenging areas.   
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1.3 Research Objectives  

The main objective of this thesis is to investigate the system and algorithms design for a cost-

efficient mobile system for ubiquitous personal navigation in areas with weak or no GNSS 

signals.  To this end, hybrid positioning system consisting of MEMS accelerometers, gyroscopes, 

magnetometers and barometer sensors are integrated with GNSS and Wi-Fi receiver as a 

complete solution.  Such a system configuration can be found in many modern consumer 

electronics such as smartphones, smart wearable or other portable navigation devices.  

In order to achieve this major objective, several algorithms design and implementation issues 

need to be studied throughout this thesis.  Hence the main thesis objects are further categorized 

to address the following research questions individually. 

 Sensors estimation issues  

Question (1): What are the main error sources for very low-cost MEMS sensors? How to build 

suitable error models so that the estimation algorithms can be properly designed in Kalman 

filter?  

Question (2) How to develop efficient on-line calibration methods for MEMS sensors used in 

personal navigation applications?  

 Attitude estimation issue 

Question (3) How to integrate MEMS sensors for attitude determination in pedestrian 

navigation? 

Question (4) How to make the sensor configuration flexible and implementation efficient? 

 System observability issue 
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 Question (5) Given the dynamics of pedestrian navigation, how to evaluate and quantify the 

degree of observability?   

Question (6) How will weak observability impact navigation performance? 

 Navigation system integration issue 

 Question (7) Given a particular environment or application scenario, how to integrate the most 

appropriate navigation algorithms and subsystems for personal navigation?  

The subsequent section will give an outline of thesis organization to answer the above research 

hypothesis. 

1.4 Dissertation Outline 

This thesis investigates the system and algorithm design of personal navigation system. Figure 1-

1 summarizes the thesis organization.   

Chapter 2 introduces different personal navigation systems based on GNSS, inertial navigation 

systems, wireless positioning, altitude fusion and various alternative assistances. In addition, 

MEMS sensor fabrication and operation principles are given in Appendix A and B. 

Chapter 3 presents the technology of the emerging MEMS sensors including accelerometers, 

gyroscopes, magnetometers and barometer, and then the error modeling and calibration methods 

are discussed which lays the foundation for the system implementation at the device level. It 

handles the sensors estimation issues set in Section 1.3.  

Chapter 4 deals with the attitude fusion of a navigation device. Attitude determination filter 

based on accelerometers, gyroscopes and magnetometers are formulated in a flexible 

configuration.  Rotation tests results are demonstrated to compare the performance. Thus this 
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chapter solves the attitude estimation issue set in Section 1.3. More attitude representation details 

and mathematical derivation are introduced in Appendix C and D respectively. 

 

Figure 1-1 Thesis organization 

 

Chap2: PNS Overview 

GNSS/Inertial/Wireless/Other aiding 

Chap3: Low-cost MEMS Sensors 

Noise analysis/Error modeling/ Calibration  

Chap4: Attitude Sensors Fusion 

Gyro/accelerometer/magnetometer 
combination 

Chap5: Hybrid PNS Algorithms 

PDR mechanization /Kalman Filter/ 
Observability analysis /Altitude fusion/Wi-
Fi Positioning 

Chap 6: Multi-system Integration  
Prototype I: MEMS+GPS / 
Prototype II: IMU+GPS+Wi-Fi / 
Prototype III: MEMS+GPS+Wi-Fi 

Chap 7: Conclusions and 
Recommendations 

Sensors estimation issue 

Topic Classification 

Attitude estimation issue 

Observability issue 

System integration issue 
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Chapter 5 focuses on the essential PNS algorithm designs including PDR mechanization, system 

integration in a Kalman filter, Wi-Fi positioning methods for indoor environment, and a 

barometer-based altitude fusion with GPS height. All these hybrid positioning algorithms form 

the core navigation engine under a unified Kalman filter framework. A systematic observability 

analysis is introduced for optimal state selection and estimation enhancement. Therefore, 

observability issue set in Section 1.3 is tackled. 

Chapter 6 illustrates three prototypes built at various stages of the research with different 

hardware configurations. Typical indoor and outdoor field test results are shown so practical 

system integration and implementation issues of the PNS are discussed.  

Chapter 7 concludes the thesis contributions and uniqueness and gives recommendations for 

future work. 

Table 1-2 summarizes the thesis contribution and its relationship addressing the thesis hypothesis 

questions set in this chapter.  

Table 1-2 Thesis Contribution in relation to hypothesis questions 

Contribution Relation to the Thesis Hypothesis Questions 

1. Analyze low-cost MEMS sensors error 
sources; then apply error modeling and 
calibration methods for estimation. 

Address thesis hypothesis questions 1 and 2. 

2. Develop algorithms for 3/6/9-axis motion 
sensors fusion for attitude determination. 

Address thesis hypothesis questions 3 and 4. 

3. Apply observability analysis for pedestrian 
dead reckoning integration with GPS/WiFi 
measurement. 

Address thesis hypothesis questions 5 and 6. 

4. Build a solution framework with 10-axis 
MEMS sensors, GPS and Wi-Fi, the system 
will adapt different subsystem according to 
application scenarios.    

Address thesis hypothesis questions 7. 
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Chapter Two: PERSONAL NAVIGATION SYSTEMS OVERVIEW  

This chapter will introduce a broad range of positioning technologies for personal navigation 

systems. Besides the popularly used GNSS, other potential alternative technologies suitable for 

personal navigation can be divided into four categories:  

1. Motion sensors based navigation system, such as magnetometers, gyroscopes, 

accelerometers.  

2. Wireless positioning system including cellular systems, Wi-Fi, digital TV, GNSS 

pseudolite and other short-range mobile radio signal of opportunities, such as Bluetooth 

beacon, NFC, etc.  

3. Altimeter, such as barometer, that gives better vertical accuracy.  

4. Feature matching systems, such as cameras, lasers, and map matching.  

Considering what is available, accuracy, and cost factors for consumer products, each candidate 

technology has its strength and weakness. Motion sensing systems are self-contained, but the 

derived position drifts over time and the accuracy decreases for longer GNSS signal outages.  

Wireless infrastructure-based systems have good global coverage in urban areas. However, lack 

of the required infrastructure information, like the cell tower and Wi-Fi access point positions, 

may be a major impediment.  Short-range wireless systems are applicable for some niche 

markets with good accuracy; however, as the name suggests, the proximity approach depends on 

local availability of the system, thus these systems fail to cover large service areas. Image aiding 

systems can be very accurate; however they are relatively expensive and power hungry for 

mobile devices. Therefore each individual system faces some challenges and there is no clear 

standalone winner.  
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2.1 GNSS Overview 

Global Navigation Satellite System (GNSS) technology encompasses a plurality of satellite-

based navigation systems: Global Positioning System (GPS) has long been a standard feature in 

many modern devices not only for portable navigation devices but also in smartphones, tablets, 

and many other embedded devices. In addition to GPS, other satellite-based navigation systems 

have been deployed such as GLONASS by Russia, Beidou (Compass) by China, Galileo by the 

European Union, and regional systems including the Indian Regional Navigational Satellite 

System (IRNSS) by India and the Quasi-Zenith Satellite System (QZSS) by Japan[Agilent 2013]. 

Additional satellite coverage can improve in location determination and accuracy. The 

comparison of four major GNSS constellations is given in Table 2-1 with data up to date as of 

the first half of 2014[Langley 2014].  

Table 2-1 Comparison of GNSS constellation 

Constellation Operational Satellites Carrier 

Frequency 

Baseband 

GPS 8 IIA+ 12 IIR+ 7IIR-M + 4 

IIFs  

= 31SVs  

L1: 1575.42 MHz 1024-bit C/A-Code @1.023 

Mbps, BPSK 

Glonass 24 healthy GLO-M SVs L1: 1602+ 0.5625*k 

MHz (K=-7~ +6) 

511-bit M-Code, @511 Kbps, 

BPSK 

Beidou 4 MEO+ 5 GEO + 5 IGSO  

=14 SVs 

B1I: 1561.098 MHz 2046-bit  random code @2.046 

Mbps *20-bit N-H secondary 

code@1 kbps, QPSK 

Galileo 4 SVs E1: 1575.42MHz 4092-bit random code@ 

1.023Mbps *  25-bit secondary 

code@ 250 bps , BOC 
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Since GPS is still the most popular system, this thesis will use GPS as the global positioning 

engine to integrate with other alternative technologies. The GPS space segment consists of a 

constellation of satellites transmitting radio signals to users. GPS satellites, also known as 

Satellite Vehicles (SV), fly in a Medium Earth Orbit (MEO) at an altitude of 20,200 km and 

inclination of 55 degrees with 12 hour periods approximately. The satellites in the GPS 

constellation are arranged into six equally-spaced, circular orbital planes surrounding the Earth, 

each containing four "slots" occupied by baseline satellites. GPS now effectively operates as a 

27-slot constellation with improved coverage in most parts of the world, as depicted in Figure 2-

1[GPS 2014]. 

 
Figure 2-1 GPS satellite constellation  

 

 

The control segment consists of a global network of ground stations that monitor and track the 

health and status of the GPS satellites. They send commands and navigational data to satellites in 

the constellation.  The user segment consists of the GPS receivers that decode and process GPS 

satellite signals into position, velocity, and time estimates.  
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GPS uses a Coarse Acquisition (C/A) code for ranging, which is a Pseudo Random Noise (PRN) 

sequence that the satellite transmits to differentiate itself from other satellites in the active 

constellation. It repeats every 1023 bits or every one millisecond. This noise-like code modulates 

the L1 carrier signal, "spreading" the spectrum over a 1.023 MHz bandwidth. The Navigation 

Message is a 50 Hz signal consisting of data bits that describe the GPS satellite orbits, clock 

corrections, and other system parameters; it also modulates the L1-C/A code signal. Each GPS 

satellite in the constellation continuously transmits ephemeris data and almanac data.  Ephemeris 

data parameters describe the precise orbit of the current satellite vehicle (SV) for approximately 

30 minutes. Almanacs include approximate orbital data parameters for all SVs over extended 

periods of time and it can be several months old.         

Figure 2-2 presents a general description of the signal processing modules in a GPS receiver 

[Seco-Granados 2012]. The GPS front end receives signals from the antenna, amplifies and 

filters them, and then down-converts them from the L-band frequency to an intermediate 

frequency. At the acquisition stage, the receiver searches for signals in both code delay and 

Doppler frequency drift.  Once it has aligned the received code with the locally generated PRN 

code within less than half of the chip period, a fine carrier tracking loop takes over and keeps the 

code aligned, it enables a receiver to track and process carrier phase information in order to 

demodulate the navigation message data.   
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Figure 2-2 Generic GPS receiver architecture 

 

A GPS receiver determines three unknown spatial coordinates (latitude, longitude and altitude) 

and clock bias in the navigation module shown in the above figure. The GPS pseudorange 

observation model for least-squares estimation [Lachapelle 2001 ] is:  

iii dtCP   .      (2.1) 

Where:  

Pi is the pseudorange measurement 

i is the geometric range between the satellite and the receiver 

C is the speed of light in vacuum (299,792,458 m/s)  

dt is the GPS receiver clock bias (common to all observations made at the same time), 

and  

i is the combined effect of satellite orbit error, troposphere delay, ionosphere delay, 

multipath and noise, usually assumed as a zero-mean, uncorrelated and identically 

distributed Gaussian noise.  

The range measurements can be further expanded as: 

222 )()()( Rx
s
iRx

s
iRx

s
i zzyyxxi 

   (2.2) 

Where: 

 (…)s  is the known coordinate of the satellite  

i  is based on the precise orbital elements (the ephemeris data) sent by each SV 

(…)Rx  is the unknown user coordinate 
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Positions are computed by the receiver in Earth-Centered, Earth-Fixed (ECEF) coordinates. In 

addition, Doppler shift of the satellite signal gives the range rate to each satellite, which can be 

used to determine the vehicle’s velocity. Navigation algorithms such as least squares and the 

Kalman filter are most frequently used in GPS navigation solutions. 

While GPS offers a ubiquitous, precise, and reliable positioning and timing service to the world, 

it has availability limitations for mobile platforms. Firstly, GPS works in open sky where at least 

four direct line-of-sight GPS satellite signals can be received. There are many difficult signal 

environments where satellite signals are too weak for acquisition and tracking. Also, GPS 

solutions are more error prone when object obstructs a direct line of sight between the receiver 

and satellites. These types of errors are known as multipath errors and cause jumps in location 

results. Thirdly, information from multiple satellites needs to be decoded, so it may take a 

substantial amount of time to acquire an initial location, a performance measurement known as 

Time-To-First-Fix (TTFF). Finally, power-efficiency is a critical challenge in any mobile device 

[Zhang 2012]: most receivers typically consume 20-40 mA in full-power operation with a 1.8 V 

supply. Low-power tracking modes can reduce the average power consumption to less than 10 

mA, but at the expense of position accuracy.    

High sensitivity GPS receivers have been developed to improve availability under difficult signal 

environments [MacGougan 2003].  Due to high bit error rates with weak signals, the receiver 

requires external assistance data for computation, such information includes a combination of 

approximate user position, ephemerides, almanac data, time, and the frequency of signals from 

the cellular platform.  Such assisted GPS messages can reduce the TTFF and possibly increase 

the sensitivity of recorded data. The concentration of this thesis is not on the latest advancement 
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of GNSS receivers; rather, it explores alternative positioning methods for solutions in areas with 

weak GNSS signals. 

 

2.2 Motion Sensors in Navigation System 

Traditionally, MEMS sensors have been predominantly used in the automotive, industrial, and 

medical sectors.  The recent availability of low cost, compact sized, and low power MEMS 

sensors have made these devices proliferate into consumer applications such as smartphones, 

tablets, gaming consoles, and wearable devices. Typical inertial navigation system (INS) consists 

of three orthogonal gyroscopes and three orthogonal accelerometers which are compulsory to 

capture the device’s motion in a three dimensional space. The six-axis sensor configuration 

forms an inertial measurement unit (IMU) and is straightforward to generate position, velocity, 

and attitude from raw sensor data with respect to a non-accelerating frame.   In practical 

deployment of the PNS unit, however, the system can be working in many orientations. There is 

no way of guaranteeing that the sensors are placed perfectly aligned with the direction of travel.  

Therefore, strapdown INS mechanization algorithms are usually applied to transform the IMU 

measurements in the device’s body frame into navigation quantities. 

INS has several advantages. They are self-contained in that they have no requirement for an 

external infrastructure like a radio network; they provide a continuous navigation solution that is 

available anywhere, such as under foliage cover, in tunnels and inside buildings; and they are 

unaffected by any outside interference or jamming.  However, due to the accuracy of the low-

cost sensors used in consumer products, a standalone INS degrades with time and without bound. 
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Another limitation is that INS is a relative positioning method and it needs to be provided with 

an initial position to determine absolute location data. 

Magnetometers offer complementary performance of INS by sensing the intensity and 

inclination of the Earth’s magnetic field, thus determine a user’s heading. There are many 

MEMS magnetic sensors that are small in size and low cost, perfect for mobile devices. The 

accuracy of derived azimuths from magnetic compasses depends heavily on the degree to which 

the local magnetic field is being disturbed.  Local disturbances in Earth’s magnetic field are 

caused by nearby permanent magnets, electric currents, or large iron bodies. When properly 

calibrated, heading accuracy can be on the order of a few degrees. 

Yole Développement estimated the inertial MEMS sensors industry will reach $5.4 billion by 

2018, up from $4 billion in 2013 [Yole 2013]. Combining MEMS accelerometers with 

gyroscopes, magnetometers, and a barometer allows for accurate computation of the position, 

velocity, acceleration, and altitude of the device. Integrating these with a GNSS receiver in the 

device empowers seamless outdoor and indoor navigation to become a reality. Appendix A gives 

more detailed introduction of MEMS sensors operation theory; Chapter 3 will analyze main 

MEMS errors then show methods for sensors error modeling and calibration to mitigate accuracy 

degradation.  

 

2.3 Wireless Positioning System 

2.3.1 Introduction 

The basic task of most wireless communication systems is to transfer data from one terminal to 

others. However, by using characteristics of the transmitted signal itself, wireless 
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communications systems can be used as wireless positioning systems that determine a mobile 

device's location [Bensky 2008]. Positions are calculated using two main categories of wireless 

systems: network based and handset based. The latter is generally preferred for commercial 

roaming devices due to its convenience of implementation.   

Positioning information can be obtained from cellular telephone systems. The main advantage of 

these systems is that the mobile handset is widely available at a low cost and the cellular 

infrastructure has the best coverage globally. By looking up the location of the unique cell ID of 

the cell tower that the handset is connected to at any given time, the handset can determine the 

cell tower’s location and then estimate its approximate geographic location based off of the 

tower's signal strength. Since cellular base stations sometimes have very wide coverage, the 

location is very inaccurate.  To improve cellular positioning performance, either the Time Of 

Arrival (TOA) or Time Difference Of Arrival (TDOA) of signals transmitted between the 

handset and the base stations can be used. For example, In GSM, a Timing Advance (TA) is used 

to compensate for the propagation delay as the signal travels between the Mobile Station (MS) 

and Base Transceiver Station (BTS). The timing advance value is based on the distance of the 

device to the cell tower, which is used to predict the time that the cell will receive a signal from 

the tower. The cell tower uses this TA prediction to sequential timeslots to the individual users 

sharing a frequency. If the BSS sees that the synchronization is late by 1 bit, then it knows that 

the two-way distance propagation delay is 3.69µs, as the data throughput in GSM is 270.833 kb/s. 

Then we can determine the distance of the MS from the BTS as follows [GSM 2013]: 

300 m/µs × 3.69µs/2 = 553.5m 
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The Base Station System (BSS) assigns the TA to the MS based on how far away it perceives the 

MS to be. Then the BSS determines MS’s location by combining the knowledge of the Cell-ID 

and the TA parameter. 

The main disadvantage of cellular positioning systems is that the geometry of the base stations is 

optimized for communications, not positioning. As a result, the geometry may be very poor for 

positioning, resulting in degraded accuracies on the order of 100 m. Also, additional software or 

hardware may be required on the mobile phone network and handset.  

Wi-Fi positioning is based on the measurements of Received Signal Strength (RSS) from the 

Access Point (AP). An AP broadcasts its Service Set Identifier (SSID) via packets known as 

beacons, which are usually every 100 ms in the 2.4/5 GHz frequency bands. There are two 

approaches using RSS. One class uses a signal propagation model to convert signal strength to a 

distance measurement from the AP. Trilateration can then be derived from multiple APs to 

provide final position fixes. The second class involves matching the real time signal strength 

measurements with surveyed database; this is known as location fingerprinting. The first 

approach is generally preferred in systems covering large-scale ranges. However, the main 

implementation issue is the lack of the geographic information of Wi-Fi APs. Therefore, the 

motivation of this thesis is to develop algorithms that can derive the AP coordinates by 

themselves; then the derived knowledge can be maintained locally on the device or remotely in a 

server. 

Wi-Fi localization started to become an active research area about a decade ago. Bahl and 

Padmanabhan from Microsoft conducted the RADAR project [Bahl et al., 1999], which became 

the first RF wireless LAN system used for locating and tracking users inside a building.  Later 

companies like Ekahau and Skyhook became pioneers in commercializing Wi-Fi positioning 
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systems.  Ekahau provides a real-time location system for locating people, assets, and inventory 

indoors using Wi-Fi networks [Ekahau 2010]. It uses a method called multi-hypotheses tracking, 

which constantly calculates multiple possible location estimates for tracked objects and gives 

each possible location a numerical score. The location that receives the highest score is 

considered as the location estimate for wireless site survey. Skyhook maintains a massive 

worldwide database of known Wi-Fi access points. As of 2014, the reference network is 

comprised of over 800 million Wi-Fi access points and cellular towers in tens of thousands of 

cities and towns worldwide [Skyhook, 2014]. Then it provides hybrid-positioning engine 

configured to integrate and synthesize the location output of Wi-Fi Positioning System, GPS and 

cellular towers (Cell ID). In this thesis, Wi-Fi signal is selected as the main positioning 

assistance for indoor environment, the signal propagation modeling and positioning methods are 

discussed subsequently.  

 

2.3.2 Indoor Radio Propagation Modeling  

The power of a radio signal travelling between two nodes contains information related to the 

distance or range between them. This parameter is commonly referred to as Received Signal 

Strength (RSS). There are basically two classes of techniques that are used for determining 

location using RSS. The first class of location methods involves matching the real-time signal 

strength measurements with a known surveyed database. The advantage of this database 

estimation method is that it is based on actual path loss at points near the target location, which 

accounts for shadowing and multipath [Bensky 2008]. Several ways can be adopted to compare 

the real-time measurements with the database: one commonly used method is to find minimum 
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Euclidian distance, also known as nearest neighbor method or fingerprinting. The other type of 

approach is to use statistical method optimized in Bayesian sense [Gezici 2008]. 

Suppose each of the surveyed positions can form a vector Vn consisting of the reliable access 

points from the database. The user’s online AP signal strength forms another vector Vu. 

Therefore, these two vectors can be compared by calculating their Euclidean distance as 

2
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  (2.3)      

Where: 

Vn  is the signal strength vector at surveyed positions 

Vu is the signal strength vector at the user positions 

K is the number of effective access points,  

n  is the number of surveyed positions in the database with the known coordinates. 

Technically this method renders best performance but it is not preferable in practical application 

because on-site surveys of large indoor areas are required to obtain and retain good resolution 

and accuracy. Therefore, this solution is not economical and scalable.  

The second class of techniques estimates location by estimating the distances between the mobile 

terminal and a number of fixed stations with known coordinates.  Distances can be derived from 

formulas of wireless propagations models as discussed in the next section. Using this approach, 

the positions can be derived without any on-site survey. Therefore, it is more economical and 

scalable and will be utilized for the focus of this research. 

This section will look more closely at the modeling of residuals that reflect the fluctuation of the 

actual received signal. Practically speaking, many factors impact the RSS, including how the 

transmitted signal reaches the receiver. This first factor is known as multipath, which causes 



 

23 

distortion in received signal envelope and phase.  The second factor is the physical obstruction of 

the signal due to people, closed doors and walls etc., which changes the RSS. The third factor is 

caused by the variations in the transmission power of the access points and the receiver front-end, 

leading to different RSS. There are some other factors such as receiver antenna’s orientation, 

radio interference etc. that impact RSS.  

As mentioned above, the motivation of the wireless channel modeling is to build a relationship 

between the RSS and the distance to access points. In this section, we will examine the wireless 

path loss behavior in multiple indoor environments before empirically deriving a model.  

Accurate positioning from Wi-Fi signal strength readings is a very difficult task, due to the fact 

that radio signals are noisy, fluctuate constantly, and have high variance. As such, an accurate 

statistical evaluation of the location errors is important which allows for appropriate weighting in 

the Kalman filter integration with other systems. 

From the perspective of radio wave propagation, there are two models predicting the RSS at a 

given distance from the transmitter [Rappaport 2002]. The large-scale propagation model 

characterizes signal strength over large transmitter-receiver separation distances. On the other 

hand, propagation models that characterize the rapid fluctuations of the received signal strength 

over very short travel distances or short time durations are called small-scale models. The 

measurement error caused by small-scale model fading is greatly mitigated by performing time-

averaging on all received signals. Hence, the main task here is to find large-scale model. 

The large-scale path-loss can be obtained as [Bensky 2008]: 
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Where: 
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d  is the distance between the access point and the user terminal 

  is the radio wave length  

d0  is the distance between the access point and a reference point  

n  is the exponential path loss factor  

s  is the lognormal distributed variation of the received signal accounting for 

shadowing factors.   

Since s is a Gaussian distributed and has a zero mean, it can be averaged out resulting in further 

simplification of the radio loss modeling. Consequently, Equation (2.4) reduces to a curve fitting 

between path loss and distance given in Equation (2.5) as shown below:  

)log()( dBAdPL     (2.5)      

 

2.3.3 Received Signal Fluctuation 

This section will look more closely at the modeling of residuals that reflect the fluctuation of the 

actual received signal. Practically speaking, many factors impact the RSS, including how the 

transmitted signal reaches the receiver. This first factor is known as multipath, which causes 

distortion in received signal envelope and phase.  The second factor is the physical obstruction of 

the signal due to people, closed doors and walls etc., which changes the RSS. The third factor is 

caused by the variations in the transmission power of the access points and the receiver front-end, 

leading to different RSS. There are some other factors such as receiver antenna’s orientation, 

radio interference etc. that impact RSS.  

As these factors are not accounted for in the channel modeling provided in Equation (2.5), the 

model presented is not very accurate. We can estimate the deviation from the actual channel 

model using statistical analysis on stationary point with line-of-sight (LOS) as given in Figure 2-
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3.  From wireless communication theory, the small-scale fading envelope distribution is Ricean 

distribution in Equation (2.6) as the RSS has a mean SNR of 41.3dB which is a dominant signal 

component with a standard deviation of 2.4 dB. In Equation (2.6), parameter A is the amplitude 

of the direct line-of-sight signal and σ is the standard deviation of Rician distribution. I0(.) is the 

modified Bessel function of the first kind with order zero.  
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Figure 2-3 SNR fluctuations with the time (LOS case) 

 

In the absence of a strong received component, such as in non-line-of-sight (NLOS) cases, the 

Rayleigh distribution is widely used to describe multipath fading. The Rayleigh distribution has a 

probability density function given by: 
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       (2.7)     

Where: 

r   is the root mean square (RMS) value of the received signal voltage 

σ  is the standard deviation of the time-average of the received signal power  

Figure 2-4 gives the SNR distributions and histograms from two stationary points. As can be 

seen, the LOS and NLOS cases agree nicely with the theoretical distributions in Equations (2.6) 

and (2.7). When the average received signal strength is above a certain threshold, the above 

models have a high confidence level. Therefore, setting a threshold to ensure positioning will 

only be performed for received signals with high signal to noise ratios. This will be discussed in 

more detail in Sector 5.5. 

 
Figure 2-4 SNR distribution histogram (LOS and NLOS case) 

2.3.4 Wi-Fi Positioning Algorithm 

This section will introduce how to estimate the Wi-Fi receiver position in the case of received 

signal strength from multiple access points. One effective way is called Weighted Centroid 
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Localization (WCL), which introduces variable weights ωij for each access point position 

(xj,yj,zj) to ensure an improved position estimate [Schuhmann, 2008]. The new approximation 

(xi’, yi’, zi’) is calculated from Equation (2.8).  









n

i

n

j

ij

zjyjxjij
iziyix

1

1
),,.(

),,(



  (2.8)    

These weights are adapted dynamically depending on the distance between the access point and 

the receiver. According to free radio loss Equation (2.4), the detected signal strength decreases 

quadratically with the distance. Consequently, we can assign the weight to be proportional to the 

received signal power Prx, where it equals to the transmission power minus the path loss in dB. 

  PLPP txrx      (2.9)     

As mentioned earlier, indoor wireless modeling is inaccurate due to attenuation of the signal and 

hence, an SNR threshold of 49 dB is chosen for signal selection. When the SNR is above this 

threshold, it suggests the user is close to the access point and the impact of signal attenuation is 

relatively small. For SNR values less than the threshold, the signal is not used for positioning to 

avoid adverse impact on the result. Empirically, an SNR of 49 dB is a good threshold that 

roughly corresponds to a range of 10-12 m between the user and access point. WCL method is 

used to estimate user location when less than three access points are available.  

Similar to GPS, trilateration is used for the position fix when three or more access points are 

available, as illustrated in Figure 2-5.  As each RSS can be converted to pseudo range ri, the 

observation equation for the ith access point at (Xi,Yi) is given as follows: 

viriZiZYiYXiX  222 )()()(   (2.10)  

Where vi is the measurement noise. 
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Figure 2-5 Trilateration of Wi-Fi positioning 

 

The final position is computed using least squares as given in Equation (2.11). 

zRHHRHx TT 111 )(ˆ       (2.11) 

Where H is design matrix from Equation (2.3), z is the observation vector and R is the 

observation covariance matrix.     

 

2.4 Altitude Integration 

GPS is usually less accurate vertically than horizontally and inertial navigation systems are 

unstable in the vertical axis if unaided.  Barometric altimeters provide a measure of altitude 

based on the measure of static atmospheric pressure. This pressure measurement is directly 

related to the height above mean sea level. Thus, a vertical axis positioning solution can be 

deployed using inexpensive MEMS barometers in the market. One challenge is that the pressure 

readings vary with weather conditions thus must be corrected on a regular basis with a reference 

barometric altimeter at a known height and nearby location for long duration applications. 
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Therefore, barometer readings offsets need to be calibrated to improve vertical positioning 

accuracy. 

This sector gives introduction on how height is derived from barometer measurement and 

Chapter 5.3 will introduce how to calibrate barometer offset and estimate height properly when 

GPS height is available. Better vertical positioning solutions enable applications such as 

identifying which floor a user is on inside of a large building. 

 

2.4.1 Height Definition 

There are usually three heights: orthometric height (H), geodetic height (h), and geoid height 

(N), as shown in the Figure 2-6 below.  

Orthometric Height 
A geoid is an equi-potential surface that coincides with the mean ocean surface of the Earth.  The 

geoid does not only represent the actual physical shape of the Earth, but it is also a reference 

surface for elevations.  An elevation above the geoid is often referred to as an orthometric height, 

elevation, or mean sea level (MSL), denoted as H. It is usually what a pressure sensor measures. 

 

Geodetic Height 
The geodetic (or ellipsoid height), h, is the height with to respect to WGS84 reference ellipsoid, 

i.e., the distance between a point on the Earth's surface and the WGS84 ellipsoidal surface, as 

measured along the normal (perpendicular) to the ellipsoid at the point and taken positive upward 

from the ellipsoid. It is usually what a GPS receiver measures.  

 

Geoid Height 
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The height of the geoid with respect to the ellipsoid is denoted N, also known as geoid height, or 

undulation height. The current WGS84 geoid model is also known as the Earth Gravity Model 

1996 [GCM 1996] defining the N, and gravitational potential as a spherical harmonic function of 

geodetic latitude and longitude [Groves 2008].  

The orthometric height H is related to the geodetic height h by: 

h=H+N     (2.12) 

 

Figure 2-6 Illustration of three height definitions  

 

2.4.2  Conversion from Pressure to Height 

Barometer sensors usually provide pressure and temperature measurements which can be 

converted to the orthometric height H. According to 1976 US Standard Atmosphere, H is a 

function of pressure P and temperature T as given in Equation (2.13).  

( / ) /
0/ ( / ) [1 ( / ) ]dT dH R gH T dT dH P P         (2.13) 

Where: 

T   is local temperature, unit in Kelvin; Kelvin=273+Celcius Degree. 

/dT dH is temperature gradient, usually assumed a constant value of -6.5 Kelvin/km.     

P  is pressure sensed by barometer, unit in mbar. 
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0P   is equal to 1013.25 mbar, standard atmospheric pressure. 

R   is equal to 287.052 m2/s2/kelvin, gas constant. 

 g is equal to 9.8 m/s2, gravity. 

 

2.5 Other Aiding Sensors  

Other aiding sources may come from feature-matching techniques that determine position by 

comparing and matching the gathered position information with a database.  Maps play an 

important role in providing a geolocation context for positioning, location, and navigation. Map 

aiding, as its name suggests, provides information extracted from maps to improve the user 

experience of path-finding, pinpoint positioning, etc. Among various capabilities from the 

aiding, Map matching is a method for projecting the estimated position from the navigation 

system to a digital vector map. The general purpose of MM algorithms is to identify the correct 

road segment on which a moving object is traveling and to determine the position on that 

segment. Therefore, MM algorithms improve positioning accuracy. 

Lastly, new MEMS sensor types are emerging and the underlying technology is still evolving 

rapidly. Among them, non-intrusive infrared (IR) proximity sensors for proximity sensing are 

very popular. These can detect bodies in the vicinity of the device and are perfectly used on 

smartphones. Active light sensors can provide the ambient light intensity within a certain 

measurement distance. The combination of air pressure, humidity, temperature sensors, 

ultraviolet sensor and gas sensor provides a finer granularity of the local environment and 

location awareness, offering environment context useful for navigation. 
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2.6 Choice of Suitable Technology 

The positioning techniques for personal navigation systems discussed in this chapter all have 

advantages and drawbacks; there is no single solution that is versatile enough to provide accurate 

location data in a full range of operational conditions, and the final choice is largely driven by 

the application. Therefore, integration of multiple hybrid sensors and systems is the obvious 

solution for future applications.  

Table 2.2 summarizes the most popular positioning technologies and their characteristics for 

personal navigation. The purpose here is to find the most suitable alternative technologies for 

personal navigation in GNSS-denied places [Samama 2008], such as deep indoors or in the urban 

canyons where the received satellite signal strength is less than -160dBm. 

Table 2-2 Comparison of personal navigation technology 

Techniques/ 

Sensors 

Typical Performance Characteristics 

GNSS ~10m (Single GPS) 
~1-3m (DGPS) 

~ 1 cm (Carrier phase DGPS) 

Line-of-sight system 
Result in global reference system 

Cellphone 50-500m 
Wide coverage range 

Low accuracy for cell-in approach 
TOA approach needs carrier's external 
info 

WLAN 3-20m (signal strength based) 
1-5m (fingerprinting based) 

Good for indoor positioning locally 
Requires infrastructure coordinates 

Bluetooth 
/RFID 

0.1-1 meter level accuracy 
5-50m coverage range 

Better signal quality indoors 
Need dedicated system setup 

INS 1%-5% error of distance travel 
<10° attitude error 

Time dependent  
Relative positioning 

Magnetometer ~1-10° attitude error without 
disturbances 

Time invariant 
Subject to external disturbances 

Barometer ~1m altitude resolution Good relative accuracy 
Subject to local disturbances 

Camera 
/Map 

matching  

~1-5m Image processing,  
Build topological matching, assist turn 
detection, Need known  GIS database 
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 As listed in Table 2-2, the candidates include ground-based RF systems, such as Bluetooth, 

RFID and pseudolites; mainstream wireless communication systems, such as cellular phone and 

Wi-Fi; vision aiding systems, such as cameras and map matching [Attia 2013]; and dead 

reckoning sensors, such as magnetometers, gyroscopes, accelerometers, and barometers 

[Parviainen 2008]. Considering the availabilities, accuracy, and cost factors for mass production, 

the above candidate technologies face some limitations for practical implementations. 

Laser/camera systems are relatively expensive and too power hungry to apply in mobile devices; 

Bluetooth/RFID/map matching entails significant infrastructure deployment and maintenance; 

cellular infrastructure is widely available, however lacks the accuracy desired for most 

applications.   

Finally, an integrated Wi-Fi, GNSS, and MEMS solution stands out as a good combination for 

this application. Dead reckoning systems, including accelerometers, gyroscopes, and 

magnetometers are beginning to receive wide acceptance on consumer electronics with the 

continuous cost reduction of their base components. On the other hand, Wi-Fi enabled devices 

are pervasive in most mobile devices as well. Wi-Fi hotspots have already covered many densely 

populated urban areas such as airports, campuses, and shopping malls, which means a low 

operating cost in comparison to other technologies. Technically speaking, MEMS sensors and 

Wi-Fi technologies are complementary.  Dead reckoning sensors can determine a person’s 

orientation, distance traveled, and height while the sensors are self-contained and render good 

relative positions in short periods of time. In contrast, Wi-Fi positioning can provide absolute 

positions over the long term as an update for dead reckoning when GPS signals are blocked. In 

addition, magnetometers and barometer are considered in this thesis as redundant measurements 

to improve the heading and height estimation. 
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For consumer mobile devices such as smartphones and tablets, GNSS, Wi-Fi, and motion sensors 

stand out as a good combination. These three technologies are complementary to each other:  

 GNSS provides absolute positions globally and gives good accuracy outdoors.   

 Motion sensors enables dead reckoning mechanism; it determines a person’s orientation, 

distance traveled and height change which render good relative positions in short periods of 

time.  

 Wi-Fi is one of the most popular local wireless systems that provide absolute position 

updates indoors at any time 

Integrating data from each of these systems results in a hybrid solution with the combined 

strength of each module. Such a hybrid positioning system can be easily implemented on mobile 

devices using a Kalman filter fusion which will be discussed in details throughout the rest of this 

thesis. 
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Chapter Three: MODELING AND CALIBRATION OF MEMS SENSORS 

Key performance metrics of MEMS sensors such as resolution, sensitivity, biases, and power 

consumption have improved by an order of magnitude during the past decade [El-Sheimy 2007]. 

This is due to the development of IC processes, new materials, MEMS structural design, 

integrated circuitry design, and advanced digital signal processing. As a result, inexpensive 

MEMS sensors have reached automotive-grade standards and will likely continue advancing to 

penetrate standards for low-end tactical-grade uses in the near future.  

To meet the requirements of motion tracking introduced in Chapter 2, a ten degrees-of-freedom 

sensor fusion of three-axis accelerometers, three-axis gyroscopes, three-axis magnetometers, and 

a barometer are selected to measure three dimensional rotation, acceleration, and altitude. As 

measurement errors inherently exist in sensor output, a thorough understanding of MEMS sensor 

design and behavior are essential for navigation system design. Among the above MEMS 

sensors, gyroscopes and magnetometers performance are particularly relevant to overall system 

performance. The weaknesses of low-cost MEMS gyroscopes lie in critical performance 

parameters degradations such as noise, bias instability and environment sensitivity, which 

dominant to overall sensors fusion performance.  On the hand, magnetometers are useful to give 

absolute heading correction but are vulnerable to environment disturbance.  

Therefore, this chapter will focus on these two sensors. Chapter 3.1 gives an overview of MEMS 

gyro operation mechanism and then extracts some key parameters and tradeoffs in gyro design 

that are related to error analysis.  Chapter 3.2 presents gyroscope error modeling and noise 

analysis which will be used in the navigation filter later. Chapter 3.3 covers error compensation 
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and calibration method for gyroscope and magnetometer. MEMS sensors fabrication and 

operation theory and technologies are given in Appendix A and B respectively.   

3.1 Gyroscope scope Design Analysis 

3.1.1 Operation Principle 

Almost all modern consumer MEMS gyroscopes are of a vibratory type, based on sensing 

Coriolis acceleration, which is acceleration produced due to the changing direction in space of 

the velocity of a moving system. The operation of vibratory gyroscopes is governed by the 

equation of relative motion, the particle velocity �� = �̇� as viewed in the inertial frame-i is 

related to the velocity �� = �̇� in the rotating frame-r by: 

�̇� = �̇� + Ω × �� 
(3.1) 

Where: 

 �� is the time-dependent position vector in the rotating frame  

Ω = (Ω �, Ω�, Ω�)� is the rotation vector with respect to the rotating frame.  

 

Applying this time derivative operation again, we can get the acceleration of the particle in the 

inertial frame as: 

�̈� = �̈� + 2Ω × �̇� + Ω × (Ω × ��) + Ω̇ × �� 
(3.2)  

 

As Newton’s Second Law only applies in the inertial frame,� � = ��̈�, hence the apparent 

acceleration in the rotating frame , �̈�, yields the following relationship in Equation (3.3). 
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��̈� = � � − 2�Ω × �̇� − �Ω × (Ω × ��)− �Ω̇ × ��   
(3.3)  

Where: 

            −2�Ω × �̇� is known as Coriolis acceleration force;  

            −�Ω × (Ω × � �) is the centrifugal force. Usually when the angular rate is much smaller 

than proof mass resonant frequency, this term can be neglected;  

           −�Ω ×̇ � � is due to a non-constant rotation rate of the rotating frame,  it can be neglected 

as well when the sensors have relatively small output bandwidth.  

With the knowledge of �̈�and neglecting the last two terms in Equation (3.3), the following 

mechanical equation of proof mass motion can be derived  [Younis 2011].  

� �̈� + � �̇� + � �� = � � − 2�Ω × �̇�  
(3.4)  

Where M, D and K are positive definite mass, damping and stiffness matrices respectively. 

 

Figure 3-1  A simplified model for Z-axis gyroscope.  
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Based on the above classical mechanics principles, a single axis vibrating gyroscope are further 

analyzed. As illustrated in Figure 3-1, the gyroscope frame rotates about the z axis, orthogonal to 

the x-y plane. A proof mass M is attached to the rotating sensor frame by elastic suspensions. 

Two degrees of mechanical freedom are required, one for motion driving and one for motion 

sensing.   

The proof mass is first put into drive mode of vibration along the x-axis, with a controlled-

amplitude of oscillation. Once in motion, the proof-mass is sensitive to angular rotation about the 

z-axis perpendicular to the plane. This rotation thus induces a vibratory displacement from the 

Coriolis force along the y-axis, known as sense mode to measure the angular rate. Referring to 

Equation (4), the motion equations in x-y plane become: 

���̈� + ���̇� + ���� = ��
� + 2�Ω��̇�  

(3.5)  

���̈� + ���̇� + ���� = ��
� − 2�Ω��̇� 

(3.6)  

Assume the solution to Equation (3.5), which is the x-displacement along the drive axis, is given 

by a sinusoidal form as 

� = − �����(���) 
(3.7)  

And there is also no external excitation to the sense mode, i.e. ��
� =0. The resulting system has 

one degree of freedom along the sensing y-axis, governed by  

���̈� + ���̇� + ���� = 2m Ω��������(���)   
(3.8)  

Equation (8) is a typical second-order non-homogeneous linear different equation [Sharma 

2008].  By introducing natural frequency �� and quality factor �� of the sense mode, Equation 

(3.8) becomes 
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�̈� +
��

��
�̇� + ��

��� = 2Ω��������(���) 
(3.9)  

Where:  

�� = ���/��  

�� = � ���/��    

A convenient way to express this solution is through a form of an amplitude Y and a phase θ as:  

��(�) = ����(��� − �)  
(3.10)  

Where: 

� =
2����Ω�

�(��
� − � �

�)� + (
����

��
)�

 

(3.11)  

� = tan��(
����

��(��
� − ��

�)
) 

(3.12)  

 

From Equation (3.11), we can see that the sensing amplitude output is proportional to the input 

angular rate Ω�. If the sense and drive resonant frequency is equal (i.e.  �� = � �), the output 

signal will be amplified by quality factor �� of the sense mode, resulting in high gain. 

Figure 3-2 shows the block diagram of a typical MEMS vibratory gyroscope. It consists of a 

drive actuator represented by the equivalent drive-mode dynamics transfer function. The drive 

amplitude X0 must be maintained very accurately since any variation will contribute directly to 

the sense output. Therefore, the drive loop is controlled by an automatic gain control (AGC) 

loop. In the sense branch, the Coriolis term is twice the product of the input angular rate and the 

velocity of the drive axis oscillator in quadrature which produces a modulated signal. The spring-
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mass sensing MEMS is equivalent to a sense-mode dynamics transfer function. Consequently, 

the gyroscope output needs to be demodulated by multiplying the in-phase drive signal coming 

from a phase-locked loop (PLL). The multiplication then passes through a low-pass filter (LPF). 

Lastly, the gain was adjusted to compensate for temperature and any other scale factors before 

output rate is generated. 

 

Figure 3-2 Block diagram of vibratory gyroscope 

 

3.1.2  Gyroscope Parameters Design Analysis 

3.1.2.1 Resolution and Noise Performance 

The resolution of a sensor represents the smallest increment of the input measurement that the 

sensor can be detected.  For modern sensors with digital outputs, their resolution can determine 

their sensitivity. In these cases, the Least Significant Bit (LSB) in the ADC output changes with 

small variations of the input signal. The standard resolution from the gyroscopes' outputs is 

mainly limited by the sensor’s noise density and the bandwidth parameter. The system noise 

density, also referred to as Total Noise Equivalent Rotation (TNEΩ), consists of two 
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uncorrelated components: the Mechanical Noise Equivalent Rotation (MNEΩ) and the Electrical 

Noise Equivalent Rotation (ENEΩ) [Sharma 2008]. These components are measured in (°/s).  

���Ω = ���� Ω� + ���Ω� 
(3.13)  

MNEΩ represents thermo-mechanical noise (or Brownian noise) noise floor of the mechanical 

sensor element and is given by Equation (3.14). The noise is due to Brownian motion of the gas 

molecules surrounding the proof mass and the Brownian motion of the proof mass suspensions 

or anchors. 

MNEΩ =
1

2A��

�
4k�T

ω�MQ���
√BW 

(3.14)  

Where:  

k� is the Boltzmann constant; 

T    is the absolute temperature in K; 

A�� is the amplitude of proof-mass vibration along the drive axis ; 

M    is the effective mass; 

ω�   is the sensor resonant frequency; 

Q���  is the effective mechanical quality factor; 

BW  is  the measurement bandwidth. 

 

The electronic noise floor of the gyroscope is related to the design sensor readout electronics, it 

is directly proportional to the total input referred current noise i�, and inversely proportional to 

the electromechanical sensitivity S� as shown below [Ayazi 2011]. 
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ENEΩ =
i�

S�
√BW 

(3.15)  

For a mode-matched gyroscope (�� = � � ), a fixed DC potential ��has been maintained across 

the sense gap ���, then in response to the input rotation Ω�, Coriolis-induced displacement of the 

proof-mass changes the sense rest capacitance ��� generating a motional current ����. Thus, the 

electromechanical S� is given by: 

�� =
����

Ω�
=

2���������

���
A�� 

(3.16)  

 

Substituting (16) into (15), ENEΩ yields:  

ENEΩ =
���

2���������A��
i�√BW 

(3.17)  

 

Since TNEΩ above assumes white noise to be the main contributor, this value is equivalent to 

the RMS of rotation rate noise (gn). If the measurement bandwidth BW is known, then the noise 

density parameter equals the angular random walk in (°/s/√Hz). 

ARW =  
TNEΩ

√BW
 

(3.18)  

 

The above derivation shows an intrinsic limitation of the MEMS sensors set by its sensitivity and 

noise performance. From Equation (3.11), sensitivity of the gyroscope sensor can be enhanced 

by lowering the resonant frequency ω�; however, this adversely increases the MNEΩ. 
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Equations (3.17) clearly showed the trade-off between noise performance and measurement 

bandwidth in inertial sensors.  Gyroscope bandwidth determines the frequency range of the 

angular velocity signal that can be measured. A higher bandwidth enables measurement of faster 

motions at the expense of a higher noise level or lower resolution. The bandwidth is set by the 

electronics and is usually on the order of 100 Hz.  

Furthermore, there are some practical considerations in mode matching frequencies between 

drive and sense modes.  Maximum resolution is obtained when the driven mode is the same as 

the sensing mode at the resonant frequency, causing the sensitivity to be amplified by the 

mechanical quality factor Q of the sense structure.  However, this involves extreme control of 

device dimensions and may lead to large bias drift problems if environmental factors, such as 

temperature, vary and cause a mismatch between drive and sense frequencies. Therefore some 

mechanical structures deliberately configure frequency to be slightly different in sense and drive 

modes. 

Finally, it should be noted that the fundamental limiting noise component of the mechanical 

structure is due to the Brownian motion of the sense vibration mode [Yazdi 1998]. However, 

with non-resonant sensing (�� ≠ ��), the Brownian noise is attenuated by the system transfer 

function, thus resolution may be limited by the noise of readout, signal-processing, and control 

electronics [Nguyen 2012]. High-performance MEMS gyroscopes require low noise, parasitic-

insensitive interface circuits capable of resolving atto-farad changes in capacitance. 

 

3.1.2.2 Bias 

The bias of a gyroscope is its apparent output in no-rotation mode. It is also called Zero-Rate 

Output (ZRO).  ZRO is primarily determined by mechanical sources such as geometrical 
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imbalances in the vibrating mechanical drive/sense structures and off-axis motion of the proof 

mass, both caused by the fabrication imperfections.  In addition, electrical error sources such as 

cross-coupling between driving and sensing electrodes, phase setting imperfection for 

demodulation, and the electronic offset will contribute the bias error [Kempe 2011]. Note 

although random gyroscope noise and drift are additive error sources like a bias, it is important 

to differentiate this systematic bias with the random changes of output. 

 

3.1.2.3 Environment Sensitivity 

MEMS sensors exhibit some environmental dependencies. For example, angular velocity output 

of the MEMS gyroscope is correlated to temperature change. It is caused by several factors 

including changes in the Young’s modulus of silicon (100 ppm/deg) and the damping coefficient. 

Both of these variables are sensitive to temperature. Gyroscope sensitivity is also affected by 

circuit temperature coefficients.  All low cost MEMS gyroscopes exhibit some ZRO and scale 

factor variation over temperature change, specified as a % change of scale factor per °C.  

Therefore, it is important for users to calibrate and compensate them when the device 

experiences large variations in temperature. 

Another type of environmental factor is vibration sensitivity (g-sensitivity). In practice, all 

gyroscopes have some sensitivity to acceleration due to the asymmetry of their mechanical 

designs and/or zeroing of the null bias. Vibration can be modeled as noise in the gyroscope 

output, possibly resulting in inaccuracies that are too large to accommodate. Sensors signal 

processing, such as filtering, can help minimize vibration issues.  

Table 3-1 below summarizes the most critical system parameters for consumer-grade 

gyroscopes. The table shows many design parameters are impacting each other and good trade-
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offs need to be made: the resolution and sensitivities of gyroscopes can be improved by 

maximizing effective quality factor Q���, however large Q��� leads to excessive sensitivity to the 

environment change; noise performance comes at the trade-off of the gyroscope bandwidth; 

relatively high power consumption is a concern in vibratory gyroscopes, but large driving current 

and bias voltage can reduce the electrical noise; also, large proof mass size can lower the thermo-

mechanical noise floor, the penalty is the increase of the die size. 

Table 3-1 Key parameters of consumer-grade MEMS gyroscopes 

Parameter 
 

Explanation 
Associated design parameters 

Rate resolution 
(ARW) 

Smallest detectable input measurement; 
An indicator of short-term noise level.   

White noise from mechanical element 
and electrical readout circuitry, improve 
by increasing quality factor Q��� .    

Bandwidth 
(BW) 

Frequency range of the angular velocity 
signal that can be measured linearly. 

Inversely proportional to noise level. 

ZRO Bias  
(ZRO) 

Apparent output in zero input rate. Large proof mass, better MEMS matching 
and circuitry compensation will improve. 

Environment 
sensitivity of SF 

Scale factor variation over temperature, 
acceleration and vibration change. 

Improve by decreasing quality factor Q��� .  

Power  
 

Energy consumption related to current 
and power voltage. 

Inversely proportional to noise level. 

Package  
Size 

Three dimensional IC size Limited by mechanical structure and 
MEMS/CMOS integration technology 

 

High performance navigation systems entail accurate sensors modeling of deterministic and 

stochastic errors [17]. For deterministic error analysis, it requires careful analysis of the 

relationship between the quantities represented in the system reference frames to determine the 

proper system dynamic and measurement models. For the stochastic error analysis, there are 

some issues to be considered: First, the system and measurement noise need to be evaluated, 

which can be represented by an error covariance matrix. Second, the sensors performance needs 

to be addressed by state augmentation, which can be modeled based on sensor calibration and 
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Allan variance tests. Finally, to make the system more robust, some on-line calibration methods 

are preferred so the system can be adaptive in varying environments.  In most sensors fusion 

applications, a gyroscope’s performance is the most critical, thus its sensor characteristics 

dominate the overall system performance. Therefore, in the subsequent section, gyroscope 

performance analysis and modeling will be analyzed as an example. 

 

3.2 Gyro Error Modeling  

Based on the understanding of the MEMS mechanisms presented in the previous section, in this 

section sensor modeling takes into account all the possible error sources that are relevant to 

navigation.  Inertial navigation system design depends on accurate knowledge of sensor 

behavior. Any number of the noise and imperfection discussed above will be present in the data 

as error. Thus, a unified mathematical modeling of MEMS gyroscopes is essential for system-

level algorithm design and performance prediction. Since low-cost MEMS inertial sensors are 

restricted by real-world manufacturing tolerances, these models can be applied to calibrate and 

compensate for system errors. 

Figure 3-3 gives a classification of MEMS sensor error sources. All errors can be broken down 

into two main categories: deterministic and stochastic errors. The deterministic components, 

such as ZRO bias, nonlinearity scale factor, and cross-axis misalignment are dependent on 

manufacturing tolerances or other external factors that are repeatable, thus they can be calibrated 

and compensated for by the product vendor’s or the user’s initial calibration.  Stochastic 

component are errors that vary randomly after each turn-on. They include bias drift attributable 

to angle random walk, bias instability, environmentally sensitive Markov noise, output 
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quantization noise, and any other electronic or mechanical noise lumped together as an additive 

zero-mean white noise. Stochastic models are used to represent the remaining errors after the 

deterministic parts have been removed.  

 

 

Figure 3-3 MEMS sensor error sources 

 

In spite of individual differences on MEMS design and manufacturing, a general-purpose 

parametric model can be developed to take into account the main error terms discussed above. A 

unified model between the true gyroscope signal ��(�) and measurement ��(�) can be 

constructed as: 

��(�) = �� (�) ∙ ��(�)+ �� + �����(�)+ ��(�) 
(3.19)  

Where: 

��  is the deterministic gyroscope bias; 

�� (�) and �����(�)  are environmentally sensitive scale factors and biases that sometimes 

exhibit exponentially correlated characteristics as Markov noise; 
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��(�) is the residual noise predominantly band-limited ARW white noise in most MEMS 

gyroscopes.  

MEMS sensor calibration is essential to ensure navigation performance. Based on the model 

above, calibration and compensation can be estimated at different stages. Initial offline 

calibration can be performed after the gyroscope is assembled, where calibration coefficients, 

such as deterministic bias and scale factor, are derived from calibration tests over the operating 

temperature range. The gyroscope bias calibration procedure can be divided into two categories: 

 Initial offline ZRO and SF calibration: In a temperature stable environment, the 

gyroscopes’ biases and scale factors are calibrated offline as the initial default value. To 

do this, simply bring the gyroscope up to the intended operating temperature and measure 

the null rotation output ��. To determine the scale factor (SF), applying a rotation table 

the angular rate is set to a known value ��. Because most gyroscopes have very little 

nonlinearity, it is adequate to measure the output �� at one rotational rate, preferably 

near full scale. Then the scale factor can then be calculated by:  

SF = (�� − ��)/ �� 

 Online bias drift calibration: this method is preferred because, unlike initial offline 

sensor calibration, drifting sensor errors are not accounted for. The bias of gyroscopes 

can be estimated by detecting the zero rate offset at the right time. The gyroscope bias 

drift online calibration method is straightforward: continuously monitor if the device is in 

a stationary status; if so, average the output of the stationary time as a zero-rate offset. 

Therefore, stationary feature extraction is the key in this design. 
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Since accelerometers are available in most gyroscope platforms such as in an IMU, they are 

selected as always on, stationary monitoring sensors for their low power consumption. Firstly, a 

recursive moving window is used to monitor sensor data. This window size is set as 1 second. 

The standard derivation of the accelerometer output within the window is calculated recursively 

in Equation (3.20)-(3.24) as follows. 

2 2 2
n x y zx a a a    

(3.20)  

 1( 1) n n
n

n x x
x

n
 

  
(3.21)  

2
1 1var ( 2)n nn s     

(3.22)  

 2
1var var ( )

1
n n n n

n
x x

n
  


 

(3.23)  

 
var

1
n

ns
n




 
(3.24)  

Where: 

 n    is the total sample number within recursive window  

nx    is the sensor input of the current epoch  

1nx   is the mean value of window in last epoch  

nx    is the mean value of window in current epoch 

1ns   is the standard deviation of window in last epoch 

ns    is the standard deviation of window in current epoch 
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A stationary mode is declared when the standard derivation of the accelerometer amplitude 

within the recursive window is less than a pre-defined threshold, as shown below: 

If Static _ accel _ thresholdaccels  , then 

Static.accel_flag=1;  

Static.gyro_bias=mean(gyro_input).  

Inspecting Equation (3.19), the residual noise ��(�) and time-correlated term �����(�) require 

some statistical noise analysis, such as Allan Variance and time correlation analysis, in order to 

choose an appropriate model and parameters for the sensors stochastic behavior; the subsequent 

two sections will show more details. Additionally, real-time calibration can be performed during 

the operation, often by using a Kalman filter to estimate cumulative random gyroscope errors as 

error states. For example in an inertial navigation system (INS), gyroscope sensor models are 

used to recalibrate the INS continuously while GPS data is available. Furthermore, error models 

are critical to determine the optimal weighting in the integration of the GPS and INS navigation 

filter. Finally, it should be noted that the error state of INS sensors needs to be carefully selected 

considering the observability of error states in the system estimation. 

3.3 Gyroscope Noise Analysis 

Noise is one of the most important aspects for MEMS sensors performance. Gyroscope noise can 

be characterized by its noise density, in deg/s/√Hz RMS, and the square root of the power 

spectral density of the noise output.  Consequently, total noise, defined as the random deviation 

from the ideal output, is equal to the product of the noise density and the square root of the noise 

bandwidth (BW):   
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BW × Density Noise = Noise Total  
(3.25)  

Allan Variance is a useful method to identify and quantify various random noise sources. It is a 

time-domain analysis representing the root mean square random-drift errors as a function of 

averaging times [El-Sheimy 2008]. Assume there are a total of N consecutive data points being 

constantly sampled at a rate fs, a group of n consecutive data points (n<N/2) can be formed as a 

cluster, associated with cluster time T= n/fs. Expressing in discrete-time form, the cluster 

average of the output rate between times tk and tk +n is then given by: 

T
T knk

k

 
 )(

 (3.26)  

Where T=n/fs and θk is the cumulative sum of the sensor output Ω(i) as 
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The Allan variance is then defined as variance of the difference between two adjacent clusters as 
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Where the contents enclosed in <...> represent the ensemble average.  

     

    Finally, the Allan variance calculation can be estimated as follows: 
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Allan variance analysis provides a convenient way of decomposing various types of random 

noises with different autocorrelation properties by observing the Allan variance plot in a 
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different cluster time, T. Since there is a unique relationship between the Allan variance )(2 T  

and the power spectrum density (PSD) of the rotational signal )( fS  shown in Equation (3.30), 

the Allan variance curve essentially contains the same information as the signal’s PSD analysis 

in the frequency domain. 
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 (3.30)  

 

Figure 3-4 Allan variance analysis of gyroscope 

 

Figure 3-4 above gives an illustrative sample of an Allan variance plot, which contains various 

noise sources at comparable magnitudes. By analyzing the characteristic regions on a log-log 

scale, the slope of the Allan variance plots different slopes can be clearly classified [IEEE 2008]. 

In most consumer-grade MEMS gyroscopes, there are a few terms dominantly more observable 

in the Figure 3-4. 
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(1) Angle Random Walk (ARW) 

Given in deg/√h, ARW characterizes the standard deviation of the integrated output signal.  

Since this type of noise is white noise directly added on the gyroscope output, when integrated, it 

is a random walk in angle. The associated noise PSD is represented by: 

2)( NfS   (3.31)  

Where N is the velocity random walk coefficient [IEEE 2008].  

Substituting Equation (3.31) into Equation (3.30) and performing the integration yields: 

T

N
T

2
2 )( 

 (3.32)  

Therefore, on a log-log scale, it has slope of -1/2. 

 

(2) Exponentially correlated (Markov) noise 

Some gyroscopes exhibit time correlation as well. This noise is characterized by an exponential 

decaying function with a finite correlation time Tc. The stochastic differential equation of the 

state variable x in time domain is described by: 

�(�)̇ = −
1

��
�(�) + �(�) 

(3.33)  

Where Tc is the correlation time and w(t) is the driving white noise with constant PSD wq . The 

variance of time-correlated noise is:  

���
� =

Tc wq

2
 (3.34)  

The noise PSD for such a process is: 
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Similarly, substituting Equation (3.35) in Equation (3.30), the Allan variance is shown below 
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Interestingly, for cluster time, T, much longer than the correlation time Tc, it is found that: 

TcforT
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2
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(3.37)  

The Allan variance for angular random walk where N= CcTq is the angle random walk 

coefficient. On the other hand, for T much smaller than the correlation time, Equation (3.36) 

reduces to: 

TcforTT
qc

T ,
3

~)(
2

2
 (3.37)  

This is the Allan variance for rate random walk, therefore the slope for Markov noise is between 

-1/2 ~ 1/2 [IEEE 2008]. 

 

(3) Bias Instability 

Bias (in) stability is a fundamental measure that characterizes the best bias-drift performance 

under optimal averaging conditions. The origin of this noise is the electronics susceptible to 

random flickering (1/f) noise [IEEE 2008].   The related noise PSD is: 
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(3.38)  

Where:  

B  is the bias instability coefficient 

f0  is the cutoff frequency 

It is derived as the minimum of the Allan-variance curve with a slope of zero.  Bias stability 

describes long term stability of the gyroscope usually expressed in deg/h., i.e. how the bias 

changes over time at a constant condition. For short data samples, it is not usually possible to 

determine the bias instability as it is masked by the ARW. 

Other types of noise contributors, such as quantization noise, rate random walk, and random rate 

can be examined as well; but they are not significant in MEMS gyroscopes. Assuming that the 

existing random processes are all statistically independent, the total Allan variance at any given τ 

is the sum of Allan variances due to the individual random processes at the same τ. 

...)()()()( 2222   MarkovBiasInstARWtot  
(3.39)  

3.3.2 Experimental Validation 

Without losing the generality, here is a gyroscope modeling example to illustrate the modeling 

method above. The data is from Epson’s XV-8100 MEMS heading gyroscope used in the first 

generation of PNS device. 1-hour's worth of static data was collected with the device in a 

stationary position at 25 Hz in a lab environment. Xing [Xing 2008] presents a systematic 

methodology for identifying constant, wide band Gaussian, and time-correlated errors from the 

post-calibration MEMS gyroscope data using Allan variance analysis. The limitation of this 
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method is the extracted parameters are quite sensitive to the signal processing and they are based 

on the assumption of separate independent models, so the estimation is not very robust. Here, a 

combination of Allan variance and time domain auto-correlation is applied to identify different 

bias terms introduced in Equation (3.19).  

Since both the wide band Gaussian noise and first order Gauss-Markov processes have zero 

means, the time average of an ensemble of the experiments x(t) can determine b0 modeled as a 

random constant process.  Zero rate bias:  b0=E{x(t)} = -0.0065 °/s. 

The choice of an appropriate model necessitates studying the autocorrelation R(τ) sequence of 

the sensor output:  R(τ)=E(x(t)x(t+ τ)). Some pre-processing is needed to separate wide band 

white noise and the time-correlated process in the gyroscope output. It is difficult to identify the 

correlated process directly from an autocorrelation plot, as wide band Gaussian noise is usually 

dominant in magnitude. Thus, a low-pass filter with a 1 Hz bandwidth is first applied on the 

gyroscope output.  The time-correlated noise will remain almost unaltered during this filtering 

since Tc is usually much larger than 1 second. However, the Gaussian noise will be greatly 

attenuated so that the R(τ) becomes distinctive to extract.  Figure 3-5 illustrates the raw and 

filtered gyroscope output; and Figure 3-5 shows the autocorrelation plotting after the filter.   
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Figure 3-5 Filtered and raw gyroscope output 

 

 

Figure 3-6 Filtered gyroscope autocorrelation plot 

 

From the above figures, correlated time constant Tc =633s, and first-order Markov process can 

well approximate the time-correlated noise with autocorrelation function as: 

�(∆�) ≈ 5 × 10�� × ��
|∆�|
��� (3.40)  
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Finally, Allan Variance is plotted in Figure 3-7. ARW Gaussian noise can be seen as the 

dominate contributor. An ideal ARW curve of 0.015 °/s/√Hz with a -1/2 slope is given and it 

overlaps with the overall Allan variance curve in the region with small cluster time (e.g. T<10s).  

Note that σbw ≈ 0.06 °/s, which is equal to the value of the Allan variance when T = Ts (Ts is the 

signal sampling period, 0.04 s in this example). The residual error is obtained by subtracting 

ARW from the overall Allan variance as shown by the red curve, which is approximate to an 

ideal time correlated noise; further indicating white noise and the 1st-order Markov process 

model is appropriate for this gyroscope output. 

 

Figure 3-7 Allan variance plot of the filtered and raw gyroscope signals 

 

3.4 Sensors Calibration  

MEMS sensor calibration is essential to ensure navigation performance, especially for the nine-

axis motion sensors fusion. This section deals with main error sources identified previous. It 
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includes biases calibration for gyroscopes and biases/scale factor calibration for magnetometers. 

Usually the calibration procedure can be divided into two categories: 

 Initial offline sensors calibration: accelerometers are calibrated using a static 6-position 

method [El-Sheimy 2009]. Biases and scale factors are estimated by aligning the 

measurement axis with positive and negative gravity vectors in three dimensions. The 

gyros’ biases and scale factors are calibrated using a rotation table with known positive 

and negative angular velocities and magnetometers are calibrated by a 360-degree turning 

test [Honeywell 2003]. The max and min of the magnetometer readings are found 

throughout the measurement locus, and then used estimate the biases and scale factors 

accordingly to bring the mean of max and min to be zero, with the difference between 

them scaled to be the same for all three axes.  

 Online calibration: this method is preferred because, unlike initial offline sensor 

calibration, drifting sensor errors are accounted for. The biases of gyroscopes can be 

estimated by detecting the zero rate offset and will be introduced in Section3.4.1 below. 

The biases and scale factors of magnetometers are estimated by multiple orientation 

methods introduced in Section3.4.2, below. However, the biases of the accelerometer are 

difficult to determine when the device is not leveled online, since the readings are 

coupled with gravity. Usually the accelerometer errors are not significant in the 

navigation equations and are thus neglected here. Finally, the barometer’s error can be 

modeled as an additive bias and estimated from the GPS height, which will be introduced 

in Section5.3. 
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3.4.1 Gyro Online Calibration 

The gyro online calibration method is straightforward: continuously monitor if the device is in a 

stationary status; if so, average the output of the stationary time as a zero-rate offset. Therefore, 

stationary feature extraction is the key in this design. 

Accelerometers are selected as stationary monitoring sensors for their low power consumption. 

Firstly, a recursive moving window is used to monitor sensor data. This window size is set as 1 

second. The standard derivation of the accelerometer output within the window is calculated 

recursively in Equation (3.41)-(3.45). 
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Where: 

 n    is the total sample number within recursive window  

nx    is the sensor input of the current epoch  

1nx   is the mean value of window in last epoch  

nx    is the mean value of window in current epoch 

1ns   is the standard deviation of window in last epoch 

ns    is the standard deviation of window in current epoch 
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A stationary mode is declared when the standard derivation of the accelerometer amplitude 

within the recursive window is less than a pre-defined threshold, as shown below: 

If ZU P T _ accel _ thresholdaccels  , then 

 ZUPT.accel_flag=1;  

 ZUPT.gyro_bias=mean(gyro_input).  

 

3.4.2 Magnetometer Online Calibration 

The degradation of the navigation solution from magnetometers is largely caused by the 

vulnerability of magnetometers to the ambient magnetic disturbance.  These variations can be 

parameterized by biases and scale factors that can be corrected in online calibration. The 

calibration is based on the assumption that the total Earth magnetic field intensity is a constant 

value, so the calibrated biases and scale factor estimations should minimize this variation when 

the hard iron and soft iron errors are compensated for. 

Referring to [Gebre 2006], iterative batch least squares estimation can be formulated based on 

multiple positions calibration.  The locus of magnetometer measurements is described by:  
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  (3.46) 

Where:   

ℎ��
�, ℎ��

�, ℎ��
�  is the measurement of the raw magnetometer outputs 

h  is the norm of magnetic strength of the Earth, which can be determined based on the 

device’s current location 

bx,by,bz  is the magnetometer biases 
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γx, γy, γz  is the magnetometer scale factors 

For calibration using multiple positions, if k attitude measurements are selected, then we can 

construct k separate equations of (3.46). Expressing them in matrix form as: 
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Where the unknown vector X is: 

X= [X(1) X(2) X(3) X(4) X(5) X(6)]’= [bx  μ1by  μ2bz  μ1  μ2   μ3 ]’   

H11 and H12 are two sub-matrices used to construct the measurement matrix H; v is the 

measurement noise vector.   
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And: 
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When the number of measurements, k, is greater than six, the least squares solution �� for (3.47) 

is: 

�� = (���)���′�                                      (3.50) 
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From reference [Gebre 2006], a two-step estimator algorithm can be constructed. The first-step 

of the least squares solution includes the intermediate variables μ1 μ2   μ3 and μ4. 
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Finally in the second step, the biases and scale factors can be derived from (3.49) and (3.51) as: 
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      (3.52) 

An indoor test was conducted to prove this concept. The device was rotated over 360 degrees at 

three orientations as shown in Figure 3-8 below.  
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(a) Orientation 1: horizontal  (b) Orientation 2: 45° pitch (c) Orientation 3: -45° pitch 

Figure 3-8 Multiple orientation magnetometers calibration 

 

The magnetometers output without calibration and the total magnetic field strength is plotted in 

Figure 3-9 below. As can be seen, the total magnetic field varied significantly with the three 

orientations because of the large uncompensated z-axis biases. 

 

Figure 3-9 Magnetometers output without calibration 
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The first rotation with horizontal orientation was used for calibration. 6 points with different 

headings were randomly chosen. The calibration result is shown in Figure 3-10 as follows

 

Figure 3-1 Magnetometers calibration using first orientation 

 

The calibration brings the first rotation to constant magnitude, as shown in the yellow curve, but 

it is obvious that the 2nd and 3rd loops have very dramatic variations. Now, two more 

observations are added in the observation matrix from the second orientation (45-deg-pitch). The 

calibrated results are shown in Figure 3-11 below. 
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Figure 3-2 Magnetometers calibration using first and second orientation 

 

With the observations data from the second attitude, the fluctuation of the total magnetic strength 

is reduced.  However, the calibration result is still not perfect as variation is seen during the third 

rotation. Finally, another two observations are appended to the measurement matrix from the 

third orientation (-45 degree pitch).  The result in Figure 3-12 shows a very constant total 

magnetic field strength. 
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Figure 3-3 Magnetometers calibration using first, second and third orientation 

From the above comparison, magnetometer calibration using two orientations sometimes fails to 

provide a satisfactory solution, especially for those orientations with less vertical variation.  

However, calibration done with three orientations can quickly converge to a good calibration 

value. For practical deployment of online magnetometer calibration, a judicious selection of the 

magnetometer data collection is necessary. With insufficient heading and orientation changes, 

the measurement matrix is numerically singular and this leads to poor estimations. From the 

exemplary result, usually three independent orientations with some heading changes are 

required. The total number of the measurement points should be equal to or greater than six to 

solve for the unknown biases and scale factors. 

Improved error modeling for low-cost MEMS sensors combined with efficient on-line 

calibration methods introduced in this chapter can enhance the design and performance of sensor 

fusion algorithms for personal navigation applications in the subsequent chapters. 
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Chapter Four: ATTITUDE SENSORS FUSION 

Sensor fusion is heating up with its commercial implementations in smartphones and wearable 

devices.  Sensors have different numbers of axes, also known as degrees of freedom (DOF), 

which they can record measurements around. Accelerometers and gyroscopes have up to 3 axes 

for measuring acceleration rotation rate, respectively, in three dimensional spaces (in X, Y, and Z 

coordinates); and magnetometers sense the Earth’s magnetic field in three dimensional space.  

Magnetometers and accelerometers work together to provide a 6-axis eCompass solution for 

determining orientation.  With the addition of a gyro, 9-axis attitude fusion can be performed to 

enable faster and more accurate orientation tracking of a device, on top of many other 

applications that a gyro can be used for. 

Appendix C introduces how attitude is presented in three dimensional space, its coordinate 

definition and transformation. Then this chapter will construct an orientation Kalman filter 

design to integrate accelerometers, gyroscopes and magnetometers data.  This unified sensors 

fusion framework can flexibly switch between 3-axis gyro only, 6-axis acc+mag, 6-axis 

acc+gyro and 9-axis acc+mag+gyro solutions based on sensors availability and input signal 

quality; therefore, the attitude fusion can maintain accuracy while minimize power consumption 

and computational complexity. 

 

4.1 Attitude Kalman Filter Design 

4.1.1 The State Equation 

Real-time attitude estimation has been implemented by Kalman filter based sensor fusion 

solutions for decades. Given the initial attitudes, the three dimensional attitudes are continuously 
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calculated from the angular velocity of the device, obtained from the three-axis gyroscope 

measurements. The attitude kinematic equations represented by quaternions are preferred 

because of its non-singularities characteristics. In addition, the attitude states are augmented by 

additional state-vector components of the three gyro biases. Thus gyro data is not treated as 

Kalman filter measurements and the gyro noise appears as a state noise rather than measurement 

noise [Lefferts 1982]. In nine-axis sensor fusion architecture, the three-axis accelerometers, 

gyroscopes and magnetometers are related to the device’s orientation, known as vector attitude 

observations; they are used in the Kalman filter measurements updates. There are two methods in 

the quaternion attitude prediction, as shown below.  

The first method is based on conventional Additive EKF (AEKF), first introduced by I.Y. Bar-

Itzhack [Bar 1985]. It treats the four quaternion components as independent parameters. The true 

attitude quaternion ( )q t  is related to quaternion error ( )q t  and estimate 
ˆ( )q t  as: 

ˆ( ) ( ) ( )q t q t q t      (4.1) 

An alternative approach, known as Multiplicative EKF (MEKF), defines the attitude as the 

quaternion product below [Markley 2004].  

ˆ( ) ( ) ( )q t q t q t      (4.2) 

Where ( )q t  represents a small rotation from estimated attitude ˆ( )q t  to true attitude ( )q t  in the 

body frame. Equivalently, the error quaternion can be expressed as: 

1ˆ( ) ( ) ( )q t q t q t        (4.3) 
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In the AEKF definition above, the additive correction of ( )q t can impact unity normalization 

without proper constraint. Consequently, the attitude errors are correlated with the quaternion 

norm errors. Then the 4 by 4 quaternion covariance matrix becomes singular which poses 

difficulty for Kalman filter. On the contrary, in the MEKF the definition of ( )q t is guaranteed 

to be a normalized quaternion correction by the nature of its quaternion product derivation, thus 

avoids any singularity of discontinuity of the three dimensional parameterization. 

A simple three-axis gyro model is given by [Crassdi 2004]: 

ˆ ˆ
m v vb             (4.4) 

Where b̂  is the gyro bias vector and v is Gaussian white noise; b̂  itself is driven by a white-

noise process u  as: 

ˆ
ub 


      (4.5) 

By taking the derivative of the above Equation (4.3) and substituting the quaternion kinematic 

equations of ( )q t and 1ˆ ( )q t , it leads to:   

ˆ1
( ) ( ) ( )

0 02
q t q t q t

 
  

    
       

    

   (4.6) 

Where the true and estimated angular velocity are denoted by  and ̂  respectively with the 

following relationship: 

ˆ ˆˆ
m v vb b b b                 (4.7) 
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In the above equation, the estimated gyro bias, b̂ , is subtracted from the gyro measurement m

as the estimated̂  in the system equations. 

Quaternion error and gyro bias as a state vector form a seven-dimensional attitude representation, 

which is the most direct implementation. However it is computationally undesired, not only 

because one extra dimension increases the matrix size, but more importantly, as stated 

previously, the covariance matrix for the seven-dimensional state-vector is singular because of 

the one dimensional quaternion redundancy from the quaternion norm constraint [Lefferts 1982]. 

Therefore, a three-parameter attitude state propagation model is developed to preserve the proper 

rank. The following section introduces how to develop the state dynamic matrix with a rank of 6. 

The first-order ( )q t   approximation can be obtained as below: 

 
4

1
ˆ[ ] ( )

( ) 2

0

vb
q t

q

    




 
           

 





    (4.8) 

It removes the quaternion redundancy by estimating its vector components only, and the scalar 

component is approximately a constant [Crassidi 2004]. The detailed derivation is given in 

Appendix D.1. 

For a small quaternion rotation ( )q t , defined by assuming the true quaternion is close to the 

estimated quaternion,
1

2
  , where  is the attitude vector of roll, pitch, and yaw error 

angles, we can rewrite the above Equation (4.6) using error angles representation: 

 



 

72 

1
ˆ[ ] ( )

2
vb                     (4.9) 

ub        (4.10) 

Where, 
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Now we express the above dynamic equations in Kalman filter error state model as: 

 ( ) ( ) ( ) ( ) ( )x t F t x t G t w t      (4.11) 

Then the error state x(t), dynamic matrix F(t), noise vector w(t), and noise driving matrix G(t) 

are given by: 

( )x t
b
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     (4.14) 

Based on the above approximation, the system state vector and matrices are reduced to 6 

dimensions. 
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4.1.2 Kalman Filter Processing Flow 

Since orientation transformation and fusion is a non-linear process, an Extend Kalman Filter 

(EKF) is used to linearize the process about the current state. Therefore the transition matrix F 

and design matrix H are first-order partial derivative of the error states as given in the subsequent 

Section 4.1.3 and Section 4.1.4. Based on the attitude state estimation developed in Section 4.1.1, 

the overall framework of nine-axis sensors orientation fusion by a Kalman filter is developed, as 

shown in the flowchart in Figure 4-1. 

The fusion processing is triggered by sensor measurements, that is, whenever a new 

measurement of any sensor type is available, the Kalman filter routine will be executed. In this 

framework, three kinds of attitude fusion can be computed based on: (1) gyro-only 

measurements; (2) six-axis (accelerometer+ magnetometer) measurements; (3) nine-axis (gyro+ 

accelerometer +magnetometer) measurements. They are used to compare and tune the fusion 

performance.   

The Kalman filter starts with state and covariance initialization, which will be introduced in 

detail in Section 4.1.2.1. Subsequently, raw sensor measurements will be calibrated, the initial 

calibration parameters will be derived at the initialization stage with a preferred calibration 

operation such as measurements from the navigation body in a static state to detect the gyro and 

accelerometer’s zero output rate biases, and/or a figure-8 maneuver to estimate the 

magnetometer biases and scale factors. The calibration details were introduced in Section3.5.  

Then, if gyro measurements are available, the Kalman filter can predict the quaternion, gyro bias, 

error covariance matrix P, and process noise matrix Q, based on the current observations. 
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Subsequently, the gyro-only attitude is computed by converting the quaternions into DCM/Euler 

angles. Section 4.1.3 gives implementation details for this system process propagation.  

Next when Kalman filter measurement data is available, either coming from the accelerometer or 

magnetometer observation vectors, the Kalman Filter update stage is launched. First the 

magnetometer and accelerometer-based attitude can be calculated directly without Kalman 

fusion. Then measurement matrix H and measurement noise matrix R can be formed. After 

calculating the Kalman Filter gain K, all the states and error covariance can be updated. During 

the update stage, the complete nine-axis sensors based attitude can be generated, again by 

converting the updated quaternion into DCM/Euler angles. Section 4.1.4 gives implementation 

details for the measurements update procedure.   
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Figure 4-1 Kalman filter flow for 9-axis orientation fusion 

 

4.1.2.1 Filter Initialization 

The Kalman filter is first initialized with a known state: the initial gyro biases are assumed to be 

zero after calibration; the initial attitude is derived using vector matching to derive the rotation 
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matrix. The state error covariance matrix P0 has diagonal elements which correspond to attitude 

and gyro errors. 

Initialization starts when the device is in a static state. A certain period of time is used to average 

the measurement from accelerometers, gyroscopes, and magnetometers. Denote xn as a vector in 

the navigation frame and denote xb as a vector in the body frame. Referring to Section 4.1.3, the 

rotational matrix ��
� can be constructed as 

�� = � �
��� = �

�� ∙ �� �� ∙ �� �� ∙ ��

�� ∙ �� �� ∙ �� �� ∙ ��

�� ∙ �� �� ∙ �� �� ∙ ��

� ��   (4.15) 

Where �, �, � are the vector bases along the east, north and up direction. 

Ideally two vectors are known apriori in the navigation frame: the specific force vector  [0 0 �]� 

and magnetic north vector[0 � 0]�. Along with their cross product, they form ��, ��, �� in the 

DCM equation above. Note this is under the assumption that no extra acceleration and magnetic 

interference is imposed on the device.  

Then the accelerometers and magnetometer measurements and their cross product form the up, 

north, and east vector in the body frame. 
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                                         (4.16) 

After applying the dot multiplication in the transformation matrix between the body frame and 

the navigation frame, we can normalize the vectors. C�
� can be initialized as: 

      (4.17) 

Finally, initial quaternions can be converted from the rotation matrix using the method 

introduced in the DCM-to-quaternion conversion previously introduced. 

4.1.3 Discrete-time State Equations 

4.1.3.1 Quaternion Propagation 

Although the state covariance matrix reduces to the vector components of the quaternion as 

introduced in introduced in Section 4.1.1, four elements quaternions are still included as the 

estimated state due to their strength with attitude representation. Quaternion is propagated by its 

kinematic equation. Rewriting the quaternion differential equation introduced previously, we get: 
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 (4.18)    

The discrete-time quaternion can be derived from exponential power series: 

1
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      (4.19) 

Assuming ω is constant over the integration period, the quaternion transition matrix ( )q  can be 

obtained as:  
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Where:              

i i t         i=x,y,z                                                               

2 2 2
x y z t                                                                
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The detailed derivation for the quaternion transition matrix ( )q   above is given in Appendix 

D.2.     

 

 4.1.3.2 State Transition Equations 

To avoid the singularity of the state covariance matrix, the transition matrix and the state 

covariance matrix are computed as 6 by 6 matrices, as previously introduced.  

From the system dynamic matrix, F(t) in continuous time given in Equation (4.12), the state 

transition matrix   is:  

0
( )

0( , )

t

t
F d

t t e
 

        (4.21) 

  has the block matrix structure as: 
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Where: 
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The detailed derivation is introduced in Appendix D.3  

 

4.1.3.3 Process Noise Covariance 

As introduced in Section 4.1.3.1, two types of gyro errors are important for consideration, one is 

a short-term component of instability referred to as random drift v  and is directly included with 

angular velocity measurements; the other is a random walk u , included in the gyro biases term. 

Both errors can be considered as zero-mean Gaussian white-noise processes with variances of 
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2
v and

2
u , respectively. Assume v and u  to be independent from Equation (4.13), the 

continuous time noise covariance Qc can be derived as:  

2
33 33

2
33 33

0
[ ( ) ( ) ]

0

t u
c

v

I
Q E w t w t

I






 
    

 
       (4.23)   

Computing in discrete-time form, the noise covariance matrix Qd is: 

1

1 1( , ) ( ) ( ) ( , )
k

k

t
t t

d k c k
t

Q t G Q G t d    


     (4.24) 

Substituting Equations (4.14),(4.22),(4.23)into equation above and after some simplifications, Qd 

is given by Equation (4.25) below [Crassidi 2004]:        

2 2 3 2 2
33 33
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33 33

1 1
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3 2

1
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2

v u u

d
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  (4.25)      

 

4.1.3.4 State Covariance Matrix 

Finally, the state covariance matrix P is derived from the system state transition matrix Φ. 

Substitute Φ into covariance propagation equation to get: 

1
T

k k dP P Q 
          (4.26)  
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4.1.4 Measurement Update 

Attitude Kalman filters require periodic measurement updates to correct system propagation 

errors. A three-dimensional accelerometer vector and a three-dimensional magnetometer vector 

are used as orientation measurements. At time tk, the measurement vector Zk is related to the 

state vector Xk by: 

( )k k kZ h X v       (4.27) 

Where vk is the measurement noise and it is usually modeled as a Gaussian white-noise process. 

According to the reference in [Crassidi 2004], sensitivity matrix Hk in the nonliner EKF is given 

by: 

( )
( )k k

h x
H x

x
 




     (4.28) 

The Kalman filter update is performed whenever accelerometer or magnetometer measurements 

are valid, which can be available at different time epochs based on the actual sensors rate. 

4.1.4.1 Accelerometer Measurement 

To derive the measurement sensitive matrix, the measurement residual z  needs to be related 

with the state vector. Both the actual measurement, mz , and the predicted measurement, ẑ, are 

measured in the body frame, thus the rotation matrix can be written as: 

ˆˆ ( ) ( )b b
m n nz z z C q r C q r        (4.29) 
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Where r  is the sensor measurement in the reference navigation frame.  

Using multiplicative quaternions given in Equation (4.2),  

 ˆ ˆ( ) ( ) ( [ ]) ( )b b b
n n nC q C q q I C q        (4.30) 

Substituting (4.30) into (4.29) yields 

 ˆ ˆ[ ][ ( ) ] [ ( ) ]b b
n nz C q r C q r        (4.31) 

Therefore the measurement matrix H is given as below: 

3 3

( )
ˆ( ) ( ) 0b

k k n

h x
H x C q r

x

 
 


    

          (4.32) 

Here, the zero matrix is on the right side because the gyro bias state is independent of the 

measurement vectors. 

The accelerometers measure the specific force fb in the body frame as 

b b bf a g        (4.33) 

Where ba  is device’s kinematic acceleration and bg  is the Earth’s gravitational acceleration, it is 

negative by the ENU definition.  

When the device is in a static state, ( ba  =0), the predicted specific force, ˆbf , is positive upward 

and can be expressed as: 
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 ˆ 0 0 1
Tb b n b

n nf C g C     (4.34) 

Where ng is the normalized gravity in the reference navigation frame.  

The acceleration measurements [ax,ay,az]
T are also normalized in the orientation update 

calculation. Referring to Equation (4.31), the accelerometers measurement residual z is: 

2 2 2

0
1

ˆ ˆ( ) ( ) 0

1

x

b n b
a n y n

x y z
z

a

z Z C q g a C q
a a a a

 

   
       
           

 (4.35)     

The measurement sensitivity matrix Ha is:       

3 3
ˆ( ) 0b

a nH C q a


        (4.36)  

4.1.4.2 Magnetometer Measurement 

Geomagnetic heading from magnetometer measurements are derived in a similar way.  

From Equation (4.35), the north vector is formed from magnetometer and accelerometer 

measurements; the predicted north vector after normalization in the body frame can be written 

as: 

 ˆ ˆ ˆ( ) ( ) 0 1 0
Tb b n b

n nm C q m C q    (4.37) 

Therefore the magnetometers measurement residual z is: 
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0

ˆ ˆ( ) ( ) 1
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b n b
a n nz Z C q m north C q 

 
     
 
  



 (4.38)     

The measurement sensitivity matrix Hm is given below: 

3 3
ˆ( ) 0b

m nH C q m


         (4.39)        

Note this measurement update is valid only when the magnetic field vector is not aligned with 

gravity vector, that is, not near the Earth’s magnetic north pole.  

 

4.1.4.3 Measurement Noise and Adaptive Selection 

The accelerometer measurement expressed in Equation (4.34)above is an ideal case where the 

device is in a static state. The magnetometer measurement expressed in Equation (4.37) is also 

an ideal case without any magnetic disturbance. In practice, more factors should be considered.  

Rewriting Equations (4.34), (4.37) together, the predicted measurements vector is: 

ˆ( ) 0
ˆˆ ( )

ˆ0 ( )

a b dev a a
sf n

m b earth ext m m
sf n

K C q g a b v
z h q

K C q m m b v







        
          

      
  (4.40) 

Where: 

a
sfK and ab  are the scale factor and bias vector of the accelerometers, respectively;      

m
sfK  and mb  are the scale factor and bias vector of the magnetometers respectively; 
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deva is the device additional acceleration; 

 earthm is the local geomagnetic field and extm is the external disturbance;  

av  and mv  are measurement noise modeled by zero-mean Gaussian white-noise process 

with variance of 2
a and 2

m respectively.  

Since the measurements put into EKF filter are normalized, measurement noise should also be 

divided by its norm. To simplify the Kalman filter estimation, the accelerometer biases and scale 

factors can be corrected in the calibration stage, thus are not included in the Kalman filter 

equations. Similarly, magnetometer biases and scale factors can be corrected from an online 

calibration module, separately.  

When a large deva is detected, 2
a will be set large accordingly to decrease the magnetometer 

weight or simply not use it at all. When the motion is significant; extm  is hard to estimate when 

the external disturbance is not obvious since it can be absorbed into the online calibration filter. 

Nevertheless, when large magnetic deviation from the normal strength of Earth’s magnetic field 

is observed, the measurement noise 2
m should be set large. 

 

4.1.4.4 Kalman Filter Gain Matrix  

The Kalman filter gain is calculated as  

1
1 1 1 1 1 1 1( )T T

k k k k k k kK P H H P H R  
           (4.41)    
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We can divide the 6 by 6 matrix into sub blocks to reduce the calculation complexity: 
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 (4.42)     

         

4.1.4.5 State and Covariance Update 

1 1 1 1 1 1( )k k k k k kX X K Z H X  
           (4.43)         

Since ( )x t
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,  the angle and biases in the state can calculated separately as:    

1 10 1 1( )
k kk kK Z H 

 

 
       (4.44)  
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Then update the quaternion accordingly as: 
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  (4.46)    

Brute-force normalization is applied to preserve the unity from calculation errors. 
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Then update gyro bias and rotation rate as: 

1 1 1

ˆ ˆ
k k k

b b b
  

             (4.47) 

1 11
ˆˆ

k kk b 
 

 
        (4.48)  

Finally, compute the updated covariance matrix as: 

1 6*6 1 1 1 6*6 1 1 1 1 1[ ] [ ]T T
k k k k k k k k kP I K H P I K H K R K 

                (4.49) 

 

4.2 Attitude Fusion Test 

4.2.1 Rotation Test Setup 

This test was conducted at a conference room in an office building; it is a spacious indoor 

environment without much electromagnetic interference sources around. A testing unit with tri-

axial accelerometers, gyroscopes and magnetometers was used, more details is introduced in 

Section 6.3.1. The unit was placed on a wooden rotation disk, which can rotate horizontally on a 

big wooden table as shown in Figure 4-2. Six reference angle points are surveyed at every 60 

degrees.   

The testing unit and underlying orientation definition follow right-forward-up conventions for X, 

Y, and Z axis, as illustrated below. At the beginning of the data logging, three rounds of figure-8 

calibrations were done first on the rotation disk for a better initial magnetometer calibration. 

Then the unit was rigidly placed in five different attitudes , denoted as Test 1 to Test5 in next 

section. The rotation disk experienced a complete 360 degree rotation at a slow speed rotating 
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clockwise. It stops at each marked 60 degree interval with some static periods in between each 

rotation. 

 

Figure 4-2 Rotation test setup 

 

4.2.2 Rotation Test Result 

Attitude Test 1:  Pitch: 0°, Roll: 0°, Heading: 0°, rotating horizontally about the Z axis.   

Note initial attitudes and intermediate heading stops are roughly estimated within 10 degrees of 

error; the Right-Forward-Up convention was used to define Euler angles. The attitude fusion 

results of heading, pitch and roll are plotted in Figure 4-3. The solution from gyro-only based, 

magnetometer plus accelerometer based, and nine-axis EKF fusion are compared below. 
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Figure 4-3 Rotation test results of attitude Test1 

 

Attitude Test 2:  Pitch: 0°, Roll: 90°, Heading: 0°, rotating about the X axis.   

Test2 is similar to Test1 except having a different initial attitude. The initial position and fusion 

attitude results of gyro-only based, magnetometer plus accelerometer based, and nine-axis EKF 

fusion are given in Figure 4-4 below. 
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Figure 4-4 Rotation test results of attitude Test2 

 

From Test 1 and Test 2 above, we can see that the fusion engine can output heading, pitch, and 

roll of the devices properly with three input combinations: the gyro-only solution is smooth but 

suffers bias errors that drift over time. The magnetometer + accelerometer solution does not drift, 

but exhibits much noisier output, mostly because the rotation motion has an impact on the 

accelerometer-based estimation of pitch and roll. Magnetic interference during the rotation also 
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impacts the heading. The nine-axis fusion EKF takes advantage of the above two solutions and 

presents the best overall performance.   

Attitude Test 3:  Pitch: 90°, Roll: 0°, Heading: 0°, rotate about -Y axis.   

The attitude results of gyro-only based, magnetometer plus accelerometer based, and nine-axis 

EKF fusion are given in Figure 4-5 below. 

Note this is a special case where singularity (gimble lock) exists. When substituting Pitch = 90 

degrees into the DCM equation, it is observed that the rotation matrix is degenerated into:  

��
� = �

�������� − ������������ �������� + ������������ −��������
−�������� �������� ����

�������� + ������������ �������� − ������������ ��������
� 

 

        = �
cos (� + �) sin (� + �) 0

0 0 1
sin (� + �) −cos (� + �) 0

�  (4.50) 
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Figure 4-5 Rotation test results of attitude Test3 

 

Clearly, changing the values of R and H in the above matrix has the same effects. Therefore, 

with the pitch angle fixed to 90 degrees, only one degree of freedom (corresponding to the sum 

of R and H) remains.  

That explains why the gyro-only solution showed large heading roll errors in the test above. 6-

axis and 9-axis fusion results are more stable because the roll was better taken into account from 

the accelerometer-based leveling.  

The following Test4 and Test5 rotate along an arbitrary axis with a tilted initial attitude. The 

orientation and test results are given in Figure 4-6 and Figure 4-7 below respectively.  
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Attitude Test 4:  Pitch: 0°, Roll: 40°, Heading: 0°, rotate about a tilted rotation axis.   

                

 

Figure 4-6 Rotation test results of attitude Test4 
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Attitude Test 5:  Pitch: 45°, Roll: 0°, Heading: 0°, rotate about a tilted rotation axis.   

         

  

Figure 4-7 Rotation test results of attitude Test5 

 

From the tests above, we can see the pitch and roll are more stable because of the accelerometers 

measurement update. The heading accuracy is of more concern because it is will be impacted by 

the magnetometers quality thus is more subject to disturbances. The RMS of the heading error 

using three orientation filters is summarized in Table4-1 below. The reference value is based on 
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the six surveyed angles and then compare against the orientation filter output when the device is 

in static.   

From the results, we can see gyro-only solution is more vulnerable to error drift after orientation 

change; magnetometers can provide heading correction so the mean value is more accurate 

although exhibit jittery output from the ambient disturbances; finally the nine-axis fusion has the 

advantage of complimentary sensors characteristics thus showed the best overall performance. It 

shows the attitude filter introduced in this chapter serves as an effective fusion engine to output 

heading, pitch, and roll of the devices properly for an arbitrary rotation axis. The performance of 

the device’s orientation is the most critical factor in achieving the overall positioning accuracy in 

the PNS device.  

 

Table 4-1 Heading error comparison 

EKF 

Configuration 

RMS Test1 

(deg) 

RMS Test2 

(deg) 

RMS Test3 

(deg) 

RMS Test4 

(deg) 

RMS Test5 

(deg) 

Gyro only 18 8.8 23 6.5 7.1 
A+ M EKF 5.5 3.7 7.4 3.7 3.6 

A+G+M EKF 2.4 2.1 5.9 2.8 2.7 
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Chapter Five: HYBRID PERSONAL NAVIGATION ALGORITHMS  

A personal navigation system provides estimation of its position, velocity, and attitude with 

respect to a navigation frame as defined in Chapter 4. This chapter discusses the key algorithms 

involved in this estimation. The chapter will cover the following development: 

  A Pedestrian Dead Reckoning (PDR) method is developed to determine horizontal 

position.  

 Three Extended Kalman Filter (EKF) configurations are discussed to integrate MEMS 

sensors-based PDR positions with GPS. 

 A systematic observability analysis is introduced next to select the estimated states in the 

Kalman filter. 

 To determine vertical position, the integration of a barometer and GPS height 

measurements is given. 

 Wi-Fi indoor positioning is presented as an additional aiding source for indoor 

positioning. 

5.1 Pedestrian Dead Reckoning Mechanization 

The mechanization of a navigation device describes the physical arrangement of the sensors 

relative to the human body then transforms sensor measurements to the navigation coordinate 

frame. The mechanization can be implemented by two approaches: direct INS mechanization and 

indirect model-based PDR. The conventional way of INS mechanization derives position based 

on integrating accelerometer data first to get velocity, and then integrates velocity to get 

displacement. However, as consumer devices usually adapt low-cost MEMS, accurate position is 

difficult to obtain with this method due to noisy MEMS sensor errors. Besides, most navigation 
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devices are not rigidly connected to the body in motion, such as when a person holds a 

smartphone, as additional orientation changes and vibration of the device occur during the 

walking, which contributes more error to the derived position. 

Arguably, using consumer quality MEMS sensors, the PDR estimation method outperforms the 

conventional INS mechanizations with better robustness. By exploiting the kinematics of the 

human gait with the traveled distance and heading information, this method is less sensitive to 

sensor errors and orientation relative to the user. A PDR system uses a platform’s initial position 

and velocity and then updates its new position based on measured or estimated velocity, heading, 

and elapsed time.  Instead of deriving positions from velocity, positions can be predicted by step 

detection and stride length estimation. Once heading is known, current position can be derived 

by traveling stride length along the direction of the motion from previous position. 

 

5.1.1 Step Detection 

A person’s walking follows a distinguishably repetitive pattern in acceleration. Referring to 

[Kwakkel 2008], the human gait cycle analysis is given below in Figure 5-1.  

 

Figure 5-1 Gait cycle analysis 
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Figure 5-2 Accelerometer signals during a gait cycle  

 

The accelerometer signals of one complete gait cycle were presented accordingly, as illustrated 

in Figure5-2. Starting with the right foot lifting, the vertical Z axis experiences a large peak 

followed by a bottom indicating the heel strike. Then, after a short period of the foot flat on the 

ground with relatively static accelerometer signals, the left foot cycle begins a similar up and 

down pattern. The vertical acceleration appears most obvious in variation when the foot goes up 

and down compared to forward and right side movement. In practical step detection, the total 

amplitude of three-axis accelerometers, atot, can be used for step detection. From Figure 5-2 the 

variation of atot is close to az, and the algorithm has the advantage of being less sensitive to the 

device orientation. 

Step detection algorithms can be developed based on the time or frequency feature of the 

accelerometer signal using algorithms such as peak detection, zero crossing detection, and fast 

Fourier transform [Godha 2006]. One robust method applied the moving accelerometer variance 

over a sliding window of ‘n’ samples, which is then checked periodically against a certain 
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threshold variance. When the computed variance crosses the threshold value, a step is declared. 

One advantage to use variance as detection input is to remove the algorithm sensitivity to sensor 

bias. Usually for the data sampling rate (fs) of 20-50 Hz, an appropriate window size is chosen to 

be n = fs/2.  

Some improvements can be made by giving some constraints for the detection to increase the 

robustness of the detection. False peaks can be eliminated by checking if the time between the 

two consecutive steps is more than a minimum interval threshold in time. For example, any 

declared step with interval less than 0.3 second is rejected because in normal walking, the step 

frequency is rarely higher than 3.3 Hz. In addition, the step detection variance and interval 

threshold can be set adaptively for walking versus running. When people move faster at a 

running speed, a higher variance threshold can be applied. For example, at normal walking 

speed, a variance threshold is 1 m/s2. In running, it switches to 2 m/s2. Figure5-3 below shows an 

example of step detection results.  

 

 

Figure 5-3 Step detection 
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5.1.2 Stride Length Estimation 

Stride length is defined as the distance traveled between two consecutive heel impacts on the 

ground. Ideally integrating the forward accelerometer signal twice from one footfall to another 

can deduce the step length. In practice, this approach will be very inaccurate because of random 

alignment and bias drift of the accelerometers. 

Instead, a parametric model of stride length is used to build a simple relationship between stride 

length and some detected signal features. Two candidate features are investigated: the magnitude 

of forward acceleration defined as the standard deviation of the accelerometer signal, and the 

step frequency fk, which is the walking cadence frequency from time tk-1 to tk for the two 

consecutive steps detected. 
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(a) step frequency vs. stride length (b) accelerometer Std vs. stride length 

Figure 5-4 Linear regression of stride length estimation 
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Figure 5-4 (a) shows a plot between step frequency and stride length for three different users 

walking at different speeds. Figure 5-4 (b), in comparison, shows another approach using the 

standard deviation of forward-accelerometer to derive stride length. The first approach 

outperforms the second with better linearity in that the average residue error of the stride length 

estimation is 0.003 m, as opposed to 0.022 m in the second approach. 

A simple linear model is therefore established relating stride length SLk to the step frequency fk.   

��� = �

0.5, �� < 1.25
0.46 × �� − 0.081, 3 ≥ �� > 1.25

0.9, �� ≥ 3,

�   (5.2) 

In practice, the human gait changes from person to person, walking terrain, and other various 

conditions. In order to account for this variation, the stride length can be augmented with a 

variable component that represents the residual variation in a user’s stride. The component can 

be modeled as a stride length bias error as Gaussian noise or a Gauss Markov process. The 

correction can be estimated in the navigation Kalman filter. 

 

5.1.3 Pedestrian Dead Reckoning 

Dead reckoning (DR) is the determination of a new position from the knowledge of a previous 

known position utilizing current distance and heading information.  As such, DR consists of 

three important components:  

 The prior absolute position of the user at time t-1, (Et-1, Nt-1) 

 The distance traveled by the user since time t-1, ( ],1[
ˆ

tts  )  

 The user’s heading (ψ) since time t-1 
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The coordinates (Et, Nt) of a new position with respect to a previously known position (Et-1, Nt-

1) can be computed as follows: 

1],1[1

1],1[1

cosˆ

sinˆ
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 (5.3) 

  

Eq. (5.3) is the foundation of PDR system, which continuously propagates position based on the 

detected step at time t, stride length ],1[ˆ tts  and heading ψ, as depicted in Figure 5-5.  
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Figure 5-5 Dead reckoning concept 

 

As illustrated above, heading is a key element in PDR; it can be obtained from the 9-DOF sensor 

fusion of tri-axial accelerometers, gyroscopes and magnetometers, as introduced in Chapter 4.  

From above, the processing of PDR includes three essential components:  

 Step detection 

 Stride length estimation  

 Heading determination 



 

104 

GPS or wireless positioning receivers provide an absolute position to start with; then the 

accelerometer data is utilized for the detection of steps and estimation of stride length; then the 

fusion of magnetometers, gyroscopes, and accelerometers determines the device’s heading, as 

discussed in Chapter 4.  

 

5.2 Kalman Filter Integration and State Selection 

5.2.1 Kalman Filter Integration 

Kalman filter is the engine to estimate the state of discrete-time controlled process governed by 

linear stochastic differential equations [Grewal 2008]. Figure 5-6 illustrates the typical procedure 

of a KF. The iteration starts with a prediction of the error states and covariance based on initial 

condition and apriori information of the system, and then the measured inputs, Zk, are fused with 

the results from the predicted state as an update stage. During this fusion, the Zk measurements 

are given appropriate weight, denoted as Kalman Gain Kk which is determined by the covariance 

matrix of the system noise, Q, and the covariance matrix of the measurement noise, R. In 

Kalman filters, state selections, process modeling, and measurement modeling are all crucial to 

the estimation design, which are reflected by the state transition matrix F, design matrix H, and 

system noise W, respectively. 

The conventional Kalman Filter can estimate the state of discrete-time controlled processes 

governed by linear stochastic differential equations. Since attitude estimation has nonlinear 

system equations, an Extended Kalman Filter (EKF) is used to linearize the process about the 

current state.  
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Figure 5-6 Kalman filtering procedure 

 

Optimal integration of the PDR and GPS are essential for a good positioning solution; this 

section discusses the Kalman Filter design. Several considerations are taken into account for the 

state selection in the Kalman filter. First of all, the states must be complete enough to describe 

the kinematics of pedestrian navigation. Next, the states should be able to correct the errors in the 

sensor measurement. Observability for pedestrian navigation is another important consideration 

to be introduced in Section5.3, as the user’s walking speed and rotation rate is not high enough to 

accurately determine heading, in contrast with vehicle navigation scenarios. Finally, the 

simplicity of computation and economical configurations are preferable in real-time navigation 

[Syed 2009].  

For an effective EKF implementation, careful considerations are taken into account. Chapter 4 

presented a complete 3/6/9-axis attitude fusion scheme. This chapter further analyzes a partial 

sensor solution for pedestrian navigation in a horizontal plane, where three configurations are 

selected for the heading estimation:  
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 Heading computation from magnetometers with less drift error under regular magnetic 

fields. 

 Heading computation by integration of single heading gyroscope signals in the presence 

of local magnetic anomalies.  

 Heading computation by integration of three-axis gyroscope signals in the presence of 

local magnetic anomalies.  

The next section will introduce how to apply the above three heading methods in the system 

error models for GPS/PDR integration.   

 

5.2.2 Pedestrian Navigation System Error Models 

The system error models describe the behavior of the sensor error propagation. They also include 

the solution of the navigation equations for estimating the user’s position.  The system 

mechanization based on PDR is introduced in Section 5.1. In pedestrian navigation, the six-axis 

sensors configuration, either tri-axial accelerometers plus magnetometer, or tri-axial 

accelerometers plus gyro, is compulsory for navigation scenarios with significant roll, pitch, and 

azimuth changes. However, for most pedestrian navigation, the operation is mainly constrained 

to two dimensions and low dynamics. So the easting and northing of the positioning solution can 

be derived from PDR, independent of height information coming from the barometer or GPS 

data. In vertical dimension, as the barometer provides a direct measurement of the height, it has 

direct observability for error correction. Consequently, the Kalman filter system analysis can be 

simplified considering horizontal positioning errors, heading error, and sensor errors only. This 

section first develops system models by estimating errors with only heading gyro, 
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magnetometers, and a GPS receiver measurement. The EKF implementations for pedestrian 

navigation are summarized as configurations in Table 5-1 below.  

Table 5-1 Three EKF configurations for PDR/GPS integration 

Cfg. EKF State Selection Measurement 

1 6-state 
Mag 

E, N,ψm, SLb, 
Mxb, Myb 

GPS lat, lon,  
heading from mag. 

2 6-state 
Gyro 

E, N, ψg,gb, gsf, 
SLb 

GPS lat, lon, 
 heading from 
heading gyro 

3 9-state 
Gyro 

E, N,Δp,Δr,Δθ, 
gbx,gby,gbz, SLb  

GPS lat, lon,  
heading from 3D-

gyros 

 

Three heading methodologies are available to determine the heading angle ψ in PDR Eq.(5.3). In 

the first configuration, heading is derived from magnetometers, as it has less drift error for 

regular magnetic fields such as outdoor areas, as shown in Equation (5.4). 

)arctan(
b

b
m

MxMx

MyMy




    (5.4) 

Where xM and yM are the average magnetometer readings during one step and Mxbias and Mybias 

are correction for the magnetometers biases. In Table 5-2, six states are selected for 

magnetometer PDR/GPS integration, where E and N are the Easting and Northing positions of 

the user, θbias is the correction for the heading, SLbias is the stride length correction from the linear 

model in Equation(5.2), and Mxbias and Mybias for magnetometers error correction. As this 

configuration uses a magnetometer, it is applicable for open outdoor environments with 

minimum magnetic anomalies. Another assumption for this configuration is that the PNS unit is 

well mounted and the user is walking on level ground with negligible pitch and roll angles. For 
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this configuration, GPS provides correction updates in terms of latitude and longitude while the 

magnetometer provides heading.  

Table 5-2 EKF based magnetometer DR/GPS integration (6-state) 

Application 
Scenarios 

 Outdoor open environment 
 Assumption: level ground 

State 
Selection 

bybxbias MMSLNE ,, ,,,   

Process 
Model 

(k))t(1)SL(k k biasSLf 

N

E

WkkSLkNkN

WkkSLkEkE





))(cos()()()1(

))(sin()()()1(




 

Measurement GPS Lat, Lon. 
Heading derived from Magnetometers 

)arctan(
x

y

M

M
  

Sensors 
Model 

bxbx
t

bx WkMekM k

M)()1(     

byby
t

by WkMekM k

M)()1(    

  )()1( kMMkM bxxx   

)()1( kMMkM byyy   

 

The EKF estimates both navigation error states and sensor error states. To include the sensor 

error states in the state vector, the sensor errors must be modeled. Stochastic models are used to 

represent the error characteristic of these sensors, as discussed in Chapter 3. The selection of an 

appropriate error model in the EKF guarantees a better solution by computing the navigation 

states that are closer to the true values in the prediction stage.  

The EKF requires the error states to follow normal distribution and therefore, in the EKF design, 

it was assumed that all the error states are random and follow a normal distribution N (0, σn
2). 

The EKF results will not be optimal if this assumption is not valid. The choice of the error model 
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is dependent on the operation time, sensor performance, and working environment (Shin 2005). 

The sensor bias is modeled as a first-order Gauss-Markov process with time constant β. β was 

obtained from static lab autocorrelation tests for this study but it can also be chosen empirically. 

Finally, system noises, W, are added with a Gaussian distribution.  

Now, consider the case where magnetometer data is corrupted with magnetic anomalies.  Thus 

an alternative system model can be expanded to complete 3D sensors’ configurations. The 

second configuration includes 9-state filter utilizing tri-axial gyroscopes to determine the change 

of heading, pitch, and roll along with GPS derived positions. From Table 5-1, the 9 states in EKF 

are the correction for the pitch (Δp), roll (Δr) and heading (Δψ), the correction for the tri-axial 

gyro biases (gbx , gby, gbz), and the stride length correction (SLb).  For the attitude error 

differential equation, it can be simplified as: 

b
ib

n
b

n C       (5.5) 

Where n
bC  is the DCM from body frame to navigation frame and b

ib  is the angular-rate error 

vector in body frame, which is dominated by the bias vector [gbx gby gbz]
T. 

In this case, the heading computation from tri-axial gyroscopes is summarized in Table 5-3. Here 

tri-axial gyroscopes are utilized to determine the change of heading, pitch, and roll. To avoid 

singularities in the attitude mechanizations, quaternions are used [Sabatini 2006]. For this EKF 

implementation, the measurements are from GPS positions and three orthogonal gyros. )(k  is 

the average gyro output during the detected step k. Gyroscope biases were modeled as a first-

order Gaussian Markov process in the EKF. In addition, the angular random walk and bias 

instability noises are added to the process models. These parameters were calculated from the 

static dataset given in Section 3.4. 
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Table 5-3 EKF based gyro DR/GPS integration (9-state) 

Application 
Scenarios  

Indoor/outdoor  
No zero pitch roll assumption  

State 
Selection  

biasbzbybx SL ,g,g,g,,,,,  rPNE  

Process 
Model  

N

E

WkkSLkNkN

WkkSLkEkE





))(cos()()()1(

))(sin()()()1(
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Measurement  GPS Lat, Lon.  
Heading from gyroscope  

Sensors 
Model  

 Wkgkgkgk T
bzbybx

b
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Mbias)()1( Wkgekg b
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b
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Observability of the Kalman filter states may limit the accuracy to estimate the pedestrian 

heading [Cho 2006]. As a result, magnetometer heading is used, which is not always reliable 

enough to assist the gyro-based attitude. Proper detection of zero velocity periods ensures 

reliable roll and pitch estimation from accelerometer readings. However, in this belt-mounted 

configuration, detection of zero velocity periods is quite challenging and cannot be fully trusted. 

As a result, it is beneficial to remove weak observable states. Therefore, the above 9-states Gyro 

DR/GPS integration can be reduced to 6-states as shown in Table 5-4.  

In this configuration, the heading is derived by the integration of heading gyro, as shown in 

Equation (5.6). 

 
1

0
))((

t

t
bsfg dtgtg       (5.6) 

 Where ω(t) is the heading gyro measurement.   
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Among all the gyro sensor errors such as bias, scale factor errors, and alignment error, bias gb is 

most unpredictable and dominant in low-grade sensors and is thus included as a state to estimate.  

The gyro sensors errors include the contribution of bias error, gb, and scale factor error, gsf. Both 

of these errors are modeled as first-order Gaussian Markov processes in the EKF as given in 

Equation (5.7), where β1 and β2 are the time constant of the gyro bias and scale factor drift and 

Δtk is the interval between detected steps. 
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Table 5-4 EKF based gyro DR/GPS integration (6-state) 

Application 
Scenarios 

 Outdoor open environment 
 Assumption: level ground 

State 
Selection 

biassfb SL,g ,g,,, NE  

Process 
Model 

(k))t(1)SL(k k biasSLf 

N

E

WkkSLkNkN

WkkSLkEkE





))(cos()()()1(

))(sin()()()1(




 

Measurement GPS Lat, Lon. 
Heading derived from Gyroscope  
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Sensors 
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gbias)()1( 1 Wkgekg b
t

b
k    

gsfsf
t

sf Wkgekg k   )(1)( 2  

 Wkgkgkk bsf
b
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Table 5-4 shows the configuration where the attitude is simplified to heading only 

representation; it applies to most 2D navigation cases. Furthermore, to account for the 

nonlinearity of the gyro, another parameter, the scale factor gsf is included in the estimation. The 
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scale factor is also modeled as a first-order Gauss-Markov process. The above simplification of 

estimated states enables a reduced multi-sensor configuration for 2D pedestrian navigation. 

Furthermore, the resulting simplified computation for position which is an additional advantage 

for application in real-time navigation scenarios.  

From Equations (5.4)-(5.7), the dynamic matrix F can be constructed for each Kalman filter 

configuration accordingly. The measurement matrix H is 


222 0




n
IH    (5.8) 

Where n is the number of states in each configuration. 

 

5.2.3 Integrity Monitoring 

In a multi-sensor integrated system, some inputs can occasionally produce output errors much 

larger than standard uncertainty bounds, due to hardware or software failures. Integrity 

monitoring detects these faults and protects the accuracy of the overall navigation solution 

[Groves 2008]. On the sensor input level, Fault Detection and Isolation (FDI) can identify the 

faults or extreme errors that fall outside of standard measurement ranges, and isolate them from 

the quality data. As a result, the bad data doesn’t affect accuracy.  

Two types of techniques are applied for fault detection in this thesis. First, a range sanity check 

can be used to reject outliers and smooth out the measurement. This method is straightforward 

and simple to use to reject erroneous data.  For example, while walking a user’s speed cannot be 

too fast, so whenever a position is recorded that implies an unrealistically fast rate of movement, 

it can be thrown out. 

The second method is measurement innovations testing, which is widely used in Kalman filters 

as reliability testing to remove bad data. This is helpful especially when GPS or Wi-Fi solutions 
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have multipath near buildings but have standard deviations that are still relatively small, thus 

compromising the measurement noise matrix R’s ability to reflect the true accuracy. In Kalman 

filters, when we assume the process and measurement models are zero-mean, Gaussian white 

noise, the innovation sequence defined in Equation (5.9) will also be zero-mean with a white 

Gaussian distribution. Thus we can do single blunder detection from an innovation sequence on 

an observation-by-observation basis [Groves, 2008].  The innovation sequence is obtained as: 

)( ˆk
hzz xk



  (5.9) 

Where  z   is the innovation sequence, 

 kz          is the Wi-Fi position measurement, 

)( ˆk
h x

   is the position prediction. 

The covariance of the innovations 


kC comprises the sum of the measurement noise covariance 

and the error covariance of the state estimates transformed into the measurement space as 

Equation (5.10). 

k

T

kkkk RHPHC 


   (5.10)  

Where kH is measurement design matrix  

kP  is the covariance matrix for the estimated states 

kR  is the covariance matrix for the measurement noise  

Innovations of the above covariance matrix are normalized in Equation (6.3), where y has a zero-

mean, unit-variance Normal distribution, and consequently is used as the statistical test variable. 

When it exceeds the statistical confidence level threshold, the result is determined to be the result 

of faulty measurements and is rejected. 
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5.3 Observability Analysis and State Selection for PNS 

Observability is the ability to determine the value of the states given a set of measurements 

[Zhang 2004]. In this section, observability analysis is performed using the above Kalman filter 

configurations for pedestrian navigation. We define the observability matrix as O. If Rank(O) = 

n, where n is number of the estimated states, then the system is observable. However, this 

observability analysis suffers two limitations: assuming time is invariant and failing to provide 

complete system information. Firstly, it assumes the system is time-invariant. Yet in many cases 

when the system has dynamics this assumption is no longer valid.  Moreover, such analysis can 

only qualitatively judge the observability and fail to provide complete system information such 

as the degree of observability and which state in the estimation is not observable.  

To overcome the first limitation, A Piece-Wise Constant Systems (PWCS) approximation [G-M 

1992-1] is introduced. It assumes the state transition matrix F and the measurement matrix H are 

constant within each piece or segment; but F and H matrices can vary from segment to segment. 

In this way, a Total Observability Matrix (TOM) can be formed. To further quantify the degree 

of observability, a Singular Value Decomposition (SVD) approach can be applied. A large 

singular value will lead to higher observable degree [Wan 1998]. The maximum in the right 

singular vector shows the state with the corresponding singular value; and similarly, the 

minimum vector corresponds to the weakest observable state in the system. 

The goal of the observability study here is to determine the most efficient EKF design for 

personal navigation systems so that weakly observable or unobservable states in the estimation 
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can be eliminated. As mentioned above, the objective is to find a method to provide details about 

the degree of observability of different system configurations. Furthermore, the objective also 

aims to provide information to the system designer regarding the required maneuver to augment 

state estimation.  

 

5.3.1 Analysis of Observability and Observable Degree 

Observability is the ability to determine the value of the states xk given a set of measurements zk 

as shown below.  

 
kjk

kjk

xHz

xFx



1
      (5.12) 

Where Fj and Hj are the transition matrix and measurement matrix of the homogeneous system in 

Equation (5.12), respectively. Thus we can define the Observability Matrix O as [Grewal 2008]: 

])(...[ 1 TnTTTT HFHFHO    (5.13) 

If Rank(O) = n then the system is observable. This observability analysis suffers two limitations: 

First, it assumes the system is time-invariant. However, in many cases when the system has 

dynamics, it is no longer valid. Moreover, such analysis can only qualitatively judge the 

observability and fail to provide complete system information, like the degree of observability 

and which state in the estimation is not observable.  

As illustrated in Figure 5-6[G-M 1992-1], we assume within each segment j, the state transition 

Fj and measurement matrix Hj are constant; but they change from segment to segment.  
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Figure 5-6 Measurement sequence in PWCS approximation 

 

In this way, a Total Observability Matrix (TOM) QT(r) can be formed as  
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Where: 

r    is the number of segments 

n   is the number of states 

The observability matrix of each segment j, Qj, is defined as:  

TTn

jj
T

jj

T

jj FHFHHQ ])(|...|)(|[
1

   (5.15) 

According to the PWCS theory, when the following null-space relationship in (5.16) holds, then 

the total observability matrix can be simplified by stripped observability matrix (SOM) QS. 

 )1)(()( riFnullQnull ii     (5.16) 

Then QT and QS have the same rank as: 

))(())(( rQrankrQrank ST      (5.17) 

The proof was given in [G-M 1992-2] where the SOM is constructed in Equation (5.18). 

Therefore, we can replace the time-varying system by the PWCS without losing the system 

characteristic behavior. 
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To further quantify the degree of observability, another approach was introduced in [Ham1983]. 

The idea is to study the covariance matrix P of the states, if P experiences a large decrease from 

its initial value P0,   then the corresponding observability is large. With appropriate normalization 

of P by congruent transformation using P0, it provides some insight into the observability of 

linear combinations of the states that might otherwise be overlooked with a casual examination 

of the major-diagonal terms of the P matrix. 

The Eigen values and Eigen vectors of the error covariance matrix P give useful information 

about system observability as follows.  

xPx       (5.19) 

Large Eigen values indicate the poorly observable states. While the best observability is 

indicated by the smallest Eigen value of P and the corresponding eigenvector gives the 

"direction" of this highest degree of observability. The merit of the Eigen value approach is that 

one only has to look at n rather than n(n+1)/2 items to gain judgment into the degree of 

observability, instead of analyzing the whole observability matrix.  However, the limitation of 

this method is observability can only be measured after the Kalman filtering has been applied.  

Finally, a method based on Singular Value Decomposition (SVD) of the stripped observation 

matrix P is proposed. The analysis is based upon a null space test of the observability matrices.  

Each singular value of P is the observability measure for the subspace spanned by the 

corresponding singular vector [Klema 1980].  Let P be an m-by-n observability matrix with rank 

r. Then it can be decomposed into two orthogonal matrices U and V such that  
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 0...21  r , nmRVUP ,,,  

Where: 

)0...0,,...,2,1( rdiag   and i are the singular values of P 

Columns ui in U are called left singular vectors of P  

Columns vi in V are called left singular vectors of P 

 

Hence, U= (u1,u2,…,un) and V= (v1,v2,…,vn). If P is symmetric and non-negative, then U = V, so 

the left and right singular vectors are the same and they can be simply called singular 

vectors.Suppose Z is the measurement vector of the dynamic system, X0 is the vector of initial 

states of system Equation (5.12), and P is the observable matrix as defined in (5.20). Then: 
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So we can determine X0 from the measurement Z as 
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 (5.22) 

If the singular values of P contains r nonzero elements and m-r zeros, then V can be decomposed 

as V=[V1, V2] where V1=[v1,v2,…,vr], V2=[vr+1,vr+2,…,vm].  Therefore, the columns of V1 

serve as a basis for the observable subspace. The columns of V2 are orthogonal to each other and 

to the columns of V1, and serve as a basis for the unobservable subspace. From practical 

numerical SVD calculation, we can consider those very small singular values as zero, e.g. when 

they are less than 10-6. 
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If this measurement vector Z has a constant norm, then the initial state vector X0 is bounded by 

an error ellipsoid [Wan 1998].  

2
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Where i
 -1 is equivalent to the axial length of the error ellipsoid.   

The smaller the singular value of i, the larger the initial value of X0. So the upper bound of X0 

is: 

)min(,0 ir

r

Z
X 


     (5.24)  

Moreover, in order to judge which state corresponds to the each singular value i in SVD, from 

the right most part in Equation (5.22), the part in the bracket is a scalar, so the maximum of X0 is 

determined solely by the maximum element of  the right singular vector vi . Therefore, the k-th 

largest element of vi corresponds to the related state in the system. 

Table 5-5 summarizes different observability study approaches for the time-variant system as 

mentioned above.  Since the system models in PDR satisfy the PWCS assumption, SOM can be 

used to substitute TOM to simplify the analysis. As a result, the SVD of the stripped 

observability matrix is the most effective approach indicating the degree of observability of each 

state in GPS and multi-sensors integration Kalman filter. Such PWCS approximation only loses 

negligible accuracy for moderate motions such as human walking. Each singular value of the 

observability matrix is the observability measure for the subspace spanned by the corresponding 

singular vector. This method is less sensitive to perturbation due to system modeling errors and 

numerical computation. Therefore it is adopted in this research.  
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Table 5-5 Comparison of observability methods for time-variant system 

 Rank  
(QTOM) 

Rank  (QSOM) Covariance 
Eigenvalue 

SVD of QSOM 

Pros - Most precise 
method 

-Simplify TOM - Direct physical 
meaning 

- provide degree of 
obs. 
- Simple to 
implement 

Cons - No info. On 
degree of obs. 
- Hard to analyze 

- No info. On 
degree of obs. 
- Lose a little 
accuracy 

- Post processing after 
KF 
- Sensitive to P0 

- Lose a little 
accuracy 

Ref [Grewal 2008] 
 

[G-M 1992] [Ham 1983] 
[Zhang 2004] 

[Wan 1998] 
[Hong 2008] 

 
 

5.3.2 Observability Analysis Procedure for Pedestrian Navigation System 

Applying the observability method above with the three EKF implementations of the PDR as 

provided in Table 5-2, the implementation details and prototype is introduced in Section 6.1. The 

procedure of the observability analysis is summarized as follows[Zhao 2011]:  

1. Decide on the Kalman filter configurations using different system models 

2. Divide the time into segments with different maneuvers 

3. Derive the transition matrix Fj and measurement matrix Hj in time segment j 

4. Form the stripped observability matrix Qs 

5. Perform rank test, i.e., rank (Qs) 

6. Inspect  singular vector of the unobservable state SVD (Qs) 

In the second step, different segment represents various user motions, or maneuver experienced 

in the system, as state errors can be made observable by maneuvering.  A variety of dynamics are 

obtained by introducing changes in acceleration and angular velocity. 
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Table 5-6 Observation matrix rank for three EKFs 

  Time Segment Rank(QSOM) 

6-state 
Mag 

Heading=const1 6 

6-state 
Gyro 

Heading=const1 5 
Heading=const2 5 

Change ω 6 

 
 

9-state 
Gyro 

Heading=const1 5 

Heading=const2 6 

Change ω1 7 
Change ω2 7 

 

Table 5-6 shows the ranks of observation matrix for three different EKFs introduced above.  For 

the 6-state magnetometer model, as can be seen from the table, the heading is fully observable 

when the user moves only along a straight line with constant heading.  

For 6-state gyro EKF, in the first segment, the user moves with a constant heading (const1) 

which resulted in a rank of 5. As seen in the second row that changing to another constant 

heading (const2) and this doesn’t increase the observability. The system became fully observable 

with varying rotation rate ω. This can be explained on the basis of the gyro scale factor 

estimation which is only possible with different rotations.   

For the 9-state gyro model, in the first segment, the user moves with a constant heading (const1) 

which resulted in a rank of 5. As seen in the second row that changing to another constant 

heading (const2) causes the observable states increase to 6. When the rotation was introduced by 

setting turning rate to ω1, as shown in the third row, the rank becomes 7. However, as seen in the 

fourth row, further varying the rotation rate to ω2 cannot lead to a more observable state. 

As introduced previously, SVD analysis can further quantify the degree of observability for each 

estimated state.  Figure 5-7 illustrates the right singular vector for each singular value for 6-state 
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magnetometer Kalman filter. As discussed above, the largest absolute value of each singular 

vector indicates the corresponding state. The SVD singular values for each state are summarized 

in Table 5-7; all the states are fully observable with constant heading only. Also, the singular 

values corresponding to each state are quite large suggesting strong degree of observability. So 

we can predict if magnetometer data is available, this integration will result in best performances 

because of the strong observability. 

Table 5-7 6-state magnetometer observability matrix SVD 

Singular Value 
Segment I 
(constant 
heading) 

Easting 1.6 

Northing 0.68 

Heading Bias 0.52 

Stride Length Bias 3.2 

Mx Sensor Bias 0.25 

My Sensor Bias 179 

 

 

Figure 5-7 SVD for 6-state magnetometer (constant heading) 
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The singular values of the right singular vector for 6-state gyro Segment I (Straight-line 

Motion/Constant Rate Rotation) and Segment II (Change Rotation Rate) are plotted in Figure 5-8 

and Figure 5-9, respectively. When the singular value is small enough (for example, <1E-6), we 

consider the related state is unobservable.  From Table 5-8, we can have a direct quantization of 

observable degree for each state. When the user is moving with a constant heading, the singular 

value of gyro scale factor equals 4.6E-18 thus the state is unobservable. Changing the rotation 

rate in Segment II can greatly increase this observability to 5.6E-3. Yet the scale factor state is 

still relatively weakly observable, compared to other states. 

 

Figure 5-8 SVD for 6-state gyro (constant heading) 

 



 

124 

 

Figure 5-9 SVD for 6-state gyro (change ω) 

 

Table 5-8  6-state gyro observability matrix SVD 

Singular Value Segment I 
(constant 
heading) 

Segment II 
(change ω) 

Easting 2.7 3.6 

Northing 1.3 3.4 

Heading 7.7 9.4 

Gyro Bias 7.7E-3 1.2E-2 

Gyro Scale Factor 4.6E-18 5.6E-3 

Stride Length Bias 0.57 0.96 

 

Finally, the SVD result for the 9-state gyroscope is shown in Table 5-9. The corresponding 

singular vectors for each segment are given. As shown in Figure 5-10, in the first segment with 

constant heading, the unobservable states for constant heading are pitch, roll, Gyro X Bias, and 

Gyro Y Bias, as can be seen from the small singular values in red in the table. The second 

segment added another maneuver by changing heading and rotation rate. This maneuvering made 

Gyro X bias observable, as shown in Figure 5-11.  The third segment added more maneuver in 
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rotation rate, which improves the observability in Gyro Y bias, but pitch and roll still remained 

unobservable, as shown in Figure 5-12.  In this example the addition of more segments by 

introducing other motions didn't improve the observability. It is due to the 2D nature of the 

pedestrian position change, which did not make the 3D attitude fully observable.  

Table 5-9  9-state gyro observability matrix SVD 

Singular Value Segment I 
(constant 
heading) 

Segment II 
( heading 
rate=  ω1) 

Segment III 
(heading 
rate= ω2) 

Easting 4.1 5.5 6.6 

Northing 3.5 5.0 6.1 

Pitch 7.9E-17 8.9E-17 1.5E-16 

Roll 1.3E-20 5.4E-17 7.7E-17 

Heading 0.45 0.59 0.98 

Stride Length Bias 0.64 0.9 1.1 

Gyro X Bias 2.6E-18 1.7 0.51 

Gyro Y Bias 1.8E-17 1.9E-16 2.1 

Gyro Z Bias 0.82 1.0 1.3 

 

 

Figure 5-10 SVD for 9-state gyro (constant heading) 
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Figure 5-11 SVD for 9-state gyro (change heading/ω1) 

 

 

Figure 5-12 SVD for 9-state gyro (change heading/ω2) 

 

From the above analysis, magnetometer heading integrated with GPS configuration showed the 

strongest observability. Thus, it is recommended to adopt this integration when there is no 

obvious magnetic disturbance. Due to the unobservable or weakly observable states in the 9-
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states Gyro DR/GPS integration, it is beneficial to use 6-states Gyro DR/GPS integration for a 

robust INS solution. As indicated from the SVD analysis, a change in angular acceleration 

improves the observability of the gyro sensor errors. The scale factor error of the gyro, though 

observable, is still weakly observable compared to bias, therefore if the gyro’s nonlinearity is not 

severe within short GPS outages, it can be neglected. 

Some field test results in Chapter6 further indicate that a reduced multi-sensor configuration with 

heading gyro or magnetometer for personal navigation will be a feasible choice. Furthermore, the 

simplified computation is always a merit in real-time navigation applications. The results from 

the field tests in Chapter6 will demonstrate the usage of different configurations in real 

applications.  

 

5.4 Altitude Integration 

Pedestrian dead reckoning introduced so far is mainly used to solve two dimensional navigation 

problems. However, some applications need an altitude solution as well for use cases such as 

being able to tell which floor a user is on in an indoor shopping mall. GPS height is available 

only when satellite signals are strong enough. A barometer is good at measuring relative height 

changes, but its absolute height calculation is prone to drift from varying changes in ambient 

environment variables, including temperature, humidity, ventilation etc. Based on the barometer 

sensor introduced in Chapter 2.4, this section presents a simple Kalman filter fusion to integrate 

GPS height data with barometer measurements.  

 



 

128 

5.4.1 GPS/Barometer Height Fusion 

The basic idea for the height fusion is to use GPS height to calibrate barometer height offset 

when the satellite signals are strong enough. From the previous height definition, the heights 

from the two systems are inherently off by the geoid height, which varies at different locations. 

Also random turn-on bias and environment dependent noise are imposed upon barometer output. 

So totally, all these factors are lumped as an additive bias state, hbias, to be estimated. Another 

state included in the Kalman filter is the height derived from barometer measurement using 

Equation (2.11) in Chapter 2.  

[ ]T
baro biasX h h   (5.25) 

For the simplicity of the fusion, both states are modeled by a random walk process as no more 

sensors knowledge was given. Hence, 

baro baro

bias bias

h

h












   (5.26) 

Then the state transition matrix is: 

1 0

0 1

 
   

 
   (5.27)        

The measurement from GPS height can be related to the estimated states as: 

k GNSS baro biasZ h h h     (5.28)       

Then the measurement matrix H is as follows: 

 1 1H     (5.29)     
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The system noise matrix Qk is selected empirically.  The error variance of baroh can be estimated 

by calculating the variance of the actual height measurement online in a moving windows. The 

error variance of biash can be chosen based on the barometer relative pressure accuracy, or is 

sometimes given as resolution in the datasheet.  

2

_ var 0

0 _
k

k

baro
Q

baro res

 
  

 
 (5.30)    

 

The Measurement noise Rk is from GPS height variance. A justification of GPS weight is needed 

according to different GPS receivers’ performance. Rk is set smaller at the initial 30 seconds of 

the fusion to accelerate Kalman filter converging at the beginning. Once all the parameters are 

set, height fusion can be conducted following standard prediction and update procedures in the 

Kalman Filter. The final corrected height solution is: 

_ _ [0] [1]k kBaro corrected height X X   (5.31)   

  

5.4.2 Height Fusion Test Result 

Below is an example of testing results, using a uBlox-5T GPS receiver and a MS5803 barometer, 

around an office building. The test starts from outdoors; then the tester enters an office building 

and walk upstairs to the second floor; then the tester takes an elevator to go upstairs to the fourth 

floor and walks a while; after that it goes downstairs from the fourth to main floor and finally 

exits the building. As can been seen in the second half of Figure 5-13(a) and (b), the barometer 

height quickly converges to the GPS height with the Kalman filter correction when it is outdoors. 

The indoor region is marked between two dash lines in Figure 5-13(b), where the GPS height is 
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greatly biased or unavailable indoors; the corrected barometer height can still maintain the height 

change properly. 

 

(a) Height before KF fusion   (b) Height after KF fusion 

Figure 5-13 Barometer/GPS height fusion comparison 

 

5.5 Wi-Fi Positioning for Indoor Environment 

5.5.1 Indoor Wi-Fi Signal Propagation Modeling  

Chapter 2.3 introduced Wi-Fi based positioning methods and wireless signal propagation 

modeling for the indoor environment. Consequently, this sector applies the method for Wi-Fi 

indoor positioning. In chapter 2, to a curve fitting between path loss and distance given in 

Equation (5.32) as shown below:  

)log()( dBAdPL     (5.32)      

Several indoor field tests were performed to determine the channel model. The survey sites were 

carefully chosen to represent the most typical scenarios for indoor environments. Figure 5-14 

shows four places that were intensively studied with varying locations of the access points 

provided in red circles. In (a) and (d), the access point are placed above the ceiling and 
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embedded in the wall so there is no direct line-of-sight of the signals; on the contrary, in (b) and 

(c), the access points are hanging on the wall of the spacious lecture room and hallway, 

corresponding to line-of-sight signal propagation environment. The data for each distance were 

recorded for around 3 minutes and the path loss value was obtained from its expectation. 

 

      

(a) Above ceiling                      (b) Lecture room 

       

(c) Wide hallway                        (d) Narrow corridor 

Figure 5-14 Access point radio propagation modeling in different scenarios 

  

The models for the above cases are summarized in Table 5-10 below.    
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Table 5-10 Radio propagation models for different scenarios 

Scenario (a) (b) (c) (d) 

Place ENE228 ENE239 ENE238 ENF212 

Type NLOS LOS LOS NLOS 

Path Loss 
Model (dB) 2.7*10logd +37 2.6*10logd +41 2.3*10logd +34 2.6*10logd +40 

Although signal strength varies from reflections, diffraction, and scattering of radio waves 

caused by structures within the building, the path loss in the propagation models are similar for 

different scenarios. Therefore, a compromised model can be obtained to accommodate all the 

indoor environments as given below:  

)log(6.240)( ddPL         (5.33)     

 

The complete Wi-Fi positioning algorithm used in this work is summarized as follows:  

1. Define a reliable received signal strength threshold for received AP. (SNR 49dB~ 10m) 

2. Estimate the user position based on weighted centroid location algorithm (when the 

number of APs ≤ 2). 

3. Estimate the user position based on least squares estimation (when the numbers of APs > 

2). 

4. Assign proper standard deviation of the estimated position errors from receiver’s SNR. 
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5.5.2 Wi-Fi Positioning Field Test  

To verify the developed Wi-Fi positioning algorithm, NetStumbler software [Netstumber 2010] 

installed on a laptop with a WLAN card was used for the data collection of all the Wi-Fi access 

points during the field tests. An access point broadcasts its service set identifier (SSID) and other 

networks information in the Wi-Fi beacon data package every 100 ms. During the test, each 

detected access point is recorded including its signal strength, noise level, and the MAC address.  

The set-up formed by the access point and the stations located within the coverage area are called 

the basic service set, or BSS for short. They form one cell. Each BSS is identified by a unique 

identifier assigned to each network device, known as a BSSID, which is a 6-byte (48-bits) 

identifier. 

There are several network providers for Wi-Fi access at the University of Calgary. For this study, 

only AirUC is identified and surveyed, since it offers the best coverage on campus. Compliant 

with the IEEE 802.11 a/b/g standard, AirUC wireless networks operate in the unlicensed 

frequency bands of 2.40-2.48 GHz. The 2.4 GHz band is further divided into 14 channels 

supporting maximum data rate of 54 Mbps [O’Keefe 2008]. During the test, most of the AirUC 

hotspots on campus are Aruba AP-70 dual-radio Wi-Fi transceiver. Most devices are set at 

maximum transmission power of +17.0 dbm while the receiver sensitivity is about -73.0 dbm. 

A dataset was collected using the prototype introduced in Section 6.2 in January 2010 around the 

engineering building on the University of Calgary campus. It is a 10-minute walk from outdoors 

to indoors. The reference trajectory is depicted in Figure 5-15, it was generated using Aided 

Inertial Navigation System Toolbox from Mobile Multi-Sensor Systems (MMSS) Group, the 

University of Calgary, backward smoothing filter is used in the post processing, and it is within 5 

meters of accuracy compared to the truth trajectory recorded by the tester [Zhao 2010]. The test 
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started at the east door entrance of the Block A building; the user then walked two loops 

outdoors and entered the Block C building; then the user walked indoors, made turn and went 

upstairs to the second floor, after making several turns at Block D and walking along the hallway 

of Block E , the user finally stopped at the southwest side of the Block F building.   

s 

Figure 5-15 Field test reference trajectory 

 

This exemplifies the importance of Wi-Fi updates for deep indoor environments. Along the 

whole trajectory, the receiver had access to more than 250 access points altogether. In the data 

processing, however, only 12 APs (5 Line-of-Sight) were used for two reasons. First, not all the 

APs had strong signals to rely on, so a SNR threshold of 49 dB was selected to reject weak Wi-Fi 

signals. Second, common indoor environments will usually have a less dense distribution of APs 

available than on campus and we need to test this concept under more standard conditions, as our 

goal is wide adoption by the general public.  
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Figure 5-16 Selected Wi-Fi access points 

The selected APs are shown in Figure 5-16. Because of the practical installation limitation in the 

building, the geometry distribution of the APs is poor for positioning. The surveyed APs are 

summarized in Table 5-11 where E, N and Z are the known local coordinates for each AP. As 

can be seen from the table, the maximum SNR for each AP is above threshold suggesting the 

trajectory was very close to the APs at certain point.  

Due to the severe obstruction of the adjacent buildings and challenging indoor environment of 

the concrete building, the GPS-only solution for outdoors and indoors delivered very poor results 

for whole test. As shown in Figure 5-17, the GPS was only available at the beginning of the test 

when the user was outside the building and at the end of the indoor part of the trajectory, which 

was when the tester was close to the building windows. From Figure 5-17, approximately 50% of 

Wi-Fi positions are available along the trajectory and the GPS positions are only accepted at the 

beginning of the trajectory when the user was outdoors. Based on the given AP coverage, Wi-Fi 

only positioning can provide accuracy within 20 meters. The complete Wi-Fi and GPS positions 

integrated with MEMS-based PDR testing will be covered in Chapter 6. 
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Table 5-11 Selected access point for positioning 

AP Mac Addr. Room/AP 
Type 

E(m) N(m)Z(m)
Max SNR 

(dB) 
1 00:0B:86:C8:8E:60 ENC201/NLOS -2.5 16.5 7.6 69 

2 00:0B:86:CA:B0:60 ENC210Y/LOS -9.6 5.8 4.4 64 

3 00:0B:86:CA:DF:20 ENE239/NLOS -25 -16.8 8.0 49 

4 00:0B:86:CA:D8:60 ENE241/NLOS -24.8 -33.6 8.0 52 

5 00:0B:86:CE:A5:E0 ENE238Z/LOS -16.1 -42.4 7.9 59 

6 00:0B:86:CB:C5:C0 ENE229Z/NLOS -7.4 -68.5 7.5 64 

7 00:0B:86:CF:9C:E0 ENE228/NLOS -17.1 -76.4 7.5 62 

8 00:0B:86:D6:D4:80 ENE227Z/NLOS -7.4 -82.2 7.5 61 

9 00:0B:86:D0:A5:41 ENE228S/NLOS -5.4 -91.2 8.1 64 

10 00:0B:86:D6:90:21 ENE221Z/LOS -13.4 -92.2 7.8 56 

11 00:0B:86:CE:62:62 ENF212/NLOS -35.1 -99.7 7 54 

12 00:0B:86:D0:B4:C2 ENF275/NLOS -36.3 -110 7 52 

 

 

Figure 5-17 GPS + Wi-Fi solution after innovation testing 
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Chapter Six: MULTI-SYSTEM INTEGRATION AND PROTOTYPING 

 

This chapter will present prototypes and test results to integrate multiple positioning subsystems 

together. The following sections show three positioning system integration prototypes built at 

various development stages: the first prototype integrates multiple MEMS sensors with GPS; the 

second one is a combination of Wi-Fi, GPS and IMU. The third one is a small form size design 

with all the subsystems leading towards an embedded solution that can be integrated into 

consumer products like a smartphone and wearable device.  

Figure 6-1 illustrates the Personal Navigation System (PNS) architecture for the system 

integration.  Raw measurements from multiple sensors are first calibrated and validated then sent 

to the sensor fusion modules. Pedestrian Dead Reckoning (PDR) is the main engine for 

pedestrian navigation. It includes step detection, stride length estimation, and heading 

determination, as studied in Section 5.1. A user’s heading in PDR is derived from the nine-axis 

orientation fusion introduced in Chapter 4, along with pitch and roll output. To properly apply 

the heading information, misalignment correction between the device frame and navigation 

frame is included. Altitude can be derived by the GPS height and barometer fusion solution as 

introduced in Section 5.4. The GPS receiver gives measurement corrections in most outdoor 

environments and Wi-Fi positioning can provide the Kalman filter update in most indoor 

environments, as presented in Section 5.5. Finally, an extended Kalman filter discussed in 

Section 5.2 integrates the PDR estimates of positions with GPS and Wi-Fi position updates 

through a loosely-coupled scheme.                              
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Note that because of constraints in system cost, power consumption, and size, a practical 

navigation system may only have a partial set of positioning subsystems covered in this chapter, 

yet the goal is to demonstrate that the system and algorithm design are scalable and reliable to 

meet system requirement under different use cases.  

  

Figure 6-1 PNS system architecture 

 

6.1 First Prototype: GPS-Sensor Integration  

6.1.1 System Introduction 

The first prototype unit was developed at the Mobile Multi-Sensor Systems (MMSS) Group, the 

University of Calgary, in 2008. Figure 6-2 below shows the hardware architecture of the 

prototype unit.  Multiple MEMS sensors are integrated on board including tri-axial 

accelerometers (STM - LIS3L03AS4), three low-cost orthogonal gyroscopes (Epson - XV-8100), 
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three orthogonal magnetometers (Honeywell - HMC1052/HMC1051Z), a barometer 

(Measurement Specialties - Model1541), a temperature sensor (Microchip- MCP9700), and a 

GPS receiver module (uBlox - LEA-4T). The sensors output analog signals and are integrated in 

sub-modular circuit boards independently with the universal interface to 16-bit high resolution 

analog-to-digital converters. This platform enables a flexible and reconfigurable deployment of 

sensor combination to verify the performance of different configurations. The data collection is 

controlled by a low-power microcontroller, at a variable sampling rate ranging from 50 to 150 

samples per second. The data is stored on an SD memory card for post processing.  In navigation 

mode with a 3V battery, the whole unit consumes about 200mA.   

 

Figure 6-2 First prototype of portable navigation system 

 

6.1.2 Results 

The results from the field tests demonstrate the usage of different configurations under different 

scenarios.  To verify the performances of different Kalman filter integration schemes, pedestrian 

field tests were performed and processed. The dataset consists of a 10 minute outdoor walk with 

straight-line walking as well as several L-turns and a U-turn on the University of Calgary 
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campus. As shown in Figure 6-3, the tests conducted are based on waist belt placement of the 

unit.  

 

Figure 6-3 Illustration of the belt-mounted prototype unit 

GPS signals are intentionally removed for 45 seconds during the second half of the U-turn to 

verify the EKF performance during GPS signal outages (GPS positions are given as white arrows 

in Figure 6-4). In this test, the magnetometer heading was free from magnetic anomalies as the 

testing path was contained in an area free of magnetic disturbances.   

The different EKF solutions are provided in Figure 6-4 for comparison. The trajectory from the 

6-state magnetometer DR/GPS EKF is plotted in blue while the red and yellow lines represent 

the 9-state gyro EKF and 6-state gyro EKF solutions, respectively.  As can be seen in Table 6-1, 

the magnetometer integration renders the best performance while the 9-state gyro EKF has the 

largest error. This is consistent with the different observability results discussed in Section 5.2. 

Table 6-1  Maximum position drifts during GPS signal outage of 45 seconds  

EKF 

Configuration 

Maximum Position Error 
(m) 

Mag. EKF - (6-state) 5.5 
Gyro EKF - (6-state) 8.2 
Gyro EKF - (9-state) 9.1 
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Figure 6-4 Field test solutions for outdoor navigation 

 

6.2 Second Prototype: Wi-Fi-GPS-Sensor Integration  

6.2.1 System Introduction  

The second prototyping system is focused on Wi-Fi assistance when GPS signals are not 

available in deep indoor environments. To verify the Wi-Fi positioning algorithms introduced in 

Section5.4, a test system was set up using off-the-shelf subsystems consisting of a laptop with a 

WLAN Mini-card, Garmin CS60X GPS receiver, and ADI ADIS16405 IMU, as shown in Figure 

6-5. The IMU is an automotive grade MEMS unit that contains a tri-axial digital gyro, 

accelerometer, and magnetometer. All the sensors and GPS data are collected by computer via 

USB connections so that all the data is time synchronized. 
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Figure 6-5 Wi-Fi+GPS+IMU prototype system 

 

Similar to the previous prototype, the EKF algorithm is the system integration kernel. It 

processes all the sensor data and GPS/ Wi-Fi updates. The EKF propagates the state parameters 

of discrete-time controlled processes governed by pedestrian sensor equations, and then updates 

the parameters when GPS/Wi-Fi position fix updates are available for correction. The key 

difference from the first prototype is that dual measurements from both GPS and Wi-Fi are 

leveraged. Since the fusion result is weighted accordingly from the covariance matrices of the 

system noise Q and measurement noise R, proper estimation of Q and R matrices are important 

for optimal integration. More specifically, the measurement noise should be adaptable based on 

the SNR of the Wi-Fi signal and the positioning uncertainty of the GPS receiver. The Wi-Fi SNR 

selection and empirical relationship with positioning error was given Section 5.4.  To reduce the 

GPS receiver’s negative impact in weak signal case, we set the cutoff threshold of carrier-to- 

noise ratio of 30dB-Hz, so that the integration only uses GPS update in good signal conditions.      

 

6.2.2 Results 

 Refer to testSection5.4 Explain the test or refer to other section where the test was described 
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Figure 6-6 presents the positioning solutions using GPS, Wi-Fi, and PDR independently. The 

GPS was available for 25% of the whole trajectory while the Wi-Fi positions were available 

approximately 50% of the indoor trajectory. From this figure, we can see that without proper 

multi-sensor integration with GPS and Wi-Fi, the trajectory is off and cannot be used to 

accurately locate rooms, turns, or floors inside the building.  

 

Figure 6-6 Comparison of GPS/Wi-Fi/PDR stand-alone solutions 

 

Using the EKF integration with GPS and Wi-Fi to provide correction updates, as introduced in 

the previous section, bridges all the outages, as shown in Figure 6-7. In addition, bad data 

calculated from faulty measurements can be rejected based on the innovation testing method 

introduced above. The real-time positioning errors are summarized in Table 6-2. The 3D error 

are within 15 meters with a mean of 7.5 meters. The heading errors are within 20 degrees with a 

mean of about 10 degrees. As can be seen, all eight turns along the trajectory are correctly 

captured by the real-time EKF solution. 



 

144 

 

(a) 

(b) Zoom-in area 

Figure 6-7 Real-time GPS/Wi-Fi/PDR EKF integrated solution 
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Table 6-2 Performance metrics for real-time EKF solution 

Criteria Accuracy 
Mean position error (3D) 5.0 m 
Max position error (3D) 13.2 m 

Mean heading error 9.9 deg 
Maximum heading error 15.8 deg 

 

6.3 Third Prototype: Consumer Grade Multi-Sensors System 

6.3.1 System Introduction  

The third prototype is a more compact design in a USB dongle form factor, as shown in Figure 

6-8. It was designed by Marvell using more recent MEMS sensors. The IMU is a six-axis 

accelerometer and gyro combo. Also included are the chipsets as follows: accelerometer and 

gyro combo (STM -LSM330DLC), the three-axis magnetometer (AKM-AK8963C), and the 

barometer with temperature sensor (STM- LPS331AP). Marvell’s GPS Location Processor, 

88L1000, is shielded in a metal box soldered on the same board. The device can be directly 

plugged into a USB port on a portable device where the positioning algorithms are running on a 

host processor in a real-time. As many portable devices have Wi-Fi connectivity, such as a 

laptop or netbook computer, Wi-Fi positioning updates introduced in this thesis can be applied as 

well, thus completing the hybrid positioning solution.  

 

 

Figure 6-8 Third prototype 
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6.3.2 Orientation Alignment 

The attitude sensor fusion introduced in Chapter 4 provides a mechanism for isolating the 

navigation system from the body’s motion, as well as optimally aligns orientation to a particular 

frame of navigation. However, in practical deployment of the PNS unit, the system may be 

required to work with many different placements. There is no way to guarantee that the sensors 

will be placed such that they are perfectly aligned with the direction of travel. So there is a 

misalignment angle between the azimuth computed in phone’s body frame and the true azimuth 

of the person’s displacement in the navigation frame that needs to be accounted for [Ali 2013].  

Following the Right-Forward-Up (RFU) definition for body frame and East-North-Up (ENU) 

definition for navigation frame as introduced previously, the misalignment angle, H’, is 

illustrated in Figure 6-9.  

 

Figure 6-3 Illustration of misalignment angle 
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Using the method from Section 4.2.2, the initial attitude of the device can be obtained with 

heading angle H0. Then the heading angle H corresponding to the user’s walking direction is 

calculated as:  

H= H0+H’.   (6.1) 

Some literature discusses how to do in-motion alignment estimation to get heading correctly. 

Rogers [Rogers1997] considers the heading error as an initial wander azimuth error to separate 

the large heading error and small leveling errors. This initial wander error can be estimated by 

position measurements in the Kalman filter. However, because the coupling coefficients between 

the trigonometric azimuth angle errors and the position errors as well as the velocity errors are 

small, the observability is weak, especially for personal navigations where the magnitude of 

position and velocity change are limited. [Scherzinger1996] and [Hong2004] modeled the sine 

and cosine of the platform heading misalignment into the INS error equations, which has larger 

coupling with the measurements. In addition, in most systems, the heading error is generally 

much larger than leveling errors. So if leveling errors can be constrained to small values, 

separation of heading error and leveling is possible by introducing a new horizontal frame and 

consequently simplifying the cosine direction matrix derivation. 

Most large heading uncertainty models were applied for airplane and vehicle navigation, and 

have seldom been applied for personal navigation.  For multi-sensor systems mounted on the 

human body, more challenges arise for a couple of reasons. First of all, the mounting platform is 

less rigid on a person, so more vibration and flexure will occur during movement. Secondly, 

humans can only move with low dynamics, so the observability is generally worse than vehicles. 

Finally, most personal navigation devices for the consumer market use low-cost sensors and GPS 
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solutions, which are more susceptible to device errors. Therefore, a more realistic method is to 

have a misalignment monitoring module. Referring to Figure 6.1, where it the compares heading 

calculation differences between a MEMS sensor fusion solution and GPS solution, assuming 

they are constant for a particular device placement without significant shifting or deviation from 

the original placement and orientation on the moving body. When the heading difference is 

larger than a preset threshold, for example, 30 degree, then the misalignment correction H’ will 

be applied to sensor-based heading in Equation (6.4). . 

 

6.3.3 Results  

Using the third prototyping device, some real-life indoor positioning tests were done at Valley 

Fair Mall in Santa Clara. It contains a 15 minute walk starting outside of the mall entrance, and 

then walks along a figure eight trajectory through the mall and finally exits at the entrance point. 

The testing unit was held in hand with small initial misalignment.  As the coordinates of the Wi-

Fi access points were not surveyed ahead of time, so GPS was the only absolute positioning 

source for this test. The indoor area of the mall has thick concrete walls, so GPS signals were 

greatly attenuated for the majority of the time; only a few areas in the mall have windows to 

enable for temporary GPS fixes. Overall, it was challenging to get accurate location data with 

weak GPS signals for the Kalman filter integration. The horizontal and vertical positioning 

standard deviation are generated from the covariance matrix of GPS position Kalman filter and 

are shown in Figure 6-10, sometimes the GPS signals were lost, so the positions and uncertainty 

are kept to the last known value. 
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Figure 6-4 Testing environment and GPS position uncertainty  

 

     

  

Figure 6-11 10-Axis MEMS sensors signals 
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The 10-axis MEMS sensors inputs are shown in Figure 6-11. From which, we can derive the 

device’s attitude then apply the PDR algorithms. Note the magnetometers experience large 

disturbances from the time-variant indoor magnetic interference at different locations, as can be 

seen from the big fluctuations of the total magnetic strength plotted by the yellow curve. 

Step detection and stride length results are given in Figure 6-12 based on the methods introduced 

in Section 5.1. There are a few stops during the walking so the stride length returns to zero at 

these times. 

  

Figure 6-12 Step detection and stride length estimation 

 

The heading results comparison of gyro-only, magnetometer-only, and 9-axis sensor fusion is 

given in Figure 6-13. There was not high accuracy reference for the heading, but the starting lane 

after the main building entrance is roughly northbound (0 degree heading around 100s-200s) and 

exiting lanes a roughly southbound route (180 degree heading around 680s-800s, because of the 

roll over between -180 and 180, it appears more fluctuations but actual error of EKF is within 20 

degree). We can see the gyro’s heading is smoother than the magnetometer’s but slowly drifts 

away, heading fusion based on the 9-axis attitude EKF renders the best solution.  
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Figure 6-5  Heading results comparison 

 

Height results from GPS, the barometer, and their fusion are compared in Figure 6-14, since GPS 

is largely unavailable indoors; it jumps to very inaccurate values. The barometer can generate a 

smooth height output, yet it has a large offset. Height Fusion between the two gives the best 

solution by correcting the biases using the GPS solution’s results from the beginning. 

 

Figure 6-6 Height results comparison 
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Figure 6-7 Positioning results comparison 

Finally the positioning trajectory from GPS only, sensors only, and Kalman filter fusion are 

compared in Figure 6-15. Because of the signal obstruction, GPS-only solution provides 

positions at the beginning/ending areas and a few areas throughout the test where happened to be 

near windows that offered enough signal penetration to get a fix.  In this test, the sensor-only 

solution behaves well, being able to track all the users’ turns correctly. However, it drifts 

gradually over the time. Since GPS signals are weak and walking speed is slow, GPS heading 

cannot correct the initial misalignment angle very well, thus 30 degrees threshold for 

misalignment detection was not triggered. From Figure 6-15, heading errors of 10-30 degree 

exist for the trajectory compared to the reference data. The ending position from the sensors-only 

solution drifts about 25 meters, which gives worse case accumulated positioning error bound. 

After the tester exited the building, the fusion solution is able to correct quickly when GPS 

positions recover at the end. The test proves the positioning algorithms discussed in this thesis 

are feasible and effective to meet FCC’s indoor positioning specification in practical personal 

navigation applications.   
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Chapter Seven: CONCLUSIONS AND RECOMMENDATIONS 

The main objective of this thesis was the analysis and development of a low-cost, personal 

navigation system and the estimation algorithms required to combine input data from multiple 

MEMS sensors. To this end, the integration of MEMS sensors, Wi-Fi, and GPS offers the best 

configuration for a solution that works in a multitude of environments and seamlessly estimates 

location data when shifting from one environment to another. This chapter summarizes thesis 

contribution, concludes the thesis work and gives recommendations for future work. 

7.1 Conclusions 

Details of the major conclusions of this thesis are summarized below based on the objectives set 

out in Chapter one. 

Analysis, Error Modeling and Calibration of Low-cost MEMS Sensors (Chapter 3) 

This thesis gives a comprehensive overview of modern MEMS sensors for navigation. The 

fabrication and design technologies are introduced; details of the integrated circuitry design are 

beyond the scope of the thesis, yet this thesis derives the key MEMS-based inertial sensor design 

parameters and presents their key performance relationship to navigation. From there, stochastic 

and deterministic error models are formed for navigation estimation. Gyro and magnetometer 

sensors are particularly pertinent to attitude accuracy, thus are given more attention to their error 

characteristics and online calibration methods. 

Nine-axis Attitude Sensor Fusion (Chapter 4) 

Inspired by space scientists using inertial and magnetic sensors for spacecraft navigation, this 

thesis investigates similar mathematical calculations but targets embedded consumer products 

using low-cost MEMS sensors.  The nine-axis fusion of accelerometers, gyroscopes, and 
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magnetometers is elaborated into an attitude Kalman filter such that the gyroscopes data are used 

to maintain quaternion predictions while accelerometers and magnetometers give measurements 

that periodically estimate corrections.  

Key Algorithms for Indoor Positioning (Chapter 5) 

Indoor positioning required alternative positioning systems when GPS signals are degraded. The 

following hybrid positioning algorithms are explored in detail:  

 A pedestrian dead reckoning algorithm is developed based on the accelerometer’s step 

detection and stride length estimation with the heading determined from the attitude 

sensor fusion.  

 Observability analysis for pedestrian navigation is introduced so that proper states are 

selected for Kalman filter estimation under different motions. Three pedestrian 

navigation filters are constructed and the degrees of observability of each estimated state 

are compared. 

 Wi-Fi positioning is investigated for indoor environments. Wireless signal propagation 

characteristics are modeled to derive the pseudoranges and then trilateration is done 

based on received signal strength.  

 Altitude integration of the barometer and GPS height measurements is introduced. 

Height calculation from air pressure measurements in the barometer can be calibrated 

automatically when GPS has a good position fix outdoors. After calibration, it can be 

used to estimate vertical position.  

Hybrid Positioning Fusion (Chapter 6) 

An Extended Kalman Filter (EKF) is selected in this thesis as the core engine to perform the data 

fusion from multiple nonlinear positioning systems including PDR, GPS, barometer, and Wi-Fi 
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measurements.   Field tests results under three different application scenarios and prototyping 

units are presented. 

With the concentration on the above studies, this thesis can be concluded as follows: 

1. Firstly, based on the study of MEMS technologies and their deployment in navigation 

applications, gyroscopes are the most critical sensors for overall performance. There is an 

inherent trade-off for the Coriolis vibrating gyro design: the measurement bandwidth selection 

requires a compromise between the sensors’ sensitivity and its noise performance. Hence the 

noise analysis of the gyro is of particular importance. The noise transfer functions are derived 

from the device design point of view. The error sources are mainly from the mechanical 

Brownian motion of the MEMS mass and electronics noise in the readout circuitry. Furthermore, 

this thesis presents a way of decomposing the error terms from static lab testing. Applying time-

correlation and Allan variance analysis, the main modeling parameters can be quantified 

including bias, time-correlated Gaussian Markov noise, and angular random walk noise. 

2. Secondly, the pedestrian dead reckoning algorithm is successfully implemented. Step 

detection and stride length estimation are derived based on accelerometers signals; the results 

show robust performance insensitive to the device placement. The step detection accuracy is 

usually greater than 97%. Heading information is determined from the nine-axis attitude fusion 

of accelerometers, gyroscopes, and magnetometers introduced in Chapter 4. With proper initial 

calibration, the accuracy of pitch, roll, and heading errors are within 10 degrees using 9-axis 

fusion algorithms in several three dimensional rotation tests. 

3. Thirdly, two alternative positioning algorithms are developed for indoor positioning. Wi-Fi 

positioning can provide good horizontal location updates during GPS outages. By modeling the 

radio propagation behaviors in different indoor scenarios, a universal path loss model for indoor 
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ranging estimation was developed to fit both LOS and NLOS cases. This approach can 

circumvent the conventional fingerprint approach where intensive site survey is required. 

According to the second prototyping test results in Chapter 6, by using 12 surveyed access point 

locations, Wi-Fi indoor positioning can provide position updates for approximately 50% of the 

indoor trajectory in the campus walking test, within 20 meters of error. Vertically, the barometer 

is a good source to derive relative height changes. Once the barometer bias is calibrated from 

GPS height, the fusion algorithm for calculating vertical position can be used to determine 

absolute height. From the field test, the height accuracy can be within three meters in multi-floor 

buildings, which is enough to determine which floor of a building someone is on. 

4. Finally, an Extended Kalman Filter (EKF) is built to integrate MEMS-sensors-based 

Pedestrian Dead Reckoning (PDR) with GPS and Wi-Fi.  The Singular Value Decomposition 

(SVD) of a stripped observability matrix is the most effective approach to determine the 

estimation states in the Kalman filter. It not only judges the system observability but also 

provides a detailed degree of observability for each state. From the theoretical analysis and field 

tests, a 9-axis sensor fusion is the best configuration to keep track of a user’s orientation changes. 

In addition, portable navigation systems can be simplified to 6-state magnetometer dead 

reckoning with GPS integration for outdoor environments and a 6-state gyro EKF for 

magnetically disturbed indoor places. Three independent field tests are given using three 

prototypes developed at different research stages. From the test results, for a 10-15 minute 

pedestrian test in GPS-denied areas, the system can provide a continuous navigation solution 

while maintaining positioning accuracy no worse than 25 meters rms. The accuracy per se is not 

the most outstanding result, compared to the best results listed in the literature review; however, 

the field tests represent practical use cases because with more variable routes that include indoor 
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turns, walking up/down stairs, and more. This thesis work has been performed as a practical 

exercise for today’s cost-effective implementations. The system fits well for a variety of 

positioning applications in the mass market, such as E-911, personnel monitoring, asset tracking, 

and many other location-based services.  

7.2 Contributions 

The above section summarizes the main thesis work and results. Now, revisiting the thesis 

contribution and hypothesis set in Table 1-2 of the Chapter one, and then synthesize the thesis 

development from each chapter, the main thesis contribution and uniqueness are summarized in 

Table 7-1 below. 

Table 7-1 Thesis contribution and uniqueness 

Contribution Uniqueness 

1. Analyze low-cost MEMS sensors 
error sources; then apply error 
modeling and calibration methods for 
estimation. 

- Based on the MEMS gyro circuitry design and analysis, 
build error models suitable for Kalman filter.  
- Design efficient on-line gyro and magnetometer 
calibration methods to reduce the major sensor errors.  

2. Develop algorithms for 3/6/9-axis 
motion sensors fusion for attitude 
determination. 

- A unified sensors fusion framework to switch between 
3-axis gyro only, 6-axis acc+mag or 6-axis acc+gyro and 
9-axis acc+mag+gyro based on input signal quality to 
maintain performance and minimize power consumption. 

3. Apply observability analysis for 
pedestrian dead reckoning integration 
with GPS/WiFi measurement. 

-Given pedestrian dynamic for low-lost navigation 
sensors fusion, explore the most effective Kalman filter 
state selection based on observability analysis. 
- Show quantitative results of degree-of-observability for 
each state and its impact to personal navigation.  

4. Build a solution framework with 10-
axis MEMS sensors, GPS and Wi-Fi, 
the system will adapt different 
subsystem according to application 
scenarios.    

- The hybrid positioning framework can perform 
MEMS/GPS/WiFi fusion with full or partial sensors, at 
different sensor grade. 
-  Three prototypes were demonstrated under different 
field application scenarios using the same framework.  
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 7.3 Recommendations for Future Work 

Based on the results and conclusions of this thesis research, the following are recommendations 

to extend the research for further development: 

1. There is something unique about human movement that makes personal navigation 

different and more challenging than other types of navigation: personal navigation 

implies frequent changes of speed and orientation. Also, position cannot be constrained to 

predefined tracks (e.g. roads) like it can with automobile navigation. Mobile devices, by 

definition, can often be placed in positions that are difficult to predict. Mobile devices 

also have different application modes that can alter frequently depending on what the 

user is doing, like walking, running, driving, cycling, etc. Consequently, user mode 

detection and context awareness are very helpful information to have for navigation. This 

thesis recommends improved mode pattern recognition algorithms be developed to better 

identify the users current activity context. 

2. Currently, navigation solutions are mainly used to find the fixed placement of the 

navigation device with a typical alignment, such as when the unit is placed on the user’s 

belt or held in hand in the landscape or portrait orientation.  In practical usage, the unit 

can be placed more randomly, including in hand and dangling, inside a pant pocket, in a 

handbag, or in other unconventional places on the body.  Under these situations, sensor 

misalignment error may be more severe, so a fast and effective estimation method is 

needed to identify and compensate for the additional misalignment error associated with 

random placements.  
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3. More alternative positioning methods can be explored for GPS denied places. For 

example, besides Wi-Fi positioning systems, bluetooth beacon positioning systems have 

become more popular because of the wide acceptance of it as a standard. Also, instead of 

an RSSI-based positioning mechanism, other mechanisms based on Time Difference Of 

Arrival (TDOA) or wireless signal fingerprinting can potentially provide higher accuracy.  

In addition, feature matching based positioning techniques are attractive for some deep 

indoor scenarios where GPS and wireless infrastructures are unavailable. In these 

scenarios, map matching or camera vision matching may be needed to provide MEMS 

sensors a proper initial absolute location and/or provide constant correction updates. 

4. Finally, integration of various low-cost systems into a real product, with different 

positioning sub-systems and applications, is recommended for future exploration. This 

thesis work presents three dedicated prototypes to prove the concept, but these prototype 

configurations will be different from the final product when a more compact form factor 

is adopted. A more compact form factor is required to fit the system in a smartphone or 

wearable devices with GPS, wireless connectivity, and MEMS sensor integration.  Power 

consumption and cost reduction are also important design aspects to be considered. More 

sophisticated system optimization and algorithm tuning are required to leverage the ideas 

of this thesis for practical deployment.  
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APPENDIX A: MEMS SENSORS FABRICATION 

MEMS sensor technology is the combination of intrinsic microsensor elements, microactuator, 

signal-processing, and analog to digital interface blocks. MEMS sensors convert the forces 

caused by the acceleration or rotation input into some physical changes such as deflection of 

masses or derivations of stresses, which are then captured by a corresponding transducer and 

transformed into an electrical signal. The most frequently used transducers in MEMS are 

capacitors with comb or plate shapes. The piezoresistive or piezoelectric devices also play a 

significant role. All the above implementation is coupled with some resonance excitations of the 

mechanical structure, which results in high sensitivity and performance [Kempe 2011]. A brief 

overview of MEMS fabrication is first introduced, as it is relevant to the shape and other 

properties of the MEMS sensors; the detailed technologies, however, are beyond the scope of 

this thesis.   

MEMS development stems from the microelectronics industry combining with the conventional 

techniques developed for integrated circuit (IC) processing, and then it is extended to MEMS 

specific processes. Referring to FigureA-1, the device fabrication consists of two phases:  

 The front-end process in the top row involves the fabrication of structures and elements  

on the silicon wafer, there are three iterative building blocks: 

1. Deposit thin films of material on a substrate.  

2. Transfer a patterned mask on top of the films by photolithographic imaging.   

3. Etch the films selectively to the mask.  

 The back-end process given in the bottom row, which involves die preparation from 

wafer dicing, die testing, packaging, and assembly of individual silicon chips.  
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Figure A-1 From wafer to IC: basic fabrication process 

 

More than standard IC fabrication, MEMS fabrication focuses on the mechanical properties, 

especially for material used to form the mechanical structures of the sensors. This includes 

structures such as beams, suspended bridges, cantilevers, and membranes etc.  One of the basic 

building blocks in MEMS processing is the ability to deposit films of material having a thickness 

between a few nanometers and about 100 µm [Liu 2012], which is generally thicker than 

conventional IC. Depending on the material deposited there are many different deposition 

processes including Physical Vapour Deposition (PVD) techniques and Chemical Vapour 

Deposition (CVD) techniques. Usually MEMS fabrication requires deeper etching and thicker 

deposition of materials with a high aspect ratio for better mechanical performance, such as high 

sensitivity and signal-to-noise ratio.  

Photolithography is a process step that uses light to transfer a geometric pattern to the substrate 

surface. It is a critical step to get the shapes of the microstructures. With this process it is 

possible to selectively remove or add parts of material to the substrate. For MEMS devices with 

movable parts, a unit process is required to release the movable parts from the substrate. If the 

target object is embedded in a silicon substrate, it can be released by bulk micromachining, 
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where bulk material of the substrate is selectively etched away. Alternatively, in the modern 

process, surface micromachining can be used. A mechanical oxide layer known as the sacrificial 

layer is deposited first to act as a temporary mechanical layer onto which the actual device layers 

are built; subsequently, a thin film layer of polysilicon is deposited and patterned and this layer is 

the structural mechanical layer; lastly, the temporary sacrificial layer is removed thereby 

allowing the structural layer to move. There are two classes of etching processes:  wet etching 

where the material is dissolved when immersed in a chemical solution; dry etching where the 

material is sputtered or dissolved using reactive ions or a vapor phase etchant. 

A MEMS chip typically contains moving parts that must be protected in a stable environment in 

terms of external vibration, particles, variation on humidity, temperature, pressure etc. Therefore, 

an encapsulation process is of particular concern, which contributes a significant portion of the 

overall cost. Through Silicon Via (TSV) is an enabling packaging technology that allows 

electrical connections between the MEMS die and other ASICs to be formed through a silicon 

wafer or multi-wafer devices [Yoshinaga 2010].  Hereby chips are stacked vertically with 

electrical contacts through the silicon to minimize electrical path lengths and thus enhance the 

electrical and thermal performance. This also minimizes the chip size and parasitic capacitances. 

Electrical connections through a silicon wafer allow for reduced die footprints and interlayer 

connectivity.  TSVs minimize die size, allow conventional or flip-chip bonding, and help 

minimize the cost of the final device. Another efficient packing approach invented by 

InvenSense in its proprietary Nasiri fabrication platform builds the CMOS and MEMS processes 

on separate dies and then bonds them together, face-to-face in a small, cost effective standard 

package [Nasiri  2011]. This approach reduces the number of MEMS manufacturing steps, 
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supports wafer-level testing hence reducing back-end packaging and testing costs, and improves 

yield. 

To sum up, MEMS technology offers a complete sensor solution and supports electronics on a 

single integrated circuit chip. Many techniques and materials used in IC fabrication are reused in 

MEMS fabrication for the advantages of low cost, high reliability, and performance. However, 

MEMS fabrication is still different from IC fabrication in some aspects.  The uniqueness of 

MEMS devices and processes requires a customized design and fabrication process techniques 

for different products. Going forward we see a clear trend for smaller, more cost effective 

MEMS devices.  But MEMS size reduction cannot last forever. For example in an inertial sensor, 

a minimal mass is needed for motion detection. Nowadays, die size reduction is mostly achieved 

by packaging innovation that adds extra manufacturing cost but reduces die size. 
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APPENDIX B: MEMS SENSORS OPERATION PRINCIPLE 

MEMS sensors have improved rapidly over the past three decades, primarily due to the 

advancement made in the evolvement of microelectronics fabrication and reduced sensitivity on 

the packaging. In addition to the expected technological improvements such as size minimization 

and power reduction, two additional significant breakthroughs have impacted sensor 

development:  

 Three orthogonal axes of MEMS gyroscopes, accelerometers and magnetometers, and 

barometer can now be fabricated on a planar substrates integrated circuit. This greatly 

reduces manufacturing and assembly costs. In precise positioning applications, for 

example, MEMS gyro becomes a good candidate that was previously dominated by fiber 

optic gyroscopes (FOG) [Goodall 2012]; but the cost of MEMS system was less 

expensive than FOG navigation system by an order of two. 

 Key performance metrics of MEMS sensors such as resolution, sensitivity, biases, and 

power consumption have improved by an order of magnitude during the decade [El-

Sheimy 2007]. This is due to the development of IC processes, new materials, MEMS 

structural design, integrated circuitry design, and advanced digital signal processing. As a 

result, inexpensive MEMS sensors have reached automotive-grade standards and will 

likely continue advancing to penetrate standards for low-end tactical-grade uses in the 

near future.  

To meet the requirements of motion tracking in navigation, a ten degrees-of-freedom fusion of 

three-axis accelerometers, three-axis gyroscopes, three-axis magnetometers, and a barometer are 

applied to measure three dimensional rotation, acceleration, and altitude. As measurement errors 
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inherently exist in sensor output, many trade-offs are considered to meet application 

specifications. Therefore, a thorough understanding of MEMS sensor design and operation 

mechanism are essential for navigation system design and they are introduced in details in this 

appendix. 

B.1 MEMS Sensors: State-of-the-art and Future Trend 

Traditionally, MEMS sensors have been predominantly used in the automotive, industrial, and 

medical sectors.  The recent availability of low cost, compact sized, and low power MEMS 

sensors have made these devices proliferate into consumer applications such as smartphones, 

tablets, gaming consoles, and wearable devices. Yole Développement estimated the inertial 

MEMS sensors industry will reach $5.4 billion by 2018, up from $4 billion in 2013 [Yole 2013]. 

MEMS technologies and applications are quite diverse, among their applications navigation 

emerges as a must-have feature in many modern devices. Combining MEMS accelerometers 

with gyroscopes, magnetometers, and a barometer allows for accurate computation of the 

position, velocity, acceleration, and altitude of the device. Integrating these with a GNSS 

receiver in the device empowers seamless outdoor and indoor navigation to become a reality. 

This section presents an overview of the current MEMS sensors status and its technological 

trends. 

Fuelled by the rapid development of consumer electronic applications and MEMS technology, 

silicon MEMS-based sensors are no longer too expensive for consumer electronics and there 

prices have fallen into an acceptable range for wide spread adoption in the consumer market. 

First and foremost, the trend that all MEMS sensors have in common is a continuous 

improvement in performance, cost, power consumption, and package size. In 1998 Yazdi pointed 
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out that MEMS performance enhancement had improved by a factor of 10 every two years since 

1991[Yazdi 1998]. Though this speed has slowed down in the 2000s, MEMS inertial sensors 

have since been improving by one to two orders-of-magnitude in key performance areas like 

noise and power consumption. The improvement was mainly driven by higher precision micro-

fabrication, reduced sensitivity to packaging, new MEMS structure design, and more advanced 

electronics and signal processing. 

Table B-1 Comparison of IMU performance 

                 Unit 

Parameter 
 Tactical-grade High-end MEMS Low-end MEMS 

Gyro bias stability 
(°/hr) 

 <1.0 ~10 10-100 

Gyro ARW 

(°/√hr) 
 ~0.05  ~0.6 1-10 

Gyro nonlinearity 
(% of full scale) 

 ~0.01 ~0.1 ~0.2 

Acc. VRW 

(mg/√hz) 
 N/A 0.1 0.2-0.6 

Acc.  nonlinearity 
(% of full scale) 

 ~0.025 ~0.2 ~0.5 

Power (Watt)  ~10 0.1-1 ~0.01 
Size 
(mm*mm*mm) 

 168 x 195 x 146 24× 38× 10 4*4*1 

Cost (US$)  ~10,000 100-500 1-3  

Application  
Ground or airborne 

survey 

Inertial navigation;  

Robotics 

Mobile devices; 

Gaming 

 

Table B-1 compares the key performance parameters of some cutting-edge Inertial Measurement 

Units (IMUs) that emerged during 2010-2012.  It breaks down IMU devices into three 

categories:  
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 Tactical grade IMUs, which consist of fiber optic gyroscopes and high-end 

micromechanical accelerometers. These parameters mainly reference Novatel’s LCI 

IMU, originally designed by Northrop-Grumman Litef GMBH [Novatel 2010]. 

Companies like Honeywell and KVH have the tactical Ring Laser Gyro with similar 

performance.  

 High-end MEMS, whose performances approach tactical-grade IMU but are available at 

a more affordable price. ADI’s ADIS16445 [ADI 2012] was mainly referenced as an 

example of this type. Others vendors, such as Silicon Sensing and Intersense have 

provided similar products as well. 

 Low-end MEMS refers to those tiny ICs used for mobile devices. Obviously they have 

great advantages in terms of cost, power consumption, size, and weight.  The 6-axis 

inertial module MPU6050 from Invensense [Invensense 2011] and LSM330DLC model 

from ST Microelectronics [STM 2011] were referenced as examples representing the 

leading edge of this category as of 2011, but later on more vendors came up with 

comparable products. Clearly, the low-end MEMS sensors are the most cost-effective 

solution, thus they are the first choice for the majority of the consumer products. Tactical 

and high-end MEMS IMUs maintain a niche in areas where high performance is required. 

 

Another trend is to integrate multiple types of MEMS sensors in a single package. Starting from 

2011, leading sensor manufacturers began proposing combinations of discrete devices: 6-axis e-

compasses (accelerometer plus magnetometer), 6-axis Inertial Measurement Units (IMU) 

combos (accelerometer plus gyroscope), and 9-axis combo solution (gyroscope plus e-compass).  
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For instance, ST Microelectronics [STM 2013-2] launched LSM9DS0 in a 4x4x1 mm system-in-

package featuring a 3-axis gyroscope, a 3-axis accelerometer and a 3-axis magnetometer 

function on the same die. This new structure, combined with an Au-Au hermetic bonding process 

allows ST to shrink the space required by the 6-axis function by more than 35%. For another 

example, the MPU-9150 is a motion tracking MEMS that combines a 3D accelerometer, a 3D 

gyroscope from Invensense [Invensense2012], and a 3D digital compass from AKM in the same 

package: a 4x4x1mm LGA package. Bosch [Bosch 2013] also brought a 9-axis sensor BMX055 

to market. It can be predicted that  sensing technology, such as pressure, humidity, temperature, 

and ambient light, will be integrated into combo units in the future. Although multimode sensor 

integration faces many technological challenges in assembly, packaging, and testing, yet the 

benefits in cost and size improvements will ultimately pay off. 

MEMS sensor development is driven by different waves of new applications. Gaming consoles 

were the first wave boosting sensor usage in consumer electronics. LBS was the second wave as 

focused on in the thesis. Looking ahead, the Internet of Things (IOT) might be the next wave. 

This wave will be widely applied everywhere, from wearable electronics to medical care 

systems, and from intelligent traffic to environment monitoring systems. Therefore, MEMS 

sensors will see a transition from a single measurement solution to a total, comprehensive 

solution. As such, some of the latest ICs have already expanded their features and include some 

sensors fusion processing capabilities on chip. Many sensor tasks like context detection, activity 

recognition, online sensor calibration and motion tracking need to occur continuously in the 

background.  In addition, implementing sensor processing in the applications processor is 

expensive in terms of battery life. Recently, the concept of a sensors hub has become popular, 

first seen in the Galaxy S4 and iPhone 5S in 2013. A sensor hub is a processing element that can 
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be dedicated to dealing with real-time demands from sensors; it can be implemented either from 

a low-power microcontroller or even inside a sensor IC, supposing some memory and an 

embedded processor are available on chip. 

Finally, new MEMS sensor types are emerging and the underlying technology is still evolving 

rapidly. Among them, non-intrusive infrared (IR) proximity sensors for proximity sensing are 

very popular. These can detect bodies in the vicinity of the device and are perfectly used on 

smartphones. Active light sensors can provide the ambient light intensity within a certain 

measurement distance. The combination of air pressure, humidity, temperature sensors, 

ultraviolet sensor and gas sensor provides a finer granularity of the local environment and 

location awareness, offering environment context useful for navigation. 

B.2 Sensor Operation Principle 

Many sensor providers have different manufacturing approaches, even for the same type of 

sensor.  For example, magnetometer design processes are radically different. Therefore the 

MEMS industry is very fragmented and MEMS in general do not follow the same roadmap that 

the semiconductor industry does. This section gives an overview of mainstream MEMS sensor 

technologies that can be used for navigation.  

 

B.2.1 Accelerometers 

Most MEMS accelerometer designs apply some variant of Newton’s Second Law of motion:  

F = ma, to sense the response of an inertial mass (also known as proof mass).  
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An accelerometer consists of two electrodes – a moveable electrode (the inertial mass) and a 

fixed electrode. Under acceleration, the proof mass will be deflected by the accelerating force, 

and this deflection may be detected. 

Many sensing principles, including piezoresistive, silicon capacitive, piezoelectric, and thermal 

flow, have been developed for acceleration measurements. Up to now, silicon capacitive 

accelerometers have largely dominated the market. Capacitive sensing is based on detecting 

small changes in capacitance due to relative displacement of the proof mass. Compared to the 

other types of MEMS accelerometers, capacitive accelerometers have high sensitivity, low 

power consumption, low noise level, stable DC characteristics and less temperature dependence.  

In addition, Integrating with CMOS sensing circuits is much easier for capacitive accelerometers, 

due to their simple structures and fabrication processes. Therefore, capacitive sensing 

mechanisms became the most popular selection.  

The fundamental behavior of an accelerometer can be understood by an idealized spring-mass 

system as illustrated in Figure B-1 below.  In this system, a proof mass, m, is suspended on a 

mechanical frame by a spring, k, and responds to an input acceleration force, F. The input force 

causes a displacement x of the mass. The displacement is sensed by electrostatic means: a 

capacitor, CS(x), is used with one terminal residing on the mass and the other terminal on the 

fixed frame. The proof mass is also subjected to a damping force proportional to its velocity, 

represented by a damping coefficient b in the figure. In inertial sensors, air damping is typically 

the main damping factor, thus it is important to hermetically seal the mechanical elements to 

allow operation of the sensor at low pressure [Shaeffer 2013]. 
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Figure B-1 Spring-mass-dashpot system 

 

The mechanical equation of Spring-mass-dashpot in Figure 3-2 can be derived in a second-order 

canonical form as:  

��(̈�)+ �� (̇�)+ �� (�) = � (�)                       (B. 1) 

Applying the Laplace transform, the force-displacement is characterized by its transfer function. 
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Where, the undamped resonant frequency ��, dumping coefficient � and quality factor Q are 

given below [Senturia2001]. 
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Usually the accelerometer operates in quasi-static state such that the operation frequency of the 

proof mass is much less than the natural mechanical frequency of the structure. Thus the system 

transfer function in (B.2) can be simplified (s=jω -> 0) as: 
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As a transducer, the accelerometer converts mechanical energy to electrical energy. As a sensor, 

additional electronic circuitry is used to interpret or quantify the changes in capacitance with 

proportional changes in acceleration. Therefore, capacitive sensing is a critical technique relying 

on the variation of capacitance appearing when the geometry of a capacitor is changing. 

Capacitance has the following relationship with dimensions:  

� = �
�

�
      (B.7) 

Where: 

A = the area of the electrodes 

d = the distance between the electrodes  

� = the dielectric constant.  

A change in any of these parameters will be measured by readout circuitry as a change in 

capacitance.  For small displacements, the effect of attractive electrostatic force on the system 

dynamics may be modeled by an equivalent negative spring constant, which shows that 

electrostatic forces reduce the effective spring constant of the system. Compared to a parallel 

plate capacitor structure, comb-finger capacitors do not suffer from this problem to the first order 

of approximation [Shaeffer2013], as the electrostatic force is not position-dependent. In addition, 

the differential capacitors have higher sensitivity and can be configured to give a linear response, 

and are therefore preferred in many designs. A basic differential structure is shown in Figure B-

2(a) and it is equivalent to two variable capacitors in series, as showing in Figure B-2(b). 
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      (a) Interdigited comb-finger capacitor            (b) Equivalent circuit 

Figure B-2 A basic differential structure of accelerometer 

 

Some trans-impedance circuits can be developed to detect the differential capacitance change 

∆�, which is proportional to the displacement x [Sharma 2007]. 

∆� = �1 − �2 = 2� �
�

��
     (B.8) 

Many leading MEMS manufacturers have designed comb-finger capacitor structures in 

accelerometers. Analog Devices first designed a comb capacitor accelerometer in the 1990s: the 

movable parts consist of four folded-beams, a proof mass and some movable fingers. The fixed 

parts include two anchors and some left/right fixed fingers [Yazdi 1998]. Bosch’s silicon-based 

accelerometer has inter-digitated fingers that are patterned in a thick epitaxy polysilicon film 

using a deep reactive ion etching technique. These thick structures have high aspect ratios with a 

working capacitance near 1 pF [Bhushan 2010]. ST Micro’s accelerometers were fabricated with 

the 0.8-micron, surface micro-machining THELMA (Thick Epitaxial Layer for Micro-

gyroscopes and Accelerometers) process combing variably thick and thin poly-silicon layers for 

structures and interconnections [STM 2013]. This enables the integration of linear and angular 

mechanical elements in a single chip, thus delivering significant cost and size benefits. 
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B.2.2 Gyroscopes 

Gyroscopes are sensors designed for measuring angular rotations about some specific axes with 

respect to inertial space [Antonello 2011]. Classical spinning mass gyroscope has a free movable 

axis called gimbal, it is based on the angular momentum of a rotating body. Gyroscopic effects 

cause precession that can be detected as a measure of angular rate. Later on, optical gyroscopes 

became available; it was based on Sagnac effect made of a ring laser or fiber with two counter-

rotating light beams circulating around an optical path of a certain radius.  These traditional 

designs cannot meet the requirements of low-cost, low-power, and miniaturized devices due to 

limitations of micro-fabrication techniques. Almost all modern consumer MEMS gyroscopes are 

of a vibratory type, based on sensing Coriolis acceleration, which is acceleration produced due to 

the changing direction in space of the velocity of a moving system.  

The operation of vibratory gyroscopes is governed by the equation of relative motion [El-Sheimy 

2008], the particle velocity �� = �̇� as viewed in the inertial frame-i is related to the velocity 

�� = �̇� in the rotating frame-r by: 

�̇� = �̇� + Ω × � �      (B.9) 

Where: 

 �� =  the time-dependent position vector in the rotating frame  

Ω = (Ω �, Ω�, Ω�)� is the rotation vector with respect to the rotating frame.  

 

Applying this time derivative relationship again, we can get the acceleration of the particle in the 

inertial frame as: 

�̈� = �̈� + 2Ω × �̇� + Ω × (Ω × � �) + Ω̇ × � �  (B.10) 
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As Newton’s Second Law only applies in the inertial frame, � � = ��̈�, hence the apparent 

acceleration in the rotating frame , �̈�, yields the following relationship in Equation (B.11). 

��̈� = � � − 2�Ω × �̇� − �Ω × (Ω × � �)− �Ω ×̇ � �   (B.11) 

Where  −2�Ω × �̇� is known as Coriolis acceleration force;  

          −�Ω × (Ω × � �) is the centrifugal force. 

When the angular rate is much smaller than proof mass resonant frequency, this term can be 

neglected; and the remaining term −�Ω ×̇ � � is due to a non-constant rotation rate of the 

rotating frame,  it can neglected as well when the sensors have relatively small output 

bandwidths. With the knowledge of �̈�and neglecting the last two terms in Equation (B.11), the 

following mechanical equation of proof mass motion can be derived [Antonello 2011].  

��̈� + ��̇� + �� � = � � − 2�Ω × �̇�     (B.12) 

Where M, D and K are positive definite mass, damping and stiffness matrices. 

 

Figure B-3 A simplified model for Z-axis gyroscope 
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Based on the above classical mechanics principles, a single axis vibrating gyroscope can be built. 

As illustrated in Figure B-3, the gyro frame rotates about the z axis, orthogonal to the x-y plane. 

A proof mass M is attached to the rotating sensor frame by elastic suspensions. Two degrees of 

mechanical freedom are required, one for the drive and one for motion sensing.  The proof mass 

is first put into drive mode of vibration along the x-axis, with a controlled-amplitude of 

oscillation. Once in motion, the proof-mass is sensitive to angular rotation about the z-axis 

perpendicular to the plane. This rotation thus induces a vibratory displacement from the Coriolis 

force along the y-axis, known as sense mode to measure the angular rate. Referring to Equation 

(B.12), the motion equations in x-y plane become: 

���̈� + � ��̇� + � ��� = � �
� + 2�Ω ��̇�    (B.13) 

���̈� + � ��̇� + � ��� = � �
� − 2�Ω ��̇�    (B.14) 

 

Assume the solution to (B.13), which is the x-displacement along the drive axis, is given by a 

sinusoidal form 

 � = −� ����(���)      (B.15) 

And there is also no external excitation to the sense mode, i.e. ��
� =0. The resulting system has 

one degree of freedom along the sensing y-axis, governed by  

���̈� + � ��̇� + � ��� = 2mΩ ��������(���)    (B.16)  

That is a typical second-order non-homogeneous linear different equation [Younis 2011].  By 

introducing natural frequency �� and quality factor �� of the sense mode, (B.16) becomes 

�̈� +
��

��
�̇� + � �

��� = 2Ω ��������(���)   (B.17) 

Where:  
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�� = ���/��  

�� = � ���/��    

A convenient way to express this solution is through a form of an amplitude Y and a phase θ as:  

��(�) = ����(��� − �)       (B.18) 

Where: 

� =
�������

�(��
����

�)��(
����

��
)�

      (B.19) 

� = tan ��(
����

��(��
����

�)
)     (B.20) 

 

From Eq. (B.19), we can see that the sensing amplitude output is proportional to the input 

angular rate Ω�. If the sense and drive resonant frequency is equal (i.e.  �� = � �), the output 

signal will be amplified by quality factor �� of the sense mode, resulting in high gain. 

Figure B-4 shows the block diagram of a typical vibratory gyroscope. It consists of a drive 

actuator and is represented by the equivalent drive-mode dynamic transfer function. The drive 

amplitude X0 must be maintained very accurately since any variation will contribute directly to 

the sense output. Therefore, the drive loop is controlled by an automatic gain control loop. In the 

sense branch, the Coriolis term is twice the product of the input angular rate and the velocity of 

the drive axis oscillator in quadrature which produces a modulated signal. The spring-mass 

sensing MEMS is equivalent to a sense-mode dynamic transfer function. Consequently, the 

gyroscope output needs to be demodulated by multiplying the in-phase drive signal coming from 

a phase-locked loop (PLL). The result was passed through a low-pass filter (LPF). Lastly, the 
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gain was adjusted to compensate for temperature and any other scale factors

 

Figure B-4 Block diagram of vibratory gyroscope 

Common MEMS designs utilize suspended plates that provide movement with two Degrees Of 

Freedom. Basic structure types include translation-based gyroscopes (like tuning forks) and 

rotation-based gyroscopes (like vibrating plates and shells). Figure B-5 [Antonello 2011] 

illustrates the most conventional types of Coriolis vibrating gyroscopes where Ω(t) is the input 

angular rate, (1) is the primary driving vibration mode and (2) is the sensing mode induced by 

the Coriolis force. 

 

(a) Tuning fork   (b) Vibrating plate    (c) Vibrating shell 

Figure B-5 Mechanical structure design of Coriolis vibrating gyroscope  
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Tuning fork gyroscopes (TFGs) are a classical type of vibrating gyroscope consisting of two 

tines that are connected to a junction bar. The two tines are driven in opposite directions with the 

same amplitude. When rotated, the Coriolis force causes a differential sinusoidal force to 

develop on the individual tines, orthogonal to the driving vibration, as shown in FigureB-5 (a).  

The vibrating plate gyroscope is driven to vibrate about its axis of symmetry, as shown in 

FigureB-5 (b), then rotation about either in-plane axis, the X or Y axis, results in the plate tilting. 

This tilt can be detected with capacitive electrodes underneath. Shown in FigureB-5(c), the 

vibrating shell has a circular shape that has eight support springs. These supports give it a 

balanced ring with two identical flexural modes that have equal natural frequencies. The 

electrostatic force vibrates the ring in an in-plane elliptically shaped primary flexural pattern (1). 

When the device is rotated around its normal axis, energy is transferred to the secondary pattern 

(2).  This symmetrical structure is less temperature sensitive since both vibration modes change 

similarly with temperature changes.  

In 1987, Charles Stark Draper Laboratory was the first to demonstrate a working MEMS gyro on 

silicon [Yazdi 1998]. About ten years later, Robert Bosch GmbH introduced the first silicon 

MEMS gyro for electronic stability program systems for automotive applications. Since then, 

consumer applications began to emerge. More recently, gaming consoles, smart phones, and 

wearable applications have pushed innovations for low-cost implementation of MEMS 

gyroscopes. The tuning fork is by far the most commercially successfully type of gyroscope, well 

suited for low-cost surfaces and bulk micromachining technologies. An integrated 3-axis MEMS 

gyroscope with signal processing ASIC has become main stream.  

Two companies are notably successful in the modern MEMS gyroscope arena: ST 

Microelectonics and Invensense. In 2010, ST Microelectronics launched its three-axis gyroscope, 
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the L3G4200D. This gyro is fabricated with the same THELMA process used to build 

accelerometers [STM 2010]. The packaged gyro is an ASIC plus MEMS stacked die, where the 

MEMS sensor uses tuning fork mass structures to measure pitch, roll, and yaw. Rotation of the 

device around three-dimensional axes will cause deflections of the different planes, which are 

detected by banks of interdigitated capacitor plates. Invensense’s three-axis digital gyroscope, 

the ITG-3200 [Invensense 2009] is built using patented Nasiri-Fabrication process, where the 

MEMS layer is sandwiched between a fusion-bonded cap wafer and the ASIC. The ASIC and 

MEMS are bonded using a eutectic metal bond, so the overall die size and cost are low.  

 

B.2.3 Magnetometers 

The Earth’s magnetic field is a vector quantity that has both magnitude and direction. Its 

magnitude ranges from 25 to 65 μT (1 μT=0.01 Gauss) and its direction has a component parallel 

to the Earth’s surface that always points toward magnetic North. This forms the basis for all 

magnetometer measurements. In general, the requirement of a magnetometer for navigation is 

quite demanding, as Earth’s magnetic field is a relatively weak signal compared to many 

surrounding electro-magnetic interferences. Meanwhile, a high resolution is preferred in order to 

derive an accurate heading for navigation.  

Unlike MEMS gyroscope designs where a simple mechanical structure and basic physics was 

utilized to calculate raw, pitch, and yaw from with one direct measurement for each variable, 

magnetometers measure the magnetic field in various ways. There are several popular methods 

commonly used for low-cost MEMS products in mobile devices. The first type utilizes an 

Anisotropic Magneto-Resistance (AMR) sensor that lends itself well to the Earth’s field sensing 

range. AMR sensors are made of a permalloy thin film deposited on a silicon wafer and is 
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patterned as a resistive strip. The properties of the AMR thin film cause it to change resistance in 

the order of 3% in the presence of a magnetic field. Typically, four of these resistors are 

connected in a Wheatstone bridge configuration so that both magnitude and direction of a field 

along a single axis can be measured; Figure B-6 shows the concept of the measurement [Caruso 

1998]. AMRs became mature at the end of the 1990s. The HMC series produced by Honeywell 

typically have dynamic ranges of hundreds of μT and resolutions on the order of nT. AMR 

technology has good sensitivity and reasonably good temperature stability. The limitation of this 

method is that as time goes by, or temperature increases, the directional magnetization loses its 

directionality; therefore calibration and additional magnetization resets are required.  

 

Figure B-6 AMR sensor circuit 

 

The Giant Magneto-Impedance (GMI) sensor is a highly sensitive micro magnetic sensor based 

on the magneto-impedance effect [Mohri 1995]. When a soft ferromagnetic conductor (e.g. 

amorphous wire) is subjected to a small alternating current (ac), a large change in the ac complex 

impedance of the conductor can be detected by applying a magnetic field change. Compared to 

the small percent change in resistance observed in the AMR sensor, this phenomenon exhibits a 

large change, thus making the GMI extremely sensitive. Figure B-7 illustrates this concept: an ac 
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current invoked through a wire-shaped material along the wire axis, yielding a circular magnetic 

field based on Faraday’s law.  

Farady’s law:  � = −��
��

��
     (B.21) 

Where:  

V = output voltage 

B = the flux density passing through a coil  

A = the cross-sectional area of the coil 

n = the number of turns in the coil  

 

Figure B-7 Concept of magneto-impedance effect 

 

The collective result of this process is the charge distribution concentrating on the surface. This 

is known as the skin effect. The application of the magnetic field increases the skin depth while 

decreasing the circumferential permeability, consequently impedance is altered via the 

permeability, which is governed by the external magnetic field. This field can be measured from 

the DC voltage output. Aichi Steel has developed magneto-impedance magnetometers with high 

resolution; the drawback is MI sensors are bulk assembled sensors with a relatively larger chip 

size compared to other technology.  Similarly, Yamaha and ALPS, manufacturers from Japan, 

developed Giant Magneto-Resistive (GMR) magnetometers, where large magnetic field 



 

197 

dependent changes in resistance are made in thin-film ferromagnet/non-magnetic metallic multi-

layers [Caruso 1998]. 

 Another type of magnetometer widely used in mobile devices functions based on the Hall 

Effect.  It works on the principle that a voltage Vhall can be developed in a direction transverse to 

the current flow in a system of charged particles in a magnetic field, owing to the Lorentz force 

F. 

F= q (v x B)       (B.22) 

Where: 

q = the charge of free carriers  

v = the velocity of the free carriers 

B = the magnetic field  

 

Figure B-8 below illustrates this relationship. 

 

Figure B-8 Hall effect principle 

 

By measuring the Hall voltage output across the metallic surface, the proportional magnetic field 

can be derived. This method is very low-cost, small sized, and low power, thus it is 

predominantly used in smartphones today. These sensors can be found in AKM’s products for 
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many smartphones. The main drawback, however, is the comparatively low sensitivity for 

magnetic sensing and the Hall device needs temperature compensation because increasing in 

temperature increases the electron motilities. 

 

B.2.4 Barometer 

Pressure sensors are the earliest MEMS sensors successfully applied in a wide-range of 

applications including automotive systems, industrial control, medical diagnostics, and consumer 

applications.  For barometer applications on a mobile device, atmospheric pressure measurement 

can be used to estimate vertical elevation, which has higher resolution than GPS. Usually air 

pressure on Earth ranges from a few hundred millibars at high altitude to a little more than one 

thousand millibars at sea level. One standard atmosphere equals 1,013 mbar at sea level. 

A MEMS pressure sensor consists of a flexible diaphragm that deforms in the presence of a 

pressure difference [Bicking 1998]. Barometers usually give an absolute pressure measurement, 

where the reference is an internal vacuum in a sealed cavity. So there is only one inlet allowing 

air pressure to be applied to one side of the diaphragm. The pressure difference between the 

sealed cavity and the surrounding environment produces a deflection of the diaphragm, which is 

then converted to an electrical signal. 

The deflection in a barometer can be measured by either capacitive sensing or piezoresistive 

sensing. In capacitive technology, the pressure diaphragm is one plate of a capacitor that changes 

its value under pressure-induced displacement. Capacitive pressure sensors are known to have 

superior performance to piezoresistive pressure sensors in terms of their package stress, 

sensitivity, and temperature dependence [Chiang 2011]. However, capacitive sensors have lower 

output signals with small deflection of a plane, so the signal conditioning and readout are much 
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more complicated. Also, wirebonds can easily pick up noise without shielding and are very 

sensitive to moisture.   

In contrast, piezoresistive pressure-sensor technology has become a low-cost, batch-fabrication 

manufacturing technology more widely used for barometers. Piezoresistors are integrated across 

the diaphragm. The change in ambient pressure forces a deformation of the diaphragm, resulting 

in a change of resistance. This resistance change is translated into an output voltage using a 

Wheat-stone bridge and then calculated into pressure. For constant temperature operation, the 

sensors can include a temperature controller for compensation. 

The following Figure B-9 shows a silicon diaphragm using MEMS micromachining technology 

[Ristic 2012]. A sealed vacuum cavity is formed at the top of the silicon substrate. Then 

piezoresistive elements are placed at the edge of the diaphragm where the stress is the largest. 

The package needs to have at least one opening hole since pressure sensors need to be physically 

exposed to the medium.  

 

Figure B-9 Silicon fabrication of piezoresistive diaphragm 

 

MEMS manufacturers have fabricated such pressure-sensing devices using proprietary 

technology. For example, ST’s LPS331AP [STM 2012] VENSENS fabrication process allows 



 

200 

the integration of a cavity into monocrystalline silicon. Bosch’s latest BMP280 [Bosch 2012] 

uses an Advanced Porous Silicon Membrane (APSM) technology to transfer a vacuum cavity. 

Both sensors are CMOS compatible with low power and small size; the integration of 

temperature sensors with factory calibration of pressures and temperatures enables a low 

temperature coefficient. As a result, they can achieve resolutions within 1 meter.   
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APPENDIX C: ATTITUDE REPRESENTATION 

In almost all sensors applications, it is often needed to know the orientation or attitude of the 

rigid body that the sensor is attached to in free space, with respect to a reference frame attached 

to the Earth. The aim of this section is to review some of the commonly used attitude 

parameterizations used to describe a device’s attitude. Usually aerospace and pedestrian 

navigation have different conventions on attitude definitions. Consistent and clear definitions are 

essential to remove fragmentation in sensor implementations from different industries. This 

section clarifies conventions for attitude representations in the sensor fusion algorithms. 

Attitude and rotation transformation can be accomplished in multiple ways: yaw-pitch-roll Euler 

angles, rotation Direction Cosine Matrix (DCM), or quaternions. The Euler rotation angles are 

intuitively easy to understand but contain ambiguities. Problem-free representations of the 

transformation can be done using DCM; however this matrix contains 9 variables in a 3 by 3 

matrix. The most efficient way is represented by normalized quaternions, which use only 4 

values with a unit-norm constraint. This section presents their definitions and relationship.  

 

C.1 Coordinate Definition  

C.1.1 Navigation Frame 

The navigation frame, also known as the local-level frame or the world coordinate frame, is a 

local tangent plane coordinate system fixed in inertial space. It provides local reference 

directions near the Earth’s surface for navigation. The vector in navigation coordinates is 

denoted as xn. The mathematics described in attitude sensors fusion only applies when the 

navigation frame is rotationally fixed. For personal navigation applications, it is acceptable to 
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assume a slowly-rotating coordinate system, such as the one rigidly attached to earth, to be a 

valid navigation coordinate system, despite its non-zero angular velocity [Diebel 06]. 

East-North-Up (ENU) and North-East-Down (NED) are two common right-handed coordinate 

systems. The origin of both coordinate systems is usually chosen to be the vehicle's center of 

gravity. In NED coordinates, the X-axis is in the north direction, the Y-axis is east, and the Z-

axis is down. NED coordinates have some advantage because the direction of the clockwise 

heading changes is positive with respect to a downward Z-axis. It is popular in airspace, since 

most objects of interest are underneath, it is more reasonable to define down as a positive 

number. 

On the other hand, in ENU coordinates, the X-axis is in the east direction, the Y-axis is north, 

and the Z-axis is up.  This convention is preferred in land navigation because altitude intuitively 

increases in the upward direction.   The coordinate transformation between ENU and NED is 

R���
��� = R ���

��� = �
0 1 0
1 0 0
0 0 −1

�  (C.1)  

ENU is selected in this thesis to be in line with Android’s latest convention for smartphone 

applications, as illustrated in Figure C-1.  

 

Figure C-1 East-North-Up (ENU) definition for navigation frame 
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C.1.2 Body Frame 

The body frame, also known as the sensors frame or phone frame, is a coordinate system rigidly 

attached to the object for attitude estimation. The body frame is the frame in which multiple 

sensors are resolved. The vector in the body frame coordinate is denoted as xb. Consider a phone 

form-factor device with multiple MEMS sensors, as shown below in Figure C-2, the body frame 

axes are defined as:  

 X-axis is lateral and points to the right of the device 

 Y axis is longitudinal and points to the forward direction 

 Z-axis points upwards completing the right hand rule, we call it Right-Forward-Up 

(RFU) convention. 

 

Figure C-2 Right-Forward-Up (RFU) definition for body frame 

 

C.2 Euler Angle 

Leonhard Euler proved that any orientation of a rigid body in 3-dimensional Euclidean space can 

be expressed in terms of up to three elemental rotations around coordinate axes. Euler angles 

represent these three composed rotations that move a reference frame to a given referred frame 

[Kuniper 1999]. These three Euler angles are roll, pitch, and yaw (also known as heading and 
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azimuth). Roll, pitch, and yaw angles are denoted as (R, P, H) in this document; they are also 

commonly referenced as (ϕ, θ, ψ) in many literatures [Shuster 1993]. 

The Roll-pitch-yaw coordinates are fixed with the sensors consistent with the body frame 

definition, as illustrated in the Figure C-3. The roll axis is along the forward direction of the 

device motion; the pitch axis points out to the right-hand side; and the yaw axis points up. All the 

Euler angles are defined such that turning clockwise is positive.   

To ensure a one-to-one mapping of all possible yaw-pitch-roll angles to all possible orientations, 

one of the Euler angles must be restricted to a 180° range. For mobile conventions, the roll angle 

is the angle restricted from -90° to 90°.  For aerospace conventions, pitch is restricted to the 

range of -90° to 90°. Usually the pitch angle of ± 90 degree causes a singularity issue; it is 

sometimes called ambiguity or often referred to as gimbal lock. At this point, the difference of 

yaw and roll are completely undetermined. This can be avoided by using quaternion expressions, 

as introduced later.   

 

Figure C-3 Roll, pitch and yaw definition  
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C.3 Direction Cosine Matrix and Rotation Matrix 

The Direction Cosine Matrix (DCM) is a 3 × 3 rotation matrix transforming vectors from one 

orthogonal basis to another. Suppose a vector xa in some frame a and a vector xb is frame b, then 

�� = � �
��� = �

�� ∙ �� �� ∙ �� �� ∙ ��

�� ∙ �� �� ∙ �� �� ∙ ��

�� ∙ �� �� ∙ �� �� ∙ ��

� �� (C.2) 

Where (ia, ja, ka) and (ib, jb, kb) are the orthonormal bases of frame a and b, respectively.  

 

The rotation matrix C�
� notation indicates a transformation from the a-frame to the b-frame. 

Because the basis vectors are of unit length, the dot products in the rotation matrix define the 

cosines of the angles between the vector pairs, therefore the rotation matrix is also commonly 

known as the direction cosines matrix [Mohamed 2012].  

In mechanics and geometry, the 3D rotation group is a is the group of all rotations about the 

origin of three-dimensional Euclidean space R3 , often denoted as SO(3) [Kuniper 1999], the 

Special Orthogonal group of all rotations about the origin of three-dimensional Euclidean space 

R3 under the operation of composition. The DCM is a widely used attitude representation with 

three degrees of freedom. Transformations between navigation to body frames are particularly 

useful. In sensors fusion, sensors measure values in the body frame, whereas positions are 

normally derived in the navigation frame. This can be seen from of the following vector 

transformation: 

�� = � �
���      (C.3) 

Where: 
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v� is a vector, v, resolved in the body fixed coordinate system 

v� is the same vector resolved in the navigation frame 

C�
� is the rotation matrix from the body frame to the navigation frame 

 

Three dimensional rotation transformations can be decomposed by three consecutive rotations. 

Out of the 27 possible rotation sequences of three axes, there are only 12 that satisfy the 

constraint that no two consecutive numbers in a valid sequence may be equal [Diebel 2006]. The 

following derivation adopts one of the common sequences: yaw angle rotation along the z-axis 

first; pitch angle rotation along x-axis next; roll angle rotation along y-axis last, all following 

Euler’s angle definition in the RFU body and ENU navigation frame conventions. 

Denote (x, y, z)�as a vector in the navigation frame and after three successive rotations, it 

transforms to the body frame(x′′′, y′′′, z′′′)�, as illustrated in Figure C-4 below. 

(�, �, �)�
��(�)
�⎯⎯� (�′, �′, �′)�

��(�)
�⎯⎯� (�′′, �′′, �′′)�

��(�)
�⎯⎯� (�′′′, �′′′, �′′′)� 

 

Figure C-4 Navigation to body frame transformation: yaw→pitch→roll sequence 
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Rotation matrix C�
�(R, P, H) can be found by concatenating successive rotations as 

C�
� = R �(R)R�(P)R�(H)  (C.4) 

Where the individual rotation matrices about the x, y and z axes have angles P, R and H, are as 

follows: 

��(�) = �
1 0 0
0 ���� ����
0 −���� ����

� (C.5) 

��(�) = �
���� 0 −����

0 1 0
���� 0 ����

� (C.6) 

��(�) = �
���� ���� 0

−���� ���� 0
0 0 1

� (C.7) 

Therefore, 

C�
� = R �(R)R�(P)R�(H) 

     = �
cosRcosH − sinPsinRsinH cosRsinH + sinRsinPcosH −cosPsinR

−cosPsinH cosPcosH sinP
sinRcosH + sinPcosRsinH sinRsinH − sinPcosRcosH cosPcosR

� (C.8) 

 

C.4 Quaternions  

The quaternions, hyper-complex numbers with four components, were first introduced by 

William Rowan Hamilton in the 19th century.  Quaternion is a preferred attitude representation 

in three dimensional rotations: it is computationally efficient and numerically stable without 

singularity.  A quaternion has four elements consisting of a triplet of vector part and one scalar 

part defined as: 
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q� = q �i + q�j + q�k +  q �  (C.9) 

Where the bases elements i, j , and k are defined as: 

�� = � � = � � = ��� = −1    

Markley [Markley 008-1], Sabatini [Sabatini 2006] all use this expression in the references 

which will be adopted in this thesis. An overbar, ��, is used for quaternions notation.  

Since a three degree of freedom attitude is represented by a four dimensional vector, the 

quaternions are not independent and need to obey the normalization constraint with a unit norm.   

|��|� = � �
� + � �

� + � �
� +  � �

� = 1    (C.10) 

 

From the definition of the quaternion basis above, we can obtain a formula for quaternion 

product, denoted as ⊗. It is more convenient to write the quaternions product of p� and q� in 

matrix multiplication as [Crassidi 2004]: 

�̅ ⊗ �� =�

�� �� −� � ��

−� � �� �� ��

�� −� � �� ��

−� � −� � −� � ��

� �� = [Ψ(�̅) �̅]�� 

          = �

�� −� � �� ��

�� �� −� � ��

−� � �� �� ��

−� � −� � −� � ��

� �̅ = [Ξ(��) ��]�̅   (C.11) 

 

The conjugate quaternions ��∗ and inverse quaternions ���� can be defined as 

��∗ = −� �� − � �� − � �� +  � �    (C.12) 

���� =
��∗

|��|�      (C.13) 
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The quaternion kinematics equations are linear in quaternion expression as: 

q̇� =
�

�
�

w�

w�

w�

0

� ⊗ q� =   
�

�
Ω(ω)q� =  

�

�
Ξ(q�)ω   (C.14)                 

Where ω = [w1 w2 w3]� is the angular rate vector from gyroscope measurements:  

Ω(ω) = �

0 w� −w � w�

−w � 0 w� w�

w� −w � 0 w�

−w � −w � −w � 0

� is the symmetric skew matrix.  

Ξ(q�) = �

q� −q � q�

q� q� −q �

−q � q� q�

−q � −q � −q �

� is the same definition as the quaternion product above.  

Another advantage of the quaternion is that successive rotations can be accomplished using 

quaternion multiplication. Let q1���� and q2���� be arbitrary unit quaternions, rotation by q1���� followed 

by q2���� is given by: 

R(q�)= R(q2����)R(q1����) = R(q2���� ⊗ q1����)   (C.15) 

 

C.5 Conversion between Quaternion, DCM and Euler Angles 

This section introduces the conversion between the most popular attitude representations 

following H/P/R rotation sequence [Diebel 2006]. 

 

C.5.1 Euler Angles -> DCM 

��
� = �

�������� − ������������ ������� + ������������ −��������
−�������� �������� ����

�������� + ������������ �������� − ������������ ��������
� (C.16) 
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C.5.2 DCM -> Euler Angles    

� = ����2(−� ��, ���)        (C.17) 

� = ����(���)  or  ����2(���,����
� + � ��

�)  

� = ����2(−� ��, ���)     

Where Cij is the ith row and jth column in the DCM.                                        

C.5.3 Quaternion -> DCM 

��
�(��) = �

1 − 2(� �
� + � �

�) 2(���� + � ���) 2(���� − � ���)

2(��q� − � ���), 1 − 2(��
� + � �

�) 2(���� + � ���)

2(���� + � ���), 2(���� − � ���) 1 − 2(��
� + � �

�)

� (C.18) 

C.5.4 DCM -> Quaternion 

There are two methods to derive DCM from quaternion as listed below: 

Method 1: 

4 11 22 33

1
1

2
q C C C           (C.19) 

1 11 22 33

1
1

2
q C C C   

 

2 11 22 33

1
1

2
q C C C   

 

3 11 22 33

1
1

2
q C C C   

      

Where the sign of quaternion is determined by following: 

�� = � � ∙ ����(��� − � ��) 

�� = � � ∙ ����(��� − � ��) 

�� = � � ∙ ���(��� − � ��) 

Method 2: 
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First calculate all four elements from the main diagonal of the DCM. 

1 11 22 33

1
_ 1

2
tmp q C C C        (C.20) 

2 11 22 33

1
_ 1

2
tmp q C C C     

3 11 22 33

1
_ 1

2
tmp q C C C     

4 11 22 33

1
_ 1

2
tmp q C C C         

Usually elements close to zero can cause numerical inaccuracy, but at least one of the 

quaternions will not be zero due to the unity constraint. So the maximum value from the above 

temporary quaternions is selected to be the denominator then the quaternions are re-calculated 

based on Table C-1 below.  

 
Table C-1 Quaternion elements recalculation 

        Max 

Re_cal. 

tmp_q1 tmp_q2 tmp_q3 tmp_q4 

q1 11 22 33

1
1

2
C C C    

12 21( ) /4 _ 2C C tmp q  31 13( )/ 4 _ 3C C tmp q  23 32( ) /4 _ 4C C tmp q  

q2 12 21( ) /4 _ 1C C tmp q  11 22 33

1
1

2
C C C    23 32( )/ 4 _ 3C C tmp q  31 13( ) /4 _ 4C C tmp q  

q3 
13 31( ) /4 _ 1C C tmp q  23 32( )/4 _ 2C C tmp q  

11 22 33

1
1

2
C C C    12 21( )/ 4 _ 4C C tmp q  

q4 
23 32( ) /4 _ 1C C tmp q  31 13( ) /4 _ 2C C tmp q  12 21( )/ 4 _ 3C C tmp q  

11 22 33

1
1

2
C C C    

 

Since the positive and negative quaternions represent the same rotation, we define q4 to be 

positive by the following comparison.  
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If (q4 < 0) 

{ 1q , 2q , 3q , 4q } =   -{ 1q , 2q , 3q , 4q }; 

Both the conversion methods are comparable, but the second method is more numerically stable, 

thus is recommended in this thesis. 

 

C.5.5 Euler Angles -> Quaternion 

�� = cos �
�

2
� sin �

�

2
� cos �

�

2
� − sin (

�

2
)cos (

�

2
)sin (

�

2
) 

�� = cos �
�

2
� sin �

�

2
� sin �

�

2
� + sin �

�

2
� cos �

�

2
� cos �

�

2
� 

�� = cos �
�

2
� cos �

�

2
� sin �

�

2
� + sin (

�

2
)sin (

�

2
)cos (

�

2
) 

�� = cos �
�

�
� cos �

�

�
� cos �

�

�
� − sin (

�

�
)sin (

�

�
)sin (

�

�
)      (C.21) 

 

C.5.6 Quaternion -> Euler Angles  

� = ����2 (−� ��, ���) = ����2(−2(� ��� − � ���), (1 − 2(��
� + � �

�) )  

� = ���� (���) = asin (2(���� + � ���))   

� = ����2 (−� ��, ���) = ����2(−2(� ��� − � ���), (1 − 2(��
� + � �

�) )  (C.22) 
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APPENDIX D: EQUATION DERIVATIONS IN CHAPTER FOUR 

D.1: Derivation of ( )q t    

From Equation (4.3) in Chapter 4, 

ˆ1
( ) ( ) ( )

0 02
q t q t q t

 
  

    
       

    

     (D.1) 

Where the relationship between the true angular rate   and estimated angular rate ̂is given in 

Equation (4.5) as:  

ˆ ( )vb             (D.2) 

Substituting into the above ( )q t   equation:  

3 1

3 1

ˆ ˆ1 1
( ) ( ) ( ) ( )

0 0 02 2

ˆ ˆ ˆ ˆ ( ) ( )1 1
( ) ( ) ( )

ˆ ˆ ( ) 00 02 2

ˆ2 01
( )

0 02

v

v v

TT T
v

T

b
q t q t q t q t

b b
q t q t q t

b

q t

   
   

      
  

  






      
           

      

            
                    

   
    



( ) ( )1
( )

( ) 02

v v

T
v

b b
q t

b

   


 

    
    

   (D.3) 

For small angle rotation, 
4

( )
1

q t
q

 




   
    

  
 and replace the above equation yields: 

3 1

3 1

ˆ 0 ( ) ( )1
( )

0 0 ( ) 0 12

v v

T T
v

b b
q t

b

     


 




           
                

    (D.4) 
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Neglecting the second order terms O ( b  ) and O ( v  ): 

4

1
ˆ[ ] ( )

( ) 2

0

vb
q t

q

    




 
           

 





   (D.5) 

D.2: Derivation of Quaternion Transition Matrix  

Quaternion differential equation is given by:  

1

2

3

4

1
( )

2

q

q
q q

q

q



 
 
   
 
 
 










      (D.6) 

In discrete-time form, this first order differential equation can be solved by integrating the 

quaternions, thus the quaternion transition matrix is expressed as: 

1
1

( ) exp( ( ) )
2

k

q

k

dt 


          (D.7) 

Assume the rotation rate is constant over the integration period 1k kt t t   , then: 

1
( ) exp( ( ) )

2
q t      

From Taylor series expansion: 

2 3

4 4

1 1 1 1 1
( ) ( ) ( ( ) ) ( ( ) ) ...

2 2! 2 3! 2
q I t t t                 (D.8) 
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The symmetric skew matrix ( )  has the following properties: 

0

0
( )

00

0

z y x

z x y

T
y x z

x y z

  

   


  

  

 
           
 
   

 

22
4 4( ) I      

23( ) ( )       

44
4 4( ) I     

45( ) ( )      

66
4 4( ) I      

…         (D.9) 

Substituting each item into Equation (D.8) yields: 

2 44 3 5
4 4

4 4

1 1 1 1 1 1 1 1 1 1
( ) (1 ( ) ( ) ...) ( ( ) ( ) ...) ( )

2! 2 4! 2 2 3! 2 5! 2

1 1 1
cos( ) sin( ) ( )

2 2

q t t I t t t

t I t

      


  






              

    

 

         (D.10) 

Merging the two items together into matrix form, 
( )q 

can be obtained as: 
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3 3

cos sin sin sin
2 2 2 2

sin cos sin sincos
2 2 2 22( )

cos sin sin cos sin
2 2 2 2 2

sin
2

y xz

yxz

k k

q
T y x z

k

x

I

    

  

    
 

  


      
  

 



 






    
   

    

 

       

     

          
     

         

     

 

 
sin sin cos

2 2 2

y z  

 

 
 
 
 
 
 
 
 
 
 

 
 

     

   

         (D.11) 

Where:              

i i t         i=x,y,z                                                               

2 2 2
x y z t                                                                

 

D.3: Derivation of State Transition Matrix � 

The derivation of state transition matrix Φ is as follows: 

 ˆ ( )v         
      (D.12) 

This is a typical first-order non-homogeneous linear differential equation: 

( ) ( ) ( ) ( ) ( )X t A t X t B t U t        (D.13) 

The general solution is: 

0

0

0 0

( )

0

( ) ( , ) ( ) ( , ) ( ) ( )

( , )

t

t

t

t

A d

X t t t X t t B U d

t t e
 

      


 


    (D.14) 
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In discrete-time, the solution of above equation is: 

 
 

 

   

1 1
1

1

1

( )

( )

k k

k k
kdt dt

k k v
k

kt t

k v
k

e e dt

e e dt

 

 

   

  

 
   



     

      

   



     (D.15) 

Dividing the transition matrix with the following block structure: 

00 10

3 30 I 

  
   

 
       (D.16) 

Where 
 

00

te                

      

 1

10

k t

k
e dt                

      

In discrete time: 

   
2 3 4 5

00

( ) ( ) ( ) ( )
( ) ...

2! 3! 4! 5!

te e I     
        

         
     

   

2 2

2 2 2

2 2

( )

( ) ( )

( )

y z x y x z

x y x z y z

x z y z x y

     

      

     

  
 

    
       (D.17)   

    

   3 2 2 2 2( ) ( )x y z               
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   2 24 2 2 2 2( ) ( )x y z                       

        

… 

Organizing the above items: 

2 2 2 2 4

00

2 4 2 4
2

2

2

( ) ( ) ( ) ( )
( ) ..

2! 3! 4! 5!

1
1 ... ( ) ... ( )

3! 5! 2! 4! 6!

sin( ) 1 cos( )
( ) ( )

I

I

I

      


   
 

 
 

 

   
       

   
            

   


    

     

       

   

      (D.18)      

Where:   

 
0 0

0 0

0 0

z y z y

z x z x

y x y x

t

   

    

   

    
   

        
               

       

 

2 2

2 2 2

2 2

( )

( ) ( )

( )

y z x y x z

x y x z y z

x z y z x y

     

      

     

  
 

    
            

Denoting 10  as: 

 1

10 ( )
k t

k
e dt M t                 
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Then: 

   
2 3 4 5

1 1 1

2 3 4 5
1 1 1 1 1

( ) ( ) ( ) ( )
( ) [ ( ) ...]

2! 3! 4! 5!

( ) ( ) ( ) ( )
( ) ...

2! 3! 4! 5!

k k kt

k k k

k k k k k

k k k k k

M t e dt e dt I dt

t dt dt dt dt dt

     


   


      

    

   
        

   
        

  

    
 (D.19)   

Where: 

2
1 1

0
( )

( ) 0 ( )
2 2

0

z y
k k

z x
k k

y x

t
dt tdt t

 


   

 

 

 
  

        
  

 
     

        

2 2

2
1 1

2 2

2 2

2 2

1
2 2 2

2 2

2 2 3
1

2

( )
( ) 1

( )
2! 2!

( )

( )
1

( )
2!

( )

( ) ( ) (

2! 2! 3

y z x y x z
k k

x y x z y z
k k

x z y z x y

y z x y x z
k

x y x z y z
k

x z y z x y

k

k

dt dt

t dt

t
t dt

     


     

     

     

     

     

  

 





  
  

   
   

  
 

   
   

   
   

 




2 3 2) ( )

3! 3!

t
t

 
 

     

    

3
1 1 1

2 2 2

2
1

2

2 2 4
1

3

2 4 2

( ) 1 1
[( )( )] [( )( )]

3! 3! 3!

0

0
3!

0

( ) ( )

3! 3! 4

( ) ( )

4! 4!

k k k

k k k

z y
k

z x
k

y x

k

k

dt dt t dt

t tdt

t
t dt

t
t
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4
1 1 1

2 2 2 2 2

2 2

2
1

2 2 2

2 2

2 2

2
2 2 2

( ) 1 1
[ ( ) ] [( )( ) ]

4! 4! 4!

( )

( )
4!

( )

( )

( )
4!

k k k

k k k

y z x y x z
k

x y x z y zk

x z y z x y

y z x y x z

x y x z y z

x z y

dt dt t dt

t dt

t


   

     


     

     

     


     

  

  




      

  
 

     
   

 

    

  



   

 

  1
2

2 2

2 2 2 2 5
1

4

2 2

( )

( ) ( )

4! 4! 5

( )

5!

k

k

z x y

k

k

t dt

t
t dt

t

  

   

 





 
 
 
   

    
    

 
  




   

 

       

5
1 1 1

4 4 4

4
1

4

4 4 6
1

5

4 6 4

( ) 1 1
[( )( )] [( )( )]

5! 5! 5!

0

0
5!

0

( ) ( )

5! 5! 6

( ) ( )

6! 6!

k k k

k k k

z y
k

z x
k

y x

k

k

dt dt t dt

t tdt

t
t dt

t
t


   

 


 

 

   

   

  






   

 
 

   
  

    
  

    
  

  





   

 

   

   

     

    

6
1 1 1

4 2 4 4 2

2 2

4
1

4 2 2

2 2

2 2

4
4 2 2

( ) 1 1
[ ( ) ] [( )( ) ]

6! 6! 6!

( )

( )
6!

( )

( )

( )
6!

(

k k k

k k k

y z x y x z
k

x y x z y zk

x z y z x y

y z x y x z

x y x z y z

x z y z

dt dt t dt

t dt

t


   

     


     

     

     


     

   

  




    

  
 

    
   

 

   



  



   

 

  1
2

2 2

4 2 4 2 7
1

6

4 2

)

( ) ( )

6! 6! 7

( )

7!

k

k

x y

k

k

t dt

t
t dt

t

 

   

 





 
 
 
  

    
  

 
 




   

 

           

As a result: 
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2 2 2 2 4 4 2

2 4 2 4
2

2

2 3

( ) ( ) ( ) ( ) ( ) ( )
( ) ...

2 3! 4! 5! 6! 7!

1 1
( ...)( ) ( ...)( )
2! 4! 6! 3! 5! 7!

1 cos( ) sin( )
( ) ( )

M t t t t t t t t

t t t

t t t

         

   
 

  
 

 

         
              

            

 
       

       

       

     

   

 

          (D.20) 

Then: 

10

2

2 3

2

2 3

2

3 32 3

( )

1 cos( ) sin( )
( ) ( )

1 cos( ) sin( )
( ) ( )

1 cos( ) sin( )
( ) ( )

M t

t t t

t t t

I t

  
 

 

  
 

 

  
 

  

  

 
       

 
       

  
      

 

     

   

     

   

     

   

      (D.21)   

Thus: 

10 3 32 3

3 32 3

1 cos( ) sin( )
( ) ( )( )

1 cos( ) sin( )
[ ( ) ( )( ) ]

t t t
I t

I t

  
  

 

  
  

 





    
       

 
      

     

   

     

   

   (D.22) 

 

 

 

 

 

 

 

 

 

 


