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 Abstract  

 Atypical teratoid rhabdoid tumor (ATRT) is a highly malignant brain tumor that usually 

affects very young children and typically causes death, despite very aggressive treatment. 

The biological properties contributing to tumor aggressiveness and resistance to common 

chemotherapeutic agents are currently unknown. Previous studies have shown the 

activation of Insulin like growth factor-I receptor (IGF-1R) in ATRT tumor specimens and 

cell lines. Additionally, angiogenesis is an established physiological mechanism that 

supports the survival and progression of brain tumors. Vascular endothelial growth factor 

receptor (VEGFR) signaling pathway is a major regulator of angiogenesis in brain tumors. 

We hypothesized that molecular interactions may exist between these two signaling 

pathways. Our findings show evidence for a novel IGF-1R/VEGFR-2 cross-talk in response 

to IGF-I mediated activation.  Furthermore, we show evidence that the inhibition of IGF-

1R/VEGFR-2 pathways by the small molecule inhibitors lead inhibition of cell migration 

properties and the initiation of apoptosis. Overall, the data generated in this set of studies 

present a framework to evaluate and utilize the receptor cross talk pathways to identify 

novel treatment approaches for ATRT in the future.   
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Chapter One: Introduction 

1.1 Childhood Brain Tumors 

 Brain tumors are the most common solid tumors of childhood and the second most 

common form of cancer after hematological malignancies accounting for approximately 20 

to 25% of all primary pediatric tumors [1]. Although considerable progress has been made 

in the outcomes of certain tumors such as medulloblastoma and low-grade glioma in which 

5-year survival rates exceed 75%. However, prognosis of other types of childhood brain 

tumor remains poor despite the use of various strategies to intensify conventional 

chemotherapy and irradiation. Because the developing brain is highly vulnerable to 

treatment-induced cognitive and endocrine sequelae, particularly from radiotherapy, 

ongoing studies are exploring the use of intensive therapy or novel, molecularly targeted 

approaches not only to improve disease control rates but also the quality of survival in 

affected patients.  

1.2 Atypical Teratoid Rhabdoid Tumor (ATRT) 

   Atypical Teratoid Rhabdoid Tumor is a highly malignant, central nervous system 

tumor that primarily occurs in very young children. Atypical Teratoid Rhabdoid Tumor 

accounts for 1-2% of central nervous system (CNS) tumors in children of all ages, but 

for10-20% of tumors in patients less than 3 years old [2].  This tumor, first described in 

1987 by Rorke and Colleagues, was often classified as a medulloblastoma, primitive 

neuroectodermal tumor, or choroid plexus carcinoma prior to its recognition as a separate 

entity because they share indistinguishable gross, radiographic, and histopathological 
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features [3]. The World Health Organization (WHO) began classifying ATRT as an 

embryonal grade IV neoplasm in 1993 [4]. Because ATRT is a highly malignant tumor, 

patients typically have a fairly short history of progressive symptoms measured in days to 

weeks. Data from the ATRT registry suggest that approximately 20% of patients present 

with disseminated disease [5]. 

1.2.1  Pathologic and biologic features of ATRT 

Atypical Teratoid Rhabdoid Tumor is morphologically heterogeneous because it 

contains highly cellular sheets of undifferentiated rhabdoid cells against a background of 

primitive neuroectodermal cells, mesenchymal cells, and epithelial cells. Apoptotic bodies, 

evidence for mitosis, folds of necrosis and dystrophic calcifications are usually seen. 

Expression of epithelial membrane antigen, vimentin, and smooth muscle actin are 

characteristic of these tumors [6]. Atypical Teratoid Rhabdoid Tumor is frequently 

associated with mutation or deletion of the human non-sucrose fermenting 5 (hSNF5)/the 

integrase interactor 1 (INI1)/ Switch/Sucrose Non Fermentable (SWI/SNF) related matrix 

associate dependent regulator of chromatin subfamily B member1 (SMARCB1) gene, 

found on chromosome 22q11.2. Switch/Sucrose Non Fermentable (SWI/SNF) related 

matrix associate dependent regulator of chromatin subfamily B member1 (SMARCB1) 

gene is a key component of the chromatin-remodelling complex, and can function as a 

tumor suppressor, but mutations can be identified in only 76% of CNS ATRT tumor 

samples. A small subset of ATRT patients exhibits germline mutations in the SMARCB1 

gene and subsequent somatic inactivation of the remaining copy of the gene, resulting in 

malignant transformation [7]. 
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1.2.2  Treatment and Prognosis 

There is currently no established standard curative treatment available for children 

with CNS ATRT. The majority of published data on outcome for ATRT is based on small, 

retrospective series, including patients treated with multiple therapeutic approaches, 

making standardization of therapy difficult. Given the highly aggressive nature of the 

tumor, most patients have been treated with intensive multimodal therapies, including 

intensive alkylating agents, as well as high-dose chemotherapy with stem cell rescue. 

Radiation is an effective mode of therapy, but it is often avoided in patients younger than 3 

years old due to long- term neurocognitive complications. Data from the ATRT Registry 

suggests that patients who have had a complete resection may have a longer median 

survival, although complete surgical resection is often difficult, given the invasive nature of 

the tumor. Atypical Teratoid Rhabdoid Tumor is a deadly disease, with initial retrospective 

studies reporting a time course from diagnosis to death of about 12 months with standard 

therapy [2]. Current therapy is reaching the maximum levels of tolerable intensification 

without significantly changing outcomes. Hence the development of effective new 

therapeutic approaches is desperately needed to improve current outcome rates. This 

necessitates defining the key pathways and growth mechanisms of ATRT to identify 

potential therapeutic targets. 

1.2.3 Mechanism of ATRT development 

Data from histo-immunologic studies of ATRT suggest that the hallmark rhabdoid 

cells may constitute a highly malignant, tumor stem cell population that arises from 

transformation of a multipotential progenitor cell with marked proliferative and invasive 

features. The genomic lesion that defines ATRT, and that presumptively initiates the 

process of malignant transformation, is the homozygous inactivation of the INI1 gene 
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located on chromosome band 22q11.2. The INI1 gene alterations appears to affect cell-

signalling by its ability to interact with key signalling molecules and tumor suppressors, in 

order  to modify the response to factors  mediating cell differentiation programs [8]. For 

example, it has been shown that INI1 plays a critical role in interferon signalling and 

interferon stimulated gene expression patterns [9]. The role of growth stimulatory 

molecules and pathways was demonstrated by a screening of receptor tyrosine kinases, 

which identified the presence of phosphorylated erythroblastic leukemia viral 

oncogenehomolog-4 (ErbB4), Insulin-receptor (IR), platelet derived growth factor receptor 

(PDGFR) and IGF-I R in ATRT cell lines [10]. The activities of these receptors have been 

implicated in the tumorigenicity, proliferation, metastasis and the development of drug 

resistance. These data can be effectively utilized to study the biology of these cells and to 

identify targets for potential therapeutic agents.  

1.3 Receptor Tyrosine Kinases 

Receptor tyrosine kinases (RTKs) belong to the class of transmembrane receptors 

with intrinsic protein-tyrosine kinase activity.  Receptor tyrosine kinases transmit key 

regulatory signals involved in cell proliferation and differentiation, cell survival and 

metabolism, cell migration, and cell cycle control [11]. All RTKs have a similar molecular 

architecture, with ligand-binding domains in the extracellular region, a single 

transmembrane helix, a cytoplasmic region that contains the protein tyrosine kinase (TK) 

domain and additional carboxy (C-) terminal and juxtamembrane regulatory regions. 

Approximately 20 distinct human-RTK subfamilies have been identified to date that 

display structural varieties in their extracellular domains, like cysteine rich domains, 

leucine rich domains or immunoglobulin rich domains. The members of a given subfamily 
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are similar in structure but differ in tissue and ligand specifity. Figure 1 shows an overview 

of the human receptor tyrosine kinases. 

 Receptor tyrosine kinase signalling requires ligand-induced receptor dimerization 

which results in the trans-phosphorylation of tyrosine residues in the dimeric receptor 

subunits; a process called auto-phosphorylation. The phosphorylated residues function as 

docking sites for numerous adaptor proteins. These in turn can activate a number of 

signalling cascades, including the mitogen activated kinase (MAPK), phosphotidylinsitol-

3kinase (PI3K), Janus Kinase (JAK), phospholipase C-γ (PLC-γ) and Jun N-terminal 

kinase (JNK) signalling pathway [12]. Mutations in RTKs and aberrant activation of their 

intracellular signalling pathways have been causally linked to cancers, diabetes, 

inflammation, severe bone disorders, arteriosclerosis and angiogenesis. The aberrant 

activation of RTKs is mediated by four principal mechanisms: autocrine activation, 

chromosomal translocations, RTK over-expression, or gain-of-function mutations [11]. 

Recent sequencing efforts in a wide variety of tumors have identified mutations in 

numerous RTKs [Catalogue of Somatic Mutations in Cancer (COSMIC) database, 13]. 
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Figure1.1 Human receptor tyrosine kinases.  

Diagrammatic representation of several RTK family members. Members of each receptor 

sub-family are indicated below each RTK. Receptor tyrosine kinases structural domains are 

identified according to the key box. 
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1.4  The Insulin-like Growth Factor (IGF) system  

The IGF system is a complex signalling network that includes multiple ligands, 

receptors and regulatory proteins. It has been proven to play an integral role in growth, 

differentiation, and developmental processes, and is also involved in many physiological 

and pathological processes, such as mitogenesis, differentiation, tissue homeostasis, anti-

apoptosis and cell motility. It is activated during fetal development with growth-promoting 

effects but it is also implicated in postnatal growth and tissue remodelling [14]. 

Dysregulation of IGF system expression and action is linked to diverse pathologies, ranging 

from growth deficits to cancer development. Over the past two decades research has shown 

the importance of the IGF axis in tumorigenesis, metastasis and resistance to existing forms 

of cancer therapy [15]. 

1.4.1  IGF growth factors and binding proteins  

The IGF system has two key circulating ligands of the insulin-related peptide 

family; the insulin-like growth factor-I (IGF-I) and the insulin-like growth factor-II (IGF-

II). The human IGF-I gene is located on chromosome 12 [16]. The mature IGF-I is a single 

chain, 7.5KDa, 70-amino acid peptide cross linked by 3 disulfide bridges [17]. The IGF-I 

protein is produced primarily by the liver in response to growth hormone (GH) secretion by 

the anterior pituitary gland. Binding of GH to its receptor in the liver results in IGF-I 

synthesis and secretion. In addition, insulin can indirectly increase IGF-I production by up 

regulating GH receptors [18]. IGF-I is also synthesized in other organs independently of 

GH regulation, where it exerts autocrine or paracrine effects [18]. High affinity binding of 

IGF-I to IGF-IR leads to the initiation of the subsequent physiological response. Similar to 

IGF-I, IGF-II is secreted both in the liver and in extrahepatic tissues but this process is not 

regulated by GH. The human IGF-II gene is located on chromosome 11[16].The structure 
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of IGF-II resembles that of IGF-I but consists of a shorter peptide with67 amino acids [17]. 

IGF-II has high affinity for IGF-IIR, which does not transduce a signal; rather it exerts 

antiproliferative and proapoptotic activities by limiting IGF-II bioavailability and thereby 

reducing its interaction with the IGF-IR [19]. 

 In circulation, both of these ligands exist as complexes with one of six insulin-like 

growth factor binding proteins (IGFBPs, IGFBP-1 to IGFBP-6). IGFBPs have higher 

affinity for IGFs than their cognate receptors; therefore IGFBPs stabilize, prolong the half 

life of IGFs, and consequently modulate their bioavailability and activity [20]. IGFBPs can 

be produced by the liver and function as endocrine factors or they can be produced by non-

hepatic tissues and operate in an autocrine or paracrine manner. Several factors have been 

shown to increase IGFBPs synthesis, including estrogens, retinoids, and vitamin D [21-23]. 

IGFBPs differ in structure, binding characteristics, and function in a complex manner 

(table1.1). More than 75% of IGF-I is confined to the vascular compartment as a complex 

with IGFBP-3, the most abundant circulating IGFBP and a non IGF binding component 

named acid labile subunit (ALS) [24]. Some IGFBPs display IGF-independent actions. For 

example IGFBP-3 has both growth-inhibiting and growth-promoting effects at the cellular 

level, which can be either dependent or independent of IGFs [25].  The complex molecular 

mechanisms involved in the IGFBP regulation of IGF-I and IGF-II are affected by 

numerous factors, such as IGFBP expression levels, tissue distribution, phosphorylation, 

proteolysis and cell surface association.  
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IGFBP IGFBP characteristics 

IGFBP-1 -Physiological levels stimulate IGF-I action 

-Molar excess inhibits mitogenic and insulin-like effects of IGF-I and 

IGF-II 

IGFBP-2 -Inhibits IGF- induced DNA synthesis 

-Observed to potentiate IGF function 

IGFBP-3 -Major carrier of IGF-I and IGF-II in serum 

-Modulate IGF endocrine function 

-Potentiates IGF activity 

-Excess levels are inhibitory 

IGFBP-4 -Consistently inhibits IGF action 

-Serum concentration is generally low 

-Tissue-specific expression 

IGFBP-5 -Inhibitory action 

-Association with extracellular matrix lowers affinity for the IGFs 

thereby increasing IGF activity 

IGFBP-6 -Specifically binds IGF-II 

-Generally thought to be inhibitory 

 

Table 1.1 Insulin-like binding protein functions. 

The major functions and characteristics are presented for each individual IGFBP 
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1.4.2 Biological functions of IGF-I and IGF-II 

The IGFs are the key regulators of cell growth and differentiation in many tissues. 

They have properties of tissue growth factors, but also have an additional well recognized 

function as hormones that regulate growth and energy metabolism. They are involved in 

pleiotropic actions at endocrine, paracrine and autocrine levels. For example, IGFs promote 

skeletal muscle regeneration and hypertrophy [26], as well as mammary gland cell 

proliferation during puberty, pregnancy and lactation [27]. 

 Insulin-like Growth Factors also have a protective function in the heart. Low serum 

IGF-I levels are associated with increased risk of ischemic heart disease and stroke [28]. In 

addition IGF-I plays an important neuroprotective role by supporting neuronal 

development, metabolism, survival and regeneration [29].  

At the cellular level, IGF-I is required for cell cycle progression from G1 to S 

(DNA synthesis) phase. [15]. In some cells, IGFs proliferative effects may lead to induction 

of differentiation. At the end of the M phase, the daughter cells may re-enter the cell cycle 

or undergo terminal differentiation. IGF-I has been demonstrated to induce differentiation 

of myoblasts, osteoblasts, adipocytes, oligodendrocytes, neurones, and hematopoietic cells 

[30].  

Besides its role in somatic growth, IGF-I has been shown to exert metabolic effects 

in its target cells. For example, IGF-I mediates the anabolic effects of GH by stimulating 

protein synthesis and preventing proteolysis [31]. IGF-I has been used clinically to treat 

certain catabolic illnesses [32]. IGF-I potently stimulates peripheral tissue glucose uptake 

and glycogen synthesis [31]. Individuals with IGF-I gene deletion have low levels of 

circulating IGF-I and increased insulin resistance [33]. Treatment with recombinant IGF-I 
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in these conditions, and in patients with type I and type II diabetes, has been shown to 

improve insulin sensitivity and glucose homeostasis [34-35]. 

The activity of IGF-II appears to be similar to that of IGF-I. IGF-II appears to be 

more important in embryonic and fetal growth as it is expressed throughout life where its 

activity is regulated by genomic imprinting [36].  

1.4.3 The Insulin-Like Growth Factor-I Receptor (IGF-I R)  

Insulin-Like Growth Factor-I Receptor is a heterotetrameric complex comprised of 

two α- and two β-subunits. Each α-subunit contains 706 amino acids, and each β-subunit 

contains 627 amino acids. One α-subunit and one β-subunit are linked by a disulfide bond 

to form an α/β-half receptor, which, in turn, is linked to another α/β-half receptor by two 

disulfide bonds between the two α-subunits to form the mature, functional receptor. The α-

subunit is localized entirely extracellularly and contains a cysteine-rich domain, which is 

necessary for high-affinity IGF-I binding. The β-subunit spans the membrane and is 

localized primarily intracellularly. The intracellular portion contains a tyrosine kinase 

domain, whose activation is crucial for the propagation of IGF-I effects [37]. For a 

schematic overview of IGF-1R please see figure 1.2. 
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Figure 1.2 Schematic diagram of the IGF-IR structure. 
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1.4.4 IGF-IR signalling  

Insulin-Like Growth Factor-I Receptor binds to IGF-I and IGF-II with high affinity 

and to insulin with very low affinity. Following ligand binding to the α-subunit, the three 

tyrosine residues (Tyr 1131, Tyr1135, and Tyr 1136) of the activation-loop within the 

tyrosine kinase domain of the β-subunit are trans-autophosphorylated[38]. In addition, 

phosphorylation of additional tyrosine residues in other areas of the β-subunit provides 

docking sites that allow for the recruitment of adaptor proteins. Phosphorylation of adaptor 

proteins leads to binding of additional proteins, allowing for signal transduction along 

several specific pathways [38]. Downstream signalling is mostly channelled through 

MAPK/extracellular regulated kinase (ERK) pathway, and PI3K/protein kinase B (AKT) / 

mammalian target of rapamycin (mTOR) pathway, leading to increased cell proliferation, 

and decreased apoptosis. Further important residues for the receptor function are Tyr950 

which is the main binding site for the downstream signalling molecules including insulin 

receptor substrate family members (IRS1-4), and src homology 2 containing transforming 

protein (Shc). Both are critical for proliferative and the transforming capacities of IGF-IR 

[39-40]. Several residues within the C-terminal domain have been found to be required for 

the anti-apoptotic, migration, and invasion properties of IGF-IR (Tyr 1250, and Tyr1251) 

[41].  

1.4.4.1 PI3K Pathway 

The activation of the PI3K pathway requires the binding of insulin receptor 

substrate proteins via their SH2 domains to Tyr950 in the juxtamembrane region. Upon 

binding, these proteins become tyrosine phosphorylated and subsequently evoke the 

binding of other signalling adaptor proteins like growth factor receptor-bound protein2 

(Grb2), non –catalytic region of tyrosine kinase adaptor protein1 (Nck1), major synaptic 



 14 

vesicle protein p38 (Syp), and the regulatory subunit p85 of PI3K which binds to the 

catalytic subunit of PI3K. This leads to the recruitment of Akt to the membrane and allows 

the constitutively activated phosphoinositide-dependent protein kinase (PDK-1) to 

phosphorylate and activate Akt. The activated Akt then mediates the anti-apoptotic effects 

of the IGFs by phosphorylating and inhibiting several pro-apoptotic downstream targets 

like glycogen synthase kinase (GSK3), Bcl-2 associated death protein (BAD), and 

caspase9, as well as transcription factors like cyclic adenosine monophosphate (AMP) 

Response Element Binding Factor (CREB) and the forkhead-related transcription factor 

(FKHR) family. Furthermore, Akt participates in the activation of nuclear factor kappa-

light-chain-enhancer of activated B cells (NFkB) and mTOR, resulting in the transcription 

of genes which mediates cell survival and protein synthesis [42]. 

1.4.4.2 MAPK pathway  

The recruitment of Shc to Tyr950 of the activated IGF-IR stimulates the 

Ras/Raf/MAPK pathway [43]. Src homology 2 serves as an adaptor for the SH2-domain 

containing signalling molecule Grb2. Grb2 is bound to the guanine nucleotide releasing 

factor son-of -sevenless (SOS) via its SH3 domains, bringing it closely to the guanine 

triphosphatase (GTPase). Ras becomes activated through the exchange of guanine 

diphoshate (GDP) to guanine triphosphate (GTP) and hereby binds and activates the 

serine/threonine kinase of cellular homolog of the viral raf gene, v-raf (Raf-1). Activated 

Raf-1 phosphorylates the MAPK kinase MEK1/2 which phosphorylates the MAP kinase 

Erk1/2, thereby enabling it to translocate into the nucleus where it phosphorylates and 

activates a number of transcription factors such as STAT-1 STAT-3, ELK-1, and c-Myc 

[43]. Figure 1.3 represents the IGF-I activated MAPK/ERK and PI3K/Akt signalling 

cascades.  
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Figure 1.3 IGF-IR signal transduction pathways. 

Ligand binding to the IGF-IR induces conformational change resulting in phosphorylation 

of the receptor tyrosine kinase domain and recruitment of the IRS and Shc substrates to the 

receptor. Binding of these substrates initiates signalling cascades which activate the PI3K 

and MAPK pathways regulating cell proliferation, apoptosis, growth, transcription, 

translation and metabolism. 
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1.5 The Role of IGF-IR axis in Cancer 

Epidemiological and laboratory studies have provided strong evidence implicating 

the IGF system in numerous different cancers, including breast cancer, colorectal cancer, 

liver cancer, prostate cancer, pancreatic cancer, multiple myeloma, melanoma, 

glioblastoma, mesothelioma and childhood cancers [44]. Epidemiological studies have 

linked high circulating levels of IGF ligands and polymorphism in relevant genes to cancer 

risk and prognosis [45]. For example, a comprehensive meta-analysis of case-control 

studies indicated high circulatory concentrations of IGF-I were associated with increased 

risk of prostate, colorectal and premenopausal breast cancer [46].  

1.5.1 IGF-IR and Oncogenes 

The IGF-IR gene is constitutively expressed in most cells. The IGF-IR promoter 

exhibits a high basal transcriptional activity. The IGF-IR level is regulated by physiological 

conditions including nutritional factors, hormonal stimulation, the developmental stage and 

cellular factors including transcription factors, oncogenes and suppressor genes [47-49]. 

There is evidence suggesting an interplay between tumor suppressors and the IGF axis. 

Oncogenes, such as the Hepatitis B Virus oncoprotein (HBx) or Ewing Sarcoma fusion 

proteins, recruit and activate the IGF-IR signalling pathway by increasing transcription of 

the IGF-IR gene, while loss of tumour suppressor genes, such as p53, breast cancer 1 

(BRCA1) or Wilms tumor protein (WT1), results in IGF-IR over expression by loss of 

transcriptional control [50]. 

1.5.2 Transformation 

The IGF-IR plays an important role in oncogenic transformation. This was first 

recognised in fibroblasts derived from homozygous IGF-IR null mice embryos. In the 

absence of IGF-IR, they become resistant to malignant transformation by a number of 
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oncogenes (e.g. Simian Virus 40T antigen SV40T, Ewing Sarcoma fusion protein). Re-

expression of the IGF-IR restored susceptibility to transformation in these cells [51]. IGF-

IR null cells are resistant to transformation by several oncogenes, including the SV40 T 

antigen, activated Harvey rat sarcoma viral oncogene homolog (H-Ras), bovine 

papillomavirus E5 protein, human papillomavirus E7 protein, Ewing's sarcoma fusion 

protein, activated  sarcoma proto-oncogene (Src) and others [52]. Cellular transformation 

and progression of several types of sarcoma, including rhabdomyosarcoma, synovial 

sarcoma, leiomyosarcoma, Ewing’s sarcoma and osteosarcoma are influenced by IGF-1R 

[53]. 

1.5.3 Proliferation and anti-apoptosis 

Insulin-Like Growth Factor-I Receptor mediated MAPK/PI3K activation has been 

proven to support cancer progression through enhancement of mitogenesis or suppression 

of apoptosis [54]. Promoting cell cycle and escaping from cell cycle arrest are the common 

characteristics of tumor cells. IGF-IR mediated MAPK promotes Cyclin D1 expression, 

while AKT activation prevents Cyclin D1 nuclear export and degradation by inhibiting 

GSK-3β activity [55]. This cell cycle progression in breast cancer cells can be reduced by 

PI3K inhibitors. Activity of c-myc, a transcription gene promoting survival, can be 

stimulated by activation of NF-kB followed by AKT activation [56]. 

1.5.4 Migration and metastasis  

 Cancer metastasis is composed of multiple processes, including tumor cell 

adhesion, migration, extracellular matrix (ECM) proteolysis and invasion. IGF-IR 

activation or over-expression has been shown to be associated with an increased propensity 

for invasion and metastasis. This is mediated by multiple signaling intermediates that 

influence invasive potential. IGF-induced phosphorylation of IRS-1 influences the 
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interaction between E-cadherin and β-catenin, enhancing β-catenin transcriptional activity 

and disconnecting E-cadherin from the actin cytoskeleton [57]. Similarly, tumor cell 

motility and invasive potential are influenced by crosstalk between the IGF axis and 

integrins [58], and by IGF-induced secretion of matrix metalloproteinases [59].  

IGF-I is reported to induce angiogenesis by stimulating the migration and 

morphological differentiation of endothelial cells [60]. Another direct effect of IGF on 

angiogenesis is demonstrated in mice with vascular endothelial cells knockout IGF-IR or 

IR, in which remarkable reduction of retinal vessel formation is observed [61]. IGF-I and 

insulin are both involved in regulation of vascular endothelial growth factors (VEGFs) 

[62], by activation of AKT and MAPK signaling, leading to stabilization of hypoxia-

inducible factors (HIF-1α and HIF-2α), and up regulation of VEGF [63].  
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1.6 Tumor Angiogenesis 

Angiogenesis is a physiological process involving the growth of new blood vessels 

from pre-existing vessels.Though angiogenesis normally occurs throughout life, in both 

health and disease, beginning in utero and continuing on through old age. However, tumors 

hijack this process in order to facilitate further growth and spread.  In the late 1960s, the 

first preliminary evidence was presented indicating that tumor angiogenesis was mediated 

by diffusible factors produced by tumor cells [64]. Tumors less than 1 mm can usually 

obtain adequate nutrients from its surroundings by diffusion, but larger tumors require new 

blood vessels for support. [65]. Angiogenesis is considered one of the hallmarks of cancer 

development together with self-sufficiency in growth signals, tissue invasion and 

metastasis, insensitivity to anti-growth signals and evasion of apoptosis [66]. It is regulated 

by the highly coordinated function of various proteins with pro- and antiangiogenic 

functions. Proangiogenic factors include VEGF, fibroblast growth factor (FGF), platelet-

derived growth factor (PDGF), IGF, transforming growth factor (TGF), angiopoietins, and 

several chemokines; antiangiogenic factors include thrombospondin-1, angiostatin, and 

endostatin [66]. 

Hypoxia appears to be the major trigger for the initiation of angiogenesis. In this 

process, HIF-1α levels increase dramatically and modulate the levels of other molecules 

responsible for angiogenesis. Angiogenesis may be divided into four stages [67]:  

(I) Activation of the endothelial cells leads to the localized degradation of 

the basal membrane of the parent vessel and of the surrounding ECM  

(II) Oriented migration of endothelial cells in the ECM  

(III)  Proliferation of endothelial cells 
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(IV) Differentiation of these cells with organization into tubular structures 

with a new basal lamina.  

           Through these stages the new capillaries form a new vascular network. 

1.7 Vascular endothelial growth factors and receptors 

VEGFs and their receptors play a central role in the vasculature-related processes in 

the adult organism. The VEGF family comprises six secreted glycoproteins of which 

VEGF-A, VEGF-C, and VEGF-D are of great significance [68]. These VEGF ligands 

mediate their angiogenic effect via RTKs: VEGFR-1, also known as fms-like tyrosine 

kinase 1(Flt-1), VEGFR-2, also known as kinase inserts protein domain receptor (KDR) or 

fetal liver kinase 1 (Flk-1), and VEGFR-3, also known as fms-related tyrosine kinase4 (Flt-

4) [69-71]. VEGF RTKs are essential components of signal transduction pathways that 

affect cell proliferation, differentiation, migration, and metabolism. Activation of VEGF 

RTKs occurs through ligand binding, which facilitates receptor dimerization and 

autophosphorylation of tyrosine residues in the cytoplasmic portion (figure1.4). The 

phosphotyrosine residues either enhance receptor catalytic activity or provide docking sites 

for downstream signaling proteins [72].VEGF-A has been regarded as the major player for 

angiogenesis and usually referred to as VEGF. It binds to VEGFR-1 and VEGFR-2, but 

VEGFR-2 is the major mediator of the mitogenic and angiogenic effects of VEGF-A [73]. 

VEGF-C and VEGF-D activate VEGFR-3 and are important for lymphatic endothelial cell 

growth, migration and survival [74]. However, proteolytically processed VEGF-C and 

VEGF-D can also induce blood-vessel growth by activating VEGFR-2 [75]. VEGFR-3 

deletion leads to defects in blood-vessel remodelling and embryonic death at mid-gestation. 

In addition blocking of VEGFR-3 suppresses angiogenic sprouting, indicating that 

activation of VEGFR-3 promotes angiogenesis in addition to lymphangiogenesis [76]. 
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Figure 1.4 Representative structures of VEGF tyrosine kinase receptors. 

The VEGF receptor family is represented by seven immunoglobulin-like loops in the 

extracellular domain, which binds VEGF. Two VEGF receptors form a dimer to activate 

autophosphorylation of tyrosine residues on the cytoplasmic domain. Ig = immunoglobulin; 

VEGF = vascular endothelial growth factor; Y- = phosphorylated tyrosine residues.  
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1.7.1 VEGFR-2 signalling 

The critical role of VEGFR-2 in vascular development has been highlighted in the 

analysis of VEGFR-2 null mice. Loss of VEGFR-2 causes lethality of the mutant embryo, 

due to defects in the formation of blood islands, indicating that the receptor is required 

from the very first step of vascular development [77]. Complex cascades of signalling 

mechanisms operated downstream of VEGFR-2 serve to mediate the receptor stimulatory 

effects on a vast array of cellular activities ranging from cell proliferation, migration, 

survival, to vascular permeability (figure 1.5). 

Cell Proliferation: Ligand binding triggers receptor dimerization and subsequent 

autophosphorylation of specific tyrosine residues in the receptors (figure1.5), which 

thereby serve as docking sites for the recruitment of Src homology 2 (SH2) domain 

containing proteins. One of the few SH2 domain containing proteins that has been shown to 

interact with VEGFR-2 is PLC-γ, which is recruited to the phosphorylated Tyrosine (Tyr) 

1175 of VEGFR-2 [78]. Subsequent phosphorylation of PLC-γ gives rise to its active form, 

which mediates the hydrolysis of phosphatidylinositol-4, 5-bisphosphate (PIP2) to generate 

inositol-1, 4, 5-triphosphate (IP3) and diacylglycerol (DAG). In turn, DAG and the 

increased intracellular calcium concentration by IP3 activate protein kinase C (PKC). 

Finally, MAPK / ERK1/2 cascade, which is activated downstream of PKC, can induce 

endothelial cell proliferation [78]. 

Migration: Tyr1175 is a focal point of VEGFR-2 signalling. Mutation of the 

tyrosine residue at this specific site to phenylalanine causes embryonic lethality in mice, 

due to  a severe defect in vascular formation [79]. In addition to PLC-γ, the SH2 domain-

containing protein B (Shb) and the Shc-related adaptor protein (Sck) are recruited to 

VEGFR-2 by binding to Tyr1175 [80]. The PI3K mediated generation of 
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phosphatidylinositol-3, 4; 5-trisphosphate is known to activate the Ras homolg (Rho) 

family member of GTPases Ras-related C3 botulinum toxin substrate 1 (Rac1) which, in 

turn, triggers cell motility [81]. The actin binding protein Ras GTPase-activating-like 

protein (IQGAP1) can bind and activate Rac1 by inhibiting its intrinsic GTPase activity 

and thereby increases active (GTP-bound) Rac1. In accordance with this model, VEGF 

stimulation has been shown to promote the association of Rac1 and IQGAP1 complex to 

phosphorylated VEGFR-2, in order to facilitate endothelial cell migration in an in vitro 

setting [82]. Activation of PI3K results in creation of the membrane bound PIP3, as well as 

subsequent membrane targeting and activation of protein kinase B (PKB/Akt). Girdin 

(Girders of actin filament), an Akt substrate actin-binding protein, has recently been shown 

to play an important role in angiogenesis by facilitating endothelial cell migration [83].  

Focal-adhesion kinase (FAK) was also reported to bind to Shb. A signalling 

pathway involving VEGF-induced FAK phosphorylation and recruitment of its substrate, 

the actin anchoring protein paxillin, might also be involved in VEGFR-2 mediated cell 

migration [84]. 

Two other phosphorylation sites, Tyr951 and Tyr1214, might also be involved in 

VEGF-mediated cell migration. Tyr951 serves as a binding site for VEGF receptor-

associated protein (VRAP), also known as Tsad, T-cell specific adaptor [85]. 

Phosphorylated Tyr1214 was reported to associate with the adaptor protein Nck (non-

catalytic region of tyrosine kinase adaptor protein), which facilitate actin remodelling 

through recruitment of the Src family protein Fyn, in order to activate cell division control 

protein 42 homolog (cdc42) and MAPK [86]. 

Vascular permeability: Generation of nitric oxide (NO) by endothelial nitric oxide 

synthase (eNOS) has been shown to be essential for VEGF induction of vascular 
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permeability [87]. Activation of eNOS requires Akt-dependent phosphorylation [88-89]. 

The endothelial cell specific adhesion molecule VE-Cadherin is the key component of 

endothelium adherens junction that plays a main role in the control of vascular integrity and 

permeability [90]. The tyrosine kinase Src recruited to VEGFR-2, appears to be responsible 

for the disruption of VEGFR-2/VE-Cadherin complex, and increased vascular permeability 

upon VEGF stimulation [91-92]. Serine phosphorylation of VE-Cadherin by p21-activated 

kinase promotes its internalization into clathrin-coated vesicles and thereby triggers the 

disruption of intercellular junctions [93]. 

Survival: Akt signalling downstream of PI3K has been shown to be essential for 

endothelial cell survival [94]. This might involve Akt-mediated phosphorylation of 

apoptotic proteins BAD and caspase 9, which inhibits their apoptotic activities and thereby 

promotes cell survival [95]. 
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Figure 1.5 Schematic representations of VEGFR-2 signalling pathways.  

Binding of VEGF to the VEGFR-2 extracellular domain causes receptor homodimerization, 

resulting in autophosphorylation of the RTK domain, leading to signalling events that 

regulate endothelial cell proliferation, migration, survival, and permeability. 
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1.8 Receptor cross-talk 

Signalling cross-talk is characterized by the influence of one receptor/signalling 

system on a separate receptor/signalling system, leading to activation of multiple responses 

in the cell. This is an important subject with crucial implications in the efficacy of novel 

therapeutics. 

Cancer cells are extremely adaptable or plastic in their ability to utilise cellular 

pathways that control the aspects of their physiology. For example, through over expression 

of a particular receptor they may have apparently adopted a dominant growth regulatory 

pathway. However, evidence is accumulating to demonstrate that they can readily switch to 

using alternative signalling pathways to maintain cell survival when this dominant pathway 

is blocked, a process paradoxically that in many instances is induced by the anti-cancer 

drugs themselves, thus limiting their activity and promoting resistance. This applies to IGF-

IR and its cross-talk was described in different biological systems and may take place at 

variety of levels. 

Interconnections were identified with nuclear steroids receptors [96], G protein 

coupled-receptors [97], and TGFβ signalling pathway [98]. Most studies reported the IGF-

IR cross-talk occurring within the RTK family. Previous studies have shown that ligand 

stimulated IGF-IR shares the Ras pathway with other RTKs such as the epidermal growth 

factor receptor (EGFR) and PDGFR [99-100]. 

 In glioblastoma cells, studies showed a compensatory up regulation of IGF-IR level 

in response to EGFR inhibitory treatment[101], and the impairment of IGF-IR function 

increased the apoptotic effects of EGFR inhibition[102].The IGF-I/IGF-IR pathway 

transactivated the EGFR via an autocrine release of EGF-like growth factors [103]. In 

mammary epithelial cells, IGF-IR signalling protected against apoptosis via EGFR 
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transactivation [104]. In NSCLC cells, amphiregulin transactivated IGF-IR independent of 

binding to its specific receptor EGFR [105]. 

In breast cancer cell models that over expressed human epidermal growth factor 

receptor 2 (HER2), an increased level of IGF-IR signalling found to interfere with 

Trastuzumab-induced HER2 inhibition [106]. Other experiments performed on mammary 

tumors demonstrated the existence of a hierarchal interaction between IGF-IR and HER2, 

in which IGF-IR directed HER2 phosphorylation. The physical association of both 

receptors, resulting in the formation of a heteromeric complex has been suggested to be the 

underlying reason for this interaction [107]. 

Cross-talk between IGF-IR and PDGFR was described in different cellular models 

[108], and the dual blockade of the IGF-IR and PDGFR was suggested to be a valuable 

strategy for the rhabdomyosarcomas treatment [109]. 

Stem cell factor (SCF) c-kit and IGF-I/IGF-IR autocrine loops play a prominent 

role in the growth of small cell lung cancer. Targeting both c-kit and IGF-IR synergistically 

increased the antiapoptotic effect, in comparison to either of the receptor inhibition alone 

using a downstream pathways ERK1/2 dependent [110].  
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1.9  Hypothesis  

Receptor cross-talk involving IGF-IR results in increased growth, survival, 

migration, and therapy resistance in ATRT cells 

1.9.1 Overall aim 

To identify a unique growth stimulatory mechanism in ATRT cells, particularly the 

receptor cross–talk pathways that synergize with pro-survival mechanisms of the tumor 

cells. 

1.9.1.1 Specific aims 

1. To identify the nature of novel IGF-IR cross-talk in ATRT cells. 

       Identification of such a cross-talk will entail certain consequences, including: 

a. Changes in apoptotic pathways  

b. Effect on cell migration 

c. Changes in drug sensitivity by promoting resistance 

2.  To identify targeted agents for effective inhibition of IGF-IR cross-talk.  

      This will provide appropriate strategies that may improve response to therapy. 
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Chapter Two: Materials and Methods 

2.1 Cell lines and cell culture 

BT12 and BT16 cell lines were established from infants with CNS ATRT, and were 

generously provided by Drs. Peter Houghton and Jaclyn Biegel (Nationwide Children’s 

Hospital, Columbus, Ohio and The Children’s Hospital of Philadelphia, respectively). 

These cell lines have been used extensively in preclinical studies in ATRT. These cell lines 

were cultured in Opti-MEM medium (Gibco, Invitrogen Corporation, Burlington, Ontario) 

containing 5% Fetal Bovine Serum (FBS), 100 units/ml penicillin, and 100 units/ml 

streptomycin (Gibco).Cells were trypsinized with 0.25% Trypsin-ethylendiaminetetraacetic 

acid (EDTA) in Ca
2+

 and Mg
2+

 free balanced salt solution (Gibco) every three to five days. 

All cell cultures were maintained in incubators at 37
0
 C in a humidified atmosphere, with 

5% CO2. 

2.2 Antineoplasic agents 

AEW541 was kindly provided by Novartis Pharma (Basal, Switzerland). A stock 

solution of this agent was made in dimethyl sulfoxide (DMSO) (20 mM), and stored at -

20
0
C. This solution was subsequently diluted in culture medium for each experiment. All 

other targeted therapeutic agents were synthesized, checked for purity, and provided by 

Chemie tek (Indianapolis, USA). These agents were dissolved in DMSO to a final 

concentration of 10 mM, stored frozen at -20
0
C, and diluted appropriately in culture 

medium at the time of study. Control cultures were made by diluting DMSO with culture 

medium identical to that of experimental groups. Table 2.1 includes the targeted 

chemotherapeutic agents used and their mechanism of action. 
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  Mechanism of action Inhibitor 

IGF-IR inhibition 
                        AEW541 

                        BMS-745807 

                        OSI-906 

VEGFR-2 inhibition 
                        Axitinib 

                        Foretinib 

                        Vandatinib 

                        AV951 

 

Table 2.1 Chemotherapeutic agents used against ATRT cell lines. 
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2.3 Cell growth stimulation assay 

ATRT  cell lines were  cultured  at 5 X 10
3
 cells/well in 96-well plates, and 

incubated with increasing concentrations of IGF-I (Sigma-Aldrich) ranging from 1 X 10
-6 

to 

10 ng/ml. Corresponding DMSO concentrations were used as controls. After four days in 

culture at 37ºC in a humidified incubator containing 5% CO2, cell survival was quantified 

by automated cytometer (Celigo) as described previously [111]. In the same experiment, 

each experimental point was repeated in duplicate or triplicate. Experiments were repeated 

at least twice. Cell growth results are expressed as percentage (±S.E.) of the growth of their 

relative controls. 

2.4 Cell growth inhibition assays 

 ATRT cells were trypsinized and the viable cells were counted using trypan blue, 

and a hemocytometer. The cells were then  placed in 96 well plates (Grenier Bio One, 

Monroe, NC) at a concentration of 5x10
3
 cells per well. Increasing concentrations of study 

agents were added to these wells, to a final volume of 200 ml per well. Corresponding 

dilutions of the vehicle DMSO were used as controls. After four days in culture, cell 

survival was quantified by automated cytometer (Celigo, Cyntellect Inc., San Diego, CA, 

USA), according to the manufacturer’s protocol [111]. In the same experiment, each 

experimental point was repeated in duplicate or triplicate. Experiments were repeated at 

least twice. Cell growth results are expressed as percentage (±S.E.) of the growth of their 

relative controls. The half maximal inhibitory concentration (IC50) values were calculated 

for each agent based on individual cytotoxicity plots.  

2.5 Drug combination studies 

 TheIC25 concentration of AEW541 (i.e., the amount that induced 25% cell death by 

itself) was added to cultures containing increasing concentrations of the second agent. The 
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new IC50 values corresponding to the combination were then calculated and used to derive 

combination index (CI) values as described by Chou and Talaly [112]. CI provides 

quantitative measure for the extent of drug interaction. The following formula was used to 

calculate the CI: 

CI= CA, x / ICx, A + CB, x / ICx, B 

CA, x and CB, x are the concentrations of drug A and drug B used in combination to 

achieve x% drug effect. ICx, A and ICx, B are the concentrations for single agents to achieve 

the same effect. A CI of less than 1 indicates synergy between the two agents under the 

experimental conditions used. 

2.6 Preparation of cell lysates  

ATRT cells were grown in 6 well plates (Nunc, Rochester, NY) at an initial seeding 

density of 2x10
5
 cells/well for 12-24h. At approximately two-third confluence the culture 

medium was replaced with serum free media and cells were serum starved overnight prior 

to each experiment. Chemotherapeutic agents, IGF-I and deferoxamine (Sigma-Aldrich) 

were added at the desired concentration and time, for the corresponding experiment. The 

cells were then washed twice with cold phosphate buffered saline (PBS), pH 7.4. Lysis and 

protein extractions were carried out by the addition of 400 μl/well of cell lysis buffer 

containing 50 mM Tris, 5 mM EDTA, 0.1%SDS, 1% Triton X-100, 0.5% Sodium 

Deoxycholate (Sigma-Aldrich), and protease and phosphatise inhibitors (Sigma-Aldrich) at 

concentrations suggested by the manufacturer. Following incubation of the plates on ice for 

10 min, cells were detached from the plate by gentle repeated pipetting. The cell 

suspensions were centrifuged in a refrigerated bench top centrifuge for 10 min at 14,000 

rpm and the supernatants were collected. Protein concentrations were determined using 
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Pierce BCA Protein Assay Kit (Pierce, Rockford, IL) and used in subsequent antibody 

arrays and Western blot analysis. 

2.7 RTK arrays 

Nitrocellulose membranes, each containing 42 different anti-RTK antibodies and 

six controls printed in duplicate, were obtained from R&D systems (Minneapolis, MN). 

Cell lysates from untreated and IGF-I treated (50 ng/ml for 30 min) cells were incubated 

with these arrays and probed with anti-phospho tyrosine- horseradish peroxidise (HRP) 

detection antibodies, as described in manufacturer’s instructions. Followed by 

Chemiluminescence substrate (Amersham, Piscataway, NJ), and developed by exposure to 

x-ray film (Christie InnoMed, Montreal, QC).The images from the X-ray films were 

captured with a digital camera and analyzed using Image J visual analysis software [113]. 

2.8 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and 

Western blotting  

An aliquot of 25-40 μg of cellular proteins prepared as above were separated on an 

8-12% SDS-PAGE acrylamide gel, and then transferred onto nitrocellulose membranes 

(Bio-Rad, Mississauga, ON). The membranes were blocked with 5% skim milk in PBS 

containing 0.1% Tween-20 (Sigma-Aldrich) for 1h at room temperature with gentle 

shaking. For detecting proteins expression or activation, membranes were incubated with 

different primary antibodies for 2h at room temperature or overnight at 4
0
C (table 2.2). This 

was followed by washes with PBS and incubation with appropriate secondary antibodies 

(Sigma-Aldrich) for 2h at room temperature (table 2.3), followed by Chemiluminescence 

substrate (Amersham, Piscataway, NJ) and developed by exposure to x-ray film (Christie 

Inno Med, Montreal, QC). 
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2.9 Antibodies  

Table 2.2 Primary antibodies 

Antibody Species Company Dilution 

IGF-IR β 

 

Rabbit polyclonal Santa Cruz 

Biotechnology 

1:1000 

Phospho-IGF-IR Rabbit polyclonal Santa Cruz 

Biotechnology 

1:1000 

VEGFR-2 Rabbit  polyclonal Millipore 1:1000 

Phospho-VEGFR-2 Rabbit polyclonal Millipore 1:1000 

ERK 1/2 Rabbit polyclonal Cell Signalling 

Technology 

1:2000 

Phospho-ERK1/2 Mouse monoclonal Santa Cruz 

Biotechnology 

1:1000 

VEGF Mouse monoclonal R&D Systems 1:1000 

HIF-1α Mouse monoclonal Santa Cruz 

Biotechnology 

1:1000 

AKT Rabbit polyclonal Santa Cruz 

Biotechnology 

1:1000 

Phospho-AKT Mouse monoclonal Santa Cruz 

Biotechnology 

1:1000 

PARP Rabbit polyclonal Cell Signalling 

Technology 

1:1000 

Caspase-3 Rabbit polyclonal Cell Signalling 

Technology 

1:1000 

Caspase-7 Rabbit polyclonal Cell Signalling 

Technology 

1:1000 

Actin Rabbit polyclonal Sigma-Aldrich 1:10000 
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Table 2.3 Secondary antibodies  

Antibody Species Company Dilution 

Anti-mouse IgG Goat polyclonal Sigma-Aldrich 1:5000 

Anti-rabbit-IgG Goat polyclonal Sigma-Aldrich 1:5000 
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2.10 Vascular endothelial growth factor enzyme-linked immunosorbent assay 

(ELISA) 

Vascular endothelial growth factor ELISAs were performed according to the 

manufacturer's instructions (Quantikine, human VEGF ELISA, R&D systems, MN, USA). 

Before the experiment was started, confluent ATRT cell cultures were held for 24 hours in 

serum-free medium. The medium was exchanged to fresh serum-free medium again. The 

cells were then stimulated  with or without IGF-I (100ng/ml) for 6 and 12 h. Conditioned 

media of the cells were brought on a plate coated with anti-VEGF. After 2 h, the plate was 

washed and an antibody against VEGF conjugated to HRP was added. After another 2 h, 

the plate was washed and the substrate solution was added for 30 min. Then the reaction 

was stopped and the fluorescence was read on an ELISA reader at 450 nm with a correction 

set to 540 nm. The results were then plotted against the standard curve to become the actual 

concentrations. The amount of VEGF protein was correlated to total protein determined by 

the Pierce BCA Protein Assay Kit (Pierce, Rockford, IL). All experiments were carried out 

in triplicate. The cells were counted at the end of the experiment by automated cytometer 

(Celigo), as described previously. 

2.11 In vitro cell migration assay ("scratch" test) 

The scratch test to quantify inhibition in cell migration was performed as described 

previously [114]. ATRT cells were plated in six well culture plates (Nunc). Cells were 

grown to confluence, washed with serum-free medium, and serum starved overnight. On 

the day of the assay, the cells monolayer was scraped in a straight line with a 10 μl pipette 

tip and the culture medium was replaced with 3 ml of serum free medium. Cells were 

treated with Axitinib (1μM) or AEW541 (1μM) alone or in combination with IGF-I 
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(50ng/ml). In other sets of experiments, cells were treated with combination of Axitinib 

(1μM) and AEW541 (1μM) alone or in combination with IGF-I (50ng/ml).  Pictures of the 

same scratch area were taken at various time points (at 0 h, 8 h and 24 h) using an inverted 

microscope; images were analyzed using Image J visual analysis software [113]. 

2.12 Small interfering RNA (siRNA) and transfection 

Silencer validated IGF1R small siRNA was purchased from (Invitrogen, CA, USA). 

ATRT cells were seeded one day ahead to give optimal cell density (2x10
5
cells/well) for 

high transfection efficiency. On the day of transfection, ATRT cells were washed once with 

PBS, and transfected at 40–50% confluency with 20nM IGF-R SiRNA or a negative 

control No.1 siRNA (Invitrogen, CA, USA) using Lipofectamine 2000 (Invitrogen, CA, 

USA) according to the manufacturer’s instructions. Transfection was carried out in 6 well 

plates in culture medium without antibiotics. In a separate tube, 30 μl of lipofectamine was 

gently mixed with 1 ml of the basal medium. After 5 min incubation at room temprature, 

DNA and lipofectamine diluents were mixed gently and incubated at room temperature for 

20 min. The mixture was then added to the cells and mixed gently by rocking the plate back 

and forth. Cells were incubated at 37°C in 5% CO2 and transfection efficiency was 

assessed after 48 h. To study activation of signalling pathways, cells were starved overnight 

after transfection and then stimulated with IGF-I 50ng/ml for 30 min. Subsequently, cell 

lysates were prepared and subjected to immunoblotting. 
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Chapter Three: Results 

3.1 Expression and signalling of IGF-IR in ATRT cells 

In order to identify the presence and activation of IGF-IR in ATRT cell lines. BT12 

and BT16 cells were grown in Opti-MEM medium supplemented with 5% FBS. After 

reaching approximately 75% confluence, the cells were serum depleted for 24 h, and then 

stimulated with 50ng/ml IGF-I for different time point (5, 10,15,20,30 min). Total protein 

lysates were evaluated by Western blot analysis, and examined for expression and 

phosphorylation of IGF-IR using total and phospho-specific antibodies. Treatment with 

IGF-I resulted in rapid tyrosine phosphorylation of the IGF-IR β subunit for the indicated 

time points (figure 3.1). Phosphorylation of IGF-1R was detectable 5 min after ligand 

exposure. While it peaked at 10 min in BT12 and at 20 min in BT16, it was still detectable 

at 30 min. Expression of actin was used as the loading controls. 

3.2 Growth stimulatory effect of IGF-I on ATRT cells  

Insulin-like Growth Factor-I is a known mitogen whose over-expression promotes 

tumor growth [54]. It is suggested that IGF-I can act in an endocrine, paracrine, or 

autocrine fashion to regulate cell growth, survival, and differentiation. BT12 and BT16 

cells were cultured at 5 X 10
3
 cells/well in 96-well plates for 4 days, with increasing 

concentrations (0.0001–10 ng/ml) of the IGF-I in serum free medium. Cell growth was 

quantified by an automated cytometer (Celigo). We observed that IGF-I resulted in a 

significant increase in the proliferation and survival rate compared to controls in a dose 

dependant manner starting from 0.1 ng/ml (figure 3.2). This suggests that the growth 

promoting activity of IGF-I is due to an interaction with IGF-IR as shown in the previous 

results. 

 



 39 

 

 

   Figure 3.1 Expression of total and phosphorylated IGF-1R.  

   ATRT cells were treated with IGF-I (50ng/ml) for different time points (5, 10, 20, and 

30min). Cell lysates (40μg) were analyzed by Western blotting for phosphorylated IGF-IR 

and total IGF-IR  levels. 
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Figure 3.2 Effect of increasing IGF-I concentrations on ATRT cell survival.  

The incubation of ATRT cells for 4 days with increasing concentrations of IGF-I (0.0001–

10 ng/ml) resulted in a significant and dose dependent cell growth, starting from 0.1 ng/ml. 

Maximum stimulation was reached at 1ng/ml. Data are from three separate experiments. 

Increase in viable cell numbers is expressed as a percentage (±S.E.) of the untreated 

control. 
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3.3 Effect of IGF-IR inhibition on ATRT cells 

Experiments were done to examine the ability of targeted small molecular weight 

inhibitors (AEW541, OSI906, and BMS-745807) to inhibit the growth of ATRT cells. 

These agents were evaluated using in vitro cytotoxicity assays. Agents were selected based 

on their known activities in other tumor cell systems, as well as their potential to be used in 

human clinical trials. Cells were incubated with increasing concentrations of each 

individual agents or DMSO as a control. After 4 days in culture, cell growth was quantified 

by automated cytometer (Celigo) as previously described in the materials and methods. 

Growth inhibition effects were plotted as as a dose-effect curve. Results presented in figure 

3.3 show significant reductions in the growth of ATRT cells by each agent. Median 

Inhibition Concentration (IC50) was calculated by plotting [the number of viable cells with 

treatment divided by the number of viable cells without drug treatment] x100, versus 

corresponding drug concentrations. Table 3.1 provides the IC50 values obtained in the 

cytotoxicity studies. Data provided in this table show drug sensitivity values across the two 

cell lines. It has been shown that BT16 is sensitive to BMS-745807 with IC50 of 0.5μM but 

required higher concentrations of the other two agents. BT12 showed sensitivity to 

AEW541 and BMS-745807 with IC50 of 0.5μM. These results suggest a critical role for  

IGF-IR activation in the growth and survival of these cells. 
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Figure 3.3 Evaluation of the ability of the IGF-IR targeting agents to inhibit the 

growth of ATRT cells. 

 Cells were grown in 96 well plates with increasing concentrations of each individual agent 

(AEW541, OSI906, and BMS-745807) or DMSO control were added to triplicate wells. 

After 4 days in culture, cell growth was quantified by automated cytometer as described 

above. Results presented in figure 3.3 show that IGF-IR inhibition leads to reduction in the 

growth of ATRT cells. 
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IGF-IR inhibitor BT16 IC50 (μM) BT12 IC50 (μM) 

AEW541 
 

5.4 0.5 

BMS-745807 
 

0.5 0.5 

OSI-906 
 

10 7.5 

  

Table 3.1 Analysis of sensitivity of ATRT cells for various IGF-IR inhibitors.  

The IC50 values are from a single complete study, and the overall trend is representative of 

three separate experiments. 
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3.4 Identification of potential cross-talk involving IGF-IR in ATRT cells 

The next set of experiments was carried out to identify the potential cross-talk 

between IGF-IR and potential pathways involved in tumor growth, metastasis and 

angiogenesis. A screening of receptor tyrosine kinases was performed, in order to identify 

the presence of phosphorylated receptor tyrosine kinases using Human phospho-receptor 

tyrosine kinase arrays (figure3.4). This antibody array technique provides an effective tool 

to screen for activation of receptor tyrosine kinases (RTKs). ATRT cells were treated with 

IGF-I (50 ng/ml) after serum starvation overnight. Lysates from IGF-I treated and untreated 

cells were prepared as mentioned previously, and incubated with antibody arrays carrying 

capture antibodies to 42 different RTKs and six controls printed in duplicate as described in 

manufacturer’s instructions (R&D Systems). The phosphorylation status of each RTK 

bound to its corresponding spot was detected by anti-phospho-Tyrosine-HRP detection 

antibody and chemiluminescence. This study showed  increased phosphorylated IGF-IR 

and Insulin Receptor (IR) as  expected with IGF-I stimulation but also showed the 

unexpected finding of  VEGFR-2 activation as a result of IGF-I treatment (figure3.5 a, b).  
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Figure 3.4 a diagrammatic representation of the array map showing the positions of 

capture antibodies to different RTKs. 
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Figure 3.5 Identification of potential IGF-IR cross-talk in ATRT cells.  

Cell lysates from untreated (a) and IGF-I treated (b) cells were incubated with RTK 

antibody arrays. Arrows point to the respective RTKs in which an increase in signal 

intensity, suggesting phosphorylated tyrosine, was noted. Each spot was then quantified 

and the relative decrease in signal was represented as a histogram (c). Data presented in 

these figures indicate the phosphorylation of IGF-IR, IR, EGFR and VEGFR-2. 
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3.4.1 Validation of RTK array findings 

To validate the findings from the RTK arrays, we investigated the expression of 

VEGFR-2 phosphorylation status in ATRT cells in response to IGF-I treatment by Western 

blot analysis. BT12 and BT16 cells were serum-starved overnight and then stimulated with 

IGF-I (50 ng/mL) for different time points (5, 10, 20, 30 and 60 min). Lysates were 

obtained as previously described, and probed for the expression of total and phosphorylated 

forms of VEGFR-2 and IGF-IR. IGF-IR phosphorylation was induced within 5 minutes, 

while total IGF-IR levels were unaltered. Importantly, phosphorylation of VEGFR-2 was 

also induced within 5 minutes of IGF-I exposure, suggesting potential cross-signaling from 

IGF-IR to VEGFR-2 in both ATRT cell lines (figure 3.6). 

 We also examined downstream consequences of this effect by looking at the 

modulation of one of the critical signalling cascades, known to involve both IGF-IR and 

VEGFR-2 -mediated mitogenic, and antiapoptotic signalling. This includes the activation 

of ERK1/2. In the same experiment (figure3.6), IGF-I activated the mitogenic MAP-kinase 

pathway in a time dependent manner as shown by phosphorylation of ERK1/2. These 

results support the concept that IGF-I cross-activates VEGFR-2 signaling pathway, 

although the signaling molecule examined are downstream of multiple growth factor 

receptors. In conclusion these data suggest that IGF-I treatment in the absence of other 

growth factors resulted in an activation of VEGFR-2, indicating a possible IGF-

IR/VEGFR-2 cross -talk in ATRT cells. 
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Figure 3.6 Evidence of cross-talk from IGF-IR to VEGFR-2. 

IGF-I induces phosphorylation of VEGFR-2. BT12 (a) and BT16 (b) cells were serum-

starved overnight and then stimulated with IGF-I (50 ng/mL) for 5, 10, 20, 30, and 60 min. 

Cell lysates (30 μg) were immunoblotted for total and phosphorylated IGF-IR, VEGFR-2, 

and ERK1/2. Actin was used as loading control. IGF-I stimulated the phosphorylation of 

IGF-IR within 5 min in both cell lines. Importantly, phosphorylation of VEGFR-2 was also 

induced within 5 min of IGF-I exposure. 
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3.5 IGF-I regulates VEGF secretion in ATRT cells 

It is well known that growth factors binding to their receptors tyrosine kinases may 

induce HIF-1α synthesis and VEGF secretion via the activation of PI3Kand MAPK 

pathways promoting tumor progression and metastasis [115]. HIF-1α is a transcriptional 

factor in mammalian cells that is selectively stabilized and activated under hypoxic 

conditions; it coordinates adaptive responses to hypoxia required for DNA binding and 

transactivation of target genes [115]. HIF-1α is primarily regulated at the level of protein 

stability under normoxic conditions, and is rapidly degraded by the ubiquitin–proteasome 

system. Furthermore, while HIF-1α degradation is inhibited under hypoxic conditions, it is 

also regulated by hypoxia-independent mechanisms. For example, HIF-1α has been shown 

to be activated in response to IGF-I in cancer cells and epithelial cell lines, thus leading to 

the expression of VEGF [116]. However, the role of IGF-I-induced HIF-1α expression in 

ATRT has not been investigated. The purpose of the following experiments is to elucidate 

this intracellular signaling in ATRT cells. 

3.5.1 VEGF secretion in ATRT cells  

The aim of this study is to evaluate IGF-I- induced VEGF secretion in ATRT cells. 

To test this, VEGF secretion by ATRT cells was measured by ELISA. Serum-starved 

ATRT cells were stimulated with or without IGF-I for 6 and 12 h. The medium was then 

harvested and tested for the presence of secretory VEGF. As shown in figure 3.7 a, VEGF 

secretion was increased by 50% to 85% by IGF-I. Quantification of cells at the end of each 

time point did not show significant changes indicating that proliferation is not responsible 

for the increase in VEGF concentration (figure 3.7 b). 
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Figure 3.7 IGF-1 induced secretion of VEGF by ATRT cells.   

(a) Serum-depleted ATRT cells were treated with IGF-I (100 ng/mL) for 6 and 12h, the 

media were collected for ELISA of VEGF. The concentration of VEGF was measured as 

picograms per millilitre (pg/ml) and normalized to protein content of the cells. (b) At the 

end of each time point cells were counted using automated cytometer. Untreated cell were 

used as control. Each experiment was performed three times and the mean ± SD of results 

of triplicates are shown as error bars. 
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3.5.2 IGF-I stimulates the expression of HIF-1α and VEGF in ATRT cells 

The following experiments were done to investigate whether the activation of IGF-I 

regulated HIF-1α protein expression in ATRT cells. We used the iron chelator 

Deferoxamine (DFO) (100 μM) as a positive control, because it stabilizes HIF-1α 

expression through inhibition of asparaginyl hydroxylase, causing increased expression of 

HIF-1 target genes [117]. As expected, DFO stimulated expression of HIF-1α. Exposure of 

ATRT-starved cells to IGF-I (100ng/ml) for 6, 12, and 24 h resulted in a time-dependent 

increase in levels of HIF-1α protein, with maximal effect at 6h, based on Western blotting 

analysis. In the same experiment VEGF protein expression was also examined. On 

treatment with IGF-I, VEGF levels increased, with maximal effect at 12h (Fig. 3.8 In these 

studies, we showed that IGF-I increases the expression of HIF-1α leading to increased 

VEGF secretion, which in turn may stimulate  vascularization and angiogenesis through 

binding to its receptor VEGFR-2. These observations suggest a possible mechanism  for  

IGF-IR/VEGFR-2 cross-talk through IGF-I.  
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Figure 3.8 IGF-1 stimulates HIF-1α and VEGF protein expression in ATRT cells. 

Representative Immunoblots showing HIF-1α and VEGF expressions after (a) IGF-I 

(100ng/ml) treatment and (b) DFO (100 μM) treatment for 6, 12, and 24 h. 
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3.6 Role of IGF-IR/VEGFR-2 cross-talk in the development of treatment resistance in 

ATRT cells 

The following experiments were done to investigate the effects of potential cross 

talk involving IGF-IR and VEGFR-2. To this end we first tested whether AEW541 can 

block IGF-IR activation. The cells grown in growth media were transferred to serum-free 

media over night before adding the drug AEW541. Figure 3.9 (a) and (b) shows that 1 to 10 

μM of AEW541 suppressed the levels of phosphorylated IGF-IR, and phosphorylated 

ERK1/2.  In the second part of this study, ATRT cells were grown as above, and treated 

with AEW541 in the presence of IGF-I (50ng/ml) for 4h. Lysates from these cells were 

probed by immunoblotting. Figure3.9 (c) and (d) shows that the presence of IGF-I induced 

phosphorylation of VEGFR-2. ERK1/2 is located in the nodal points of growth factor–

mediated cell signalling. Hence, we probed for ERK1/2, to see if its dephosphorylation 

status induced by AEW-541 alone will be affected by the presence of IGF-I. Addition of 

IGF-I stimulated ERK1/2, suggesting that IGF-I enhanced the ERK activation through 

VEGFR-2 signalling pathway promoting resistance to AEW541.  

These data so far indicate that ATRT cells have the VEGFR-2 activation as an additional 

input into PI3K signaling pathway and this modulates the action of IGF-IR blocking agents, 

suggesting a potential mechanism involved in treatment resistance of ATRT.  
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Figure 3.9 IGF-I activate VEGFR-2 and promote AEW541 resistance in ATRT cells. 

 (a) BT12 and (b) BT16 cells were exposed to AEW541 (1, 5, and 10 μM) as indicated for 

4 hours. Cells were lysed and probed with indicated antibodies. (c) BT12 and (d) BT16 

cells were subjected to increasing doses of AEW541in the presence of 50 ng/ml IGF-I. 

Western blotting on actin is included as a loading control. 
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3.7 IGF-I overcomes the effect of IGF-IR inhibitor on ATRT cells migration 

Cancer progression is a multistep process that involves invasion of basement 

membrane by tumor cells and migration to points far from a given primary tumor mass 

leading to metastasis. Increasing evidence indicates that IGF-I signalling is also pivotal to 

cell motility and migration [118]. 

To confirm the effects of IGF-I on ATRT cell migration, we did a scratch wound 

assay. Confluent ATRT cells were serum starved overnight, wounded with a pipette tip, 

and then the disrupted cell layers were incubated in the presence of 100ng/ml IGF-I. In this 

scratch assay, the movement of cells across a scratch line is evaluated as an indication of 

the capability of an agent to stimulate or inhibit cell migration. Cell migration into the 

detection zone was quantified by counting cell number using ImageJ software 

(http://rsb.info.nih.gov/ij/) (version 1.4.3.67). The serum free media-treated cells showed 

delay wound closure. By 24 hours, IGF-I treatment led to migration of ATRT cells to 

almost complete closure of the wound (figure 3.10 a). This confirms that IGF-I signalling 

contributes to ATRT cell migration. As shown previously, IGF-I was able to activate 

VEGFR-2, which is known to transduce full range of responses including regulating 

survival, proliferation, and migration processes. Therefore, we hypothesized that IGF-I can 

mediate cell migration through VEGFR-2 activation. To test this, we first investigated the 

effect of IGF-IR inhibition on cell migration by the scratch assay, as previously described. 

When serum starved confluent ATRT cells were treated with AEW541 (5μM)  for 8 and 24 

hr,  there was no significant cell migration observed in the wound area. However, the 

addition of IGF-I restored wound healing to levels comparable to cells treated only with 

IGF-I (figure 3.10 a). This suggested the possibility that IGF-I is utilizing an alternative 
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pathway, possible involving VEGFR-2 to stimulate cell migration. To further test this 

possibility, we looked at the effect of co-targeting IGF-IR and VEGFR-2 pathways on IGF-

I mediated cell migration. In the scratch assay, after the serum starved confluent ATRT 

cells were wounded, AEW541 (5μM) and Axitinib (5μM) were added to the cells in 

presence or absence of IGF-I (100ng/ml), and cells migration were evaluated at 8 and 12 hr. 

When treated with both inhibitors, dependent loss of cell migration over the scratch line, 

demonstrated their combined ability to prevent ATRT cell migration. A similar trend was 

observed in the presence of IGF-I (figure 3.10 a). To differentiate cell proliferation versus 

cell migration, and thus to account for the additional cells in the scratch zone, viable cell 

count was measured by Alamar blue assay and a graphic representation for cell migration, 

and corresponding cell counts are given in (figure 3.10 b). Taken together, the results 

presented here provide evidence for IGF-IR /VEGFR-2 signaling cross-talk, as well as 

suggesting that IGF-I is a critical component of this cross-talk, with a key role in 

stimulating cell migration. 
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Figure 3.10 In vitro cell migration assay. 

 (a) ATRT cells were plated in 6-well plate and a scratch was introduced when cells were 

80% confluent. Images were acquired at 0 h, 8 h and 24 h, following the in vitro scratch 

assay. The dotted lines define the areas lacking cells. (b)The rate of migration was 

measured by quantifying the total distance that cells moved from the edge of the scratch 

toward the center of the scratch (marked by imaginary dotted lines). After 24 h in culture, 

the quantity of viable cells in each condition was measured by Alamar blue assay. Data 

presented above is representative of three separate experiments.  
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3.8 Synergetic activity of AEW541 with VEGFR-2 inhibitors 

Previous studies have demonstrated that IGF-IR activity contributes to the growth 

and survival of ATRT cells. The antibody array analysis presented in figure 3.5 also 

showed the activated status of IGF-IR in ATRT cells. These data provided a mechanistic 

rationale to investigate the hypothesis that a combined inhibition of both IGF-IR and 

VEGFR-2 would show synergy against these cells. In the next set of experiments, we 

investigated targeted VEGFR-2 therapeutic agents and an IGF-IR inhibitor (AEW541) (in 

drug combination studies. Studies of AEW541 in combination with the targeted VEGFR-2 

inhibitors were carried out as described in Materials and Methods. A graphic representation 

of cell survival when treated with drug combination is given in Figure 6. The combination 

indices (CI) [112], calculated from these experiments, are given in Table 2. In this analysis, 

a CI value equals to 1, less than 1 and more than 1 indicates additive, synergistic and 

antagonistic effects, respectively, between the two agents. Values presented in Table 2 

show synergy between AEW541 and Axitinb, AV951 and Vandatinib in BT16 and synergy 

between AEW541 and Foretinib in BT12 indicate that these cell lines are most susceptible 

to the combined effect of IGF-IR and VEGFR-2 inhibition. 
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 Figure 3.11 Drug combination study of AEW541 with VEGFR-2 inhibitors in ATRT 

cell lines.   

BT16 (a) and BT12 (b) cells were incubated with increasing concentrations of AEW541 

and a VEGFR-2 inhibitor alone or increasing concentrations of VEGFR-2 inhibitor with a 

constant IC25 concentration of AEW541. Cell growth inhibition was measured after four 

days in culture as describe above. The IC25 values of AEW541 used were 0.001 mM and 

0.01 mM for BT12 and BT16 respectively that were calculated from figure3.3. 
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BT16 BT12 

Drug Combination IC50 Drug Combination IC50 

AEW541 + Axitinib 0.6 AEW541 + Foretinib 0.1 

AEW541 + AV951 0.17 

AEW541+ Vandatinib 0.18 

    

Table 3.2 Synergetic Activity of combined VEGFR-2 inhibition and AEW541 against 

ATRT cells.  

IC50 values for single agent AEW541 and in combination with VEGFR-2 inhibitors were 

calculated from data presented in figure 3.11 and used to calculate combination indices 

according to the method of Chou and Talalay. A CI value less than 1 indicates drug synergy 

under the specific experimental conditions used. 
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3.9 Combination of IGF-IR and VEGFR-2 inhibitors significantly promotes ATRT 

cells apoptosis 

To elucidate the mechanisms of IGF-IR and VEGFR-2 inhibition -mediated anti-

proliferation/anti-survival effects, we tested whether AEW541 and/or VEGFR-2 inhibitors 

(Axitinib, Vandatinib and Foretinib) may induce apoptosis in ATRT cells. BT16 cells were 

treated with AEW541 (5μM) alone or in combination with Vandatinib (5μM)/Axitinib 

(5μM) for 36h, in case of BT12 cells were treated with AEW541 (5μM) alone or in 

combination with Foretinib (5μM) for 36h. Cell lysates were obtained and subjected to 

Western blot analysis. Data obtained in these studies showed that the combination of 

AEW541 and VEGFR-2 inhibitors enhanced PARP cleavage, and activation of caspase-7 

and -3; as evidenced by the increases of cleaved caspase-7 and -3 in both ATRT cell lines 

(figure 3.12). These findings indicate that the detectable apoptotic effects can be used as 

effective biological correlates for the growth inhibition observed in response to AEW541 

and VEGFR-2 inhibitors drug combination.  
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Figure 3.12 Effect of AEW541 and VEGFR-2 inhibitors (Axitinib, AV951 and 

Foretinib) combination treatment on the expression of proteins involved in apoptosis 

and caspase activation.  

Western blot analysis was used to display changes in apoptosis-related proteins (PARP, 

caspase-7, and caspase-3) in ATRTcells after treatment with either AEW541 or a VEGFR-

2 inhibitor (Axitinib or AV951 or Foretinib) alone, or the combinations of AEW541 and a 

VEGFR-2 inhibitor for 36 h. 
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3.10 Effect of IGF-IR knockdown on IGF-IR/VEGFR-2 interaction  

This study was designed to investigate whether the VEGFR-2 axis is capable of 

compensating for IGF-IR loss in ATRT cells. The effect of IGF-IR gene silencing on 

VEGFR-2 expression and activity was assessed. ATRT cells were transfected with 20nM of 

IGF-IR siRNA, or control siRNAs for 48 h, serum-starved overnight and treated with 50 

ng/ml IGF-I for 30 minutes as described in methods. Western blots of these lystaes 

demonstrate that siRNA successfully blocked the expression of the IGF-IR. Predictably, 

IGF-IR knockdown abolished IGF-I induced IGF-IR phosphorylation. IGF-IR knockdown 

cells treated with IGF-I caused an increase in tyrosine phosphorylation of VEGFR-2, 

without influencing the levels of total VEGFR-2 (figure3.13).The effect of IGF-IR 

knockdown on ERK activation was also investigated. Our findings show that the 

phosphorylation of VEGFR-2 and ERK were enhanced, and not inhibited in response to 

IGF-IR knockdown in presence of IGF-I as compared to IGF-IR knockdown alone. These 

results support a cross-talk pathway between two key receptors. The molecular basis for 

this interaction is unclear, but these data could indicate that this crosstalk might be 

associated with direct IGF-IR/VEGFR-2 interaction with IGF-I, and that VEGFR-2 

compensation could mediate resistance to IGF-IR inhibition. 
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Figure 3.13 IGF-IR knockdown leads to increased VEGFR-2 activity.  

 ATRT cells were transfected with 20 nM IGF1R or control siRNAs.  Forty-eight hours 

after transfection cells were serum-starved overnight and stimulated with 50 ng/ml IGF-I 

(+) or without IGF-1(-) for 30 min. Cells were lysed and analysed by Western blotting for 

levels of IGF-IR, p-IGF-IR, VEGFR-2, p-VEGFR-2, ERK1/2 and p-ERK1/2. 
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Chapter four: Discussion 

ATRT is currently considered to be among the most difficult to cure tumors in the 

pediatric population. Although defects in the chromatin remodelling apparatus by the 

SWI/SNF complex is likely to be the key molecular feature in ATRT, the pathways and 

nodes that constitute deregulated growth regulatory mechanisms are critical for the 

identification of effective targets for future therapeutics. Although the presence of this 

mutation is rather undisputable, additional molecular pathways underlying ATRT 

development are poorly understood. The expression of IGF-I and IGF-I receptor in various 

pediatric brain tumors has been evaluated by Ogino and co-workers [119]. IGF-IR 

signalling pathway has been implicated in the development and progression of ATRT. In 

addition, an autocrine signalling component is present, as ATRT cells themselves produce 

and secrete IGF-I and express cell surface IGF-IR. Autophosphorylated IGF-IR was 

detected in ATRT lines, thus supporting the hypothesis that autocrine/paracrine stimulation 

of cell growth by IGF-IR may be involved in ATRT pathogenesis. Studies confirming 

activation of  IGF-IR receptor mediated signalling has been shown to result in neoplastic 

transformation, tumor growth and survival, angiogenesis and metastasis. It is conceivable 

that highly expressed activated IGF-IR in CNS ATRT is involved in resistance to 

apoptosis. Cross-talk between different growth factor receptor families is frequently 

observed in tumors. This mechanism allows cancer cells to enhance downstream signalling, 

resulting in greatly increased proliferation, mitogenesis, and cell survival. IGF-IR has been 

shown to interact and cross-talk with multiple receptors, including EGFR, HER2, platelet-

derived growth factor receptor, and the estrogen receptor. IGF has been linked to 

angiogenesis, which is essential for tumor metastasis and nutrient recruitment. In this study, 

we sought to identify weather novel molecular interactions occur between IGF-IR and other 



 71 

receptors is present, and if it   could promote ATRT aggressive behaviour. We showed the 

following novel findings: 

(a) IGF-I stimulation induces phosphorylation and activation of both IGF-IR and   

VEGFR-2:  

To identify the activated RTKs in ATRT cells in response to IGF-I stimulation, we 

initially used RTK array as a screening method for activated growth regulatory pathways, 

that can potentially cross-talk with IGF-IR and ultimately enhance the growth and survival 

of these cells. Results clearly indicated that IGF-I induces phosphorylation of VEGFR-2. 

Many studies have provided evidence for the role of VEGFR-2 in tumor vascularization, 

growth, and metastasis. We then validated the results in both BT12 and BT16 cell lines by 

Western blot. The downstream signalling molecule ERK1/2 was examined, which is 

functional in the IGF-IR and VEGR-2 pathways, as well as in multiple other signalling 

pathways. Thus, the IGF-I signalling experiments do not strictly indicate that IGF-I induces 

activation of one particular pathway. However, the IGF-I signalling experiments show for 

the first time that cross-talk occurs between IGF-IR and VEGFR-2.  

(b) IGF-I stimulates VEGF secretion in ATRT cells through HIF-1α: 

 Recent work has shown that various growth factors and cytokines can stimulate 

HIF-1 α expression, thereby triggering transcription of numerous hypoxia-inducible genes 

by oxygen independent mechanisms. IGF-1-induced VEGF synthesis and secretion has 

been reported in several non-neuron cell lines, including human retinal pigment epithelial 

cells [120], colon cancer cells [121], endometrial adenocarcinoma cells [122], and human 

mesangial cells [123]. In this study, we examined whether accumulation of HIF-1α is 

induced by IGF-I. Our results demonstrated for the first time, to our knowledge, that that 

IGF-I induced a time- dependent increase in HIF-1α. More importantly, the increase in 
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HIF-1α expression induced by IGF-I, was accompanied by increasing levels of VEGF 

protein levels. We found that VEGF expression started to increase 6 h after IGF-I 

treatment, approached maximal expression at 12 h, and remained expressed until 24 h. The 

molecular mechanism by which IGF-I regulates HIF-1α transcription remains to be 

elucidated. Together, these results suggest the possibility of an indirect pathway for IGF-IR 

cross -talk with VEGFR-2 pathway through IGF-I-induced VEGF synthesis and secretion 

this is accompanied by a concomitant activation of VEGFR-2 signalling pathway.  

(c) Cross-talk between IGF-IR and VEGFR-2 leads to IGF-IR inhibitor resistance: 

 Several preclinical and clinical discoveries have associated IGF-R tyrosine kinase 

inhibitors with antitumor activities. However, it was suggested that the presence of receptor 

cross-talk between IGF-IR and other pathways (EGFR, HER-2, ER and PDGFR) can 

mediate the resistance of cancer cells to IGF-IR tyrosine kinase inhibition therapy. In this 

study we showed that treating ATRT cells with AEW541 inhibits IGF-IR activation and its 

downstream ERK1/2. However, the presence of IGF-I provided these cells with a 

mechanism that compensates for the inhibition of IGF-IR  by VEGFR-2 activation. This 

was transmitted to ERK1/2, leading to sustained cell survival signalling. These results 

suggest the possibility of a direct interaction between IGF-I and VEGFR-2, as these cells 

are known to highly express and produce IGF-I, which could overcome AEW541 effect by 

activating the VEGFR-2 pathway.  

(d) Role of IGF-IR/VEGFR-2 cross-talk in cell migration: 

IGF has been linked tumor cell migration, which is a critical step in tumor 

progression and metastasis. ATRT frequently presents with significant infiltration into the 

brainstem, making tumor resection a difficult task, which reveals the potential of aggressive 

ATRT cells for invasion and migration. We hypothesized that IGF-I increases ATRT cells 
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migration, and that the presence of a receptor cross-talk will enhance IGF-I mediated 

migration. In this study, we found that IGF-I induced ATRT cells movement. Furthermore, 

treating cells with AEW541 lead to inhibition of cells migration. We also showed that IGF-

I could overcome the block on IGF-1R signalling when cells were stimulated with IGF-I in 

absence of other growth factors. These results suggested that IGF-I can signal through an 

alternative pathway other than IGF-IR pathway, in order to stimulate cells movement. The 

combination of IGF-1R and VEGFR-2 targeted inhibitors effectively blocked cells 

migration within hours in presence of IGF-I. This new finding suggests a link between the 

two pathways, via IGF-I mediated effect. 

(e) Synergistic activity of AEW541 with VEGFR-2 inhibitors: 

The generation of resistance to RTK-targeted therapeutics has been a major obstacle 

in the utility of this family of agents. In addition, tolerability concerns have also limited the 

effectiveness of single agent RTK-targeted therapies in the past. Drug combination 

strategies against different RTKs could improve efficacy, as exemplified by very effective 

combination trials targeting EGFR pathway [124]. Therefore, we hypothesized that co-

targeting IGF-IR and VEGFR-2 using small molecules receptor tyrosine inhibitors will 

optimize cell killing, as compared with treatment using a single agent. We screened a 

comprehensive library of targeted therapeutic agents, using in vitro cytotoxicity assays of 

agents targeting IGF-IR and VRGFR-2 RTK inhibitors. Our current results (figure 3.2, 

figure 3.3, and table 3.1), as well as previously published studies, have alluded to the 

critical role of IGF-IR activity in ATRT cells. AEW541 is a selective inhibitor for the IGF-

IR kinase activity, and is shown to inhibit tumor cell growth in a wide range of cancer 

types. Previous studies showed that AEW541 induced apoptosis in acute myeloid leukemia 

cells, and sensitized leukemic blasts to etoposide [125-126]. Therefore, we wanted to 
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investigate the effect of combining VEGR-2 inhibition with AEW541. In order to identify 

this effect, a constant amount of AEW541 at its IC25 concentration was added to increasing 

concentrations of a VEGFR-2 inhibitor, and the resulting CI were then calculated. We 

observed combination indices less than 1, suggesting drug synergy under these 

experimental conditions. We then evaluated the consequence of these combinations on 

apoptosis, and found that capability of AEW541 to induce apoptosis is potentiated by 

combined therapy, as seen by the changes in caspase-7 and -3 and PARP cleavage, as 

compared to treatment using a single agent. Such information is crucial for the 

development of future drug combination therapies, which could be used to optimize cell 

killing, and reducing toxicity and the potential for drug resistance. 

(f) IGF-IR knockdown cells treated with IGF-I caused an increase in tyrosine 

phosphorylation of VEGFR-2:  

The inhibition of IGF-IR expression or function has been shown to blocking IGF 

signalling, enhancing apoptosis and inhibiting growth and survival of many tumour types in 

vitro and in vivo. It is also important to circumvent potential mechanisms of resistance to 

novel therapies. Therefore, the knockdown study was designed to investigate whether the 

VEGFR-2 axis is capable of compensating for IGF-IR loss. Knockdown of IGF-IR resulted 

in a compensatory up regulation and phosphorylation of VEGFR-2. This was associated 

with enhancement of IGF-I induced signalling via ERK1/2, suggesting that IGF-I induced 

activation of an alternative pathway compensating for IGF1R loss.  

In summary, our results showed, for the first time, a novel interaction and cross-talk 

between the IGF-I and VEGF receptors in ATRT cells. In this thesis, the ability of IGF-IR 

to promote invasive tumor growth of ATRT has been explained by different mechanisms:  
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(a) Increased production of the angiogenic vascular endothelial growth factor, via 

activation of IGF-IR. 

(b) Increase in cellular motility and cellular invasiveness of ATRT cells by activation of 

IGF-IR.  

(c) The interactions of IGF-IR with other receptor tyrosine kinases, which potentiate the 

biological effects of each other. 

The presence of cross-talk between two potential therapeutic targets (IGF-IR and 

VEGFR-2) may be of particular importance to overcome acquired drug resistance, and 

would seem to have intriguing potential for human cancer therapy. Drugs that are clinically 

applicable  against IGF-IR have been developed, and inhibitors targeting VEGFR-2 are 

emerging. The strategy of targeting both receptors simultaneously provided synergistic 

effects with enhanced induction of apoptosis. However, it is still unclear whether IGF-IR 

and VEGFR-2 can directly transactivate each other or cross-talk at the level of their 

principal signalling intermediates. Future research will lead to better understanding of the 

complex biological processes underlying the interactions both receptors, and hopefully will 

eventually help to provide an optimized patient therapy. 
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