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Abstract

Virtual reality (VR) systems have potential of contributing to the training of medical

students in a variety of procedures. This thesis focuses on a design issue related to devel-

oping VR training systems for soft tissue (e.g., breast phantom) palpation. In such a VR

system, it is paramount to provide a real-time model that simulates physical behavior

of an actual breast phantom. However, it is difficult to design such a real-time model

with high accuracy due to time and physical constraints. To mitigate this difficulty, I

consider constraints of human perception which is insensitive to small discrepancies of

objects during real-time interaction. Such consideration could aid to relax design crite-

ria of the real-time model by achieving its accuracy at a certain degree while keeping

human perception of object softness unchanged. Therefore, I take a two-step approach

to determine visual and haptic (pertinent to force feedback) discrepancies tolerable for

this human perception. In the first step, an evaluation method is developed to compute

discrepancies of the real-time model for visual displacement and force feedback, com-

pared to its finite element method counterpart featuring physical parameters of a breast

phantom. The computation uses statistical analyses which like human perception are

insensitive to small discrepancies of datasets. In the second step, two studies are per-

formed to examine the constraints of human perception. The first study reexamined raw

data from my MSc work to understand the effect of three popular alignments between

a visual display and a haptic device on the human perception of object softness. This

study serves to select an alignment producing the least perceptual illusion and physical

workload for palpation. Using the evaluation method and the selected alignment, the

second study investigates the effect of different discrepancies on the human perception

of object softness. It is observed that this perception is insensitive to small discrepan-

cies up to a threshold of 11.0% and 6.3% for visual displacement and force feedback,
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respectively. This indicates that a real-time model yielding discrepancies of visual dis-

placement and force feedback below their respective thresholds could be sufficient for

simulating a soft tissue (such as a breast phantom) during palpation.
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Chapter 1

Introduction

For a more than a decade, virtual reality (VR) has provided valuable support for the

training of medical students and professionals in a variety of medical procedures [1]. By

providing means for simulating real-time visualization of and interaction with organs or

body parts (e.g., lungs, breasts), a VR training system can allow surgeons, doctors, etc.

to practice medical procedures. Furthermore, VR training systems automatically present

a detailed evaluation of user performance during the procedure. Also, computerized VR

training systems could save costs that would occur when acquiring physical phantoms of

human organs or body parts. Medical VR training systems use stereoscopic displays for

real-time visualization of soft tissues and a force feedback (haptic) device for simulating

the user’s sense of touch by rendering force feedback to the user’s hand in real time.

For example, a VR training system could provide a good alternative to physical training

system for soft-tissue palpation training using a phantom.

Palpation consists of applying force through fingers to assess the health of soft tissues,

such as those in the breast [2]. As illustrated in Fig. 1.1, medical students learn breast

palpation using hemispheric phantoms made of silicone gels. Using these phantoms,

students apply force to a contact area using the distal section of their fingers. Generally,

they only use the index finger or both index and middle fingers during palpation [2].

Under the force applied to the contact area, the phantom deforms showing a visual

displacement and offers resistance to the finger as force feedback. This combination of

visual displacement and force feedback exhibited by the phantom simulates the general

mechanical behaviour of a real breast. Unfortunately, such phantoms were found not to

be effective in improving the palpation skills of medical students [3]. This is due mainly

1



2

Figure 1.1: Breast phantom shaped as a hemisphere and made of silicone gel with two
palpating fingers.

to the lack of performance feedback given to the students, such as describing the applied

force.

As a suitable alternative, especially with respect to providing adequate performance

feedback, a VR training system that can simulate palpation could potentially improve

the training of medical students. However, to ensure the learning outcome of such a

system, it is important to warrant the physical behavior over time of a computational

model capable of simulating the general mechanical behaviour of an actual soft tissue.

In the case of a breast phantom, the computational virtual phantom must show softness

with viscoelastic and hyperelastic characteristics. These two characteristics replicate

the general mechanical behaviour of an actual breast phantom that the user can see and

touch in a VR training system. Combining stereoscopic visualization and haptic (force)

feedback for interaction, the VR training system is encountered with two different refresh

rates for visualization and force feedback, respectively. When using a conventional frame-

rendering monitor, the minimum refresh rate to display visual information for both

human eyes is 120 Hz, whereas the minimum refresh rate for the haptic device (pertinent

to force feedback) is about 1000 Hz [4]. These different refresh rates constrain the

development of computational models of soft tissues for real-time interaction. Therefore,

most of the research to improve real-time computational models aims at either improving
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their accuracy or their rendering speed [5]. The more accurate a model, the more time

is needed for its computation. In this thesis, I aim at investigating an approach which

would permit to strike a balance between the accuracy and rendering speed of a real-time

model, while taking into consideration human perception of object softness. Human

perception refers to the process used by humans to gain consciousness of the world

around them [6]. This investigation is the first step toward the creation of a VR system

for training palpation.

In this context, multiple studies have shown that humans are subject to constraints

preventing them from perceiving object softness consistently under various interaction

scenarios, especially during interaction with a VR system that includes a visual display

and/or force feedback device [7, 8]. These studies observed that humans had difficulties

keeping track of object collisions when facing a large number of moving objects [7];

and that they could misjudge object softness when two object of same softness are

placed at different vertical locations [8]. This shows the possibility to take into account

constraints of human perception for easing the design criteria of a real-time model used

for palpation in a VR training system. Some evaluation methods are currently available

for assessing the accuracy of computational models that simulate actual soft tissues

in a VR system [9, 10]. However, it seems that these methods do not consider any

constraints of human perception. The lack of consideration of these constraints can

lead to inaccurate perception that possibly affects the learning outcome offered by a VR

training system. Therefore, research is needed to investigate a new approach considering

constraints of human perception to ease design criteria of a real-time model used in a

VR training system without introducing perceptual illusions.
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1.1 Research Challenges and Thesis Objective

To carry out this research, the investigation of a new approach that considers human

constraints when perceiving object softness needs to address four research challenges.

Challenge I encompasses the development of a new evaluation method to assess

spatial and temporal behaviour of a relatively simple real-time model to be used for user

interaction in a VR system that considers human constraints. In a VR training system,

real-time models must realistically simulate spatial and temporal behaviours of virtual

objects based on the behaviour of an actual soft object. Some evaluation methods

of real-time models exist to verify the differences of the behaviours of these models

compared to their Finite Element Method (FEM) counterparts using physical parameters

[9, 10]. Unfortunately, none of these methods takes the approach of considering human

constraints when perceiving object softness. Therefore the challenge is to develop an

evaluation method that takes into account human constraints during the perception of

object softness.

Challenge II focuses on the development of a real-time model to be used as an example

to demonstrate the feasibility of the evaluation method. Based on the current state-of-

the-art technologies, real-time models still have difficulties to simulate viscoleastic soft

tissues with accuracy in a timely manner (100Hz for visual feedback and 1000Hz for

force feedback) [4]. This implies that there is a need to provide an alternative solution

for developing a real-time model showing viscoelastic behaviour with decreased accuracy

measurements and increased rendering speed based on constraints of human perception.

Focusing on the human constraints for perceiving object softness, the challenge is to

develop a real-time model based on existing technologies that features a fast rendering

speed enabled through a reduced model complexity and acceptable model accuracy.

Challenge III and Challenge IV are related to the investigation of human constraints

associated to the perception of object softness. The goal of this investigation is to
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examine how the development of VR training systems could utilize such constraints. To

achieve this goal, two different aspects of human constraints need to be investigated. At

first, Challenge III explores the effect of spatial alignment between a visual display and

a haptic device on the perception of object softness. In the literature, researchers have

used different alignments between a visual display and a haptic device in VR simulations

[8, 11, 12]. In meeting this challenge, I have developed a human study to investigate

the effect of different alignments between a visual display and a haptic on perception of

object softness and physical workload during interaction.

Secondly, using the alignment that is found in meeting Challenge III to produce

the least perceptual illusions and physical workload during interacting with soft objects,

Challenge IV investigates possible perception insensitivities to subtle variations of visual

displacement and force feedback produced by a soft real-time model under palpation.

The investigation features two complementary analyses: variation computation and hu-

man study. Variation computation quantifies the differences of visual displacement (vi-

sual information) and force feedback (haptic information) produced by four different

force distributions on a contact area of a palpated soft object. The human study exam-

ines the hypothesis that the human perception of object softness is insensitive to some

of these theoretical variation levels.

To meet all these challenges, the objective of this thesis is to investigate a

new approach that considers the constraints of human perception of object

softness to ease design criteria for real-time models used in VR training

systems for palpation. This investigation could open a new approach of reducing

complexity of the real-time models while ensuring no loss in terms of human perception.
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Evaluation Method

Statistical Evaluation  (Challenge I)

Human Constraints during Perception of Object Softness

E!ect of a Visual Display and a Haptic Device Alignments on Perception of Softness

(Challenge III - Chapter 4)

(Challenge IV - Chapter 5)

(Chapter 3 - Challenges I and II)

Human Studies (Chapter 4 and 5 - Challenges III and IV)

Real-Time Model (Challenge II)

Visual Displacement
 

Force Feedback

Geometry
 

Collision Detection & Response
 

Material Properties

Figure 1.2: Challenges and organization of the thesis.

1.2 Contribution and Thesis Organization

This thesis aims at the investigation of a new approach that considers the constraints

of human perception of object softness to ease design criteria for real-time models used

in VR systems for training palpation. The thesis outline and the relation of all chapters

to research challenges are illustrated in Fig. 1.2. Three major chapters present the

contributions of this thesis:

1. Statistical Evaluation of a Real-Time Model (Chapter 3) – I proposed a

method for evaluating real-time models that take into account constraints occur-

ring in the human perception of object softness (Challenge I). Based upon different

interaction scenarios, the evaluation method compared a real-time model with a

FEM model featuring physical parameters. The comparison consisted of two sta-

tistical tools –Analysis of variance and Bland and Altman agreement method [13]–
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to assess the differences between visual displacement and force feedback, respec-

tively. As part of a case study to demonstrate advantages provided by the method,

I modified a real-time model based on the one in my previous master’s thesis work

(Challenge II). The real-time model featured a surface mesh with a state equa-

tion simulating a gas encompassed within the surface mesh. This model achieved

real-time simulation due to its relative computational simplicity. Compared to a

FEM model with physical parameters, the correct match of the real-time model

is verified for both visual displacement over time on the entire mesh and force

feedback on a contact area, by applying the presented evaluation method. This

work has been published in peer-reviewed conference publications as follows:

A. Widmer and Y. Hu, (full-paper submission for review), “Statistical

comparison between a real-time model and a FEM counterpart for visual-

ization of breast phantom deformation during palpation,” Proceedings of

the 23rd Canadian Conference on Electrical and Computer Engineering

(CCECE), 4 pages on CD-ROM, Calgary, AB, Canada, May 2010.

A. Widmer and Y. Hu, (full-paper submission for review), “A vis-

coelastic model of a breast phantom for real-time palpation,” Proceedings

of the 33rd Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (IEEE-EMBC), pp. 4546-4549, Boston,

MA, USA, August 2011.

A. Widmer and Y. Hu, (full-paper submission for review), “An eval-

uation method for real-time soft-tissue model used for multi-vertex pal-

pation,” Proceedings of the IEEE International Conference on Systems,

Man, and Cybernetics (IEEE-SMC), pp. 127-132, Anchorage, AK, USA,

October 2011.
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In addition, a journal manuscript of this work has been submitted to a leading

journal - the ACM Transactions on Modeling and Computer Simulation and is

accepted for publication:

A. Widmer and Y. Hu,(22 single pages submitted on December 22,

2011; reference number #: TOMACS-2011-0142.R1), “An evaluation

method for a real-time simulation of a viscoelastic phantom based on

constraints of human perception,” ACM Transactions on Modeling and

Computer Simulation.

2. Effects of Hardware Alignments on Human Perception of Object Soft-

ness (Chapter 4) – A critical aspect of VR training systems is to present both

visual and haptic information accurately to avoid perceptual illusions (e.g. to prop-

erly distinguish the softness of tissues). Using three different hardware alignments

between a visual display and haptic device widely used in VR systems, I reanal-

ysed data gathered from a human study to investigate the effect of viewing angles

on human perception of object softness during my M.Sc. work. In this chapter, I

studied the influence of each alignment on the perception of object softness (Chal-

lenge III). To carry out this study, I re-examined raw data from my M.Sc. work

for the following dependent measurements: subject perception of object softness

and new objective measurements of maximum force and maximum pressing depth.

As results, the study showed that a “same-location” alignment offers comparable

subjective perception as vertical and horizontal alignments with smaller force mag-

nitude applied (that is, lower physical workload). This observation revealed that

a “same-location” alignment facilitates user interaction with soft objects. Part

of this work has been published in the flagship IEEE international conference on

virtual reality as follows:
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A. Widmer and Y. Hu, (full-paper submission for review), “Subjective

perception and objective measurements in perceiving object softness for

VR surgical systems,” Proceedings of IEEE Virtual Reality Conference

2009, pp.267-268, Lafayette, LA, USA, March 2009.

In addition, a journal paper of this study is published in the mainstream journal

- IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and

Humans:

A. Widmer and Y. Hu, “Effects of the alignment between a haptic

device and visual display on the perception of object softness,” IEEE

Transactions on Systems, Man and Cybernetics, Part A: Systems and

Humans, vol.40, no.6, pp.1146-1155, November 2010.

3. Human Constraints for Softness Perception during Real-Time Palpation

(Chapter 5) – An issue of VR training systems for training palpation is to assess

contact definitions between the finger(s) and virtual soft tissues (e.g. the breast

phantom) during real-time palpation, because contact definitions might affect the

softness perception of the phantom. Considering visual and haptic information

derived from the phantom, I hypothesized that the human perception of object

softness is insensitive to small discrepancies of the information. I conducted two

complementary analyses to verify this hypothesis. In the first analysis, I computed

variation levels of visual displacement on the meshed nodes of the phantom and

force feedback derived from the meshed nodes within a contact area on the phan-

tom, respectively. This computation was conducted among paired comparisons

of four force distributions under two contact definitions. In the second analysis,

I undertook a human study to determine a variation level of insensitivity under

the same force distributions. Both analyses revealed that the perception of object
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softness is insensitive up to a variation level of 11.0% for visual displacement and of

6.3% for force feedback. These levels of insensitivities have implications for easing

design criteria of real-time models when creating VR training systems for palpa-

tion. Part of this work has been published in the mainstream IEEE international

conference as follows:

A. Widmer and Y. Hu, (full-paper Accepted on May 25, 2012; paper

number #: 91), “Difference of object softness perception during palpation

through single-node and multi-node contacts,” Proceedings of the 34rd

Annual International Conference of the IEEE Engineering in Medicine

and Biology Society (IEEE-EMBC), San Diego, CA, USA, August 2012.

In addition, a journal manuscript from this study is submitted to the reputable

journal - IEEE Transactions on Haptics:

A. Widmer and Y. Hu, (12 double column pages submitted on June 5,

2012; submission number #: TH-2012-06-0042), “Human Constraints

for Softness Perception during Real-Time Palpation,” IEEE Transac-

tions on Haptics.

The rest of this thesis is arranged into 5 chapters. Chapter 2 introduces the back-

ground information and state-of-the-art that led to the thesis work. Chapter 3 to Chap-

ter 5 describe my contributions to research and the methods used to achieve the objective

of this thesis. Chapter 6 summarizes this thesis and presents future work.



Chapter 2

Literature Review

2.1 Introduction

As described in Chapter 1, the objective of this thesis is to investigate a new approach

aiming at easing design criteria of a real-time model by considering human constraints

when perceiving an object’s softness. In the current chapter, I will present the back-

ground information and state-of-the-art technologies associated to the four challenges

introduced in Chapter 1. First, I will present various VR training systems used for

medical applications that use computational models for user interaction. Secondly, I

will present different methods used to evaluate real-time computational models and

demonstrate the lack of available methods when considering the constraints of human

perception. Thirdly, I will discuss computational models available for interaction in a

VR training system. These models must be able to simulate the deformation behavior of

a soft tissue during palpation in real time. Finally, I will review literature about human

constraints when perceiving and interacting with an object’s softness using the sense of

sight and/or the sense of touch.

2.2 Medical VR Training Systems for Palpation

Offering advantages over current training systems for palpation, VR systems could allow

repetitive practice and log the practice for objective assessments of learning. In this

context, a few research groups have focused their efforts on the development of VR

systems for palpation simulation [14, 15, 16]. Dinsmore et al. attempted to create a VR

system for simulating human liver palpation [14]. Due to the relatively time-consuming

11
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force computation, they computed the force required to deform the liver offline (before

interaction) and rendered the feel of this force through a pair of force feedback gloves.

However, there was a lack of extensive testing on the accuracy of the touch; and a

temporal delay existed during the interaction of palpating the liver. Chen et al. [15]

presented a system for real-time visualization of muscle palpation. However, this method

cannot be directly applied to viscoelastic soft-tissues such as the breast, because muscles

appear to undergo much smaller deformation than a breast during palpation. As a result,

it is difficult to transfer their system to simulate breast palpation. Daniulaitis et al. [16]

developed a system for teaching breast palpation. However, they could not visualize

breast deformation in real time without sacrificing the number of vertices on the mesh

used for simulating the breast geometry. Consequently, the breast geometry was not

realistic enough for visualization.

In short, research efforts have been carried out to develop VR systems for palpation

simulation. However, no acceptable VR system for palpation simulation is available due

to multiple challenges that prevent real-time interaction from occurring.

2.3 Evaluation of Computational Models

An evaluation method, assessing real-time models by considering the constraints of hu-

man perception of object softness, is necessary to warrant the learning outcomes of such

VR systems. In particular, evaluation should ensure that the simulation of a real object

provides the similar deformation behavior as the real object does under applied force.

The evaluation needs to check: (1) the visual displacement (i.e., the deformation) of a

virtual object under applied force, and (2) the force feedback computed by a model dur-

ing the interaction. Many computational models are currently created for applications.

It is important to know what model is suitable for a specific application in terms of its

accuracy. Some researchers have proposed different methods to address this problem.
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This section summarizes some interesting work done on these methods.

2.3.1 Comparison to a FEM Model

On a meshed geometry of an object, current methods usually evaluate computational

models by comparing the visual displacement (deformation) of a subset of meshed nodes

between the models under study and their offline FEM counterparts [17, 18]. For exam-

ple, Sedef et al. used a Finite Element Method model featuring linear viscolestaticity to

compare their real-time model of the human liver. They applied force on a single node

and recorded the visual displacement and force feedback from a subset of the meshed

nodes that they used to create a cube. Their evaluation only considers single-node con-

tact. However single-node contact does not simulate a normal palpation that applies

force on a surface like a finger would. In addition, the results of their evaluation might

be misleading as they compared displacement and force feedback on a cube featuring

physical parameters of an actual human liver. Using a cube instead of an actual human

liver shape could produce different results of visual displacement and force feedback due

to different mesh topologies.

2.3.2 Comparison to an Actual Object

Other evaluation methods compare the location of selected nodes on a meshed geometry

of an object computed by a real-time model to experimental data acquired from markers

carefully positioned on a real counterpart [9, 10]. For example, Kerdok et al. proposed

a method that only compared internal displacement in a real-time model simulating a

soft-tissue to its physical equivalent [10]. In addition, their method needs expensive

equipment to run the comparison. This makes replication of the method difficult.
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2.3.3 Comparison Metrics

Some researchers have reported various metrics to compare different models [19, 20].

These metrics are able to evaluate real-time models with respect to a model producing

more accurate visual displacement and force feedback using Root Mean Square Errors

(RMSE). To predict facial deformation after surgery, Mollemans et al. [19] compared

four popular different models (linear Finite Element Model, non-linear Finite Element

Model, Mass Spring Model and Mass Tensor Model). The validation process included a

computerized portion and a human portion. The computerized validation consisted of

the comparison of post-operative data from real patients with the outcomes computed

by the four models tested. As a starting point, they created 3D tetrahedral meshes

based on pre-surgery data from the same patients. As a comparison metric, they used

the distance between nodes computed by each model and actual nodes gathered from

the post-operative data. They measured a signed Euclidean distance between nodes

computed by the model and nodes measured from their patients. The goal was to

compute statistical properties for each model such as the mean, the variance, and the

50%, 90% and 95% percentiles of the distance distribution. As the human validation,

they asked surgeons to score the outcome of each model based on the realism and

difference with the actual data from the patients. However their goal was to verify

only the result of the deformation. Therefore, this method cannot be applied to the

evaluation of real-time models.

Marcha et al.[20] proposed a unified method to answer two important questions: (1)

does the numerical approximation of equations that govern a model provide acceptable

results; and (2) does the model provide accurate simulation of the physical behaviour

of the simulated object when computation time is limited? As a comparison metric,

they consider the “relative energy norm error”. This comparison metric includes the

displacement of each node of a meshed object at each time step from the reference model
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and from the model under test. The relative energy norm error gives measurements on

the whole volume of the model under test. Another comparison metric corresponds to

the Euclidean distance between the location of a node computed by the reference model

and its counterpart computed by the model under test. The goal of the study was to

introduce new metrics, but it was not to link these metrics to their effect on human

perception of object softness.

2.3.4 Summary

In summary, the presented methods carry two main problems. The first problem arises

from the limited assessment introduced by considering only the visual displacement

of a fixed number of selected nodes, or by considering only visual displacement and

force feedback produced by a single-node contact. Therefore, these methods cannot

evaluate the full mesh of an object governed by a real-time model in term of visual

displacement and force feedback. The second problem is that none of the presented

methods accommodate human perception as a factor for interaction. As discussed in

Chapter 1, human perception of object softness may be significantly affected by external

factors such as viewing angles during interaction with a soft object in a VR training

system. This might limit the learning experience offered by such training systems.

2.4 Computational Models

Used in most VR systems for training palpation, computational models of soft objects

receive attention from researchers due to their time and physical constraints. These

computational models are responsible for simulating actual soft objects for user inter-

action in real time. The responsibilities of such computational models encompass: (1)

Control of behavioural deformation (e.g., visual displacement of soft objects and force

feedback from soft objects) in real time; (2) Collision detection between such a computa-
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tional model of a soft object and a virtual tool/finger moved by a user; and (3) Collision

response providing an appropriate deformation response after the collision between the

soft object and the tool/finger is detected. This section introduces the state-of-the-art

methods and background information related to these three responsibilities.

2.4.1 Real-Time Models

When developing a VR system for palpation training, the model of a soft object used

in the VR system is critical because it will affect the visual and haptic (touch) aspects

of object deformation during palpation. Minimum features for such models include:

(1) real-time rendering to provide visual and haptic feedback without delay; (2) short

preprocessing of visual displacement and force feedback to make the deformation of

an object quickly available to the user during interaction; (3) realistic deformation to

ensure that the computed deformation corresponds to that incurred by a real object; (4)

ability to render large deformations caused by palpation (more than 2% of geometrical

difference between the object and its deformed state). To create VR systems with

different needs, many researchers have investigated computational models to render the

real-time deformation of soft objects [21, 22, 23]. Two main categories of models emerge:

(1) real-time models suitable for rendering deformation of virtual soft objects in real

time and (2) FEM models for taking account material parameters of real soft objects.

The real-time models include mass-spring models and mass-tensor models solved using

non-FEM numerical methods.

Mass-Spring Models

The real-time models include mass-spring models and mass-tensor models solved using

non-FEM numerical methods. Governed by the Hookean law, mass-spring models use

a spring constant and a damping factor as material parameters to describe homogenous

objects [21, 22]. Mass-spring models are very popular because they provide real-time
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rendering, require no preprocessing of visual displacement or force feedback, and handle

large deformation in a relatively realistic manner in terms of visual displacement. With

additional techniques, such as adding volume springs, the mass-spring models are able

to conserve the volume of soft objects during deformation. However, numerical methods

used to solve the equation of the Hookean law can cause the models to be unstable [24].

The mapping of the material parameters from real objects to their virtual counterparts

is problematic due to the difference in material parameters between those measured on

real objects and those used in mass-spring models [24] . Properly determining material

parameters of soft objects plays an important role in using such a model to describe

their deformation behavior.

Mass-Tensor Models

Differing from the mass-spring models, a mass-tensor model combines advantages of

easy implementation and short computation time, and its physical parameters are easily

transferable from physical experiments conducted on actual object [25]. However, a

mass-tensor model is tuned to handle topologic changes such as cutting soft objects.

Therefore, the realism of large deformation is not a key concern in the mass-tensor

model. Additionally, the mass-tensor model does not warrant volume conservation.

Non-Linear FEM Model

To overcome the drawbacks of mass-spring and mass-tensor models, researchers inves-

tigated models using FEM [23, 26, 27]. FEM solves non-linear and linear constitutive

equations using material parameters directly mapped from real objects. Solving non-

linear equations produces more accurate results in terms of visual displacement and force

feedback but cannot run in real time.
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Table 2.1: Comparison of computational models for matching the criteria of a VR system
for palpation training.

Real-Time Models FEM Models
Mass-Spring
Model

Mass-Tensor
Model

Non-linear Linear

Computational
speed

real-time real-time offline real-time

Preprocessing no yes n/a yes
Volume conser-
vation

yes no yes yes

Deformation re-
alism

realistic
for small
and large
deformation

realistic for
cutting tissue

very realistic very realistic
for small de-
formation

Large deforma-
tion

yes no yes no

Linear FEM Model

Although it is feasible to solve linear equations in real time and to warrant volume

conservation of soft objects during deformation, the design of linear FEM models is

quite challenging. Consequently, most linear FEM models provide low accuracy when

simulating deformation of objects or require time-consuming pre-computation of visual

displacement and force feedback [26, 27]. In addition, when resolving linear equations,

FEM models show excessive visual distortion when simulating large deformations in

objects [28].

Summary

In summary, Table 2.1 compares these 4 types of computational models according to

the features deemed important for creating a VR system for palpation training. A

computational model alone can describe the behavior of phantom soft object. However

collision detection and collision responses are needed to provide interaction with a finger

during palpation of the object.
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Table 2.2: Ability of collision detection algorithms to match the criteria for the creation
of the VR system for palpation training.

Sphere
approximation

BVH CDC GJK VCD

Soft object yes yes no yes yes
Shape
restriction

no no no concave no

Multi-node
contact

yes yes yes yes yes

Approximation
of distance

yes no yes yes no

2.4.2 Collision Detection

To be interactive, a computational model needs to detect collision when a finger contacts

the geometry of a viscoelastic soft tissue. Therefore, a VR system requires a detection

collision algorithm. This algorithm must: (1) consider deformation of soft objects; (2)

handle any object shape as soft objects can be both concave and convex, depending on

the applied force; (3) include multi-node contact to increase the realism of the collision;

(4) rely as little as possible on the approximation of collision distance as it decreases

the realism of the collision. Researchers provide many algorithms for collision detection:

Sphere approximation uses spheres to detect collision between two objects [15]; Bounding

Volume Hierarchies (BVH) use logical trees to store and search the topology of objects

when a contact occurs [29, 30]; Continuous Detection Collision (CDC) relies on an

approximation of the future object location to detect the collision [31]; The Gilbert-

Johanson-Keerthi distance (GJK) algorithm uses Minkowski differences to approximate

the collision location [30]; and Voxel-based Collision Detection (VCD) uses location

information stored in voxels (small cubical part of an object) [32, 33]. Most of these

algorithms were created to handle collision detection of rigid objects. However, Sphere

approximation, BVH, GLK and VCD handle collision of soft objects as well. Among

these algorithms, BVH seems to be a good candidate to be used to simulate palpation;
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Table 2.3: Abilities of algorithms of collision response to match the criteria for the
creation of the VR system for palpation training.

Hertz
Contact

Penalty
force

Constraint-
based force

Impulse
force

Visual real-
ism

good bad bad bad

Multi-node
contact

yes yes no yes

Realistic
collision
states

yes yes yes no

Large defor-
mation

no no no no

Collision of
soft objects

yes yes no yes

because it is fast (faster than VCD) as it uses logical trees to detect collision, can be

applied to any shape, and is easy to implement on a mesh. Table 2.2 summarizes the

ability of each algorithm to meet the different criteria required to create a VR system

for palpation training.

2.4.3 Collision Response

Once collision is detected, a computational model must provide an appropriate response

computed by an algorithm for collision response. Collision response for palpation train-

ing requires: (1) visual realism of the response as it affects the perception of object

deformation; (2) ability to compute force on a multi-node contact surface; (3) realis-

tic collision outcomes to reflect actual deformation behavior when colliding objects are

still in contact; (4) capable to handle large deformation (more than 2% of geometrical

difference); (5) ability to response when soft objects are collided. Various algorithms

have been used for collision response. For example, the Hertz Contact algorithm uses

spheres to approximate a penetration depth and computes forces to separate colliding

objects based on this depth [15]. The penalty force algorithm utilizes the penetration
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depth of two colliding objects [30], whereas the constraint-based force algorithm applies

equations that prevent the objects from interpenetrating. Finally, the impulse force

algorithm computes an impulse force that separates the objects each time they collide

(summary available in [30]). As shown in Table 2.3, no algorithm seems to encompass

all the features I need to develop a VR system for palpation training. Nevertheless,

the integration of a computational model for a virtual breast phantom with algorithms

of collision detection and response allows the phantom to be fully interactive during

palpation - deforming the phantom according to the force applied onto it. To warrant

correct visual and force feedback of the phantom, an evaluation method must verify

that a real-time model for describing the deformation behavior of the phantom provides

appropriate feedback.

2.5 Constraints of Human Perception Constraints

Human perception is the process used by humans to gain consciousness of the world

around them [6]. Using the different senses combined by the nervous system, this process

is known to be subject to personal learning and memory history [34]. Many illusions

associated to all senses affect multiple human perceptions. In the context of visual and

haptic (force feedback) perception, several studies have revealed that visual and haptic

information can affect each other during object perception, especially in discriminating

object softness. For example, Srinivasan et al. [35] demonstrated that the discrimination

of spring stiffness declined dramatically when visual information about the deformation

of the springs did not match with haptic information of the same deformation. Moreover,

they discovered that visual information of object displacement had a great influence on

the perception of object stiffness of a virtual spring. In certain specific mismatches,

they observed that the visual information could even invert the subjects’ judgment in a

discriminating task of spring stiffness. Wu et al. [36] discovered that visual information
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such as the 3D perspectives dominated the discrimination of spring stiffness, no matter

whether haptic information was present. Furthermore, studies have reported divergence

of perception during user interaction within VR systems. In one of my previous studies,

I observed concrete evidence that the viewing angle at which a soft object is looked

at can influence human perception of object softness [8]. I found that both visual

displacement and force feedback of a deformed soft object affect this perception. Also,

when studying human perception during real-time simulation, O’Sullivan and Dingliana

revealed that subtle visual discrepancies during the simulation can be unnoticed by

human perception [7]. To demonstrate this, they performed a human study. Involving

only visual simulation, their study focused on the ability of subjects to detect abnormal

collisions of many objects, while varying some key aspects such as the speed of the

simulation or the number of objects colliding.

Revealing different constraints of human perception, all these studies demonstrate

the need to accommodate this perception when assessing a VR system. In particular,

the study from O’Sullivan and Dingliana shows that subjects tend to concentrate on a

subset of the available visual information when facing large amounts of rapidly changing

information [7]. I assume that this tendency also holds when humans interact with

soft objects in real time. If this assumption is verified for soft tissue interactions, this

will open a new way to develop new VR systems with simplified computational models

that can achieve a frame rate of 100Hz or higher, which would be suitable for real-time

interaction.

2.5.1 Combination of Vision and Touch

In everyday interaction, both senses of vision and touch supply information about the

softness of tissues/organs. These senses always work together to provide a representation

of objects for interaction. However, VR systems as artificial environments can easily

decouple these senses. To provide realistic simulations of real tissues, it is critical for
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VR training systems to display 3D structures of these tissues and to allow interaction

with these structures without producing perceptual illusions.

Although the sense of vision is often predominant over the sense of touch, this dom-

inance is not universal [37]. The dominance of the sense of vision seems to be limited

when estimating object surface properties, such as its texture [37]. Based on a reliability

index of the senses of vision and touch, Ernst and Banks [38] proposed a model to predict

the involvement of each sense in integration of visual and haptic stimuli. They discov-

ered that the sense of vision dominates over the sense of touch, only when the variance

associated to the estimation of the visual information was smaller than its counterpart

of the haptic information. Newer studies on softness perception [39, 40] found that the

combination of the visual and touch for softness perception cannot be predicted by the

model proposed by Ernst and Bank [38]. Kuschel et al. [39] revealed that when both

senses disagree, the perceived softness is closer to the harder stimulus given by either the

haptic or visual channel. The results from their experiments showed that participants

were better at discriminating harder objects. Drewing et al. [40] observed that when

both visual and haptic information were available, participants tended to trust more the

haptic information. Tiest and Kappers [41] demonstrated that participants used mostly

deformation of the surface of soft objects as cues to perceive object softness.

In order to minimize perceptual illusion during interaction, all these studies are

of interest in building an accurate VR system for palpating a viscoelastic soft tissue.

However, the effect of many perceptual illusions is still not clear. Investigating this

effect will help understand human perception of object softness and improve such a VR

system.

2.5.2 Effect of Alignments between a Visual Display and an Haptic Device

When building VR training systems, it is crucial to display 3D tissues and to allow

interaction with them without introducing any perceptual illusion due to patient safety.
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However, the integration of visual and haptic information can be problematic in such VR

systems due to different representations of both senses of vision and touch [42, 43, 44].

Several studies have revealed that visual and haptic information can intrude with each

other in object perception, particularly in discriminating object softness [35, 36, 8]. In

addition, I observed that the alignment of a visual display relative to a haptic device

affects the perception of object softness [8]. In this study, the haptic device was located

directly under the visual display at the same vertical axis (vertical alignment) in one

experiment, and was beside the same visual display (horizontal alignment) in another

experiment.

There are many other reports on VR systems that have varying alignments between

a visual display and haptic device. To develop VR systems, some studies have used

a horizontal alignment [45, 12]. A common observation of studies using a horizontal

alignment was that the user performance in a virtual environment was inferior to the

performance in the real world. Some VR systems use a “same-location” alignment, in

which a mirror reflects a visual display onto the spatial location of a haptic device. At

one spatial location, this alignment merges the visual information of a visual display

with the haptic information provided by a haptic device. This alignment allows the user

perception of an object in space to agree with the location of the hand [46]. ”‘Same-

location”’ alignment has been used to provide new 3D tools [47, 48] or to investigate the

integration between the senses of vision and touch [49].

Despite the many reported VR systems, only little research exists on investigating

the effects of spatial location between visual and haptic information about an object.

In a large-scale haptic device (Big SPIDAR), Bouguila et al. [50] investigated how the

spatial displacement between visual and haptic information about an object affects the

depth perception of the object. They found that the user interaction with the object

at the same location as the haptic device improved the depth perception. By placing
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a haptic device in front of a visual display, Swapp and Loscos [51] examined the effect

of spatial displacement between visual and haptic information on user interaction with

a 3D object, varying the alignment between a visual display and haptic device. They

found that using an alignment similar to the “same-location” alignment improved sig-

nificantly the accuracy of user interaction for activities that require rapid motion of the

hand. By altering the location of the visual display, Wu et al. [11] investigated the

influence of “same-location” alignment for needle insertion under the guidance of ultra-

sound displays. The performance of subjects were more accurate using a “same-location”

alignment between a needle and the ultrasound displays compared with a conventional

alignment of placing the ultrasound displays away from the site of the needle. Although

these studies demonstrated the superiority of “same-location” alignment for some tasks,

they did not investigate the effects of this alignment on the perception of object softness

from a user perspective.

2.5.3 Human Constraints for Perception of Object Softness during Real-

Time Palpation

During user interaction with the simulated tissues, computational models are contacted

by other objects (e.g. tools) or human users (e.g. fingers). The validation of the contact

is paramount for providing realistic experience to the users of VR training systems.

In this thesis, I identified two main contact definitions for interaction: single-node

contact and a multi-node contact. The single-node contact definition is commonly used

in most current VR simulators. This definition is mainly due to limitations introduced

by current stylus-style haptic devices, which render a vector of force feedback at each

time step. For example, Gurari et al. investigated discrimination of object softness

using a real-time spring model with a single-node contact definition [52]. Sedef et al.

developed a real-time viscoelastic model simulating the human liver [17]. In one of my

previous studies, I found that humans are affected by the viewing angle at which they
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can see and interact with a soft object when perceiving object softness [8]. In all these

studies, the user interaction with the object governed by a real-time model was through

a single-node contact definition. However, the single-node contact definition departs

from actual user interaction with objects by applying force on a surface (contact area)

such as a finger would.

In contrast, a multi-node contact definition covers an area of nodes rather than a

single node and thus allows rendering multiple vectors of force feedback (i.e., each vector

corresponds to a node). There are reports on utilizing a multi-node contact definition

for user interaction. For example, Duriez et al. developed a multi-node contact by using

the Signorini’s model [53]. However, the computation of this contact was not fast enough

to permit real-time user interaction. To perceive fabric textures, Manousopoulos et al.

proposed a contact method for considering the fingertip size of the thumb and index

finger [54]. This method demonstrated the advantage of a multi-node contact definition

over a single-node contact when pinching a fabric. Moreover, a multi-node contact

definition permits the possibility of applying various force distributions over a contact

area. As shown in our early study [55], a real-time model of a breast phantom exhibited

different displacement and force feedback under the palpation of a single-node or multi-

node contact definition with varying force distributions. Nevertheless, the effect of the

difference between single-node and multi-node contact definitions on user interaction is

currently still unclear.

However, there are some studies to investigate the effect of a single-node contact def-

inition on human perception of object softness. Based on haptic information of objects,

Cholewiak et al. examined the human ability of discriminating object softness and force

magnitude [56]. They observed that the participants in their study could discriminate

up to 3 levels of object softness and force magnitude, respectively. This observation

implies that humans possess a relatively poor ability of this discrimination when only
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relying on haptic information. Using both visual and haptic information, Gurari et al.

studied human perception of object softness [52]. They observed that some participants

used haptic information, whereas others relied on visual information for the perception.

That is, the participants subjectively applied strategies to aid their perception of object

softness. Kuschel et al. proposed a theory to understand how humans perceive object

softness using both visual and haptic information [39]. They suggested that humans

assign different weights to visual and haptic information for the perception. All these

studies used a single-node contact definition for rendering haptic information. A com-

mon observation from these studies is that the perception of object softness is affected

at certain degrees by both visual and haptic information of the objects.

Similar observation might be present under a multi-node contact definition. There

is however little literature reporting such observation. This might result from the lack

of haptic devices providing multiple vectors of force feedback on a contact area. Despite

of existing glove-style haptic devices (such as a CyberGrasp [4]), this style of haptic

devices offers actually a single-node contact definition on each finger by rending a vector

of force feedback on the finger. Current stylus-style haptic devices are for a single-node

contact definition to render a vector of force feedback at a spatial location. Such a stylus-

style haptic device could be used for examining the human perception of object softness

under a multi-node contact definition, because there was no significant difference of

perceiving object softness through using a rigid rod (like a single-node contact definition)

or a bare finger (as a multi-node contact definition) [57, 35]. Nevertheless, a multi-

node contact definition of palpating soft objects would generate visual displacement

(visual information) of the objects differently from that under a single-node contact

definition, especially when various force distributions is applied to the multi-node contact

definition. Such discrepancy of visual displacement might affect the perception of object

softness, even under similar haptic information rendered from either single-node or multi-
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node contact definitions. This postulation is derived from the observation that visual

information of objects plays a certain role in the perception of object softness [52, 56, 39].

2.6 Summary

In recapitulation, VR training systems offer a good alternative for training real critical

tasks such as medical procedures. A VR training system for medical procedures must

offer a training experience that closely simulates the real tissues that occur during a

medical procedure and felt by a trainee. In the case of palpation, a close simulation

of largely deformable tissues is needed to achieve this goal. Researchers have already

investigated many aspects of deformable tissues to be rendered in real time. Also, some

evaluation methods exist to test differences produced by real-time models compared to

golden standards, such as FEM models. However, the drawback of those evaluation

methods is that they are looking for a perfect physical match rather than looking for a

trade-off between rendering speed and accuracy factoring in the constraints of human

perception.

To develop an evaluation method factoring in the human constraints when perceiving

object softness, my approach integrates statistical methods coupled with human studies.

To carry out this approach, I first applied statistical methods to measure the difference

between visual displacement and force feedback computed through a real-time model

to those computed through a FEM model featuring physical parameters. Chapter 3

presents the methodology of the approach along with a case study demonstrating the

application of the method on a virtual breast phantom (as a viscoelastic soft tissue). In

addition, Chapter 4 and Chapter 5 present two human studies. Chapter 4 shows the

work that investigates the effect of the alignments between a visual display and a haptic

device on the human perception of object softness. In Chapter 5, I investigate human

constraints for perceiving object softness during real-time palpation using the alignment
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that produces the best interaction from Chapter 4.



Chapter 3

Statistical Evaluation of a Real-Time Model∗

3.1 Introduction

Soft-tissue palpation plays an important role in diagnosing various diseases. Palpating

skills are tedious to learn due to the difficulty of describing the sense of touch in a

natural language. Because of its interactive nature, a virtual reality (VR) training

system embedded with real-time soft-tissue models may be helpful to teach such skills

to medical residents. Studies show that such a VR system impacts human perception

during palpating at various levels, largely due to the characteristics of real-time models.

In this chapter, I present an evaluation method assessing the behavioral deformation

(e.g., visual displacement and force feedback) of a computational model considering

human constraints during palpation (Challenge I). I based this preliminary comparison

on the rationale that human perception is not sensitive to small discrepancies (less than

5%) during real-time simulations [13]. Similar to human perception, statistical methods

are not sensitive to small discrepancies in datasets. Two statistical methods, analysis of

∗Parts of this chapter are published:
A. Widmer and Y. Hu, (full-paper submission for review), “Statistical comparison between a

real-time model and a FEM counterpart for visualization of breast phantom deformation during
palpation,” Proceedings of the 23rd Canadian Conference on Electrical and Computer Engineering
(CCECE), 4 pages on CD-ROM, Calgary, AB, Canada, May 2010.

A. Widmer and Y. Hu, (full-paper submission for review), “A viscoelastic model of a breast
phantom for real-time palpation,” Proceedings of the 33rd Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (IEEE-EMBC), pp 4546-4549, Boston, MA, USA,
September 2011.

A. Widmer and Y. Hu, (full-paper submission for review), “An evaluation method for real-time
soft-tissue model used for multi-vertex palpation,” Proceedings of the IEEE International Conference
on Systems, Man, and Cybernetics (IEEE-SMC), pp. 127-132, Anchorage, AK, USA, October 2011.

A full version of this chapter is under review for publication.
A. Widmer and Y. Hu,(22 single pages submitted on December, 22 2011; reference number #:

TOMACS-2011-0142.R1), “An evaluation method for a real-time simulation of a viscoelastic phantom
based on constraints of human perception,” ACM Transactions on Modeling and Computer Simulation.
See Appendix B for copyright transfers.
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variance (ANOVA) and a Bland and Altman agreement [13], allow reasonable differences

between independent datasets. If ANOVA returns a p-value of less than 5% (e.g., a level

generally used as a confidence interval at 95%), the null hypothesis can be rejected as in

most studies on human perception [58, 59]; whereas if the Bland and Altman agreement

shows that less than 5% of the difference between two datasets is located outside a

boundary set by ±2 standard deviations, both datasets are in agreement with each

other [13]. The common practice of using ANOVA for model evaluation is to reject the

null hypothesis, because a model is always an approximation to a system to be modeled

[60]. Unlike this practice, I use the ANOVA to confirm the null hypothesis under a

sufficiently large size of data and a confidence interval at 95% (as in human studies).

However, this confirmation does not yield a level of agreement between the datasets,

which needs to be computed by using the Bland and Altman agreement.

In this chapter, I use two different contacts as single-node and multi-node contacts

with four force distributions. Commonly used in the literature, a single-node contact

refers to the usage of only one node to convey the displacement and the force on a

discrete mesh used as abstraction of a physical object in a VR system. The discrete

mesh is made of multiple nodes connected to each other to form a surface or a 3D

representation of a soft tissue. Unfortunately, the single-node contact diverges from the

real situation where a whole section of the finger (contact area) touches the phantom of

a soft tissue. A multi-node (surface) contact has the advantage to solve this divergence

by allowing the application of force on the nodes located on the entire area contacted by

the fingers. Also, different force distributions can be simulated by changing distributions

of force on a multi-node contact – for example, by applying more force at the tip of the

finger to get a different softness perception.

The proposed method aims at assessing a real-time model simulating highly vis-

coelastic soft tissues. This method took into consideration the constraints of human
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Figure 3.1: Flow diagram of the evaluation method.

perception to evaluate this real-time model. This method has the advantage of ensuring

the correct match of the visual displacement over time and the correct force feedback

computed by the real-time model on the contact area. To show the benefit of this

method, I use a novel real-time model featuring viscoelastic characteristics based on

an existing model as a case study (Challenge II). Able to render visual rendering in

10 ms and producing stable haptic interaction, this real-time model simulates a breast

phantom during palpation as a case study for the evaluation method.

3.2 Evaluation Method

My evaluation method consists of a data acquisition step and a data processing step, as

illustrated in Fig. 3.1. The data acquisition step describes what indedpendent data are

needed and how to obtain them. The data processing step presents different statisti-

cal methods and their order in undertaking an evaluation of the computational models.

Taking a real-time computational model as input, I undertook these two steps based on

the assumption that a real-time simulation needs to be evaluated according to the ac-
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curacy of its node displacement (visual displacement) and force feedback. The reference

model for this evaluation is a FEM counterpart, as reported in literature [17, 18]. In

this section, I introduce the tasks of each step.

3.2.1 Data Acquisition

As shown in Fig. 3.1, the data acquisition step includes four tasks. The goal of these

tasks is to provide several datasets (visual displacement and force feedback) for the

data processing step. The first task involved creating a reference model. The reference

model is a non-linear FEM model with the physical parameters (hyperelasticity and

viscoelasticity) of the soft object featured in the real-time simulation. The parameters

can be taken from the literature or from mechanical experiments. In order to keep a

close correspondence to the real object, it is important to partition the FEM model into

layers of different materials composing the real object. To facilitate the data processing

step, the FEM model and the real-time model should share the same geometric mesh.

Thus, the FEM model acting as the reference model is created with parameters from

the physical world. Therefore, the real-time model can be assessed against this FEM

model.

The second task defines a force profile, i.e., a variation of force magnitude over time.

This task aims at imitating the contact surface of the finger and the force applied during

palpation. Various force profiles can be used. A step-wise force profile is commonly

used for testing viscoelastic materials due to mechanical characteristics of such materials

[9, 17]. Other profiles can be used such as a ramping force to simulate an actual palpation

procedure [61]. The selection of a suitable force profile is important, as it determines

how the models were compared. Therefore, a carefully defined force profile is needed to

assess the behavior of a real-time model.

The third task involves the application of a force distribution adjusted with the

chosen force profile on both real-time model and FEM model. A force distribution
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Figure 3.2: One-finger contact area (a). Locations (b) and (c) correspond to two different
centers of contact force.

describes how the applied force will be distributed over a surface (a), as in Fig. 3.2. Based

on one-finger palpation as depicted in Fig. 3.2, I selected 4 different force distributions

to simulate varying cases of palpation as illustrated in Fig. 3.3. As shown in Fig.

3.3a, the first force distribution (Distribution 1) uses a single-node contact centered

on the contact area of the finger (b), as in Fig. 3.2, with the amplitude of the force

varied by the selected force profile over time. The single node contact is located at the

center of the distal section from a virtual finger. This distribution aims at simulating

the most common contact paradigm used in the field of haptics. This paradigm is

introduced by the usage of a haptic device such as a SensAble PHANToM device. Fig.

3.3b illustrates the second distribution (Distribution 2). This distribution uses a multi-

node contact featuring a force evenly distributed among the nodes in the contact area

of the finger (area: 5.2 cm2). This distribution mimics a general contact commonly

used in VR simulators [16, 62]. For the third and fourth distributions (Distribution 3

and Distribution 4), I introduced a 2-dimensional (2D) Gaussian distribution. The 2D

Gaussian distribution allows the evaluation method to assess complex force distributions.

Since little literature describes how the fingertip contacts a deformable object (such as a

breast phantom), the use of a 2D Gaussian distribution could take account the curve and

deformable surfaces of both human fingertip and object. Distribution 3 and Distribution

4 had contact force, f(x, y) at the position (x, y) of a 2D Gaussian function as depicted

in Eq. (3.1):
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Figure 3.3: Force distributions; (a) Distribution 1 features only one node contact; (b)
Distribution 2 involves an uniform force through the contact area; (c) Distribution 3
simulates a finger palpation; (d) Distribution 4 mimics a slanted finger palpation.

f(x, y) = Ae−((
(x−x0)

2

2σ2 +
(y−y0)

2

2σ2 )), (3.1)

where A is the amplitude of the force, (x0, y0) is the position of the maximum amplitude

of the force, and σ means the variance of the amplitude. As illustrated in Fig. 3.3c,

Distribution 3 uses a centered 2D Gaussian distribution simulating a common palpation

technique in which the practitioner holds his/her finger flat on the palpated tissue [2].

Therefore, the position (x0, y0) corresponds to the center of the contact area, (b), as in

Fig. 3.2. As shown in Fig. 3.3d, Distribution 4 uses a non-centered 2D Gaussian distri-

bution simulating another common palpation technique in which the practitioner holds

his/her finger slanted over the palpated tissue [2]. Therefore, the maximum amplitude

position (x0, y0) is situated at the tip of the finger, (c), as depicted in Fig. 3.2.
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The fourth task focuses on the collection of data. The collected data includes the

displacement of all surface nodes and the force feedback computed by the nodes within

the contact area. I collected these data at every time step of the force profile for both

real-time and FEM models, respectively. At the end of the task, the data sets are

independent and ready to be analyzed by the step of data processing to verify if both

models have a statistical agreement with each other.

3.2.2 Data Processing

Three tasks compose the step of data processing. To enable the comparison with other

evaluations, the first task uses a root mean square error (RMSE) analysis [63]. The

RMSE measures the average difference (a scalar value) of two datasets between the

real-time model and its FEM counterpart. This analysis with a correlation coefficient

constitutes a commonly used approach for model evaluation [64, 17]. The correlation

coefficient usually computes the “goodness” of a linear relationship between two datasets

[63]. I did not use this coefficient due to the postulate of Bland and Altman [13], ex-

plaining the difficulty of the coefficient to verify the agreement between two datasets.

Nonetheless, I provided the RMSE for each force distribution in order to keep a com-

parison metric with other methods in the literature [64, 17].

In the second task, I used an ANOVA statistical analysis. This analysis appears useful

to show whether or not different means exist in independent datasets that each follows

a normal distribution. The ANOVA analysis is not sensitive to small discrepancies in

datasets, alike human perception reported in literature [7]. My two hypotheses to be

tested by ANOVA were the following: (1) “My real-time model computes differently

the displacement of nodes than its FEM counterpart” and (2) “my real-time model

computes differently the force feedback on the contact nodes than its FEM counterpart”.

To analyze the first hypothesis, ANOVA compared the displacement of nodes yield by

the real-time model with that computed by its FEM counterpart. In addition, to verify
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the second hypothesis, ANOVA compared the force feedback yield by both real-time

and FEM models on nodes in contact. As part of the analysis for both hypotheses, an

F -value and a p-value were calculated for each comparison. Derived from an F -test, the

F -value is given by the ratio of two mean square values [65]. The numerator value of the

ratio expresses a between-dataset variability to indicate an explained variance between

the datasets; whereas the denominator value of the ratio is a within-dataset variability

to depict an unexplained variance among the datasets. If an F -value is much greater

than 1.0, the variability between datasets is dominated over the variability within the

datasets. This would yield a meaningful p-value. In this case, the p-value represents the

probability that an explained variance is equal to or greater than the variance yielded

by chance. If p < 0.05, the confidence interval is equal to or larger than 95%. Thus,

for p < 0.05, ANOVA indicates a statistically significant difference among the datasets.

Given a very large population of nodes to represent a geometry, a subset of the nodes

could be used for the ANOVA analysis if the size of this subset is large enough as

determined by a size computation [66]. Nevertheless, using all nodes of the geometry for

the ANOVA analysis would be realistic, if the population of the nodes is in a reasonably

countable size.

Practically, to test the first hypothesis, I computed the location of nodes governed by

the real-time model and the FEM model, respectively, at each time step (e.g., a sample).

For each model, Eq. (3.2) converts the Cartesian coordinates, (xi, yi, zi), of a node i into

an Euclidean distance, Di, between the node i to the fixed reference of a geometry (the

origin of the Cartesian coordinate system of the geometry) by:

Di =
√

x2
i + y2i + z2i . (3.2)

That is, the Euclidean distance, Di, represents the displacement of the node i at a time

step. Here, the geometry and its Cartesian coordinate system for the real-time model

are same as those for the FEM model. Thus, the test of the first hypothesis examines
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different means between two independent datasets of the Euclidean distance: one for

the real-time model and another for the FEM model. Given the geometry of N nodes

under a force profile for L time steps, there are a total of N × L data points in each

displacement dataset. To analyze the second hypothesis, I obtained the force feedback

data from using a technique similar to the one applied to get displacement data. I

focused only on forces computed by the nodes touched by the contact area of the finger.

Moreover, I considered only the magnitude of the force along the same direction as a

force vector is applied in each model. Therefore, I computed the magnitude through

the dot product between the vector of the applied force in its opposite direction and the

force feedback vector computed by the model. Given M nodes for the contact area of

the finger, applying the force profile for L time steps yields a total of M ×L data points

in each force dataset. In the equations below, I use G to represent the node number N

(or M) for visual displacement (or force feedback).

From these data, two ANOVA analyses were carried out: one evaluating the Eu-

clidean distance data (visual displacement) and another comparing the magnitude of

force feedback. In the two analyses, I compared the data from the real-time model to

the data from the FEM model. As ANOVA input data, each model was represented

by a one-dimensional array, whose size is G × L. The array is sorted as a chunk of G

nodes in the order of the time steps. In each time step, the order of the G nodes has

the same sequence. The ANOVA compared both input arrays for each hypothesis and

returned the probability whether the two models were different. In the case that both

arrays did show significant differences, I concluded that the real-time model did not

approximate the FEM model well enough. Alternatively, if ANOVA does not show a

significant difference, it does not mean that both models are in agreement. In this case,

I continue the analysis with the third task.

The third task includes the agreement analysis to verify if the real-time model ap-
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proximated its FEM counterpart. Introduced by Bland and Altman [13], this analysis

tests the agreement between two sets of data. Assuming the normal distribution of the

differences between datasets. Assuming the normal distribution of the differences be-

tween the two datasets, the analysis indicates the agreement when at least 95% of the

data in each dataset lie within ± 2 standard deviations (SD) of mean differences between

corresponding data of these datasets. The value of 95% is set as the confidence interval

of the hypothesis, alike in the ANOVA analysis [7, 58, 59]. In this way, I would accept

the real-time model to be enough as an alternative to its FEM counterpart. Based on the

mean difference and standard deviation of differences, the agreement analysis computes

the size of difference likely to occur between two independent datasets. I applied this

analysis to both data of visual displacement and force feedback, respectively. For the

visual displacement, I computed the mean difference d̄ using Eq. (3.3):

d̄ =

G,L
∑

i=1,j=0

√

(xi,j,m − xi,j,a)2 + (yi,j,m − yi,j,a)2 + (zi,j,m − zi,j,a)2/GL), (3.3)

where G is the total number of nodes in consideration, L is the total number of time

steps, (xi,j,m, yi,j,m, zi,j,m) are the Cartesian coordinates of the node i at the time step j

in the real-time model, and (xi,j,a, yi,j,a, zi,j,a) are the FEM counterparts of (xi,j,m, yi,j,m,

zi,j,m). Relatively, data processing for force feedback datasets follows the same equation

as described by Eq. (3.3) to compute the mean difference. For the force feedback,

I replaced the parameter (xi,j,m, yi,j,m, zi,j,m) by the components of the force vector

computed by the real-time model and the parameters (xi,j,a, yi,j,a, zi,j,a) by the force

vector computed by the FEM model. The standard deviation, SD, of the difference is

then computed using Eq. (3.4):

SD =

√

∑G×L
i=1 (di − d̄)

GL
, (3.4)

where di is either the Euclidean distance or force magnitude at the node i. Under both

analyses, I computed the percentage of data lying within ±2SD for visual displacement
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Figure 3.4: Real-time model simulating a breast phantom.

and force feedback, respectively.

3.3 Case Study

To demonstrate the effectiveness of the evaluation method, I created a simple real-time

simulation of a breast phantom based on a viscoelastic real-time model, as illustrated

in Fig. 3.4. Forces were applied to the real-time model to mimic multi-node contact

during palpation.

3.3.1 Real-Time Model

My goal was to provide a real-time simulation governed by the real-time model to offer

the visual displacement and force feedback in agreement with an offline FEM model. In

the current study, I was interested to mimic the breast phantom in real time as illustrated

in Fig. 3.4. For simplification, I simulated a breast phantom instead of physical breasts.

A virtual breast phantom with a radius of 4.0 cm is composed of the same triangularly

meshed geometry as I used in our previous study [61], including a surface membrane of

338 nodes and an inside gel without any node. However, two major modifications have

to take place in this current case study to approximate the high viscoelastic behavior

of the breast phantom. First, the equation governing the surface membrane has to
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Figure 3.5: Burger’s model used to simulate the surface membrane.

accommodate high viscoelasticity. Second, the state equation featuring the inside gel

has to simulate a viscoelastic and uncompressible gel.

As the first step, I developed the model governing the surface membrane to simulate

viscoelastic features of its real counterpart. To achieve this simulation, I linked each

node of the surface membrane to its neighbours through an assembly of dashpots and

springs as illustrated in Fig. 3.5. As reference, I based the selection of this assembly on

the observations made by Sridhar and Insana [67]. Using ultrasonic measurements, they

highlighted three important mechanical characteristics relevant for simulating breast

tissues. The first characteristic featured the observation that breast tissues have a linear

behavior in response of up to 5 N of applied force. The second characteristic involved a

creep-relaxation strain response lasting 200 s from an in-vivo breast. They observed that

when a force of 4 N was applied during the first 90 seconds, the breast was not back to

its original shape after 200 s. The third characteristic was a two-term Prony series with

a quickly and sharply rising displacement followed by a time independent displacement.

According to Mohesnin [68], a Burger’s material including a Maxwell material in series

with a Kelvin material (illustrated in Fig. 3.5) can simulate all these characteristics.

To simulate a Burger’s material, I use Eq. (3.5) to describe the behavior of the surface
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membrane [68]:

σ + (
η1
E1

+
η1
E2

+
η2
E2

)σ̇ +
η1η2
E1E2

σ̈ = η1ε̇+ ε̈, (3.5)

where σ is the stressof the material, σ̇ and σ̈ are the first and second time derivatives of

the stress respectively, η1 and η2 represent the damping coefficients of the two dashpots,

E1 and E2 represent the levels of stiffness of the two springs, ε̇ and ε̈ are the first and

second time derivative of the strain ε, respectively. To isolate the strain, I assumed

that the Burger’s material was under a constant force or no force at the time step 0.

Therefore, the strain ε is governed by 3.6 [68]:

ε(t) =
σ

E1

+
σ

E2

(1− e−E2/Tη1) +
σ

η2
T, (3.6)

where T is the time in a continuous form. In order to replace the exponential term with

a differential term better suited for a real-time simulation, I use the exponential decay

derivation. This allows the model to approximate the response of the breast phantom in

each current time step with values computed in previous time steps. For this real-time

simulation, I implemented Eq. (3.7) as the discrete form of Eq. (3.6) to compute the

displacement of a node.

u(t) =
F (t)

E1

+
F (t)

E2

−
F (t)

E2

·
E2

η1
·
du(t)

dt
, (3.7)

where t is the discrete time step, u is the displacement and F is the force in the Burger

material. In addition to the displacement computation, the Burger’s material is expected

to compute force feedback.

In terms of force feedback from the Burger material, I based the computation on

studies reporting that the stress is the same in both Maxwell and Kelvin materials

[17, 68]. For faster computation, I chose to use the Maxwell part of the Burger’s material

to compute force feedback. Stress computation of the Maxwell material was governed

by Eq. (3.8) [68]:

σ(t) = ε0E(e−E/Tη + 1), (3.8)
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Similarly to the strain equation Eq. (3.7), the time T in Eq. (3.8) is not discretized

and the exponential function in Eq. (3.8) is replaced with a differential term using an

exponential decay derivation. I also modified it to accommodate two free nodes a and b

as shown in the following constitutive equation:

Fsurface,a(t) =
E1

η1
(
dua(t)

dt
−

dub(t)

dt
) + E1(‖ua(t)− ub(t)‖ − ‖r‖), (3.9)

where t represents the discrete time step, Fsurface,a is the force computed from one link

attached to the node a, dua(t)/dt is the velocity of the node a, dub(t)/dt is the velocity

of the node b at the other end of the link, ua(t) and ub(t) are the vector position of

the node a and node b at the time step t respectively, and ‖r‖ is the resting distance

between these two nodes when the force between them is null. Due to the presence of

two different materials for the surface membrane and inside gel, the force computed by

the Burger’s material was only a part of the force computed by the model. Without

internal node, the inside gel material was responsible for the rest of the force maintaining

the shape of the virtual phantom.

As the second step, I used a state equation required to keep the shape of the breast

phantom consistent. In order to simulate a high viscoelastic gel and keep the volume of

the phantom stable, I derived a new differential equation. This equation was preceded

by a simple ideal gas law:

Finside(0) =
P

V
, (3.10)

where Finside(0) is the force setting the shape of the phantom stable at the time step

0. P represents the pressure inside the phantom and V is the initial volume of the

phantom computed through the divergence theorem [69]. The ideal gas law equation

computed the initial internal force needed to set the volume of the phantom equal to

its real counterpart. For each following time step t, the internal force was computed
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through the following constitutive equation:

Finside(t) = Finside(t− 1)−Finside(t− 1)
V (t)− V (t− 1)

V (t− 1)
a1 − a2V (t)/dt+ a3F

′
inside(t)/δt,

(3.11)

where Finside(t) is the force keeping the shape of the phantom stable, Finside(t− 1) and

V (t − 1) represent the internal force and the volume of the phantom at the time step

t − 1, respectively, a1, a2 and a3 are factors applied to the different elements of the

equation and are modifiable to change the behavior of the inside material, δt is the

change of a time step and F ′
inside(t) represents the first derivative of the force keeping

the shape of the phantom stable. The force computed by Eq. (3.11) was transferred on

each triangle of the surface mesh based on its individual geometric size. The force was

furthermore equally distributed to the 3 nodes forming each triangle. Because a node

was included in more than one triangle, each node’s internal force was a summation of

the force distributed by each triangle formed by the particular node.

The combination of the force distributed from the surface mesh and the force com-

puted from the inside gel on each node yielded a stable virtual phantom mimicking the

geometry of a physical counterpart. An external force can be applied to any nodes of

the virtual phantom. On each node in contact with the external force, I summed the

external force with the surface force and the internal force using Eq. (3.12):

Fi(t) = Finside,i(t) + Fsurface,i(t) + Fapplied,i(t), (3.12)

where Fi(t) is the total vector force at the node i at the time step t, Finside,i(t) and

Fsurface,i(t) represent the vector force computed by the state equation and the surface

mesh respectively at the node i at the time step t. Finally, Fapplied,i(t) is the vector force

externally applied on the node i at the time step t. The aggregation of a surface mesh

with an inside gel has the advantage of being faster to compute than 3D mesh simulation

due to the reduced number of nodes to be computed, and allows the simulation to

be stable and close to the behavior of its physical counterpart when the constitutive
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parameters are carefully approximated.

The approximation of the parameters for both constitutive equations, Eq. (3.9)

and Eq. (3.11), was of paramount importance for closely simulating a breast phantom.

Following my assumption that a breast phantom is a generalization of a physical breast

mimicking its real mechanical properties, I based my approximation on two different

reports studying the viscoelasticity and hyperelasticity parameters from real breasts

and breast phantoms [67, 70]. With help of ultrasonic measurement, the first report

describes the viscoelastic behavior of an in-vivo breast under the application of force at

4 N during a period of 90 seconds. From this report, I extracted a two-term Prony series

Eq. (3.13) [71]:

CR
ij (t) = C0

ij(1−
2

∑

k=1

gPk (1− et/τk)), (3.13)

where gpk and τk are the k-th Prony constants and the k-th Prony retardation time

constants, respectively, t is the current time step and C0
ij is the Neo-Hookean hyperelastic

parameter. After a manual test on a physical breast phantom, I reduced the recovery

time (time needed to have the phantom back to its original shape) to 1 second. Therefore

both retardation time constants were significantly reduced. The second report describes

the hyperelastic parameters governing a breast phantom using a Neo-Hookean equation

[70]. Eq. (3.14) controls the surface membrane and inside gel components [71]:

U = C10(I1 − 3) +
1

D1

(Jel − 1)2, (3.14)

where U represents the strain energy per unit of reference volume, C10 and D1 are

material parameters, Jel is the elastic volume ratio of the original volume of the breast

phantom over it deformed volume, I1 is the average first invariant of left Cauchy-Green

deformation tensors. Under the assumption of volume conservation, Jel should be always

equal to 1. Tables 3.1 and 3.2 indicate the proper values for the modified Prony series

and Neo-Hookean parameters for membrane and inside gel, respectively.

My customized real-time model did not allow the direct use of the parameter values
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Figure 3.6: FEM model representing a breast phantom.

Thickness 2 mm
Density 950 kg/m3

Neo-Hookian parameters C10 700.3 kPa D1 0.001

Prony Series
gp1 0.9 τ1 0.002
gp2 0.9 τ2 0.002

Table 3.1: Surface parameters extracted from literature.

Density 950 kg/m3

Neo-Hookian parameters C10 10.3 kPa D1 0.001

Prony Series
gp1 0.9 τ1 0.002
gp2 0.9 τ2 0.002

Table 3.2: Inside gel parameters extracted from literature.

collected in the two reports [67, 70]. Therefore, I approximated the parameters for the

real-time model from the behavior produced by these collected parameters in the reports.

I accomplished this by creating a FEM model as shown in Fig. 3.6. This FEM model

shared two features of the real-time model: the outside geometry used in the real-time

model and the usage of surface membrane and inside gel as materials. The geometry

of both real-time and FEM models are identical to have the same number of nodes and

the same Cartesian coordinate system.

Based on these two reports, I utilized the same two-term Prony series to simulate

the viscoelastic component for both materials. Using the parameters from Table 3.1 and
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Figure 3.7: Force profile applied to palpate the breast phantom.

Burger’s
model

parameters

Elasticity of the 1st spring E1 0.6 N/cm
Elasticity of the 2nd spring E2 0.01 N/cm
Viscosity of the 1st dashpot ε1 0.49 N×s/cm
Viscosity of the 2nd dashpot ε2 0.01 N×s/cm

Table 3.3: Surface parameters for the real-time simulation.

Pressure Initial value P 10 N/cm2

Viscoelasticity
factors

Change of velocity between two time-steps a1 120
1st derivative of velocity a2 0.01
2nd derivative of force a3 0.001

Table 3.4: Inside gel parameters for the real-time simulation.

3.2, Eq. (3.13) and Eq. (3.14) governed the FEM model under applied force. Following

the standard procedure of a creep followed by a relaxation to test viscoelastic response

[9, 17], I created a 4-second step-wise force profile as depicted in Fig. 3.7. During the

first 2 seconds, a force of 3 N (maximum force sustained for a period of time by the

haptic device PHANToM 1.5/6DOF) was applied on the top node without ramping to

observe the creep response. During the last 2 seconds, no force was applied to observe

the relax response – the recovery of the phantom. From this 4-second force profile, I

focused on the displacement of the top node and manually set the ranges of values for the

different parameters. A naive optimization algorithm of testing every value within the

ranges selected the value that produced the minimal difference of displacement between

the real-time model and its FEM counterpart. Tables 3.3 and 3.4 show the parameters

to mimic the phantom in real time used in Eq. (3.9) and Eq. (3.11), respectively. With
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these parameters, the real-time simulation was updated at 100 Hz computing visual

displacement and force feedback on a DELL Precision 690 (with 2 dual-core processors

at 3.2GHz and 4 GB of RAM). That is, a time step of simulation governed by the real-

time model is 10 ms long. Thus, the 4-second stepwise force profile yields 400 time steps

for both real-time and FEM models. At each time step, the simulation governed by

the FEM model requires however 22.5 s on the same computer. This great difference of

the computational time between the real-time and FEM models offers an incentive to

consider the real-time model as an alternative candidate to its FEM counterpart, once

the real-time model is evaluated as acceptable.

To create a real-time model for palpation training, algorithms of collision detection

and collision response must have the following features: to provide multi-node contact, to

handle soft objects, and to accommodate varying types of shapes. For collision detection,

I used the Axis Aligned Bounding Box (AABB) algorithm [72] because it offers all of the

features needed for the simulation as introduced in Chapter 2. The AABB algorithm is

part of BVH algorithms, as described in Chapter 2. I implemented two AABB trees: a

dynamic AABB tree to describe the virtual breast phantom with a hemispherical shape

and a diameter of 8.0 cm and a static AABB tree to depict an irregular rigid object

(such as a finger). A coarse mesh of 338 nodes comprised the whole breast phantom.

A fine mesh with 1587 nodes formed the whole finger. The contact area of the finger

had about 120 nodes whereas the contact area on the virtual phantom had 23 nodes.

The fine mesh of the finger permits the computation necessary to contact and deform

the breast phantom. When the finger contact area collided to the breast phantom, a

standard algorithm of tree searching checked upon contacting faces and returned two

sets of contacted mesh faces (one set for the breast phantom and another set for the

finger contact area).

Based upon the returned two sets of contacted mesh faces, I coded an algorithm
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(a) (b)
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Figure 3.8: Interaction Condition; (a) Condition I features a one-finger contact on the
top of the phantom; (b) Condition II involves a two-finger contact on the top of the
phantom; (c) Condition III simulates one-finger contact on the side of the phantom; (d)
Condition IV mimics a two-finger contact on the side of the phantom.

of collision response. This algorithm has three steps. In the first step, the algorithm

finds the normal of a closest contact face from the set of the finger contact area for

each contacted vertex of the breast phantom. In the second step, the algorithm moves

each contacted vertex of the phantom to separate the phantom and the finger contact

area. In the third step, the algorithm updates the phantom deformation with the new

locations of all vertices of the phantom.

3.3.2 Evaluation Method

Applying the evaluation method described earlier, I started the evaluation of the real-

time model with the data acquisition step. As the first task of the data acquisition,

I took the same FEM model as used to approximate the real-time parameters earlier.

The second task involves the definition of a force profile. In this case study, I used

the same 4-second stepwise force profile as illustrated in Fig. 3.7. For the third task,

I created four different testing conditions as depicted in Fig. 3.8. In each condition,
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Figure 3.9: Two fingers palpation.

I tested the four force distributions shown in Fig. 3.3 in sequence. Fig. 3.8a shows

Condition I. This condition tested the most trivial case in which the user palpates the

top of the phantom with only the distal section of an index finger as shown in Fig. 3.2(a).

Condition II, depicted in Fig. 3.8b, assessed the usage of the same finger positioned on

a selected node located off-center on the phantom. This condition aimed to evaluate the

dispersion of the force from a randomly selected node. The Condition III and Condition

IV investigated the usage of a large, realistic contact area during palpation. Under these

two conditions, I took the distal section of the index and middle finger as the contact

area, as illustrated in Fig. 3.9. Each force distribution was applied simultaneously on

both distal sections of the fingers. Condition III and Condition IV tested the contact

area created by both sections on the top of the phantom, in Fig. 3.8c, and on the same

location as in Condition II, in Fig. 3.8d, respectively. The size and shape of both fingers

matched the mean measurements taken on some male personnel of the U.S. Army [73].

For all force distributions in each testing condition, the fourth task involves data

recording. At each time step of the force profile, I recorded datasets on the real-time

model and the FEM model. One dataset included the visual displacement of all surface

nodes whereas another dataset accumulated the force feedback computed on the contact

area. Computing values for every node on the hemisphere, the real-time model required
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each time step for 10 milliseconds whereas the FEM model needed 22.5 seconds for each

time step. For each force distribution, I collected a set of 135,200 data points (338

nodes - all nodes composing the geometry - in 400 time steps) for the dataset of visual

displacement and a set of 23 nodes - all nodes within the contact area - in 400 time steps

per finger for the dataset of force feedback.

Using all displacement data and only force feedback data located in the contact area,

the step of data processing starts with the RMSE computation, followed by ANOVA

analyses. When the p-value is higher than 0.05, this means that the datasets cannot

be differentiated. However, the ANOVA analysis in this case does not denote that the

datasets agree with each other. Consequently, the Bland and Altman agreement analysis

[13] is implemented to reveal agreement between these two datasets when more than 95%

of the data is located within ±2SD.

3.3.3 Results

The results here follow the organization of the evaluation method described in the pre-

vious subsection. I focused on two different aspects. The first aspect validates the

real-time model to mimic an actual breast phantom. The second aspect assesses differ-

ences in agreement among the four force distributions. To undertake these two aspects, I

started with Condition I and Condition II, as shown in Fig. 3.8a and Fig. 3.8b, involving

the palpation performed by the distal section of the index finger located on the top and

on the side of the phantom. For Condition I, Table 3.5 and Table 3.6 present the results

of the comparison for visual displacement and force feedback, respectively; whereas Table

3.7 and Table 3.8 show the results of the comparison for visual displacement and force

feedback, respectively, for Condition II. I observed that each force distribution yields

p-values from ANOVA well above the significance threshold of 0.05 and an agreement

over 95%.

For the second aspect, I looked at agreement levels and SD values in these four
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RMSE
[cm]

ANOVA Bland and Altman Agreement
F ∗ p SD [cm] Agree [%]

Distr. 1 0.08 1.45 0.21 0.16 98.6
Distr. 2 0.16 1.92 0.18 0.21 97.3
Distr. 3 0.15 1.43 0.25 0.17 96.2
Distr. 4 0.21 1.98 0.15 0.32 95.2

Table 3.5: Condition I – Visual displacement comparison [F ∗ = F (1, 135199)].

RMSE [N]
ANOVA Bland and Altman Agreement
F ∗ p SD [N] Agree [%]

Distr. 1 0.06 0.15 0.85 0.01 99.2
Distr. 2 0.10 0.28 0.68 0.09 96.1
Distr. 3 0.14 0.35 0.51 0.19 95.2
Distr. 4 0.16 0.84 0.32 0.28 95.1

Table 3.6: Condition I – Force feedback comparison [F ∗ = F (1, 9199)].

RMSE
[cm]

ANOVA Bland and Altman Agreement
F ∗ p SD [cm] Agree [%]

Distr. 1 0.17 2.37 0.12 0.27 95.2
Distr. 2 0.21 1.52 0.36 0.29 95.0
Distr. 3 0.26 1.69 0.32 0.32 95.3
Distr. 4 0.32 0.96 0.48 0.33 96.5

Table 3.7: Condition II – Visual displacement comparison [F ∗ = F (1, 135199)].

RMSE [N]
ANOVA Bland and Altman Agreement
F ∗ p SD [N] Agree [%]

Distr. 1 0.05 0.12 0.86 0.01 98.6
Distr. 2 0.12 1.20 0.31 0.12 96.3
Distr. 3 0.26 1.93 0.29 0.21 95.8
Distr. 4 0.32 2.02 0.21 0.25 95.3

Table 3.8: Condition II – Force feedback comparison [F ∗ = F (1, 9199)].

tables. As illustrated in Table 3.5 and Table 3.7, all distributions yield similar levels

of agreement with varying SD values for visual displacement. This observation was

similar for force feedback as shown in Table 3.6 and Table 3.8. The main difference

appeared between Distribution 1 (single-node contact) and the other Distributions 2

to 4 (multi-node contact). This was mainly due to the smaller number of data points
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RMSE
[cm]

ANOVA Bland and Altman Agreement
F ∗ p SD [cm] Agree [%]

Distr. 1 0.19 1.31 0.21 0.20 97.7
Distr. 2 0.23 1.25 0.25 0.29 96.2
Distr. 3 0.34 1.50 0.35 0.35 94.0
Distr. 4 0.35 1.52 0.36 0.36 93.5

Table 3.9: Condition III – Visual displacement comparison [F ∗ = F (1, 135199)].

RMSE [N]
ANOVA Bland and Altman Agreement
F ∗ p SD [N] Agree [%]

Distr. 1 0.08 0.21 0.72 0.05 98.1
Distr. 2 0.15 1.01 0.21 0.21 92.5
Distr. 3 0.25 1.21 0.15 0.28 89.2
Distr. 4 0.26 1.23 0.14 0.29 87.1

Table 3.10: Condition III – Force feedback comparison [F ∗ = F (1, 9199)].

for Distribution 1 (1 data point per time step) than for the other distribution (23 data

points per time step for one finger).

I continued the investigation with Condition III and Condition IV. During palpation,

these two conditions have the same contact area of fingers (46 data points per time

step). The contact area (46 data points per time step) was formed by the distal section

of the index and middle fingers. For Condition III, Table 3.9 and Table 3.10 exhibit

the comparison results of visual displacement and force feedback, respectively. The

results of the same comparison for Condition IV are shown in Table 3.11 and Table

3.12, respectively. The validation of the real-time model as a candidate for mimicking

an actual phantom did not produce similar results as in Condition I and Condition II.

For visual displacement, Table 3.9 shows that only Distribution 1 (single-node contact)

and Distribution 2 (multi-node contact with uniform force) yielded an agreement value

over the 95% threshold in Condition III, whereas Table 3.12 has only Distribution 1

over that threshold in Condition IV. Similarly, force feedback data comparison (Table

3.10 and Table 3.12) displays only Distribution 1 as over the agreement threshold in

both conditions. This shows the limit of the real-time model due to a larger number
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RMSE
[cm]

ANOVA Bland and Altman Agreement
F ∗ p SD [cm] Agree [%]

Distr. 1 0.16 1.50 0.49 0.30 95.0
Distr. 2 0.25 1.70 0.35 0.21 93.2
Distr. 3 0.32 1.82 0.35 0.36 92.5
Distr. 4 0.35 1.72 0.42 0.35 90.1

Table 3.11: Condition IV – Visual displacement comparison [F ∗ = F (1, 135199)].

RMSE [N]
ANOVA Bland and Altman Agreement
F ∗ p SD [N] Agree [%]

Distr. 1 0.10 0.25 0.65 0.05 97.5
Distr. 2 0.19 0.99 0.46 0.21 92.1
Distr. 3 0.27 1.27 0.23 0.35 88.2
Distr. 4 0.29 1.31 0.21 0.38 86.5

Table 3.12: Condition IV – Force feedback comparison [F ∗ = F (1, 9199)].

of contact nodes in Distributions 2 to 4. Nevertheless, differences of agreement among

the four force distributions revealed important details. As illustrated in Table 3.10 and

Table 3.12, force feedback agreement was more sensitive to the complexity of the force

distribution than its visual displacement counterpart. The difference between the best

agreement (Distribution 1) and the worst agreement (Distribution 4) was about 10% in

Condition III and Condition IV. In contrast, this difference was only about 5% in visual

displacement for both Condition III and Condition IV.

3.3.4 Discussion

The results of my case study have implications for using the real-time model as a can-

didate to simulate a highly viscoelastic soft tissue. These implications can be explored

from three different perspectives. The first perspective investigates the difference among

force distributions within a testing condition. This point of view has the potential to

determine the usability of the different force distributions for user interaction. The

evaluation assesses not only single-node contact, but also multi-node contact. In most

testing conditions, I observe a generally decreasing trend of the level of agreement from
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Distribution 1 to Distribution 4. This holds not only for visual displacement but also

for force feedback. These observations confirm that the complexity of the contact force

plays a role in the level of agreement between the real-time model and its FEM counter-

part. Because multi-node contacts simulate more closely palpation than a single-node

contact, a trade-off between the level of agreement and realism might become a suit-

able compromise to provide users with the best interaction. However, a human study is

needed to verify if a trade-off is possible and which distribution would produce the most

intuitive interaction.

The second perspective looks at the difference among the testing conditions at the

top and side locations. The aim is to verify whether the location of the applied force

plays a role in the level of agreement between the real-time model and its FEM counter-

part. My observations indicate only slight differences in visual displacement and force

feedback between these two locations. Although no significance tests are performed

for confirmation, the location of the applied force does not seem to affect the level of

agreement for visual displacement and force feedback.

The third perspective focuses on the difference between the one-finger and two-finger

contacts. I examined whether the real-time model is able to keep a reasonable agree-

ment with its FEM counterpart when the contact area is enlarged by a second finger

applying force. In the one-finger contact, my case study reveals that using one-finger

contact along with multiple-node contact area could reduce modeling complexity while

keeping a high level of agreement and good realism. However this observation is not as

clear-cut for the two-finger contact. Only Distribution 1 (single-node) shows a level of

agreement over 95% in visual displacement and force feedback comparison, whereas all

other multi-node contacts (Distributions 2 to 4) display various levels of agreement, but

never below 86.5%. Although being below the 95% threshold set in this study, lower

levels of agreement might still be enough to prevent humans from noticing a difference
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due to the just-noticeable difference threshold of 10%-15% for softness discrimination

[36].

In summary, the real-time model seems to handle very well the contact force gen-

erated by the one-finger contact under all force distributions. However for two-finger

contact, the real-time model becomes less reliable and fails the statistical analysis. Nev-

ertheless, studies are needed to verify if humans could perceive the deformation of the

real-time model correctly.

3.4 General Discussion

In the present study, I proposed an evaluation method for assessing real-time models for

multi-node contact of palpation. This method was based on the rationale that human

perception seems to be less than perfect at many levels [74, 7, 36]. I demonstrated the

practicality of this method for investigating both visual displacement and force feedback

in various force conditions for palpation. This method was formalized to provide a

standard procedure to assess models of soft tissues in real-time simulations.

Based on a more precise assessment than state-of-the-art evaluation methods compar-

ing output at selected time steps [9, 64], my method of evaluation compares both visual

displacement and force feedback at every time step with varying applied force. This dif-

ference allows warranting that the real-time model closely follows its FEM counterpart

over the whole force profile. Moreover, my method of evaluation is highly customizable,

since it permits changes in force distributions, locations and contact areas while still

keeping the same evaluation procedure.

Because of imperfect human perception, achieving an excellent match between a

real-time model and its physical counterpart suggests a superfluity for developing VR

real-time systems. Therefore, from a perspective of user interaction, I selected a lower

level of agreement at 95% for both visual displacement and force feedback under each
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force distribution. This particular level of agreement is derived from statistical methods

assuming less than 5% offset data, as well as from the observed limitation of human

perception [7]. Removing the need for excellent match that requires a lot of computa-

tional power, human perception limitation can be an important factor in providing fast

and relatively less complex real-time model sufficient for user interaction. Nevertheless,

further studies are presented in the following chapters to confirm this notion.

3.5 Summary

This chapter presented an evaluation method designed to assess the behavior of a real-

time model in comparison with an offline FEM model. Based on evidence that human

perception is not very sensitive to small differences in a real-time simulation, this evalu-

ation takes a statistical approach to check the level of agreement between the real-time

model and its FEM counterpart. To show the benefit of this evaluation, I applied it to

a breast phantom real-time model used in a VR palpation training system. The main

innovations introduced in this chapter are: (1) the evaluation considering this limitation

of human perception, (2) the comparison of visual displacement and force feedback at

all time steps of a quantized force profile, (3) the usage of force distributions in different

testing conditions involving one or two fingers, and (4) the modification of a real-time

model to simulate an highly viscoelastic soft tissue.

In this chapter, the real-time model shows an agreement level over 95% for all distri-

butions in the two conditions involving only one-finger contact. However, the agreement

level is not as high when using a two-finger contact. Nevertheless, it is not clear at the

moment if the levels of agreement found in this study are sufficient for adequate human

interaction. The next chapters of this thesis will describe two human studies to inves-

tigate the effect of levels of agreement on human interaction. In particular, Chapter 4

presents a human study exploring the effect of alignment between a visual display and
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a haptic device on perception of object softness. The goal of this study is to find the

alignment that provides interaction introducing a minimum physical workload.



Chapter 4

Effect of the Alignment between a Visual Display

and Haptic Device on the Perception of Object

Softness∗

4.1 Introduction

As introduced in Chapter 2, the integration of haptic and visual information can be

problematic in VR systems for palpation training, due to different representations by

the two senses of touch and vision [75, 43, 44]. Several studies have revealed that haptic

and visual information can interfere with each other in object perception, particularly

in discriminating object softness [35, 36, 76]. While working for my master’s degree, I

investigated the effect of viewing angle on the perception of object softness using three

different alignments. During this investigation, I observed that the alignment of a visual

display relative to a haptic device appeared to have some effect on the perception of

object softness [76]. Furthermore, I was unable to find other reports on the effect of

such alignments on the perception of object softness. The investigation of such effect

is important for providing a right alignment of a VR training system for palpation.

This alignment needs to have a limited impact on user interaction and perception of

object softness. Therefore, in the current chapter, I conducted a study to investigate

∗Part of this chapter is published.
A. Widmer and Y. Hu, “Subjective Perception and Objective Measurements in Perceiving Object

Softness for VR Surgical Systems,” IEEE VR 2009, pp.267-268, Lafayette, Louisiana, 14-18 March 2009.

A full version of this chapter is publiahed in IEEE transactions.
A. Widmer and Y. Hu, “Effects of the alignment between a visual display and haptic device on

the perception of object softness,” IEEE Trans. on Syst, Man and Cyber., Part A, vol.40, no.6,
pp.1146-1155, Nov. 2010. See Appendix B for copyright transfers.
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(a) (b) (c)

Figure 4.1: The three tested alignments between a visual display and haptic device. (a)
“Same-location” alignment; (b) Vertical alignment; (c) Horizontal alignment; (1) Haptic
device; (2) Stereoscopic goggle; (3) 3D display; (4) First-surface mirror.

how three popular alignments affect the perception of object softness. From raw data

partially collected for my master’s work, I re-examined the data to compare dependent

measurements – as subjective perception of object softness and objective measurements

of maximum force and pressing depth – in three alignments (independent variables)

between a visual display and haptic device. The three alignments are illustrated in Figs.

4.1a, 4.1b and 4.1c, respectively.

Fig. 4.1a depicts the VR setup for Experiment I - a “same-location” alignment.

This alignment is obtainable via a first-surface mirror, which reflects the visual display

of deformable balls to meet the reference point of the haptic device. This alignment

merges the senses of touch and vision at one spatial location. Experiment II used a

vertical alignment between a visual display and haptic device, as shown in Fig. 4.1b.

In this alignment, the haptic device is located directly under the visual display. This

alignment introduces a vertical offset between the senses of vision and touch. I used a

horizontal alignment between a visual display and haptic device in Experiment III, as

illustrated in Fig. 4.1c. In this alignment, the haptic device is beside the visual display,

introducing a horizontal offset between the senses of touch and vision.
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4.2 Methodology

For providing information connected to data analysis, subsections 4.2.1, 4.2.2, 4.2.3 and

4.2.4 below re-introduce experimental methodology of participants, apparatus, stimuli

and procedure, respectively. This information was based upon the three experiments

undertaken for my master’s work, Data analysis (subsection 4.2.5) re-examined the raw

data of this master’s work to include objective measurements for comparing the effect

of the different alignments on the perception of object softness.

4.2.1 Participants

A total of 45 participants (25 males and 20 females, aged between 20 and 30 years

old) participated in the study. They were randomly divided into three groups of 15;

participants in one group palpated a virtual soft ball using the “same-location” align-

ment, vertical alignment or horizontal alignment. They were all naive to the purpose

of the study and had normal or corrected-to-normal vision (including normal abilities

of recognizing colours), with a stereo acuity at least 40” of arc as determined by the

Randot Stereotest (Stereo Optical, Inc). All participants were strongly right handed, as

determined by a modified version of the Edinburgh handedness inventory [77]. Their par-

ticipation followed an ethical clearance approved according to the Canadian Tri-Council

Ethics Guidelines.

4.2.2 Apparatus

Three types of alignment between a visual display and haptic device were considered in

this study.

• “Same-location” Alignment – As illustrated in Fig. 4.1a, the visual display faced

down to a first-surface mirror which was placed at 43 cm underneath the monitor.

The haptic device was located in a way that its reference point matched the ball
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displayed in the mirror during each trial. The participant manipulated the haptic

device underneath the mirror and viewed the balls reflected in the mirror. The

participant placed his/her head on a fixed chin rest to constrain the position and

orientation of his/her head and could not view his/her hand during each trial.

The chin rest warranted the consistent location and orientation of the eyes of all

participants.

• Vertical Alignment – As illustrated in Fig. 4.1b, the haptic device was positioned

22.0cm underneath the base of the monitor and exactly at the vertical from the

middle line of the visual display. The participant placed his/her head on a chin

rest to constrain the position and orientation of his/her head and could not view

his/her hand during each trial.

• Horizontal Alignment – As illustrated in Fig. 4.1c, the haptic device was always

placed on the right side of the visual display during the experiment, in order to

accommodate the dominant hand of the participants. The haptic device was 16.5

cm lower than the base of the visual display for the comfort of resting the arm

and hand. The reference point of the haptic device was located horizontally 46 cm

from the middle line of the display. The participant placed his/her head on a chin

rest to constrain the position and the orientation of his/her head. I placed a cache

between the display and the haptic device to prevent the participant from viewing

his/her hand during the experiment.

4.2.3 Stimuli

As shown in Fig. 4.2, the visual stimuli of the study were two virtual deformable balls†

of the same size (8 cm in diameter) presented one after another on the same vertical axis.

†Due to the sequence of the work during my PhD study, these virtual deformable balls and their
governing equations (described later) were different from the virtual breast phantom and its viscoelastic
governing equations used in Chapter 3 and Chapter 5.
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Figure 4.2: Presentation of deformable balls as visual stimuli. (a) Illustration of viewing
angles and pressing areas. (b) A ball at the viewing angle of 0◦ as reference. (c) A ball
at the viewing angle of - 15◦ for testing.

Combined with a pair of StereoGraphics Crystal Eyes, a CRT monitor with a refresh

frequency of 120 Hz and a resolution of 1024x768 pixels displayed the visual stimuli in

3D stereoscopy. In each trial, these two balls had randomly assigned two colors (purple

and blue), respectively. The participant could interact with any ball via a virtual probe,

which had a shape of a match stick with a red sphere attached to a blue rod. The red

sphere of the virtual probe corresponded to the reference point of the 6 DOF haptic

device (see Fig. 4.1a). The virtual probe moved freely in the 3D space of the balls via

the haptic device. When the participant interacted with a ball by placing the virtual

probe on the top of the ball via the haptic device, the ball turned into green. While

one of the balls was the reference with its viewing angle always at 0◦, another was the

testing ball varied its viewing angle from -15◦, -7.5◦, 0◦, 7.5◦, to 15◦. Each trial was

either a testing trial to record the participant’s interaction with the balls or a catching

trial to distract the participant. All trials were randomly ordered. In all testing trials,

both reference and testing balls were identical in softness (compliance = 2.1 mm/N).

In catching trials, the softness of the reference ball was same as their counterparts in

testing trials, whereas the testing ball had softness either with compliance = 3.8 mm/N

or compliance = 0.9 mm/N. Thus, the relative compliances between the testing ball and

its reference counterpart was larger than 15% – the just noticeable difference [57] – to

allow this difference easily identifiable. The participant pressed (via the haptic device)
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Figure 4.3: The correspondence of compliance between the force from the haptic device
and the force to deform a ball. [Within the force range of the haptic device from 0.0 N
to 3.0 N, the world force was scaled by a factor of 1.2 to match the haptic force. This
correspondence was independent of the viewing angle of the ball and the location of the
haptic device.]

only within a pressing area – on the top of a ball where its viewing angle was defined.

Using a mass-spring model [78], I simulated the softness of a ball in real time. This

model used the ideal gas law to calculate the inflating pressure inside the ball to keep

the volume of the ball constant during pressing and the Hookean linear law to compute

spring force with damping. I applied a simple model [78] as a numerical method to

solve this model. According to the deformation of the ball, the real-time solution of this

model provided a proper amount of force via the haptic device back to the participant’s

hand as illustrated in Fig. 4.3. Thus, the deformation of the ball visualized on the CRT

monitor matched the force feedback delivered by the haptic device.

4.2.4 Procedures

Before each experiment, each participant was aware of that the haptic device had a

safety threshold of force. In each experiment, the participant was instructed to select

the harder ball between the two deformable balls in each trial - a common paradigm of

two alternative forced choices for perceiving object softness [35]. The participant took
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Figure 4.4: Definition of objective measurements. (a) Maximum force; (b) Maximum
pressing depth.

part in all following three experimental conditions:

• V+H – Both visual and haptic information are available at the same time. During

pressing a ball, the participant could view the deformation of the ball and feel the

force feedback via the haptic device simultaneously.

• Vonly – Only visual information is available. The participant manipulated the

haptic device in the same way as under the two conditions V+H and Honly. He/she

could view the deformation of a ball without feeling the force feedback during

pressing the ball.

• Honly – Only haptic information is available. During pressing a ball, the partic-

ipant could feel the force feedback via the haptic device but the view of the ball

was concealed.

Under each condition, a practicing session of 10 trials was prior to a testing session

of 25 trials (4 testing trials and 1 catching trial for each viewing angle), allowing the

participant to familiarize the condition in testing. All trials were randomized in both

practicing and testing sessions in each experiment. The practicing session lasted less than

30 minutes. The testing session was about 1 hour. The order of the three conditions

was counterbalanced for all participants in each experiment.
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4.2.5 Data Analysis

For each experiment, I used in each trial two types of data as dependent measurements:

subjective perception and objective measurements. The subjective perception was the

recorded participant’s selection of the harder one between the two deformable balls.

The objective measurements included maximum force and maximum pressing depth

applied by the participant on each ball. I computed these measurements from the

recorded vertex displacements on each ball under pressing. As illustrated in Fig. 4.4a,

the maximum force corresponds to the peak value of the force that the participant

applied to a deformable ball in a trial. When the ball deforms under force within its

pressing area, the maximum pressing depth is the longest distance between the depressed

surface and its original counterpart, as shown in Fig. 4.4b. The maximum force and

pressing depth are not directly correlated to each other due to the damping factor of the

mass-spring model [78]. Under the condition V+H, there were both maximum force and

pressing depth computed. Although the participant could not view the deformed ball

under the condition Honly, the maximum pressing depth existed because the participant

could feel force feedback from the ball. The maximum force was always zero under the

condition Vonly, due to the absence of force feedback to the participant’s hand.

For each experiment, I processed these data in all testing trials and discarded those

in all catching trials. Applying the statistical method of two-way within-subject-design

ANOVA (analysis of variances)[79], I examined the effect of both testing condition and

viewing angle on subjective perception and objective measurements, respectively. When

the two-way ANOVA analysis demonstrated a statistical significance on either testing

condition or viewing angle, I employed one-way ANOVA (within subject-design) followed

by a post-hoc Tukey test of HSD (honestly significant difference) to further investigate

this significance.
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4.3 Results and Discussion

4.3.1 “Same-location” Alignment

Subjective Perception

In my master’s work, I examined the effect of testing condition and viewing angle on

subjective perception of object softness. A two-way ANOVA analysis revealed that

subjective perception of object softness had no significant difference among all testing

conditions [F (2, 14) = 2.47, p > 0.05]. In contrast, the viewing angle significantly

affected this subjective perception [F (4, 14) = 9.09, p < 0.001], even though the balls at

the extreme viewing angles of -15◦ and +15◦ had similar softness under both conditions

V+H and Vonly. Further analysis using one-way ANOVA indicated that subjective

perception of object softness exhibited significant difference among viewing angles under

each condition. As well, a post-hoc Tukey test found that subjective perception of object

softness differed when two viewing angles were apart at least 15◦ for all 5 significant pairs

of viewing angles.

Using a “same-location” alignment between a visual display and haptic device, sub-

jective perception of object softness was under the influence of viewing angles. Although

there was a common significant pair of viewing angles (-7.5◦, +7.5◦) under both con-

ditions Vonly and Honly, this pair was not significant under the condition V+H. This

indicates that there is a subtle difference of subjective perception among all conditions.

Nevertheless, the effect of viewing angle as observed in my master’s work - “the larger

the viewing angle was, the harder the ball was perceived” - was valid only within the

interval of viewing angles from -7.5◦ to +7.5◦ under all conditions. Considering that all

testing balls at varying viewing angles were identical in softness, these results demon-

strate that subjective perception of object softness is under a perceptual illusion under

all conditions, even though the effect of this illusion is not equal under each condition.

In short, viewing angle affects subjective perception of object softness, whereas testing
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Figure 4.5: Objective measurements of maximum force under “same-location” align-
ment. [Error bars represent standard errors.]

condition does not.

Objective Measurements

As extension, I re-examined the raw data of my master’s work to investigate the effect

of testing condition and viewing angle on objective measurements of maximum force

and pressing depth. A two-way ANOVA analysis discovered that all three testing condi-

tions had a significant difference of effects on objective measurements of maximum forces

[F (2, 14) = 155.08, p < 0.0001] and pressing depth [F (2, 14) = 15.06, p < 0.001], respec-

tively. These results contrast to the above observations related to subjective perception

of object softness.

As shown in Fig. 4.5 and Table 4.1, further analysis using one-way ANOVA revealed

that objective measurements of maximum force among three testing conditions had a

significant difference at each viewing angle. A post-hoc Tukey test (see the last column

in Table 4.1) found that objective measurements of maximum force exhibited significant

differences between the conditions V+H and Vonly (as well between conditions Vonly and

Honly) for all viewing angles. The same observations were true between the conditions

V+H and Honly for two viewing angles of -15◦ and -7.5◦, even though the mean of the

maximum force (1.33 N) under the condition V+H was larger than its counterpart (1.11

N) under the condition Honly, as illustrated in Fig. 4.5. The mean of the maximum
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Table 4.1: Results of one-way ANOVA and Tukey-test for the effects of testing condition
on maximum force under “same-location” alignment.

One-way ANOVA Tukey-test HSD

-15◦ F = 55.20 p < 0.0001
V+H to Honly

p < 0.001V+H to Vonly
Vonly to Honly

-7.5◦ F = 44.01 p < 0.0001
V+H to Honly

p < 0.001V+H to Vonly
Vonly to Honly

0◦ F = 57.83 p < 0.0001
V+H to Vonly

p < 0.001
Honly to Vonly

7.5◦ F = 51.86 p < 0.0001
V+H to Vonly

p < 0.001
Honly to Vonly

15◦ F = 41.57 p < 0.0001
V+H to Vonly

p < 0.001
Honly to Vonly
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Figure 4.6: Objective measurements of maximum pressing depth in Experiment I. [Error
bars represent standard errors.]

force was 0.0 N under the condition Vonly, because no force was rendered.

For objective measurements of maximum pressing depth, there were similar obser-

vations resulted from the analyses of a one-way ANOVA and a post-hoc Tukey-test,

as shown in Fig. 4.6 and Table 4.2. The exception is that there was no difference of

maximum pressing depth between the conditions V+H and Honly, although the mean

of the maximum pressing depth under the condition V+H was constantly larger than

its counterpart under the condition Honly. The mean of the maximum pressing depth

was 4.98 mm under the condition V+H and 4.06 mm uner the condition Honly. With-

out force rending, the mean of the maximum pressing depth was 8.13 mm under the
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Table 4.2: Results of one-way ANOVA and Tukey-test for the effects of testing condition
on maximum pressing depth in Experiment I.

One-way ANOVA Tukey-test HSD

-15◦ F = 18.48 p < 0.0001
V+H to Vonly

p < 0.01
Honly to Vonly

-7.5◦ F = 31.44 p < 0.0001
V+H to Vonly

p < 0.001
Honly to Vonly

0◦ F = 37.77 p < 0.0001
V+H to Vonly

p < 0.001
Honly to Vonly

7.5◦ F = 34.25 p < 0.0001
V+H to Vonly

p < 0.001
Honly to Vonly

15◦ F = 34.96 p < 0.0001
V+H to Vonly

p < 0.001
Honly to Vonly

condition Vonly - almost twice higher than those under the conditions V+H and Honly.

In contrast, viewing angle did not have the same effects as testing condition on

objective measurements of maximum force [F (4, 14) = 0.22, p > 0.05] and pressing

depth [F (4, 14) = 2.13, p = 0.0782], respectively. Noticed that the effect of viewing angle

on maximum pressing depth was at the border of significance (p < 0.05), I conducted

further a one-way ANOVA analysis and found that this effect was only significant under

the condition Vonly. A post-hoc Tukey-test revealed that this significance was only

between two viewing angles of -15◦ and 0◦.

In short, testing condition significantly affects objective measurements of maximum

force and pressing depth. However, viewing angle does not influence maximum force

under all conditions. Under the condition Vonly, viewing angle has a significant effect

on maximum pressing depth only between viewing angles of -15◦ and 0◦.

4.3.2 Vertical Alignment

Subjective Perception

In my master’s work, I examined the effect of testing condition and viewing angle on

subjective perception of object softness. As revealed by a two-way ANOVA analysis, test-

ing condition do not affect the subjective perception of object softness [F (2, 14) = 0.59,
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Figure 4.7: Objective measurements of maximum force under vertical alignment. [Error
bars represent standard errors.]

p > 0.05]. Viewing angle, however, significantly influenced this subjective perception

[F (4, 14) = 21.46, p < 0.0001]. A one-way ANOVA analysis on the effect of viewing

angle further revealed that, under each testing condition, the larger the viewing angle

was the harder the ball was perceived to be. As well, a post-hoc Tukey test revealed

that all 12 significant pairs of viewing angles were at least 15◦ apart. Although these

observations are in agreement with those made with the “same-location” alignment, the

numbers of significant pairs of viewing angles found under vertical alignment is much

more than that under “same-location” alignment. This indicates that vertical alignment

has unique characteristics to show subtle different effects on the subjective perception of

object softness from “same-location” alignment, even though both alignments has the

same general effect of viewing angle.

Objective Measurements

As part of my doctoral work, I examined the effect of testing condition and viewing

angle on objective measurements of maximum force and pressing depth on the basis

of the raw data derived from my master’s work. A two-way ANOVA analysis revealed

that testing condition had a significant effect on objective measurements of maximum

forces [F (2, 14) = 196.05, p < 0.0001] and pressing depth [F (2, 14) = 5.61, p < 0.0001],

respectively. As indicated in Fig. 4.7 and Table 4.3, further analysis using one-way
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Table 4.3: Results of one-way ANOVA and Tukey-test for the effects of testing condition
on maximum force under vertical alignment.

One-way ANOVA Tukey-test HSD

-15◦ F = 294.80 p < 0.0001
V+H to Vonly

p < 0.001
Honly to Vonly

-7.5◦ F = 237.83 p < 0.0001
V+H to Vonly

p < 0.001
Honly to Vonly

0◦ F = 330.97 p < 0.0001
V+H to Vonly

p < 0.001
Honly to Vonly

7.5◦ F = 292.90 p < 0.0001
V+H to Vonly

p < 0.001
Honly to Vonly

15◦ F = 288.27 p < 0.0001
V+H to Vonly

p < 0.001
Honly to Vonly

ANOVA revealed that objective measurements of maximum force among three testing

conditions had a significant difference at each viewing angle. A post-hoc Tukey test (see

the last column in Table 4.3) found that this difference exhibited between the conditions

V+H and Vonly (as well between conditions Vonly and Honly). No significant difference

existed between the conditions V+H and Honly, indicating that participants applied the

similar amount of maximum force at each viewing angle under both conditions. The

means of the maximum force were 2.45 N and 2.41 N under the conditions V+H and

Honly, respectively. The mean of the maximum force was 0.0 N under the condition

Vonly, as no force was rendered. The general observations are same as those made

with the “same-location” alignment. However, the means of maximum pressing depth

under three conditions under vertical alignment are about twice times larger than their

counterparts under the “same-location” alignment.

In contrast, a one-way ANOVA and a post-hoc Tukey test revealed different results for

objective measurements of maximum pressing depth. As shown in Fig. 4.8 and Table 4.4,

difference of maximum pressing depth between the conditions V+H and Honly existed

for the two negative viewing angles -15◦ and -7.5◦. The mean of the maximum pressing

depth under the condition Vonly was larger than its counterpart under the conditions

V+H and Honly. At the two positive viewing angles +7.5◦ and +15◦, no testing condition
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Figure 4.8: Objective measurements of maximum pressing depth under vertical align-
ment. [Error bars represent standard errors.]

Table 4.4: Results of one-way ANOVA and Tukey-test for the effects of testing condition
on maximum pressing depth under vertical alignment.

One-way ANOVA Tukey-test HSD

-15◦ F = 7.29 p < 0.005
V+H to Honly

p < 0.001
Vonly to Honly

-7.5◦ F = 13.55 p < 0.0001
V+H to Honly

p < 0.001V+H to Vonly
Vonly to Honly

0◦ F = 5.39 p < 0.005 Honly to Vonly p < 0.05
7.5◦ F = 2.86 p > 0.05 – –
15◦ F = 2.49 p > 0.05 – –

was significantly different from the other. The means of the maximum pressing depth

were 11.03 mm and 9.56 mm under the conditions V+H and Honly, respectively. The

mean of the maximum pressing depth was 11.6 mm under the condition Vonly. This

mean was close to its counterpart under the condition V+H, although being much higher

than that under the condition Honly. This observation indicates that, in the absence of

maximum force under the condition Vonly, the participants used the similar maximum

pressing depth for perceiving object softness as that under the condition V+H with the

feedback of both maximum force and pressing depth. In disagreement with observations

made using the “same-location” alignment, the means of maximum pressing depth under

three conditions under vertical alignment are about 1.5 to 2 times larger than their

counterparts under the “same-location” alignment.
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To exam the effect of viewing angle on the objective measurements of maximum

force and pressing depth, I conducted atwo-way ANOVA analysis too. The analysis

revealed that viewing angle did not have the same effects as testing condition on ob-

jective measurements of maximum force [F (4, 14) = 0.17, p > 0.05] and pressing depth

[F (4, 14) = 1.74, p > 0.05], respectively. These results are in agreement with those

observed under “same-location” alignment.

4.3.3 Horizontal Alignment

Subjective Perception

In agreement with the results observed under the “same-location” alignment and under

the vertical alignment as described in my master’s work, a two-way ANOVA analysis

demonstrated that testing condition did not influence the subjective perception of object

softness [F (2, 14) = 1.61, p > 0.05]. In contrast, viewing angle significantly affected this

subjective perception [F (4, 14) = 15.53, p < 0.0001]. A one-way ANOVA analysis on

viewing angle found that the relationship between viewing angle and perceived object

softness - the larger the viewing angle was, the harder the ball was perceived - was

still valid as observed in the other alignments. A post-hoc Tukey test revealed that

all 8 significant pairs of viewing angles were at least 15◦ apart. These observations

are same as those found under “same-location” and vertical alignments. Nevertheless,

the horizontal alignment yields different significant pairs of viewing angles from those

found under “same-location” and vertical alignments. That is, the horizontal alignment

between a visual display and haptic device has subtle different effects on the subjective

perception of object softness from the other two alignments (“same-location” and vertical

alignments).
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Figure 4.9: Objective measurements of maximum force under horizontal alignment.
[Error bars represent standard errors.]

Table 4.5: Results of ANOVA analysis and Tukey-test for the effects of testing condition
on maximum force under horizontal alignment.

One-way ANOVA Tukey-test HSD

-15◦ F = 159.98 p < 0.0001
V+H to Vonly

p < 0.001V+H to Honly
Honly to Vonly

-7.5◦ F = 197.52 p < 0.0001
V+H to Vonly

p < 0.001V+H to Honly
Honly to Vonly

0◦ F = 191.93 p < 0.0001
V+H to Vonly

p < 0.001V+H to Honly
Honly to Vonly

7.5◦ F = 183.99 p < 0.0001
V+H to Vonly

p < 0.001
Honly to Vonly

15◦ F = 171.75 p < 0.0001
V+H to Vonly

p < 0.001
Honly to Vonly

Objective Measurements

Based on the raw data of my master’s work, I investigated the effect of testing con-

dition and viewing angle on objective measurements of maximum force and pressing

depth, as part of my doctoral work. A two-way ANOVA analysis revealed that all three

testing conditions had significant effects on objective measurements of maximum forces

[F (2, 14) = 119.25, p < 0.0001] and pressing depth [F (2, 14) = 9.43, p < 0.0001], respec-

tively. These observations are in agreement with those found under the “same-location”

alignment and vertical alignment. As illustrated in Fig. 4.9 and Table 4.5, one-way
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Figure 4.10: Objective measurements of maximum pressing depth under horizontal align-
ment. [Error bars represent standard errors.]

Table 4.6: Results of ANOVA and Tukey-test for the effects of testing condition on
maximum pressing depth under horizontal alignment.

One-way ANOVA Tukey-test HSD
-15◦ F = 3.19 p < 0.05 V+H to Honly p < 0.05
-7.5◦ F = 5.20 p < 0.01 V+H to Honly p < 0.01
0◦ F = 4.26 p < 0.05 V+H to Honly p < 0.05
7.5◦ F = 3.69 p < 0.05 Vonly to Honly p < 0.05
15◦ F = 4.03 p < 0.05 V+H to Honly p < 0.001

ANOVA analysis revealed the same trend as observed under the “same-location” align-

ment that objective measurements of maximum force among three testing conditions

had a significant difference at each viewing angle. A post-hoc Tukey test (see the last

column in Table 4.5) found that objective measurements of maximum force exhibited

significant differences between the conditions V+H and Vonly (as well between condi-

tions Vonly and Honly) for all viewing angles. The same observations were true between

the conditions V+H and Honly for three viewing angles of -15◦, -7.5◦ and 0◦. In agree-

ment with observations made under the “same-location” alignment, the mean of the

maximum force under the condition V+H was constantly larger than its counterpart

under the condition Honly, as illustrated in Fig. 4.9. The mean of the maximum force

was 2.68 N and 2.35 N under the conditions V+H and Honly, respectively. The mean

under the condition Vonly was 0.0 N as no force was rendered. The observation of these

means is similar as that under vertical alignment.
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In contrast, a one-way ANOVA and post-hoc Tukey test revealed different results

for objective measurements of maximum pressing depth, as shown in Fig. 4.10 and

Table 4.6. At any viewing angle, the maximum pressing depth under the condition

Honly was significantly different under the condition V+H, expect for the viewing angle

+7.5◦. Under both conditions V+H and Vonly, there was no significant difference of

the maximum pressing depth. The mean of the maximum pressing depth under the

condition V+H was larger than its counterpart under the condition Honly. The mean

of the maximum pressing depth was 11.03 mm and 9.05 mm under the conditions V+H

and Honly, respectively. The mean of maximum pressing depth was 10.55 mm under

the condition Vonly. This value was close to the mean computed in the condition V+H.

These means are in the same scale as those computed under vertical alignment. As well,

the participants used the similar maximum pressing depth under the condition Vonly

(in the absence of maximum force) as that under the condition V+H (with the feedback

of both maximum force and pressing depth). This observation agrees with that found

under vertical alignment.

I conducted a two-way ANOVA analysis to investigate the effect of viewing angle

on the objective measurements of maximum force and pressing depth. The analysis

revealed that viewing angle did not have the same effect as testing condition on objec-

tive measurements of maximum force [F (4, 14) = 0.32, p > 0.05] and pressing depth

[F (4, 14) = 0.39, p > 0.05], respectively. These results are in agreement with those

observed in under “same-location” and vertical alignments.

4.4 General Discussion

In all three different alignments between a visual display and haptic device, ANOVA

analyses revealed that subjective perception of object softness differed significantly for

varying viewing angles under all testing conditions. This is in agreement with the results
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found in an early work [8]. However, ANOVA analyses of the objective measurements

of maximum force and pressing depth indicate that testing condition affects these two

objective measurements significantly, whereas viewing angle does not. These results

reveal that subjective perception of object softness is not correlated with objective mea-

surements of maximum force and pressing depth. Furthermore, the effect of subjective

perception and objective measurements are not equal among these three alignments.

These observations carry implications for creating accurate VR surgical systems.

4.4.1 Subjective Perception versus Objective Measurements

In all alignments, participants applied an force (see Fig. 4.3) to a virtual deformable

ball on a visual display, in order to determine its softness. The number of oscillations

needed was 4 ∼ 12 for pressing each ball. This number is twice as large as the 2 ∼

6 times for finger touching an object via a softness display device in discriminating

object softness[80]. This difference might be due to the different ways of interacting

with objects in this current study versus the study described in [80]. In this study, the

participants pressed virtual deformable balls under both (or either) visual and haptic

information, whereas in the study of [80], the participants depressed actual objects via

a softness display device.

After applying oscillating force on each of two deformable balls at varying viewing

angles, participants were able to select the harder ball. As subjective perception of object

softness, this selection was under a perceptual illusion - the larger the viewing angle, the

harder the ball is perceived. This is true for all alignments between the visual display and

haptic device. Vertical alignment has the largest number of significant pairs of viewing

angles that exhibits this perceptual illusion; whereas “same-location” alignment has

the least number of significant pairs. This implies that the “same-location” alignment

produces in general relatively consistent subjective perception of object softness among

the three compared alignments. Under the condition V+H when both visual and haptic
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information were available, data collected under horizontal alignment reveal only one

significant pair of viewing angles (-15◦ to +15◦), compared to those collected under

“same-location” and vertical alignments. Under this condition, data collected under

horizontal alignment show stable subjective perception of objective softness at viewing

angles from -7.5◦ to +7.5◦.

Objective measurements of maximum force and pressing depth give precision about

the information underlying the subjective perception of object softness, although max-

imum force and pressing depth are not directly correlated to each other due to the

damping factor of the mass-spring model [78]. Under all alignments, objective mea-

surements of maximum force were indistinguishable for varying viewing angles under all

three conditions. Objective measurements of maximum pressing depth had a significant

difference only under “same-location” alignment among the viewing angles under the

condition Vonly. Similar results were not found under both conditions Honly and V+H.

This is true under all conditions using both vertical and horizontal alignments.

The above observations indicate that there seems to be a division between subjective

perception of object softness and objective measurements of maximum force and press-

ing depth for all alignments. This is in agreement with that observed by Bergmann et

al.[41] for perceiving object roughness. They reported that there was no correlation be-

tween an object’s perceived roughness (subjective perception) and its physical roughness

(objective measurement). Furthermore, these observations seem to follow the distribu-

tive nature of haptic information for object perception, proposed by Bracewell et al..

[81]. When only haptic information was available, I observed no significant difference

among viewing angles for objective measurements of maximum force and pressing depth.

However, subjective perception of object softness demonstrated a significant difference

given this same haptic information.
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4.4.2 Advantage of “Same-Location” Alignment

Among the three alignments, an interesting observation from objective measurements is

the different means of maximum force and pressing depth under all conditions [there is

no force under the condition Vonly]. The means of maximum force and pressing depth

under vertical and horizontal alignments had similar values, but were nearly twice as

large as their counterparts under “same-location” alignment. This difference indicate

that the “same-location” alignment offers similar subjective perception as the vertical

and horizontal alignments, but with less physical effort as described by force and pressing

depth. This implies an advantage of “same-location” alignment over the vertical and

horizontal alignments.

This observation confirms the notion that a “same-location” alignment facilitates

user interaction with objects. For example, Wu et al.[11] studied the effect of their

“same-location” alignment for merging the site of ultrasound visualization with the

site of action during needle insertion in a VR surgical system. They discovered that

participants were more accurate using their “same-location” alignment compared to a

conventional ultrasound alignment by placing a monitor away from the site of action.

Swapp and Loscos[51] reported that their “same-location” alignment of placing a haptic

device in front of a visual display improved significantly the accuracy of user interaction

that requires rapid hand motions. These studies, together with the current study, reveal

the advantage of a “same-location” alignment for user interaction.

4.4.3 Application

Based on the different observations of subjective perception and objective measurements,

this current study reveals two factors that have implications for creating accurate sim-

ulation and interaction in VR surgical systems. This accuracy is crucial in VR surgical

system due to the requirement for patient safety. The first factor is the perceptual illu-
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sion of object softness under viewing angles-the larger the viewing angle is, the harder

the ball is perceived. To avoid this perceptual illusion, VR surgical systems should place

their cameras in such a way that the cameras have a range of viewing angle that is less

than 15◦ with respect to an organ/tissue in interaction. Because viewing angle does not

affect the objective measurements of maximum force and pressing depth-as observed in

the current study, placing the cameras within this range of viewing angle eases the align-

ment between a haptic device and visual display for accurate simulation and interaction

in VR surgical systems.

The second factor is the advantage of the “same-location” alignment between a visual

display and haptic device (as illustrated in Fig. 4.1a) over the vertical and horizontal

alignments. This “same-location” alignment gives a relatively consistent subjective per-

ception of object softness over a range of viewing angles between -7.5◦ and +7.5◦ with less

physical effort. In creating accurate simulation and interaction in VR surgical systems,

this allows reduction of fatigue associated with the use of force feedback devices. Pre-

sumably, a surgeon would feel less tired using less effort to interact with organs/tissues.

Consequently, he/she could interact with virtual organs/tissues in the same way as if

they were under an actual surgical procedure.

As observed in the operating room, surgeons often use their fingers to touch and

press specific organs/tissues for assessing their softness (i.e. disease sites within the

organs/tissues). They make this assessment by closing their eyes while touching and

pressing the organs/tissues [personal communication with surgeons]. That is, surgeons

try to acquire precise information on disease sites by removing their visual context.

Starting from this observation, I enquired whether there are separate effects of visual

and haptic information on the perception of object softness. As revealed in this study,

visual and haptic information together affect this perception when both are available.

However, haptic information (under the condition Honly) and visual information (under
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the condition Vonly) influence objective measurements of maximum force and pressing

depth in different ways. This carries an implication for creating accurate VR systems of

surgical simulation, in which it would be difficult to accommodate physical constraints of

a haptic device and a visual display for the perception of object softness. The different

influences of haptic and visual information on objective measurements enable possi-

bilities of simulating organs/tissues to reflect the objective measurements and thus to

separately meet the physical constraints of the visual display and haptic device. Further

studies are needed to examine how to undertake this simulation for creating accurate

VR surgical systems.

4.5 Summary

This chapter presented a study investigating the effect of three different hardware align-

ments on human perception of object softness. Although the three different alignment

yielded similar subjective perceptions of object softness, this study showed the advan-

tage of the “same-location” alignment in both subjective and objective measurements.

This particular alignment allows a user to have the same subjective feeling of object

softness while using less force to discriminate object softness. The next chapter presents

a study investigating the effect of interaction styles on human perception of softness

during real-time palpation using the “same-location” alignment.



Chapter 5

Human Constraints for Softness Perception during

Real-Time Palpation∗

5.1 Introduction

In this chapter, I present my work aiming at investigating the insensitivity of human

perception during perceiving object softness. The investigation featured two comple-

mentary analyses: variation computation and human study. Variation computation

quantified the differences of visual displacement (visual information) and force feedback

(haptic information) among four different force distributions on a contact area of a pal-

pated soft object. The contact area was considered as a single-node or multi-node contact

definition. The palpation under these force distributions had a same applied force pro-

file. The analysis was based upon statistical approaches, which are not very sensitive

to small variations in datasets. This analysis computed, among the force distributions,

theoretical variation levels for visual displacement and fore feedback, respectively.

This study examined the hypothesis that the human perception of object

softness is insensitive to some of these theoretical variation levels. Using a

stylus-style haptic device, human participants palpated a soft object and discriminated

the softness of the object among the four force distributions. The palpation was under

∗Parts of this chapter is accepted for a conference.
A. Widmer and Y. Hu, (full-paper accepted on May 07, 2012; paper number #: 91), “Difference of

object softness perception during palpation through single-node and multi-node contacts,” Proceedings
of the 34rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(IEEE-EMBC), San Diego, CA, USA, August 2012.

A full version of this chapter is under review in IEEE transactions.
A. Widmer and Y. Hu, (12 double column pages submitted on June 5 2012; submission number #:

TH-2012-06-0042), “Human Constraints for Softness Perception during Real-Time Palpation,” IEEE
Transactions on Haptics .
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a single-node or multi-node contact definition. For comparing each pair of force distri-

butions, I analyzed the following parameters: subjective perception of object softness

and objective measurements of maximum force and pressing depth. The observation

of the study indicated that the human perception of object softness is affected by a

certain variation level for visual displacement, whereas this perception is insensitive to

any computed variation level for force feedback.

Together, both analyses revealed, (a) there is a difference in perceiving object softness

between a single-node and multi-node contact definitions; and (b) the human perception

of object softness is insensitive to a variation level up to 11.0% and 6.3% for visual and

haptic information, respectively. The analyses were performed on the two same loactions

as described in Chapter 3 (top and side). However, only results for application of forces

on the top of the phantom are presented in this chapter. Due to close similarities, results

for application of force on the side of the phantom are presented in Appendix B.

5.2 Variation Computation

The analysis of variation computation took an approach of using statistical tools such as

the Analysis of Variance (ANOVA) and Bland and Altman’s (B&A) agreement method

[13]. This approach is similar to that in my previous work described in Chapter 3 of

confirming the behavioural agreement between a real-time viscoelastic model of a breast

phantom and its counterpart model based on the Finite Element Method (FEM). Based

upon this real-time model, the analysis of variation computation quantified variation

levels of both visual displacement and force feedback among four force distributions,

under the single-node and multi-node contact definitions. These force distributions

simulated different palpation cases. The following context presents briefly the real-time

model used in this analysis, and then details two phases of the analysis: data acquisition

and data processing.
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5.2.1 Real-Time Model

Based upon a viscoelastic model of a soft object, CPU-based computation has difficulties

to achieve a simulation of the object, which has accurate behavioural deformation (e.g.,

visual displacement and force feedback) for real-time user interaction. For simulating

the deformation of a breast phantom, my previous work modified a viscoelastic model of

the phantom to increase its computational speed for a real-time rendering as described

in Chapter 3. However, this increase was at a cost of decreasing the accuracy of the

deformation, when compared to a FEM model featuring physical parameters of the

phantom. Based on the virtual breast phantom (a hemisphere of 8 cm in diameter) as

depicted in Fig. 5.1, the real-time model nevertheless yielded both visual displacement

and force feedback in 10 ms under a CPU-computation. This is true for both common

types of palpation: one-finger palpation and two-finger palpation. The real-time model

consisted of a surface membrane and an inside gel. The surface membrane was a mesh

of 338 nodes connected by a Burger element between a pair of nodes as introduced

in Chapter 3, the Burger element included a Kelvin element in series with a Maxwell

element and considered viscoelastic characteristics of the membrane. The inside gel,

without any node, was governed through a state equation featuring a modified gas law

equation and took into account viscoelasticity of the gel.

Physical parameters for both surface membrane and inside gel were derived from

literature about actual breast phantoms; and then were manually fitted for palpation of

the virtual breast phantom as shown in Chapter 3. Under one-finger palpation as shown

in Fig. 5.1b, the real-time viscoelastic model achieved an agreement level over 95% with

its FEM counterpart for both visual displacement and force feedback. However, this

agreement level dropped to 90.2% and 86.5% for visual displacement and force feedback

respectively, under two-finger palpation as illustrated in Fig. 5.1c. All these agreement

levels were evaluated through the B&A agreement method introduced in Chapter 3.
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40mm

(a) (b) (c)

Figure 5.1: Representation of a virtual breast phantom and palpation scenarios: (a)
side view of the virtual phantom; (b) one-finger palpation using the index finger; (c)
two-finger palpation using both index and middle fingers.

5.2.2 Data Acquisition

Based on this real-time viscoelastic model, the current analysis of variation computation

departed from the work done in Chapter 3 that compared behavioural deformation gov-

erned by this model and its FEM counterpart. Indeed, this analysis computed respective

variations of visual displacement and force feedback under applying four different force

distributions for palpation. The first phase of this analysis is data acquisition.

As illustrated in Fig. 5.1, the palpation was represented as a finger (or two-finger)

applied force over a contact area on the top of the virtual breast phantom. The location

of the contact area was to maximize a pressing depth under palpation. Similar to the

study in chapter 3, the contact area covered 23 nodes on the surface membrane and

had the size of 2 cm × 2.84 cm for one-finger palpation. This size corresponded to the

average area of the distal section for a male index (or middle) finger [73]. For two-finger

palpation, the contact area on the surface membrane had 46 nodes to occupy twice of

this size. For each finger, the same force distributions as those used in Chapter 3 were

considered as follows:

• Single-node contact (Distribution 1): As shown in Fig. 3.3a, force was applied

to only one node at the centre (a circle as illustrated in Fig. 5.2) of the contact
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Figure 5.2: Virtual index and middle fingers with shaded finger contact areas (the palm
faces to the reader).

area (a shaded area in Fig. 5.2). This mimics a common contact used in a VR

simulator with a stylus-style haptic device.

• Homogenous multi-node contact (Distribution 2): As depicted in Fig. 3.3b, iden-

tical force was applied to each meshed node of the contact area. This contact

describes a scenario of applying force evenly over the virtual breast phantom with

respect to its base.

• Centred 2D Gaussian multi-node contact (Distribution 3): As illustrated in Fig.

3.3c, force was applied to each meshed node of the contact area, following a 2D

Gaussian distribution with its peak at the center of the contact area. This contact

represents a possible scenario of applying force by a finger over the curved surface

of the breast phantom.

• Off centred 2D Gaussian multi-node contact (Distribution 4): As displayed in Fig.

3.3d, force was applied to each meshed node of the contact area, following a 2D

Gaussian distribution with its peak at the distal tip (a dot in Fig. 5.2) of the

contact area. This contact simulates the scenario of applying force by an inclined

finger over the breast phantom for palpation.

Each force distribution had a maximum force identical of 3 N and followed a profile

lasting a period of 4 seconds. This profile was stepwise, with a force of 3 N during
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the first half period of 2 seconds and 0 N during the last half period of 2 seconds,

to mimic the finger motion of pressing on a palpated surface and then releasing the

pressure. Using the real-time viscoelastic model of the breast phantom described in

Chapter 3, I computed one dataset of visual displacement from each meshed node on

the virtual phantom, except those within the contact area covered by the finger; and

another dataset of force feedback from each meshed node within the contact area to

the finger. The dataset of force feedback did not include force computed from meshed

nodes located outside of the contact area, due to their non-contact to the finger. Visual

displacement of each node was the spatial resultant of its 3D position with respect to

the base center (the origin of a Cartesian coordinate) of the hemispheric phantom. Force

feedback of each node possessed the resultant of its 3D force vector. Visual displacement

or force feedback of a node was computed at each time step. On a CPU-based computer

(Dell Precision 690 with 2 dual-core processors at 3.2 GHz and 4 GB of RAM), this

computation took 10 ms for one time step and lasted 400 steps for the period of the

force profile.

Under one-finger palpation, the dataset of visual displacement totaled 126,000 sam-

ples (400 time steps × 315 nodes) by excluding the invisible 23 nodes within the contact

area. This dataset was 116,800 samples (400 time steps × 292 nodes) under two-finger

palpation by discarding 46 nodes beneath two fingers. In contrast, the dataset of force

feedback aggregated per finger 9,200 samples (400 time steps × 23 nodes) within the con-

tact area. Both datasets were recorded under each force distribution for data processing

below.

5.2.3 Data Processing

As the second phase of the analysis, data processing compared a pair of force dis-

tributions for visual displacement and force feedback, respectively. Consequently, the

paired comparison yielded respective variations of visual displacement and force feed-
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back. Among all force distributions, there were six pairs of comparison for each of visual

displacement and force feedback. All paired comparisons were performed separately

under each type of palpation: one-finger palpation and two-finger palpation.

Each paired comparison involved three computations: the Root Mean Square Error

(RMSE), the p-value computed by the ANOVA and an agreement level calculated by

the B&A agreement method [21]. The RMSE between one pair of datasets indicates

their Euclidean distance. Because most investigations on comparing two object models

used this computation for assessing behavioral difference between the models, I kept

this computation in compliance with these investigations. The p-value smaller than or

equal to 0.05 (with 95% confidence) implies that the pair of datasets is significantly

different from each other. That is, the datasets are separable without agreement. In

case of the p-value larger than 0.05, the ANOVA suggests that the two datasets in one

pair cannot be differentiated from each other. However, the ANOVA in this case does

not determine whether both datasets are in agreement to each other. Thus, the B&A

agreement method serves to determine the agreement between the pair of datasets. This

method gives a percentage, A, of samples in the datasets that are within the agreement

range of ±2 standard deviations (S.D.). The variation, V , is a percentage of samples in

the datasets that are out of this agreement range and thus can be calculated as follows:

V = 100− A (5.1)

Therefore, the variation forms a theoretical level of discrepancies between two datasets.

By computing variations of datasets between each pair of four force distributions, I

obtained theoretical variation levels of visual displacement and force feedback, respec-

tively, under one-finger palpation and two-finger palpation.



90

ANOVA B&A agreement
RMSE [cm] F p S.D. [cm] V [%]

1 vs. 2 0.9611 2.99 0.1004 0.0667 14.14
1 vs. 3 0.4274 3.01 0.0921 0.0298 13.79
1 vs. 4 0.3974 2.11 0.1853 0.0284 13.23
2 vs. 3 0.5340 1.78 0.2231 0.0369 6.43
2 vs. 4 0.6493 2.59 0.1256 0.0455 6.46
3 vs. 4 0.2183 2.5 0.2241 0.0166 5.55

Table 5.1: Comparisons of visual displacement under one-finger palpation.

ANOVA B&A agreement
RMSE [N] F p S.D. [N] V [%]

1 vs. 2 1.0150 0.85 0.3063 0.3041 5.54
1 vs. 3 0.5816 0.32 0.5523 0.8416 5.99
1 vs. 4 0.3617 0.21 0.6201 0.9214 4.03
2 vs. 3 0.3021 0.16 0.6215 0.1214 3.98
2 vs. 4 0.7514 0.34 0.6012 0.2147 3.54
3 vs. 4 0.1254 0.12 0.7410 0.6032 2.55

Table 5.2: Comparisons of force feedback under one-finger palpation.

5.2.4 Results

Under one-finger palpation, Table 5.1 and Table 5.2 present the comparison results of

visual displacement and force feedback, respectively. As indicated earlier, there were

six pairs of comparison among the four force distributions. That is, the notation “1

vs. 2” in Table 1 and Table 2 denotes the comparison under force distributions of

Distribution 1 and Distribution 2. Similar notations apply to the comparison of other

force distributions.

As indicated in Table 5.1, the paired comparisons of visual displacement produced

RMSE values, roughly ranging from 0.22 cm to 0.96 cm. The minimum RMSE value of

0.22 cm was yielded by “3 vs. 4”. These two distributions were multi-node contact with

respective centered and off-centered 2D Gaussian distributions of applying force. In con-

trast, the RMSE value of 0.96 cm was produced by “1 vs. 2” - comparison between the

single-node contact (Distribution 1) and the homogenous multi-node contact (Distribu-
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tion 2). Further ANOVA analysis revealed p-values greater than 0.05 (a threshold value)

for all pairs of comparison, as indicated in Table 5.1. These p-values demonstrated that

the two datasets of visual displacement in each pair of comparison could not be statis-

tically differentiated from each other. Then, the B&A agreement method determined

the variation level between these two datasets. As presented in Table 5.1, the variation

levels ranged from 5.55% (for “3 vs. 4”) to 14.14% (for “1 vs. 2”). In addition, a

gap of variation levels existed, from the paired comparisons between single-node contact

and multi-node contact (13.23%-14.14%) to those between multi-node contacts (5.55%-

6.46%). This gap indicates that visual displacement produced by single-node contact of

Distribution 1 was consistently apart from that yielded by multi-node of Distribution 2,

Distribution 3 and Distribution 4.

Table 5.2 illustrates outcomes derived from the paired comparisons of force feedback.

The RMSE values of these comparisons had a range from 0.12 N (for “3 vs. 4”) to 1.01

N (for “1 vs. 2“). This trend is similar to that observed in the paired comparisons of

visual displacement. Moreover, the analysis of using ANOVA found that p-values for

all paired comparisons were over the threshold of 0.05, agreeing with the observations

from the paired comparison of visual displacement. Finally, the B&A agreement method

yielded variation levels, ranged from 2.55% (for “3 vs. 4”) to 5.99% (for “1 vs. 3”). It

is worth to observe that this range was narrower than that for visual displacement; so

did the maximum value of the variation levels.

Under two-finger palpation, Table 5.3 and Table 5.4 illustrate the results of data pro-

cessing for visual displacement and force feedback, respectively. For visual displacement,

RSME values varied from 0.31 cm (for “3 vs. 4”) to 1.05 cm (for “1 vs. 2”), as shown in

Table 5.3. These two RMSE values gave a range, which was similar to that found under

one-finger palpation. As indicated in Table 5.3, the p-values computed by using ANOVA

were consistently over the threshold of 0.05. Consequently, the B&A agreement method
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ANOVA B&A agreement
RMSE [cm] F p S.D. [cm] V [%]

1 vs. 2 1.0521 2.24 0.1982 0.0325 11.08
1 vs. 3 0.8111 2.65 0.1127 0.0564 10.95
1 vs. 4 0.9577 1.49 0.2314 0.0425 11.18
2 vs. 3 0.9103 1.25 0.2649 0.0627 8.66
2 vs. 4 0.3281 1.44 0.2451 0.0165 4.38
3 vs. 4 0.3047 1.87 0.2185 0.0768 5.26

Table 5.3: Comparisons of visual displacement under two-finger palpation.

ANOVA B&A agreement
RMSE [N] F p S.D. [N] V [%]

1 vs. 2 1.1054 0.06 0.8012 0.2458 4.03
1 vs. 3 0.7951 0.10 0.7852 0.3362 6.26
1 vs. 4 0.7218 0.26 0.5812 0.2017 6.06
2 vs. 3 0.5893 0.16 0.6214 0.1920 3.34
2 vs. 4 0.2954 0.09 0.7915 0.0815 4.46
3 vs. 4 0.1849 0.50 0.4745 0.0521 3.31

Table 5.4: Comparisons of force feedback under two-finger palpation.

yielded variation levels, ranging from 5.26% (for “3 vs. 4”) to 11.18% (for “1 vs. 4”). A

gap of variation levels existed from the paired comparisons between single-node contact

and multi-node contact (10.95%-11.18%) to those between multi-node contacts (5.26%-

8.66%). This range was narrower than its counterpart under one-finger palpation. So

did the gap variation levels.

Table 5.4 reveals the results of analyzing force feedback under two-finger palpation.

The RMSE values ranged from 0.18 N (for “3 vs. 4”) to 1.10 N (for “1 vs. 2”). These

values were comparable to those found under one-finger palpation. Moreover, the p-

values yielded by using ANOVA were consistent with those under one-finger palpation.

Furthermore, the B&A agreement method generated variation levels, ranging from 3.31%

(for “3 vs. 4”) to 6.26% (for “1 vs. 3”). This range was comparable to that under one-

finger palpation too.
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5.2.5 Discussion

Theoretically, the above variation computation determined variation levels of visual dis-

placement and force feedback that are related to object softness. Based on the real-time

viscoelastic model of a virtual phantom, the computation was undertaken over a force

profile of a 4-second period. This computation departs largely from existing empiri-

cal studies on the human ability of discriminating compliance levels of object softness

[82, 83]. Importantly, the theoretical outcomes of this computation might anticipate

human perception of object softness in the following three aspects.

At first, a gap of variation levels indicates that visual displacement produced by

single-node contact was consistently apart from that yielded by multi-node contacts

with various force distributions. This is true for both types of palpation: one-finger

palpation and two-finger palpation. However, there is no gap of variation levels for force

feedback under both types of palpation. The gap for visual displacement might suffice

for humans to discriminate object softness under single-node and multi-node contact.

Secondly, there are a difference and a similarity between these two types of palpation.

One-finger palpation produced averagely larger variation levels for visual displacement,

compared to two-finger palpation. In contrast, both types of palpation yielded compa-

rable variation levels for force feedback. This might indicate that variation levels for

force feedback are less subject to the size discrepancy of the contact area than their

counterparts for visual displacement.

Lastly, the computation for force feedback produced smaller variation levels than the

computation for visual displacement. This is true under both types of palpation. In

addition, it is observed that the variation levels for force feedback were always much

smaller than 15% – just noticeable difference (JND) for discriminating object softness

under only force feedback [82]. This permits a postulation that humans might be unable

to differentiate object softness between single-node contact and multi-node contact by
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relying only on force feedback.

Indeed, the analysis of variation computation yielded theoretical variation levels for

both visual displacement and force feedback. Nevertheless, a human study is needed to

verify whether these theoretical outcomes anticipate human perception of object softness.

5.3 Human Study

As a complementary analysis, a human study examined the hypothesis that the human

perception of object softness is insensitive to some of the theoretical variation levels

resulting from the variation computation. I conducted the study following the within-

subject design of repeated measures. Via a stylus-style haptic device, a human partic-

ipant palpated a virtual breast phantom (a largely deformable object) to discriminate

its softness. The palpation was under either one index finger (one-finger palpation) or

both index and middle fingers (two-finger palpation), as introduced in Chapter 3. The

study had an approved ethic clearance, according to the Canadian Tri-Council Ethics

Guidelines.

5.3.1 Methodology

Participants

Applying within-subject design of repeated measures to my study, I determined the

total of 15 participants according to a method of computing sample size [84]. These

participants were 6 females and 9 males, aged between 20 and 30. All participants, with

normal or corrected-to-normal vision, were naive to the purpose of the study and had

given their consent prior to their participation. As pre-screening, each participant was

tested for his/her stereo acuity of at least 40” of arc, determined by the Randot Stereotest

(Stereo Optical, Inc). His/her color blindness was also verified using an Ishihara color

test, because various colors were used in visual stimuli (described below) of the study.
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In addition, the handedness of each participant was examined by employing a modified

version of the Edinburgh handedness inventory [77]. Each participant in the study was

strongly right-handed.

Apparatus

I used a “same-location” VR apparatus as introduced in Chapter 4 for the study. This

apparatus aligns visual and haptic stimuli onto one spatial location, resulting in reduced

physical workload for a participant during interacting with soft objects as explained in

Chapter 4. This apparatus was composed of a facing-down CRT monitor, a first surface

mirror, and a haptic device PHANToM 1.5/6DOF (stylus-style). The mirror was placed

horizontally in front of the participant. Under the mirror, the stylus-style haptic device

was located so that its haptic reference point could move according to the visual stimuli

in the mirror. Sitting in front of the apparatus, the participant held the stylus of the

haptic device and could not view both hand and haptic device. Refracted from the

mirror, the visual stimuli on the CRT screen were visible to the participant at the same

location as the reference point of the haptic device. A forehead rest restrained the head

location and orientation of the participant. This maintained a consistent view of the

stimuli for all participants.

Stimuli

During palpation, each participant viewed virtual breast phantoms (as visual stimuli)

and his/her hand received force feedback (as haptic stimuli) by maneuvering the haptic

device to undertake palpation on the virtual phantoms. The visual stimuli used in this

study were two virtual breast phantoms as described in Section 5.2 (Variation Compu-

tation). In a trial, each phantom could be viewed from its top, as illustrated in Fig. 5.1b

and Fig. 5.1c, with a randomly assigned color of either blue or purple. The colors of the

phantoms had same intensity of luminance, in order to eliminate the use of luminance

as a visual cue. Both phantoms were applied a pair of force distributions for palpa-
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(a)

(b)

Figure 5.3: Finger position and holding posture on the stylus of the haptic device for
palpation. (a) Under one-finger palpation; (b) Under two-finger palpation.

tion. These force distributions were the same as those introduced in Chapter 3. During

palpation, the deformation of each phantom was governed by the real-time viscoelastic

model presented in Chapter 3. For both types of palpation (one-finger palpation and

two-finger palpation), the participant could view the finger(s) on the top of the phantom

and the deformation of the phantom. This deformation produced visual displacement

of all meshed nodes on the surface of the phantom and force feedback from the nodes

within the contact area of the finger(s).

Force feedback was rendered to the finger(s) of the participant via the haptic device.

Under one-finger palpation, the participant used their hand to hold the stylus of the

haptic device by placing the index finger on the top of the stylus, as illustrated in Fig.

5.3a. This holding mimicked applying force through a contact area of 2 cm × 2.84 cm,

as depicted in Fig. 5.2. Under two-finger palpation, the participant placed both index

and middle fingers on the top of the stylus of the haptic device for holding the stylus, as

shown in Fig. 5.3b. This holding covered a contact area of twice large as its counterpart



97

under one-finger palpation, as depicted in Fig. 5.2.

For applying force, there were a total of 4 force distributions as described in Sub-

section 5.2.2. For each force distribution, I capped the maximum resultant of force

feedback at 3.5 N (the maximum sustainable force of the haptic device). Thus, I scaled

force feedback derived from the real-time viscoelastic model described in Chapter 3 by

the number of contact nodes as follows:

~Favg =
1

n

n
∑

i=1

~Fi (5.2)

where ~Favg represents the vector of force fed back to the hand of the participant; n

corresponds to the number of nodes within the contact area of the finger (or fingers);

~Fi is the vector of force computed on contact node i. Under one-finger palpation, there

were 23 nodes within the contact area. A total of 46 nodes existed within the contact

area under two-finger palpation. For all force distributions, this scaling permitted to

maintain the same variation levels of force feedback among paired comparisons as those

presented in Table 5.2 and Table 5.4.

For each force distribution, I verified that the force feedback rendered by the haptic

device was comparable with the scaled force feedback yielded by both real-time model

and Eq. (5.2). This verification employed the same method reported in Chapter 4.

To warrant a consistent fashion of palpation among all participants, I instructed the

participants to apply force vertically on the top of the phantom.

Both visual and haptic stimuli were produced by using OpenGL and OpenHaptic in

C++ programming. I rendered these stimuli on a Dell Precision 690 with 2 dual-core

processors at 3.2 GHz and 4 GB of RAM.

Procedures

After pre-screening, each participant was explained that there was a safety threshold of

force set to protect the haptic device. The participant was instructed to palpate two
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deformable breast phantoms one after another and to select the harder one among them

in each trial. The palpation was the finger motion of pressing on a deformable surface

and then releasing from it. There was no constraint on how many times this finger

motion should have taken place. The selection of a harder phantom was forced as the

2-Alternative-Forced-Choice utilized in psychophysics studies [85].

During both types of palpation, each participant interacted with the virtual phantoms

under the following three testing conditions:

• Active palpation (V+H): When palpating one virtual phantom via the haptic

device, the participant saw the deformation of the phantom and felt force fed

back on his/her hand. Thus, both visual and haptic stimuli were available to the

participant. This mimicked a common palpating scenario in practice.

• Passive palpation (Vonly): When interacting with the phantom, the participant

could see the deformation of the phantom but could not feel force feedback. There-

fore, only visual stimuli were available to the participant. This simulated palpation

via a robotic arm without force feedback.

• Hidden palpation (Honly): The participant could feel force feedback through the

haptic device but could not view the phantom during palpation. Consequently,

only haptic stimuli were available to the participant. This was palpation under

obstacles which block the view of a palpated object.

Each participant underwent 6 blocks of trials (2 types of palpation × 3 testing con-

ditions). Each block of trials had a practice session of 10 trials, prior to a testing session

of 30 trials (6 catching trials and 24 testing trials: 6 comparisons × 4 repetitions). The

practice session allowed the participant to familiarize with the palpation task of the

block. The trials in this session randomly derived from those in the testing session,

covering both catching and testing trials. Catching trials featured two virtual breast



99

phantoms, whose softness levels and force distributions as applying force differed from

each other. The softness levels of the two phantoms varied from each other significantly

at about 50% - much higher than 15% (the Just-Noticeable-Difference [82]). Thus, the

two phantoms possessed two largely different sets of physical parameters, respectively,

for the real-time viscoelastic model. In contrast, testing trials had two phantoms with

the identical softness levels (i.e., the same set of physical parameters for the real-time

model) to be palpated under two different force distributions, respectively.

The order of the 6 blocks was randomized and counterbalanced among all partici-

pants. So did the trials of both practice and testing sessions. Each participant took

about 1.5 hours to complete all blocks of trials, with a 5-minute break between two

blocks of trials.

Data Analysis

In each trial, I recorded two performance parameters for data analysis: subjective percep-

tion and objective measurements. These parameters were identical to those in Chapter

4. Under a paired comparison of force distributions, subjective perception was the par-

ticipant’s selection of the harder phantom between the two presented. This performance

parameter indicates the participant’s perception of object softness. Objective measure-

ments included maximum pressing depth and maximum force applied on each phantom

during a trial. This performance parameter allows examining the consistency of the

participant’s palpating behavior.

I computed the objective measurements from the visual displacement of meshed

nodes on each phantom under palpation. When the phantom deformed, the maximum

pressing depth was the longest distance between the original surface within the contact

area and its depressed surface. The maximum force corresponded to the peak value

of the force that the participant supposed to feel from each phantom. The maximum

pressing depth and force were not directly correlated to each other due to the real-time
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model. Under the testing condition of active palpation (V+H), there were both maxi-

mum pressing depth and force computed. The maximum force was always zero under the

testing condition of passive palpation (Vonly), due to the absence of force feedback to

the participant’s hand. Although the participant could not view the deformed phantom

under the testing condition of hidden palpation (Honly), the maximum pressing depth

existed because the participant could feel force feedback from the phantom.

For each participant, subjective perception of all catching trials was used to verify

whether the participant could correctly feel the different levels of object softness. Once

the verification was positive, both performance parameters of all testing trials were

considered in data analysis. However, the parameters of the catching trials were not

included in this analysis.

Consequently, the performance parameters from all participants were used in within-

subject-design ANOVA. If an ANOVA resulted in significance, further analysis was con-

ducted by utilizing pairwise contrasts of Bonferroni correction. The Bonferroni cor-

rection is responsible to offset errors of performing multiple contrast comparisons [86].

Thus, I investigated the effect of paired comparison of force distributions and testing

conditions on both performance parameters. As well, I examined the effect between two

types of palpation.

5.3.2 Results and Discussion

Subjective Perception

Under one-finger palpation, a two-way ANOVA (paired comparisons of force distribu-

tions × testing conditions) revealed that subjective perception of object softness was

significantly affected by the paired comparisons of force distributions [F (5, 14)=6.694,

p < 0.001]. As well, participants perceived object softness differently among all testing

conditions [F (2, 14)=3.683, p < 0.05]. Furthermore, there was a significant interaction

between the paired comparison of force distributions and the testing conditions [F (10,
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Figure 5.4: Subjective perception of object softness during one-finger palpation. [Error
bars represent standard errors.]

14)=2.381, p < 0.05]. For subjective perception, Fig. 5.4 illustrates general trends

among paired comparisons of force distributions. The notation of the horizontal axis

“α vs. β” in Fig. 5.4 denotes the comparison under force distributions of Distribution

α and Distribution β. This is the same as that described in the Subsection 5.2.4. The

vertical axis indicates the proportion of virtual phantoms palpated under Distribution

α chosen harder than under Distribution β. For example, the virtual phantoms under

Distribution 1 were perceived harder than under Distribution 3 in about 74% of the

trials, when under the testing condition V+H.

Following the significant observations of the above two-way ANOVA, further investi-

gation was conducted by using two one-way ANOVA and pairwise contrasts of Bonfer-

roni correction. Table 5.5 shows the results of a one-way ANOVA (paired comparisons

of force distributions) under all testing conditions and subsequent pairwise contrasts

for each testing condition. One-way ANOVA confirmed significant differences among

paired comparisons of force distributions under the testing conditions V+H and Vonly.

The same significance did not appear under the testing condition Honly. Thus, further

pairwise contrasts were undertaken under the testing conditions V+H and Vonly. These

pairwise contrasts revealed that virtual phantoms palpated through the single-node force

distribution (Distribution 1) were selected harder than through the multi-node force dis-
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One-way ANOVA Pairwise Contrast
F (5,14) (Bonferroni)

Vonly
F = 7.506,
p < 0.01

1 vs. 2 < − > 2 vs. 3 p < 0.01
1 vs. 2 < − > 2 vs. 4 p < 0.05
1 vs. 2 < − > 3 vs. 4 p < 0.05
1 vs. 3 < − > 2 vs. 3 p < 0.01
1 vs. 3 < − > 2 vs. 4 p < 0.01
1 vs. 3 < − > 3 vs. 4 p < 0.01
1 vs. 4 < − > 2 vs. 3 p < 0.01
1 vs. 4 < − > 2 vs. 4 p < 0.01
1 vs. 4 < − > 3 vs. 4 p < 0.05

V+H
F = 4.709,
p < 0.01

1 vs. 2 < − > 3 vs. 4 p < 0.05
1 vs. 3 < − > 2 vs. 3 p < 0.05
1 vs. 3 < − > 2 vs. 4 p < 0.05
1 vs. 3 < − > 3 vs. 4 p < 0.01
1 vs. 4 < − > 2 vs. 3 p < 0.01
1 vs. 4 < − > 2 vs. 4 p < 0.01
1 vs. 4 < − > 3 vs. 4 p < 0.01

Honly F = 0.719, p > 0.05 - -

Table 5.5: Results of One-Way ANOVA and Pairwise Contrasts for the effect of paired
comparison of force distributions on subjective perception under One-Finger palpation.

One-way ANOVA Pairwise Contrast
F (2,14) (Bonferroni)

1 vs. 2 F = 4.561, p < 0.05 Vonly < − > Honly p < 0.05
1 vs. 3 F = 5.437, p < 0.01 Vonly < − > Honly p < 0.05
1 vs. 4 F = 5.271, p < 0.05 Vonly < − > Honly p < 0.05
2 vs. 3 F = 1.123, p > 0.05 - -
2 vs. 4 F = 0.225, p > 0.05 - -
3 vs. 4 F = 0.579, p > 0.05 - -

Table 5.6: Results of one-way ANOVA and pairwise contrasts for the effect of testing
conditions on subjective perception of object softness under one finger palpation.

tributions (Distributions 2, 3 and 4). This observation was stronger under the testing

condition Vonly than the testing condition V+H. All pairwise contrasts were significant

under the testing condition Vonly, whereas two pairwise contrasts between single-node

and multi-node contacts (“1 vs. 2 < − > 2 vs. 3”; “1 vs. 2 < − > 2 vs. 4”) did not

yield significance under the testing condition V+H.

Table 5.6 shows the results of a one-way ANOVA of testing conditions, followed
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Figure 5.5: Subjective perception under two-finger palpation. [Error bars represent
standard errors.]

by pairwise contrasts. A significant difference of subjective perception existed between

single-node and multi-node contacts. Furthermore, this significant difference was con-

tributed by the contrast between the testing condition Vonly and the testing condition

Honly. No significant effect was observed among multi-node contacts using one-way

ANOVA. This reinforces the observation that object softness under single-node contact

is perceived harder than under multi-node contacts, when visual stimuli were available.

Under two-finger palpation, Fig. 5.5 depicts the subjective perception of object soft-

ness under all paired comparisons of force distributions and testing conditions. A two-

way ANOVA (paired comparisons of force distributions × testing conditions) confirmed

that there was no significant difference of subjective perception among all sign-node and

multi-node contacts. Paired comparisons of force distributions did not affect the per-

ception of object softness [F (2,14)=3.421, p > 0.05] and neither did testing conditions

[F (5,14)=2.056, p > 0.05]. There was no interaction effect between the paired compar-

isons of force distributions and testing conditions [F (10,14)=0.787, p > 0.05]. These

observations indicate that single-node and multi-node contacts under two-finger palpa-

tion do not affect the perception of object softness. This is in contrast to the findings

under one-finger palpation.

Consequently, a one-way ANOVA was performed to examine the effect of the types of
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palpation (one-finger palpation vs. two-finger palpation) on subjective perception. This

analysis revealed that subjective perception of object softness under one-finger palpation

was significantly different from under two-finger palpation [F (1,14)=8.749, p < 0.01].

In short, I observed that subjective perception of object softness under single-node

contact was significantly different from under multi-node contacts, when applying force

by one finger with visual stimuli. However, this observation was not true under two-

finger palpation.

Objective Measurements

There were two objective measurements: maximum pressing depth and maximum force.

These measurements were computed for each force distribution under each type of palpa-

tion. Under one-finger palpation, Fig. 5.6 illustrates the objective measurement of max-

imum pressing depth for all 4 force distributions under 3 testing conditions. A two-way

ANOVA (force distributions × testing conditions) revealed no significance of maximum

pressing depth among all force distributions [F (3, 14)=1.198, p > 0.05]. Neither were

maximum pressing depth among all testing conditions [F (2, 14)=3.662, p > 0.05] and

interaction between force distributions and testing conditions [F (6, 14)=0.081, p > 0.05].

Fig. 5.7 depicts the objective measurement of maximum force for all force distri-

butions under all testing conditions. A two-way ANOVA (force distributions × testing

conditions) indicated that force distributions did not affect significantly maximum force

[F (3, 14)=0.488, p > 0.05]. However, there was a significant difference of maximum

force among testing conditions [F (2, 14)=1250, p > 0.001]. Moreover, there is no in-

teraction effect [F (6, 14)=2.438, p > 0.05]. Because the testing condition Vonly had

always a force feedback of 0 N, further one-way ANOVA discarded this testing condition

and analyzed effect between both testing conditions V+H and Honly. This ANOVA did

not show significant difference of maximum force between these testing conditions [F (1,

14)=1.441, p > 0.05].
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Figure 5.6: Objective measurement of maximum pressing depth under one-finger palpa-
tion. [Error bars represent standard errors.]
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Figure 5.7: Objective measurement of maximum force under one-finger palpation. [Error
bars represent standard errors.]

Under two-finger palpation, Fig. 5.8 and Fig. 5.9 illustrate the objective measure-

ments of maximum pressing depth and maximum force, respectively. A two-way ANOVA

revealed that the objective measurements of maximum pressing depth was not affected

by the force distributions [F (3, 14)=1.565, p > 0.05] and the testing conditions [F (2,

14)=1.838, p > 0.05]. No interaction between both force distributions and testing con-

ditions was found either [F (6, 14)=1.072, p > 0.05]. In discarding the testing condition

Vonly, a two-way ANOVA on the objective measurement of maximum force showed no

significant difference among force distributions [F (3, 14)=2.188, p > 0.05]. However,

a significant difference of maximum force was observed between the testing conditions

V+H and Honly [F (1, 14)=13.881, p < 0.001]. No interaction effect was found be-

tween the force distributions and testing conditions [F (3, 14)=0.490, p > 0.05]. Further

one-way ANOVA examined how each force distribution contributed to the significant
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Figure 5.8: Objective measurement of maximum pressing depth under two-finger palpa-
tion. [Error bars represent standard errors.]
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Figure 5.9: Objective measurement of maximum force under two-finger palpation. [Error
bars represent standard errors.]

One-way ANOVA
F (1,14)

Distr. 1 F = 3.003, p > 0.05
Distr. 2 F = 4.313, p < 0.05
Distr. 3 F = 10.219, p < 0.01
Distr. 4 F = 4.151, p < 0.05

Table 5.7: Results of one-way ANOVA and pairwise constrast for the effect of force
distribution on objective measurement of maximum force under two-finger contact.

difference of maximum force between the testing conditions V+H and Honly. This sig-

nificant difference appeared for multi-node contacts (Distribution 2 to 4), as indicated

in Table 5.7 under two-finger palpation.

From Fig. 5.6 to Fig. 5.9, it is interesting to observe that the objective measure-

ment of maximum pressing depth was always larger without visual stimuli (Honly) than

with visual stimuli (V+H and Vonly); so was the objective measurement of maximum
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force. Nevertheless, significant difference of objective measurements between the testing

condition Honly and other testing conditions (V+H and Vonly) was evident only for

maximum force under two-finger palpation. In addition, Appendix B shows similar re-

sults when 15 other participants palpated the phantom on the side. The main difference

between palpation on the top of the phantom and palpation on the side of the phantom

is the reduced maximum pressing depth available on the side of the phantom.

Discussion

The above results from the human study revealed some interesting findings. Under

one-finger palpation, the participants perceived the phantom significantly harder under

single-node contact than under multi-node contacts, when visual information of the

phantom was available. In contrast, this did not hold under two-finger palpation. These

observations of subjective perception might result from two factors. First, humans rely

dominantly on visual information of objects for their perception [52, 87]. The single-

node contact under one-finger palpation might yield less meshed nodes undergoing large

displacement than multi-node contacts, due to the number of meshed nodes in the

contact area directly receiving applying force. Further evidence of support is the relative

flatness at about 0.5 of selecting a harder phantom for all paired comparisons of force

distributions, under the testing condition of hidden palpation (Honly) depicted in Fig.

5.4 and Fig. 5.5 under both types of palpation. Secondly, one-finger palpation covered all

meshed nodes in the contact area undergoing large displacement. This contact area was

only half of that under two-finger palpation. That is, less meshed nodes undergoing large

displacement were visually occluded under one-finger palpation than under two-finger

palpation.

Conversely, objective measurements of both maximum pressing depth and maximum

force were, respectively, indifferent among all force distributions. This was true for both

types of palpation. Although there was no instruction on how many times the finger
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motion of palpation should be, all participants performed averagely the finger motion

about 2 to 3 times. This was noticed during the computation of maximum pressing

depth. All these observations imply two consistencies. First, the participants would

behave relatively consistent in the way of palpating each phantom under all single-

node and multi-node contacts. Secondly, the palpating behavior would be consistent

between two types of palpation, unlike subjective perception of object softness. Thus,

the difference of subjective perception between two types of palpation would not be

related to their respective palpating behavior. Consequently, other factors such as visual

displacement of the visible meshed nodes might play an important role for subjective

perception.

Overall, the outcomes of this human study confirm my postulation in Introduction.

That is, visual information of objects affects the perception of object softness, even

though haptic information of these objects is not discernible. However, all discrepan-

cies of visual information do not contribute equally to this perception. This confirms

my hypothesis that the human perception of object softness is insensitive to some of

theoretical variation levels.

5.4 General Discussion

In order to determine what theoretical variation levels affect the human perception of

object softness, this section discusses observations from the analyses of both variation

computation and human study. In addition, I introduced some possible applications of

this determination.

5.4.1 Variation Computation vs. Human Perception

Similarities arise in the results from variation computation and human study, based upon

the same real-time viscoelastic model for the breast phantom. In variation computation,
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a gap of variation levels in visual displacement appeared for paired comparisons of force

distributions. Under one-finger palpation, this gap decreased from around 13.2% (the

smallest for the comparisons between single-node and multi-node contacts) to roughly

6.5% (the largest for the comparisons between multi-node contacts). Under two-finger

palpation, the gap was smaller and reduced from about 11.0% to 8.7%. There is no such

a gap in force feedback under both types of palpation.

Likewise, the results of human study reveal that the participants perceived the soft-

ness of the phantom significantly harder under single-node contact than under multi-node

contacts, when the phantom was under one-finger palpation with visual information of

the phantom. This observation was not true under two-finger palpation however. Due to

the scaling of force feedback used for the stylus-style haptic device, the variation levels

of force feedback in the human study were kept in a relatively similar way as in variation

computation for both types of palpation.

Consequently, the variation level of visual displacement at about 13.2% is related to

the difference of perceiving object softness between single-node and multi-node contacts.

In contrast, there is no difference of perceiving object softness at the variation level about

11.0% of visual displacement. In other words, the threshold of visual displacement that

affects the perception of object softness might be within the range from 11.0% to 13.2%.

The maximum variation level of force feedback under both types of palpation was

about 6.3%, much smaller than the JND of 15% [82]. This might underlie the perceptual

indifference of object softness, when the haptic information was the sole source for the

perception (the testing condition Honly). Although this maximum played a role in

influencing the perception of object softness when both visual and haptic information

were available (the testing condition V+H), the influence was too subtle to be significant.

That is, force feedback at the variation level of less than or equal to 6.3% could not affect

the perception of object softness.
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5.4.2 Relation to Existing Human Studies

For the perception of object softness, there are some human studies on discriminating

the softness of actual/virtual objects with various degrees of compliance. For example,

LaMotte and Srinivasan revealed that their human participants were always able to dis-

criminate the softer one among two actual objects that processed degrees of compliance

apart at least 15% from each other [82]. Other studies reported findings in agreement

with this differentiable degree of compliance [88, 89, 90]. However, my current investiga-

tion of perceiving object softness departs from these studies in three aspects: the model

to govern the deformation of soft objects, the methods to compute variation levels, and

the comparison between contact definitions.

As the first aspect, a degree of compliance in the above existing studies is defined

as the ratio of a finger traveling distance over applied force. The compliance could

be regarded as a one-dimensional (1D) linear model to govern the deformation of soft

objects in terms of force feedback. Thus, this 1D linear model of compliance cannot

describe the deformation as visual displacement and force feedback of meshed nodes,

covering a virtual object (e.g., a breast phantom) on its three-dimensional (3D) surface.

Consequently, my real-time viscoelastic model introduced in Chapter 3 that governs the

3D deformation of the breast phantom is more complex and proper for describing object

softness than the 1D model of compliance.

The second aspect is the way of computing variation levels derived from these models.

In the existing studies, the degrees of compliance were discretized as pre-defined ratios

under one contact definition. These degrees of compliances served well for their human

studies. In contrast, my variation computation considered a period of a force profile

under two contact definitions (with four force distributions). This computation was

complex for actual 3D objects. Therefore, the variation levels yielded by this computa-

tion are better suited for investigating the perception of object softness under palpation
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than the degrees of compliance.

The last aspect is represented by the novelty in the fact that my investigation found

the perceptual difference of object softness between single-node and multi-node contact

definitions. This difference was yielded by visual displacement of the meshed nodes

on the phantom, rather than force feedback. Being much less than the JND of 15%

[82], my maximum variation level of force feedback yielded outcomes in agreement with

those related to force feedback from the existing studies. Nevertheless, my investiga-

tion on perceiving object softness separates the influence of variation levels of visual

information from haptic information. This separation highlights the distinct influence

of visual information on active and passive palpation. The implication of the influence is

that robot-assisted surgical systems rendering no force feedback (alike passive palpation)

would produce similar perceptual outcomes as active palpation between single-node and

multi-node contact definitions.

5.4.3 Applications

The findings in this current investigation could imply two applications. On one hand,

I observed that the human perception of object softness is insensitive to small visual

discrepancies up to a variation level in the order of 11.0%. Taking account of this insen-

sitivity opens a new avenue of developing VR training systems for palpation, by utilizing

simplified physical models of soft objects for real-time interaction at a computational

rate of 100Hz (or higher). On another hand, it is known that a stylus-style haptic device

of using single-node contact diverges from actual palpation of requiring multi-node con-

tact. However, the device might be sufficient for simulating palpation, if the simulation

renders multi-node contact for active (and/or passive) palpation and the discrepancies

of force feedback are up to 6.3%. Nevertheless, further effort is needed to develop haptic

devices with multi-node contact for palpation.
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5.5 Summary

In this chapter, I presented the investigation on human perception of object softness

when interacting with virtual breast phantoms palpated through four different force dis-

tributions under different conditions. This investigation included two complementary

analyses to verify wether human perception of object softness is insensitive to small

discrepencies of visual and/or haptic information. In the first analysis, I computed vari-

ation levels of visual displacement on meshed nodes on the phantom and force feedback

derived from the phantom, respectively, among paired comparisons of four force distribu-

tions under two contact definitions. In the second analysis, I undertook a human study

to determine a variation level of insensitivity under the same force distributions. Both

analyses revealed that the perception of object softness is insensitive up to a variation

level of 11.0% for visual displacement and of 6.3% for force feedback. These levels of

insensitivities show that it would be possible to relax design criteria when developing

real-time model used in VR training systems for palpation.



Chapter 6

Conclusion and Future Work

6.1 Summary and Contribution

The objective of this thesis was to investigate a new approach that considers the con-

straints of human perception of object softness to relax design criteria for real-time

models used in a VR training system for palpation. To reach this objective, the contri-

butions of this thesis focused on the four following challenges:

1. Development of a new evaluation method to assess the feasibility of a real-time

model to be used for user interaction in a VR system considering human con-

straints.

2. Development of a real-time model to be used as an example to demonstrate the

evaluation method.

3. Investigation of the effect of different alignments between a visual display and a

haptic device on the perception of object softness.

4. Investigation of the effect of statistical variation of visual displacement and force

feedback on the perception of object softness.

Based on these challenges, this thesis aimed at describing the development and ver-

ification of an evaluation method for assessing a real-time model simulating an actual

breast phantom by considering human constraints perceiving of object softness. Three

major chapters covered the research work as follows:

1. Evaluation Method and Real-Time Model (Chapter 3) – This chapter pre-

sented an evaluation method designed to assess the behavior of a real-time model

113
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in comparison with an offline FEM model. Based on evidences that human per-

ception is not very sensitive to small differences in a real-time simulation, this

evaluation take a statistical approach to check the level of agreement between the

real-time model and its FEM counterpart. To show the benefit of this evaluation,

we apply it to a breast phantom real-time model used in VR palpation training sys-

tem. The real-time model shows an agreement level over 95% for all distributions

in the two conditions involving only one-finger contact. However, the agreement

level is not as high when using a two-finger contact.

The main innovations introduced in this chapter are: (1) the evaluation considering

this limitation of human perception, (2) the comparison of visual displacement and

force feedback at all time steps of a quantized force profile, (3) the usage of force

distributions in different testing conditions involving one or two fingers, and (4)

the modification of a real-time model to simulate an highly viscoelastic soft tissue.

2. Effects of Hardware Alignments on Perception of Object Softness (Chap-

ter 4) – This chapter described a study investigating the effect of three different

widely used hardware alignments on human perception of objects softness. Al-

though the three different alignment yielded similar subjective perception of ob-

jects softness, this study showed the advantage of a “same-location” alignment.

This particular alignment allows a user to have the same subjective feeling while

using less force to discriminate objects softness.

3. Human Constraints for Softness Perception during Real-Time Palpation

(Chapter 5) – Virtual Reality (VR) systems could offer alternative simulations

for training palpation. An issue of such training systems is to assess contact

definitions between the finger(s) and a virtual phantom of an organ (e.g. the

breast) during real-time palpation, because contact definitions might affect the

softness perception of the phantom. Considering visual and haptic information
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derived from the phantom, I hypothesized that the human perception of object

softness is insensitive to small discrepancies of the information. I conducted two

complementary analyses to verify this hypothesis. In the first analysis, I computed

variation levels of visual displacement on meshed nodes on the phantom and force

feedback derived from the phantom, respectively, among paired comparisons of

four force distributions under two contact definitions. In the second analysis, I

undertook a human study to determine a variation level of insensitivity under the

same force distributions. Both analyses revealed that the perception of object

softness is insensitive up to a variation level of 11.0% for visual displacement and

of 6.3% for force feedback.

In summary, the overall results of this thesis reveal small insensitivity of human per-

ception of object softness. This has implications for the development of a VR training

system for palpation. For example, a simpler real-time model can be implemented in

such a system. As introduced in Chapter 3, the real-time model featuring a surface

mesh and a inside gel may be enough to simulate an actual breast phantom showing

a difference of visual displacement of less than 11% compared to a FEM model gov-

erned by equations using actual breast phantom softness parameters in most palpation

conditions. In addition, the force feedback difference between the real-time model and

its FEM counterpart is always below the haptic threshold of 15% [82]. Based on these

observations, the feasibility of a VR training system for palpation is quite high if the

VR training system uses the real-time model introduced in Chapter 3 and the “same-

location” alignment between a visual display and an haptic device introduced in Chapter

4.
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6.2 Future Work

Exploring a new evaluation method, this thesis lays some foundations to assess real-time

models considering human perception of object softness. However, such a method needs

improvements to be fully applicable to assess real-time models. From these results, some

areas can be considered as future work as described in the following subsections.

6.2.1 Incorporation of Other Human Constraints

In this thesis, I focused on human constraints during perception of object softness.

Considering these constraints alone, my work showed that it is possible to ease design

criteria for real-time models of soft objects. Based on this observation, other human

constraints could affect interaction in a VR system. There are many sensory illusions

affecting humans. For example, the visual system is known to be subject to the Ponzo

effect using the depth perception. In the field of haptic, Lecuyer et al. demonstrated that

haptic texture could be simulated without haptic device by dynamically changing the

motion speed of the user [91]. Therefore, a study can investigate other constraints that

can be considered to improve interaction within a VR system. A deep understanding of

the different human constraints can lead to adaptations either to ease or though design

criteria for the development of a VR system to achieve immersion during interaction.

6.2.2 New Haptic Device for Palpation

Chapter 5 showed some limitations of a stylus-style haptic device (e.g PHaMTOM Sens-

able) for palpation tasks. Such a device lacks in providing force feedback on a surface

as an actual palpation would. Some research groups have added tactile pad on existing

haptic device. For example, Kuchenbecker et al. proposed a mechanical attachment for

a PHaMTOM haptic device allowing the user to feel different shapes of solid objects [92].

As limitation, this attachment allows only one finger to feel contact feedback in opposi-
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tion to a two-finger contact for normal palpation. Adding a pad for two fingers, Ullrich

and Kuhlen developed another attachment made of static rubber to a PHaMTOM hap-

tic device [93]. However the static nature of the rubber does not allow dynamically

changing the softness of an object. These two types of attachments are good candidate

for an enhanced haptic feedback for a VR training system for palpation task but need

some improvements to be effective for such a task. Well designed, a haptic device able

to offer multiple precise forces over a surface could enhance virtual palpation training.

6.2.3 VR Training System for Clinical Breast Examination

The roots of the new approach to ease design criteria of a real-time model used in a

VR training system considering constraints of human perception come from the idea for

developing of a VR training system for Clinical Breast Examination. To achieve such

VR training system, a real-time model must include harder lumps within the shape of

the breast phantom. Therefore, the addition of lumps of varying degrees of softness

within the virtual breast phantom can be possible by inserting harder virtual objects

within the virtual breast phantom controlled by the same governing equations as those

used in the virtual breast phantom. Adjusting the size, depth and softness parameters of

these harder objects will allow the model to simulate different cases of a diseased breast.

Nevertheless, the evaluation method presented in Chapter 3 would be able to take in

account a viscoelastic breast phantom with embedded harder lumps by only changing

the real-time model and its FEM counterpart. However, new human studies would be

needed to investigate how human participants perceive the difference of level of softness

within one virtual phantom.
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6.3 Final Remarks

This thesis presented the work done to develop a new evaluation method to assess real-

time model of soft tissue considering human perception of object softness. The method

was based on statistical tools and was verified through human studies. These studies

investigated two different aspects of a VR system simulating a palpation task. The first

aspect investigated the preferred choice of an alignment between a visual display and

force feedback device. The second aspect concerned the effect of statistical variations

among visual displacements and force feedbacks on perception of object softness. In

this thesis, I found that human participant were insensitive to small discrepancies up

to a level of 11% of variation for visual displacement. Nevertheless, the development

presented in this thesis is a preliminary work. This work showed encouraging results and

promising potential for developing VR systems that take advantage of human constraints

to train palpation.
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Appendix A

Requirements in VR Systems: The REViR

Approach and its Preliminary Evaluation∗

A.1 Introduction

As a side project during the research for the main part of the thesis, I participated

to a paper about the usage of requirements engineering needed for the creation of VR

training system for medical procedures. This paper was published and presented at

IEEE Virtual Reality 2010 Workshop on Software Engineering and Architectures for

Real-Time Interactive Systems (SEARIS).

A.2 Abstract

Virtual reality (VR) has become a widely used concept to implement medical planning

and simulation systems. However, developing such systems is challenging as we lack

suitable guidelines for effectively integrating resource-consuming computations and in-

teraction techniques, such as haptic devices. Therefore, this paper outlines a method

that utilizes concepts from software requirements engineering and supports software de-

velopers when building medical VR systems. The presented approach is the result of

performing “action research” when implementing a VR system to study the integration

of the senses of vision and touch for perceiving the softness of human tissue. The ap-

proach focuses on performance, usability and the correctness of physical models in VR

∗This appendix is published. Galster, M. and Widmer, A. “Requirements in a Virtual Environ-
ment: The REViR Approach and a Preliminary Evaluation”, IEEE Virtual Reality 2010 Workshop on
Software Engineering and Architectures for Real-Time Interactive Systems (SEARIS), Waltham, MA,
USA, March, 2010.
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applications. A case study of developing a surgical planning system (which provides

haptic and visual information simultaneously) is presented as a preliminary evaluation

of our approach. Even though this paper focuses on medical VR systems, we believe that

the approach can be generalized and is also applicable to other types of VR systems.



Appendix B

Results of The Second Experiment with Force

Application on The Side

B.1 Introduction

This appendix summarizes results of a second variation computation and a second ex-

periment as human study performed in the context of the investigation on insensitivity

of human perception during perceiving object softness. Following the methodolgy in-

troduced in Chapter 3, the variation computation and the second experiment focus on

palpation on the side of the phantom. First, the variation computation explored visual

displacement and force feedback comparison between a real-time model and its FEM

counterpart. Second, the experiment used the same stimuli, apparatus, procedure, and

data analysis as described in Chapter 5 but with 15 different participants. These partic-

ipants applied force on the side of the phantom under one-finger or two-finger palpation

as shown in Fig. B.1b and Fig. B.1c, respectively. The results of this experiment are

similar to those presented in Chapter 5. The main difference from the results presented

in Chapter 5 arises from the objective measurement of maximum pressing depth. In

the second experiment, the maximum pressing depth applied by the participants always

corresponded to the height of the phantom at the palpation location as illustrated in Fig.

B.1a. This seemed to affect perception of object softness. For details on the methodol-

ogy used in both variation computation and second experiment, please refer to Chapter

5.
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26mm

(a) (b) (c)

Figure B.1: Representation of a virtual breast phantom and palpation scenarios: (a)
side view of the virtual phantom; (b) one-finger palpation using the index finger; (c)
two-finger palpation using both index and middle fingers.

B.2 Variation Computation Results

B.2.1 One-Finger Palpation

Table B.1 shows results for visual displacement comparison computed under one-finger

palpation. Under this palpation, the RMSE values ranged from 0.22 cm (Distribution 3

vs. Distribution 4) to 0.91 cm (Distribution 1 vs. Distribution 2). A low RSME value

of 0.34 cm was found under the comparison between Distribution 1 and Distribution 4.

As shown in Chapter 5, the nodes at the tail of the Gaussian curve in Distribution 4 did

not render force, similarly to the same nodes in Distribution 1.These observations were

similar to those I made under one-finger palpation applied on the top of the phantom. In

addition, ANOVA did not yield significant difference for visual displacement among any

two distributions. This was illustrated by p-values greater than the 0.05 threshold. In

agreement with other palpation scenarios, this shows that every two datasets included

in each pair for comparison are not statistically different from each other. The variation

values computed through the Bland and Altman agreement method varied from 4.62%

(Distribution 3 vs. Distribution 4) to 13.93%. Two groups of values are visible. The

comparisons including only multi-node contact produced variation between 4.62% and

6.35%, whereas comparisons including the single-node contact compared to multi-node
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ANOVA B&A agreement
RMSE [cm] F p S.D. [cm] V [%]

1 vs. 2 0.9084 3.15 0.0698 0.0639 13.93
1 vs. 3 0.3813 2.23 0.1312 0.0271 13.2
1 vs. 4 0.3430 2.11 0.1852 0.0250 13.11
2 vs. 3 0.5317 1.98 0.2015 0.0372 6.35
2 vs. 4 0.6613 2.59 0.1015 0.0469 6.48
3 vs. 4 0.2246 2.36 0.1244 0.0171 4.62

Table B.1: Visual displacement comparison computed under one-finger palpation on the
side of the phantom.

contacts have variations comprise values from 13.11% to 13.93%. Similarly to one-finger

palpation on the top of the phantom, a gap of 6.63% was visible between the two groups.

This gap illustrates the difference of visual displacement produced by the single-node

contact in comparison to multi-node contacts.

Table B.2 illustrates comparisons of force feedback under one-finger palpation on the

side of the phantom. Under this palpation, RMSE results fluctuated from 0.45 N ()

to 0.88 N (Distribution 1 vs. Distribution 2). This observation shows that the range

of RMSE values under one-finger palpation on the side of the phantom is similar to

one-finger or two-finger palpation on the top of the phantom as described in Chapter 5.

Using ANOVA, I demonstrate that force feedbacks produced by force distributions are

not statistically differentiable. This was shown by p-values computed among comparisons

over the 0.05 threshold. Variation results derived from the Bland and Altman agreement

method ranged from 1.88% (Distribution 3 vs. Distribution 4) to 4.82% (Distribution 1

vs. Distribution 2). In agreement with results found under one-finger palpation on the

top of the phantom, the range of variation was small in comparison to the variations

found for visual displacement and no variation was higher than 5%. This may be due

to the limited number of nodes taken in account during the analysis of force feedback.
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ANOVA B&A agreement
RMSE [N] F p S.D. [N] V [%]

1 vs. 2 0.8787 1.52 0.2310 0.1071 4.82
1 vs. 3 0.5274 1.78 0.2145 0.0924 3.39
1 vs. 4 0.3521 2.09 0.1745 0.1144 3.58
2 vs. 3 0.5145 2.45 0.1147 0.1256 2.64
2 vs. 4 0.4271 2.98 0.0985 0.1078 3.15
3 vs. 4 0.2871 1.50 0.2287 0.0574 1.88

Table B.2: Force feedback comparison computed under one-finger palpation on the side
of the phantom.

B.2.2 Two-Finger Palpation

Under two-finger palpation on the side of the phantom, Table B.3 details the results

produced by the visual displacement comparison. In this comparison, RMSE values

ranged from 0.19 cm (Distribution 3 vs. Distribution 4) to 0.91 cm (Distribution 1

vs. Distribution 2). This is in agreement with other visual displacement comparisons

found in Chapter 5. For significance testing, the results from ANOVA were consistent

with those found under all other palpation scenarios. All p-values were above the 0.05

threshold. Therefore, no significant difference was found for any comparison. Based

on the Bland and Altman agreement method, the variation levels varied from 4.33%

(Distribution 3 vs. Distribution 4) to 11.06% (Distribution 1 vs. Distribution 3). The

highest value (11.06%) is close to the highest values observed under one-finger palpation

on the side of the phantom. The gaps found between distribution comparisons including

single-node force distribution and those including only multi-node force distributions in

previous palpation scenarios is less visible under two-finger palpation on the side of the

phantom.

Table B.4 shows the results from the analysis of force feedback under two-finger

palpation. RMSE values were ranging from 0.12 N (Distribution 3 vs. Distribution 4)

to 0.86 N (Distribution 1 vs. Distribution 2). These values were in agreement with those

found in other palpation scenarios. In addition, p-values computed by ANOVA were all
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ANOVA B&A agreement
RMSE [cm] F p S.D. [cm] V [%]

1 vs. 2 0.9148 3.11 0.0798 0.0162 10.15
1 vs. 3 0.7958 2.05 0.1752 0.0285 11.06
1 vs. 4 0.3045 2.56 0.1285 0.0307 8.92
2 vs. 3 0.4682 1.48 0.2356 0.0332 5.81
2 vs. 4 0.2563 1.35 0.2452 0.0196 6.77
3 vs. 4 0.1965 1.89 0.2132 0.0397 4.33

Table B.3: Visual displacement comparison computed under two-finger palpation on the
side of the phantom.

ANOVA B&A agreement
RMSE [N] F p S.D. [N] V [%]

1 vs. 2 0.8693 2.39 0.1185 0.0914 4.77
1 vs. 3 0.7851 2.47 0.1014 0.1285 3.98
1 vs. 4 0.8544 1.95 0.1954 0.1365 3.48
2 vs. 3 0.6284 1.89 0.2154 0.0987 3.14
2 vs. 4 0.5214 1.64 0.2265 0.0821 3.86
3 vs. 4 0.1278 1.98 0.1547 0.0685 2.85

Table B.4: Force feedback comparison computed under two-finger palpation on the side
of the phantom.

above the 0.05 threshold and therefore did not show significant difference between the

two datasets compared in each pair. Variation values computed through the Bland and

Altman agreement method varied from 2.85% (Distribution 3 vs. Distribution 4) to

4.77% (Distribution 1 vs. Distribution 2). These results were in agreement with those

found in other palpation scenarios.

B.3 Human Study Results

B.3.1 Subjective Perception

One-Finger Palpation

Different from the experiment described in Chapter 5, the second experiment features

one or two fingers applying force on the side of the virtual phantom. To investigate

subjective measurements recorded during palpation using 1 finger, I performed a two-way
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Figure B.2: Subjective perception of object softness under one-finger palpation on the
side of the phantom. Error bars represent standard errors.

One-way ANOVA Pairwise Contrast
F (5,14) (Bonferroni)

Vonly
F = 25.18,
p < 0.001

1 vs. 2 < − > 2 vs. 3 p < 0.01
1 vs. 2 < − > 2 vs. 4 p < 0.01
1 vs. 2 < − > 3 vs. 4 p < 0.05
1 vs. 3 < − > 2 vs. 3 p < 0.01
1 vs. 3 < − > 2 vs. 4 p < 0.01
1 vs. 3 < − > 3 vs. 4 p < 0.01
1 vs. 4 < − > 2 vs. 3 p < 0.01
1 vs. 4 < − > 2 vs. 4 p < 0.01
1 vs. 4 < − > 3 vs. 4 p < 0.01

V+H
F = 10.96,
p < 0.001

1 vs. 2 < − > 2 vs. 3 p < 0.01
1 vs. 2 < − > 2 vs. 4 p < 0.05
1 vs. 2 < − > 3 vs. 4 p < 0.05
1 vs. 3 < − > 2 vs. 3 p < 0.01
1 vs. 3 < − > 2 vs. 4 p < 0.01
1 vs. 3 < − > 3 vs. 4 p < 0.01
1 vs. 4 < − > 2 vs. 3 p < 0.01
1 vs. 4 < − > 2 vs. 4 p < 0.05
1 vs. 4 < − > 3 vs. 4 p < 0.05

Honly F = 1.225, p > 0.05 - -

Table B.5: Results of One-way ANOVA and pairwise contrasts for the effect of force
distributions on subjective perception of object softness palpated under one-finger pal-
pation on the side of the phantom.

ANOVA (testing conditions x force distributions comparisons). The two-way ANOVA

displays mixed results as illustrated in Fig. B.2. For example, there is no indication

that the three conditions did affect the subjective perception of object softness among
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Figure B.3: Subjective perception of object softness under two-finger palpation on the
side of the phantom. Error bars represent standard errors.

One-way ANOVA Pairwise Contrast
F (5,14) (Bonferroni)

V+H F = 2.431, p < 0.05 - -
Vonly F = 3.226, p < 0.05 1 vs. 2 < − > 2 vs. 3 p < 0.05
Honly F = 0.277, p > 0.05 - -

Table B.6: Results of One-way ANOVA and pairwise contrasts for the effect of force dis-
tribution on subjective perception of object softness palpated under two-finger palpation
on the side of the phantom.

distribution comparisons [F (2, 14)=1.821 p >0.05]. However, a significant effect among

the six force distributions was observed on this subjective perception [F (5, 14)=20.704,

p <0.001]. Moreover, an interaction between testing conditions and force distributions

comparisons was significant [F (10, 14)=2.704 p <0.05]. The difference of perception

between Condition Honly and the two other Conditions Vonly and V+H might be the

source of this significance.

As further analysis to investigate the significant effect of force distributions, Table

B.5 displays the results of one-way ANOVA. In these results, I observed that participants

perceived phantoms differently through a single-node force distribution and multi-node

force distributions under Conditions Vonly and V+H. These observations are similar to

those made using one-finger palpation on the top of the phantom in Chapter 5. However,

Conditions Vonly, Honly and V+H did not significantly affect the subjective perception
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Figure B.4: Objective measurement of maximum pressing depth under one-finger pal-
pation on the side of the phantom. Error bars represent standard errors.

of object softness in opposition to the results described in Chapter 5.

Two-Finger Palpation

Under two-finger palpation, Fig. B.3 displays the proportion of distribution α chosen as

harder when comparing a distribution α and distribution β. A two-way ANOVA (test-

ing conditions x force distributions comparisons) found that testing condition did not

affect the subjective perception of object softness [F (2,14)=0.137, p >0.05]. However,

different force distributions comparisons yields significant different subjective perception

[F (5,14)=4.380, p <0.01]. No interaction effect was found [F (10,14)=0.809, p >0.05].

One-way ANOVA analyses revealed that distribution comparisons are significant only

in Condition Vonly as illustrated in Table B.6.

Following the same methodology as presented in Chapter 5, a one-way ANOVA re-

vealed that there was no significant difference of subjective perception of softness yielded

by one-finger palpation compared to two-finger palpation [F (1,14)=1.673, p >0.05]. In

summary, the second experiment shows similar results as those presented in Chapter 5

under one-finger palpation.
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One-way ANOVA Pairwise Contrast
F (5,14) (Bonferroni)

Distr. 1 F = 4.679, p < 0.05 V+H < − > Vonly p < 0.05
Distr. 2 F = 0.728, p > 0.05 - -
Distr. 3 F = 3.180, p < 0.05 V+H < − > Vonly p < 0.05
Distr. 4 F = 3.958, p < 0.05 V+H < − > Vonly p < 0.05

Table B.7: Results of One-way ANOVA and pairwise contrasts for the effect of testing
conditions on maximum pressing depth palpated under one-finger palpation on the side
of the phantom.
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Figure B.5: Objective measurement of maximum force under one-finger palpation on
the side of the phantom. Error bars represent standard errors.

B.3.2 Objective Measurements

One-Finger Palpation

Under one-finger palpation on the side of the phantom, a two-way ANOVA (testing

conditions x force distributions) yielded different results than its counterpart in Chapter

5. In the second experiment, maximum pressing depth is affected by the three testing

conditions [F (2, 14)=6.510, p <0.01] as shown in Fig. B.4. However the two-way

ANOVA did not show any significant effect of force distribution on maximum pressing

depth [F (3, 14)=2.085, p >0.05]. Similarly, there was no interaction effect between

testing conditions and force distributions on maximum pressing depth [F (6, 14)=0.851,

p >0.05]. Table B.7 shows the results yielded by one-way ANOVA analyses for testing

conditions. Precisely, maximum pressing depth was affected by the testing conditions

only under Distribution 1 and Distribution 4.

For objective measurement of maximum force, a two-way ANOVA showed that test-
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Figure B.6: Objective measurement of maximum pressing depth under two-finger pal-
pation on the side of the phantom. Error bars represent standard errors.

ing conditions significantly affect maximum force [F (1, 14)=7.569, p <0.001] as shown in

Fig. B.5. However, maximum force was not affected by the different force distributions

[F (3, 14)= 0.444, p >0.05]. In addition, ANOVA did not find a significant interaction

effect for maximum force [F (3, 14)=1.336, p >0.05].

Two-Finger Palpation

Under two-finger palpation on the side of the phantom, Fig. B.6 shows the objective mea-

surement of maximum pressing depth applied under each of the four force distributions.

The results produced by a two-way ANOVA (testing conditions x force distributions)

showed that testing conditions affected the maximum pressing depth [F (2, 14)=8.306,

p <0.001]. However force distributions did not affect this objective measurement [F (3,

14)=0.344, p >0.05]. No interaction effect between testing conditions x force distri-

butions was present [F (6, 14)=0.520, p >0.05]. Investigating the significant effect of

testing condition on maximum pressing depth, Table B.8 lists the results produced by a

one-way ANOVA per distribution.

Under two-finger palpation on the side of the phantom, another two-way ANOVA

showed a significant difference of maximum force applied under the four force distribu-

tions between the conditions V+H and Honly (Discarding the data from the condition

Vonly) [F (1, 14)=23.496, p <0.001]. However, no significant difference was found among

force distributions [F (3, 14)=0.545, p >0.05] and no interaction effect was found [F (3,
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One-way ANOVA Pairwise Contrast
F (5,14) (Bonferroni)

Distr. 1 F = 2.223, p > 0.05 - -
Distr. 2 F = 3.644, p < 0.05 Vonly < − > Honly p < 0.05
Distr. 3 F = 7.506, p < 0.05 Vonly < − > Honly p < 0.05
Distr. 4 F = 3.427, p < 0.05 Vonly < − > Honly p < 0.05

Table B.8: Results of One-way ANOVA and pairwise contrast for the effect of testing
conditions on maximum pressing depth palpated under two-finger palpation on the side
of the phantom.
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Figure B.7: Objective measurement of maximum force under two-finger palpation on
the side of the phantom. Error bars represent standard errors.

One-way ANOVA
F (1,14)

Distr. 1 F = 3.961, p < 0.05
Distr. 2 F = 10.579, p < 0.001
Distr. 3 F = 13.385, p < 0.001
Distr. 4 F = 4.291, p < 0.05

Table B.9: Results of One-way ANOVA for the effect of force distribution on subjective
perception of object softness palpated under two-finger palpation on the side of the
phantom.

14)=0.549, p >0.05]. Further analysis was performed to investigate the significance

found by the two-way ANOVA. As illustrated in Fig. B.7 and Table B.9, participants

constantly applied more force when visual information was not available among all force

distributions.
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B.4 Summary

Overall, these results confirm the observations made in Chapter 5: Both analyses re-

vealed that the perception of object softness is insensitive up to a variation level of

11.0% for visual displacement and of 6.3% for force feedback, respectively. These levels

of insensitivities show that it would be possible to ease design criteria when developing

real-time model used in VR training systems for palpation.



Appendix C

Sample Size for a Within-Subject Human Study

This appendix describes how to choose the sample size to estimate the within subject

standard deviation, sw. This is described in a Statistics Note in the BMJ ∗. The as-

sumptions are as follow:

• The distribution of observations is normal.

• Equal numbers of observations on each participant.

• Multiple repetitions of the same test.

The equation to compute the number of participants is as follow:

n =
1.962

2(m− 1)s2w
, (C.1)

where sw is the standard error of the within-subject standard deviation, n is the number

of participants and m is the number of repetitions.

∗J Martin Bland and Douglas G Altman, Statistics Notes: “Measurement error,” BMJ, vol. 313,
pp. 744, 1996
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