
UNIVERSITY OF CALGARY

Experimental Investigation of Noncausal Iterative Learning Control

by

Ming Xia

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MECHANICAL AND MANUFACTURING ENGINEERING

CALGARY, ALBERTA

August, 2004

© Ming Xia 2004

11

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled "Experimental Investigation of Noncausal

Iterative Learning Control" submitted by Ming Xia in partial fulfilment of the

requirements of the degree of Master of Science.

k
Dr. Peter B. Goldsmith, Supervisor

Department of Mechanical and Manufacturing Engineering

Dr. Alejandro Ramire

Department of Mechanical and Manufacturing Engineering

Dr. Chris Macnab

Department of Electrical and Computer Engineering

2s oLf

Date U

111

Abstract

In many industrial robot applications, the robot is programmed to do the same task

over and over. Iterative Learning Control (ILC) uses tracking errors from previous trials

to correct the control input, thereby reducing tracking errors caused by plant uncertainty.

Though many ILC algorithms in the literature process the previous error using causal

operators, it was recently proved that the performance of causal ILC is fundamentally

limited to that of conventional feedback control (without iterations). It was also proved

that noncausal ILC improves on both feedback control and causal ILC. In this thesis, we

validate these theoretical results through simulations and experiments. We show that,

unlike causal ILC, noncausal ILC can converge to zero error even if the plant has a

relative degree greater than one. Practical implementation issues, such as unsteady initial

conditions and the truncation of signals in the time domain, are also addressed.

iv

Acknowledgements

I would like to thank Dr. Goldsmith for his guidance, patience, financial support

and understanding throughout the course of my study. I would also like to thank my

family for their understanding, support and encouragement.

I appreciate the help from Mr. Zheng Wang for his knowledgeable suggestions and

opinions. I also appreciate Mr. Chris Regier who helped me to proofread this thesis and

provided me many good suggestions.

V

Dedication

To My Family

vi

Table of Contents

Approval Page ii

Abstract iii

Acknowledgements iv

Dedication v

Table of Contents A

List of Tables viii

List of Figures and Illustrations ix

List of Symbols xii

Chapter 1 1

Introduction 1

1.1 Problem description 1
1.2 Principle of Iterative Learning Control 2
1.3 Literature Review 3

1.3.1 ILC algorithms 3
1.3.2 Algorithms for some specific systems 6
1.3.3 ILC in time domain and frequency domain 7
1.3.4 Convergence and Robust Analysis of ILC 7
1.3.5 Comparison with some similar control paradigms 8
1.3.6 Equivalent Feedback Control and Noncausal ILC 9

1.4 Contributions 9
1.5 Thesis Organization 10

Chapter 2 11

Experiment Setup 11

2.1 The Composition of Experiment Platform 11
2.2 UPM 12
2.3 Data Acquisition Board 12
2.4 DC Motor 13
2.5 WinCon application software 15

2.5.1 WinCon Server 15
2.5.2 WinCon Client 16

2.6 Simulink Model for the Control of a DC Motor 16
2.7 Graphical User Interface for the ILC experiment 17

Chapter 3 19

Causal ILC and Equivalent Feedback Control 19

3.1 Fixed Point 19

vii

3.2 Convergence Condition 21

3.3 Conditions on P for Convergence to e = 0 24

3.4 Causal Signals Convolution 25
3.5 Equivalent Feedback Control 26

3.6 Equivalent Feedback Control in the Case of F = 1 28
3.7 Simulations and Experiments 28

3.7.1 Causal ILC for a Nonminimum Phase Process 28
3.7.2 Zero Ultimate Error 30
3.7.3 Nonzero Ultimate Error 32

3.8 Summary of Causal ILC Results 37
Chapter 4 39

Noncausal ILC 39

4.1 Convolution of Noncausal Signals 39
4.2 A Noncausal Symmetric Low-Pass Filter 40
4.3 Noncausal ILC on a NMP Plant 43
4.4 Noncausal ILC on a DC Motor 44
4.5 ILC on a Higher Order System—Ball and Beam 48

4.5.1 Mathematical Model of Ball and Beam System 48
4.5.2 Stabilization of the Plant 50
4.5.3 Closed-loop Transfer Function 54
4.5.4 Setting Initial Point of the Ball in Iteration 54
4.5.5 Causal ILC on Ball and Beam System 56
4.5.6 Equivalent Feedback Control on Ball and Beam System 59
4.5.7 Noncausal ILC on the Ball and Beam System 61
4.5.8 Noncausal ILC Reduces Phase Delay 63

4.6 Conclusions About Noncausal ILC 65
Chapter 5 68

Robustness of Noncausal ILC for LTI Systems 68

5.1 Robust Performance Condition of Noncausal ILC 68
5.2 Case Study of the Robustness of Noncausal ILC 71

5.2.1 Case 1: Uncertain Feedback Gain 72
5.2.2 Case 2: Uncertain Parameter in Plant Model 78
5.2.3 Case 3: Multiplication of Plant by Low-pass Filter 83

5.3 Summary 86
Chapter 6 88

Summary and Conclusions 88

6.1 Summary 88
6.2 Conclusions 89
6.3 Recommendations for Future Work 91

Bibliography 92

Appendix A 98

viii

List of Tables

Table 3.1: Verification Results of Lemma 2 and Equivalent Feedback Control Theory . 37

Table 4.1: Simulation and Experiment Results Comparison 65

Table 5.1: Verification Results of Lemma 3 and Lemma 4 86

ix

List of Figures and Illustrations

Figure 2.1: Composition of Experiment Platform [40] 11

Figure 2.2: Experiment Working Diagram 12

Figure 2.3: Data Acquisition Terminal Board Diagram [40] 13

Figure 2.4: DC Motor Working Principle [40] 14

Figure 2.5: The Composition of the DC Motor [40] 14

Figure 2.6: WinCon Client Diagram [43] 16

Figure 2.7: Simulink Control Model of a DC Motor 17

Figure 2.8: Graphic User Interface 18

Figure 3.1: Divergent Situation [39] 25

Figure 3.2: Three Kinds of Signals 25

Figure 3.3: The Convolution Operation of Causal Signals 26

Figure 3.4: NMP Process with Causal Input 29

Figure 3.5: Causal ILC with Zero Ultimate Error 30

Figure 3.6: Equivalent Feedback Control with Zero Ultimate Error 31

Figure 3.7: Causal ILC, on Simulated Motor 33

Figure 3.8: Causal ILC, on Real Motor 33

Figure 3.9: Causal ILC with F # i , on Simulated Motor 34

Figure 3.10: Causal ILC with F # 1, on Real Motor 35

Figure 3.12: Equivalent Feedback Control with F # 1, on Real Motor 36

Figure 4.1: The Convolution Operation of Noncausal Signals 40

Figure 4.2: Filter L in the Time Domain 42

x

Figure 4.3: Filter L in the Frequency Domain 42

Figure 4.4: A NMP Process with Noncausal Input 44

Figure 4.5: Noncausal ILC on Simulated Motor 47

Figure 4.6: Noncausal ILC on Real Motor 47

Figure 4.7: Ball and Beam System [40] 48

Figure 4.8: Configuration of Ball and Beam System [41] 49

Figure 4.9: Ball and Beam Simulink Control Scheme [43] 51

Figure 4.10: Setting Initial Point of Ball at the 20t1 trial 55

Figure 4.11: Influence of unsteady Initial Point to ILC System Performance at the 20

trial 56

Figure 4.12: Causal ILC on Simulated Ball and Beam System with F =1 57

Figure 4.13: Causal ILC on Real Ball and Beam System with F = 1 57

Figure 4.14: Causal ILC on Simulated on Ball and Beam System with F # 1 58

Figure 4.15: Causal ILC on Real Ball and Beam System with F # 1 59

Figure 4.16: Equivalent Feedback Control on Ball and Beam 60

Figure 4.17: Equivalent Feedback Control on Simulated Ball and Beam System 60

Figure 4.18: Equivalent Feedback Control on Real Ball and Beam System 61

Figure 4.19: Noncausal ILC on Simulated Ball and Beam System 62

Figure 4.20: Noncausal ILC on Real Ball and Beam System 62

Figure 4.21: Tracking a High Frequency Signal with Feedback Control 63

Figure 4.22: Bode Plot of Process Model 64

Figure 4.23: Tracking a Higher Frequency Signal with Noncausal ILC on Simulated Ball

and Beam 64

xi

Figure 4.24: Tracking a Higher Frequency Signal with Noncausal ILC on Real Ball and

Beam 65

Figure 5.1: Plant 71

Figure 5.2: Bode Plot of A w with F = iand k = 0.3 74

Figure 5.3: Simulation of Case 1 with F = i and k = 0.3 74

Figure 5.4: Bode Plot of A w 2 with F = 1 and k 10 75

Figure 5.5: Simulation of Case 1 with F = I and k = 10 75

Figure 5.6: Bode Plot of (2) -' and Lwith F = Land k 3 77

Figure 5.7: Simulation of Case 1 with F = L and k = 3 77

Figure 5.8: Bode Plot of with F = 1 and a = 20 79

Figure 5.9: Simulation of Case 2 with F = i and a = 20 80

Figure 5.10: Bode Plot of A w2 with F = I and a = 0.5 81

Figure 5.11: Simulation of Case 2 with F = i and a = 0.5 81

Figure 5.12: Bode Plot of (iW 2) -' and L with FL and a=0.5 82

Figure 5.13: Simulation of Case 2 with F = L and a = 0.5 83

Figure 5.14: Bode Plot of AW2 with F = 1 and = 5 85

Figure 5.15: Simulation of Case 3 with F = i and = 85

xli

List of Symbols

A, B, C State space system matrices

A1 Closed-loop state space system matrices

AT Toeplitz matrix

C, D, E, F, L ILC operators

G An open-loop system

H Convergence operator

I Unit matrix

J Inertia of ball

Load of DC motor

Shaft inertia of DC motor

K Control gain

K, Kd, Kb1,,, Kbd Control gain

M R A transfer function

P A plant

Nominal model of a plant

P1 A low pass-filter

Q A polynomial of co

R Real number set

S Sensitivity

Torque

U Input in frequency domain

U Optimal input

Vill Input voltage

A matrix

Uncertainty weight

Y Output in frequency domain

t, 'I', F Matrices

a A vector

d Diameter of ball

e Error

e0 Initial error

e1 Error at i-th trial

e._1 Error at (i-1)-th trial

e. Ultimate error

fL A function

g Acceleration of gravity

h(t) Unit step signal

i Trial number

j Imaginary variable

k A scalar

k0 A scalar

M Mass of ball

r A vector

S S domain variable

t Time

to Initial time

If Final time

U ILC input

u0 Initial ILC input

u. ILC input at i-th trial

u_1 ILC input at (i-1)-th trial

U. Ultimate ILC input

V Total input

xiv

W Feedback control input

x Displacement of ball on the beam

Xd Desired displacement of ball on the beam

x, State space vector at i-th trial

Y Output

Yd Desired output

Yi Output at i-th trial

Output at (i-1)-th trial

Y. Ultimate output

z0 Representing e0 - ec,

z1 Representing c1 - e0,,

co Angular frequency

(00 Cut-off frequency

Time constant, or input time

a A scalar or the angle of beam

Rotating angle of ball

0 The angle of DC motor's gear

01, Desired angle of DC motor's gear

Unknown transfer function

1

Chapter 1

Introduction

1.1 Problem description

In control system design, system performance is always one of the most important

factors to be considered. The performance design problem is defined as to force the

output response of a dynamical system to follow a desired trajectory as close as possible.

Although many control techniques have been developed so far, at times they are still not

good enough for certain systems to achieve desired performance requirements. This may

be due to the presence of unmodelled dynamics or parametric uncertainties that are

exhibited during actual system operation or due to unsuitable design techniques for a

particular class of systems.

Iterative Learning Control (ILC) was proposed in 1978 to solve these kinds of

problems for some specific systems [3]. Often in industry there are certain processes,

machines, equipment, or systems that execute the same trajectory motion or operation

over and over. ILC aims to take advantage of this repetitive nature of processes to

improve the performance accuracy of the system by learning from its previous

performances. Since most industrial robot manipulators are required to perform the same

movement many times and the nonlinearity of robot manipulators makes it difficult to

achieve sufficiently small tracking error using conventional control methods, ILC is

widely studied in robotics research.

2

1.2 Principle of Iterative Learning Control

The basic idea of ILC is to take advantage of the repetitive nature of the process to

improve tracking accuracy. The approach is illustrated in Figure 1.1.

UI

V

Memory

UI-

V

Learning
.4

Controller

System

e1

 *

Memory

e1_

Figure 1.1: Iterative Learning Control Scheme

The subscript 1 indicates the trial or repetition number. The scheme operates as

follows: during the i-th trial, an input u.(t) is applied to the system, producing the

output y1 (t), and error e, (t) = Yd (t) - y, (t), where Yd is a desired trajectory. Then u1 (t)

and e. (t) are saved in memory and processed off-line by the ILC algorithm to compute

an updated input signal u1(t). The updated input signal %(t) will be applied to the

system in the next trial and should produce a smaller error than the previous input.

This can be stated formally as follows. Suppose we are given a stable system

y1=Pu1, (1.1)

3

where P is a linear time-invariant operator, and y1 is reset to zero at the beginning of each

trial. It is assumed that only an approximate model of P is available. Then, the problem of

ILC is to find operators F and D in the control update algorithm

u = Fu11 + De11 (1.2)

such that e, and u, converge to fixed points e0, and u, respectively, with e, as small as

possible (in a suitable norm). The convergence of the ILC algorithm should not depend

on the desired response yd(t). If P is not already open loop stable, then it must be

stabilized using feedback [2].

Although each trial occurs on a finite interval [t0, tf j, we will analyze the system

for the case when the final time t1 approaches infinity. This will allow convergence

analysis in the frequency domain [1].

1.3 Literature Review

Iterative Learning Control was originally proposed by Uchiyama [3] in 1978. Later

the research work on ILC by a group led by Sugurn Arimoto [4] drew much attention in

control and robotics fields, particularly through the middle to late 1980's. Since then,

ILC has been a very active research area and thousands of research papers on ILC have

been published. In order to get a brief overview of ILC research achievement, we may

investigate the following aspects of the literature.

1.3.1 ILC algorithms

According to the way the error is processed, we may classify the algorithms as first

order, second order and higher order ILC.

4

1.3.1.1 First order ILC

If, in the ILC upgrade law, only the previous trial's error is used, the algorithm is

first order. At the beginning stage of ILC research, just one previous error is applied in

the algorithm. The typical one is the scheme proposed by Arimoto et al [4]. Suppose the

dynamic system is given as

=Ax1+Bu1, (1.3)

e1=Cx,, (1.4)

and e=CAx,+CBu1. (1.5)

Arimoto et al applied the derivative of the previous trial's error in the algorithm (D-type)

as follows:

U1 = u1_1 +r,-1, (1.6)

where e,1 = Yd - y, 1, u, 1 is previous input, u, is updated input, and r is a given r x r

matrix. If a LTI (Linear Time-Invariant) system is defined in the interval [t0, t1] and

some initial requirements are satisfied, a sufficient convergence condition can be

expressed as:

CB>O, (1.7)

and III —CBFII,< 1. (1.8)

Later P-type and PID-type ILC algorithms were further proposed respectively by

S.S.Saab [5] and Arimoto [6]. For P-type the input update law is:

U 1+] (1.9)

while a PID-type law is designed as:

5

uj+I = u,+tJ?e,+Fei+'Je1dt. (1.10)

Although there are some differences between the above algorithms in processing

the previous error of the system, the common point is that just one previous step error is

considered.

1.3.1.2 Second Order ILC

By introducing "Current Cycle Feedback" control into ILC update law, the

algorithm becomes second order. The idea of combining ILC with conventional

feedback control appeared in [7]. The general algorithm ([2], [8]) can be written as:

U/ = Fu,-, + Ce, + De,_1, (1.11)

where e, is current cycle error and e1 is previous error, u1_1 is previous input, F, C and

D are proper operators.

An obvious advantage of (1.11) is that it allows stabilization of the plant and it is

more general than the first order algorithm.

1.3.1.3 Higher order ILC

Higher order ILC was first considered in [10], [11] The general algorithm includes

current cycle feedback, and errors from several previous steps:

u, = Fu11 +Ce,+De, 1+Ee, 2 + . (1.12)

This update law can provide more information about the past performance of the system,

and will be an important area for further research.

6

1.3.2 Algorithms for some specific systems

1.3.2.1 ILC for LTI systems

Consider the LTI ILC algorithm (1.11), and errors:

e, = Yd — Pu,,

e,_1 = Yd - Pu,_1.

Substituting (1.11) into (1.13) gives

e, = Yd - P(Fu, 1 + Ce, + De,-,.

Multiplying (1.14) by F and subtracting the result from (1 . 15) gives

(1 + PC)e, - (F - DP)e,_1 = (1 - F)yd.

(1.13)

(1.14)

(1.15)

(1.16)

The fixed point of the error ec,, is obtained by setting e, = e,_1 = e in (1.16), which

yields

[1—F+(C-i-D)P]e©0 =(1—F)yd.

Rearranging (1.17), we have

e. = Ryd ,

where R= 1—F
1—F+(C+D)P

(1.17)

(1.18)

(1.19)

A very important property of this algorithm is that:

o If = 1,the fixed point of the error is zero.

o If 1, the fixed point of the error is nonzero, and the nonzero error can be

expressed as (1.18) [12].

7

1.3.2.2 Nonlinear operator and nonlinear systems in ILC

A discussion on the use of Artificial Neural Networks (ANN) in ILC is given in

[1]. This method can be viewed as a kind of nonlinear black-box identification approach.

In this situation not only the control signal but also the ILC algorithm changes over

the iterations. A specific class of nonlinear systems have been considered by Choi [13]

and a more thorough discussion of this kind of ILC approach can be found in [14].

1.3.2.3 ILC for discrete-time systems

Since all practical ILC implementations will result in a discrete-time algorithm, it is

necessary to investigate the applications of ILC to discrete-time systems. The discrete-

time linear case is discussed in [1], time-varying systems are considered in [15],

nonlinear systems are considered in [16], and non-minimum phase systems have been

discussed in [17].

1.3.3 ILC in time domain and frequency domain

Both time domain and frequency domain are good tools for ILC research. Since the

time domain provides the convenience for practical implementation, most ILC algorithms

are discussed in the time domain. But the frequency domain can provide more design

freedom and useful physical insights than in the time domain. There are many

publications related to frequency domain based ILC. The typical papers are [18] and [19].

1.3.4 Convergence and Robust Analysis of ILC

Convergence and robustness are some important factors that an ILC algorithm

designer has to consider. Although ILC researchers normally provide convergence

8

analysis for their algorithms, it is still a topic worthy of discussing separately. This work

has done by [20], [21] for linear systems and [22], [23] for nonlinear systems.

Robustness analysis was discussed in [24], [25] for linear systems and in [26], [27]

for nonlinear systems.

1.3.5 Comparison with some similar control paradigms

ILC is similar to some other control paradigms. To clearly show the difference

between ILC and other control techniques, some comparisons are necessary.

1.3.5.1 Feedback control

Compared to feedback control, ILC is essentially a feed forward control that

processes previous errors off-line to get an updated input. ILC may include current cycle

feedback to make the system stable or provide a minimum performance.

1.3.5.2 Optimal control

Most optimal controls are based on a model of a system, while ILC does not require

the accurate information of the system. Both methods are looking for an optimal input

U. The difference is that optimal control gets the optimal input by processing the

current cycle error in real time. ILC makes use of not only current cycle error but also

past system behaviour. ILC gets U by off-time processing.

1.3.5.3 Repetitive Control

ILC and Repetitive Control (RC) are similar control methods, but differences exist.

o ILC works on a finite time interval, while RC works continuously.

9

o ILC starts over at the same initial condition, while RC does not require the same

initial condition.

The common point is that both of them work repetitively.

1.3.6 Equivalent Feedback Control and Noncausal ILC

The latest concern on ILC is the topic of noncausal ILC. All of the algorithms

discussed above are normally implemented using causal operators. It has recently been

found that if an ILC algorithm is causal, an equivalent feedback control exists [8], [28].

This implies that causal ILC does not improve on conventional feedback control because

the latter does not need iteration to achieve the same fixed point. The purpose of ILC is

to reduce the performance error that is difficult to overcome using feedback and other

control methods. The ideal goal is that the fixed point is equal to zero. But for causal

ILC, this goal can only be achieved for the simplest processes: systems of minimum

phase and with relative degree less than or equal to 1.

Since causal ILC is limited to feedback control and the simplest processes,

noncausal ILC has to be explored to break the limitations of causal ILC.

A noncausal ILC algorithm is proposed in [29]. The theoretical proof shows that

noncausal ILC can solve the limitation problem of causal ILC and thus can improve

feedback control. But so far the research is in the theoretical analysis stage and some

essential experiments on real systems are needed to validate the theoretical result.

1.4 Contributions

The purpose of this thesis is to experimentally verify the theoretical hypotheses

proposed in [8, 29]. The contributions of this thesis are:

10

1) Experimental validation of the equivalent feedback control theorem for causal

ILC.

2) Experimental examination of noncausal ILC's improvement over causal ILC.

3) Experimental validation of robust ILC design for LTI systems.

4) An experimental platform setup and Simulink model design.

5) Demonstration of the benefit of noncausal operators using Matlab simulations.

6) Successful application of noncausal ILC on a higher order system (Ball and Beam

system).

7) Successfully using feedback control for setting ILC initial conditions in the Ball

and Beam experiment.

1.5 Thesis Organization

In Chapter 2, the experiment platform is introduced. Chapter 3 discusses causal ILC

and equivalent feedback control. Simulation results of causal ILC and equivalent

feedback control are compared and real system results are also obtained to verify the

theory. In Chapter 4, noncausal ILC is discussed and experiments on a DC motor and

Ball and Beam module are implemented. In Chapter 5, a robust ILC design for LTI

systems is introduced and simulations are done to verify the robustness of the algorithm.

Chapter 6 concludes the thesis.

11

Chapter 2

Experiment Setup

2.1 The Composition of Experiment Platform

The experiment platform is composed of a computer with Matlab and WinCon

software installed, UPM (Universal Power-supply Module), data acquisition board and a

physical plant such as a DC motor shown in Figure 2.1 or a Ball Beam system. A

Graphical User Interface (GUI) is created with Matlab to communicate between the

Simulink model and an M-file. The purpose of this experiment is to control the motor's

shaft position or the position of the ball on a beam by applying ILC algorithms.

Analog inputs (A/D)

Analog
outputs
(D/A)

Encoder
inputs

Terminal
board

MuItiQ

To 51552
To module: on impiSer
BaS and beam

Figure 2.1: Composition of Experiment Platform 1401

UPMXXYY

The control diagram of the system is described in Figure 2.2. A Simulink control

model is built in the computer. With the WinCon application software and the hardware

module a real time control can be implemented. When the control model begins to

operate, the digital control signal is produced and sent to MultiQ-3 board. Then the D/A

converter on the board converts the digital signal to a voltage signal, which is supplied by

12

UPM to drive the motor. The output of the plant is measured by a sensor and fed back to

the controller in the computer via the MutiQ-3 board so that the error is reduced and plant

is working as desired.

Control Model
Running Inside
a Computer

2.2 UPM

4

 10. AID DIA
Data

Acquisition
Board

(MultiQ-3)

Input voltage

.4
Output

Feedback

Figure 2.2: Experiment Working Diagram

Plant

The power module (UPM2405) consists of a regulated dual output DC power

supply set at ± 12 Volts (Vs) and a built-in linear power operational amplifier. The UPM

is used to drive the DC motor. The maximum current available is 1 Ampere without the

amplifier cable. The functional ports of UPM are located on the panel (See Figure 2.1).

The D/A and AID ports are connected to MultiQ-3 board. The sensor's ports and voltage

output port are connected to DC motor. In the Ball Beam experiment, a potentiometer

sensor on the Ball Beam module is connected to a sensor's port as well. [40]

2.3 Data Acquisition Board

The MultiQ-3 is a general purpose data acquisition and control board, which has 8

single analog inputs, 8 analog outputs, and 16 bits of digital input, 16 bits of digital

output, 3 programmable timers and up to 8 encoder inputs decoded in quadrature.

Interrupts can be generated by any of the three clocks, one digital input line or the end of

conversion from the A/D.

The system is accessed through a PC bus and is addressable via 16 consecutive

13

memory mapped locations, which are selected through a DIP switch located on the board.

A diagram of the MultiQ-3 is shown in Figure 2.3. In this experiment, "Analog Inputs"

are connected to the "AID" port of the UPM, "Analog Outputs" go to "D/A" port of the

UPM, and one of "Encoder Inputs" connect to the DC motor. [40]

Analog Inputs
3 2 1

Digital Inputs

0 7 0

0 0000

06 6 66
Analog input
RC circuits
for antialias
filters

0 Analog Outputs /
LED

©

0 6

(0 7

Encoder
Inputs

FUSE

0 2

Digital Outputs

Figure 2.3: Data Acquisition Terminal Board Diagram [40]

2.4 DC Motor

SRV-02-E type motor shown in Figure 2.1 consists of a DC servomotor with built-

in gearbox drives, a potentiometer, an optical encoder, and an independent output shaft.

Its block diagram and configuration are shown in Figure 2.4 and Figure 2.5, respectively.

The input voltage V,, produces an electrical current. This electrical current

generates a torque 7,,, which turns the motor shaft J,,, and load J1 via a gear train Kg•

The angular position of the output gear can be measured with a potentiometer or an

optical encoder sensor built into the motor module. This motor can be configured with a

14

high gear ratio. The internal gearbox gear ratio is 14:1 and the external gear ratio is set to

5:1 in this experiment, so the total gear ratio is 70:1. [40]

Vb
Im

Kg

Vin
Tm(

Jm

0 wm To

Figure 2.4: DC Motor Working Principle [40]

72 teeth
Anti-backlash

Potentiometer

72 teeth 120 teeth

Output
shaft
housing

24 teeth

/

Figure 2.5: The Composition of the DC Motor 1401

il

The theoretical DC motor's mathematical model is = , where K and
Vi,, (S) s(rs+1)

are determined by the motor's parameters and affected by the gear ratio. By

15

experiment K was identified to be 1.5, and i was found to be 0.03, so the transfer

function of the motor is

9(s) = 1.5

V,,, (s)s(0.03s+1)

2.5 WinCon application software

(2.1)

WinCon is a real time Windows 95/98/Me/NT/2000 application that runs Simulink-

generated code using Real-Time Workshop on a PC. It consists of WinCon Client and

WinCon Server.

2.5.1 WinCon Server

WinCon Server performs the following functions:

o Converting a Simulink diagram to PC executable code by using real-time

workshop;

o Compiling and linking the codes by using Visual C++;

o Downloading the code to run on a WinCon client;

o Performing start and stop functions for a client;

o Maintaining communications with a client;

o Maintaining communications with Simulink to catch real-time changes in

parameters of the block diagram;

o Plotting the data in real time;

o Saving the data to disk after stopping the running of a client.

16

2.5.2 WinCon Client

WinCon client runs the code generated from the Simulink diagram. It works with

WinCon Server and has the following functions:

o Receiving the code from a server;

o Running the code in real time;

o Maintaining communications with the server.

The most common configuration is a single PC equipped with the required software

and hardware. In this configuration shown in Figure 2.6, the PC runs both the server and

the client and can be used to perform real-time control, tuning and monitoring in the same

location. [43]

SAME PC

WinCon
Server

WinCon
Client

Win95 . MATLAB . SIMULINK - VC++

MultiQ

Local User Plant to
be Controlled

Figure 2.6: WinCon Client Diagram [431

2.6 Simulink Model for the Control of a DC Motor

Figure 2.7 shows the ILC control scheme for a DC motor. A PID Feedback

controller is applied to stabilize the system. The "ILC input Sequence" block produces a

complementary sequence calculated by an ILC algorithm from the previous input and

error data. The ILC control input is fed forward to adjust the performance of the plant.

17

The Scopes labelled "Error" and "ILC Input" display the error and ILC input signals

respectively, which are loaded to the workspace after every iteration and then processed

in the "ILC input Sequence" block by the ILC algorithm. [44]

4

S_Reference

Reference

Error O•k
ILC Input

Sequence

 llo• Error

PID Controller

F. F.

Input

U

ILC Input

Output - 10

DC Motor

Figure 2.7: Simulink Control Model of a DC Motor

2.7 Graphical User Interface for the ILC experiment

Position

A graphical user interface (GUI) helps to combine Simulink control model with an

M-file. Some graphics objects such as windows, icons, buttons menus, and text can be

created within the GUI frame. Selecting or activating an object in the interface frame

usually causes an action or change to occur. The most common activation method is to

use a mouse, [45].

There are several reasons to use a GUI in this experiment. In Figure 2.7, after each

iteration, the previous error and input data need to be saved in the workspace and then to

be processed in the "ILC Input Sequence" with the ILC algorithm. This operation

requires an M-file to work with the Simulink model interactively. The GUI provides the

interaction between the Simulink model and the corresponding M-file. Since this work is

repetitive, the GUI makes the experiment much more convenient. With a GUI designed

18

for this experiment (See Figure 2.8), we can easily change some related parameters and

settings of the system without opening the Simulink model.

In the GUI shown in Figure 2.8, pressing the "Initialise" button will open the

Simulink model, load an executive code into the WinCon server, and open some

necessary sinks. "START" is a toggle button to start or stop an operation. The section

below the "Initialise" button allows one to set iteration interval and iteration times. The

popup menu is used to select a real system or a mathematical transfer function of the

system in order to compare the system's performances. The "ILC Operators" section

allows setting or changing ILC operators such as F, C, and D in transfer function form

during the experiment to analyze the ILC influence when varying the values of these

operators. The "Controller Parameters" section is for setting feedback controller's

parameters to stabilize the system. The corresponding M-file is attached in Appendix A.

..) mo_noncau

NILC EXPERIMENT ON A DC MOTOR

START

ILC Ope rotors

r F Numerator

Dernnutm

r c

Derunerate:

r D Numerator

Deunerutca

In Stande,d MaUab NOtatOn

Initialise

Plant

rir Time of Each Iteration

Number of Iterations

Controller Parameters

Pioucatend

rj
Inte,at

Deu(iye -

a net

Figure 2.8: Graphic User Interface

19

Chapter 3

Causal ILC and Equivalent Feedback Control

This chapter introduces some general concepts of ILC such as causal signals,

noncausal signals, fixed point and convergence condition, which are related to our

analysis. Since most existing ILC algorithms are implemented by using causal operators,

a causal signals convolution procedure is illustrated to show how causal operators work

in an ILC algorithm. During the discussion, we will prove that causal ILC has some

fundamental drawbacks. Equivalent Feedback Control theory proposed in [8] claims that

there exists an equivalent feedback control for any causal ILC algorithm. Since this

theory has not verified by practical application, some simulation and experiment are

designed to investigate it further.

3.1 Fixed Point

A fixed point is an equilibrium point during iterations in an ILC system. Consider a

general ILC system:

y.=Pu,, (3.1)

where P is a stable plant and i is trial number. If an achievable reference trajectory is

given as

•)/ = PUd,

then the error in trial i is

= Yd - Yi-

(3.2)

(3.3)

20

From (1. 11), the general ILC algorithm is

Ui = Fu11 + Ce + De11 ,

where F, C, and D are bounded causal operators.

Substituting (3.1) into (3.3) gives, for iterations i and i-i, respectively,

= Yd PUi,

Yd - PU_1.

Substituting (3.5) and (3.6) into (3.4) gives

u1 = Fu11 + C(yd - Pu,) + D(yd - Pu1).

(3.4)

(3.5)

(3.6)

(3.7)

If u, = u and u._1 = Uc3 where u©, is bounded, the signal u is called a fixed point of

control signal [1].

Set

UI = U/_i = UcO •

From (3.5) and (3.6), we have

ei = e, 1 =

Substituting (3.8) and (3.9) into (3.4) gives

(1—F)u 0 =(C+D)e,

Rearranging (3.10) gives

U. = Ke0,,

where

K—(1—F)'(C+D).

Note that F # 1 in (3.12). Since

e. = y, -

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

21

Substituting (3.11) into (3.13) gives

Then

and

e',, =(1+PK)'y,.

u. = K(1 + FK)' Yd'

Y- =PK(1+PK)'yd,

(3.14)

(3.15)

(3.16)

where ye,, is the output corresponding to the fixed point of control signal u,.

Definition: the signal u1 = UH = u. is called a fixed point of control signal, ye,, or e0, is

called a fixed point of an ILC system [1].

Remark 1: Since Uc is a bounded signal, if P is stable, y. is a bounded signal as well.

Remark 2: If a convergence condition is met, y1 will converge to y00 as I increases.

3.2 Convergence Condition

Convergence analysis is performed most easily in the frequency domain. In the

following, e(jc)) refers to the Fourier transform of the signal e(t) (i.e. the Laplace

transform evaluated at s = jo).

Definition: An ILC system is convergent if, for all bounded e0 (lcD),

lime1 (ja) = e (jcD) at all frequencies co.
I-

Substituting (3.4) into (3.5) gives

= Yd - P(Fu,_1 + Ce, + De-1).

Multiplying (3.6) by F and subtracting the result from (3.17) gives

(3.17)

22

(1 + PC)e1 - (F - DP)e1_1 = (1 - F)y(,.

Substituting (3.9) into (3.18) gives

[1— F + (C + D)P]e, = (1— F)yd.

Subtracting (3.19) from (3.18) gives

(1+PC)(e1 — e) = (F—DP)(e1_1 — e0),

which may be rearranged to give

e1—e0.3 = H(e1_1—e),

where

and

(3.18)

(3.19)

(3.20)

(3.21)

H = S(F - DP), (3.22)

S=(1+PC)'.

Finally, (3.21) implies

e, — e = H'(e0 — em).

(3.23)

(3.24)

Lemma 1: A necessary and sufficient condition for e, to converge to e is I H(j() 1<1

for all uER. [3 1]

Proof:

Sufficient Condition:

Let z. = e1 - er,, so zo = e0 - e. Then (3.24) becomes

z1 = H'z0. (3.25)

Since

I H(jw)' 1=1 H(jco) I, (3.26)

23

IfI H(jco) 1<1, then

Thus we have

and

Z. (ja)) Il H' (Ja))Zo (jc)) 1=1 H(ja') I' I z (ft)) I.

lim lH(jco)I'=O.
i - >00

lim I z (ja;;) 1=: 0,
->0

lime1 = e.

Necessary Condition:

If the ILC system is convergent, then we have

lime, =e
I—>00

and

According to (3.25),

lim I z,(j(o) 1=0.

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

lim I z,(jw ') 1= lim I H(jco)'. z,, 1=0. (3.32)
I-4o

Considering (3.26) and (3.31) gives

lim I z1(jco) = urni H(jco) I'l zo(jCO) 1= 0. (3.33)
-4 100 1-400

Since z0 is in general nonzero, (3.33) implies

lim I H(jco) '= 0. (3.34)
/-40

So iH(ia))kl.

Remark: According to (3.10), when choosing F = 1, we get e00 = 0.

24

3.3 Conditions on P for Convergence to ec, =0

In order to achieve zero ultimate error = 0), we need to choose F = 1 in (3.10).

In this special convergence case, the properties of process P play an important role. If all

zeros of a system are in the left half-plane, the system is called Minimum Phase (MP).

Otherwise, the system is called Nonminimum Phase (NMP) [38]. Relative degree is the

difference between the order of the denominator and the order of the numerator of a

transfer function.

Lemma 2: If a causal ILC system converges to ec = 0, then the process P must be

M.P. and its relative degree must be less than or equal to 1. [39]

Proof: In order to achieve e = 0, set F = 1. According to (3.22),

H=S(1—DP). (3.35)

If this system is convergent, we have! H(jw) 1<1. That is

I S(ja)(1 - D(j(o)P(ja.) j<1.

Since S = 1— SPC, rearranging (3.36) gives

1— (C(j(o) + D(jc)))S(jc))P(jcv) j<1,

or

(3.36)

(3.37)

I1—M(jv)kl, (3.38)

where M=(C+D)SP.

If P is NMP and /or has a relative degree greater than 1, then so is M. This implies

Re(M(jw)) <0 at some tv in complex plane, and thus

J1—M(jw)l>1, (3.39)

which conflicts with the convergence assumption. Figure 3.1 illustrates the situation.

25

Re

Figure 3.1: Divergent Situation [391

3.4 Causal Signals Convolution

Definition 1: A signal u is causal if u(t) = 0, Vt <0. A signal u is anti-causal if u(—t) is

causal. A noncausal signal is not necessarily causal. [29] Figure 3.2 illustrates the three

signals.

(a) Causal signal (b) Anti-causal signal (c) Noncausal signal

Figure 3.2: Three Kinds of Signals

Definition 2: "A system (or an operator) P that maps an input signal u to an output signal

y is causal if y(t) does not depend on u(r) for all r > t. A noncausal system is not

26

necessarily causal and an anti-causal system is not causal. If an LTI system is causal, then

every causal input produces a causal output", [29].

For a causal LTI system, y = Pu, the output is obtained according to the following

formula

y(t) = fp(t - (3.40)

where p is the impulse response of P. The convolution operation can be illustrated as

shown in Figure 3.3. Since P is a causal operator, if input signal u is also a causal signal,

the output y at r = t will be the value of shaded area. [46]

*

t

PM

10
t

Figure 3.3: The Convolution Operation of Causal Signals

3.5 Equivalent Feedback Control

If ILC is implemented using causal operators (i.e. causal ILC), we can show that it

is equivalent to feedback control (which must use causal operators). Consider a

conventional feedback control system

e=ydPu, (3.41)

where the control is

u=Ke . (3.42)

27

Comparing (3.42) and ILC fixed point described as (3.11), an important relationship

between causal ILC and feedback control is revealed.

Theorem 1: Suppose (1—F)' is defined, and let K = (1— F)' (C + D) as the same as

(3.12), then the feedback control (3.40) applied to (3.39) gives e = e, [12].

Proof: Substituting (3.40) into (3.39) gives the closed —loop system

e—(l+PK)'— Yd . (3.43)

Applying (3.41) to (3.40), we have

u=K(1+PK)'yd . (3.44)

Comparing (3.41) with (3.14), and (3.42) with (3.15) respectively, we have

C = CcO

and u=u,.

Remark 1: The K in the equivalent feedback control depends only on the ILC operators

F, C, and D, so no additional process information is required to obtain the equivalent

feedback control, [12].

Remark 2: Since Theorem 1 does not exclude the case CO3 the equivalent feedback

control K exists whether or not the ILC includes current cycle feedback C. [12]

Remark 3: The equivalent feedback achieves the fixed point of ILC even if the ILC does

not converge to the fixed point, [12].

Remark 4: Since the equivalent feedback control achieves the fixed point on the infinite

time interval, it also achieves it on any finite interval (i.e. a trial of finite duration), [12].

28

3.6 Equivalent Feedback Control in the Case of F =1

In the singular case where (1— F)-' does not exist, Theorem 1 is not applicable.

Theorem 2 explains the relationship between the ILC and feedback control in this special

case.

Theorem 2: If causal ILC converges to zero error, then the feedback control

u = [C + k(C + D)]e, k ≥ 0, is internally stabilizing and gives lime = 0, [8].
k—>co

The proof is done in [8], where the following remarks are noted:

Remark 1: Here K = C + k(C + D), and K depends only on the ILC operators C and D,

not on the Process P (although the size of the gain factor k required for a given lie ii may

depend on F), [8].

Remark 2: Since Theorem 2 does not exclude the case C = 0, the equivalent feedback K

exists whether or not the ILC includes current feedback C, [8].

Remark 3: The achievability assumption, Yd = PUd for bounded Ud, allows the system

to track an unbounded Yd when P is unstable, [8].

3.7 Simulations and Experiments

In order to validate the above theoretical conclusions equating causal ILC and

feedback control, simulations and experiments on various processes are presented.

3.7.1 Causal ILC for a Nonminimum Phase Process

Lemma 2 shows theoretically that if P is NMP, perfect tracking of a reference) d is

not possible with a causal ILC algorithm. Consider for example the NMP system

where

Y(s) = P(s)U(s),

—i
P(s) = s

(s+1)2

Suppose the reference to be tracked is

1
17d (s) =

(s+1)2

To achieve this target, the input should be

1

U(s) = P' (s)Yd(s) =---.
s—i

29

(3.45)

(3.46)

(3.47)

(3.48)

If we take the two-sided inverse Laplace transform, as defined in [30], of (3.48), we get

two solutions: a causal input u(t) = e'h(t) and an anti-causal input u(t) = —e'h(---t).

When we apply the causal input to the system, the simulation result is as Figure 3.4.

Because the causal input produces an unbounded output, it cannot be accepted.

NMP with Causal Input Signal

0.0

0.6

0.4

0.2

d

r r i

•1 -I

4---..--1 I---_-.4

2 4 6 0 10 12 14 16 10 20
Time(s)

Figure 3.4: NMP Process with Causal Input

30

3.7.2 Zero Ultimate Error

3.7.2.1 Causal ILC Algorithm

Consider an open-loop model: P(s) = s+1 . Since this plant is minimum phase and

has relative degree of one, according to Lemma 2, zero ultimate error is possible using

causal ILC. Set C = 0 and D = 1 in (3.4). To achieve zero ultimate error, we need to

choose F = 1. If the ILC system is required to track

Yd = 0.5+0.5*sin(t. r/2) (349)

over the interval t E [0,3], simulation shows the system performance is as indicated in

Figure 3.5 where the initial condition is u0 = 0. Zero ultimate error is achieved for this

process and the converse of Lemma 2 is validated.

Causal ILC with Zero Ultimate Error

Figure 3.5: Causal ILC with Zero Ultimate Error

31

Equivalent Feedback Control for Zero Ultimate Error

1

0.0

0.6

0.4

0.2

0.5 1.5
Time(s)

2 2.5 3

Figure 3.6: Equivalent Feedback Control with Zero Ultimate Error

3.7.2.2 Equivalent Feedback Control

Applying Theorem 2 to this example gives the result shown in Figure 3.6. The

equivalent feedback control is u = [C + k(C +]J)}'e, where C and D are the same as those

in the causal ILC algorithm. When we increase k, the output y is closer to Yd• Increasing

k to k = 1000, the output y coincides with Yd - Obviously, equivalent feedback control

does not need iteration and can achieve zero ultimate error at only one trial as long as the

value of k is large enough in the controller formula.

32

3.7.3 Nonzero Ultimate Error

Consider an open loop model of a DC motor (2.1), which is P(s) =
1.5

s(O.03s + 1)'

with a relative degree greater than 1. The goal of this experiment is to control the

motor's shaft position with an ILC algorithm (3.4) and to track a desired signal

represented by Yd

3.7.3.1 Causal ILC when F =1

Suppose we choose F = 1 because we hope to get a zero ultimate tracking error for

this process, then (3.4) becomes u, = u1_1 + Ce1 + De1_1, where we choose C = 1 to

stabilize the system and D = LP'. L = 1 is a filter to make D proper.
(O.5s + 1)2

According to Lemma 2, a zero ultimate error may not be achieved since the relative

degree of the process is greater than 1.

A simulation and an experiment on the motor are implemented to validate Lemma 2

at this situation. Figure 3.7 shows the simulation result, while Figure 3.8 shows the result

of the experiment. From both results, we see that the system is divergent, validating

Lemma 2 for the case of the plant relative degree exceeding one. The rate of divergence

differs for the simulation and experiment because of the unmodeled parameters and

uncertainties that exist in the real plant.

33

Causal ILC with F1

Figure 3.7: Causal ILC, on Simulated Motor

Causal ILC with F1
1.8

1.6

1.4

114

0.2

i20

I'

1 2 3 4

=10 1=1

Time(s)

i=5D

I

Figure 3.8: Causal ILC, on Real Motor

=301

5 6

34

3.7.3.2 Causal ILC when F # 1

In order to make the system convergent, we set F = L = (0.5s + 1) 1 and D = LP'
2

in (3.4). After performing simulation test we observe that the system is convergent as

shown in Figure 3.9. Experimenting on the DC motor, the system also converges as

shown in Figure 3.10. It is easy to see that the trade—off to making the system convergent

is that ultimate error e0, # 0 at the fixed point.

Causal ILC with F Not Equal to 1

Figure 3.9: Causal ILC with F # i , on Simulated Motor

35

Causal ILC with F Not Equal to 1

0.8

0

0.6
0

0

0.4

0.2

I I

Fied Point

1 2 3 4

Ti me(s)
5

r

i=7'/W10

T

6

Figure 3.10: Causal ILC with F # 1, on Real Motor

3.7.3.3 Equivalent Feedback Control for Nonzero Ultimate Error

According to Theorem 1, the equivalent feedback control u = Ke achieves e = e.

without iterations, where K = (1— F)-' (C + D) and e = (1 + PK)' Yd Applying the

feedback control to the system, the simulation result is shown in Figure 3.11.

In the experimental control scheme illustrated in Figure 2.7, replacing the PID

controller with K and setting ILC input to zero gives the experimental result shown in

Figure 3.12. Comparing Figure 3.11 with Figure 3.9, and Figure 3.12 with Figure 3.10

respectively, we find the fixed point in Figure 3.9 is the same as the output of Figure

3.11, and the fixed point in Figure 3.10 is the same as the output of Figure 3.12. Thus

Theorem 1 is verified by experiment.

36

Equivalent Feedback with F Not Equal to 1

(5

C

0.6

0.4

0.2

2 3
Time(s)

4 5 6

Figure 3.11: Equivalent Feedback Control with F # I, on Simulated Motor

0.2

Equivalent Feedback Control with F Not Equal to 1

Ned Point

2 3 4 5 6

Time(s)

Figure 3.12: Equivalent Feedback Control with F # 1, on Real Motor

37

3.8 Summary of Causal ILC Results

Summarizing the simulation and experimental results, we have Table 3.1.

Table 3.1: Verification Results of Lemma 2 and Equivalent Feedback Control Theory

Verification of

theory

Case Simulation

result

Experiment

Result

Converse of Lemma 2

Converse of Lemma 2

NMP, F(s) = S-1 Divergent

(Fig. 3.4)

none

(s+1)2

F(s) = ---- with F =1
s+1

Convergent

(Fig. 3.5)

none

DC motor with F = 1,

F(s) = 1

Divergent

(Fig. 3.7)

Divergent

(Fig. 3.8)
s(0.03s+1)

DC motor with F # 1,

1
F(s)

Convergent

(Fig. 3.9)

Convergent

(Fig. 3.10) =
s(0.035 + 1)

Equivalent Feedback

Control Theorem 1

F(s) = with F = I
s+1

Convergent

(Fig. 3.6)

none

Equivalent Feedback

Control Theorem 2

DC motor with F # 1,

P(s)= 1

Convergent

(Fig. 3.11)

Convergent

(Fig. 3.12)
s(0.03s + 1)

38

From the theoretical analysis and, experimental validation, we obtained the

following conclusions about causal ILC:

a Causal TLC has limitations for NMP processes and those plants with relative

degree greater than 1. For these systems causal ILC cannot achieve zero tracking

error. The tracking performance is either divergent or e # 0.

o Causal ILC has no advantages over Feedback Control because equivalent

feedback control can achieve the same accuracy in just one trial, while causal ILC

may need many trials to achieve this accuracy.

o Since an equivalent feedback control exists for any causal. LTI ILC algorithm, it is

better to use equivalent feedback control instead of ILC for causal LTI systems in

order to avoid iterations.

39

Chapter 4

Noncausal ILC

Since causal ILC has some fundamental drawbacks, it is necessary to explore

noncausal ILC. The reason causal ILC fails is that it satisfies the convergence condition

only for MP plants with relative degree less than one. In [32] the authors promoted

applying noncausal operators in ILC, while in paper [29] the author suggested a

symmetrical noncausal filter to guarantee convergence for most common processes.

In this chapter, we will illustrate noncausal signal convolution and explain how the

symmetrical noncausal operator influences the convergence of ILC system. Since few

experiments has been implemented on real systems with noncausal ILC algorithms [33],

in this chapter we present some experiments and simulations to verify theoretical results

on noncausal ILC and show the benefit of noncausal ILC.

4.1 Convolution of Noncausal Signals

For an LTI system, the input and output relationship is determined by (3.38). But if

P is a noncausal operator as shown in Figure 4.1(b), the output will be different. Figure

4.1(c) shows the convolution procedure and the value of the output, which is the shaded

area before time t. We see that future values of the input signal u (the part when i > t)

contribute to output y(t) since p has nonzero values before t = 0. This property can be

applied to improve causal ILC.

40

(a) Causal u(t)

*

(b) Noncausal p(t)

y(t) p(t—r)

t

(c) Outputy(t)

Figure 4.1: The Convolution Operation of Noncausal Signals

4.2 A Noncausal Symmetric Low-Pass Filter

From Lemma 2 in Chapter 3 we know that causal ILC can achieve zero ultimate

error for only the simplest plants. When the relative degree of P is greater than one or P

is NMP, the convergence condition I H(jw) 1< 1 cannot be satisfied. In order to solve

this problem, we need to find a suitable filter to satisfy the convergence condition even

when the relative degree of P is greater than one or P is NMP. This kind of noncausal

symmetric filter is proposed in [29]. An example of this kind of filter is

1 1
 =

(S)2 (1+--)(1---)
a)0 coo W o

(4.1)

where a is the cut-off frequency. Setting coo = 10, the filter is plotted in time domain

and frequency domain respectively in Figure 4.2 and Figure 4.3. If we suppose P is a

stabilized process, then we may set C = 0 in the ILC algorithm (3.4). Thus S = 1

according to (3.23). Setting F = 1 to achieve e0 = 0, the Hin (3.22) becomes

41

H- 1-- DP.

With D = LP-1, rearranging (4.2) gives

H=1— L.

Substituting s = jco into (4.1) gives

1

1+ 2

(4.2)

(4.3)

(4.4)

(Do

It is clear that L(jcv) has no complex part and 0 <L(ja)) <1. Substituting (4.4)

into (4.3) guarantees I H(jco) j< 1.

More generally, L can be chosen as

1
I, (4.5)

j=1

where the are the cut-off frequencies, and the relative degree of L is 2n. If 2n exceeds

the relative degree of F, then D is proper. Substituting (4.5) into (4.3) gives I H(ja) 1< 1

at all frequencies. Thus, this L results in a proper D and guarantees convergence for any

relative degree process.

Figure 4.2 and Figure 4.3 show a filter L with relative degree of 2 in the time

domain and in the frequency domain respectively.

42

Low-pass Filter L in Time Domain

Ma
gn

ft
ud

e
(d
B
)

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

I I I

.1

-j

-I

-10 -O -6 -4 -2 0 2

0

-10

-20

-30

-40

So

0.5

a3 0

-0.5

4 6 0 10
Time(s)

Figure 4.2: Filter L in the Time Domain

Bode Diagram of Fier L

- - — Ti --4--
II
I I

.L --------

I I

I I
Ii

II

I I I
I I

I I I

I I I
I I

100 io

Frequency (rad/sec)

Figure 4.3: Filter L in the Frequency Domain

10

43

4.3 Noncausal ILC on a NMP Plant

Lemma 2 in Chapter 3 shows theoretically that if P is NMP, perfect tracking of a

reference Yd is not possible with a causal ILC algorithm. Consider the example in

Chapter 3, which is a NMP system. In this example, the output is given by

Y(s) = P(s)U(s), (4.6)

where P(S) = s—i
(s+i)2

(4.7)

Suppose the reference to be tracked is also the same as in the causal case in Chapter 3,

1
17d (s) =

(s+1)2

To track it perfectly, the input should be

(4.8)

U(s) = P' () d (s) = (49)
s—i

The two-sided inverse Laplace transform of (4.9) has two solutions: a causal input

u(t) = e'h(t) and an anti-causal input u(t) = —e'h(—t). In Chapter 3, we saw that the

causal input drives the system unstable (and is itself unstable). So this time the anti-

causal input is applied. The simulation result in Figure 4.4 shows that the system tracks

the reference perfectly.

44

Noncausal ILC for NMP
0.4

0.35

0.3

0.25

0.2

0.1

0.05

0

_I L

L

r

-o.os 1 I I I I

-10 -O -6 -2 0 2 4 B 6 10
Time(s)

Figure 4.4: A NMP Process with Noncausal Input

4.4 Noncausal ILC on a DC Motor

In Chapter 3 we showed that it is not possible for a DC motor, which has a relative

degree of 2, to converge to zero tracking error using causal ILC. To achieve convergence,

we set F = L, which resulted in nonzero ultimate tracking error. To achieve convergence

and zero ultimate error, we now apply noncausal operators in the ILC algorithm (3.4).

Recall that the DC motor has the open-loop model

G(s)= 1.5
s(0.03s + 1)

The closed-loop system is

e=yd —G(w+u),

where u is ILC input and w is the feedback control, and

(4.10)

(4.11)

45

w=ke, (4.12)

where kP is proportional control to stabilize the system.

Substituting (4.12) into (4.11) gives

e=Syd — SGu, (4.13)

where S=(1+Gk)'. (4.14)

Then the ILC system can be written as

e.=r—Pu, (4.15)

where r = 5Yd (4.16)

P=SG. (4.17)

If we set F = 1, the ILC update law (3.4) can therefore be written as

Ui = u,_1 + De,_1, (4.18)

where C=O since P is a stabilized closed-loop plant, and

D=LP'. (4.19)

According to (4.17),

We set

L(s) =

1.5

O.03s2 +s+1.5k

1

(4.20)

(4.21)

where coo =1. Since L is a noncausal operator, so is D.

Applying the noncausal ILC algorithm indicated by (4.18) in simulation, we get the

result shown in Figure 4.5. When we apply (4.18) to the real motor, the result is shown in

46

Figure 4.6. These figures show that noncausal ILC converges to e,, = 0. In contrast,

Figures 3.7 and 3.8 in Chapter 3 show that causal ILC with F = 1 made the system

divergent. Thus noncausal ILC improves on causal ILC when the relative degree of the

plant is greater than 1.

Whereas we obtained noncausal ILC results in the frequency domain, we need to

implement them in the time domain. Since ILC must operate over a limited time interval,

signals must be truncated at the beginning and end of the interval. This results in loss of

information.

The task in this example was to follow the reference between 0 and 5 seconds.

Figure 4.5 and Figure 4.6 show that the tracking is relatively poor between 5 and 6

seconds. This "follow-through" region was used for learning, but is not part of the task.

Without this follow-through region in Figure 4.5 or Figure 4.6, there will be no future

information to be calculated in the noncausal ILC algorithm at the end point of the task.

Comparing the tracking accuracy between 4 seconds and 5 seconds with that between S

seconds and 6 seconds in Figure 4.5, we see that the loss of future information at the end

of the task reduces the tracking performance. For a ball and beam experiment described

in the next section, we will improve the performance at the end of a task by using a

follow-through region.

Comparing Figures 4.5 and 4.6, we see a difference between the experimental result

and the simulation result. This is caused by unmodeled parameters and uncertainties in

the plant.

47

Noncausal ILC with F1
1.2

0.6

ci-
0.4

0

0.2

2 3
Time(s)

4 5

Figure 4.5: Noncausal ILC on Simulated Motor

Noncausal ILC with F1

B

=7

Figure 4.6: Noncausal ILC on Real Motor

48

4.5 ILC on a Higher Order System—Ball and Beam

The experiment on the DC motor proves that noncausal ILC can improve on causal

ILC, since noncausal ILC allows the DC motor to achieve zero ultimate tracking error

while causal ILC does not. A DC motor is a second order process with relative degree of

2. What happens if noncausal ILC is applied to a higher order process with a higher

relative degree? This question can be investigated by an experiment on a Ball and Beam

system, which has a relative degree of 4.

4.5.1 Mathematical Model of Ball and Beam System

As shown in Figure 4.7, Ball and Beam system is composed of two modules, which

are a Ball and Beam module and a servomotor module. A lever arm is attached to one of

the gears of the servomotor. The servomotor drives the lever arm. As a result, the angle

of the beam is changed and the ball resting on the beam will be moved to a desired

position under the effect of gravity. This configuration is illustrated in Figure 4.8.

Ball ' Beam

Fixed end 10

Gear

Figure 4.7: Ball and Beam System 1401

Lever arm

Servomotor

49

and

Beam

Lever Arm

6

Gear

Figure 4.8: Configuration of Ball and Beam System [41]

Consider the ball, which has mass m, inertia J and diameter d, we have

Jçô = -mgd sin a,

x = . 1 .dçp.

Differentiating (4.23) twice gives

2

Substituting (4.24) into (4.22) gives

xga.

When a and 9 are small, we have

d
a = —9,

L

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

50

where = --- in this particular device.
L 17

Substituting (4.26) into (4.25) gives

1=0.4129,

or in the frequency domain,

X(s) - 0.412

9(s) - S2

Recall the motor's transfer function

9(s) = 1.5

T",, (s) s(0.03s +1)

(4.27)

(4.28)

(4.29)

Transferring (4.29) into time domain gives

= —33.3G + 50v. (4.30)

The Ball and Beam system transfer function is obtained by multiplying (4.28) with (4.29)

as

X(s) = 0.618

T',,(s) s3(0.03s + 1)

It is easy to see that the open loop system is not stable.

(4.31)

4.5.2 Stabilization of the Plant

We designed a control system in Simulink as schematically shown in Figure 4.9.

This control system is primarily composed of a reference signal generator, a feedback

controller (middle part), an ILC controller and the physical plant Ball and Beam module.

We use a GUI to operate the system and use a Matlab code to process the data obtained

from each iteration. The scope labelled "ILC Input" records the previous ILC input signal

u1 , and the scope labelled "Error" records the previous error signal e11 . By applying

51

ILC algorithm u, = Fu1.1 + De,-, in Matlab code, we get an updated ILC input u.. We

then load ui as a sequence into "ILC Input Sequence" block to be ready to input ILC

control to the system at the next iteration. "Saturation 1" is applied before the input port of

the module to protect the DC motor. We set 20 seconds for each iteration. After 20

seconds, "Stop Simulation" stops the operation automatically. Based on the control

scheme, we calculate the feedback control gain K and the closed-loop transfer function of

the system.

Setting

4—

A of. en cc

mCI

Command

x

0

e

IS lntn,atn,

I<bp
P15

F
Theb

4 —

ILC Input
Sequence

 fm
ILC Input

(4.32)

Theta Soul

- ' lhnlu

lid Satocalton

ILC I put 0

—.—* 0•

—u
XX

4

Kd uliheam Module

—*

Sat.c,ationl

ThCO DuO—

ThSu

XDnt —

Kbd

Figure 4.9: Ball and Beam Simulink Control Scheme 1431

52

From (4.27) and (4.30), we have

X=AX+Bv

y=CX

where A

01 0 0

0 0 0.412 0

00 0 1

0 0 0 —33.3

,B=

0

0

0

50

, and C=[1 0 0 0].

(4.33)

(4.34)

Suppose the control is

v=KX+u, (4.35)

where K is feedback control gain and u is ILC input.

Substituting (4.35) into (4.33) gives

J'=A,X+Bu, (4.36)

where A1 = A + BK (4.37)

is the closed-loop system matrix.

The open-loop characteristic equation is

det(sl—A)=s4 + 33.3s3. (4.38)

Then a=[33.3 0 0 0]. (4.39)

Suppose we choose the closed-loop characteristic equation as following:

det(SI - Ar,) = (s + 1)(s + 2)(s + 3)(s + 30)
(4.40)

=s4 + 36s3 + 191s2 + 336s+180,

then r=[36 191 336 180]. (4.41)

53

From (4.39), we have Toeplitz matrix

1 33.3 0 0

—° 1 33.3 0
AT 0

0 1 33.3

0 0 1

and

—33 1109 — 36926

1 — 33 1109

0 1 —33

0 0 1

Since W, = [B AB A2 AB], we have

0 0 066 0.02

0 1.6165 0.02 0

1.6165 0.0485 0 0

0.0485 0 0 0

Designing K according to Bass-Gura formula gives, [47]

K = [a -

=[-8.7379 — 16.3107 — 3.8200 —0.0540J

From the control scheme in Figure 4.9, we have

and Gd = 1. [KbP (xd - x) + Kbd±I.

Substituting (4.44) into (4.43) and rearranging give

V=[KbPKP KbdKI, —K

KX + XdKbP + u

(4.42)

(4.43)

(4.44)

(4.45)

54

Comparing (4.42) and (4.45) gives

KbP =0.1346

K,,d =-0.2512

Kfl = 3.82

Kd = —0.054

Substituting (4.42) into (4.37) gives closed-loop system matrix as

=

0 1 0 0

0 0 0.412 0

0 0 0 1

—436.8932 — 815.534 — 191 — 36

4.5.3 Closed-loop Transfer Function

From (4.36), we have

X=(sI—A,)'Bu.

Substituting (4.47) into (4.34) gives

P0(s)= = C(Is—A,)'B
U(S)

20.6

(s + 1)(s + 2)(s + 3)(s + 30)

(4.46)

(4.47)

(4.48)

4.5.4 Setting Initial Point of the Ball in Iteration

Since Iterative Learning Control strongly depends on the same initial point, it is

important to make sure that for each trial the ball is always at the same initial point. If

the initial point is not the same from trial to trial, the ILC control system will be affected.

To set the initial condition, feedback control is applied, as shown in the control scheme of

Figure 4.9.

55

Even with feedback control applied, the initial condition sometimes varied. As an

example, Figures 4.10 and 4.11 show the 2O' trial of two separate experiments. In Figure

4. 10, the initial position (at t = 10 s) is constant and zero, whereas in Figure 4.11, it has

not yet settled. The result is the poorer tracking performance observed in Figure 4.11.

Setting Initial Point of Ball

10

a

2
lnitil Point

r

k.

r

L

r

T -1 r

-I

-1 -r

I..

L.

0 2 4 6 8 10 12 14 16 18 20

Ti me(s)

Figure 4.10: Setting Initial Point of Ball at the 20t1 trial

56

The Influence of Initial Condition
12

10

8

2

I I I I I I I I I

U.pstable Initial PrOifl.:t_
--1-

N
- - - - - - -I
I------1

2 6 8 10 12 14 16 18 20

Ti me(s)

Figure 4.11: Influence of unsteady Initial Point to ILC System Performance at the 2O' trial

4.5.5 Causal ILC on Ball and Beam System

4.5.5.1 For the Case F =1

Initially we choose F =1 to attempt to get a zero ultimate tracking error. Then the

1
ILC update law is u1 = ui-I+ De1_1. To make D proper, we set L = in

(0.5s + 1)4

D = LP'. Since L is causal, so is D. The simulation results in Figure 4.12 show that the

system is divergent and thus validates the Lemma 2 since this system's relative degree is

4. The real system results are also divergent as shown in Figure 4.13, which further

57

verifies the correctness of Lemma 2. From the two figures, we may see that the vibration

becomes bigger and bigger, and the divergence is very clear at i = 150.

Causal ILC on Simulated Ball and Beam with F=1

1=200

2 3 4 5 6 7 6 9 10
Time(s)

Figure 4.12: Causal TLC on Simulated Ball and Beam System with F = 1

12

10

a

2

Causal ILC on Real Ball and Beam System with F1

14

i=10

10 11 12 13 15 15 17 16 19
Time(s)

20

Figure 4.13: Causal ILC on Real Ball and Beam System with F = 1

58

4.5.5.2 In the Case F # 1

The simulation and experimental results in Figure 4.12 and Figure 4.13 prove that

the system will diverge when applying causal ILC with F =1. To avoid the divergence,

we set F = L= 110 and D = LP'. Thus the ILC law is u. = Fu11 + De11.
(0.5s + 1)

Applying this on the simulated system gives results shown in Figure 4.14, while applying

it on the real system gives results shown in Figure 4.15. Both the simulation results and

the real system results show that the system converges with F=L, but the trade-off is that

e # 0.

E
C.,

0-

12

10

0

6

4

2

Causal ILC on Simulated Rail and Ream System with F=L

4-

i=1

Fixd Point

(i=30.18.26)

2 3 4 6 6
Time(s)

7 8 9 10

Figure 4.14: Causal ILC on Simulated on Ball and Beam System with F # 1

59

Causal ILC on Real Ball and Beam Sytem with F=L

10

B

2

L

L. -J

Point and i=10/20130

L

10 11 12 13 14 15 15

Time(s)
17 15 19

Figure 4.15: Causal ILC on Real Ball and Beam System with F # 1

20

4.5.6 Equivalent Feedback Control on Ball and Beam System

Since all operators L, F, and D are causal, there exists an equivalent feedback

control for the causal ILC. According to Theorem 1, the equivalent feedback control gain

is K (1— F)-' (C + D), where F # 1. Correspondingly, the output should be

y = PK(1 + PK)' Yd• In the simulation, the result is as shown in Figure 4.17. Applying

K in the control scheme as shown in Figure 4.16, we get the equivalent feedback control

result from the real system as shown in Figure 4.18. Comparing Figure 4.14 with Figure

4.17, and Figure 4.15 with Figure 4.17 respectively, we see that the equivalent feedback

control can make the system achieve the same fixed point as causal ILC with only one

trial.

60

t.O1

Rot

Ri Inttot

A?

P'S

noo,)

t—o 4

Soop._Th.to

K
Alt

ILCinput

Scope3

Thoto

ThoU Eirol

LI, Saturotlon

K

Kbd

4

- A

Kp

Rd

ILC Input

Suboyto

__r+.±__. SturtionI

PD
Input

4

StOp e2

Scott Sot -

Thoto

XI'S

ThoU

Pooltint

uin,tt Con.ultln
M03 Tiro.t

211

Cnnot.I,t

It. otto 01
Opt rotor

Stop Sltnulotton

Figure 4.16: Equivalent Feedback Control on Ball and Beam

Equivalent Feedback Control on Simulated Ball and Beam System with FL

2 3 4 5 6
Time(s)

7 8 9 10

Figure 4.17: Equivalent Feedback Control on Simulated Ball and Beam System

61

Eqivalent Feedback Control on Ball and Beam

10 11 12 13 14 15 16

Time(s)
17 20

Figure 4.18: Equivalent Feedback Control on Real Ball and Beam System

4.5.7 Noncausal ILC on the Ball and Beam System

In order to achieve zero ultimate error e0, = 0, we apply a noncausal ILC algorithm

on the system as

where

Ui = + De 1, (4.49)

(s-i-1)(s+2)(s+3)(s+30)
D(s) = LPØ' =

S 2

0)0 coo

(4.50)

When w0 = 0.01, we get the simulation results shown in Figure 4.19. These simulation

results show that the system follows the reference quite well when the iteration number

reaches i = I 00 . The results obtained from the real system are shown in Figure 4.20.

62

They are very similar to those in the simulation. At i= 100, the tracking error is

approximately zero..

Noncausal ILC on Simulated Ball and Beam System
12

10

6

2

2 3 4 51 6
Time(s)

7 B 9 10

Figure 4.19: Noncausal ILC on Simulated Ball and Beam System

12

10

2

Noncausal ILC on Ball and Beam System

=50

I

i=10

-I

.1

i= -.100

10 12 13 14 15 16

Time(s)

17 lB 19 20

Figure 4.20: Noncausal ILC on Real Ball and Beam System

63

4.5.8 Noncausal ILC Reduces Phase Delay

Since the Ball and Beam system is a 4th order system and its relative degree is 4,

when it tracks a higher frequency reference, a phase delay will appear. Figure 4.21 shows

an example where the system is required to follow a higher frequency sine wave from

rest. The feedback control performs very well in the first task, but produces a big delay

when tracking the higher frequency signal. For this example the angular frequency of the

sine signal is co = 1.4 rad/s. From the Bode plot of P0 (Figure 4.22), the system's phase

delay is greater than 9O at this frequency.

Applying noncausal ILC (4.49) produces the simulation results shown in Figure

4.23 and the experimental results shown in Figure 4.24. From the simulation results we

notice that the tracking is satisfactory when iteration number reaches one thousand. On

the real system experiment improvement is apparent when the iteration number reaches

one hundred.

Tracking a Higher Frequancy Signal with Feedback Control

15
0 2 4 6 0 10 12

Time(s)
14 16 18 20

Figure 4.21: Tracking a High Frequency Signal with Feedback Control

64

Bode Diagram of P

-5°

-200

-go

-270

.360
10_i

0

 r-i-4-r, -in r

I 96*9

_J_1.9.LLI

999

1011 lD

Frequency (red/sec)

Figure 4.22: Bode Plot of Process Model

Simulated Ball and Beam Tracks a Higher Frequency Signak with Noncausal ILC
6

2 3 4 5 6
Time(s)

7 6 9 10

Figure 4.23: Tracking a Higher Frequency Signal with Noncausal ILC on Simulated Ball and Beam

65

Ball and Beam System Tracks a Higher Frequency Signal with Noncausal ILC
20

12 13 14 15 16

Ti me(s)
17 18 19 20

Figure 4.24: Tracking a Higher Frequency Signal with Noncausal ILC on Real Ball and Beam

4.6 Conclusions About Noncausal ILC

Recalling the simulations and experiments on the DC motor and a NM? plant in

Chapter 3, and summarizing all the simulation and experiment results in this chapter, we

construct Table 4.1.

Table 4.11: Simulation and Experiment Results Comparison

Verified

Theory

Case Simulation

Result

Experiment Result

NMP, P(s) = s —1 Divergent

(Fig. 3.4)
(s+1)2

with F = 1, rel.deg.=1

66

Causal

ILC

DC motor with F =1, rel.deg.=2

1
Ps

Divergent

(Fig. 3.7)

Divergent

(Fig. 3.8) =

" '

s(0.03s+1)

DC motor with F # 1, rel.deg.=2 Convergent

(Fig. 3.9)

Convergent

(Fig. 3.10)

Ball and Beam with F =1,

rel.deg.=4

20.6
PO

Divergent

(Fig. 4.12)

Divergent

(Fig. 4.13)

(S) =

(s + 1)(s + 2)(s + 3)(s + 30)

Ball and Beam with F # 1,

rel.deg.=4

Convergent

(Fig. 4.14)

Convergent

(Fig. 4.15)

Equivalent

Feedback

Control

DC motor with F # 1, rel.deg.=2 Convergent

(Fig. 3.11)

Convergent

(Fig. 3.12)

Ball and Beam with F # 1,

rel.deg.=4

Convergent

(Fig. 4.17)

Convergent

(Fig. 4.18)

Noncausal

ILC

Design

NMP, with F =1, rel.deg.=1 Convergent

(Fig. 4.4)

DC motor with F = 1, rel.deg.=2 Convergent

(Fig. 4.5)

Convergent

(Fig. 4.6)

Ball and Beam with F = 1,

rel.deg.=4

Convergent

(Fig. 4.19)

Convergent

(Fig. 4.20)

67

Noncausal Convergent, Convergent,

ILC Ball and Beam with F = 1, Phase delay is Phase delay is

Tracking rel.deg.=4 reduced. reduced.

Higher (Fig. 4.23) (Fig. 4.24)

Frequency

Signal

Examining the results in Table 4.1, we can obtain some conclusions about

noncausal ILC as follows:

o With the application of a noncausal symmetrical low-pass filter, the convergence

condition of ILC is improved. For most LTI systems, even if a plant's relative

degree is greater than one and/or it is unstable NMP, noncausal ILC can achieve

zero ultimate tracking error.

o Simulations and experiments on the Ball and Beam system validate the theorems

and Lemmas in Chapter 3 for higher order systems and higher relative degree

systems. Noncausal ILC can achieve zero ultimate tracking error for these

systems.

o When applying feedback control on a higher relative degree system tracking a

higher frequency trajectory, a large phase delay exists in the output. Noncausal

ILC eliminates this phase delay.

o ILC strongly depends on the same initial point throughout the experiment. An

unsteady initial point will affect ILC performance.

68

Chapter 5

Robustness of Noncausal ILC for LTI Systems

Robustness is an important property for any control design. Many papers [e.g., 34-

37] discuss a robust performance condition for various ILC designs. But most of them

limit their discussions to causal operators. Lemma 2 in Chapter 3 shows that if P is NMP

or has relative degree greater than one, it is impossible for the tracking error to converge

to zero with causal ILC. Theorem 1 and Theorem 2 in Chapter 3 show that there exists an

equivalent feedback control for any causal ILC. Several experiments in Chapter 4 prove

that a noncausal ILC design as proposed in [29] can improve on causal ILC. Even if the

process is NMP or has higher relative degree, noncausal ILC can make the system track

the reference perfectly. This chapter will concentrate on robustness of noncausal ILC for

LTI systems, including NMP systems.

5.1 Robust Performance Condition of Noncausal ILC

Suppose P is a stable or stabilized LTI system. We may model uncertainty in P as

P=P0(l+zW2), (5.1)

where P0 is a known stable mathematical model of system in transfer function form, W

is a known and stable transfer function representing the size of the plant uncertainty, and

is an unknown stable transfer function with a norm that satisfies, [42].

69

Since P is stable, we may set C = 0 in the ILC algorithm (3.4). Then S = 1 in

(3.23). If we choose F = ito get eç = 0, H in (3.22) becomes

H=i—DP, (5.2)

where

D = LP' (5.3)

to make D proper. According to Lemma 2, for most LTI systems, D must be a

noncausal operator to achieve e = 0. Let L be a noncausal symmetric low-pass filter

such as (4.5). Then,

O<L(1a)≤1. (5.4)

Lemma 3: If 1W2 (fa') 1<1, the system (3.24) converges to e = 0. [29]

Proof: Substituting (5.1) and (5.3) into (5.2) gives

I H(jw) 1=11 - L(jco)(1 + A(jø)W2 (ja)) I. (5.5)

Since 1L " < II IIcQ 1

I H(jco) 1=11 - L(jco) - L(jco)A(jw)W2 (ja) I
≤ 1— L(jco) + L(ja) I W2 (1a) I.

Since I W2 (fto) 1<1, and taking (5.4) into consideration, we get

I H(ja') 1≤ 1 - L(jw)(1— I W2 (jc)) I) <1, (5.7)

which satisfies the convergence condition I H(jw) 1< 1. Since F = 1, e0 =0.

Q.E.D.

(5.6)

70

However if I W2 (Ja) 1>1, then we need to set F # 1 to achieve convergence, which

results in er,, # 0. Since P is stable, we can still choose C = 0 which gives S = I. Then

H in (3.22) becomes

H— F—DP, (5.8)

where D is the same as it was in (5.3). Substituting (5.1) and (5.3) into (5.8) gives

H=F—L(l+L.W2). (5.9)

Lemma 4: If F = L and I L(Jw) 1<1 W2 (Jo)) 1-1, then the system (3.24) converges to

1—L
eoo = 1+LiXW2 Yd' [29].

Proof: Let F = L, where I L(jw) 1<1 W2 (Jo)) I'. Then

I H(Jc)) 1=1 F(Jo)) - L(Jc))(1 + L(Jo))W2 (Jo))) I
=1 F(Jco) - L(Jo)) - L(Jo))(Jc))W2 (Jo))

≤ F(Jw) - L(Jo)) I + I L(Jo))W2 (Jo)) I
=1 L(Jco)W2(Jco) I
<1,

and thus the convergence condition of Lemma 1 is satisfied.

From (3.14) and (3.12), we have

1—F

= 1F+P(C+D) Yd

Substituting C = 0, F = L, (5. 1), and (5.3) into (5.11) gives

1—L
e°' = Yd

1+LzW2

(5.10)

(5.11)

(5.12)

71

Q.E.D.

Remark: The choice F = L minimizes the upper bound on I H(jco) I in (5.10).

5.2 Case Study of the Robustness of Noncausal ILC

Suppose the plant we wish to control is as shown in Figure 5.1.

Yd e k0 W G Y

Figure 5.1: Plant

This plant can be expressed as

e=yd —G(w+u),

where G is open loop system, w is feedback control,

W = k0e,

u is ILC input, and Yd is reference.

Substituting (5.14) into (5.13) gives

where

Thus we have

e SYd - SGu,

S=(1+Gk)'.

e = r - Pu1

 0.

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

72

where

r = SYd (5.18)

is the reference of the closed-loop system, and

P=SG (5.19)

is the closed-loop system.

In order to validate Lemma 3 and Lemma 4, simulations are presented for three

kinds of perturbations.

5.2.1 Case 1: Uncertain Feedback Gain

5.2.1.1 Range of Gain for Convergence to Zero Error (F = 1)

Suppose the open-loop plant in Figure 5.1 is

G= 1
s(s+1)

(5.20)

Feedback control k0 in (5.14) is designed to place the closed—loop poles at 450 from the

real axis. By calculation, we get k0 = 0.5. From (5.16) and (5.19), the closed-loop model

of the plant is obtained as

Po=
1

52 +s+0.5

However the real plant may be expressed as

1

2 +s+k

(5.21)

(5.22)

73

where k varies and brings some uncertainty into plant. According to (5. 1), the uncertainty

is

1— 0.5—k

2 p s2+s+k
(5.23)

According to Lemma 3, a sufficient condition for the system to achieve zero ultimate

error is I W2 (j@) 1<1. Then we have

I /.\(1v)W2 (jv 0.5—k) 1=1 1<1.
s2 + s+k

Substituting s = ja into (5.24) gives

0.5—k
1<1.

2 +(k— w2)2

Taking into account the fact that cv is real number and cv ≥ 0, solving (5.25) gives

0.25≤k≤1.7,

which is the convergence range for the gain with e0, = 0.

(5.24)

(5.25)

(5.26)

5.2.1.2 Simulation Results When F =1 and k is within Range in (5.26)

Within the convergence range in (5.26), the system should be convergent. Since this

result is derived with F = 1, the ultimate error will be e,, = 0. The Bode plot of AW2 is

shown in Figure 5.2 with k = 0.3 and L as described in (4.21) with co = 10. We see that

the magnitude I A(jcv)W2 (jw) j<1 at all frequencies. By applying the noncausal ILC

Ui = Ui_i + De1_1, (5.27)

74

where D = we get the simulation results shown in Figure 5.3. Here, the reference

Yd is Yd = 0.5 - 0.5 cos('zt). We see that the system converges to e, = 0. Later we will

use the same reference Yd in all simulations.

Bode Diagram
0

-10

Ma
gn

it
ud

e
(d
8

-20

.28

-48

-50

80

0

-45

-SD

With F=1 k00 and vlj010

1-

I I I I
• II
I I

I II

-135 --------

-180 -

10-I

I I

I II

II
I

I I

II

-4

100

Frequency (raWsec)

Figure 5.2: Bode Plot of A 1v 2 with F = I and k = 0.3

Simulation of Case 1 with F1 and k=0.3
0.1

0

.0.1

-0.2

-0.3

-0.4
uJ

.05

-0.6

-0.7

-0.0

-0.9
0 2 4 6 8

Time(s)
10 12

Figure 5.3: Simulation of Case I with F = 1 and k = 0.3

10'

14

75

5.2.1.3 Simulation Results When F = 1 and k is Outside of Range in (5.26)

When k is increased to a value outside the convergence range (5.26), the system

begins to diverge. This is because for k outside the convergence range

I A(ja)W (ja)) 1> 1. Figure 5.4 shows a Bode plot created using the same values of L and

D stated previously, and a gain of k = 10. Figure 5.5 shows the divergence of this system.

Bode Diagram

20

Ma
gn
it
ud
e
(d
B)

0

0

.10

-20

.30

150

135

90

45

 H

With FrI and k=1O

r T

10' 100 10'

Frequency (rod/ace)

Figure 5.4: Bode Plot of A IV 2 with F = 1 and k = 10

Simulation of Case 1 with F1 and k=10

0

w

20

15

10

-5

100 2 4 6 8
Time(s)

i=20

10 12 14

Figure 5.5: Simulation of Case 1 with F = I and k = 10

76

5.2.1.4 Convergence to Nonzero with k Outside of Range (5.26)

Suppose k = 3, which is outside of the range in (5.26). Since I W2 (fto) 1>1, we

apply Lemma 4, which suggests choosing F = L and I L(jco) 1<1 t(ja)W2(jw) ' to

make the system converge. If we choose L = 1 with = 5, the Bode

(0 0 0)0

plot of L(jo) and [L.(ja')W2 (ja)J' is as shown in Figure 5.6, where the thick line

represents [z(ja)W2 (jco)]'. Applying noncausal ILC

Ui = Fu1_1 + De,_1, (5.28)

where D = LP', the system converges as shown in Figure 5.7, although eco # 0. The

value of er,, is determined by (5.12) as follows. For the specific values of all operators in

this example, we have

Rs - s2(s - 7.071)(s + 7.07 1)(s2 +s+3)

" / (s - 5.591)(s — 4.116)(s + 5.68)(s + 3.771)(s2 + 1.255s + 0.6339)

Taking partial fraction expansion of (5.29) gives

R(s)=1+
3.1168 3.8547 + 5.1989 4.7962

s+5.68 s-5.591 s-4.116 s+3.771

0.3362s+0.1881
+
s2 +1.255s+0.6339

The two-sided inverse Laplace transform of (5.30) gives

r(t) = 5(t) + 3.1168e 568' - 4.7962e 3771' + 0.3362e °6275' cos(0.49t)

- 0.0467e °6275' sin(0.49t) + (5.1989e4"6' —3 .8547e 5591 ')h(—t)

(5.29)

(5.30)

(5.31)

77

-45

Convoluting of r(t) and yd (t) gives e as shown in Figure 5.7.

Bode Diarom

• I I ii
• I I ii

• iii
• I I

I I 1111111
I I IIillii

III I I I liii

Ii

Ii

I II

I I Ii
• I Ii

• I II

• I II

r

• 11111

II I I I I L
ii I I 111111

-rrn------------ri,,
II I I 1111111

II I I 1111111

 p 1 • IIlIiI
ii I • ii 11111

it
it

0)

CO
0)
.1:
0,

.135 -----

.180

10'

Ii

II

II

-I-,-.
II

II

pIll

1111

III

II

- i_•J
Ii

1. C._)...
I I

I •
• I

lIlt

II

liii

PIll

11111

-.1_

100 10 1 io2

Frequency (red/sec)

Figure 5.6: Bode Plot of (W)' andLwith F = Land k = 3

Simulation of Case 1 with FL and k=3
0.2

-0.2

-0.4

-0.8

i=18,19.20

.1

-I

P

2

78

5.2.2 Case 2: Uncertain Parameter in Plant Model

5.2.2.1 Range of Parameter for Convergence to Zero Error

In this section, we discuss another possible parameter variation in the plant.

Suppose the real plant is

1

S

while the mathematical model is still

Po=
1

s2 + s+O.5

According to (5.1), the uncertainty is

and its magnitude is

If

(1—a)s

P0 s2+as'+k0'

(5.32)

(5.34)

(1— a)ja' - (1— I (Jco)W(Ja) I-I . (5.35)
jaa +k0 \/(aa))2 +(k0 a) 2)2

I (1—a)a 1<1,
\/(aa))2 +(k0 0)2)2

the system will converge to e = 0. Since

(5.36)

I (1—a)a. I-I (1—a)co
J(aw) 2 +(ko _a) 2)2 ,j(1_a)2w2+(ko_a)2)2_a)2+2aa)2

79

if Q=(k0—a 2)2—w2+2av 2 >0 (537)

(5.36) will be true. Substituting k0 = 0.5 into (5.37) and rearranging gives

Q=ø4 +2(a-1)a 2 + 0.25.

So if a > 1, (5.37) is satisfied, and thus (5.36) is satisfied as well.

5.2.2.2 Simulation Results When F =1 and a = 20

(5.38)

When a = 20, which is much greater than 1, Figure 5.8 shows a Bode plot of AW2.

Applying the noncausal ILC indicated in (5.27) with L as in (4.21) and a = 10, after

several iterations, we get the simulation results shown in Figure 5.9, which indicates that

the system converges to e,,, = 0.

Ma
gn

it
ud

e
(d
B)

-30

.90

-225

0
Bode Diagram

I 111111 III I 11441 III I

I 111111 1111111 I 111111 1111111

.5 4..l.J.I.l.U....

111111 1111111 411111 1114141 I

I III 111,4111 I IlIl,l IIIlII,

I 11.44 1111111 4 411111 1111111

I I I 4,4 1114111 I 411111 1111411 I

4 14111 1111111 111111 1111141
474,4 I iuiir I ,rT TrT,T

I 111111 1111114 I 111111 1111111

I 111111 1411111 111111 1111111

.20

I 111111 1111111 141111 1111(11

I 111111 4111111 I 111111 4111111 I

-25 --------------- ' l1I'1'I'Iil

I 111111 \?V fri 1111 I 111111 1111111 I
I I a1n 2b I 1 III I I II I

I I L.11I 1 alfaLi LLL.LI 13 L..1..L.LI I

t'l

14111

1111111 I II

1411111 I 11144114 I

1111111 I 11111111

1411111 I 11411111 I

111111 I I I 111111
1111 I I I 111111

III. I I 1114111

11111 4 I 1114

I 1111

11144

I III

J .1 LILI
I I

I I 1111

I 1111

I 111411

-270

Io

111111 I II III

11111 I I I 4 11111

11111 I I I I 11111

11111 I I I I 11111

LI..ULILJJLI.1I.L,.
1111114 I 41111114 I

1114111 1 11111111

4111111 I 11111114

1144111 I 11111111

11111

111111

111141

111114

VrI-I'tl-- - - - --

I 111111

4 141111

I 111411

I 111411

111111

1111

III
II 1111

- i LLI,tI,L - -

111111

I I III,

111111

II

III

III

1111

1111

10 ' 100 10'

Frequency (red/sec)

Figure 5.8: Bode Plot of ' IV 2 with F = 1 and a = 20

.4

10'.

80

Simulation of Case 2 with F=1 and alfa=20
0.2

i=70, 7, 79,80

-0.2

-0.6

-1.2

r

I-

i=1

-t

-4

2 4 6 8 10 12 14
Time(s)

Figure 5.9: Simulation of Case 2 with F = I and a = 20

5.2.2.3 Simulation Results when F =1 and a = 0.5

When a is out of the convergence range, for example, a = 0.5, with the same ILC

law as in 5.2.2.2 but a0 = 2 in (4.21), the system diverges as in Figure 5.11. This is

because the magnitude of AW is greater than I at some frequencies, as shown in Figure

5.10.

5.2.2.4 Convergence to Nonzero Error when a = 0.5

Since I W (jv) 1>1, we choose F = L. For this example, with a = 0.5, we take

coo = 2 in (4.21). Figure 5.12 shows a Bode plot of I L(jw)J<I A(jw)W2(jv) I1.

Applying the ILC law as shown in (5.28), the system converges to fixed point with

81

Bode Diagram

Mg
nf

tu
de

 (
dB
)

10

5

0

-5

-10

-15

-20

270

225

-I -

With F=1 I
I--,-

135 --------

90 -- -.4 -

10•1 100 101

Frequency (red/sec)

Figure 5.10: Bode Plot of A W with F = I and a = 0.5

Simulation of Case 2 with F=1 and a11a0.5

2 4 6 6
Time(s)

10 12

Figure 5.11: Simulation of Case 2 with F = 1 and a = 0.5

82

e, # 0, as is determined by (5.12). For the specific values of all operators in this

example, we have

R(s) = s2 (s - 2.828)(s + 2.828)(s2 + 0.5s + 0.5)

(s + 2.436)(s + 1.125)(s + 5.68)(s2 — 4. 134s + 4.438)(s2 + 1.074s + 0.6581)

(5.39)

Taking partial fraction expansion of (5.39) gives

0.5994 1.0554 —0.08s+O.1143 0.5352s-2.137
R(s)=1+ + +

s+2.436 s-1.125 s2 +1.074s+O.6582 s2 — 4.134s+4.438 (5.40)

Using two-sided Laplace transform, in the time domain R can be written as

r(t) = 8(t) + 0.5994e 2436' - 1.0554e''25' - 0.08e °537' cos(0.608 it)

+ 0.2586C-1.1171 sin(0.6081t) + [0.5352e 2°67' cos(0.4068t) - 2.5338e 2°67' sin(0.4068t)]h(—t)

(5.41)

Convoluting of r(t) and Yd (t) gives ear, as shown in Figure 5.13.

Bode Diagram

01

•0

40

20

-49

80

90

48

-48

90
10 1

Frequency (red/sec)

With F=L and alfa=O.5

H

I I I I I
L .._..I --- l. J_1_

II

II

-r

III

- r I

- •1-

83

Simulation of Case 2 with F=L and a1fa0.5

0

w

0.2

0

-112

-0.4

-0.6

-0.6

-1

2 4 6 6
Time(s)

Figure 5.13: Simulation of Case 2 with F = L and a = 0.5

5.2.3 Case 3: Multiplication of Plant by Low-pass Filter

5.2.3.1 Range of Cut-off Frequency for Convergence to Zero Error

10 12 14

The third possible uncertainty is brought into plant by F1 in the form of

P=PoPl,

where

Fo =
+s +0.5

1

and

(5.42)

(5.43)

84

P1
- 1 - a),,

S+a),,

The uncertainty can be written as

S

011 = — s

PO ± 1 S+wit

So

I t(jcv)W2 (jcv) 1=1 CO 1<1,
+ a),,2

for all cv,, # 0.

(5.44)

(5.45)

(5.46)

5.2.3.2 Simulation Result

With a),, =5 as an example, the Bode plot for LW2 is as shown in Figure 5.14. Applying

(5.27), and (4.21) with a)0 = 10, the system converges to e c,, = 0 very quickly, as shown

in Figure 5.15.

85

Bode Diagram

Ma
gn

it
ud

e
(d
B)

0

-5

-10

-15

-go

-120

0)

0)
-150

CL

-160

10°

0.2

0

-0.2

-0.4
0

Lu

-0.6

-0.8

-1

r

-.4-

10'

Frequency (red/sec)

1

Figure 5.14: Bode Plot of A W 2 with F = I and W,, = 5

Simulation of Case 3 with F1

i 2

i=6.7.8

-1.2
0

r
i:=1

1

-4

2 4 6 8
Time(s)

10 12

Figure 5.15: Simulation of Case 3 with F = I and '° = 5

14

86

5.3 Summary

In this chapter, we discussed robust convergence condition of noncausal ILC.

Lemma 3 states that if F = 1 and I W2 (jco) I< 1, the system is convergent and the ultimate

tracking error will be e,, = 0. Lemma 4 shows that if I W (jw) I> 1, we need to choose

F = L and I L(jc)) 1<1 W2 (ja) I'to make the system converge, and the ultimate tracking

error will be e = 1 L Yd Lemma 3 and Lemma 4 are applicable to a process of
l+LAW2

any order and any relative degree. To verify Lemma 3 and Lemma 4, we selected three

possible uncertainties that may exist in the plant and simulated them. Table 5.F gives an

outline of the results. For Case 3, the situation of I W2 (ja') I> 1 does not occur. From

Table 5. 1, we can see that in all three cases simulation results obey Lemmas 3 and 4.

Table 5.1: Verification Results of Lemma 3 and Lemma 4

Verification of

Lemma

Robust Condition Perturbation Simulation Results

Lemma 3

(F=1e0,=O)

I W2 (ja) <1

Gain Convergent

(Fig. 5.3)

Coefficient of

first order item

in denominator

of

Convergent

(Fig. 5.9)

87

Adding a low-

pass filter

Convergent

(Fig. 5.15)

I W (jv) 1>1

Gain Divergent

(Fig. 5.5)

Coefficient of

first order item

in denominator

of

Divergent

(Fig. 5.11)

Lemma 4

(F = L # 1

•O)

I W2 (jc)) 1>1, but

I L(jo.') 1<1 W(jco) I-'

Gain Convergent

(Fig. 5.7)

Coefficient of

first order item

in denominator

of

Convergent

(Fig. 5.13)

88

Chapter 6

Summary and Conclusions

6.1 Summary

This thesis reviewed some recent theoretical results in ILC and validated them via

simulation and experiment. These results are namely the equivalence of causal ILC and

feedback control, the limitations of causal ILC when zero tracking error is required, and

the improvement in performance and robustness provided by noncausal ILC.

Since ILC was proposed in the 1980's, most ILC algorithms and designs have been

based on causal operators. Recent research shows that causal ILC cannot achieve zero

ultimate error for processes that are NMP or have relative degree greater than one and

that there exists an equivalent feedback control for any causal ILC [8]. The experiments

and simulations presented in Chapter 3 demonstrate these performance limitations of

causal ILC and validate this equivalence result.

The results in Chapter 3 tell us that there is no reason to use causal ILC since

equivalent feedback control can achieve the same ultimate tracking error without

iterations. To improve causal ILC, a noncausal ILC design is proposed in [29] which

guarantees that the convergence condition I H(ja) j< 1 is satisfied for LTI systems of

any relative degree, including NMP plants. In Chapter 4, simulations and experiments on

a DC motor (with relative degree of 2) and a Ball and Beam system (with relative degree

of 4) validate the feedback equivalence result for higher relative degree processes and

89

demonstrate that noncausal ILC can achieve zero ultimate error for such systems with

relative degree greater than one.

In Chapter 5, we investigated the robustness of this noncausal ILC design. Lemma 3

states that if I W2 (ja) 1<1, the ILC system converges robustly to e., = 0, while Lemma 4

states that if I W2 (jw) 1>1 and j L(jo) 1<1 W (jv) ', the system converges robustly

to e = 1— L y,. These lemmas were validated via simulation for three different
1+LW2

perturbations in the system model.

6.2 Conclusions

Based on our analysis, simulation and experimental verification, we can conclude

the following points regarding ILC:

o Causal ILC has limitations for NMP processes and those plants with relative

degree greater than one. Zero ultimate tracking error is unachievable for these

processes. If the system converges, e, # 0.

o An Equivalent Feedback Control exists for any causal LII ILC algorithm. This

equivalent feedback control design depends only on the causal operators in the

causal ILC algorithm or design. No more information is required. This equivalent

feedback control can achieve the same tracking accuracy of causal ILC in just one

trial.

o Causal ILC has no advantages over feedback control because equivalent

feedback control can achieve the same accuracy as causal ILC without iteration

while the causal ILC may need a large number of trials to achieve this accuracy.

90

o Noncausal ILC can improve on causal ILC. Even if a plant's relative degree is

greater than one and/or it is an unstable NMP plant, noncausal ILC can converge

to zero tracking error. A significant improvement in tracking performance occurs

when tracking a higher frequency trajectory, since the phase delay is drastically

reduced (ideally, to zero).

o Noncausal ILC has very good robustness properties. When I W2 (ja)) 1<1, the

system is convergent and ultimate tracking error is e, = 0, even if the system is

of higher relative degree or NMP. If I W2 (jco) 1>1, we only need to select F = L

and I L(jw) 1<1 W (jco) ' to make the system convergent, and the ultimate

tracking error is e. = 1-L
1 + LLW2 Yd

o Our theoretical results are obtained in the frequency domain with an infinite

frequency interval, while our simulations and experiments are implemented in the

time domain with a truncated time interval. So the simulation and experimental

results are the approximation of the theoretical results.

o Simulation results are slightly different from their corresponding experimental

results because the mathematical models we applied in simulations are

approximations to the real systems. Uncertainty in the real systems also affects

the experimental results.

o Since it is difficult in practice to maintain constant initial conditions, even if

feedback control is applied, an extra error may be brought into the system

performance in practice.

91

6.3 Recommendations for Future Work

To continue this research in future, some recommendations are given as follows:

u The value of LV0 in the filter L is an important factor that influences the

convergence of noncausal ILC and the value of e. It would be useful to develop

a design approach for calculating values of w for optimal performance.

o An experiment on an NMP plant, such as inverted pendulum, to validate the

effectiveness of noncausal ILC on a real NMP system.

o An experimental investigation of the robustness of noncausal ILC.

o An investigation of the truncation effects that occur from implementing an ILC

designed in the frequency domain on a finite time interval.

o An investigation of the influence of varying initial conditions on noncausal ILC,

and the development of a solution to this problem.

92

Bibliography

[1] Kevin L. Moore, Iterative Learning Control for Deterministic Systems. Springer-

Verlag, Landon, 1993.

[2] Kevin L. Moore, Iterative Learning Control: An Expository Overview. Applied and

Computational Controls, Signal Processing, and Circuits, 1:151-214.1999.

[3] M.Uchiyama, "Formation of high speed motion pattern of mechanical arm by trial",

Transactions of the society of Instrumentation and control Engineers, Vol. 19, pp.

706-712, May, 1978.

[4] S. Arimoto, Sadao Kawamura and Fumio Miyazaki, Bettering Operation of Robots

by Learning. J. Robotic Systems, 1(2): 123-140, 1984.

[5] S.Saab, On the P-type Learning Control, IEEE Trans. Automatic Control, 39(11):

2298-2302, 1994.

[6] S. Arimoto, S. kawamura, F. Miyazaki, and S. Tamaki, "Learning Control Theory

for dynamical Systems", In Proc. 24 th conf. Decis. Cont., Ft. Lauderale, FL, Dec,

1985, pp. 1375-1380.

[7] H. Hashimoto and J. X. Xu. "Learning control systems with feedback. In

Proceedings of the IEEE Asian Electronics Conference, Hong Kong, September

1987.

[8] Peter B. Goldsmith. On the equivalence of causal LTI iterative learning control and

feedback control. Automatica, 38, 703-708, 2002.

93

[9] N. Amann, D. H. Owens, and E. Rogers. Iterative learning control using optimal

feedback and feedforward actions. International Journal of Control, 65(2):277-293,

September 1996.

[10] Y. Chen, J. X. Xu, and T. H. Lee. Feedback-assisted high-order iterative learning

control of uncertain nonlinear discrete-time systems. In Proceedings of the

International Conference on Control, Automation, Robotics, and Vision,

Singapore, December 1996.

[11] Yangquan Chen, Jian-Xin Xu, and Tong Heng Lee. Current iteration tracking error

assisted higher order iterative learning control of discrete-time uncertain nonlinear

systems. In Proceedings of the 2nd Asian Control Conference, Seoul, Korea, July

1997.

[12] Peter B. Goldsmith, Stability, Convergence, and Feedback Equivalence of LTI

Iterative Learning Control.

[13] Chong-ho Choi and Tae-Jeong Jang, Iterative Learning Control for a general Class

of Nonlinear Feedback systems. Proceedings of the American Control Conference,

Seattle, Washington. June 1995.

[14] Z. Bien and J. -X. Xu. Iterative Learning Control: Analysis, Design, Integration and

Application. Kluwer Academic Publishers, 1998.

[15] D. H. Hwang, Z. Bien, and S. R. Oh. Iterative learning control method for discrete-

time dynamic systems. In IEEE Proceedings Part D, Control Theory and

applications, volume 138, pages 139-144, March 1991.

[16] C. Chen. A discrete iterative learning control for a class of nonlinear time-varying

systems. IEEE Trans. Automatic Control, 43(5):748-752, 1998.

94

[17] N. Arnann and D. H. Owens. Non-minimum phase plants in iterative learning

control. In Second International Conference on Intelligent System Engineering,

pages 107-112, Hamburg-Harburg, Germany, September 1994.

[18] L. Hideg and R. Judd. Frequency domain analysis of learning systems. In

Proceedings of the 27t"Conference on Decision and Control, pages 586-59 1,

Austin, Texas, December 1998.

[19] R. P. Judd, R. P. Van Til, and L. Hideg. Equivalent Lyapunov and frequency

domain stability conditions for iterative learning control systems. In Proceedings of

8th IEEE International Symposium on Intelligent Control, pages 487-492, 1993.

[20] L. M. Hideg. Stability and convergence issues in iterative learning control. In

Proceedings Intelligent Engineering Systems Through Artificial Neural Networks in

Engineering Conference, volume 4, pages 211-216, Louis, MO, November 1994.

[21] T. Sogo and N. Adachi. Convergence rates and robustness of iterative learning

control. In Proceedings of 35th IEEE Conference on Decision and Control, volume

3, pages 3050-3055, Kobe, Japan, December 1996.

[22] S. Kawamura, F. Miyazaki, and S. Arimoto. Convergence, stability and robustness

of learning control schemes for robot manipulators. In Proceedings of the

International Symposium on Robotic Manipulators: Modelling, Control, and

Education, Albuquerque, New Mexico, November 1986.

[23] K. L. Moore, M. Dahleh, and S. P. Bhattacharyya. Adaptive gain adjustment for a

learning control method for robotics. In Proceedings of 1990 IEEE International

Conference on Robotics and Automation, Cincinnati, Ohio, May 1990.

95

[24] D. de Roover. Synthesis of a robust iterative learning controller using an Hc,

approach. In Proceedings of the 35th IEEE Conference on Decision and Control,

Kobe, Japan, December 1996.

[25] Tae-Yong Doh, Jung-Hoo Moon, Kyung Bog Jin, and Myung Jin Chung. An

iterative learning control for uncertain systems using structured singular value. In

Proceedings of the 2'' Asia Control Conference, Seoul, Korea, July 1997.

[26] Yangquan Chen, Jian-Xin Xu, and Tong Heng Lee. Current iterative tracking error

assisted iterative learning control of uncertain nonlinear discrete-time systems. In

Proceedings of the 35th IEEE Conference on Decision and Control, volume3, pages

3038-3043, Kobe, Japan, December 1996.

[27] J. -X. Xu and Z. Qu. Robust learning control for a class of non-near systems. In

Proceedings of the 35'b IEEE Conference on Decision and Control, Kobe, Japan,

December 1996.

[28] Peter B. Goldsmith. The Fallacy of Causal Iterative Learning Control. In: IEEE

Conference on Decision and Control. Orlando, FL. Pp4475-4480. 2001.

[29] Peter B. Goldsmith. Noncausal Iterative Learning Control for Uncertain LTI

systems. ICAR03, Coimbra, Portugal, June 30 —July 3, 2003.

[30] György Fodor. Laplace Transforms in Engineering. Publishing House of the

Hungarian Academy of Sciences. Budapest, 1965.

[31] Peter B. Goldsmith. The General Equivalence of Causal Iterative Learning Control

and Feedback Control, internal report, University of Calgary, 2002.

96

[32] M. Verwoerd, G. Meinsma, and T. J. A. de Vries. On the use of noncausal lti

operators in iterative learning control. In Proc. IEEE Conference on Decision and

Control, pages 3362-3366, Las Vegas, Nevada, 2002.

[33] Hector G. Chiacchiarini, and Pablo S. Mandolesi. Unbalance Compensation for

Active Magnetic Bearings using ILC. Proceedings of the 2001 IEEE International

Conference on Control Applications. September 5-7, 2001, Mexico City, Mexico.

[34] A. Tayebi and M. B. Zaremba. Robust Iterative Learning Control Design is

Straightforward for Uncertain LTI Systems Satisfying the Robust Performance

Condition. IEEE Transactions on Automatic Control, Vol. 48. No. 1, January 2003.

[35] Tae-Yong Doh, Jung-Hoo Moon, Kyung Bog Jin, and Myung Jin Chung. An

Iterative Learning Control for Uncertain Systems Using Structured Singular value.

In Proceedings of the 211 Asian Control Conference, Seoul, Korea, July 1997.

[36] D. de Roover. Synthesis of a Robus1 Iterative Learning Controller Using an H.

Approach. In Proceedings of the 35'bIEEE Conference on Decision and Control,

Kobe, Japan, December 1996.

[37] J. -X. Xu and Z. Qu. Robust Learning Control for a Class of Non-linear Systems.

In Proceedings of the 35 1h IEEE Conference on Decision and Control, Kobe, Japan,

December 1996.

[38] Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. Feedback Control of

Dynamic Systems. Prentice Hall, New Jersey, 2002.

[39] Ming Xia, and Peter B. Goldsmith. Noncausal ILC Applied to a DC Motor.

submitted to CDC, 2004.

97

[40] Quanser Consulting Inc. A Comprehensive and Modular Laboratory for Control

Systems Design and Implementation. 1997.

[41] Control Tutorials for MATLAB.

http://www.engin.umich.edu/group/ctmIexamp1esIba11/bal1.html

[42] John C. Doyle, Bruce A. Francis, and Allen R. Tannenbaum. Feedback Control

Theory. Macmillan Publishing Company. New York, 1992.

[43] Quanser Consulting Inc. WinCon 3.2 Manual. 1997

[44] The MathWorks, Inc. Simulink—Dynamic System Simulation for Matlab. Version

4. Natick, MA, November, 2000.

[45] Duane Hanselman, Bruce Littlefield. Mastering Matlab 6—A Comprehensive

Tutorial and Reference. Prentice Hall, Inc. Upper Saddle River, New Jersey, 2001.

[46] Hugh F. Vanlandingham. Introduction to Digital Control Systems. Macmillan

Publishing Company, New York, 1985.

[47] Thomas Kailath. Linear Systems. Prentice Hall Information and System Science

Series. 1979.

98

Appendix A

Al: Code of Experiments on Real Systems (Including GUI)

function varargout = moto_noncau(varargin)

% MOTONONCAU Application M-file for moto_noncau.fig
% FIG = MOTO_NONCAU launh moto_noncau GUI.
% MOTO_NONCAU('callback_name', ...) invoke the named callback.
% THIS CODE IS FOR DC MOTOR EXPERIMENTS.

if nargin == 0 % LAUNCH GUI
fig = openfig(mfilename,'reuse');
% Use system color scheme for figure:
set(fig,'Color',get(O,'defaultUicontrolBackgroundColor'));
% Generate a structure of handles to pass to callbacks, and store it.
handles = guihandles(fig);
guidata(fig, handles);
if nargout> 0

varargout(1) = fig;
end

elseifischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK
try

if (nargout)
[varargout{ 1:nargout}] = feval(varargin{:)); % FEVAL switchyard

else
feval(varargin{:}); % FEVAL switchyard

end
catch

disp(lasterr);
end

end

%
ABOUT CALLBACKS:
GUIDE automatically appends subfunction prototypes to this file, and
sets objects' callback properties to call them through the FEVAL
switchyard above. This comment describes that mechanism.

Each callback subfunction declaration has the following form:
<SUBFIJNCTION_NAME>(H, EVENTDATA, HANDLES, VARARGIN)

The subfunction name is composed using the object's Tag and the
callback type separated by'', e.g. 's1ider2_Callback',
'figurel_CloseRequestFcn', 'axisl_ButtondownFcn'.

%
%

H is the callback object's handle (obtained using GCBO).

EVENTDATA is empty, but reserved for future use.

HANDLES is a structure containing handles of components in GUI using

99

%
%

tags as fleidnames, e.g. handles.figurel, handles.s1ider2. This
structure is created at GUI startup using GUIHANDLES and stored in
the figure's application data using GUIDATA. A copy of the structure
is passed to each callback. You can store additional information in
this structure at GUI startup, and you can change the structure
during callbacks. Call guidata(h, handles) after changing your
copy to replace the stored original so that subsequent callbacks see
the updates. Type "help guihandles" and "help guidata" for more
information.

VARARGIN contains any extra arguments you have passed to the
callback. Specify the extra arguments by editing the callback
property in the inspector. By default, GUIDE sets the property to:
<MFJLENAME>('<SUBFUNCTION_NAME>', gcbo, [] guidata(gcbo))
Add any extra arguments after the last argument, before the final
closing parenthesis.

%
function varargout = figure 1_CreateFcn(h, eventdata, handles, varargin)

wq_run; % run WinCon Server

%
function varargout = figurel_CloseRequestFcn(h, eventdata, handles, varargin)

closereq; % close the GUI

%
function varargout = startstop_Callback(h, eventdata, handles, varargin)

if get(handles.startstop,'Value') % button pressed down
set(handles.startstop,'BackgroundColor',[1 0 0]);
set(handles.startstop,'String','STOP');

wc_start;
else

wc_stop;
set(handles.startstop,'BackgroundColor',[O 0.9 0]);
set(handles.startstop,'String','START');
wc_saveplot('Scope - mo noncau\Scopel', 'error.mat');%previous error.
wc_saveplot('Scope - mo_noncau\Scope3', 'uO.mat'); %uO is previous input.
load error.mat;
load u0.mat; % load it to workspace???
short_ time=find(plot_time<=6.000 1);
error=mo_noncau_Scope 1(1:length(short_time));
uO=mo_noncau_Scope3(1:length(short_time));

%computer learning operator D=L*P0l.

k=1;
AK-0=1;
n=length(short_time);
T=plot_time(1:n);
t=T';

100

dtt(2)-t(l);

%The following lines are the calculation of D=L*POJ_1, where L is a noncausal operator.
%This is noncausal convergence case, where F=l, D is noncausal and e_inf=O.
D=learn(k,w_O,n);
du=dt*conv(D,error);
du=du(n:2*nl);

%These following lines are the calculation of D=L*POI_1,where L is a cuasal operator.
%This is cuasal divergence case, where F=l and D is causal.

%d00.08;
%D2=2.3467*exp(_2*t) - 5.0 133*prod([t;exp(_2*t)], 1); %causal D=L*(PO./ 1)

%du=dt*conv(D2?,error);

%dudu(l:n);
%du=do*error+du;

%These following lines are the calculation of D=L*PO_1,where L is a cuasal operator.
%This is cuasal convergence case, where F=L and D is causal and e_inf is non-zero.

%d0=O.08;
%D2=2.3467*exp(_2*t) - 5.0 133*prod([t;exp(_2*t)], 1); %causal D=F(PO.t'-l)

%dudt*conv(D2',error);
%du=du(l:n);%du is n*1 vector
%du=do*error+du;
%F=L=4*prod([t;exp(_2*t)],1);
%ui=dt*conv(F',uO);

%ui=ui(l:n);

newsig=uO+du'; % This law is for noncausal ILC, where F=1 and D is noncausal. ui=uO+D*ei.

%newsig=uO+du'; % This law is for causal divergence case, where F=l and D is causal. ui=uO+D*ei.

%newsig=ui+du; % This law is for causal convergence case, where F=L and D is causal. ui=F*uO+D*ei.

newsig2=newsig;
plot2=plot_time(I : length(short_time));
strp2num2str(p10t2');
strsig2=num2str(newsig2');
setjaram('mo_noncau/Repeating Sequence', 'rep_seqj, ['[' ,strp2, TJT] 'rep_seqy', ['['

,strsig2, 'I']);

end

%THE FOLLOWING CODE IS FOR THE EXPERIMENTS OF BALL AND BEAM SYSTEM
%if get(handles.startstop,'Value') % button pressed down
% set(handles.startstop,'BackgroundColor',[l 0 0]);
%set(handles.startstop,'String','STOP');
%wc_start;

%else
%wc stop;
%set(handles.startstop,'BackgroundColor',[O 0.9 0]);
%set(handles.startstop,'String','START');
%wcsaveplot('Scope - mo_noncau\Scopel', 'error.mat');%previous error.
%wc_saveplot(tScope - mo_noncau\Scope3', 'uO.mat'); %uO is previous input.

101

%load error.mat;
%load uO.mat; % load it to workspace.
%short_time=find(plot_time<=20.000 1);% find the number of sample points.
%n=length(short_time);
%m=floor(0.5*n);

%error=mo_noncau_Scope 1((m+1):2*m);
%uo=mo_noncau_Scope3((m+1):2*m);
%w_0=0.005;

%T=plottime(1:m);
%tT';
%dtt(2)-t(1);

%The following 4 lines are the calculation of D=L*P0/1 for noncausal ILC, where L is a noncausal
operator.
%This is noncausal convergence case, where F=1, D is noncausal and e_inf=0.
%Dc=w_O/4* [_359990O00*exp(w_0*t) + 1820000*prod([t;exp(w_0*t)], 1)]; %causal,wO=0.005

%Da=w_0.4* [359990O0O*exp(w_O*t) + 1780000*prod([t;exp(w_0*t)], 1)] ; %anticausal,wO=0.005
%D=[la(m:-1 :2),lc]; %reverse and concatenate Da and Dc; D=L*POt_1
%dO=wot4; % constant item of D
%du=dt*conv(D,error);
%du=du(m :2*m 1);

%These following lines are the calculation ofD=L*P0'_1 for causal ILC,where L is a cuasal operator.
%This is cuasal divergence case, where F=1 and D is causal.

%d016/20.6;
%D1=tf([28 111 82],[1 6 128]);
%D=dO*D1;
%d = dt*impulse(D,t);
%dudt*conv(d,error);

%du=du(1:m); % for causal

%These following lines are the calculation of D=L*PO_1 for causal ILC,where L is a cuasal operator.
%This is cuasal convergence case, where F=L and D is causal.

%do=16/20.6;
%DI=tf([28 111 82],[1 6128]);
%D=do*D 1;

%F=Ltf([1], [0.0625 0.5000 1.5000 2.0000 1.0000]);
%d = dt*impulse(D,t);
%fdt*im pulse(F,t);
%du=dt*conv(d,error);

%du=du(1:m); % for causal
%dfdt*conv(f,u0);

%df=df(1 :m);

%new sig=uO+DO*error+du'; % This law is for noncausal convergence case, where F=L and D is

% noncausal. uiu0+D*ei.

%newsig=uo+DO*error+dut; % This law is for causal divergence case, where F=1 and D is causal.
% ui=uO+D*ei.

%newsig=df+do*error+du; %This law is for causal convergence case, where F=L and D is causal.
% uiF*u0+D*ei.

102

% newsig2 = [0*t, newsig']; % newsig2 is n dimention.
%p10t2=plottime(1 :2*m);

%strp2=num2str(p1ot2');
%strsig2=num2str(newsig2);
%set_param('mo_noncau/Repeating Sequence', 'rep_seq_t', ['[' ,strp2, '}'}, 'rep_seqy', [t[t

%,strsig2, ']'});

%end

guidata(h,handles);

%
function D=learn(k,w_0,n)

%Apply learning operator L to inoput x.
%Inverse nominal C.L. plat P=1/(s"2 + s + k)
% and applies real 4th-order filter with bandwith=w_0.
%sample time dt assumed.

dt--.01; % sample time
t_max=(n1)*dt;%max time
t=0:dt:t_max;

%coefficients of l(t)=impulse response of L:

c.25*w_O*(kw_Ot2);
cc=.25 *WOA2*(WOA2..wO+k);

ca--O.25 *wOA2*(wOA2+wO+k);
lc=c*exp(_w_0*t) + cc*prod([t;exp(_w_0*t)], 1); %causal
la=c*exp(_w_O*t) + ca*prod([t;exp(_w_0*t)], 1); %anticausal

D=[la(n:-1 :2),lc]; %reverse and concatenate Ia and Ic

%
function F = fi1ter4(w_0,n)

% Impulse response of real 4th order filter.
% Sample time dt assumed.
dt= .01; % sample time
t_max = (n 1)*dt; % max time
t = 0:dt:t_max; % time vector
fc .25*w_0*exp(_w_0*t) + .25*w_0t2*(t.*exp(_w_0*t)); % causal part

F = dt*[fc(n:_1 :2), fc]; %reverse and concatenate to add noncausal part

%
function varargout = checkbox_F_Callback(h, eventdata, handles, varargin)

if get(handles.checkbox_F,'Value') % checked
set(handles.F_num,'Enable','On');
set(handles.Fden,'Enable','On');

else
set(handles.checkbox_F,'String','O');

103

set(handles.F_num,tEnable','Off);
set(handles.F_den,'Enable','Off);

end

guidata(h,handles);

%
function varargout = F_numCallback(h, eventdata, handles, varargin)

NewNum = get(handles.F_num,'String');
if check(NewNum)
F_numer=NewNum;

else
set(handles.F_num,'String','Ot);

end

guidata(h,handles);

%
function varargout = F_den_Callback(h, eventdata, handles, varargin)

NewDen = get(handles.F_den,'String');
if check(NewDen)
F_deno=NewNum;

else

set(handles.F_den,'String',tO');
end

guidata(h,handles);

%
function varargout = checkbox_C_Callback(h, eventdata, handles, varargin)

if get(handles.checkbox C,'Value') % checked
set(handles.C_num,'Enable','0n5;
set(handles.C_den,'Enable','On');

else
set(handles.checkbox_C,'String','O');
set(handles.Cnum,'Enabl&,'Off);
set(handles.C__den,'Enable','Off);

end

guidata(h,handles);

%
function varargout = C_numCallback(h, eventdata, handles, varargin)

NewNum = get(handles.C_num,'String');
if check(NewNum)
Cnumer=NewNum;

104

else
set(handles.C_num,'String','O');

end

guidata(h,handles);

%
function varargout = C_denCallback(h, eventdata, handles, varargin)

NewDen = get(handles.C_den,'String1);
if check(NewDen)
Cdeno=NewNum;

else
set(handles.C_den,'String','O');

end

guidata(h,handles);

%
function varargout = checkbox_D_Callback(h, eventdata, handles, varargin)

if get(handles.checkbox_D,'Value') % checked
set(handles.D_num,'Enable','On');
set(handles.D_den,'Enable','On');

else
set(handles.checkbox_ID,'String','Ot);
set(handles.D_num,'Enable','Off);
set(handles.D_den,'Enable','Off);

end

guidata(h,handles);

%
function varargout = D_num_Callback(h, eventdata, handles, varargin)

NewNum = get(handles.D_num,'String');
if check(NewNum)
Dnumer=NewNum;

else
set(handles.D_num,'String','O');

end

guidata(h,handles);

%
function varargout = D_den_Callback(h, eventdata, handles, varargin)

NewDen = get(handles.D_den,'String');
if check(NewDen)
D_deno=NewNum;

else

105

set(handles.Dden,'String', 1 IØI\.

end

guidata(h,handles);

%
function varargout = checkbox_I_Callback(h, eventdata, handles, varargin)

if get(handles.checkbox_I,'Value') % checked
set(handles.Value_I,'Enable','On');
set(handles.slider_I,'Enable','On');

else
set(handles.checkboxl,'String','O');
set(handles.Value_I,'Enable','Off);
set(handles.slider_I,'Enable','Off);

end

guidata(h,handles);

%
function varargout = Value_I_Callback(h, eventdata, handles, varargin)

NewStrVal = get(handles.Value_I,'String');
Max = get(handles.slider_I,'Max');
Mm = get(handles.sliderl,'Min');
NewVal = str2double(NewStrVal);

if isnan(NewVal)
Old,Va1 = get(handles.slider_I,'Value');
set(handles.Value_I,'String',num2str(OIdVal));
return

elseif (NewVal > Max)
NewVal = Max;

elseif (NewVal < Mm)
NewVal = Mm;

end
set(handles.Value_I,'String',num2str(NewVal));
set(handles.sliderl,'Value',NewVal);% set I-gain in Simulink model
setjaram('mo_noncau/PID Controller/K2','Gain',num2str(NewVal));

guidata(h,handles);

%
function varargout = slider_I_Callback(h, eventdata, handles, varargin)

NewVal = get(handles.slider_I,'Value');
set(handles.Value_I,'String',num2str(NewVal)); % set I-gain in Simulink model
set_param('mo_noncau/PID Controller/K2','Gain',num2str(NewVal));

guidata(h,handles);

106

%
function varargout = checkbox_Der_Callback(h, eventdata, handles, varargin)

if get(handles.checkbox_Der,'Value') % checked
set(handles.Value_Der,'Enable','On');
set(handles.slider_Der,'Enable','On');

else
set(handles.checkboxDer,'String','O');
set(handles.Value_Der,'Enable','Off);
set(handles.slider_Der,'Enable','Off);

end

guidata(h,handles);

%
function varargout = Value_Der_Callback(h, eventdata, handles, varargin)

NewStrVal = get(handles.Value_Der,'String');
Max = get(handles.slider_Der,'Max');
Mm = get(handles.slider_Der,'Min');
NewVal = str2double(NewStrVal);
if isnan(NewVal)

OldVal = get(handles.slider_Der,'Value');
set(handles.Value_Der,'String',num2str(OldVal));
return

elseif (NewVal > Max)
NewVal = Max;

elseif (NewVal < Mm)
NewVal = Mm;

end
set(handles.Value_Der,'String',num2str(NewVal));
set(handles.slider_Der,'Value',NewVal); %set I-gain in Simulink model
setjaram('mo_noncau/PID Controller/K 1','Gain',num2str(NewVal));

guidata(h,handles);

%
function varargout = slider_Der_Callback(h, eventdata, handles, varargin)

NewVal = get(handles.slider_Der,'Value');
set(handles.Value_Der,'String',num2str(NewVal));% set I-gain in Simulink model
setparam('mononcau/PID Controller/K 1 ','Gain',num2str(NewVal));

guidata(h,handles);

%
function status = check(string)

% checks if STRING is in default MATLAB notation for numerator or denominator of
% transfer function.
% STATUS is 1 if all is well, 0 otherwise.
status = 1;

107

% check the first and last character that are not whitespace
n = length(string);
iO= 1;
jO=O;
first = 0;
last = 0;
for i= 1:n

if- first % the first character has not been found yet
if isspace(string(i))

iO = i0 + 1;
else

if (string(i)
status = 0;
return

end
first = 1; % checked first non-whitespace character

end
end
if —last % the last character has not been found yet

if isspace(string(n+1-i))
jO=jO+ 1;

else
if (string(n+1-i) -

status = 0;
return

end
last = 1; % checked last non-whitespace character

end
end
if (first & last)

break % break out of the FOR loop
end

end

k = 0; % previous character is white space if k = 0
checkstring = "; % initialise checkstring
for i = (1+io):(length(string)-j0-l) % check rest of the string

if isspace(string(i))
if k % previous character was not whitespace

if (isnan(str2double(checkstring)) I isinf(str2double(checkstring)))
status = 0;
return

end
k=0;

end
else

if k % previous character was not whitespace, add string(i) to checkstring
checkstring = strcat(checkstring,string(i));

else
checkstring = string(i);
k=1;

end
end

end
if (isnan(str2double(checkstring)) I isinf(str2double(checkstring)))

108

status = 0;
end

%
function varargout = Time_edit_Callback(h, eventdata, handles, varargin)

NewStrVal=get(handles.Time_edit,'String');
NewVal=str2double(NewStrVal);
if isempty(NewVal) I (NewVal<0)

set(h, 'String', '00');
else
TimeVal=NewVal;
setjaram('mo_noncau/Constant','value',num2str(TimeVal));

end

guidata(h,handles);

%
function varargout = Numberedit_Callback(h, eventdata, handles, varargin)

NSVal_n=get(handies.Number_edit,'String');
NVal_n=str2num(NSVal_n);
if isempty(NVal_n)I(NVal_n<0)

set(handles.Number_edit, 'String', '00');
else
NumValNVaLn;

end

guidata(h,handles);

%
function varargout = Initialise_Callback(h, eventdata, handles, varargin)

if (exist('mo_noncau','file')-4)
errordlg('The Simulink model cannot be found.',...

'Error opening "mo_noncau.mdl",'modal');
return

else
open_system('mo_noncau.mdl');
if (exist('mo_noncau.wcl','file')-=2)

wc_build('mo_noncau');
else

wcdownload('mononcau');
end
wc_openplot('mo_noncau');

end

set(handles.startstop,'Enable','on');
set(handles.Time_edit,'Enable','on');
set(handles.Number_edit,'Enable','on');
set(handles.checkbox_I,'Enable','on');
checkbox_I_Callback(h, eventdata, handles, varargin);

109

set(handles.checkbox_Der,'Enable','on');

checkbox_D er _Callback(h, eventdata, handles, varargin);
set(handles.checkbox_F,'Enable','on');
checkboxFCallback(h, eventdata, handles, varargin);
set(handles.checkbox_C,'Enable','on');
checkboxCCallback(h, eventdata, handles, varargin);
set(handles.checkbox_D,'Enable','on');
checkbox_D_Callback(h, eventdata, handles, varargin);
set(handles.popupmenu2,'Enable','on');
popupmenu2_Callback(h, eventdata, handles, varargin);
guidata(h,handles);

%
function varargout = popupmenu2 Callback(h, eventdata, handles, varargin)

NewVal = get(handles.popupmenu2,'Value');
switch NewVal
case I

set_param('mo_noncau/G 1 ','gain',' 1');
set_param('mo_noncau/G2','gain','0');

case 2
set_,param('mo_noncau/G2','gain',' 1 ');
setjaram('mo_noncau/G 1','gain','O');

end

guidata(h,handles);

A.2: Code of Figure 3.4

%Figure 3.4 is produces by this code.
clear;
P=tf([I - 1],[1 2 1]);
Yd=tf([l], [1 2 1]);
dt=0.01;
tP=0:dt:20;
pimpulse(P,tl);
yd=impulse(Yd,tl);
u=exp(tl);
y = dt*conv(p,u); %y = Pu

y((length(tl)+1):length(y)) = []; % right truncate
plot(tl,yd,tl,y), grid on;

A3: Code of Figure 3.5

% Figure 3.5: ILC in time domain: P=1/s+1, 0=0, D=1, F=1
clear
dt = .01; % time interval
t=0:dt:pi;
yd=1+sin(0. 1*tpi/2);

p = exp(-t);
Ui = o*t; %initial input
ei = yd; %initial error
for i = 1:20, %ILC iterations

110

ui = Ui + ei;
y = dt*conv(p,ui); %y = Pu

y((lengtht+1):length(y)) = [1; % right truncate
yi(i,:)=y;
ei = yd - y;
u(i,:) = Ui;
e(i,:) = ei;

end
plot(t,yi([l 2 5 10 20],:));grid on

A4: Code of Figure 3.6

%This code produces Figure 3.6
%P=1/(s+1)'2
clear;
D=0;
n=50;
m=30;

for k=1:m
u(1,k)0;
t(k)=k*0. I;

e(1,k)=0;
y_d(k)=0.5+0.5*sin(0. 1*k_pi/2);

P(k)=exp(-t(k));% P=1/(s+1)
C(k)=1;
F(k)=1;

end

for i=1:n
for k=1:m

y(i,k)=P(k)*u(i,k);

e(i+ 1,k)=y d(k)-y(i,k); % add i in the first colonm

u(i+1,k)=F(k)*u(i,k)+C(k)*e(i+1,k)+D*e(i,k); % e(i+ 1,k)is current error.

end
end

% Equivalent Feedback control
for k=1:m
q=5000; % q is a gain constant
K(k)=C(k)+q(C(k)+D);
G(k)=1+P(k)*K(k);

M(k)='G(k)."(-l);
E(k)M(k)*y_d(k);
U(k)=K(k)*E(k);
Y(k)=P(k)*U(k);

end

plot(t,y_d,t,y(10,:),t,Y),grid on;

111

A5: Code of Figure 3.7

% Figure IT DC motor model:G=1.5/s(0.03s+1)
% D=F(P)!'-1, F=l/(0.5s+l)/'2.
clear
t_s = 0; % start of stroke (end of backswing)
t_f= 5; % end of stroke (start of follow through)
tmax = 6; % end of trial
dt = .01; % sample time
n = t_maxldt+1; % number of samples in e and u
t = 0:dt:t max; % time vector
yd = .5_.5*cos(pi/(t_f_t.$)*(dt:dt:(t_f_t_s)));

yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru ts
yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd 1 from t = t_f to t_max
ui = o*t; %initial input
ei = yd; %initial error
ei_1=yd;

for k=1:n

t(k)=(k_1)*0.01;

p(k)1.5_1.5*exp(_33.33*t(k)); % P=1.5/s(0.03s+1);

D2(k)=2.3467*exp(2*t(k)) - 5.0133*t(k)*exp(_2*t(k)); % DF(P0.'- I)

end

C=0.0005;
DI=0.08;
F=1;

%i=1
du = dt*conv(D2,eil);

du((length(t)+l):length(du)) = [1; % right truncate
ui=ui+D1*ei_1+C*ei+du; % ILC control law
y = dt*conv(p,ui); %y = Pu

y((length(t)+1):length(y)) = [1; % right truncate
ei = yd - y;

u(l,:) = ui;
e(1,:)=ei;

%i=2
du = dt*conv(D2,ei_I);

du((length(t)+l):length(du)) = [1; % right truncate
ui=ui+D 1*ei_1+C*e(l,:)+du;% ILC control law
y = dt*conv(p,ui); %y = Pu

y((Iength(t)+1):length(y)) = [1; % right truncate
ei = yd - y;
Y(2,:)=y;
u(2,:) = ui;
e(2,:) = ei;

for i = 3:50, %ILC iterations
du = dt*conv(D2,e(i2,:));

112

du((length(t)+1):length(du)) = []; % right truncate
ui=ui+D 1*e(i_2,:)+C*e(i_ 1,:)+du;% ILC control law
y = dt*conv(p,ui); %y = Pu

y((length(t)+1):Iength(y)) = [1; % right truncate
ei = yd - y;
Y(i,:)=y;
u(i,:) = ui;
e(i,:) = ei;

end

plot(t,yd,t,Y([10 20 30],:));grid on

A6: Code of Figure 3.9

% This code produces Figure 3.9: DC motor model:G=1.5/s(O.03s+1)
% D=F(P)/-1, F=1/(.5s+1).'2,
clear
t_s = 0; % start of stroke (end of backswing)
t_f = 5; % end of stroke (start of follow through)
t_max = 6; % end of trial
dt = .01; % sample time
n = t max/dt+1; % number of samples in e and u
t = 0:dt:t_max; % time vector
yd = .5..5*cos(pi/(t_f_t_s)*(dt:dt:(t_f_t_s)));

yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru t_s
yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd = I from t = t_f to t_max
ui = 0*t; %initial input
ei = yd; %initial error
ei_1=yd;

for k=l:n
t(k)=(k_1)*0.01;

p(k)=1.5-1 .5*exp(_33 .33*t(k)); % P=1.5/s(0.03s+l);
F(k)=4*t(k)*exp(_2*t(k));%F=1/((0.5*s+1)/2);

D2(k)=2.3467*exp(2*t(k)) - 5.0133 *t(k)*exp(2*t(k)); % D=F(PO.t'-1)

end

C=0.0005;
D1=0.08;

%i=1
ui = dt*conv(F,ui) + dt*conv(D2,ei_1);

ui((length(t)+1):length(ui)) = []; % right truncate
ui=ui+DI*ei_1+C*ei;% ILC control law
y = dt*conv(p,ui); %y = Pu

y((length(t)+1):length(y)) = [1; % right truncate
ei = yd - y;
Y(1,:)=y;
u(1,:) = ui;
e(1,:) = ei;

%i=2
ui = dt*conv(F,ui) + dt*conv(D2,ei_1);

ui((length(t)+I):length(ui)) = []; % right truncate
ui=ui+D I *ej I+C*e(I,:);% ILC control law

113

y = dt*conv(p,ui); %y = Pu

y((length(t)+1):length(y)) = [1; % right truncate
ei = yd - y;

u(2,:) = ui;
e(2,:) = ei;

for i = 3:50, %ILC iterations
ui = dt*conv(F,ui) + dt*conv(D2,e(i2,:));

ui((length(t)+1):length(ui)) = []; % right truncate
ui=ui+D 1*e(i_2,:)+C*e(i_ 1,:);% ILC control law
y = dt*conv(p,ui); %y = Pu
y((length(t)+1):length(y)) = [1; % right truncate
ei=yd - y;

u(i,:) = ui;
e(i,:) = ei;

end
plot(t,yd,t,Y({ 10 15 20 30 35},:));grid on

A7: Code of Figure 3.11

% This code produces Figure 3.11: DC motor model:P=1.5/s(0.03s+1)
% D=F(P)/-1, F=1/(.5s+1)/Q,
clear;
% It is assumed that all time markers divide evenly by dt:
t_s = 0; % start of stroke (end of backswing)
tf = 19; % end of stroke (start of follow through)
t_max = 20; % end of trial
dt = .01; % sample time
n = t_max/dt+1; % number of samples in e and u
t = 0:dt:t_max; % time vector
yd = .5-.5 *cos(pi/(tf_ts)*(dt:dt:(tf_ts)));
yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru t_s

yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd = I from t = t_f to t_max
P = tf([1.5],[0.03 10]);% Balibeam closed-loop tranfer fuction.
L=tf([1],[0.25 11]);
F=L;

1;
C=1
K=[(I F)f1]*(C+D);
M=(I+P*K)I1;
tsh = dt:dt:t_max+dt; % time shifted forward by dt
m = dt*impulse(M,tsh);
e=dt*conv(m ,yd);

e=e(1 :n);
y=yd-e;
plot(t,y,t,yd);grid on

A8: Code of Figure 4.4

%This code produces Figure 4.4: Noncausal ILC on NMP plant
clear;
P=tf([l - l],[1 2 1]);
Yd=tf([1], [1 2 1]);

114

dt=0.01;
t10:dt:20

for k= 1001:-i: 1 % Initializing
t2(k)(k1)*0.01 ;

uO(k)=-exp(t2(k));
%u2(k)=-exp(t2(k));

end

for k=1:1001
u2(k)u0(1001-k+i);
yd(k)0;

end

p(l)=l;
pl(lOOl)=l;

for k=2:1001
t3(k)=(k_1)*0.01 ;

u2(1000+k)=0;
p(k)=.exp(_t3(k))2*t3(k)*exp(_t3(k));
p(1000+k)=0;
yd(1000+k)=t3(k)*exp(t3(k));
pl(1000+k)p(k);

end

ui=u2;

for i = 1:50, %ILC iterations
y = dt*conv(p,ui); %y = Pu
y((length(tl)+1):length(y)) = []; % right truncate
ei = yd - y;

u(i,:) = Ui;
e(i,:) = ei;
ui=ui+0.oi*ei;

end

plot(tl,yd,ti ,Y([50],:));grid on

A9: Code of Figure 4.5

% This code produces Figure 4.5,where DC motor model: G= i.5/(0.03s'2+s),
% r = Sy_d, u_i = u_(i-1) + D*e_(i_1),

% D is composed of P'-1 and a real 4th-order filter F=1/[((s/w0+1)."2)((s/w0-1)."2]
%with bandwith = w_0.

clear;
k = 2; % feedback gain in C.L. plant
w_0 = 10; % bandwith of learning filter

% It is assumed that all time markers divide evenly by dt:
t_s = 0; % start of stroke (end of backswing)
t_f = 5; % end of stroke (start of follow through)
tmax = 6; % end of trial

115

dt = .01; % sample time
n = t_max/dt+1; % number of samples in e and n
t = 0:dt:t max; % time vector
yd = .5_.5*cos(pi/(t_f_t_s)*(dt:dt:(t_f_t_s)));

yd = [0*(0:dt:t_s), yd]; % yd = 0 from t =0 thru t_s
yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd = 1 from t = t_f to t_max
G=tf([1.5],[0.03 10]);
S = (1+k*G)r(1);
P=S*G;

tsh = dt:dt:t_max+dt; % time shifted forward by dt
s = dt*impulse(S,tsh);

p = dt*impulse(P,tsh);

r = conv(s,yd); %closed-loop reference
r = r(1:n); % truncate
ui = 0; % initial input
ei = r; %initial error
e(1,:) = ei; % plotting array
y(1,:)=yd+ei;
f= fi1ter4(w_0,n); % compute filter used by D

for i= 2:30,
du = conv(f,ei); % filter the error
du = [du(n:2*n_1),zeros(1,nl)]; % truncate and pad with zeros
du = deconv(du,p); % apply P inverse
ui = ui + du; % update control input
yi = conv(p,ui); % y = Pu
yi = yi(1:n); % truncate
ei = r - yi; % error
e(i,:) = ei; % store error for plotting
y(i,:)=yd+ei;

end

plot(t,y);grid on

A1O: Code of Figure 4.12

% Apply Causal ILC on BB. F=1, divergent case.
%Apply a 4-order causal filter on it.
% u_i = u(i-1) + De(i-1)
% D is a causal operator.
% P is changed to have better poles placement. pole=(-30 -3 -2 -1].
clear;
w_0 = 2;

% It is assumed that all time markers divide evenly by dt:
t_s = 0; % start of stroke (end of backswing)
t_f = 19; % end of stroke (start of follow through)
t_max = 20; % end of trial
dt= .01; % sample time
n = t_maxldt+1; % number of samples in e and u
t = 0:dt:t max; % time vector
yd = .5_.5*cos(pi/(t_f_t_s)*(dt:dt:(t_f_t_s)));

yd = [0*(0:dt:t_s), yd]; % yd = 0 from t =0 thru t_s

yd = [yd, ones(size(t_f+dt:dt:t_max))}; % yd = I from t = t_f to t_max

116

P = tf([20.6],[l 36 191 336 180]);% Ballbeam closed-loop tranfer fuction.
D=tf([16],[18 24 32 16]);
F=1;
dO=16/20.6;
DI=tf([28 111 82],[1 6 12 8]); % a causal operator
D=do*D1;

tsh = dt:dt:t max+dt; % time shifted forward by dt
d = dt*impulse(D,tsh);
p = dt*im pulse(P,tsh);

ui = o*t; % initial input
ei=yd;
e(1,:) = ei; % plotting array

for i = 2:200,
du=dt*conv(d,ei);
du=du(n:2*n1);

ui = ui + (dO*ei + du); % update control input: ui=Fu(i-1)+De(i-1).
yi = conv(p,ui); % y = Pu
yi = yi(1:n); % truncate
ei=yd-yi;
e(i,:) = ei; % store error for plotting
y(i,:)=yi;

end

plot(t,y([50 100 150 200],:),t,yd);grid on

All: Code of Figure 4.14

% This code produces Figure 4.14, Apply a 4-order causal filter on it.
% ui = Fu_(i-l) + De_(i-1)
% Cis composed of P"-1 and a real 4th-order filter L.
% P is changed to have better poles placement. pole=[-30 -3 -2 - 1].
clear;
% It is assumed that all time markers divide evenly by dt:
t = 0; % start of stroke (end of backswing)
t__f = 19; % end of stroke (start of follow through)
t_max = 20; % end of trial
dt = .01; % sample time
n = t_max/dt+l; % number of samples in e and u
t = 0:dt:t_max; % time vector
yd = .5-.5 *cos(pi/(tf_ts)*(dt:dt:(tf_ts)));
yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru t_s
yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd = I from t = t_f to tmax
P = tf([20.6],[1 36 191 336 180]);% Bailbeam closed-loop tranfer fuction.
L=tf([110],[0.0625 0.5 1.521]);
F=L;
D=L*P'1;

tsh = dt:dt:t_max+dt; % time shifted forward by dt
d = dt*impulse(D,tsh);
p = dt*impulse(P,tsh);
f= dt*impulse(F,tsh);

ui = o*t; % initial input
ei=yd;
e(1,:) = ei; % plotting array

117

for i = 2:20,

du=dt*conv(d,ei);

du=du(1:n);
du 1dt*conv(f,ui);

du1du1(1:n);
ui = dul + du; % update control input: ui=Fu(i-1)+De(i-1).
yi = conv(p,ui); % y = Pu
yi = yi(1:n); % truncate
ei=yd-yi;
e(i,:) = ei; % store error for plotting
y(i,:)=yi;

end

plot(t,y([12 3 10 18 20],:),t,yd);grid on

Al2: Code of Figure 4.17

% This code produces Figure 4.17. Apply Equivalent Feedback Control on BB. F is not equal to 1.
clear;
% It is assumed that all time markers divide evenly by dt:
t_s = 0; % start of stroke (end of backswing)
t_f= 19; % end of stroke (start of follow through)
t_max = 20; % end of trial
dt= .01; % sample time
n = t_max/dt+1; % number of samples in e and u
t = 0:dt:t_max; % time vector
yd = .5-.5 *cos(pi/(tf_ts)*(dt:dt:(tf_ts)));
yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru t_s

yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd = 1 from t = t_f to t_max
P = tf([20.6],[1 36 191 336 180]);% Balibeam closed-loop tranfer faction.
L = tf([110],[0.0625 0.5 1.5 2 1]);
F=L;
D=L*P"1;

C=0

M=(l+P*K)I1;
tsh = dt:dt:t_max+dt; % time shifted forward by dt
in = dt*impulse(M,tsh);
e=dt*conv(m ,yd);

e=e(1 :n);
y=yd-e;
plot(t,y,t,yd);grid on

A13: Code of Figure 4.19

% This code produces Figure 4.19. Apply Noncausal ILC to BB.
clear;
w_0 = 0.01; % bandwith of learning filter.

% It is assumed that all time markers divide evenly by dt:
t_s = 0; % start of stroke (end of backswing)
t_h=10;% half point oft

118

t_f = 19; % end of stroke (start of follow through)
t_max = 20; % end of trial
dt = .01; % sample time
n = t_max/dt+1; % number of samples in e and u
t 0:dt:t_max; % time vector
tl=-tmax:dt:tmax;
ydi = 10_10*cos(pi/(t_f_t_s)*(dt:dt:(t_h_t_s)));
yd2 = 10_10*cos(pi/(t_f_t_s)*(t_h_t_s)) + 1-1 *cos(10*pi/(tf_t s)*(dt:dt:(th_t s)));

yd = [0*(0:dt:t_s), ydl, yd2]; % yd = 0 from t = 0 thru t_s
P = tf([20.6],[1 36 191 336 180]);% Bailbeam closed-loop tranfer fuction.
tsh = dt:dt:t_max+dt; % time shifted forward by dt
p = dt*impulse(P,tsh);

ui = 0; % initial input
ei=yd;
e(1,:) = ei; % plotting array
lc=w_0/4*[_359990000*exp(_w_0*t) + 1820000*prod([t;exp(_w _0*t)], 1)]; %causal,w0=0.005
la=w0/4* [359990000*exp(_w 0*t) + 1780000*prod([t;exp(w _0*t)], 1)] ; %anticausal,wO=0.005

L=[la(n:-1:2),lc]; %reverse and concatenate la and ic; L=F*P0_1
L1=w_0."4; % constant item of L

for i= 2:100,
dudt*conv(L,ei);
du=du(n:2*n1);
ui = ui + du +L1 *ei; % update control input
yi = conv(p,ui); % y = Pu
yi = yi(1:n); % truncate
eiyd-yi;
e(i,:) = ei; % store error for plotting
y(i,:)=yi;

end

plot(t,y([10 100 200 300 400],:),t,yd),grid on;

A14: Code of Figure 4.23

% This code produces Figure 4.23. Tracking a higher frequency signal.
clear;
w0 = 0.01; % bandwith of learning filter.
% It is assumed that all time markers divide evenly by dt:
t_s = 0; % start of stroke (end of backswing)
tf = 9; % end of stroke (start of follow through)
t_max = 10; % end of trial
dt = .01; % sample time
n = t_max/dt+1; % number of samples in e and u
t = 0:dt:t_max; % time vector
tl=-t_max:dt:tmax;

yd=5 *sin(2*pi/4.5 *(dt:dt:(tf.t s)));

yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru t_s

yd = [yd, 0*ones(size(t_f+dt:dt:t_max))]; % yd = 1 from t = t_f to t_max
P = tf([20.6],[1 36 191 336 180});% Bailbeam closed-loop tranfer fuction.
tsh = dt:dt:t_max+dt; % time shifted forward by dt
p = dt*impulse(P,tsh);

ui = 0; % initial input

119

ei=yd;
e(1,:) = ei; % plotting array
1cw_0/4* [359990000*exp(w 0*t) + 1820000*prod([t;exp(w_0*t)], 1)1; %causal,wO=0.005
la=w_0.rs4* [359990000*exp(_w _0*t) + 1780000*prod([t;exp(_w _0*t)], 1)] ; %anticausal,w0=0.005
L=[la(n:-1:2),lc]; %reverse and concatenate la and ic; L=F*P0_1
Llw_0/4; % constant item of L

for i = 2:1000,
dudt*conv(L,ei);
du du(n:2*n 1);

ui = ui + du +Ll *ei; % update control input
yi = conv(p,ui); % y = Pu
yi = yi(1:n); % truncate
ei=yd-yi;
e(i,:) = ei; % store error for plotting
y(i,:)=yi;

end

plot(t,y([10 100 1000J,:),t,yd),grid on;

A15: Code of Figure 5.3

%Figure 5.3 is produced by this code.
% u_i = u_(i-1) + De_(i-1)
% D is composed of P'-1 and a real 4th-order filter with bandwith = w_0.
clear;
kO =0.5 ; % feedback gain in C.L. plant
k = 0.3; % can introduce model error via k_0 neq k; when ko=9, it diverges.
w_0 = 10; % bandwith of learning filter

% It is assumed that all time markers divide evenly by dt:
t = 2; % start of stroke (end of backswing)
t__f = 12; % end of stroke (start of follow through)
t_max = 14; % end of trial
dt = .01; % sample time
n = t max/dt+1; % number of samples in e and u
t = 0:dt:t_max; % time vector
yd = .5-.5 *cos(pi/(tf..ts)*(dt:dt:(tf_ts)));

yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru t_s
yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd = I from t = t_f to t_max
P=tf([1],[1 1 k]);
tsh = dt:dt:t_max+dt; % time shifted forward by dt
s = dt*impulse(S,tsh);
p = dt*impulse(P,tsh);

S_0 = (1+k0*G)(1); % model of S
SO dt*impulse(S,tsh);
%PO = S0*G; % m odel of P

P_0=tf([1],[1 I kO]);
PO = dt*impulse(P_0,tsh);

W2P/P_0 -1;
F=tf([I],[1/wO/'4 0 -2/w_0/2 0 1]);
r = conv(so,yd); %closed-loop reference
r = r(1:n); % truncate
ui = 0*t; % initial input

ei = r; %initial error

120

e(1,:) = ei; % plotting array
f= fi1ter4(w_O,n); % compute filter used by L

for i=2:20,
du = conv(f,ei); % filter the error
du = [du(n:2*n_1),zeros(1,n_1)]; % truncate and pad with zeros

du = deconv(du,pO); % apply P_O inverse
ui = ui + du; % update control input
yi = conv(p,ui); % y = Pu
yi = yi(1 :n); % truncate
ei = r - yi; % error
e(i,:) = ei; % store error for plotting

end

plot(t,e([1 3 5 8 9 1O],:));grid on

A16: Code of Figure 5.5

%Figure 5.5 is produced by this code.
% Apply ILC to C.L. plant e=r-Pu
% where P= 1/(s"2+s+k),
% r = Sy_d,
% u_i = u_(i-1) + De_(i-1)
Ci s is composed of P'-1 and a real 4th-order filter with bandwith = w_0.

clear;
kO =0.5 ; % feedback gain in C.L. plant
k = 10; % can introduce model error via kO neq k; when k=9, it diverges.
w_0 = 10; % bandwith of learning filter

% It is assumed that all time markers divide evenly by dt:
t_s = 2; % start of stroke (end of backswing)
t_f = 12; % end of stroke (start of follow through)
t_max = 14; % end of trial
dt = .01; % sample time
n = t_max/dt+1; % number of samples in e and u
t = 0:dt:t_max; % time vector
yd = .5_.5*cos(pi/(t_f_t_s)*(dt:dt:(t_f_t_s)));
yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru t_s

yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd = 1 from t = t_f to t_max
Gtf([1],[1 10]);
S = (1+kG)"(-1);
P=tf([1],[1 I k]);
tsh = dt:dt:t_max+dt; % time shifted forward by dt
s = dt*impulse(S,tsh);
p = dt*impulse(P,tsh);

SO = (1+k0*G)\(1); % model of S
SO = dt*im pulse(S,tsh);

P_0tf([IL[1 1 kO]);
PO = dt*impulse(P_0,tsh);

W2P/P_0 -1;
F=tf([1],[1/wO."4 0 -2/w_0."2 0 1]);
r = conv(sO,yd); %closed-loop reference
r = r(1:n); % truncate
ui = O*t; % initial input
ei = r; %initial error

121

e(1,:) = ci; % plotting array
f= filter4(w_0,n); % compute filter used by L

for i=2:20,
du = conv(f,ei); % filter the error
du = [du(n:2*n 1),zeros(1,n 1)]; % truncate and pad with zeros

du = deconv(du,pO); % apply P_0 inverse
ui = ui + du; % update control input
yi = conv(p,ui); % y = Pu
yi = yi(1:n); % truncate
ci = r - yi; % error
e(i,:) = ci; % store error for plotting

end

plot(t,e([1 10 20],:));grid on

A17: Code of Figure 5.7

%Figure 5.7 and Figure 5.8 are produced by this code.
clear;
kO =0.5 ; % feedback gain in C.L. plant
k = 3; % can introduce model error via k_0 neq k; when ko=9, it diverges.
w_0 = 5; % bandwith of learning filter

% It is assumed that all time markers divide evenly by dt:
t_s = 2; % start of stroke (end of backswing)
t_f= 12; % end of stroke (start of follow through)
t_max = 14; % end of trial
it = .01; % sample time
n = t_max/dt+1; % number of samples inc and u
t = 0:dt:t max; % time vector
yd = .5_.5*cos(pi/(t_f_t_s)*(dt:dt:(t_f_ts)));
yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru t_s

yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd = I from t t_f to t_max
G=tf([1J,[1 10]);
S = (1+k*G)\(1);
P=tf([1],[1 1 k]);
tsh = dt:dt:t_max+dt; % time shifted forward by dt
s = dt*impulse(S,tsh);
p = dt*impulse(P,tsh);

S_0 = (1+k0*G)i(I); % model of S
s = dt*impulse(S,tsh);

P_0=tf([1],[1 1 kO]);
p0 dt*impulse(P_0,tsh);

W2=P/P_0 -1;
F=tf([1],[1/w_0.'4 0 -2/w_0/'2 0 1]);
R1=(1_F)/(1+F*W2);% R=1 + 3.1168/(s+5.68) - 3.8547/(s-5.591) + 5.1989/(s-4.1 16) - 4.7962/(s+3.771)

%+ (0.3362s+0. 188 1)/(s"2+1.255s+0.6339).
ri c3.1I68*exp(_5.68*t) - 4.7962*exp(_3.771*t) + 0.3362*prod([cos(O.49*t);exp(0.6275*t)}, 1)

- 0.0467*prod([sin(0.49*t);exp(0.6275*t)], 1); %causal,w0=0.005
rla=_3.8547*exp(_5.59 1*t) + 5.1989*exp(_4. 116*t); %anticausal,w0=0.005

rl=[rla(n:-1:2),rlc]; %reverse and concatenate la and Ic; LF*P0_1
e_infconv(r1,yd);
einf=einf(1:n);
r = conv(s,yd); %closed-loop reference

122

r = r(1:n); % truncate
ui = 0*t; % initial input
ei = r; %initial error
e(1,:) = ei; % plotting array
f= fi1ter4(w_0,n); % compute filter used by L

for i = 2:100,
du = conv(f,ei); % filter the error
du = [du(n:2*n_1),zeros(1,n_1)]; % truncate and pad with zeros

du = deconv(du,po); % apply P_0 inverse
dui = conv(f,ui); % filter the ui
dui = dui(n:2*n_1); % truncate
ui = dui + du; % update control input
yi = conv(p,ui); % y = Pu
yi = yi(1:n); % truncate
ei = r - yi; % error
e(i,:) = ei; % store error for plotting

end

plot(t,e([l 10 18 19 20],:),t,e_inf);grid on

A18: Code of Figure 5.9

% Figure 5.9 is produced by this code.
% Apply ILC to C.L. plant er-Pu
% where P= l/(s"2+s+k),
% r = Sy_d,
% ui = u_(i-1) + De(i-1)
% D_ is composed of P"-1 and a real 4th-order filter with bandwith = w_0.
clear;
k_0=0.5; % feedback gain in C.L. plant
a = 20; % can introduce model error via a neq 1;
w_0 = 10; % bandwith of learning filter

% It is assumed that all time markers divide evenly by dt:
t = 2; % start of stroke (end of backswing)
t__f= 12; % end of stroke (start of follow through)
t_max = 14; % end of trial
dt = .01; % sample time
n = t_maxldt+1; % number of samples in e and u
t = 0:dt:t_max; % time vector
yd = .5-.5 *cos(pi/(tf_ts)*(dt:dt:(tf_ts)));
yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru t_s

yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd = I from t = t_f to tmax
G=tf([1],[1 10]);
P=tf({1],[1 a k_0]);
tsh = dt:dt:t_max+dt; % time shifted forward by dt
p = dt*impulse(P,tsh);

S_0 = (1+k_0*G)f(1); % model of S
P_0 = SO*G; % model of P
p_O = dt*impulse(P_0,tsh);
s_0 = dt*impulse(S_0,tsh)

W2=P/PO- 1;
r = conv(s_0,yd); %closed-loop reference
r = r(1:n); % truncate

123

ui = ON % initial input
ei = r; %initial error
e(1,:) = ei; % plotting array
f= fi1ter4(w_O,n); % compute filter used by L
for i=2:80,
du = conv(f,ei); % filter the error
du = [du(n:2*n_l),zeros(1,n_1)]; % truncate and pad with zeros
du = deconv(du,p_O); % apply P_0 inverse
ui = ui + du; % update control input
yi = conv(p,ui); % y = Pu
yi = yi(1:n); % truncate
ei = r - yi; % error
e(i,:) = ei; % store error for plotting

end
plot(t,e([1 78 79 80],:));grid on

A19: Code of Figure 5.11

%Figure 5.11 is produced by this code.
% Apply JLC to C.L. plant e=r-Pu
% where P= 1/(s'2+s+k),
% r = Sy_d,
% ui = u_(i-1) + De_(i-1)
% D is composed of PA-1 and a real 4th-order filter with bandwith w_0.
clear;
kO=0.5; % feedback gain in C.L. plant
a = -0.5; % can introduce model error via a neq 1;
w_0 = 2; % bandwith of learning filter

% It is assumed that all time markers divide evenly by dt:
t = 2; % start of stroke (end of backswing)
t__f = 12; % end of stroke (start of follow through)
t_max = 14; % end of trial
dt= .01; % sample time
n = t_max/dt+ 1; % number of samples in e and u
t = 0:dt:t_max; % time vector
yd = .5-.5 *cos(pil(tf_ts)*(dt:dt:(tf..ts)));
yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru ts

yd = [yd, ones(size(t,f+dt:dt:t_max))]; % yd = I from t = t_f to t_max
G = tf([1],[1 10]);
P=tf([1],[1 a k_0]);
tsh = dt:dt:t_max+dt; % time shifted forward by dt
p = dt*impulse(P,tsh);

S0 = (1+k0*G)/\(1); % model of S
P_0 = S _ _ _0*G; % model of P
p0 = dt*impulse(PO,tsh);
s_0 = dt*impulse(S_0,tsh)

W2=P/P_0-1;
F=tf([l],[1/w_0/4 0 -2/w_0.t'2 0 1]);
r = conv(s_0,yd); %closed-loop reference
r = r(1:n); % truncate
ui = 0*t; % initial input
ei = r; %initial error
e(1,:) = ei; % plotting array
f= fi1ter4(w_0,n); % compute filter used by L

124

for i=2:20,
du = conv(f,ei); % filter the error
du = [du(n:2*n1),zeros(l,n 1)]; % truncate and pad with zeros
du = deconv(du,p_0); % apply P0 inverse
ui = ui + du; % update control input
yi = conv(p,ui); % y = Pu
yi = yi(1:n); % truncate
ei = r - yi; % error
e(i,:) = ei; % store error for plotting

end
plot(t,e([1 18 19 20],:));grid on

A20: Code of Figure 5.13

% This code ilc_a.m produces the plots in Case 2.
% Apply ILC to C.L. plant e=r-Pu
% where P= 1/(s"2+s+k),
%r= Sy_d,
% ui u_(i-1) + Le(i-1)
% L_i s composed of PA-1 and a real 4th-order filter with bandwith w_0.
clear;
k_0=0.5; % feedback gain in C.L. plant
a = 0.5; % can introduce model error via a neq 1;
w_0 = 2; % bandwith of learning filter

% It is assumed that all time markers divide evenly by dt:
t = 2; % start of stroke (end of backswing)
t_f = 12; % end of stroke (start of follow through)
t_max = 14; % end of trial
dt = .01; % sample time
n = t_max/dt+1; % number of samples in e and u
t 0:dt:t_max; % time vector
yd = .5-.5 *cos(pi/(tf_ts)*(dt:dt:(tf_ts)));

yd = [O*(0:dt:ts), yd]; % yd = 0 from t = 0 thru t_s
yd = [yd, ones(size(t_f+dt:dt:t_max))J; % yd = 1 from t = t_f to t_max
Gtf([1],[1 10]);
%S = (1+k*G)/(1);
%P=S*G;

P=tf([1],[1 a k_0]);
tsh = dt:dt:t_max+dt; % time shifted forward by dt
%s = dt*impulse(S,tsh);
p = dt*impulse(P,tsh);

SO = (1+k_0*G)(1); % model of S
P_0 = S_0*G; % model of P
p_O = dt*impulse(P_0,tsh);
s_0 = dt*impulse(S_0,tsh)
%P = dt*toeplitz([p(1),zeros(1,n_1)},p); % plant matrix for RIGHT multiplication
W2P/P_0 1;

F=tf([1],[1/w_0.''4 0 -2/w_0/"2 0 1]);
R1(1 F)/(1+F*W2);
ri c=O.5994*exp(_2.436*t) - 1.0554*exp(_ 1.125*t) - O.08*prod([cos(O.608 1*t);exp(O.537*t)], 1) +

O.2586*prod([sin(O.608 1*t);exp(O.537*t)], 1); %causal,w0'O.005
ri a=0.5352*prod([cos(O.4068*t);exp(_2.067*t)], 1) - 2.5338*prod([sin(O.4068*t);exp(_2.067*t)], 1);

%anticausal,wO=O.0O5
rl=[rla(n:-1:2),rlc]; %reverse and concatenate la and lc; LF*P0_1

125

e_infconv(r1,yd);
einf=einf(1:n);
r = conv(s_0,yd); %closed-loop reference
r = r(1:n); % truncate
ui = 0*t; % initial input
ei = r; %initial error
e(1,:) = ei; % plotting array
f= filter4(w 0,n); % compute filter used by L
for i= 2:20,
du = conv(fei); % filter the error
du = [du(n:2*n_1),zeros(1,n_1)}; % truncate and pad with zeros
du = deconv(du,p_O); % apply P_0 inverse
dui = conv(f,ui); % filter the ui
dui = dui(n:2*n 1); % truncate

ui = dui + du; % update control input
yi = conv(p,ui); % y = Pu
yi = yi(1:n); % truncate
ei = r - yi; % error
e(i,:) = ei; % store error for plotting

end
plot(t,e([1 18 19 20],:),t,e_inf);grid on

A21: Code of Figure 5.15

% Figure 5.15 is produced by this code.
% Apply ILC to C.L. plant e=r-Pu
% where P= 1/(s'2+s+k),
% r = Sy_d,
% u_i = u_(M) + De_(i-1)
% Cis composed of P'-1 and a real 4th-order filter with bandwith = w_0.
clear;
kO=0.5; % feedback gain in C.L. plant
wu=5; % can introduce model error via a neq 1;
w_0 = 10; % bandwith of learning filter

% It is assumed that all time markers divide evenly by dt:
t_s = 2; % start of stroke (end of backswing)
t_f = 12; % end of stroke (start of follow through)
tmax = 14; % end of trial
dt = .01; % sample time
n = t_max/dt+1; % number of samples in e and u
t 0:dt:t_max; % time vector
yd = .5-.5 *cos(pi/(tf_ts)*(dt:dt:(tf_ts)));
yd = [0*(0:dt:t_s), yd]; % yd = 0 from t = 0 thru t_s

yd = [yd, ones(size(t_f+dt:dt:t_max))]; % yd = 1 from t = t_f to t_max
Gtf([1],[1 10]);
tsh = dt:dt:t_max+dt; % time shifted forward by dt
S_0 = (1+k0*G)f\(1); % model of S
P_Otf([1],[1 I k_0]);
P_1=tf([1],[1/wu I]);
p_O = dt*impulse(P_0,tsh);
s_0 = dt*impulse(S_0,tsh);
P=PO*PI;
p = dt*impulse(P,tsh);

W2=P/P_0-1;

126

r = conv(s_O,yd); %closed-loop reference
r = r(1:n); % truncate
ui = O*t; % initial input
ei = r; %initial error
e(1,:) = ei; % plotting array
f= fi1ter4(w_O,n); % compute filter used by L

for i=2:8,
du = conv(f,ei); % filter the error
du = [du(n:2*n_1),zeros(1,n_1)}; % truncate and pad with zeros
du = deconv(du,p_O); % apply P_O inverse
ui = ui + du; % update control input
yi = conv(p,ui); % y = Pu
yi = yi(1:n); % truncate
ei = r - yi; % error
e(i,:) = ei; % store error for plotting

end

plot(t,e([1 6 7 8],:));grid on

A22: Impulse response of real 4th order filter

function f= filter4(w_O,n)
% Impulse response of real 4th order filter.
% Sample time dt assumed.
dt = .01; % sample time
t_max = (n1)*dt; % max time
t = 0:dt:t_max; % time vector

fc = .25*w_O*exp(w_O*t) + .25*w_0f2*(t.*exp(w_0*t)); % causal part
f= dt*[fc(n:_1 :2), fc]; %reverse and concatenate to add noncausal part

