Parallel Processing Letters
© World Scientific Publishing Company

PRAM MEMORY ALLOCATION AND INITIALIZATION

LISA HIGHAM

Department of Computer Science, University of Calgary
Calgary, Alberta T2N 4NC, Canada

and

ERIC SCHENK

Department of Computer Science, University of Toronto
Toronto, Ontario MSA 1S5, Canada

Received (received date)
Revised (revised date)
Communicated by (Name of Editor)

ABSTRACT

Two useful and practical techniques for managing memory on a parallel random access machine (PRAM) are presented. One is
a scheme for an n/log n processor EREW PRAM that dynamically allocates and deallocates at most # records in O(log #) time. The
other is a simulation of a PRAM with initialized memory by one with uninitialized memory. A CREW PRAM variant of the technique
justifies the assumption that memory can be assumed to be appropriately initialized with no asymptotic increase in time but a factor of n
increase in space. An EREW PRAM solution incurs a factor of O(log #) increase in time but only a constant factor increase in space.

Keywords: Parallel Algorithms, PRAM, Memory Management, Initialization.

1. Introduction

Procedures for memory management are commonly assumed tools for algorithms that maintain dynamic data
structures. Such tools have been thoroughly studied for sequential machines for decades. This paper presents two
useful and practical techniques for managing memory on a parallel random access machines (PRAM). One is a scheme
for an n/logn processor Exclusive Read Exclusive Write PRAM that dynamically allocates and deallocates memory
to any subset of the processors in O(logn) time. The other is a scheme for simulating PRAMs possessing initialized
memory with corresponding PRAMs possessing uninitialized memory.

A PRAM is a common abstraction of a parallel machine that is useful for the design and analysis of parallel
algorithms. It is a collection of synchronized independent sequential processors with unique identifiers and a shared
global memory. In each time step, each processor can read a location in the global memory, perform alocal computation,
and then write to a location in the global memory. In an EREW (Exclusive Read Exclusive Write) PRAM no two
processors may simultaneously access the same memory location for either reading or writing; in a CREW (Concurrent
Read Exclusive Write) PRAM, simultaneous reading, but not writing, is permitted. (See Karp and Ramachandran (1]
for an overview of PRAM results.)

PRAM algorithms that manipulate dynamic data structures need to be able to secure and release memory from the
global store in parallel. For example, Paul, Vishkin and Wagener present algorithms [2] for maintaining 2-3-trees that
depend upon dynamic allocation and deallocation of memory. An extension to general B-trees [3] similarly depends
on parallel memory management. Section 2 describes a general scheme for an n/ logn processor EREW PRAM that
dynamically allocates and deallocates memory to any subset of the processors in O(log n) time.

When designing PRAM algorithms it is sometimes convenient to assume that all memory is appropriately initialized.
For example, Schenk uses this assumption to detect whether a given memory cell has been written during the course
of the computation [4]. Since it is conceivable that this assumption may make a problem easier to solve than it would
otherwise be, it is important to determine its cost in terms of time, processors and memory. A technique from the
folklore of computer science [5], simulates initialized memory with uninitialized memory for a sequential random
access machine with only a constant factor increase in time and space. In section 3 we adapt this technique to the n
processor CREW PRAM setting with no asymptotic increase in time but a factor of » increase in memory size, and to
an EREW PRAM setting with a factor of O(log) increase in time and a constant factor increase in space.

2. Memory Management

This section describes algorithms and data structures that maintain PRAM memory in such a way that deallocated
memory is captured and reused rather than new memory being consumed. We present algorithms for dynamically
allocating and deallocating sets of n or fewer records of a fixed size on an n/ log n processor EREW PRAM in O(log n)
time.

2.1. Data Structures

The algorithms maintain all available memory in two data structures using an additional array wy, ..., ws, for
working space. A contiguous array, memsy, MeMgan41, - - . contains the memory that has never been allocated. A
linked list of balanced binary trees called the free list contains deallocated records. The first tree in the free list contains
at most 2n records and if there are two or more trees then the first tree has at least n records. All other trees in the list
contain exactly n records. Initially all available memory is in the array; that is, start is set to one and the free-list is
empty.

We assume that the size of the record, say record-size, is large enough to contain two pointers, left and right, which
are used to maintain the free list structure. One record in each tree is used to maintain the linked list of trees by having
left point to the actual tree stored in the linked list, and right point to the next record in the linked list. Other records
in the free list use left and right as usual to point to the roots of left and right subtrees. The variable head points to the
head of the free list, and size counts the number of records in the tree at the head of the list (including the extra record
that forms the linked list).

2.2. Subroutines

Two tree manipulation routines are required by the allocation algorithm: one constructs a balanced binary tree out
of an array, the other maps a tree into an array.

Constructing a balanced binary tree out of the records pointed to by an array wy, . . ., wn is done by mapping element
1 onto the root, and elements 2i and 2i + 1 onto the children of i. Note that the first element of the array stores the link
to the next tree in the free list.

procedure construct-tree(wo, .. ., W)
forie {1,...,m} pardo
if 2i < mthen wyleft « wy; else w;.left « null
if 2i + 1 < mthen wi.right « wy else w;.right « null
wo.left « wy, wo.right « null.

On an n/logn processor EREW PRAM, this procedure can be performed optimally in O(mlogn/n + logn) time
by assigning [mlogn/n] iterations of the pardo loop to each processor. The extra logn term is required to broadcast
the value of m to all processors.

Mapping the nodes of a balanced binary tree of size m onto an array wy, ..., w,, can be accomplished in O(m/p +
logm) time on a p processor EREW PRAM as follows. First the root of the tree is mapped onto element w;. Then,
using [logp| iterations of a parallel loop, the top |logp]| + 1 levels of the binary tree are mapped onto the array.
The mapping process is completed by assigning a processor to each node at level |logp| + 1. Each processor then

recursively maps the subtree found at its assigned node into the array. The node that maintains the tree’s position in
the linked list is mapped into element wy of the array.

procedure map-tree(T, wy, ..., Wn)
forie {1,...,m} pardow; & null
wo & T,w; « Tleft
forie {1,...,p} pardo
loop |logp| times
if w; #null then
if wileft #null then wy « wi.left
if wi.right #null then woi « w;.right
if wp; = null and wileft £null then
sequential-map-tree(w; left, 2i,wy, ..., Wn)
if wpis1 = null and wy.right £null then
sequential-map-tree(w;.right,2i + 1,w, ..., Wp).

procedure sequential-map-tree(T,i,wy, ..., W)
W; T
if T left £null then sequential-map-tree(T .left,2i, wy, ..., Wn)
if T.right # null then sequential-map-tree(T.right,2i + 1,wy, ..., Wp).

Setting p to n/ log n processors, this procedure takes O(mlogn/n + logm) time.

2.3. Allocation and Deallocation

Allocation of k < n records, if k > size, is from the front of the array mem. Otherwise the k required records are
allocated from the tree at the head of the free list. If this tree contains fewer than n records after k have been removed,
then it is merged with the next tree (if any) in the list. Using the procedures given in subsection 2.2, this requires
O(logn) time on an n/ logn processor EREW PRAM.

procedure allocate(t, ry, .. ., ri)
if size < k then [Allocate from the memory array]
forie {1,...,k} pardo set r; to POint tO MeMyars(i1) record-size+1
start « start + k - record-size
else [Allocate from the head of the free list]
map-tree(head, wy, .. ., Wsiz)
head « head.right, size « size — k
forie {1,...,k} pardo ri & Wgizesi
if size > O then
if size < n and head #null then [Add the next tree to the array as well]
map-tree(head, Wiges1, . . ., Wsizen)
head « head.right, size « size +n
[Put the array back into a tree]
construct-tree(w, . . ., Wsize)
wy.right « head, head « w1.

Deallocation of k < n records is accomplished by adding them to the tree at the head of the free list. If the resulting
tree has more than 2n records, n records are formed into a separate tree and inserted just after the head of the free list.
Using the procedures given in subsection 2.2, this requires O(log n) time on an n/ log n processor EREW PRAM.

procedure deallocate(t,ry, ..., 1)

if head # null then
map-tree(head, w,, ..., Wsiz)
head « head.right

forie {1,...,k} pardo Wiizesi < 1;

size « size+k

if size > 2n then
CONSITUCt-tree(Wsize— i1, - - - » Wsize)
Wsize—n+1.7ight « head, head « Wgize—n41, Size ¢ size — n

construct-tree(wy,, Wsize)

wy.right « head, head « wy.

Taking these results together, we have the following theorem.

Theorem 1 For k < n, k records of the same size, say s, can be allocated or deallocated in O(logn) time on an
n/logn processor EREW PRAM. Furthermore, for all times t, the total space used is (A; — Dy)s + O(n), where A;
(respectively Dy) is the total number of records allocated (respectively deallocated) at or before time t.

To manage different record sizes, separate free lists can be maintained for each size of record. It is not necessary
to maintain more than one array mem. Allocations of each record size still require the cooperation of all n/logn
Processors.

By replacing the linked list of trees with a linked list of arrays, our algorithms can be transformed into constant
time n processor CREW PRAM algorithms for allocating and deallocating exactly n records. This entails separately
allocating arrays of size n and allocating and deallocating them as the free list grows or shrinks. This increases the
space usage by at most m. However, if fewer than n records are allocated or deallocated, the time required by our
CREW variants increases beyond constant time.

3. Initialization

This section describes two simulations of an n processor PRAM with initialized memory by an n processor PRAM
with uninitialized memory. Let o be an algorithm for an n processor EREW PRAM with initialized memory and let
t.(n) be the time complexity and s,(n) be the space complexity of & on inputs of size n. The first simulation, S(«),
simulates & on an n processor EREW PRAM with uninitialized memory in time O(¢,(n) logn) and 3s.(n) + 1 space.
Let B be an algorithm for an n processor CREW PRAM with initialized memory and let t3(n) be the time complexity
and sg(n) be the space complexity of § on inputs of size n. The second simulation, R(f), simulates $ on an n processor
CREW PRAM with uninitialized memory in O(tg(n)) time and (n + 3)s(n) space. Both simulations maintain a data
structure in such a way that it is easy to distinguish between a value that has been written and uninitialized garbage.

3.1. EREW PRAM simulation

Denote the memory array of the n processor EREW PRAM with initialized memory by M. On the r processor
EREW PRAM with uninitialized memory, create one extra integer variable, next-space, and 3n cells of working space,
and partition the remaining memory into three arrays, A, B and C by interleaving. Array A is used to simulate memory
M. Arrays B and C and the variable next-space are used to keep track of those positions of M that have been written.
Location ! of array X is denoted X[/}

Simulation S maintains the following two part invariant for every location / in M: (1) M[I] has been written by
ifand only if B[l] € {1,...,next-space — 1} and C[B[I}] = /; and (2) if M[/] has been written by o then A[/] contains
the last value written to M[l].

Setting next-space to one ensures that the invariant holds initially. Suppose, at some time step of algorithm a,
processors 1,...,n access memory locations M[l1],... , M[l,) respectively, and suppose the invariant holds before
simulating this step. S has each processor j first determine whether the M([l;] has already been written. If the memory
access instruction is a read, then for each processor j, if M[l;] has been previously written then j reads A[l;]; otherwise
M(1;] has not been written so j assumes the initial value. If the memory access instruction is a write, then first those

processors writing to memory locations that have not been previously written, cooperate to update arrays B and C and
the value of next-space to ensure that the invariant is maintained. Then each processor j writes to A[lj].

More specifically, define P; to be the predicate (B[)j]} € {1,...,next-space - 1} A C[B[}j]] = I;). According to the
invariant, M[l;] has been written if and only if P;. Let write-check(ly,... ,ln, X1,... ,Xn, Y1,-.. ,ya) be a procedure that
forje {1,...,n} sets x; to P; and sets y; to the size of the set {i < j: —P;}.

Given write-check, the following procedures perform, respectively, one parallel read and write step of the simulation
S. Procedure read sets v; to the value in M{l;]. Procedure write sets A[l;], which simulates M[[}], to the value v;.

procedure read((11,v1), ..., (In, Vn))
1. write-check(l1, ... ,lny X15-.- sXny Yise- s Yn)
2. forje {1,...,n} pardo
if x; then v; « A[l] else v; « initial value.

procedure write((l1,v1), ... , (In, Va))
1. write-check(ly, ... ,In, Xt5. .. Xy Y15++ 2 Yn)
2. forje {1,...,n} pardo
if —x; then
B[lj] < next-space +y; — 1, Clnext-space + y; — 1] « ;
A[IJ] Lt V,‘
3. next-space « next-space + yy.

It is easily checked from the pseudo-code that the invariant holds after read or write provided that it held before
this step. Clearly step two of read and steps two and three of write complete in constant time on an n processor EREW
PRAM.

It remains to provide more details for write-check. The values y; through y, can be computed from x; through x,
in O(log n) time on an EREW PRAM using Prefix Sums [1]. Therefore we need only to determine how to compute
X1,... ,Xs (thatis Py, ..., P,). Even though all /;’s are distinct, processors might read nondistinct positions in array C.
Also, each processor needs to access next-space. Some care is needed to ensure exclusive access in the simulation.
First all processors cooperate to lexicographically sort the pairs (B[/1},1),...,(B[l4), n), yielding Dy, ... ,D, where
Dj = (B[lg), k), for some k € {i,...,n}. Let D;; (respectively D;») denote the first (respectively second) coordinate of
D;. The processors then determine all maximal intervals [i ... k] such that D;; = Dy;. For each such interval [i...k],
processor i reads C[D;;] and initiates a broadcast of the result to the remaining processors in its interval. Next a
broadcast is used to distribute the value of next-space to each processor. Each processor j can now determine whether
Dj; € {1,...,next-space — 1} and whether C[D;1] = Ip,, withoutconflict. If either test fails, then xp,, is set to false,
otherwise xp,, is set to t rue. Broadcast is a basic technique that can be achieved on an n processor EREW PRAM in
O(logn) time [6]. Cole’s parallel merge sort [7] can be used to sort in O(log n) time. All other operations requires just
constant time.

Theorem 2 Let o be an algorithmfor an n processor EREW PRAM with initialized memory taking to(n) time and using
sq«(n) space. Then S(c) simulates o on an n processor EREW PRAM with uninitialized memory in time O(t,(n) log n)
and space 3s,(n) + 3n+ 1.

3.2. CREW PRAM simulation

In the EREW PRAM simulation, the function write-check uses O(log n) time in order to avoid read collisions of
the variable next-space and (possibly) of locations in array C. If concurrent reads are permitted then determining P,
through P, can be achieved in constant time with no change in data structures. In step two of procedure write however,
each processor writing to a new location needs to be allocated a new distinct record from the single array C and in step
three the pointer next-space must be incremented by the number of such processors. Determining this number requires
more than constant time even with concurrent reads. To circumvent this problem, we replace array C and variable
next-space with a separate array C; and variable next-space; for each j € {1,...,n}. This ensures that in each step, at
most one record will be allocated from any one array C; and that each next-space; is incremented by at most 1.

Specifically, on the n processor CREW PRAM with uninitialized memory, create n extra integer variables,
next-space; for j € {1,...,n}, and 3n cells of working space, and partition the remaining memory into n + 2 ar-
rays,A,Band Cjforj e {1,...,n} by interleaving. Array A is used to simulate the memory, say M, of the n processor
CREW PRAM with initialized memory. Entries in B are now a pair (p, i) where p is an integer between 1 and n and i
is an index into array C,.

Simulation R maintains the following two part invariant for every location / in M: (1) M[l] has been written by § if
and only if B[] = (p,i) where p € {1,...,n} and i € {1,...,next-space, — 1} and C,[i] = /; and (2) if M[I] has been
written by B then A[/] contains the last value written to M([l].

To initialize the structure, each processor j sets next-space; to 1 thus ensuring that the invariant holds initially.
Suppose, as previously, at some time step of algorithm 8, processors 1, ... , n access memory locations M[l], ... , M[l,]
respectively, and suppose the invariant holds before simulating this step. Let P; be the predicate (B[l;] = (p,i)ap €
{L,....,n}nie {1,... ,next-space, —~ 1} n C,[i] = I;). Let write-check'(l1,... ,ln, X1,... ,X,) be a procedure that sets
xjtoPjforje {1,...,n}. Notice that since the model permits concurrent reads, write-check’ takes only constant time
by having each processor j compute P; independently.

A CREW PRAM read procedure is obtained from the procedure read by replacing write-check with write-check’.
One parallel write step of the simulation R is as follows. For each j € {1,...,n}, v; is the value to be written to A[l;],
which simulates M{l;].

procedure crew-write((I1,v1),... , (In, Va))

1. write-check’(ly, ... ,In, X1,... , Xn).
2. forje {1,...,n} pardo
if —;, then

B[lj} « (j, next-space;), Cj[next-space;) « 1.
next-space; « next-space; + 1.
A[I,'] « V.

It is easily checked that the invariant holds after crew-write provided it held immediately before its execution.
Since the model is exclusive write, all ; are distinct and thus step two of crew-write takes constant time on a CREW
PRAM.

Theorem 3 Let B be an algorithm for an n processor CREW PRAM with initialized memory taking tg(n) time and
using sg(n) space. Then R(B) simulates p on an n processor CREW PRAM with uninitialized memory in time O(tg(n))
and space (n+3)sg(n) + 3n.

4. Discussion and Open Problems

In our simulations, each instruction executed by the PRAM with initialized memory is emulated by a short sequence
of instructions on the PRAM with uninitialized memory. Of course, for any memory cell not written during the run of
the algorithm, the contents of the original and simulated memories may differ. To extend the simulations so that the
final outputs are the same, we have to assume that the final output is actually written by the PRAM processors rather
than just being declared as some arbitrary part of the contents of memory.

According to simulation R, it is justifiable to assume that memory is preinitialized when determining a problem’s
time complexity on a CREW PRAM. We do not know if such an assumption can be justified for an EREW PRAM.
Furthermore, we do not know how to justify the assumption fora CREW PRAM without increasing the size of memory
by a linear factor.

Acknowledgements

This research was supported in part by a research grant and a postgraduate scholarship, both from the Natural
Sciences and Engineering Research Council of Canada.

References

1.

Richard M. Karp and Vijaya Ramachandran. A survey of parallel algorithms for shared-memory machines. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume A, chapter 17. Elsevier Science Publishers, Amsterdam, The
Netherlands, and The MIT Press, Cambridge, Massachusetts, U.S.A., 1990.

. W. Paul, U. Vishkin, and H. Wagener. Parallel dictionaries on 2-3 trees. In Lecture Notes in Computer Science 143:

Proceedings of the 10th Colloquium on Automata, Languages and Programming, pages 597-609. Springer Verlag, 1983.

. Lisa Higham and Eric Schenk. Maintaining B-trees on an EREW PRAM. Technical Report 91/446/30, Department of

Computer Science, University of Calgary, September 1991. Submitted for publication.

. Eric Schenk. The parallel asynchronous recursion model. Master’s thesis, Department of Computer Science, University of

Calgary, Canada, 1992. Research Report No. 92/473/11.

. K. Abrahamson. private communication.
. Alan Gibbons and Wojciech Rytter. Efficient Parallel Algorithms. Cambridge University Press, Cambridge, Great Britain,

1988.

. Richard Cole. Parallel merge sort. SIAM J. Comput., 17(4):770-785, August 1988.

