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Abstract 

In many industrial robot applications, the robot is programmed to do the same task 

over and over. Iterative Learning Control (ILC) uses tracking errors from previous trials 

to correct the control input, thereby reducing tracking errors caused by plant uncertainty. 

Though many ILC algorithms in the literature process the previous error using causal 

operators, it was recently proved that the performance of causal ILC is fundamentally 

limited to that of conventional feedback control (without iterations). It was also proved 

that noncausal ILC improves on both feedback control and causal ILC. In this thesis, we 

validate these theoretical results through simulations and experiments. We show that, 

unlike causal ILC, noncausal ILC can converge to zero error even if the plant has a 

relative degree greater than one. Practical implementation issues, such as unsteady initial 

conditions and the truncation of signals in the time domain, are also addressed. 
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Chapter 1 

Introduction 

1.1 Problem description 

In control system design, system performance is always one of the most important 

factors to be considered. The performance design problem is defined as to force the 

output response of a dynamical system to follow a desired trajectory as close as possible. 

Although many control techniques have been developed so far, at times they are still not 

good enough for certain systems to achieve desired performance requirements. This may 

be due to the presence of unmodelled dynamics or parametric uncertainties that are 

exhibited during actual system operation or due to unsuitable design techniques for a 

particular class of systems. 

Iterative Learning Control (ILC) was proposed in 1978 to solve these kinds of 

problems for some specific systems [3]. Often in industry there are certain processes, 

machines, equipment, or systems that execute the same trajectory motion or operation 

over and over. ILC aims to take advantage of this repetitive nature of processes to 

improve the performance accuracy of the system by learning from its previous 

performances. Since most industrial robot manipulators are required to perform the same 

movement many times and the nonlinearity of robot manipulators makes it difficult to 

achieve sufficiently small tracking error using conventional control methods, ILC is 

widely studied in robotics research. 
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1.2 Principle of Iterative Learning Control 

The basic idea of ILC is to take advantage of the repetitive nature of the process to 

improve tracking accuracy. The approach is illustrated in Figure 1.1. 

UI 

V 

Memory 

UI-

V 

Learning 
.4  

Controller 

System 

e1 

 * 

Memory 

e1_ 

Figure 1.1: Iterative Learning Control Scheme 

The subscript 1 indicates the trial or repetition number. The scheme operates as 

follows: during the i-th trial, an input u.(t) is applied to the system, producing the 

output y1 (t), and error e, (t) = Yd (t) - y, (t), where Yd is a desired trajectory. Then u1 (t) 

and e. (t) are saved in memory and processed off-line by the ILC algorithm to compute 

an updated input signal u1(t). The updated input signal %(t) will be applied to the 

system in the next trial and should produce a smaller error than the previous input. 

This can be stated formally as follows. Suppose we are given a stable system 

y1=Pu1, (1.1) 



3 

where P is a linear time-invariant operator, and y1 is reset to zero at the beginning of each 

trial. It is assumed that only an approximate model of P is available. Then, the problem of 

ILC is to find operators F and D in the control update algorithm 

u = Fu11 + De11 (1.2) 

such that e, and u, converge to fixed points e0, and u, respectively, with e, as small as 

possible (in a suitable norm). The convergence of the ILC algorithm should not depend 

on the desired response yd(t). If P is not already open loop stable, then it must be 

stabilized using feedback [2]. 

Although each trial occurs on a finite interval [t0, tf j, we will analyze the system 

for the case when the final time t1 approaches infinity. This will allow convergence 

analysis in the frequency domain [1]. 

1.3 Literature Review 

Iterative Learning Control was originally proposed by Uchiyama [3] in 1978. Later 

the research work on ILC by a group led by Sugurn Arimoto [4] drew much attention in 

control and robotics fields, particularly through the middle to late 1980's. Since then, 

ILC has been a very active research area and thousands of research papers on ILC have 

been published. In order to get a brief overview of ILC research achievement, we may 

investigate the following aspects of the literature. 

1.3.1 ILC algorithms 

According to the way the error is processed, we may classify the algorithms as first 

order, second order and higher order ILC. 
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1.3.1.1 First order ILC 

If, in the ILC upgrade law, only the previous trial's error is used, the algorithm is 

first order. At the beginning stage of ILC research, just one previous error is applied in 

the algorithm. The typical one is the scheme proposed by Arimoto et al [4]. Suppose the 

dynamic system is given as 

=Ax1+Bu1, (1.3) 

e1=Cx,, (1.4) 

and e=CAx,+CBu1. (1.5) 

Arimoto et al applied the derivative of the previous trial's error in the algorithm (D-type) 

as follows: 

U1 = u1_1 +r,-1, (1.6) 

where e,1 = Yd - y, 1, u, 1 is previous input, u, is updated input, and r is a given r x r 

matrix. If a LTI (Linear Time-Invariant) system is defined in the interval [t0, t1] and 

some initial requirements are satisfied, a sufficient convergence condition can be 

expressed as: 

CB>O, (1.7) 

and III —CBFII,< 1. (1.8) 

Later P-type and PID-type ILC algorithms were further proposed respectively by 

S.S.Saab [5] and Arimoto [6]. For P-type the input update law is: 

U 1+]  (1.9) 

while a PID-type law is designed as: 
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uj+I = u,+tJ?e,+Fei+'Je1dt. (1.10) 

Although there are some differences between the above algorithms in processing 

the previous error of the system, the common point is that just one previous step error is 

considered. 

1.3.1.2 Second Order ILC 

By introducing "Current Cycle Feedback" control into ILC update law, the 

algorithm becomes second order. The idea of combining ILC with conventional 

feedback control appeared in [7]. The general algorithm ([2], [8]) can be written as: 

U/ = Fu,-, + Ce, + De,_1, (1.11) 

where e, is current cycle error and e1 is previous error, u1_1 is previous input, F, C and 

D are proper operators. 

An obvious advantage of ( 1.11) is that it allows stabilization of the plant and it is 

more general than the first order algorithm. 

1.3.1.3 Higher order ILC 

Higher order ILC was first considered in [ 10], [ 11]  The general algorithm includes 

current cycle feedback, and errors from several previous steps: 

u, = Fu11 +Ce,+De, 1+Ee, 2 +  . (1.12) 

This update law can provide more information about the past performance of the system, 

and will be an important area for further research. 
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1.3.2 Algorithms for some specific systems 

1.3.2.1 ILC for LTI systems 

Consider the LTI ILC algorithm (1.11), and errors: 

e, = Yd — Pu,, 

e,_1 = Yd - Pu,_1. 

Substituting ( 1.11) into ( 1.13) gives 

e, = Yd - P(Fu, 1 + Ce, + De,-,. 

Multiplying (1.14) by F and subtracting the result from ( 1 . 15) gives 

(1 + PC)e, - (F - DP)e,_1 = (1 - F)yd. 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

The fixed point of the error ec,, is obtained by setting e, = e,_1 = e in (1.16), which 

yields 

[1—F+(C-i-D)P]e©0 =(1—F)yd. 

Rearranging ( 1.17), we have 

e. = Ryd , 

where R= 1—F  
1—F+(C+D)P 

(1.17) 

(1.18) 

(1.19) 

A very important property of this algorithm is that: 

o If  = 1,the fixed point of the error is zero. 

o If  1, the fixed point of the error is nonzero, and the nonzero error can be 

expressed as ( 1.18) [ 12]. 
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1.3.2.2 Nonlinear operator and nonlinear systems in ILC 

A discussion on the use of Artificial Neural Networks (ANN) in ILC is given in 

[1]. This method can be viewed as a kind of nonlinear black-box identification approach. 

In this situation not only the control signal but also the ILC algorithm changes over 

the iterations. A specific class of nonlinear systems have been considered by Choi [13] 

and a more thorough discussion of this kind of ILC approach can be found in [ 14]. 

1.3.2.3 ILC for discrete-time systems 

Since all practical ILC implementations will result in a discrete-time algorithm, it is 

necessary to investigate the applications of ILC to discrete-time systems. The discrete-

time linear case is discussed in [ 1], time-varying systems are considered in [ 15], 

nonlinear systems are considered in [16], and non-minimum phase systems have been 

discussed in [ 17]. 

1.3.3 ILC in time domain and frequency domain 

Both time domain and frequency domain are good tools for ILC research. Since the 

time domain provides the convenience for practical implementation, most ILC algorithms 

are discussed in the time domain. But the frequency domain can provide more design 

freedom and useful physical insights than in the time domain. There are many 

publications related to frequency domain based ILC. The typical papers are [ 18] and [ 19]. 

1.3.4 Convergence and Robust Analysis of ILC 

Convergence and robustness are some important factors that an ILC algorithm 

designer has to consider. Although ILC researchers normally provide convergence 
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analysis for their algorithms, it is still a topic worthy of discussing separately. This work 

has done by [20], [21] for linear systems and [22], [23] for nonlinear systems. 

Robustness analysis was discussed in [24], [25] for linear systems and in [26], [27] 

for nonlinear systems. 

1.3.5 Comparison with some similar control paradigms 

ILC is similar to some other control paradigms. To clearly show the difference 

between ILC and other control techniques, some comparisons are necessary. 

1.3.5.1 Feedback control 

Compared to feedback control, ILC is essentially a feed forward control that 

processes previous errors off-line to get an updated input. ILC may include current cycle 

feedback to make the system stable or provide a minimum performance. 

1.3.5.2 Optimal control 

Most optimal controls are based on a model of a system, while ILC does not require 

the accurate information of the system. Both methods are looking for an optimal input 

U. The difference is that optimal control gets the optimal input by processing the 

current cycle error in real time. ILC makes use of not only current cycle error but also 

past system behaviour. ILC gets U by off-time processing. 

1.3.5.3 Repetitive Control 

ILC and Repetitive Control (RC) are similar control methods, but differences exist. 

o ILC works on a finite time interval, while RC works continuously. 
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o ILC starts over at the same initial condition, while RC does not require the same 

initial condition. 

The common point is that both of them work repetitively. 

1.3.6 Equivalent Feedback Control and Noncausal ILC 

The latest concern on ILC is the topic of noncausal ILC. All of the algorithms 

discussed above are normally implemented using causal operators. It has recently been 

found that if an ILC algorithm is causal, an equivalent feedback control exists [8], [28]. 

This implies that causal ILC does not improve on conventional feedback control because 

the latter does not need iteration to achieve the same fixed point. The purpose of ILC is 

to reduce the performance error that is difficult to overcome using feedback and other 

control methods. The ideal goal is that the fixed point is equal to zero. But for causal 

ILC, this goal can only be achieved for the simplest processes: systems of minimum 

phase and with relative degree less than or equal to 1. 

Since causal ILC is limited to feedback control and the simplest processes, 

noncausal ILC has to be explored to break the limitations of causal ILC. 

A noncausal ILC algorithm is proposed in [29]. The theoretical proof shows that 

noncausal ILC can solve the limitation problem of causal ILC and thus can improve 

feedback control. But so far the research is in the theoretical analysis stage and some 

essential experiments on real systems are needed to validate the theoretical result. 

1.4 Contributions 

The purpose of this thesis is to experimentally verify the theoretical hypotheses 

proposed in [8, 29]. The contributions of this thesis are: 



10 

1) Experimental validation of the equivalent feedback control theorem for causal 

ILC. 

2) Experimental examination of noncausal ILC's improvement over causal ILC. 

3) Experimental validation of robust ILC design for LTI systems. 

4) An experimental platform setup and Simulink model design. 

5) Demonstration of the benefit of noncausal operators using Matlab simulations. 

6) Successful application of noncausal ILC on a higher order system (Ball and Beam 

system). 

7) Successfully using feedback control for setting ILC initial conditions in the Ball 

and Beam experiment. 

1.5 Thesis Organization 

In Chapter 2, the experiment platform is introduced. Chapter 3 discusses causal ILC 

and equivalent feedback control. Simulation results of causal ILC and equivalent 

feedback control are compared and real system results are also obtained to verify the 

theory. In Chapter 4, noncausal ILC is discussed and experiments on a DC motor and 

Ball and Beam module are implemented. In Chapter 5, a robust ILC design for LTI 

systems is introduced and simulations are done to verify the robustness of the algorithm. 

Chapter 6 concludes the thesis. 
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Chapter 2 

Experiment Setup 

2.1 The Composition of Experiment Platform 

The experiment platform is composed of a computer with Matlab and WinCon 

software installed, UPM (Universal Power-supply Module), data acquisition board and a 

physical plant such as a DC motor shown in Figure 2.1 or a Ball Beam system. A 

Graphical User Interface (GUI) is created with Matlab to communicate between the 

Simulink model and an M-file. The purpose of this experiment is to control the motor's 

shaft position or the position of the ball on a beam by applying ILC algorithms. 

Analog inputs (A/D) 

Analog 
outputs 
(D/A) 

Encoder 
inputs 

Terminal 
board 

MuItiQ 

To 51552 
To module: on impiSer 
BaS and beam 

Figure 2.1: Composition of Experiment Platform 1401 

UPMXXYY 

The control diagram of the system is described in Figure 2.2. A Simulink control 

model is built in the computer. With the WinCon application software and the hardware 

module a real time control can be implemented. When the control model begins to 

operate, the digital control signal is produced and sent to MultiQ-3 board. Then the D/A 

converter on the board converts the digital signal to a voltage signal, which is supplied by 
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UPM to drive the motor. The output of the plant is measured by a sensor and fed back to 

the controller in the computer via the MutiQ-3 board so that the error is reduced and plant 

is working as desired. 

Control Model 
Running Inside 
a Computer 

2.2 UPM 

4  

 10. AID DIA 
Data 

Acquisition 
Board 

(MultiQ-3) 

Input voltage 

.4  
Output 

Feedback 

Figure 2.2: Experiment Working Diagram 

Plant 

The power module (UPM2405) consists of a regulated dual output DC power 

supply set at ± 12 Volts (Vs) and a built-in linear power operational amplifier. The UPM 

is used to drive the DC motor. The maximum current available is 1 Ampere without the 

amplifier cable. The functional ports of UPM are located on the panel (See Figure 2.1). 

The D/A and AID ports are connected to MultiQ-3 board. The sensor's ports and voltage 

output port are connected to DC motor. In the Ball Beam experiment, a potentiometer 

sensor on the Ball Beam module is connected to a sensor's port as well. [40] 

2.3 Data Acquisition Board 

The MultiQ-3 is a general purpose data acquisition and control board, which has 8 

single analog inputs, 8 analog outputs, and 16 bits of digital input, 16 bits of digital 

output, 3 programmable timers and up to 8 encoder inputs decoded in quadrature. 

Interrupts can be generated by any of the three clocks, one digital input line or the end of 

conversion from the A/D. 

The system is accessed through a PC bus and is addressable via 16 consecutive 
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memory mapped locations, which are selected through a DIP switch located on the board. 

A diagram of the MultiQ-3 is shown in Figure 2.3. In this experiment, "Analog Inputs" 

are connected to the "AID" port of the UPM, "Analog Outputs" go to "D/A" port of the 

UPM, and one of "Encoder Inputs" connect to the DC motor. [40] 

Analog Inputs 
3 2 1 

Digital Inputs 

0 7 0 

0 0000 

06 6 66 
Analog input 
RC circuits 
for antialias 
filters 

0 Analog Outputs / 
LED 

© 

0 6 

(0 7 

Encoder 
Inputs 

FUSE 

0 2 

Digital Outputs 

Figure 2.3: Data Acquisition Terminal Board Diagram [40] 

2.4 DC Motor 

SRV-02-E type motor shown in Figure 2.1 consists of a DC servomotor with built-

in gearbox drives, a potentiometer, an optical encoder, and an independent output shaft. 

Its block diagram and configuration are shown in Figure 2.4 and Figure 2.5, respectively. 

The input voltage V,, produces an electrical current. This electrical current 

generates a torque 7,,, which turns the motor shaft J,,, and load J1 via a gear train Kg• 

The angular position of the output gear can be measured with a potentiometer or an 

optical encoder sensor built into the motor module. This motor can be configured with a 
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high gear ratio. The internal gearbox gear ratio is 14:1 and the external gear ratio is set to 

5:1 in this experiment, so the total gear ratio is 70:1. [40] 

Vb 
Im 

Kg 

Vin 
Tm(  

Jm 

0  wm To 

Figure 2.4: DC Motor Working Principle [40] 

72 teeth 
Anti-backlash 

Potentiometer 

72 teeth 120 teeth 

Output 
shaft 
housing 

24 teeth 

/ 

Figure 2.5: The Composition of the DC Motor 1401 

il 

The theoretical DC motor's mathematical model is  = , where K and 
Vi,, (S) s(rs+1) 

are determined by the motor's parameters and affected by the gear ratio. By 
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experiment K was identified to be 1.5, and i was found to be 0.03, so the transfer 

function of the motor is 

9(s)  = 1.5  

V,,, (s)s(0.03s+1) 

2.5 WinCon application software 

(2.1) 

WinCon is a real time Windows 95/98/Me/NT/2000 application that runs Simulink-

generated code using Real-Time Workshop on a PC. It consists of WinCon Client and 

WinCon Server. 

2.5.1 WinCon Server 

WinCon Server performs the following functions: 

o Converting a Simulink diagram to PC executable code by using real-time 

workshop; 

o Compiling and linking the codes by using Visual C++; 

o Downloading the code to run on a WinCon client; 

o Performing start and stop functions for a client; 

o Maintaining communications with a client; 

o Maintaining communications with Simulink to catch real-time changes in 

parameters of the block diagram; 

o Plotting the data in real time; 

o Saving the data to disk after stopping the running of a client. 
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2.5.2 WinCon Client 

WinCon client runs the code generated from the Simulink diagram. It works with 

WinCon Server and has the following functions: 

o Receiving the code from a server; 

o Running the code in real time; 

o Maintaining communications with the server. 

The most common configuration is a single PC equipped with the required software 

and hardware. In this configuration shown in Figure 2.6, the PC runs both the server and 

the client and can be used to perform real-time control, tuning and monitoring in the same 

location. [43] 

SAME PC 

WinCon 
Server 

WinCon 
Client 

Win95 . MATLAB . SIMULINK - VC++ 

MultiQ 

Local User Plant to 
be Controlled 

Figure 2.6: WinCon Client Diagram [431 

2.6 Simulink Model for the Control of a DC Motor 

Figure 2.7 shows the ILC control scheme for a DC motor. A PID Feedback 

controller is applied to stabilize the system. The "ILC input Sequence" block produces a 

complementary sequence calculated by an ILC algorithm from the previous input and 

error data. The ILC control input is fed forward to adjust the performance of the plant. 
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The Scopes labelled "Error" and "ILC Input" display the error and ILC input signals 

respectively, which are loaded to the workspace after every iteration and then processed 

in the "ILC input Sequence" block by the ILC algorithm. [44] 

4 

S_Reference 

Reference 

Error O•k  
ILC Input 

Sequence 

 llo• Error 

PID Controller 

F. F. 

Input 

U 

ILC Input 

Output - 10 

DC Motor 

Figure 2.7: Simulink Control Model of a DC Motor 

2.7 Graphical User Interface for the ILC experiment 

Position 

A graphical user interface (GUI) helps to combine Simulink control model with an 

M-file. Some graphics objects such as windows, icons, buttons menus, and text can be 

created within the GUI frame. Selecting or activating an object in the interface frame 

usually causes an action or change to occur. The most common activation method is to 

use a mouse, [45]. 

There are several reasons to use a GUI in this experiment. In Figure 2.7, after each 

iteration, the previous error and input data need to be saved in the workspace and then to 

be processed in the "ILC Input Sequence" with the ILC algorithm. This operation 

requires an M-file to work with the Simulink model interactively. The GUI provides the 

interaction between the Simulink model and the corresponding M-file. Since this work is 

repetitive, the GUI makes the experiment much more convenient. With a GUI designed 
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for this experiment (See Figure 2.8), we can easily change some related parameters and 

settings of the system without opening the Simulink model. 

In the GUI shown in Figure 2.8, pressing the "Initialise" button will open the 

Simulink model, load an executive code into the WinCon server, and open some 

necessary sinks. "START" is a toggle button to start or stop an operation. The section 

below the "Initialise" button allows one to set iteration interval and iteration times. The 

popup menu is used to select a real system or a mathematical transfer function of the 

system in order to compare the system's performances. The "ILC Operators" section 

allows setting or changing ILC operators such as F, C, and D in transfer function form 

during the experiment to analyze the ILC influence when varying the values of these 

operators. The "Controller Parameters" section is for setting feedback controller's 

parameters to stabilize the system. The corresponding M-file is attached in Appendix A. 

..) mo_noncau 

NILC EXPERIMENT ON A DC MOTOR 

START 

ILC Ope rotors 

r F Numerator 

Dernnutm 

r c 

Derunerate: 

r D Numerator 

Deunerutca 

In Stande,d MaUab NOtatOn 

Initialise 

Plant 

rir Time of Each Iteration 

Number of Iterations 

Controller Parameters 

Pioucatend 

rj 
Inte,at 

Deu(iye - 

a net 

Figure 2.8: Graphic User Interface 
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Chapter 3 

Causal ILC and Equivalent Feedback Control 

This chapter introduces some general concepts of ILC such as causal signals, 

noncausal signals, fixed point and convergence condition, which are related to our 

analysis. Since most existing ILC algorithms are implemented by using causal operators, 

a causal signals convolution procedure is illustrated to show how causal operators work 

in an ILC algorithm. During the discussion, we will prove that causal ILC has some 

fundamental drawbacks. Equivalent Feedback Control theory proposed in [8] claims that 

there exists an equivalent feedback control for any causal ILC algorithm. Since this 

theory has not verified by practical application, some simulation and experiment are 

designed to investigate it further. 

3.1 Fixed Point 

A fixed point is an equilibrium point during iterations in an ILC system. Consider a 

general ILC system: 

y.=Pu,, (3.1) 

where P is a stable plant and i is trial number. If an achievable reference trajectory is 

given as 

•)/ = PUd, 

then the error in trial i is 

= Yd - Yi-

(3.2) 

(3.3) 
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From ( 1. 11), the general ILC algorithm is 

Ui = Fu11 + Ce + De11 , 

where F, C, and D are bounded causal operators. 

Substituting (3.1) into (3.3) gives, for iterations i and i-i, respectively, 

= Yd PUi, 

Yd - PU_1. 

Substituting (3.5) and (3.6) into (3.4) gives 

u1 = Fu11 + C(yd - Pu,) + D(yd - Pu1 ). 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

If u, = u and u._1 = Uc3 where u©, is bounded, the signal u is called a fixed point of 

control signal [ 1]. 

Set 

UI = U/_i = UcO • 

From (3.5) and (3.6), we have 

ei = e, 1 = 

Substituting (3.8) and (3.9) into (3.4) gives 

(1—F)u 0 =(C+D)e, 

Rearranging (3.10) gives 

U. = Ke0,, 

where 

K—(1—F)'(C+D). 

Note that F # 1 in (3.12). Since 

e. = y, - 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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Substituting (3.11) into (3.13) gives 

Then 

and 

e',, =(1+PK)'y,. 

u. = K(1 + FK)' Yd' 

Y- =PK(1+PK)'yd, 

(3.14) 

(3.15) 

(3.16) 

where ye,, is the output corresponding to the fixed point of control signal u,. 

Definition: the signal u1 = UH  = u. is called a fixed point of control signal, ye,, or e0, is 

called a fixed point of an ILC system [1]. 

Remark 1: Since Uc is a bounded signal, if P is stable, y. is a bounded signal as well. 

Remark 2: If a convergence condition is met, y1 will converge to y00 as I increases. 

3.2 Convergence Condition 

Convergence analysis is performed most easily in the frequency domain. In the 

following, e(jc)) refers to the Fourier transform of the signal e(t) (i.e. the Laplace 

transform evaluated at s = jo). 

Definition: An ILC system is convergent if, for all bounded e0 (lcD), 

lime1 (ja) = e (jcD) at all frequencies co. 
I-

Substituting (3.4) into (3.5) gives 

= Yd - P(Fu,_1 + Ce, + De-1). 

Multiplying (3.6) by F and subtracting the result from (3.17) gives 

(3.17) 
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(1 + PC)e1 - (F - DP)e1_1 = (1 - F)y(,. 

Substituting (3.9) into (3.18) gives 

[1— F + (C + D)P]e, = (1— F)yd. 

Subtracting (3.19) from (3.18) gives 

(1+PC)(e1 — e) = (F—DP)(e1_1 — e0), 

which may be rearranged to give 

e1—e0.3 = H(e1_1—e), 

where 

and 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

H = S(F - DP), (3.22) 

S=(1+PC)'. 

Finally, (3.21) implies 

e, — e = H'(e0 — em). 

(3.23) 

(3.24) 

Lemma 1: A necessary and sufficient condition for e, to converge to e is I H(j() 1<1 

for all uER. [3 1] 

Proof: 

Sufficient Condition: 

Let z. = e1 - er,, so zo = e0 - e. Then (3.24) becomes 

z1 = H'z0. (3.25) 

Since 

I H(jw)' 1=1 H(jco) I, (3.26) 
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IfI H(jco) 1<1, then 

Thus we have 

and 

Z. (ja)) Il H' (Ja))Zo (jc)) 1=1 H(ja') I' I z (ft)) I. 

lim lH(jco)I'=O. 
i - >00 

lim I z (ja;;) 1=: 0, 
->0 

lime1 = e. 

Necessary Condition: 

If the ILC system is convergent, then we have 

lime, =e 
I—>00 

and 

According to (3.25), 

lim I z,(j(o) 1=0. 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

lim I z,(jw ' ) 1= lim I H(jco)'. z,, 1=0. (3.32) 
I-4o 

Considering (3.26) and (3.31) gives 

lim I z1(jco) = urni H(jco) I'l zo(jCO) 1= 0. (3.33) 
-4 100 1-400 

Since z0 is in general nonzero, (3.33) implies 

lim I H(jco) '= 0. (3.34) 
/-40 

So iH(ia))kl. 

Remark: According to (3.10), when choosing F = 1, we get e00 = 0. 
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3.3 Conditions on P for Convergence to ec, =0 

In order to achieve zero ultimate error = 0), we need to choose F = 1 in (3.10). 

In this special convergence case, the properties of process P play an important role. If all 

zeros of a system are in the left half-plane, the system is called Minimum Phase (MP). 

Otherwise, the system is called Nonminimum Phase (NMP) [38]. Relative degree is the 

difference between the order of the denominator and the order of the numerator of a 

transfer function. 

Lemma 2: If a causal ILC system converges to ec = 0, then the process P must be 

M.P. and its relative degree must be less than or equal to 1. [39] 

Proof: In order to achieve e = 0, set F = 1. According to (3.22), 

H=S(1—DP). (3.35) 

If this system is convergent, we have! H(jw) 1<1. That is 

I S(ja)(1 - D(j(o)P(ja.) j<1. 

Since S = 1— SPC, rearranging (3.36) gives 

1— (C(j(o) + D(jc)))S(jc))P(jcv) j<1, 

or 

(3.36) 

(3.37) 

I1—M(jv)kl, (3.38) 

where M=(C+D)SP. 

If P is NMP and /or has a relative degree greater than 1, then so is M. This implies 

Re(M(jw)) <0 at some tv in complex plane, and thus 

J1—M(jw)l>1, (3.39) 

which conflicts with the convergence assumption. Figure 3.1 illustrates the situation. 
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Re 

Figure 3.1: Divergent Situation [391 

3.4 Causal Signals Convolution 

Definition 1: A signal u is causal if u(t) = 0, Vt <0. A signal u is anti-causal if u(—t) is 

causal. A noncausal signal is not necessarily causal. [29] Figure 3.2 illustrates the three 

signals. 

(a) Causal signal (b) Anti-causal signal (c) Noncausal signal 

Figure 3.2: Three Kinds of Signals 

Definition 2: "A system (or an operator) P that maps an input signal u to an output signal 

y is causal if y(t) does not depend on u(r) for all r > t. A noncausal system is not 
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necessarily causal and an anti-causal system is not causal. If an LTI system is causal, then 

every causal input produces a causal output", [29]. 

For a causal LTI system, y = Pu, the output  is obtained according to the following 

formula 

y(t) = fp(t - (3.40) 

where p is the impulse response of P. The convolution operation can be illustrated as 

shown in Figure 3.3. Since P is a causal operator, if input signal u is also a causal signal, 

the output y at r = t will be the value of shaded area. [46] 

* 

t 

PM 

10  
t 

Figure 3.3: The Convolution Operation of Causal Signals 

3.5 Equivalent Feedback Control 

If ILC is implemented using causal operators (i.e. causal ILC), we can show that it 

is equivalent to feedback control (which must use causal operators). Consider a 

conventional feedback control system 

e=ydPu, (3.41) 

where the control is 

u=Ke . (3.42) 
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Comparing (3.42) and ILC fixed point described as (3.11), an important relationship 

between causal ILC and feedback control is revealed. 

Theorem 1: Suppose (1—F)' is defined, and let K = (1— F)' (C + D) as the same as 

(3.12), then the feedback control (3.40) applied to (3.39) gives e = e, [12]. 

Proof: Substituting (3.40) into (3.39) gives the closed —loop system 

e—(l+PK)'— Yd . (3.43) 

Applying (3.41) to (3.40), we have 

u=K(1+PK)'yd . (3.44) 

Comparing (3.41) with (3.14), and (3.42) with (3.15) respectively, we have 

C = CcO 

and u=u,. 

Remark 1: The K in the equivalent feedback control depends only on the ILC operators 

F, C, and D, so no additional process information is required to obtain the equivalent 

feedback control, [ 12]. 

Remark 2: Since Theorem 1 does not exclude the case CO3 the equivalent feedback 

control K exists whether or not the ILC includes current cycle feedback C. [12] 

Remark 3: The equivalent feedback achieves the fixed point of ILC even if the ILC does 

not converge to the fixed point, [ 12]. 

Remark 4: Since the equivalent feedback control achieves the fixed point on the infinite 

time interval, it also achieves it on any finite interval (i.e. a trial of finite duration), [ 12]. 
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3.6 Equivalent Feedback Control in the Case of F =1 

In the singular case where (1— F)-' does not exist, Theorem 1 is not applicable. 

Theorem 2 explains the relationship between the ILC and feedback control in this special 

case. 

Theorem 2: If causal ILC converges to zero error, then the feedback control 

u = [C + k(C + D)]e, k ≥ 0, is internally stabilizing and gives lime = 0, [8]. 
k—>co 

The proof is done in [8], where the following remarks are noted: 

Remark 1: Here K = C + k(C + D), and K depends only on the ILC operators C and D, 

not on the Process P (although the size of the gain factor k required for a given lie ii may 

depend on F), [8]. 

Remark 2: Since Theorem 2 does not exclude the case C = 0, the equivalent feedback K 

exists whether or not the ILC includes current feedback C, [8]. 

Remark 3: The achievability assumption, Yd = PUd for bounded Ud, allows the system 

to track an unbounded Yd when P is unstable, [8]. 

3.7 Simulations and Experiments 

In order to validate the above theoretical conclusions equating causal ILC and 

feedback control, simulations and experiments on various processes are presented. 

3.7.1 Causal ILC for a Nonminimum Phase Process 

Lemma 2 shows theoretically that if P is NMP, perfect tracking of a reference ) d is 

not possible with a causal ILC algorithm. Consider for example the NMP system 



where 

Y(s) = P(s)U(s), 

—i  
P(s) = s 

(s+1)2 

Suppose the reference to be tracked is 

1 
17d (s) =  

(s+1)2 

To achieve this target, the input should be 

1 

U(s) = P' (s)Yd(s) =---. 
s—i 
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(3.45) 

(3.46) 

(3.47) 

(3.48) 

If we take the two-sided inverse Laplace transform, as defined in [30], of (3.48), we get 

two solutions: a causal input u(t) = e'h(t) and an anti-causal input u(t) = —e'h(---t). 

When we apply the causal input to the system, the simulation result is as Figure 3.4. 

Because the causal input produces an unbounded output, it cannot be accepted. 

NMP with Causal Input Signal 

0.0 

0.6 

0.4 

0.2 

d 

r r i 

•1 -I 

4---..--1 I---_-.4 

2 4 6 0 10 12 14 16 10 20 
Time(s) 

Figure 3.4: NMP Process with Causal Input 
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3.7.2 Zero Ultimate Error 

3.7.2.1 Causal ILC Algorithm 

Consider an open-loop model: P(s) = s+1 . Since this plant is minimum phase and 

has relative degree of one, according to Lemma 2, zero ultimate error is possible using 

causal ILC. Set C = 0 and D = 1 in (3.4). To achieve zero ultimate error, we need to 

choose F = 1. If the ILC system is required to track 

Yd = 0.5+0.5*sin(t. r/2) (349) 

over the interval t E [0,3], simulation shows the system performance is as indicated in 

Figure 3.5 where the initial condition is u0 = 0. Zero ultimate error is achieved for this 

process and the converse of Lemma 2 is validated. 

Causal ILC with Zero Ultimate Error 

Figure 3.5: Causal ILC with Zero Ultimate Error 
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Equivalent Feedback Control for Zero Ultimate Error 

1 

0.0 

0.6 

0.4 

0.2 

0.5 1.5 
Time(s) 

2 2.5 3 

Figure 3.6: Equivalent Feedback Control with Zero Ultimate Error 

3.7.2.2 Equivalent Feedback Control 

Applying Theorem 2 to this example gives the result shown in Figure 3.6. The 

equivalent feedback control is u = [C + k(C + ]J)}'e, where C and D are the same as those 

in the causal ILC algorithm. When we increase k, the output y is closer to Yd• Increasing 

k to k = 1000, the output y coincides with Yd - Obviously, equivalent feedback control 

does not need iteration and can achieve zero ultimate error at only one trial as long as the 

value of k is large enough in the controller formula. 
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3.7.3 Nonzero Ultimate Error 

Consider an open loop model of a DC motor (2.1), which is P(s) = 
1.5 

s(O.03s + 1)' 

with a relative degree greater than 1. The goal of this experiment is to control the 

motor's shaft position with an ILC algorithm (3.4) and to track a desired signal 

represented by Yd 

3.7.3.1 Causal ILC when F =1 

Suppose we choose F = 1 because we hope to get a zero ultimate tracking error for 

this process, then (3.4) becomes u, = u1_1 + Ce1 + De1_1, where we choose C = 1 to 

stabilize the system and D = LP'. L =  1  is a filter to make D proper. 
(O.5s + 1)2 

According to Lemma 2, a zero ultimate error may not be achieved since the relative 

degree of the process is greater than 1. 

A simulation and an experiment on the motor are implemented to validate Lemma 2 

at this situation. Figure 3.7 shows the simulation result, while Figure 3.8 shows the result 

of the experiment. From both results, we see that the system is divergent, validating 

Lemma 2 for the case of the plant relative degree exceeding one. The rate of divergence 

differs for the simulation and experiment because of the unmodeled parameters and 

uncertainties that exist in the real plant. 
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Causal ILC with F1 

Figure 3.7: Causal ILC, on Simulated Motor 
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Figure 3.8: Causal ILC, on Real Motor 
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3.7.3.2 Causal ILC when F # 1 

In order to make the system convergent, we set F = L = (0.5s + 1) 1  and D = LP' 
2 

in (3.4). After performing simulation test we observe that the system is convergent as 

shown in Figure 3.9. Experimenting on the DC motor, the system also converges as 

shown in Figure 3.10. It is easy to see that the trade—off to making the system convergent 

is that ultimate error e0, # 0 at the fixed point. 

Causal ILC with F Not Equal to 1 

Figure 3.9: Causal ILC with F # i , on Simulated Motor 
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Causal ILC with F Not Equal to 1 

0.8 

0 

0.6 
0 

0 

0.4 

0.2 

I I 

Fied Point 

1 2 3 4 

Ti me(s) 
5 

r 

i=7'/W10 

T 

6 

Figure 3.10: Causal ILC with F # 1, on Real Motor 

3.7.3.3 Equivalent Feedback Control for Nonzero Ultimate Error 

According to Theorem 1, the equivalent feedback control u = Ke achieves e = e. 

without iterations, where K = (1— F)-' (C + D) and e = (1 + PK)' Yd Applying the 

feedback control to the system, the simulation result is shown in Figure 3.11. 

In the experimental control scheme illustrated in Figure 2.7, replacing the PID 

controller with K and setting ILC input to zero gives the experimental result shown in 

Figure 3.12. Comparing Figure 3.11 with Figure 3.9, and Figure 3.12 with Figure 3.10 

respectively, we find the fixed point in Figure 3.9 is the same as the output of Figure 

3.11, and the fixed point in Figure 3.10 is the same as the output of Figure 3.12. Thus 

Theorem 1 is verified by experiment. 
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Equivalent Feedback with F Not Equal to 1 
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Figure 3.11: Equivalent Feedback Control with F # I, on Simulated Motor 
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Figure 3.12: Equivalent Feedback Control with F # 1, on Real Motor 
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3.8 Summary of Causal ILC Results 

Summarizing the simulation and experimental results, we have Table 3.1. 

Table 3.1: Verification Results of Lemma 2 and Equivalent Feedback Control Theory 

Verification of 

theory 

Case Simulation 

result 

Experiment 

Result 

Converse of Lemma 2 

Converse of Lemma 2 

NMP, F(s) = S-1 Divergent 

(Fig. 3.4) 

none 

(s+1)2 

F(s) = ---- with F =1 
s+1 

Convergent 

(Fig. 3.5) 

none 

DC motor with F = 1, 

F(s) = 1 

Divergent 

(Fig. 3.7) 

Divergent 

(Fig. 3.8) 
s(0.03s+1) 

DC motor with F # 1, 

1 
F(s) 

Convergent 

(Fig. 3.9) 

Convergent 

(Fig. 3.10) = 
s(0.035 + 1) 

Equivalent Feedback 

Control Theorem 1 

F(s) = with F = I 
s+1 

Convergent 

(Fig. 3.6) 

none 

Equivalent Feedback 

Control Theorem 2 

DC motor with F # 1, 

P(s)= 1 

Convergent 

(Fig. 3.11) 

Convergent 

(Fig. 3.12) 
s(0.03s + 1) 
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From the theoretical analysis and, experimental validation, we obtained the 

following conclusions about causal ILC: 

a Causal TLC has limitations for NMP processes and those plants with relative 

degree greater than 1. For these systems causal ILC cannot achieve zero tracking 

error. The tracking performance is either divergent or e # 0. 

o Causal ILC has no advantages over Feedback Control because equivalent 

feedback control can achieve the same accuracy in just one trial, while causal ILC 

may need many trials to achieve this accuracy. 

o Since an equivalent feedback control exists for any causal. LTI ILC algorithm, it is 

better to use equivalent feedback control instead of ILC for causal LTI systems in 

order to avoid iterations. 
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Chapter 4 

Noncausal ILC 

Since causal ILC has some fundamental drawbacks, it is necessary to explore 

noncausal ILC. The reason causal ILC fails is that it satisfies the convergence condition 

only for MP plants with relative degree less than one. In [32] the authors promoted 

applying noncausal operators in ILC, while in paper [29] the author suggested a 

symmetrical noncausal filter to guarantee convergence for most common processes. 

In this chapter, we will illustrate noncausal signal convolution and explain how the 

symmetrical noncausal operator influences the convergence of ILC system. Since few 

experiments has been implemented on real systems with noncausal ILC algorithms [33], 

in this chapter we present some experiments and simulations to verify theoretical results 

on noncausal ILC and show the benefit of noncausal ILC. 

4.1 Convolution of Noncausal Signals 

For an LTI system, the input and output relationship is determined by (3.38). But if 

P is a noncausal operator as shown in Figure 4.1(b), the output will be different. Figure 

4.1(c) shows the convolution procedure and the value of the output, which is the shaded 

area before time t. We see that future values of the input signal u (the part when i > t) 

contribute to output y(t) since p has nonzero values before t = 0. This property can be 

applied to improve causal ILC. 
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(a) Causal u(t) 

* 

(b) Noncausal p(t) 

y(t) p(t—r) 

t 

(c) Outputy(t) 

Figure 4.1: The Convolution Operation of Noncausal Signals 

4.2 A Noncausal Symmetric Low-Pass Filter 

From Lemma 2 in Chapter 3 we know that causal ILC can achieve zero ultimate 

error for only the simplest plants. When the relative degree of P is greater than one or P 

is NMP, the convergence condition I H(jw) 1< 1 cannot be satisfied. In order to solve 

this problem, we need to find a suitable filter to satisfy the convergence condition even 

when the relative degree of P is greater than one or P is NMP. This kind of noncausal 

symmetric filter is proposed in [29]. An example of this kind of filter is 

1 1 
 =  

(S)2 (1+--)(1---) 
a)0 coo W o 

(4.1) 

where a is the cut-off frequency. Setting coo = 10, the filter is plotted in time domain 

and frequency domain respectively in Figure 4.2 and Figure 4.3. If we suppose P is a 

stabilized process, then we may set C = 0 in the ILC algorithm (3.4). Thus S = 1 

according to (3.23). Setting F = 1 to achieve e0 = 0, the Hin (3.22) becomes 
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H- 1-- DP. 

With D = LP-1, rearranging (4.2) gives 

H=1— L. 

Substituting s = jco into (4.1) gives 

1  

1+ 2 

(4.2) 

(4.3) 

(4.4) 

(Do 

It is clear that L(jcv) has no complex part and 0 <L(ja)) <1. Substituting (4.4) 

into (4.3) guarantees I H(jco) j< 1. 

More generally, L can be chosen as 

1 
I, (4.5) 

j=1 

where the are the cut-off frequencies, and the relative degree of L is 2n. If 2n exceeds 

the relative degree of F, then D is proper. Substituting (4.5) into (4.3) gives I H(ja) 1< 1 

at all frequencies. Thus, this L results in a proper D and guarantees convergence for any 

relative degree process. 

Figure 4.2 and Figure 4.3 show a filter L with relative degree of 2 in the time 

domain and in the frequency domain respectively. 
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Low-pass Filter L in Time Domain 
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Figure 4.2: Filter L in the Time Domain 
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4.3 Noncausal ILC on a NMP Plant 

Lemma 2 in Chapter 3 shows theoretically that if P is NMP, perfect tracking of a 

reference Yd is not possible with a causal ILC algorithm. Consider the example in 

Chapter 3, which is a NMP system. In this example, the output is given by 

Y(s) = P(s)U(s), (4.6) 

where P(S) = s—i  
(s+i)2 

(4.7) 

Suppose the reference to be tracked is also the same as in the causal case in Chapter 3, 

1 
17d (s) =  

(s+1)2 

To track it perfectly, the input should be 

(4.8) 

U(s) = P' () d (s) = (49) 
s—i 

The two-sided inverse Laplace transform of (4.9) has two solutions: a causal input 

u(t) = e'h(t) and an anti-causal input u(t) = —e'h(—t). In Chapter 3, we saw that the 

causal input drives the system unstable (and is itself unstable). So this time the anti-

causal input is applied. The simulation result in Figure 4.4 shows that the system tracks 

the reference perfectly. 
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Noncausal ILC for NMP 
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Figure 4.4: A NMP Process with Noncausal Input 

4.4 Noncausal ILC on a DC Motor 

In Chapter 3 we showed that it is not possible for a DC motor, which has a relative 

degree of 2, to converge to zero tracking error using causal ILC. To achieve convergence, 

we set F = L, which resulted in nonzero ultimate tracking error. To achieve convergence 

and zero ultimate error, we now apply noncausal operators in the ILC algorithm (3.4). 

Recall that the DC motor has the open-loop model 

G(s)=  1.5  
s(0.03s + 1) 

The closed-loop system is 

e=yd —G(w+u), 

where u is ILC input and w is the feedback control, and 

(4.10) 

(4.11) 
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w=ke, (4.12) 

where kP is proportional control to stabilize the system. 

Substituting (4.12) into (4.11) gives 

e=Syd — SGu, (4.13) 

where S=(1+Gk)'. (4.14) 

Then the ILC system can be written as 

e.=r—Pu, (4.15) 

where r = 5Yd (4.16) 

P=SG. (4.17) 

If we set F = 1, the ILC update law (3.4) can therefore be written as 

Ui = u,_1 + De,_1, (4.18) 

where C=O since P is a stabilized closed-loop plant, and 

D=LP'. (4.19) 

According to (4.17), 

We set 

L(s) = 

1.5  

O.03s2 +s+1.5k 

1 

(4.20) 

(4.21) 

where coo =1. Since L is a noncausal operator, so is D. 

Applying the noncausal ILC algorithm indicated by (4.18) in simulation, we get the 

result shown in Figure 4.5. When we apply (4.18) to the real motor, the result is shown in 
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Figure 4.6. These figures show that noncausal ILC converges to e,, = 0. In contrast, 

Figures 3.7 and 3.8 in Chapter 3 show that causal ILC with F = 1 made the system 

divergent. Thus noncausal ILC improves on causal ILC when the relative degree of the 

plant is greater than 1. 

Whereas we obtained noncausal ILC results in the frequency domain, we need to 

implement them in the time domain. Since ILC must operate over a limited time interval, 

signals must be truncated at the beginning and end of the interval. This results in loss of 

information. 

The task in this example was to follow the reference between 0 and 5 seconds. 

Figure 4.5 and Figure 4.6 show that the tracking is relatively poor between 5 and 6 

seconds. This "follow-through" region was used for learning, but is not part of the task. 

Without this follow-through region in Figure 4.5 or Figure 4.6, there will be no future 

information to be calculated in the noncausal ILC algorithm at the end point of the task. 

Comparing the tracking accuracy between 4 seconds and 5 seconds with that between S 

seconds and 6 seconds in Figure 4.5, we see that the loss of future information at the end 

of the task reduces the tracking performance. For a ball and beam experiment described 

in the next section, we will improve the performance at the end of a task by using a 

follow-through region. 

Comparing Figures 4.5 and 4.6, we see a difference between the experimental result 

and the simulation result. This is caused by unmodeled parameters and uncertainties in 

the plant. 
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48 

4.5 ILC on a Higher Order System—Ball and Beam 

The experiment on the DC motor proves that noncausal ILC can improve on causal 

ILC, since noncausal ILC allows the DC motor to achieve zero ultimate tracking error 

while causal ILC does not. A DC motor is a second order process with relative degree of 

2. What happens if noncausal ILC is applied to a higher order process with a higher 

relative degree? This question can be investigated by an experiment on a Ball and Beam 

system, which has a relative degree of 4. 

4.5.1 Mathematical Model of Ball and Beam System 

As shown in Figure 4.7, Ball and Beam system is composed of two modules, which 

are a Ball and Beam module and a servomotor module. A lever arm is attached to one of 

the gears of the servomotor. The servomotor drives the lever arm. As a result, the angle 

of the beam is changed and the ball resting on the beam will be moved to a desired 

position under the effect of gravity. This configuration is illustrated in Figure 4.8. 

Ball ' Beam 

Fixed end 10 

Gear 

Figure 4.7: Ball and Beam System 1401 

Lever arm 

Servomotor 
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and 

Beam 

Lever Arm 

6 

Gear 

Figure 4.8: Configuration of Ball and Beam System [41] 

Consider the ball, which has mass m, inertia J and diameter d, we have 

Jçô = -mgd sin a, 

x = . 1 .dçp. 

Differentiating (4.23) twice gives 

2 

Substituting (4.24) into (4.22) gives 

xga. 

When a and 9 are small, we have 

d 
a = —9, 

L 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 
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where = --- in this particular device. 
L 17 

Substituting (4.26) into (4.25) gives 

1=0.4129, 

or in the frequency domain, 

X(s) - 0.412  

9(s) - S2 

Recall the motor's transfer function 

9(s)  =  1.5  

T",, (s) s(0.03s +1) 

(4.27) 

(4.28) 

(4.29) 

Transferring (4.29) into time domain gives 

= —33.3G + 50v. (4.30) 

The Ball and Beam system transfer function is obtained by multiplying (4.28) with (4.29) 

as 

X(s) =  0.618  

T',,(s) s3(0.03s + 1) 

It is easy to see that the open loop system is not stable. 

(4.31) 

4.5.2 Stabilization of the Plant 

We designed a control system in Simulink as schematically shown in Figure 4.9. 

This control system is primarily composed of a reference signal generator, a feedback 

controller (middle part), an ILC controller and the physical plant Ball and Beam module. 

We use a GUI to operate the system and use a Matlab code to process the data obtained 

from each iteration. The scope labelled "ILC Input" records the previous ILC input signal 

u1 , and the scope labelled "Error" records the previous error signal e11 . By applying 
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ILC algorithm u, = Fu1.1 + De,-, in Matlab code, we get an updated ILC input u.. We 

then load ui as a sequence into "ILC Input Sequence" block to be ready to input ILC 

control to the system at the next iteration. "Saturation 1" is applied before the input port of 

the module to protect the DC motor. We set 20 seconds for each iteration. After 20 

seconds, "Stop Simulation" stops the operation automatically. Based on the control 

scheme, we calculate the feedback control gain K and the closed-loop transfer function of 

the system. 
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4— 

A of. en cc 

mCI 

Command 

x 

0 

e 

IS lntn,atn, 

I<bp 
P15 

F 
Theb 

4  — 

ILC Input 
Sequence 

 fm  
ILC Input 

(4.32) 

Theta Soul 

- ' lhnlu 

lid Satocalton 

ILC I put 0 

—.—* 0•   

—u  
XX 

4  

Kd uliheam Module 

—* 

Sat.c,ationl 

ThCO DuO— 

ThSu 

XDnt — 

Kbd 

Figure 4.9: Ball and Beam Simulink Control Scheme 1431 
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From (4.27) and (4.30), we have 

X=AX+Bv 

y=CX 

where A 

01 0 0 

0 0 0.412 0 

00 0 1 

0 0 0 —33.3 

,B= 

0 

0 

0 

50 

, and C=[1 0 0 0]. 

(4.33) 

(4.34) 

Suppose the control is 

v=KX+u, (4.35) 

where K is feedback control gain and u is ILC input. 

Substituting (4.35) into (4.33) gives 

J'=A,X+Bu, (4.36) 

where A1 = A + BK (4.37) 

is the closed-loop system matrix. 

The open-loop characteristic equation is 

det(sl—A)=s4 + 33.3s3. (4.38) 

Then a=[33.3 0 0 0]. (4.39) 

Suppose we choose the closed-loop characteristic equation as following: 

det(SI - Ar,) = (s + 1)(s + 2)(s + 3)(s + 30) 
(4.40) 

=s4 + 36s3 + 191s2 + 336s+180, 

then r=[36 191 336 180]. (4.41) 
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From (4.39), we have Toeplitz matrix 

1 33.3 0 0 

—° 1 33.3 0 
AT 0   

0 1 33.3 

0 0 1 

and 

—33 1109 — 36926 

1 — 33 1109 

0 1 —33 

0 0 1 

Since W, = [B AB A2  AB], we have 

0 0 066 0.02 

0 1.6165 0.02 0 

1.6165 0.0485 0 0 

0.0485 0 0 0 

Designing K according to Bass-Gura formula gives, [47] 

K = [a - 

=[-8.7379 — 16.3107 — 3.8200 —0.0540J 

From the control scheme in Figure 4.9, we have 

and Gd = 1. [KbP (xd - x) + Kbd±I. 

Substituting (4.44) into (4.43) and rearranging give 

V=[KbPKP KbdKI, —K 

KX + XdKbP + u 

(4.42) 

(4.43) 

(4.44) 

(4.45) 
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Comparing (4.42) and (4.45) gives 

KbP =0.1346 

K,,d =-0.2512 

Kfl = 3.82 

Kd = —0.054 

Substituting (4.42) into (4.37) gives closed-loop system matrix as 

= 

0 1 0 0 

0 0 0.412 0 

0 0 0 1 

—436.8932 — 815.534 — 191 — 36 

4.5.3 Closed-loop Transfer Function 

From (4.36), we have 

X=(sI—A,)'Bu. 

Substituting (4.47) into (4.34) gives 

P0(s)= = C(Is—A,)'B 
U(S) 

20.6 

(s + 1)(s + 2)(s + 3)(s + 30) 

(4.46) 

(4.47) 

(4.48) 

4.5.4 Setting Initial Point of the Ball in Iteration 

Since Iterative Learning Control strongly depends on the same initial point, it is 

important to make sure that for each trial the ball is always at the same initial point. If 

the initial point is not the same from trial to trial, the ILC control system will be affected. 

To set the initial condition, feedback control is applied, as shown in the control scheme of 

Figure 4.9. 
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Even with feedback control applied, the initial condition sometimes varied. As an 

example, Figures 4.10 and 4.11 show the 2O' trial of two separate experiments. In Figure 

4. 10, the initial position (at t = 10 s) is constant and zero, whereas in Figure 4.11, it has 

not yet settled. The result is the poorer tracking performance observed in Figure 4.11. 
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Figure 4.10: Setting Initial Point of Ball at the 20t1 trial 
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The Influence of Initial Condition 
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Figure 4.11: Influence of unsteady Initial Point to ILC System Performance at the 2O' trial 

4.5.5 Causal ILC on Ball and Beam System 

4.5.5.1 For the Case F =1 

Initially we choose F =1 to attempt to get a zero ultimate tracking error. Then the 

1  
ILC update law is u1 = ui-I+ De1_1. To make D proper, we set L = in 

(0.5s + 1)4 

D = LP'. Since L is causal, so is D. The simulation results in Figure 4.12 show that the 

system is divergent and thus validates the Lemma 2 since this system's relative degree is 

4. The real system results are also divergent as shown in Figure 4.13, which further 



57 

verifies the correctness of Lemma 2. From the two figures, we may see that the vibration 

becomes bigger and bigger, and the divergence is very clear at i = 150. 

Causal ILC on Simulated Ball and Beam with F=1 

1=200 
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Time(s) 

Figure 4.12: Causal TLC on Simulated Ball and Beam System with F = 1 
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Causal ILC on Real Ball and Beam System with F1 
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Figure 4.13: Causal ILC on Real Ball and Beam System with F = 1 
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4.5.5.2 In the Case F # 1 

The simulation and experimental results in Figure 4.12 and Figure 4.13 prove that 

the system will diverge when applying causal ILC with F =1. To avoid the divergence, 

we set F = L=   110  and D = LP'. Thus the ILC law is u. = Fu11 + De11. 
(0.5s + 1) 

Applying this on the simulated system gives results shown in Figure 4.14, while applying 

it on the real system gives results shown in Figure 4.15. Both the simulation results and 

the real system results show that the system converges with F=L, but the trade-off is that 

e # 0. 
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Figure 4.14: Causal ILC on Simulated on Ball and Beam System with F # 1 
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Causal ILC on Real Ball and Beam Sytem with F=L 
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Figure 4.15: Causal ILC on Real Ball and Beam System with F # 1 

20 

4.5.6 Equivalent Feedback Control on Ball and Beam System 

Since all operators L, F, and D are causal, there exists an equivalent feedback 

control for the causal ILC. According to Theorem 1, the equivalent feedback control gain 

is K (1— F)-' (C + D), where F # 1. Correspondingly, the output should be 

y = PK(1 + PK)' Yd• In the simulation, the result is as shown in Figure 4.17. Applying 

K in the control scheme as shown in Figure 4.16, we get the equivalent feedback control 

result from the real system as shown in Figure 4.18. Comparing Figure 4.14 with Figure 

4.17, and Figure 4.15 with Figure 4.17 respectively, we see that the equivalent feedback 

control can make the system achieve the same fixed point as causal ILC with only one 

trial. 
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Figure 4.16: Equivalent Feedback Control on Ball and Beam 

Equivalent Feedback Control on Simulated Ball and Beam System with FL 
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Figure 4.17: Equivalent Feedback Control on Simulated Ball and Beam System 
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Eqivalent Feedback Control on Ball and Beam 

10 11 12 13 14 15 16 

Time(s) 
17 20 

Figure 4.18: Equivalent Feedback Control on Real Ball and Beam System 

4.5.7 Noncausal ILC on the Ball and Beam System 

In order to achieve zero ultimate error e0, = 0, we apply a noncausal ILC algorithm 

on the system as 

where 

Ui = + De 1, (4.49) 

(s-i-1)(s+2)(s+3)(s+30)  
D(s) = LPØ' = 

S 2 

0)0 coo 

(4.50) 

When w0 = 0.01, we get the simulation results shown in Figure 4.19. These simulation 

results show that the system follows the reference quite well when the iteration number 

reaches i = I 00 .  The results obtained from the real system are shown in Figure 4.20. 
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They are very similar to those in the simulation. At i= 100,  the tracking error is 

approximately zero.. 

Noncausal ILC on Simulated Ball and Beam System 
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Figure 4.19: Noncausal ILC on Simulated Ball and Beam System 
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Figure 4.20: Noncausal ILC on Real Ball and Beam System 
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4.5.8 Noncausal ILC Reduces Phase Delay 

Since the Ball and Beam system is a 4th order system and its relative degree is 4, 

when it tracks a higher frequency reference, a phase delay will appear. Figure 4.21 shows 

an example where the system is required to follow a higher frequency sine wave from 

rest. The feedback control performs very well in the first task, but produces a big delay 

when tracking the higher frequency signal. For this example the angular frequency of the 

sine signal is co = 1.4 rad/s. From the Bode plot of P0 (Figure 4.22), the system's phase 

delay is greater than 9O at this frequency. 

Applying noncausal ILC (4.49) produces the simulation results shown in Figure 

4.23 and the experimental results shown in Figure 4.24. From the simulation results we 

notice that the tracking is satisfactory when iteration number reaches one thousand. On 

the real system experiment improvement is apparent when the iteration number reaches 

one hundred. 

Tracking a Higher Frequancy Signal with Feedback Control 
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Figure 4.21: Tracking a High Frequency Signal with Feedback Control 
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Figure 4.22: Bode Plot of Process Model 
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Figure 4.23: Tracking a Higher Frequency Signal with Noncausal ILC on Simulated Ball and Beam 



65 

Ball and Beam System Tracks a Higher Frequency Signal with Noncausal ILC 
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Figure 4.24: Tracking a Higher Frequency Signal with Noncausal ILC on Real Ball and Beam 

4.6 Conclusions About Noncausal ILC 

Recalling the simulations and experiments on the DC motor and a NM? plant in 

Chapter 3, and summarizing all the simulation and experiment results in this chapter, we 

construct Table 4.1. 

Table 4.11: Simulation and Experiment Results Comparison 

Verified 

Theory 

Case Simulation 

Result 

Experiment Result 

NMP, P(s) = s —1 Divergent 

(Fig. 3.4) 
(s+1)2 

with F = 1, rel.deg.=1 
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Causal 

ILC 

DC motor with F =1, rel.deg.=2 

1 
Ps 

Divergent 

(Fig. 3.7) 

Divergent 

(Fig. 3.8) = 

" '  

s(0.03s+1) 

DC motor with F # 1, rel.deg.=2 Convergent 

(Fig. 3.9) 

Convergent 

(Fig. 3.10) 

Ball and Beam with F =1, 

rel.deg.=4 

20.6 
PO 

Divergent 

(Fig. 4.12) 

Divergent 

(Fig. 4.13) 

(S) =  

(s + 1)(s + 2)(s + 3)(s + 30) 

Ball and Beam with F # 1, 

rel.deg.=4 

Convergent 

(Fig. 4.14) 

Convergent 

(Fig. 4.15) 

Equivalent 

Feedback 

Control 

DC motor with F # 1, rel.deg.=2 Convergent 

(Fig. 3.11) 

Convergent 

(Fig. 3.12) 

Ball and Beam with F # 1, 

rel.deg.=4 

Convergent 

(Fig. 4.17) 

Convergent 

(Fig. 4.18) 

Noncausal 

ILC 

Design 

NMP, with F =1, rel.deg.=1 Convergent 

(Fig. 4.4) 

DC motor with F = 1, rel.deg.=2 Convergent 

(Fig. 4.5) 

Convergent 

(Fig. 4.6) 

Ball and Beam with F = 1, 

rel.deg.=4 

Convergent 

(Fig. 4.19) 

Convergent 

(Fig. 4.20) 
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Noncausal Convergent, Convergent, 

ILC Ball and Beam with F = 1, Phase delay is Phase delay is 

Tracking rel.deg.=4 reduced. reduced. 

Higher (Fig. 4.23) (Fig. 4.24) 

Frequency 

Signal 

Examining the results in Table 4.1, we can obtain some conclusions about 

noncausal ILC as follows: 

o With the application of a noncausal symmetrical low-pass filter, the convergence 

condition of ILC is improved. For most LTI systems, even if a plant's relative 

degree is greater than one and/or it is unstable NMP, noncausal ILC can achieve 

zero ultimate tracking error. 

o Simulations and experiments on the Ball and Beam system validate the theorems 

and Lemmas in Chapter 3 for higher order systems and higher relative degree 

systems. Noncausal ILC can achieve zero ultimate tracking error for these 

systems. 

o When applying feedback control on a higher relative degree system tracking a 

higher frequency trajectory, a large phase delay exists in the output. Noncausal 

ILC eliminates this phase delay. 

o ILC strongly depends on the same initial point throughout the experiment. An 

unsteady initial point will affect ILC performance. 
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Chapter 5 

Robustness of Noncausal ILC for LTI Systems 

Robustness is an important property for any control design. Many papers [e.g., 34-

37] discuss a robust performance condition for various ILC designs. But most of them 

limit their discussions to causal operators. Lemma 2 in Chapter 3 shows that if P is NMP 

or has relative degree greater than one, it is impossible for the tracking error to converge 

to zero with causal ILC. Theorem 1 and Theorem 2 in Chapter 3 show that there exists an 

equivalent feedback control for any causal ILC. Several experiments in Chapter 4 prove 

that a noncausal ILC design as proposed in [29] can improve on causal ILC. Even if the 

process is NMP or has higher relative degree, noncausal ILC can make the system track 

the reference perfectly. This chapter will concentrate on robustness of noncausal ILC for 

LTI systems, including NMP systems. 

5.1 Robust Performance Condition of Noncausal ILC 

Suppose P is a stable or stabilized LTI system. We may model uncertainty in P as 

P=P0(l+zW2), (5.1) 

where P0 is a known stable mathematical model of system in transfer function form, W 

is a known and stable transfer function representing the size of the plant uncertainty, and 

is an unknown stable transfer function with a norm that satisfies, [42]. 



69 

Since P is stable, we may set C = 0 in the ILC algorithm (3.4). Then S = 1 in 

(3.23). If we choose F = ito get eç = 0, H in (3.22) becomes 

H=i—DP, (5.2) 

where 

D = LP' (5.3) 

to make D proper. According to Lemma 2, for most LTI systems, D must be a 

noncausal operator to achieve e = 0. Let L be a noncausal symmetric low-pass filter 

such as (4.5). Then, 

O<L(1a)≤1. (5.4) 

Lemma 3: If 1W2 (fa') 1<1, the system (3.24) converges to e = 0. [29] 

Proof: Substituting (5.1) and (5.3) into (5.2) gives 

I H(jw) 1=11 - L(jco)(1 + A(jø)W2 (ja)) I. (5.5) 

Since 1L " < II IIcQ 1 

I H(jco) 1=11 - L(jco) - L( jco)A(jw)W2 (ja) I 
≤ 1— L(jco) + L(ja) I W2 (1a) I. 

Since I W2 (fto) 1<1, and taking (5.4) into consideration, we get 

I H(ja') 1≤ 1 - L(jw)(1— I W2 (jc)) I) <1, (5.7) 

which satisfies the convergence condition I H(jw) 1< 1. Since F = 1, e0 =0. 

Q.E.D. 

(5.6) 
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However if I W2 (Ja) 1>1, then we need to set F # 1 to achieve convergence, which 

results in er,, # 0. Since P is stable, we can still choose C = 0 which gives S = I. Then 

H in (3.22) becomes 

H— F—DP, (5.8) 

where D is the same as it was in (5.3). Substituting (5.1) and (5.3) into (5.8) gives 

H=F—L(l+L.W2). (5.9) 

Lemma 4: If F = L and I L(Jw) 1<1 W2 (Jo)) 1-1, then the system (3.24) converges to 

1—L  
eoo = 1+LiXW2 Yd' [29]. 

Proof: Let F = L, where I L(jw) 1<1 W2 (Jo)) I'. Then 

I H(Jc)) 1=1 F(Jo)) - L(Jc))(1 + L(Jo))W2 (Jo))) I 
=1 F(Jco) - L(Jo)) - L(Jo))(Jc))W2 (Jo)) 

≤ F(Jw) - L(Jo)) I + I L(Jo))W2 (Jo)) I 
=1 L(Jco)W2(Jco) I 
<1, 

and thus the convergence condition of Lemma 1 is satisfied. 

From (3.14) and (3.12), we have 

1—F  

= 1F+P(C+D) Yd 

Substituting C = 0, F = L, (5. 1), and (5.3) into (5.11) gives 

1—L 
e°' = Yd 

1+LzW2 

(5.10) 

(5.11) 

(5.12) 
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Q.E.D. 

Remark: The choice F = L minimizes the upper bound on I H(jco) I in (5.10). 

5.2 Case Study of the Robustness of Noncausal ILC 

Suppose the plant we wish to control is as shown in Figure 5.1. 

Yd e k0 W G Y 

Figure 5.1: Plant 

This plant can be expressed as 

e=yd —G(w+u), 

where G is open loop system, w is feedback control, 

W = k0e, 

u is ILC input, and Yd is reference. 

Substituting (5.14) into (5.13) gives 

where 

Thus we have 

e SYd - SGu, 

S=(1+Gk)'. 

e = r - Pu1 

 0. 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 
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where 

r = SYd (5.18) 

is the reference of the closed-loop system, and 

P=SG (5.19) 

is the closed-loop system. 

In order to validate Lemma 3 and Lemma 4, simulations are presented for three 

kinds of perturbations. 

5.2.1 Case 1: Uncertain Feedback Gain 

5.2.1.1 Range of Gain for Convergence to Zero Error (F = 1) 

Suppose the open-loop plant in Figure 5.1 is 

G= 1  
s(s+1) 

(5.20) 

Feedback control k0 in (5.14) is designed to place the closed—loop poles at 450 from the 

real axis. By calculation, we get k0 = 0.5. From (5.16) and (5.19), the closed-loop model 

of the plant is obtained as 

Po= 
1 

52 +s+0.5 

However the real plant may be expressed as 

1 

2 +s+k 

(5.21) 

(5.22) 
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where k varies and brings some uncertainty into plant. According to (5. 1), the uncertainty 

is 

1—  0.5—k  

2 p s2+s+k 
(5.23) 

According to Lemma 3, a sufficient condition for the system to achieve zero ultimate 

error is I W2 (j@) 1<1. Then we have 

I /.\(1v)W2 (jv 0.5—k ) 1=1 1<1. 
s2 + s+k 

Substituting s = ja into (5.24) gives 

0.5—k  
1<1. 

2 +(k— w2)2 

Taking into account the fact that cv is real number and cv ≥ 0, solving (5.25) gives 

0.25≤k≤1.7, 

which is the convergence range for the gain with e0, = 0. 

(5.24) 

(5.25) 

(5.26) 

5.2.1.2 Simulation Results When F =1 and k is within Range in (5.26) 

Within the convergence range in (5.26), the system should be convergent. Since this 

result is derived with F = 1, the ultimate error will be e,, = 0. The Bode plot of AW2 is 

shown in Figure 5.2 with k = 0.3 and L as described in (4.21) with co = 10. We see that 

the magnitude I A(jcv)W2 (jw) j<1 at all frequencies. By applying the noncausal ILC 

Ui = Ui_i + De1_1, (5.27) 
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where D = we get the simulation results shown in Figure 5.3. Here, the reference 

Yd is Yd = 0.5 - 0.5 cos('zt). We see that the system converges to e, = 0. Later we will 

use the same reference Yd in all simulations. 
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5.2.1.3 Simulation Results When F = 1 and k is Outside of Range in (5.26) 

When k is increased to a value outside the convergence range (5.26), the system 

begins to diverge. This is because for k outside the convergence range 

I A(ja)W (ja)) 1> 1. Figure 5.4 shows a Bode plot created using the same values of L and 

D stated previously, and a gain of k = 10. Figure 5.5 shows the divergence of this system. 
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5.2.1.4 Convergence to Nonzero with k Outside of Range (5.26) 

Suppose k = 3, which is outside of the range in (5.26). Since I W2 (fto) 1>1, we 

apply Lemma 4, which suggests choosing F = L and I L(jco) 1<1 t(ja)W2(jw) ' to 

make the system converge. If we choose L =  1  with = 5, the Bode 

(0 0 0)0 

plot of L(jo) and [L.(ja')W2 (ja)J' is as shown in Figure 5.6, where the thick line 

represents [z(ja)W2 (jco)]'. Applying noncausal ILC 

Ui = Fu1_1 + De,_1, (5.28) 

where D = LP', the system converges as shown in Figure 5.7, although eco # 0. The 

value of er,, is determined by (5.12) as follows. For the specific values of all operators in 

this example, we have 

Rs -  s2(s - 7.071)(s + 7.07 1)(s2 +s+3)  

" /  (s - 5.591)(s — 4.116)(s + 5.68)(s + 3.771)(s2 + 1.255s + 0.6339) 

Taking partial fraction expansion of (5.29) gives 

R(s)=1+ 
3.1168 3.8547  + 5.1989 4.7962  

s+5.68 s-5.591 s-4.116 s+3.771 

0.3362s+0.1881  
+ 
s2 +1.255s+0.6339 

The two-sided inverse Laplace transform of (5.30) gives 

r(t) = 5(t) + 3.1168e 568' - 4.7962e 3771' + 0.3362e °6275' cos(0.49t) 

- 0.0467e °6275' sin(0.49t) + (5.1989e4"6' —3 .8547e 5591 ' )h(—t) 

(5.29) 

(5.30) 

(5.31) 
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-45 

Convoluting of r(t) and yd (t) gives e as shown in Figure 5.7. 
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5.2.2 Case 2: Uncertain Parameter in Plant Model 

5.2.2.1 Range of Parameter for Convergence to Zero Error 

In this section, we discuss another possible parameter variation in the plant. 

Suppose the real plant is 

1 

S 

while the mathematical model is still 

Po= 
1 

s2 + s+O.5 

According to (5.1), the uncertainty is 

and its magnitude is 

If 

(1—a)s  

P0 s2+as'+k0' 

(5.32) 

(5.34) 

(1— a)ja'  -  (1—  I (Jco)W(Ja) I-I . (5.35) 
jaa +k0 \/(aa))2 +(k0 a) 2)2 

I  (1—a)a  1<1, 
\/(aa))2 +(k0 0)2)2 

the system will converge to e = 0. Since 

(5.36) 

I  (1—a)a.  I-I  (1—a)co  
J(aw) 2 +(ko _a) 2)2 ,j(1_a)2w2+(ko_a)2)2_a)2+2aa)2 
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if Q=(k0—a 2)2—w2+2av 2 >0 (537) 

(5.36) will be true. Substituting k0 = 0.5 into (5.37) and rearranging gives 

Q=ø4 +2(a-1)a 2 + 0.25. 

So if a > 1, (5.37) is satisfied, and thus (5.36) is satisfied as well. 

5.2.2.2 Simulation Results When F =1 and a = 20 

(5.38) 

When a = 20, which is much greater than 1, Figure 5.8 shows a Bode plot of AW2. 

Applying the noncausal ILC indicated in (5.27) with L as in (4.21) and a = 10, after 

several iterations, we get the simulation results shown in Figure 5.9, which indicates that 

the system converges to e,,, = 0. 
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Simulation of Case 2 with F=1 and alfa=20 
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Figure 5.9: Simulation of Case 2 with F = I and a = 20 

5.2.2.3 Simulation Results when F =1 and a = 0.5 

When a is out of the convergence range, for example, a = 0.5, with the same ILC 

law as in 5.2.2.2 but a0 = 2 in (4.21), the system diverges as in Figure 5.11. This is 

because the magnitude of AW is greater than I at some frequencies, as shown in Figure 

5.10. 

5.2.2.4 Convergence to Nonzero Error when a = 0.5 

Since I W (jv) 1>1, we choose F = L. For this example, with a = 0.5, we take 

coo = 2 in (4.21). Figure 5.12 shows a Bode plot of I L(jw)J<I A(jw)W2(jv) I1. 

Applying the ILC law as shown in (5.28), the system converges to fixed point with 
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e, # 0, as is determined by (5.12). For the specific values of all operators in this 

example, we have 

R(s) =  s2 (s - 2.828)(s + 2.828)(s2 + 0.5s + 0.5)  

(s + 2.436)(s + 1.125)(s + 5.68)(s2 — 4. 134s + 4.438)(s2 + 1.074s + 0.6581) 

(5.39) 

Taking partial fraction expansion of (5.39) gives 

0.5994 1.0554 —0.08s+O.1143 0.5352s-2.137  
R(s)=1+ + + 

s+2.436 s-1.125 s2 +1.074s+O.6582 s2 — 4.134s+4.438 (5.40) 

Using two-sided Laplace transform, in the time domain R can be written as 

r(t) = 8(t) + 0.5994e 2436' - 1.0554e''25' - 0.08e °537' cos(0.608 it) 

+ 0.2586C-1.1171 sin(0.6081t) + [0.5352e 2°67' cos(0.4068t) - 2.5338e 2°67' sin(0.4068t)]h(—t) 

(5.41) 

Convoluting of r(t) and Yd (t) gives ear, as shown in Figure 5.13. 
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Simulation of Case 2 with F=L and a1fa0.5 
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Figure 5.13: Simulation of Case 2 with F = L and a = 0.5 

5.2.3 Case 3: Multiplication of Plant by Low-pass Filter 

5.2.3.1 Range of Cut-off Frequency for Convergence to Zero Error 

10 12 14 

The third possible uncertainty is brought into plant by F1 in the form of 

P=PoPl, 

where 

Fo =  
+s +0.5  

1 

and 

(5.42) 

(5.43) 
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P1 
- 1 - a),, 

S+a),, 

The uncertainty can be written as 

S 

011 = — s 

PO ± 1 S+wit 

So 

I t( jcv)W2 (jcv) 1=1  CO  1<1, 
+ a),,2 

for all cv,, # 0. 

(5.44) 

(5.45) 

(5.46) 

5.2.3.2 Simulation Result 

With a),, =5 as an example, the Bode plot for LW2 is as shown in Figure 5.14. Applying 

(5.27), and (4.21) with a)0 = 10, the system converges to e c,, = 0 very quickly, as shown 

in Figure 5.15. 
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5.3 Summary 

In this chapter, we discussed robust convergence condition of noncausal ILC. 

Lemma 3 states that if F = 1 and I W2 (jco) I< 1, the system is convergent and the ultimate 

tracking error will be e,, = 0. Lemma 4 shows that if I W (jw) I> 1, we need to choose 

F = L and I L(jc)) 1<1 W2 (ja) I'to make the system converge, and the ultimate tracking 

error will be e =  1 L Yd Lemma 3 and Lemma 4 are applicable to a process of 
l+LAW2 

any order and any relative degree. To verify Lemma 3 and Lemma 4, we selected three 

possible uncertainties that may exist in the plant and simulated them. Table 5.F gives an 

outline of the results. For Case 3, the situation of I W2 (ja') I> 1 does not occur. From 

Table 5. 1, we can see that in all three cases simulation results obey Lemmas 3 and 4. 

Table 5.1: Verification Results of Lemma 3 and Lemma 4 

Verification of 

Lemma 

Robust Condition Perturbation Simulation Results 

Lemma 3 

(F=1e0,=O) 

I W2 (ja) <1 

Gain Convergent 

(Fig. 5.3) 

Coefficient of 

first order item 

in denominator 

of  

Convergent 

(Fig. 5.9) 
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Adding a low- 

pass filter 

Convergent 

(Fig. 5.15) 

I W (jv) 1>1 

Gain Divergent 

(Fig. 5.5) 

Coefficient of 

first order item 

in denominator 

of  

Divergent 

(Fig. 5.11) 

Lemma 4 

(F = L # 1 

•O) 

I W2 (jc)) 1>1, but 

I L(jo.') 1<1 W(jco) I-' 

Gain Convergent 

(Fig. 5.7) 

Coefficient of 

first order item 

in denominator 

of  

Convergent 

(Fig. 5.13) 
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Chapter 6 

Summary and Conclusions 

6.1 Summary 

This thesis reviewed some recent theoretical results in ILC and validated them via 

simulation and experiment. These results are namely the equivalence of causal ILC and 

feedback control, the limitations of causal ILC when zero tracking error is required, and 

the improvement in performance and robustness provided by noncausal ILC. 

Since ILC was proposed in the 1980's, most ILC algorithms and designs have been 

based on causal operators. Recent research shows that causal ILC cannot achieve zero 

ultimate error for processes that are NMP or have relative degree greater than one and 

that there exists an equivalent feedback control for any causal ILC [8]. The experiments 

and simulations presented in Chapter 3 demonstrate these performance limitations of 

causal ILC and validate this equivalence result. 

The results in Chapter 3 tell us that there is no reason to use causal ILC since 

equivalent feedback control can achieve the same ultimate tracking error without 

iterations. To improve causal ILC, a noncausal ILC design is proposed in [29] which 

guarantees that the convergence condition I H(ja) j< 1 is satisfied for LTI systems of 

any relative degree, including NMP plants. In Chapter 4, simulations and experiments on 

a DC motor ( with relative degree of 2) and a Ball and Beam system (with relative degree 

of 4) validate the feedback equivalence result for higher relative degree processes and 
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demonstrate that noncausal ILC can achieve zero ultimate error for such systems with 

relative degree greater than one. 

In Chapter 5, we investigated the robustness of this noncausal ILC design. Lemma 3 

states that if I W2 (ja) 1<1, the ILC system converges robustly to e., = 0, while Lemma 4 

states that if I W2 (jw) 1>1 and j L(jo) 1<1 W (jv) ', the system converges robustly 

to e =  1— L  y,. These lemmas were validated via simulation for three different 
1+LW2 

perturbations in the system model. 

6.2 Conclusions 

Based on our analysis, simulation and experimental verification, we can conclude 

the following points regarding ILC: 

o Causal ILC has limitations for NMP processes and those plants with relative 

degree greater than one. Zero ultimate tracking error is unachievable for these 

processes. If the system converges, e, # 0. 

o An Equivalent Feedback Control exists for any causal LII ILC algorithm. This 

equivalent feedback control design depends only on the causal operators in the 

causal ILC algorithm or design. No more information is required. This equivalent 

feedback control can achieve the same tracking accuracy of causal ILC in just one 

trial. 

o Causal ILC has no advantages over feedback control because equivalent 

feedback control can achieve the same accuracy as causal ILC without iteration 

while the causal ILC may need a large number of trials to achieve this accuracy. 
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o Noncausal ILC can improve on causal ILC. Even if a plant's relative degree is 

greater than one and/or it is an unstable NMP plant, noncausal ILC can converge 

to zero tracking error. A significant improvement in tracking performance occurs 

when tracking a higher frequency trajectory, since the phase delay is drastically 

reduced (ideally, to zero). 

o Noncausal ILC has very good robustness properties. When I W2 (ja)) 1<1, the 

system is convergent and ultimate tracking error is e, = 0, even if the system is 

of higher relative degree or NMP. If I W2 (jco) 1>1, we only need to select F = L 

and I L(jw) 1<1 W (jco) ' to make the system convergent, and the ultimate 

tracking error is e. = 1-L  
1 + LLW2 Yd 

o Our theoretical results are obtained in the frequency domain with an infinite 

frequency interval, while our simulations and experiments are implemented in the 

time domain with a truncated time interval. So the simulation and experimental 

results are the approximation of the theoretical results. 

o Simulation results are slightly different from their corresponding experimental 

results because the mathematical models we applied in simulations are 

approximations to the real systems. Uncertainty in the real systems also affects 

the experimental results. 

o Since it is difficult in practice to maintain constant initial conditions, even if 

feedback control is applied, an extra error may be brought into the system 

performance in practice. 



91 

6.3 Recommendations for Future Work 

To continue this research in future, some recommendations are given as follows: 

u The value of LV0 in the filter L is an important factor that influences the 

convergence of noncausal ILC and the value of e. It would be useful to develop 

a design approach for calculating values of w for optimal performance. 

o An experiment on an NMP plant, such as inverted pendulum, to validate the 

effectiveness of noncausal ILC on a real NMP system. 

o An experimental investigation of the robustness of noncausal ILC. 

o An investigation of the truncation effects that occur from implementing an ILC 

designed in the frequency domain on a finite time interval. 

o An investigation of the influence of varying initial conditions on noncausal ILC, 

and the development of a solution to this problem. 
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Appendix A 

Al: Code of Experiments on Real Systems (Including GUI) 

function varargout = moto_noncau(varargin) 

% MOTONONCAU Application M-file for moto_noncau.fig 
% FIG = MOTO_NONCAU launh moto_noncau GUI. 
% MOTO_NONCAU('callback_name', ...) invoke the named callback. 
% THIS CODE IS FOR DC MOTOR EXPERIMENTS. 

if nargin == 0 % LAUNCH GUI 
fig = openfig(mfilename,'reuse'); 
% Use system color scheme for figure: 
set(fig,'Color',get(O,'defaultUicontrolBackgroundColor')); 
% Generate a structure of handles to pass to callbacks, and store it. 
handles = guihandles(fig); 
guidata(fig, handles); 
if nargout> 0 

varargout( 1) = fig; 
end 

elseifischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK 
try 

if (nargout) 
[varargout{ 1:nargout}] = feval(varargin{:)); % FEVAL switchyard 

else 
feval(varargin{:}); % FEVAL switchyard 

end 
catch 

disp(lasterr); 
end 

end 

% 
ABOUT CALLBACKS: 
GUIDE automatically appends subfunction prototypes to this file, and 
sets objects' callback properties to call them through the FEVAL 
switchyard above. This comment describes that mechanism. 

Each callback subfunction declaration has the following form: 
<SUBFIJNCTION_NAME>(H, EVENTDATA, HANDLES, VARARGIN) 

The subfunction name is composed using the object's Tag and the 
callback type separated by'', e.g. 's1ider2_Callback', 
'figurel_CloseRequestFcn', 'axisl_ButtondownFcn'. 

% 
% 

H is the callback object's handle (obtained using GCBO). 

EVENTDATA is empty, but reserved for future use. 

HANDLES is a structure containing handles of components in GUI using 
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% 
% 

tags as fleidnames, e.g. handles.figurel, handles.s1ider2. This 
structure is created at GUI startup using GUIHANDLES and stored in 
the figure's application data using GUIDATA. A copy of the structure 
is passed to each callback. You can store additional information in 
this structure at GUI startup, and you can change the structure 
during callbacks. Call guidata(h, handles) after changing your 
copy to replace the stored original so that subsequent callbacks see 
the updates. Type "help guihandles" and "help guidata" for more 
information. 

VARARGIN contains any extra arguments you have passed to the 
callback. Specify the extra arguments by editing the callback 
property in the inspector. By default, GUIDE sets the property to: 
<MFJLENAME>('<SUBFUNCTION_NAME>', gcbo, [] guidata(gcbo)) 
Add any extra arguments after the last argument, before the final 
closing parenthesis. 

%  
function varargout = figure 1_CreateFcn(h, eventdata, handles, varargin) 

wq_run; % run WinCon Server 

%  
function varargout = figurel_CloseRequestFcn(h, eventdata, handles, varargin) 

closereq; % close the GUI 

%  
function varargout = startstop_Callback(h, eventdata, handles, varargin) 

if get(handles.startstop,'Value') % button pressed down 
set(handles.startstop,'BackgroundColor',[ 1 0 0]); 
set(handles.startstop,'String','STOP'); 

wc_start; 
else 

wc_stop; 
set(handles.startstop,'BackgroundColor',[O 0.9 0]); 
set(handles.startstop,'String','START'); 
wc_saveplot('Scope - mo noncau\Scopel', 'error.mat');%previous error. 
wc_saveplot('Scope - mo_noncau\Scope3', 'uO.mat'); %uO is previous input. 
load error.mat; 
load u0.mat; % load it to workspace??? 
short_ time=find(plot_time<=6.000 1); 
error=mo_noncau_Scope 1(1:length(short_time)); 
uO=mo_noncau_Scope3(1:length(short_time)); 

%computer learning operator D=L*P0l. 

k=1; 
AK-0=1; 
n=length(short_time); 
T=plot_time(1:n); 
t=T'; 
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dtt(2)-t(l); 

%The following lines are the calculation of D=L*POJ\_1, where L is a noncausal operator. 
%This is noncausal convergence case, where F=l, D is noncausal and e_inf=O. 
D=learn(k,w_O,n); 
du=dt*conv(D,error); 
du=du(n:2*nl); 

%These following lines are the calculation of D=L*POI\_1,where L is a cuasal operator. 
%This is cuasal divergence case, where F=l and D is causal. 

%d00.08; 
%D2=2.3467*exp(_2*t) - 5.0 133*prod([t;exp(_2*t)], 1); %causal D=L*(PO./ 1) 

%du=dt*conv(D2?,error); 

%dudu(l:n); 
%du=do*error+du; 

%These following lines are the calculation of D=L*PO_1,where L is a cuasal operator. 
%This is cuasal convergence case, where F=L and D is causal and e_inf is non-zero. 

%d0=O.08; 
%D2=2.3467*exp(_2*t) - 5.0 133*prod([t;exp(_2*t)], 1); %causal D=F(PO.t'-l) 

%dudt*conv(D2',error); 
%du=du(l:n);%du is n*1 vector 
%du=do*error+du; 
%F=L=4*prod([t;exp(_2*t)],1); 
%ui=dt*conv(F',uO); 

%ui=ui(l:n); 

newsig=uO+du'; % This law is for noncausal ILC, where F=1 and D is noncausal. ui=uO+D*ei. 

%newsig=uO+du'; % This law is for causal divergence case, where F=l and D is causal. ui=uO+D*ei. 

%newsig=ui+du; % This law is for causal convergence case, where F=L and D is causal. ui=F*uO+D*ei. 

newsig2=newsig; 
plot2=plot_time(I : length(short_time)); 
strp2num2str(p10t2'); 
strsig2=num2str(newsig2'); 
setjaram('mo_noncau/Repeating Sequence', 'rep_seqj, ['[' ,strp2, TJT] 'rep_seqy', ['[' 

,strsig2, 'I']); 

end 

%THE FOLLOWING CODE IS FOR THE EXPERIMENTS OF BALL AND BEAM SYSTEM 
%if get(handles.startstop,'Value') % button pressed down 
% set(handles.startstop,'BackgroundColor',[l 0 0]); 
%set(handles.startstop,'String','STOP'); 
%wc_start; 

%else 
%wc stop; 
%set(handles.startstop,'BackgroundColor',[O 0.9 0]); 
%set(handles.startstop,'String','START'); 
%wcsaveplot('Scope - mo_noncau\Scopel', 'error.mat');%previous error. 
%wc_saveplot(tScope - mo_noncau\Scope3', 'uO.mat'); %uO is previous input. 
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%load error.mat; 
%load uO.mat; % load it to workspace. 
%short_time=find(plot_time<=20.000 1);% find the number of sample points. 
%n=length(short_time); 
%m=floor(0.5*n); 

%error=mo_noncau_Scope 1((m+1):2*m); 
%uo=mo_noncau_Scope3((m+1):2*m); 
%w_0=0.005; 

%T=plottime(1:m); 
%tT'; 
%dtt(2)-t(1); 

%The following 4 lines are the calculation of D=L*P0/1 for noncausal ILC, where L is a noncausal 
operator. 
%This is noncausal convergence case, where F=1, D is noncausal and e_inf=0. 
%Dc=w_O/4* [_359990O00*exp(w_0*t) + 1820000*prod([t;exp(w_0*t)], 1)]; %causal,wO=0.005 

%Da=w_0.4* [359990O0O*exp(w_O*t) + 1780000*prod([t;exp(w_0*t)], 1)] ; %anticausal,wO=0.005 
%D=[la(m:-1 :2),lc]; %reverse and concatenate Da and Dc; D=L*POt_1 
%dO=wot4; % constant item of D 
%du=dt*conv(D,error); 
%du=du(m :2*m 1); 

%These following lines are the calculation ofD=L*P0'_1 for causal ILC,where L is a cuasal operator. 
%This is cuasal divergence case, where F=1 and D is causal. 

%d016/20.6; 
%D1=tf([28 111 82],[1 6 128]); 
%D=dO*D1; 
%d = dt*impulse(D,t); 
%dudt*conv(d,error); 

%du=du(1:m); % for causal 

%These following lines are the calculation of D=L*PO_1 for causal ILC,where L is a cuasal operator. 
%This is cuasal convergence case, where F=L and D is causal. 

%do=16/20.6; 
%DI=tf([28 111 82],[1 6128]); 
%D=do*D 1; 

%F=Ltf([1], [0.0625 0.5000 1.5000 2.0000 1.0000]); 
%d = dt*impulse(D,t); 
%fdt*im pulse(F,t); 
%du=dt*conv(d,error); 

%du=du(1:m); % for causal 
%dfdt*conv(f,u0); 

%df=df(1 :m); 

%new sig=uO+DO*error+du'; % This law is for noncausal convergence case, where F=L and D is 

% noncausal. uiu0+D*ei. 

%newsig=uo+DO*error+dut; % This law is for causal divergence case, where F=1 and D is causal. 
% ui=uO+D*ei. 

%newsig=df+do*error+du; %This law is for causal convergence case, where F=L and D is causal. 
% uiF*u0+D*ei. 
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% newsig2 = [0*t, newsig']; % newsig2 is n dimention. 
%p10t2=plottime(1 :2*m); 

%strp2=num2str(p1ot2'); 
%strsig2=num2str(newsig2); 
%set_param('mo_noncau/Repeating Sequence', 'rep_seq_t', ['[' ,strp2, '}'}, 'rep_seqy', [ t[t 

%,strsig2, ']'}); 

%end 

guidata(h,handles); 

% 
function D=learn(k,w_0,n) 

%Apply learning operator L to inoput x. 
%Inverse nominal C.L. plat P=1/(s"2 + s + k) 
% and applies real 4th-order filter with bandwith=w_0. 
%sample time dt assumed. 

dt--.01; % sample time 
t_max=(n1)*dt;%max time 
t=0:dt:t_max; 

%coefficients of l(t)=impulse response of L: 

c.25*w_O*(kw_Ot2); 
cc=.25 *WOA2*(WOA2..wO+k); 

ca--O.25 *wOA2*(wOA2+wO+k); 
lc=c*exp(_w_0*t) + cc*prod([t;exp(_w_0*t)], 1); %causal 
la=c*exp(_w_O*t) + ca*prod([t;exp(_w_0*t)], 1); %anticausal 

D=[la(n:-1 :2),lc]; %reverse and concatenate Ia and Ic 

%  
function F = fi1ter4(w_0,n) 

% Impulse response of real 4th order filter. 
% Sample time dt assumed. 
dt= .01; % sample time 
t_max = (n 1)*dt; % max time 
t = 0:dt:t_max; % time vector 
fc .25*w_0*exp(_w_0*t) + .25*w_0t2*(t.*exp(_w_0*t)); % causal part 

F = dt*[fc(n:_1 :2), fc]; %reverse and concatenate to add noncausal part 

%  
function varargout = checkbox_F_Callback(h, eventdata, handles, varargin) 

if get(handles.checkbox_F,'Value') % checked 
set(handles.F_num,'Enable','On'); 
set(handles.Fden,'Enable','On'); 

else 
set(handles.checkbox_F,'String','O'); 
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set(handles.F_num,tEnable','Off); 
set(handles.F_den,'Enable','Off); 

end 

guidata(h,handles); 

%  
function varargout = F_numCallback(h, eventdata, handles, varargin) 

NewNum = get(handles.F_num,'String'); 
if check(NewNum) 
F_numer=NewNum; 

else 
set(handles.F_num,'String','Ot); 

end 

guidata(h,handles); 

% 
function varargout = F_den_Callback(h, eventdata, handles, varargin) 

NewDen = get(handles.F_den,'String'); 
if check(NewDen) 
F_deno=NewNum; 

else 

set(handles.F_den,'String',tO'); 
end 

guidata(h,handles); 

%  
function varargout = checkbox_C_Callback(h, eventdata, handles, varargin) 

if get(handles.checkbox C,'Value') % checked 
set(handles.C_num,'Enable','0n5; 
set(handles.C_den,'Enable','On'); 

else 
set(handles.checkbox_C,'String','O'); 
set(handles.Cnum,'Enabl&,'Off); 
set(handles.C__den,'Enable','Off); 

end 

guidata(h,handles); 

%  
function varargout = C_numCallback(h, eventdata, handles, varargin) 

NewNum = get(handles.C_num,'String'); 
if check(NewNum) 
Cnumer=NewNum; 
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else 
set(handles.C_num,'String','O'); 

end 

guidata(h,handles); 

%  
function varargout = C_denCallback(h, eventdata, handles, varargin) 

NewDen = get(handles.C_den,'String1); 
if check(NewDen) 
Cdeno=NewNum; 

else 
set(handles.C_den,'String','O'); 

end 

guidata(h,handles); 

%  
function varargout = checkbox_D_Callback(h, eventdata, handles, varargin) 

if get(handles.checkbox_D,'Value') % checked 
set(handles.D_num,'Enable','On'); 
set(handles.D_den,'Enable','On'); 

else 
set(handles.checkbox_ID,'String','Ot); 
set(handles.D_num,'Enable','Off); 
set(handles.D_den,'Enable','Off); 

end 

guidata(h,handles); 

%  
function varargout = D_num_Callback(h, eventdata, handles, varargin) 

NewNum = get(handles.D_num,'String'); 
if check(NewNum) 
Dnumer=NewNum; 

else 
set(handles.D_num,'String','O'); 

end 

guidata(h,handles); 

%  
function varargout = D_den_Callback(h, eventdata, handles, varargin) 

NewDen = get(handles.D_den,'String'); 
if check(NewDen) 
D_deno=NewNum; 

else 
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set(handles.Dden,'String', 1 IØI\. 

end 

guidata(h,handles); 

%  
function varargout = checkbox_I_Callback(h, eventdata, handles, varargin) 

if get(handles.checkbox_I,'Value') % checked 
set(handles.Value_I,'Enable','On'); 
set(handles.slider_I,'Enable','On'); 

else 
set(handles.checkboxl,'String','O'); 
set(handles.Value_I,'Enable','Off); 
set(handles.slider_I,'Enable','Off); 

end 

guidata(h,handles); 

%  
function varargout = Value_I_Callback(h, eventdata, handles, varargin) 

NewStrVal = get(handles.Value_I,'String'); 
Max = get(handles.slider_I,'Max'); 
Mm = get(handles.sliderl,'Min'); 
NewVal = str2double(NewStrVal); 

if isnan(NewVal) 
Old,Va1 = get(handles.slider_I,'Value'); 
set(handles.Value_I,'String',num2str(OIdVal)); 
return 

elseif (NewVal > Max) 
NewVal = Max; 

elseif (NewVal < Mm) 
NewVal = Mm; 

end 
set(handles.Value_I,'String',num2str(NewVal)); 
set(handles.sliderl,'Value',NewVal);% set I-gain in Simulink model 
setjaram('mo_noncau/PID Controller/K2','Gain',num2str(NewVal)); 

guidata(h,handles); 

%  
function varargout = slider_I_Callback(h, eventdata, handles, varargin) 

NewVal = get(handles.slider_I,'Value'); 
set(handles.Value_I,'String',num2str(NewVal)); % set I-gain in Simulink model 
set_param('mo_noncau/PID Controller/K2','Gain',num2str(NewVal)); 

guidata(h,handles); 
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%  
function varargout = checkbox_Der_Callback(h, eventdata, handles, varargin) 

if get(handles.checkbox_Der,'Value') % checked 
set(handles.Value_Der,'Enable','On'); 
set(handles.slider_Der,'Enable','On'); 

else 
set(handles.checkboxDer,'String','O'); 
set(handles.Value_Der,'Enable','Off); 
set(handles.slider_Der,'Enable','Off); 

end 

guidata(h,handles); 

%  
function varargout = Value_Der_Callback(h, eventdata, handles, varargin) 

NewStrVal = get(handles.Value_Der,'String'); 
Max = get(handles.slider_Der,'Max'); 
Mm = get(handles.slider_Der,'Min'); 
NewVal = str2double(NewStrVal); 
if isnan(NewVal) 

OldVal = get(handles.slider_Der,'Value'); 
set(handles.Value_Der,'String',num2str(OldVal)); 
return 

elseif (NewVal > Max) 
NewVal = Max; 

elseif (NewVal < Mm) 
NewVal = Mm; 

end 
set(handles.Value_Der,'String',num2str(NewVal)); 
set(handles.slider_Der,'Value',NewVal); %set I-gain in Simulink model 
setjaram('mo_noncau/PID Controller/K 1','Gain',num2str(NewVal)); 

guidata(h,handles); 

%  
function varargout = slider_Der_Callback(h, eventdata, handles, varargin) 

NewVal = get(handles.slider_Der,'Value'); 
set(handles.Value_Der,'String',num2str(NewVal));% set I-gain in Simulink model 
setparam('mononcau/PID Controller/K 1 ','Gain',num2str(NewVal)); 

guidata(h,handles); 

% 
function status = check(string) 

% checks if STRING is in default MATLAB notation for numerator or denominator of 
% transfer function. 
% STATUS is 1 if all is well, 0 otherwise. 
status = 1; 
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% check the first and last character that are not whitespace 
n = length(string); 
iO= 1; 
jO=O; 
first = 0; 
last = 0; 
for i= 1:n 

if- first % the first character has not been found yet 
if isspace(string(i)) 

iO = i0 + 1; 
else 

if (string(i) 
status = 0; 
return 

end 
first = 1; % checked first non-whitespace character 

end 
end 
if —last % the last character has not been found yet 

if isspace(string(n+1-i)) 
jO=jO+ 1; 

else 
if (string(n+1-i) - 

status = 0; 
return 

end 
last = 1; % checked last non-whitespace character 

end 
end 
if (first & last) 

break % break out of the FOR loop 
end 

end 

k = 0; % previous character is white space if k = 0 
checkstring = "; % initialise checkstring 
for i = (1+io):(length(string)-j0-l) % check rest of the string 

if isspace(string(i)) 
if k % previous character was not whitespace 

if (isnan(str2double(checkstring)) I isinf(str2double(checkstring))) 
status = 0; 
return 

end 
k=0; 

end 
else 

if k % previous character was not whitespace, add string(i) to checkstring 
checkstring = strcat(checkstring,string(i)); 

else 
checkstring = string(i); 
k=1; 

end 
end 

end 
if (isnan(str2double(checkstring)) I isinf(str2double(checkstring))) 
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status = 0; 
end 

%  
function varargout = Time_edit_Callback(h, eventdata, handles, varargin) 

NewStrVal=get(handles.Time_edit,'String'); 
NewVal=str2double(NewStrVal); 
if isempty(NewVal) I (NewVal<0) 

set(h, 'String', '00'); 
else 
TimeVal=NewVal; 
setjaram('mo_noncau/Constant','value',num2str(TimeVal)); 

end 

guidata(h,handles); 

%  
function varargout = Numberedit_Callback(h, eventdata, handles, varargin) 

NSVal_n=get(handies.Number_edit,'String'); 
NVal_n=str2num(NSVal_n); 
if isempty(NVal_n)I(NVal_n<0) 

set(handles.Number_edit, 'String', '00'); 
else 
NumValNVaLn; 

end 

guidata(h,handles); 

%  
function varargout = Initialise_Callback(h, eventdata, handles, varargin) 

if (exist('mo_noncau','file')-4) 
errordlg('The Simulink model cannot be found.',... 

'Error opening "mo_noncau.mdl",'modal'); 
return 

else 
open_system('mo_noncau.mdl'); 
if (exist('mo_noncau.wcl','file')-=2) 

wc_build('mo_noncau'); 
else 

wcdownload('mononcau'); 
end 
wc_openplot('mo_noncau'); 

end 

set(handles.startstop,'Enable','on'); 
set(handles.Time_edit,'Enable','on'); 
set(handles.Number_edit,'Enable','on'); 
set(handles.checkbox_I,'Enable','on'); 
checkbox_I_Callback(h, eventdata, handles, varargin); 
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set(handles.checkbox_Der,'Enable','on'); 

checkbox_D er _Callback(h, eventdata, handles, varargin); 
set(handles.checkbox_F,'Enable','on'); 
checkboxFCallback(h, eventdata, handles, varargin); 
set(handles.checkbox_C,'Enable','on'); 
checkboxCCallback(h, eventdata, handles, varargin); 
set(handles.checkbox_D,'Enable','on'); 
checkbox_D_Callback(h, eventdata, handles, varargin); 
set(handles.popupmenu2,'Enable','on'); 
popupmenu2_Callback(h, eventdata, handles, varargin); 
guidata(h,handles); 

%  
function varargout = popupmenu2 Callback(h, eventdata, handles, varargin) 

NewVal = get(handles.popupmenu2,'Value'); 
switch NewVal 
case I 

set_param('mo_noncau/G 1 ','gain',' 1'); 
set_param('mo_noncau/G2','gain','0'); 

case 2 
set_,param('mo_noncau/G2','gain',' 1 '); 
setjaram('mo_noncau/G 1','gain','O'); 

end 

guidata(h,handles); 

A.2: Code of Figure 3.4 

%Figure 3.4 is produces by this code. 
clear; 
P=tf([I - 1],[1 2 1]); 
Yd=tf([l], [1 2 1]); 
dt=0.01; 
tP=0:dt:20; 
pimpulse(P,tl); 
yd=impulse(Yd,tl); 
u=exp(tl); 
y = dt*conv(p,u); %y = Pu 

y((length(tl)+1):length(y)) = []; % right truncate 
plot(tl,yd,tl,y), grid on; 

A3: Code of Figure 3.5 

% Figure 3.5: ILC in time domain: P=1/s+1, 0=0, D=1, F=1 
clear 
dt = .01; % time interval 
t=0:dt:pi; 
yd=1+sin(0. 1*tpi/2); 

p = exp(-t); 
Ui = o*t; %initial input 
ei = yd; %initial error 
for i = 1:20, %ILC iterations 
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ui = Ui + ei; 
y = dt*conv(p,ui); %y = Pu 

y((lengtht+1):length(y)) = [1; % right truncate 
yi(i,:)=y; 
ei = yd - y; 
u(i,:) = Ui; 
e(i,:) = ei; 

end 
plot(t,yi([l 2 5 10 20],:));grid on 

A4: Code of Figure 3.6 

%This code produces Figure 3.6 
%P=1/(s+1)'2 
clear; 
D=0; 
n=50; 
m=30; 

for k=1:m 
u(1,k)0; 
t(k)=k*0. I; 

e(1,k)=0; 
y_d(k)=0.5+0.5*sin(0. 1*k_pi/2); 

P(k)=exp(-t(k));% P=1/(s+1) 
C(k)=1; 
F(k)=1; 

end 

for i=1:n 
for k=1:m 

y(i,k)=P(k)*u(i,k); 

e(i+ 1,k)=y d(k)-y(i,k); % add i in the first colonm 

u(i+1,k)=F(k)*u(i,k)+C(k)*e(i+1,k)+D*e(i,k); % e(i+ 1,k)is current error. 

end 
end 

% Equivalent Feedback control 
for k=1:m 
q=5000; % q is a gain constant 
K(k)=C(k)+q(C(k)+D); 
G(k)=1+P(k)*K(k); 

M(k)='G(k)."(-l); 
E(k)M(k)*y_d(k); 
U(k)=K(k)*E(k); 
Y(k)=P(k)*U(k); 

end 

plot(t,y_d,t,y(10,:),t,Y),grid on; 
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A5: Code of Figure 3.7 

% Figure IT DC motor model:G=1.5/s(0.03s+1) 
% D=F(P)!'-1, F=l/(0.5s+l)/'2. 
clear 
t_s = 0; % start of stroke (end of backswing) 
t_f= 5; % end of stroke (start of follow through) 
tmax = 6; % end of trial 
dt = .01; % sample time 
n = t_maxldt+1; % number of samples in e and u 
t = 0:dt:t max; % time vector 
yd = .5_.5*cos(pi/(t_f_t.$)*(dt:dt:(t_f_t_s))); 

yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru ts 
yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd 1 from t = t_f to t_max 
ui = o*t; %initial input 
ei = yd; %initial error 
ei_1=yd; 

for k=1:n 

t(k)=(k_1)*0.01; 

p(k)1.5_1.5*exp(_33.33*t(k)); % P=1.5/s(0.03s+1); 

D2(k)=2.3467*exp(2*t(k)) - 5.0133*t(k)*exp(_2*t(k)); % DF(P0.'- I) 

end 

C=0.0005; 
DI=0.08; 
F=1; 

%i=1 
du = dt*conv(D2,eil); 

du((length(t)+l):length(du)) = [1; % right truncate 
ui=ui+D1*ei_1+C*ei+du; % ILC control law 
y = dt*conv(p,ui); %y = Pu 

y((length(t)+1):length(y)) = [1; % right truncate 
ei = yd - y; 

u(l,:) = ui; 
e(1,:)=ei; 

%i=2 
du = dt*conv(D2,ei_I); 

du((length(t)+l):length(du)) = [1; % right truncate 
ui=ui+D 1*ei_1+C*e(l,:)+du;% ILC control law 
y = dt*conv(p,ui); %y = Pu 

y((Iength(t)+1):length(y)) = [1; % right truncate 
ei = yd - y; 
Y(2,:)=y; 
u(2,:) = ui; 
e(2,:) = ei; 

for i = 3:50, %ILC iterations 
du = dt*conv(D2,e(i2,:)); 
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du((length(t)+1):length(du)) = []; % right truncate 
ui=ui+D 1*e(i_2,:)+C*e(i_ 1,:)+du;% ILC control law 
y = dt*conv(p,ui); %y = Pu 

y((length(t)+1):Iength(y)) = [1; % right truncate 
ei = yd - y; 
Y(i,:)=y; 
u(i,:) = ui; 
e(i,:) = ei; 

end 

plot(t,yd,t,Y([10 20 30],:));grid on 

A6: Code of Figure 3.9 

% This code produces Figure 3.9: DC motor model:G=1.5/s(O.03s+1) 
% D=F(P)/-1, F=1/(.5s+1).'2, 
clear 
t_s = 0; % start of stroke (end of backswing) 
t_f = 5; % end of stroke (start of follow through) 
t_max = 6; % end of trial 
dt = .01; % sample time 
n = t max/dt+1; % number of samples in e and u 
t = 0:dt:t_max; % time vector 
yd = .5..5*cos(pi/(t_f_t_s)*(dt:dt:(t_f_t_s))); 

yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru t_s 
yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd = I from t = t_f to t_max 
ui = 0*t; %initial input 
ei = yd; %initial error 
ei_1=yd; 

for k=l:n 
t(k)=(k_1)*0.01; 

p(k)=1.5-1 .5*exp(_33 .33*t(k)); % P=1.5/s(0.03s+l); 
F(k)=4*t(k)*exp(_2*t(k));%F=1/((0.5*s+1)/2); 

D2(k)=2.3467*exp(2*t(k)) - 5.0133 *t(k)*exp(2*t(k)); % D=F(PO.t'-1) 

end 

C=0.0005; 
D1=0.08; 

%i=1 
ui = dt*conv(F,ui) + dt*conv(D2,ei_1); 

ui((length(t)+1):length(ui)) = []; % right truncate 
ui=ui+DI*ei_1+C*ei;% ILC control law 
y = dt*conv(p,ui); %y = Pu 

y((length(t)+1):length(y)) = [1; % right truncate 
ei = yd - y; 
Y(1,:)=y; 
u(1,:) = ui; 
e(1,:) = ei; 

%i=2 
ui = dt*conv(F,ui) + dt*conv(D2,ei_1); 

ui((length(t)+I):length(ui)) = []; % right truncate 
ui=ui+D I *ej I+C*e(I,:);% ILC control law 
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y = dt*conv(p,ui); %y = Pu 

y((length(t)+1):length(y)) = [1; % right truncate 
ei = yd - y; 

u(2,:) = ui; 
e(2,:) = ei; 

for i = 3:50, %ILC iterations 
ui = dt*conv(F,ui) + dt*conv(D2,e(i2,:)); 

ui((length(t)+1):length(ui)) = []; % right truncate 
ui=ui+D 1*e(i_2,:)+C*e(i_ 1,:);% ILC control law 
y = dt*conv(p,ui); %y = Pu 
y((length(t)+1):length(y)) = [1; % right truncate 
ei=yd - y; 

u(i,:) = ui; 
e(i,:) = ei; 

end 
plot(t,yd,t,Y({ 10 15 20 30 35},:));grid on 

A7: Code of Figure 3.11 

% This code produces Figure 3.11: DC motor model:P=1.5/s(0.03s+1) 
% D=F(P)/-1, F=1/(.5s+1)/Q, 
clear; 
% It is assumed that all time markers divide evenly by dt: 
t_s = 0; % start of stroke (end of backswing) 
tf = 19; % end of stroke (start of follow through) 
t_max = 20; % end of trial 
dt = .01; % sample time 
n = t_max/dt+1; % number of samples in e and u 
t = 0:dt:t_max; % time vector 
yd = .5-.5 *cos(pi/(tf_ts)*(dt:dt:(tf_ts))); 
yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru t_s 

yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd = I from t = t_f to t_max 
P = tf([1.5],[0.03 10]);% Balibeam closed-loop tranfer fuction. 
L=tf([1 ],[0.25 11]); 
F=L; 

1; 
C=1 
K=[(I F)f1]*(C+D); 
M=(I+P*K)I1; 
tsh = dt:dt:t_max+dt; % time shifted forward by dt 
m = dt*impulse(M,tsh); 
e=dt*conv(m ,yd); 

e=e(1 :n); 
y=yd-e; 
plot(t,y,t,yd);grid on 

A8: Code of Figure 4.4 

%This code produces Figure 4.4: Noncausal ILC on NMP plant 
clear; 
P=tf([l - l],[1 2 1]); 
Yd=tf([1], [1 2 1]); 
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dt=0.01; 
t10:dt:20 

for k= 1001:-i: 1 % Initializing 
t2(k)(k1)*0.01 ; 

uO(k)=-exp(t2(k)); 
%u2(k)=-exp(t2(k)); 

end 

for k=1:1001 
u2(k)u0(1001-k+i); 
yd(k)0; 

end 

p(l)=l; 
pl(lOOl)=l; 

for k=2:1001 
t3(k)=(k_1)*0.01 ; 

u2( 1000+k)=0; 
p(k)=.exp(_t3(k))2*t3(k)*exp(_t3(k)); 
p(1000+k)=0; 
yd( 1000+k)=t3(k)*exp(t3(k)); 
pl(1000+k)p(k); 

end 

ui=u2; 

for i = 1:50, %ILC iterations 
y = dt*conv(p,ui); %y = Pu 
y((length(tl)+1):length(y)) = []; % right truncate 
ei = yd - y; 

u(i,:) = Ui; 
e(i,:) = ei; 
ui=ui+0.oi*ei; 

end 

plot(tl,yd,ti ,Y([50],:));grid on 

A9: Code of Figure 4.5 

% This code produces Figure 4.5,where DC motor model: G= i.5/(0.03s'2+s), 
% r = Sy_d, u_i = u_(i-1) + D*e_(i_1), 

% D is composed of P'-1 and a real 4th-order filter F=1/[((s/w0+1)."2)((s/w0-1)."2] 
%with bandwith = w_0. 

clear; 
k = 2; % feedback gain in C.L. plant 
w_0 = 10; % bandwith of learning filter 

% It is assumed that all time markers divide evenly by dt: 
t_s = 0; % start of stroke (end of backswing) 
t_f = 5; % end of stroke (start of follow through) 
tmax = 6; % end of trial 



115 

dt = .01; % sample time 
n = t_max/dt+1; % number of samples in e and n 
t = 0:dt:t max; % time vector 
yd = .5_.5*cos(pi/(t_f_t_s)*(dt:dt:(t_f_t_s))); 

yd = [0*(0:dt:t_s), yd]; % yd = 0 from t =0 thru t_s 
yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd = 1 from t = t_f to t_max 
G=tf([1.5],[0.03 10]); 
S = (1+k*G)r(1); 
P=S*G; 

tsh = dt:dt:t_max+dt; % time shifted forward by dt 
s = dt*impulse(S,tsh); 

p = dt*impulse(P,tsh); 

r = conv(s,yd); %closed-loop reference 
r = r(1:n); % truncate 
ui = 0; % initial input 
ei = r; %initial error 
e(1,:) = ei; % plotting array 
y(1,:)=yd+ei; 
f= fi1ter4(w_0,n); % compute filter used by D 

for i= 2:30, 
du = conv(f,ei); % filter the error 
du = [du(n:2*n_1),zeros(1,nl)]; % truncate and pad with zeros 
du = deconv(du,p); % apply P inverse 
ui = ui + du; % update control input 
yi = conv(p,ui); % y = Pu 
yi = yi(1:n); % truncate 
ei = r - yi; % error 
e(i,:) = ei; % store error for plotting 
y(i,:)=yd+ei; 

end 

plot(t,y);grid on 

A1O: Code of Figure 4.12 

% Apply Causal ILC on BB. F=1, divergent case. 
%Apply a 4-order causal filter on it. 
% u_i = u(i-1) + De(i-1) 
% D is a causal operator. 
% P is changed to have better poles placement. pole=(-30 -3 -2 -1]. 
clear; 
w_0 = 2; 

% It is assumed that all time markers divide evenly by dt: 
t_s = 0; % start of stroke (end of backswing) 
t_f = 19; % end of stroke (start of follow through) 
t_max = 20; % end of trial 
dt= .01; % sample time 
n = t_maxldt+1; % number of samples in e and u 
t = 0:dt:t max; % time vector 
yd = .5_.5*cos(pi/(t_f_t_s)*(dt:dt:(t_f_t_s))); 

yd = [0*(0:dt:t_s), yd]; % yd = 0 from t =0 thru t_s 

yd = [yd, ones(size(t_f+dt:dt:t_max))}; % yd = I from t = t_f to t_max 
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P = tf([20.6],[l 36 191 336 180]);% Ballbeam closed-loop tranfer fuction. 
D=tf([16],[ 18 24 32 16]); 
F=1; 
dO=16/20.6; 
DI=tf([28 111 82],[1 6 12 8]); % a causal operator 
D=do*D1; 

tsh = dt:dt:t max+dt; % time shifted forward by dt 
d = dt*impulse(D,tsh); 
p = dt*im pulse(P,tsh); 

ui = o*t; % initial input 
ei=yd; 
e(1,:) = ei; % plotting array 

for i = 2:200, 
du=dt*conv(d,ei); 
du=du(n:2*n1); 

ui = ui + (dO*ei + du); % update control input: ui=Fu(i-1)+De(i-1). 
yi = conv(p,ui); % y = Pu 
yi = yi(1:n); % truncate 
ei=yd-yi; 
e(i,:) = ei; % store error for plotting 
y(i,:)=yi; 

end 

plot(t,y([ 50 100 150 200],:),t,yd);grid on 

All: Code of Figure 4.14 

% This code produces Figure 4.14, Apply a 4-order causal filter on it. 
% ui = Fu_(i-l) + De_(i-1) 
% Cis composed of P"-1 and a real 4th-order filter L. 
% P is changed to have better poles placement. pole=[-30 -3 -2 - 1]. 
clear; 
% It is assumed that all time markers divide evenly by dt: 
t  = 0; % start of stroke (end of backswing) 
t__f = 19; % end of stroke (start of follow through) 
t_max = 20; % end of trial 
dt = .01; % sample time 
n = t_max/dt+l; % number of samples in e and u 
t = 0:dt:t_max; % time vector 
yd = .5-.5 *cos(pi/(tf_ts)*(dt:dt:(tf_ts))); 
yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru t_s 
yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd = I from t = t_f to tmax 
P = tf([20.6],[1 36 191 336 180]);% Bailbeam closed-loop tranfer fuction. 
L=tf([110],[0.0625 0.5 1.521]); 
F=L; 
D=L*P'1; 

tsh = dt:dt:t_max+dt; % time shifted forward by dt 
d = dt*impulse(D,tsh); 
p = dt*impulse(P,tsh); 
f= dt*impulse(F,tsh); 

ui = o*t; % initial input 
ei=yd; 
e(1,:) = ei; % plotting array 
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for i = 2:20, 

du=dt*conv(d,ei); 

du=du(1:n); 
du 1dt*conv(f,ui); 

du1du1(1:n); 
ui = dul + du; % update control input: ui=Fu(i-1)+De(i-1). 
yi = conv(p,ui); % y = Pu 
yi = yi(1:n); % truncate 
ei=yd-yi; 
e(i,:) = ei; % store error for plotting 
y(i,:)=yi; 

end 

plot(t,y([ 12 3 10 18 20],:),t,yd);grid on 

Al2: Code of Figure 4.17 

% This code produces Figure 4.17. Apply Equivalent Feedback Control on BB. F is not equal to 1. 
clear; 
% It is assumed that all time markers divide evenly by dt: 
t_s = 0; % start of stroke (end of backswing) 
t_f= 19; % end of stroke (start of follow through) 
t_max = 20; % end of trial 
dt= .01; % sample time 
n = t_max/dt+1; % number of samples in e and u 
t = 0:dt:t_max; % time vector 
yd = .5-.5 *cos(pi/(tf_ts)*(dt:dt:(tf_ts))); 
yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru t_s 

yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd = 1 from t = t_f to t_max 
P = tf([20.6],[1 36 191 336 180]);% Balibeam closed-loop tranfer faction. 
L = tf([110 ],[0.0625 0.5 1.5 2 1]); 
F=L; 
D=L*P"1; 

C=0 

M=(l+P*K)I1; 
tsh = dt:dt:t_max+dt; % time shifted forward by dt 
in = dt*impulse(M,tsh); 
e=dt*conv(m ,yd); 

e=e(1 :n); 
y=yd-e; 
plot(t,y,t,yd);grid on 

A13: Code of Figure 4.19 

% This code produces Figure 4.19. Apply Noncausal ILC to BB. 
clear; 
w_0 = 0.01; % bandwith of learning filter. 

% It is assumed that all time markers divide evenly by dt: 
t_s = 0; % start of stroke (end of backswing) 
t_h=10;% half point oft 
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t_f = 19; % end of stroke (start of follow through) 
t_max = 20; % end of trial 
dt = .01; % sample time 
n = t_max/dt+1; % number of samples in e and u 
t 0:dt:t_max; % time vector 
tl=-tmax:dt:tmax; 
ydi = 10_10*cos(pi/(t_f_t_s)*(dt:dt:(t_h_t_s))); 
yd2 = 10_10*cos(pi/(t_f_t_s)*(t_h_t_s)) + 1-1 *cos(10*pi/(tf_t s)*(dt:dt:(th_t s))); 

yd = [0*(0:dt:t_s), ydl, yd2]; % yd = 0 from t = 0 thru t_s 
P = tf([20.6],[1 36 191 336 180]);% Bailbeam closed-loop tranfer fuction. 
tsh = dt:dt:t_max+dt; % time shifted forward by dt 
p = dt*impulse(P,tsh); 

ui = 0; % initial input 
ei=yd; 
e(1,:) = ei; % plotting array 
lc=w_0/4*[_359990000*exp(_w_0*t) + 1820000*prod([t;exp(_w _0*t)], 1)]; %causal,w0=0.005 
la=w0/4* [359990000*exp(_w 0*t) + 1780000*prod([t;exp( w _0*t)], 1)] ; %anticausal,wO=0.005 

L=[la(n:-1:2),lc]; %reverse and concatenate la and ic; L=F*P0_1 
L1=w_0."4; % constant item of L 

for i= 2:100, 
dudt*conv(L,ei); 
du=du(n:2*n1); 
ui = ui + du +L1 *ei; % update control input 
yi = conv(p,ui); % y = Pu 
yi = yi(1:n); % truncate 
eiyd-yi; 
e(i,:) = ei; % store error for plotting 
y(i,:)=yi; 

end 

plot(t,y([ 10 100 200 300 400],:),t,yd),grid on; 

A14: Code of Figure 4.23 

% This code produces Figure 4.23. Tracking a higher frequency signal. 
clear; 
w0 = 0.01; % bandwith of learning filter. 
% It is assumed that all time markers divide evenly by dt: 
t_s = 0; % start of stroke (end of backswing) 
tf = 9; % end of stroke (start of follow through) 
t_max = 10; % end of trial 
dt = .01; % sample time 
n = t_max/dt+1; % number of samples in e and u 
t = 0:dt:t_max; % time vector 
tl=-t_max:dt:tmax; 

yd=5 *sin(2*pi/4.5 *(dt:dt:(tf.t s))); 

yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru t_s 

yd = [yd, 0*ones(size(t_f+dt:dt:t_max))]; % yd = 1 from t = t_f to t_max 
P = tf([20.6],[1 36 191 336 180});% Bailbeam closed-loop tranfer fuction. 
tsh = dt:dt:t_max+dt; % time shifted forward by dt 
p = dt*impulse(P,tsh); 

ui = 0; % initial input 
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ei=yd; 
e(1,:) = ei; % plotting array 
1cw_0/4* [359990000*exp( w 0*t) + 1820000*prod([t;exp(w_0*t)], 1)1; %causal,wO=0.005 
la=w_0.rs4* [359990000*exp(_w _0*t) + 1780000*prod([t;exp(_w _0*t)], 1)] ; %anticausal,w0=0.005 
L=[la(n:-1:2),lc]; %reverse and concatenate la and ic; L=F*P0_1 
Llw_0/4; % constant item of L 

for i = 2:1000, 
dudt*conv(L,ei); 
du du(n:2*n 1); 

ui = ui + du +Ll *ei; % update control input 
yi = conv(p,ui); % y = Pu 
yi = yi(1:n); % truncate 
ei=yd-yi; 
e(i,:) = ei; % store error for plotting 
y(i,:)=yi; 

end 

plot(t,y([ 10 100 1000J,:),t,yd),grid on; 

A15: Code of Figure 5.3 

%Figure 5.3 is produced by this code. 
% u_i = u_(i-1) + De_(i-1) 
% D is composed of P'-1 and a real 4th-order filter with bandwith = w_0. 
clear; 
kO =0.5 ; % feedback gain in C.L. plant 
k = 0.3; % can introduce model error via k_0 neq k; when ko=9, it diverges. 
w_0 = 10; % bandwith of learning filter 

% It is assumed that all time markers divide evenly by dt: 
t  = 2; % start of stroke (end of backswing) 
t__f = 12; % end of stroke (start of follow through) 
t_max = 14; % end of trial 
dt = .01; % sample time 
n = t max/dt+1; % number of samples in e and u 
t = 0:dt:t_max; % time vector 
yd = .5-.5 *cos(pi/(tf..ts)*(dt:dt:(tf_ts))); 

yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru t_s 
yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd = I from t = t_f to t_max 
P=tf([1],[1 1 k]); 
tsh = dt:dt:t_max+dt; % time shifted forward by dt 
s = dt*impulse(S,tsh); 
p = dt*impulse(P,tsh); 

S_0 = (1+k0*G)(1); % model of S 
SO dt*impulse(S,tsh); 
%PO = S0*G; % m odel of P 

P_0=tf([1],[1 I kO]); 
PO = dt*impulse(P_0,tsh); 

W2P/P_0 -1; 
F=tf([I],[1/wO/'4 0 -2/w_0/2 0 1]); 
r = conv(so,yd); %closed-loop reference 
r = r(1:n); % truncate 
ui = 0*t; % initial input 

ei = r; %initial error 
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e(1,:) = ei; % plotting array 
f= fi1ter4(w_O,n); % compute filter used by L 

for i=2:20, 
du = conv(f,ei); % filter the error 
du = [du(n:2*n_1),zeros(1,n_1)]; % truncate and pad with zeros 

du = deconv(du,pO); % apply P_O inverse 
ui = ui + du; % update control input 
yi = conv(p,ui); % y = Pu 
yi = yi(1 :n); % truncate 
ei = r - yi; % error 
e(i,:) = ei; % store error for plotting 

end 

plot(t,e([1 3 5 8 9 1O],:));grid on 

A16: Code of Figure 5.5 

%Figure 5.5 is produced by this code. 
% Apply ILC to C.L. plant e=r-Pu 
% where P= 1/(s"2+s+k), 
% r = Sy_d, 
% u_i = u_(i-1) + De_(i-1) 
Ci s is composed of P'-1 and a real 4th-order filter with bandwith = w_0. 

clear; 
kO =0.5 ; % feedback gain in C.L. plant 
k = 10; % can introduce model error via kO neq k; when k=9, it diverges. 
w_0 = 10; % bandwith of learning filter 

% It is assumed that all time markers divide evenly by dt: 
t_s = 2; % start of stroke (end of backswing) 
t_f = 12; % end of stroke (start of follow through) 
t_max = 14; % end of trial 
dt = .01; % sample time 
n = t_max/dt+1; % number of samples in e and u 
t = 0:dt:t_max; % time vector 
yd = .5_.5*cos(pi/(t_f_t_s)*(dt:dt:(t_f_t_s))); 
yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru t_s 

yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd = 1 from t = t_f to t_max 
Gtf([1],[1 10]); 
S = (1+kG)"(-1); 
P=tf([1],[1 I k]); 
tsh = dt:dt:t_max+dt; % time shifted forward by dt 
s = dt*impulse(S,tsh); 
p = dt*impulse(P,tsh); 

SO = (1+k0*G)\(1); % model of S 
SO = dt*im pulse(S,tsh); 

P_0tf([IL[1 1 kO]); 
PO = dt*impulse(P_0,tsh); 

W2P/P_0 -1; 
F=tf([1],[1/wO."4 0 -2/w_0."2 0 1]); 
r = conv(sO,yd); %closed-loop reference 
r = r(1:n); % truncate 
ui = O*t; % initial input 
ei = r; %initial error 
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e(1,:) = ci; % plotting array 
f= filter4(w_0,n); % compute filter used by L 

for i=2:20, 
du = conv(f,ei); % filter the error 
du = [du(n:2*n 1),zeros(1,n 1)]; % truncate and pad with zeros 

du = deconv(du,pO); % apply P_0 inverse 
ui = ui + du; % update control input 
yi = conv(p,ui); % y = Pu 
yi = yi(1:n); % truncate 
ci = r - yi; % error 
e(i,:) = ci; % store error for plotting 

end 

plot(t,e([1 10 20],:));grid on 

A17: Code of Figure 5.7 

%Figure 5.7 and Figure 5.8 are produced by this code. 
clear; 
kO =0.5 ; % feedback gain in C.L. plant 
k = 3; % can introduce model error via k_0 neq k; when ko=9, it diverges. 
w_0 = 5; % bandwith of learning filter 

% It is assumed that all time markers divide evenly by dt: 
t_s = 2; % start of stroke (end of backswing) 
t_f= 12; % end of stroke (start of follow through) 
t_max = 14; % end of trial 
it = .01; % sample time 
n = t_max/dt+1; % number of samples inc and u 
t = 0:dt:t max; % time vector 
yd = .5_.5*cos(pi/(t_f_t_s)*(dt:dt:(t_f_ts))); 
yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru t_s 

yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd = I from t t_f to t_max 
G=tf([1J,[1 10]); 
S = (1+k*G)\(1); 
P=tf([1],[1 1 k]); 
tsh = dt:dt:t_max+dt; % time shifted forward by dt 
s = dt*impulse(S,tsh); 
p = dt*impulse(P,tsh); 

S_0 = (1+k0*G)i(I); % model of S 
s = dt*impulse(S,tsh); 

P_0=tf([1],[1 1 kO]); 
p0 dt*impulse(P_0,tsh); 

W2=P/P_0 -1; 
F=tf([1],[1/w_0.'4 0 -2/w_0/'2 0 1]); 
R1=(1_F)/(1+F*W2);% R=1 + 3.1168/(s+5.68) - 3.8547/(s-5.591) + 5.1989/(s-4.1 16) - 4.7962/(s+3.771) 

%+ (0.3362s+0. 188 1)/(s"2+1.255s+0.6339). 
ri c3.1I68*exp(_5.68*t) - 4.7962*exp(_3.771*t) + 0.3362*prod([cos(O.49*t);exp(0.6275*t)}, 1) 

- 0.0467*prod([sin(0.49*t);exp(0.6275*t)], 1); %causal,w0=0.005 
rla=_3.8547*exp(_5.59 1*t) + 5.1989*exp(_4. 116*t); %anticausal,w0=0.005 

rl=[rla(n:-1:2),rlc]; %reverse and concatenate la and Ic; LF*P0_1 
e_infconv(r1,yd); 
einf=einf(1:n); 
r = conv(s,yd); %closed-loop reference 
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r = r(1:n); % truncate 
ui = 0*t; % initial input 
ei = r; %initial error 
e(1,:) = ei; % plotting array 
f= fi1ter4(w_0,n); % compute filter used by L 

for i = 2:100, 
du = conv(f,ei); % filter the error 
du = [du(n:2*n_1),zeros(1,n_1)]; % truncate and pad with zeros 

du = deconv(du,po); % apply P_0 inverse 
dui = conv(f,ui); % filter the ui 
dui = dui(n:2*n_1); % truncate 
ui = dui + du; % update control input 
yi = conv(p,ui); % y = Pu 
yi = yi(1:n); % truncate 
ei = r - yi; % error 
e(i,:) = ei; % store error for plotting 

end 

plot(t,e([l 10 18 19 20],:),t,e_inf);grid on 

A18: Code of Figure 5.9 

% Figure 5.9 is produced by this code. 
% Apply ILC to C.L. plant er-Pu 
% where P= l/(s"2+s+k), 
% r = Sy_d, 
% ui = u_(i-1) + De(i-1) 
% D_ is composed of P"-1 and a real 4th-order filter with bandwith = w_0. 
clear; 
k_0=0.5; % feedback gain in C.L. plant 
a = 20; % can introduce model error via a neq 1; 
w_0 = 10; % bandwith of learning filter 

% It is assumed that all time markers divide evenly by dt: 
t  = 2; % start of stroke (end of backswing) 
t__f= 12; % end of stroke (start of follow through) 
t_max = 14; % end of trial 
dt = .01; % sample time 
n = t_maxldt+1; % number of samples in e and u 
t = 0:dt:t_max; % time vector 
yd = .5-.5 *cos(pi/(tf_ts)*(dt:dt:(tf_ts))); 
yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru t_s 

yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd = I from t = t_f to tmax 
G=tf([1],[1 10]); 
P=tf({1],[1 a k_0]); 
tsh = dt:dt:t_max+dt; % time shifted forward by dt 
p = dt*impulse(P,tsh); 

S_0 = (1+k_0*G)f(1); % model of S 
P_0 = SO*G; % model of P 
p_O = dt*impulse(P_0,tsh); 
s_0 = dt*impulse(S_0,tsh) 

W2=P/PO- 1; 
r = conv(s_0,yd); %closed-loop reference 
r = r(1:n); % truncate 
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ui = ON % initial input 
ei = r; %initial error 
e(1,:) = ei; % plotting array 
f= fi1ter4(w_O,n); % compute filter used by L 
for i=2:80, 
du = conv(f,ei); % filter the error 
du = [du(n:2*n_l),zeros(1,n_1)]; % truncate and pad with zeros 
du = deconv(du,p_O); % apply P_0 inverse 
ui = ui + du; % update control input 
yi = conv(p,ui); % y = Pu 
yi = yi(1:n); % truncate 
ei = r - yi; % error 
e(i,:) = ei; % store error for plotting 

end 
plot(t,e([1 78 79 80],:));grid on 

A19: Code of Figure 5.11 

%Figure 5.11 is produced by this code. 
% Apply JLC to C.L. plant e=r-Pu 
% where P= 1/(s'2+s+k), 
% r = Sy_d, 
% ui = u_(i-1) + De_(i-1) 
% D is composed of PA-1 and a real 4th-order filter with bandwith w_0. 
clear; 
kO=0.5; % feedback gain in C.L. plant 
a = -0.5; % can introduce model error via a neq 1; 
w_0 = 2; % bandwith of learning filter 

% It is assumed that all time markers divide evenly by dt: 
t  = 2; % start of stroke (end of backswing) 
t__f = 12; % end of stroke (start of follow through) 
t_max = 14; % end of trial 
dt= .01; % sample time 
n = t_max/dt+ 1; % number of samples in e and u 
t = 0:dt:t_max; % time vector 
yd = .5-.5 *cos(pil(tf_ts)*(dt:dt:(tf..ts))); 
yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru ts 

yd = [yd, ones(size(t,f+dt:dt:t_max))]; % yd = I from t = t_f to t_max 
G = tf([1],[1 10]); 
P=tf([1],[1 a k_0]); 
tsh = dt:dt:t_max+dt; % time shifted forward by dt 
p = dt*impulse(P,tsh); 

S0 = (1+k0*G)/\(1); % model of S 
P_0 = S _ _ _0*G; % model of P 
p0 = dt*impulse(PO,tsh); 
s_0 = dt*impulse(S_0,tsh) 

W2=P/P_0-1; 
F=tf([l],[1/w_0/4 0 -2/w_0.t'2 0 1]); 
r = conv(s_0,yd); %closed-loop reference 
r = r(1:n); % truncate 
ui = 0*t; % initial input 
ei = r; %initial error 
e(1,:) = ei; % plotting array 
f= fi1ter4(w_0,n); % compute filter used by L 
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for i=2:20, 
du = conv(f,ei); % filter the error 
du = [du(n:2*n1),zeros(l,n 1)]; % truncate and pad with zeros 
du = deconv(du,p_0); % apply P0 inverse 
ui = ui + du; % update control input 
yi = conv(p,ui); % y = Pu 
yi = yi(1:n); % truncate 
ei = r - yi; % error 
e(i,:) = ei; % store error for plotting 

end 
plot(t,e([1 18 19 20],:));grid on 

A20: Code of Figure 5.13 

% This code ilc_a.m produces the plots in Case 2. 
% Apply ILC to C.L. plant e=r-Pu 
% where P= 1/(s"2+s+k), 
%r= Sy_d, 
% ui u_(i-1) + Le(i-1) 
% L_i s composed of PA-1 and a real 4th-order filter with bandwith w_0. 
clear; 
k_0=0.5; % feedback gain in C.L. plant 
a = 0.5; % can introduce model error via a neq 1; 
w_0 = 2; % bandwith of learning filter 

% It is assumed that all time markers divide evenly by dt: 
t  = 2; % start of stroke (end of backswing) 
t_f = 12; % end of stroke (start of follow through) 
t_max = 14; % end of trial 
dt = .01; % sample time 
n = t_max/dt+1; % number of samples in e and u 
t 0:dt:t_max; % time vector 
yd = .5-.5 *cos(pi/(tf_ts)*(dt:dt:(tf_ts))); 

yd = [O*(0:dt:ts), yd]; % yd = 0 from t = 0 thru t_s 
yd = [yd, ones(size(t_f+dt:dt:t_max))J; % yd = 1 from t = t_f to t_max 
Gtf([1],[1 10]); 
%S = (1+k*G)/(1); 
%P=S*G; 

P=tf([1],[1 a k_0]); 
tsh = dt:dt:t_max+dt; % time shifted forward by dt 
%s = dt*impulse(S,tsh); 
p = dt*impulse(P,tsh); 

SO = (1+k_0*G)(1); % model of S 
P_0 = S_0*G; % model of P 
p_O = dt*impulse(P_0,tsh); 
s_0 = dt*impulse(S_0,tsh) 
%P = dt*toeplitz([p(1),zeros(1,n_1)},p); % plant matrix for RIGHT multiplication 
W2P/P_0 1; 

F=tf([1],[1/w_0.''4 0 -2/w_0/"2 0 1]); 
R1(1 F)/(1+F*W2); 
ri c=O.5994*exp(_2.436*t) - 1.0554*exp(_ 1.125*t) - O.08*prod([cos(O.608 1*t);exp(O.537*t)], 1) + 

O.2586*prod([sin(O.608 1*t);exp(O.537*t)], 1); %causal,w0'O.005 
ri a=0.5352*prod([cos(O.4068*t);exp(_2.067*t)], 1) - 2.5338*prod([sin(O.4068*t);exp(_2.067*t)], 1); 

%anticausal,wO=O.0O5 
rl=[rla(n:-1:2),rlc]; %reverse and concatenate la and lc; LF*P0_1 
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e_infconv(r1,yd); 
einf=einf(1:n); 
r = conv(s_0,yd); %closed-loop reference 
r = r(1:n); % truncate 
ui = 0*t; % initial input 
ei = r; %initial error 
e(1,:) = ei; % plotting array 
f= filter4(w 0,n); % compute filter used by L 
for i= 2:20, 
du = conv(fei); % filter the error 
du = [du(n:2*n_1),zeros(1,n_1)}; % truncate and pad with zeros 
du = deconv(du,p_O); % apply P_0 inverse 
dui = conv(f,ui); % filter the ui 
dui = dui(n:2*n 1); % truncate 

ui = dui + du; % update control input 
yi = conv(p,ui); % y = Pu 
yi = yi(1:n); % truncate 
ei = r - yi; % error 
e(i,:) = ei; % store error for plotting 

end 
plot(t,e([1 18 19 20],:),t,e_inf);grid on 

A21: Code of Figure 5.15 

% Figure 5.15 is produced by this code. 
% Apply ILC to C.L. plant e=r-Pu 
% where P= 1/(s'2+s+k), 
% r = Sy_d, 
% u_i = u_(M) + De_(i-1) 
% Cis composed of P'-1 and a real 4th-order filter with bandwith = w_0. 
clear; 
kO=0.5; % feedback gain in C.L. plant 
wu=5; % can introduce model error via a neq 1; 
w_0 = 10; % bandwith of learning filter 

% It is assumed that all time markers divide evenly by dt: 
t_s = 2; % start of stroke (end of backswing) 
t_f = 12; % end of stroke (start of follow through) 
tmax = 14; % end of trial 
dt = .01; % sample time 
n = t_max/dt+1; % number of samples in e and u 
t 0:dt:t_max; % time vector 
yd = .5-.5 *cos(pi/(tf_ts)*(dt:dt:(tf_ts))); 
yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru t_s 

yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd = 1 from t = t_f to t_max 
Gtf([1],[1 10]); 
tsh = dt:dt:t_max+dt; % time shifted forward by dt 
S_0 = ( 1+k0*G)f\(1); % model of S 
P_Otf([1],[1 I k_0]); 
P_1=tf([1],[1/wu I]); 
p_O = dt*impulse(P_0,tsh); 
s_0 = dt*impulse(S_0,tsh); 
P=PO*PI; 
p = dt*impulse(P,tsh); 

W2=P/P_0-1; 
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r = conv(s_O,yd); %closed-loop reference 
r = r(1:n); % truncate 
ui = O*t; % initial input 
ei = r; %initial error 
e(1,:) = ei; % plotting array 
f= fi1ter4(w_O,n); % compute filter used by L 

for i=2:8, 
du = conv(f,ei); % filter the error 
du = [du(n:2*n_1),zeros(1,n_1)}; % truncate and pad with zeros 
du = deconv(du,p_O); % apply P_O inverse 
ui = ui + du; % update control input 
yi = conv(p,ui); % y = Pu 
yi = yi(1:n); % truncate 
ei = r - yi; % error 
e(i,:) = ei; % store error for plotting 

end 

plot(t,e([1 6 7 8],:));grid on 

A22: Impulse response of real 4th order filter 

function f= filter4(w_O,n) 
% Impulse response of real 4th order filter. 
% Sample time dt assumed. 
dt = .01; % sample time 
t_max = (n1)*dt; % max time 
t = 0:dt:t_max; % time vector 

fc = .25*w_O*exp(w_O*t) + .25*w_0f2*(t.*exp(w_0*t)); % causal part 
f= dt*[fc(n:_1 :2), fc]; %reverse and concatenate to add noncausal part 


